WO2017206671A1 - 具有动态交联结构的动态聚合物 - Google Patents

具有动态交联结构的动态聚合物 Download PDF

Info

Publication number
WO2017206671A1
WO2017206671A1 PCT/CN2017/083513 CN2017083513W WO2017206671A1 WO 2017206671 A1 WO2017206671 A1 WO 2017206671A1 CN 2017083513 W CN2017083513 W CN 2017083513W WO 2017206671 A1 WO2017206671 A1 WO 2017206671A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silicon
compound
atom
polymer
Prior art date
Application number
PCT/CN2017/083513
Other languages
English (en)
French (fr)
Inventor
李政
张欢
梁愫
林淦
欧阳勇
翁文桂
Original Assignee
翁秋梅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 翁秋梅 filed Critical 翁秋梅
Publication of WO2017206671A1 publication Critical patent/WO2017206671A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1483Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/42Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/398Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing boron or metal atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/44Block-or graft-polymers containing polysiloxane sequences containing only polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/08Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/021Block or graft polymers containing only sequences of polymers of C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/027Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyester or polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the invention relates to the field of smart polymers, in particular to a dynamic polymer composed of a dynamic reversible covalent bond and having a dynamic crosslinked structure.
  • Dynamic chemistry is an interdisciplinary subject that combines dynamic covalent chemistry in supramolecular chemistry and covalent chemistry.
  • Traditional molecular chemistry focuses on stable covalent interactions, while dynamic chemistry focuses on relatively weak non-covalent interactions and reversible covalent bonds.
  • supramolecular chemistry is based on non-covalent inter-molecular interactions. These non-covalent interactions are generally weaker than conventional covalent bonds, and are more affected by thermodynamics.
  • the structure is not a stable system to some extent, it is easily destroyed, and it imposes many restrictions on its characterization, research and application.
  • dynamic covalent chemistry it has some characteristics similar to supramolecular chemistry.
  • Dynamic polymers are a new class of polymer systems formed by dynamic chemical bonding. Dynamic polymers can be classified into physical dynamic polymers based on supramolecular interactions and covalent dynamic polymers based on dynamic covalent bonds, depending on the dynamic chemical bonds of the linked dynamic polymers.
  • the covalent dynamic polymer constructed by the dynamic reversible covalent bond has remarkable characteristics due to the special properties of the dynamic reversible covalent bond. Compared with physical dynamic polymers, dynamic reversible covalent polymers are more stable and often have better mechanical properties. The existence of dynamic reversible covalent bonds also ensures that the polymer can exhibit irritation under suitable conditions. Characteristics such as responsiveness, self-healing, recyclability, and reworkability.
  • the traditional transesterification reaction is the earliest reversible exchange reaction, but the conditions of the transesterification reaction are harsh, and generally need to be completed under the conditions of adding alkali and reflux, and the dynamic activity of the traditional ester bond is poor, so
  • the use of dynamic polymers constructed by transesterification reactions imposes limitations; products based on the furan-maleimide Diels-Alder cycloaddition reaction generally require dissociation at elevated temperatures and the reaction is carried out in an organic solvent.
  • the process proceeds slowly; the imine bond formed by the reaction of the primary amine with the aldehyde is strongly influenced by the acidity and alkalinity, and the imine bond is difficult to be stabilized under normal conditions; the transductive exchange reaction of the aminotransfer needs to be carried out under the action of a special protease; Based on the alkoxy nitrogen-based dynamic reversible bond, the dissociation reaction temperature often reaches 100-130 ° C. At the same time, the carbon-centered radical generated by the alkoxy nitrogen-based dissociation is sensitive to oxygen and high temperature, thus causing irreversible Bonding affects the properties of the material; dynamic polymers containing trithioester groups need to be exposed to UV light.
  • Dynamic exchange reaction the disulfide bond in the dynamic covalent bond is dynamic, and it can be exchanged under low temperature conditions, but the thiol itself has poor stability and will continuously oxidize with the surrounding air during use.
  • the thiol content in the reversible system is continuously reduced, which affects the use of materials.
  • the existence of such a situation makes the characteristics of the dynamic reversible covalent bond itself difficult to fully manifest under normal conditions, and it is necessary to develop a novel dynamic polymer, so that the dynamic reversible covalent bond in the system can simultaneously satisfy the reversible reaction.
  • the conditions are fast, the reaction conditions are mild, and the reversible reaction is controllable to solve the above problems in the prior art.
  • the present invention is directed to the above background and provides a polymer chain backbone based on a silicon borate linkage in a crosslinked network.
  • a crosslinked link between the support and/or the polymer chain contains a dynamic crosslinked structure of a dynamic polymer having a silicone borate linkage.
  • the dynamic polymer has good stability and dynamic reversibility, and does not require additional external additives such as a catalyst and a promoter, and can have good dynamic reversibility under normal mild conditions without the need of light and high temperature conditions. It can also exhibit properties such as plasticity, dilatancy, self-healing, recyclability, reworkability and biomimetic properties.
  • a dynamic polymer having a dynamically crosslinked structure comprising a silicone borate linkage on a polymer chain backbone of a crosslinked network and/or a crosslinked linking backbone between polymer chains.
  • the organoboric acid silicate bond exists as a polymeric linking point and/or a cross-linking point of the dynamic polymer, which is a necessary condition for forming/maintaining a dynamic polymer structure.
  • the organoborate silicon ester bond contained in the crosslinked network has the following structure:
  • At least one silicon borate bond (BO-Si) is formed between the boron atom and the silicon atom; at least one carbon atom in the structure is connected to the boron atom through a boron-carbon bond, and at least one organic group passes through the a boron-carbon bond is attached to the boron atom; Representing a linkage to a polymer chain, a crosslinked network chain, or any other suitable group/atom, the boron atom and the silicon atom respectively access the crosslinked network through at least one of said linkages.
  • BO-Si silicon borate bond
  • the organoborate linkage is formed by reacting an organoborate group and/or an organoborate group with a silanol and/or a silanol precursor.
  • the organoboronic acid group described in the present invention refers to a structural unit (B-OH) composed of a boron atom and a hydroxyl group bonded to the boron atom, and wherein the boron atom passes through at least one carbon atom through boron.
  • the carbon bonds are connected and at least one organic group is attached to the boron atom through the boron-carbon bond.
  • one hydroxyl group (-OH) in the organoboronic acid group is a functional group.
  • the organoborate group refers to a structural unit composed of a boron atom, an oxygen atom bonded to the boron atom, and a hydrocarbon group or a silane group bonded to the oxygen atom (B-OR, wherein R is a hydrocarbon group mainly composed of carbon or a hydrogen atom or a silane group mainly composed of silicon or a hydrogen atom, which is bonded to an oxygen atom through a carbon atom or a silicon atom, and wherein the boron atom is bonded to at least one carbon atom through a boron-carbon bond. And at least one organic group is attached to the boron atom through the boron-carbon bond.
  • an ester group (-OR) in the organoborate group is a functional group.
  • the silanol group in the present invention refers to a structural unit (Si-OH) composed of a silicon atom and a hydroxyl group connected to the silicon atom, wherein the silanol group may be a silanol group (ie, a silyl group)
  • the silicon atom is connected to at least one carbon atom through a silicon carbon bond, and at least one organic group is bonded to the silicon atom through the silicon carbon bond, or may be an inorganic silicon hydroxy group (ie, the silicon atom in the silicon hydroxy group is not Attached to the organic group), preferably a silicone hydroxyl group.
  • one hydroxyl group (-OH) in the silanol group is a functional group.
  • the silanol precursor as described in the present invention refers to a structural unit (Si-X) composed of a silicon atom and a group capable of hydrolyzing a hydroxyl group connected to the silicon atom, wherein X is Hydrolyzed to give a hydroxyl group, which may be selected from the group consisting of halogen, cyano, oxocyano, thiocyano, alkoxy, amino, sulfate, borate, acyl, acyloxy, acylamino, alkoxide base.
  • one of the silyl hydroxyl precursors which can be hydrolyzed to give a hydroxyl group (-X) is a functional group.
  • the dynamic polymer is obtained by at least the following components participating in a reaction to form a silicone borate linkage:
  • the dynamic polymer is obtained by at least the following components participating in the reaction to form a silicone borate linkage and a common covalent bond:
  • the dynamic polymer is obtained by at least the following components participating in a reaction to form a silicone borate linkage:
  • Organic boron compound (I) and/or at least one silicon-containing compound (II) containing a silanol group and/or a silanol precursor wherein compound (III), organoboron compound (I), silicon-containing compound (II) Both contain two or more functional groups, and at least one compound (III) or at least one organoboron compound (I) or at least one silicon-containing compound (II) contains three or more functional groups.
  • the dynamic polymer is obtained by at least the following components participating in a reaction to form a silicone borate linkage and a common covalent bond:
  • Organic boron compound (I) and/or at least one silicon-containing compound (II) containing a silanol group and/or a silanol precursor wherein compound (III) contains two or more functional groups, an organoboron compound ( I), the silicon-containing compound (II) contains one or more functional groups, and at least one compound (III) or at least one organoboron compound (I) or at least one silicon-containing compound (II) contains one or more other Reactive group.
  • a suitable amount of a monofunctional organoboron compound (I) and/or a monofunctional silicon-containing compound (II) component may also be selectively introduced, which may be adjusted by component formulation.
  • Monofunctional compounds can function to adjust crosslink density, dynamics, mechanical strength, and the like.
  • the reaction of other reactive groups may also be carried out by introducing a boronic acid-free and/or organic boronic acid ester group, a silanol group and/or a silanol precursor, a silicon silicate bond.
  • the components of the compound containing other reactive groups are achieved together.
  • the compound containing only other reactive groups may be any suitable compound which can be reacted with other reactive groups in the organoboron compound (I) and/or the silicon-containing compound (II) and/or the compound (III). The purpose of obtaining a dynamic polymer having the "dynamic crosslinked structure" is obtained.
  • the compound (III) for preparing the dynamic polymer may be selected from the same compound (III) or may be selected from the different compound (III); when it is selected from When the same compound (III) is obtained, the dynamic polymer is obtained by a reaction between an intramolecular and/or intermolecular organoboronic acid group and/or an organic boronic acid ester group and a silanol group and/or a silanol precursor. .
  • the other reactive groups described in the present invention mean that the derivatization reaction can be carried out spontaneously or under the conditions of an initiator or light, heat, irradiation, catalysis, or the like, or a polymerization/crosslinking reaction can be carried out.
  • a group which generates a common covalent bond other than the organoborate silicon carboxylate bond and suitable groups are, for example, a hydroxyl group, a phenolic hydroxyl group, a carboxyl group, an acyl group, an amide group, an acyloxy group, an amino group, an aldehyde group, a sulfonic acid group, a sulfonate.
  • organoboron compound (I) containing an organic boronic acid group and/or an organic boronic acid ester group described in the present invention may be represented by the following structure:
  • A is a module containing an organoboronic acid group and/or an organic boronic acid ester group
  • m is the number of modules A, m ⁇ 1
  • L is a substituent group on a single module A, or two or more modules A linking group between A
  • p is the number of groups L, p ⁇ 1.
  • the organoborate group-containing module A may be selected from any one or any of the following structures:
  • K 1 is a group directly bonded to a boron atom, and is selected from any one of the following structures: a hydrogen atom, a hetero atom group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a polymer chain residue having a molecular weight of more than 1000 Da;
  • the cyclic structure in A4 is a non-aromatic or aromatic boron heterocyclic group containing at least one organic boronic acid group, and the boron atom is placed in a cyclic structure, and the cyclic structure may be a small molecular ring or a large a molecular ring, which is preferably a 3- to 100-membered ring, more preferably a 3- to 50-membered ring, more preferably a 3- to 10-membered ring; and the ring-forming atoms of the cyclic structure in A4 are each independently a carbon atom, a boron atom or Other heteroatoms
  • the organoborate group-containing module A may be selected from any one or any of the following structures:
  • K 2 is a group directly bonded to a boron atom, and is selected from any one of the following structures: a hydrogen atom, a hetero atom group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a polymer chain residue having a molecular weight of more than 1000 Da;
  • R 1 , R 2 , R 3 , R 4 , and R 6 are a monovalent organic group or a monovalent organosilicon group directly bonded to an oxygen atom, which is directly bonded to an oxygen atom through a carbon atom or a silicon atom, and is selected from the group consisting of Any of the following structures: a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, a small molecular silane group having a molecular weight of not more than 1000 Da, and a polymer chain residue having a molecular weight of more than 1000 Da; and
  • R 5 is a divalent organic group directly bonded to two oxygen
  • a group or a divalent organosilicon group directly bonded to an oxygen atom through a carbon atom or a silicon atom which is selected from any one of the following structures: a divalent small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a divalent small molecular weight of not more than 1000 Da a molecular silane group having a divalent polymer chain residue having a molecular weight of more than 1000 Da; wherein the cyclic structure in B5 is a non-aromatic or aromatic boron heterocyclic group containing at least one organoborate group, and the boron atom is placed ring
  • the cyclic structure may be a small molecule ring or a macromolecular ring, which is preferably a 3- to 100-membered ring, more preferably a 3- to 50-membered ring, more preferably a 3- to 10-membered ring; and a ring in B5.
  • the ring-forming atoms of the like structure are each independently a carbon atom, a boron atom or other hetero atom, and at least one ring-forming atom is a boron atom and constitutes an organic borate group, and at least one ring-forming atom is bonded to the group L;
  • B5 The hydrogen atoms in the ring-forming atoms in the ring structure may or may not be substituted; the ring structure in B5 may be a single ring structure, a polycyclic structure, a spiro structure, a fused ring structure, or a bridged ring structure.
  • Nested ring structure Indicates a linkage to a group L; the boron atoms in the various structures are bonded to at least one carbon atom through a boron-carbon bond, and at least one organic group is attached to the boron atom through the boron-carbon bond.
  • one boron atom may be bonded to one hydroxyl group and one ester group at the same time, and at least one boron hydroxyl group and at least one may be simultaneously contained in the same module.
  • Borate ester group in the module A containing an organic boronic acid group and/or an organic boronic acid ester group, one boron atom may be bonded to one hydroxyl group and one ester group at the same time, and at least one boron hydroxyl group and at least one may be simultaneously contained in the same module.
  • the module A containing an organic boronic acid group and/or an organic boric acid ester group when present in a polymer and has two or more of the linkages, it may be attached to a non-ring or a failure.
  • the polymer chain of the cluster may also be attached to the pendant/side chain of the ring or cluster; when there is only one such linkage, it may be attached to any position of the polymer chain.
  • the module A may be selected from the same structure or a plurality of different structures, in which case p ⁇ 1, L is a linking group between two or more modules A; when p ⁇ 2, L may It is selected from the same structure or a plurality of different structures; the L structure may be selected from any one or more of the following: a single bond, a hetero atom linkage group, a divalent or polyvalent small molecule hydrocarbon group having a molecular weight of not more than 1000 Da, A divalent or polyvalent polymer chain residue having a molecular weight greater than 1000 Da.
  • the silicon-containing compound (II) containing a silanol group and/or a silanol precursor as described in the present invention may be an organic silicon-containing compound or an inorganic silicon-containing compound, which may be represented by the following structure:
  • G is a module containing a silanol and/or a silanol precursor
  • n is the number of modules G, n ⁇ 1
  • J is a substituent group on a single module G, or two or more modules G The linking group
  • q is the number of groups J, q ⁇ 1.
  • the silanol-containing module G may be selected from any one or any of the following structures:
  • K 3 , K 4 , K 5 , K 6 , and K 7 are groups directly bonded to a silicon atom, each of which is independently selected from any one of the following structures: a hydrogen atom, a hetero atom group, and a molecular weight of not more than 1000 Da.
  • Small molecular hydrocarbon group polymer chain residue with molecular weight greater than 1000 Da, inorganic small molecular chain residue with molecular weight not exceeding 1000 Da, inorganic macromolecular chain residue with molecular weight greater than 1000 Da; wherein, cyclic structure in C7, C8, C9
  • the non-aromatic or aromatic silicon heterocyclic group containing at least one silanol group, the silicon atom is placed in a ring structure, and the ring structure may be a small molecule ring or a macromolecular ring, which is preferably 3 to 100.
  • the ring more preferably a 3- to 50-membered ring, more preferably a 3- to 10-membered ring;
  • the ring-forming atoms of the cyclic structure in C7, C8, and C9 are each independently a carbon atom, a silicon atom, or other hetero atom, and At least one ring-forming atom is a silicon atom and constitutes a silanol group, and at least one ring-forming atom is bonded to the group J;
  • the ring structure in C7, C8, and C9 may be substituted for each of the hydrogen atoms on the ring atom, or may not be Substituted;
  • the cyclic structure in C7, C8, C9 can be Cyclic structure, polycyclic structure, spiro ring structure, ring structure fused, bridged ring structure, the nested loop structure; Indicates the connection to the group J.
  • the module G containing a silanol precursor may be selected from any one or any of the following structures:
  • K 8 , K 9 , K 10 , K 11 , and K 12 are groups directly bonded to a silicon atom, each of which is independently selected from any one of the following structures: a hydrogen atom, a hetero atom group, and a molecular weight of not more than 1000 Da.
  • Small molecular hydrocarbon group polymer chain residue with molecular weight greater than 1000 Da, inorganic small molecular chain residue with molecular weight not exceeding 1000 Da, inorganic macromolecular chain residue with molecular weight greater than 1000 Da;
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , X 10 , X 11 , X 12 , X 13 , X 14 are hydrolyzable groups directly bonded to a silicon atom, including but not limited to halogen, cyano, Oxy cyano, thiocyano, alkoxy, amino, sulfate, borate, acyl, acyloxy, acylamino, alkoxide, preferably halogen, alkoxy; wherein D7, D8, D9
  • the cyclic structure is a non-aromatic or aromatic silicon heterocyclic group containing at least one silano
  • the ring-forming atoms of the cyclic structure in 9 are each independently a carbon atom, a silicon atom or other hetero atom, and at least one ring-forming atom is a silicon atom and constitutes a silanol precursor, and at least one ring-forming atom and a group J
  • the hydrogen atoms on the ring-forming atoms in the ring structure of D7, D8, and D9 may or may not be substituted; the ring structure in D7, D8, and D9 may be a single ring structure or a polycyclic structure.
  • Spiro structure fused ring structure, bridge ring structure, nested ring structure; Indicates the connection to the group J.
  • a ring may also be formed between suitable different groups K, between different groups X, and between the group K and the group X.
  • At least one hydroxyl group and at least one hydroxyl group precursor may be simultaneously bonded to one silicon atom, and at least one silanol group may be simultaneously present in the same module and at least A silanol precursor.
  • the module G containing a silanol group and/or a silanol precursor when present in a polymer and has two or more of the linkages, it may be attached to a non-cyclic or non-clustered group.
  • the polymer chain may also be attached to the pendant or side chain of the ring or cluster; when there is only one such linkage, it may be attached to any position of the polymer chain.
  • the structure may be selected from any one or more of the following: a hydrogen atom, a hetero atom group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, a polymer chain residue having a molecular weight of more than 1000 Da, and a small inorganic molecular chain residue having a molecular weight of not more than 1000 Da.
  • the module G may be selected from the same structure or a plurality of different structures, in which case q ⁇ 1, J is a linking group between two or more modules G; when q ⁇ 2, J may It is selected from the same structure or a plurality of different structures; the J structure may be selected from any one or more of the following: a single bond, a hetero atom linkage group, a divalent or polyvalent small molecule hydrocarbon group having a molecular weight of not more than 1000 Da, A divalent or polyvalent polymer chain residue having a molecular weight of more than 1000 Da, a divalent or polyvalent inorganic small molecular chain residue having a molecular weight of not more than 1000 Da, and a divalent or polyvalent inorganic macromolecular chain residue having a molecular weight of more than 1000 Da.
  • the compound (III) containing both an organic boronic acid group and/or an organic boronic acid ester group and a silanol group and/or a silanol precursor as described in the present invention may be represented by the following structure:
  • A is a module containing an organic boronic acid group and/or an organic boronic acid ester group, and the specific definition thereof can be referred to the definition of the module A in the organic boron compound (I), and details are not described herein;
  • x is the number of the module A, x ⁇ 1; when x ⁇ 2, module A may be selected from the same structure or a plurality of different structures;
  • G is a module containing a silicon hydroxy group and/or a silanol precursor, and the specific definition thereof may be referred to the silicon-containing compound (II).
  • module G is not repeated here; y is the number of modules G, y ⁇ 1; when y ⁇ 2, module G can be selected from the same structure or multiple different structures; T is two or more A Between, or between two or more G, or a linking group between A and G, the T structure may be selected from any one or more of the following: a single bond, a hetero atom linker, a divalent or polyvalent small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, a divalent or polyvalent polymer chain residue having a molecular weight of more than 1000 Da; v is the number of groups T, v ⁇ 1; when v ⁇ 2, T is It is selected from the same structure or a plurality of different structures.
  • a fifth production embodiment of the present invention wherein at least one or more compounds (IV) containing at least one organoborate linkage and at least one other reactive group are polymerized by other reactive groups. a cross-linking reaction to obtain the dynamic polymer; or at least one or more compounds (IV) containing at least one organoborate linkage and at least one other reactive group and no organoborate linkages but The compound containing at least one other reactive group obtains the dynamic polymer by a polymerization/crosslinking reaction between other reactive groups.
  • the compound (IV) is generally a monomer containing a silicon borate bond, an oligomer containing a silicon borate bond, and a prepolymer containing a silicon borate bond.
  • the compound (IV) containing a silicone borate bond and other reactive groups described in the present invention may be represented by the following structure:
  • E is a module containing a silicon borate linkage; u is the number of modules E, u ⁇ 1; Y is a substituent group on a single module E, or a substituent group on a single module E and two or a linking group between the plurality of modules E, and at least one group Y is bonded to a boron atom of a silicon silicate bond, at least one group Y is bonded to a silicon atom of a silicon silicate bond; wherein, at least one group Group Y contains at least one other reactive group, and the number of other reactive groups contained in all groups Y is 2 or more; r is the number of groups Y, and r ⁇ 2.
  • the module E containing a silicone borate bond can be represented by the following structure:
  • K 13 , K 16 , and K 20 are groups directly bonded to a boron atom, each of which is independently selected from any one of the following structures: a hydrogen atom, a hetero atom group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a molecular weight.
  • K 14 , K 15 , K 17 , K 18 , K 19 , K 21 are groups directly bonded to a silicon atom, each of which is independently selected from any one of the following structures: a hydrogen atom a hetero atomic group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, a polymer chain residue having a molecular weight of more than 1000 Da, an inorganic small molecular chain residue having a molecular weight of not more than 1000 Da, and an inorganic macromolecular chain residue having a molecular weight of more than 1000 Da; Indicates the linkage to the group Y.
  • a ring may also be formed between the appropriate different groups K, between the different groups Y, and between the group K and the group Y; the group Y may be bonded to the boron atom through a Si-O bond. It can also be connected to a silicon atom through a BO bond.
  • Y is a substituent group on a single module E
  • Y may be selected from the same structure or a plurality of different structures, and Y contains other reactive groups The amount and structure must ensure that the dynamic polymer is obtainable; the Y structure may be selected from any one or more of the following: a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a polymer chain residue having a molecular weight of more than 1000 Da.
  • the module E may be selected from the same structure or a plurality of different structures, in which case r ⁇ 2, Y is a substituent group on a single module E and a linking group between two or more modules E , Y may be selected from the same structure or a plurality of different structures, and the number and structure of other reactive groups contained in Y must ensure that the dynamic polymer can be obtained; the Y structure may be selected from a molecular weight of not more than 1000 Da.
  • a small molecule hydrocarbon group any one or more of the polymer chain residues having a molecular weight of more than 1000 Da, and a single bond, a hetero atom linker, a divalent or polyvalent small molecule hydrocarbon group having a molecular weight of not more than 1000 Da, Any one or more of the divalent or polyvalent polymer chain residues having a quantity greater than 1000 Da.
  • the dynamic crosslinked polymer can be obtained by utilizing the dynamics of the organoborate silicon carboxylate bond and the polymerization/crosslinking reaction of other reactive groups under suitable conditions.
  • the dynamic polymer in the present invention is not limited to being prepared by the above embodiment.
  • the organoboron compound (I), the silicon-containing compound (II), the compound (III), and the compound (IV) are used as raw materials to prepare a dynamic polymer, whether in the form of a raw material or a synthetic raw material.
  • the form of the compound, or in the form of an intermediate product of a synthetic polymer, as it may be derived in accordance with the teachings of the present invention, is intended to be included within the scope of the invention.
  • the dynamic polymer can be obtained by using at least one or more of the following compounds as a raw material:
  • the organoboron compound (I) and/or the compound (III) is passed through an organoboronic acid group and/or an organic boronic acid ester group and a silicon-hydroxyl group in the silicon-containing compound (II) and/or the compound (III) (including a silicon capable of being converted by conversion)
  • the silanol precursor of the hydroxy group undergoes a condensation reaction or a transesterification reaction to form a silicone boronic acid bond to obtain a dynamic polymer.
  • organoboron compound (I), the silicon-containing compound (II), and the compound (III) may also be selectively covalently bonded by a polymerization/crosslinking reaction using other reactive groups, thereby interacting with the organic boronic acid group and/or Or an organoborate group, together with a silyl hydroxyl group and/or a silanol precursor, react together to give a dynamic polymer.
  • the compound (IV) containing a silicon borate linkage is generally reacted with each other by other reactive groups contained in the compound (IV) or by other reactive groups contained in the compound (IV).
  • the interaction between the group and other reactive groups contained in other compounds not containing a silicone borate bond gives a dynamic polymer containing a silicon borate linkage.
  • additives and fillers may be added to be blended to form a dynamic polymer, but these additives are not essential.
  • the dynamic polymer properties are widely adjustable and can be applied to various fields, and have broad application prospects in military aerospace equipment, functional coatings and coatings, biomedicine, biomedical materials, energy, construction, bionics, smart materials. In other fields, it has shown impressive results. Specifically, it can be applied to the manufacture of shock absorbers, cushioning materials, impact protection materials, sports protection products, military and police protective products, self-healing coatings, self-healing sheets, self-healing adhesives, and toughness. Materials, toys, force sensors and other products.
  • the present invention has the following beneficial effects:
  • the dynamic polymer of the present invention is rich in structure and diverse in performance.
  • an organoboron compound (I) containing an organic boronic acid group and/or an organic boronic acid ester group a silicide-containing (II) containing a silanol group and/or a silanol precursor, and an organic boronic acid group and/or an organic boron
  • the compound (III) having an acid ester group and a silanol group and/or a silanol precursor and a compound (IV) containing a silicon borate bond are prepared as a reaction raw material to prepare a dynamic polymer, so that the reaction raw material itself has various structures. The advantages of sex are fully reflected.
  • the present invention by adjusting the number of functional groups in the starting compound, the molecular structure, the molecular weight, and/or introducing a reactive group, a group that promotes dynamics, a functional group, and/or an adjustment in the starting compound.
  • Parameters such as raw material composition can produce dynamic polymers with different structures, so that dynamic polymers can exhibit a variety of properties.
  • the use of the organoboron compound facilitates a homogeneous reaction during the preparation of the dynamic polymer, improves the reaction efficiency during the reaction, and improves the homogeneity and hydrolytic stability of the product.
  • the inorganic boronic acid silicate bond obtained by the inorganic boron compound tends to have a single structure, the number of functional groups is fixed, and the inorganic boron compound generally undergoes a heterogeneous reaction, and the obtained product is easily hydrolyzed and hydrolyzed, thereby failing to achieve the corresponding effect.
  • the dynamic polymer has strong dynamic reactivity and mild dynamic reaction conditions. Compared with other existing dynamic covalent systems, the present invention makes full use of the excellent thermal stability and high dynamic reversibility of the organoboric acid silicon silicate bond, and can be used without catalyst, high temperature, illumination or specific pH. Under the condition of realizing the synthesis and dynamic reversibility of dynamic polymer, the preparation efficiency is improved, the limitation of the use environment is also reduced, and the application range of the polymer is expanded. In addition, by selectively controlling other conditions (such as adding auxiliaries, adjusting the reaction temperature, etc.), it is possible to accelerate or quench the dynamic covalent chemical equilibrium in a suitable environment in a desired state, which is now Some supramolecular chemistry and dynamic covalent systems are difficult to do.
  • other conditions such as adding auxiliaries, adjusting the reaction temperature, etc.
  • the dynamic reversibility of the organoborate silicon ester bond can also be regulated by adjusting the structure of the adjacent group of the organoborate silicon ester bond and the structure of the polymer chain.
  • the organoborate bond can be more reversibly broken as a controllable "sacrificial bond" under stress, which consumes a large amount of energy, making the stress mainly Concentrated on the organoborate silicon ester bond for dissipation, energy absorption, and excellent toughening effect in a specific structure; compared to the existing supramolecular interaction force, the organoborate of the present invention
  • the covalent bond nature of the bond makes the energy required for the fracture higher, which can dissipate more energy and better enhance the energy absorption properties and toughness of the material. Compared with the inorganic boronic acid silicate bond, it has more Great freedom of regulation.
  • the present invention relates to a dynamic polymer having a dynamically crosslinked structure comprising a silicone borate linkage on a polymer chain backbone of a crosslinked network and/or a crosslinked linking backbone between polymer chains.
  • the organoboric acid silicate bond exists as a polymeric linking point and/or a cross-linking point of the dynamic polymer, and is a necessary condition for forming/maintaining a dynamic polymer structure; the organoboric acid silicate contained in the dynamic polymer Once the bond is dissociated, the polymer system can be decomposed into any one or any of the following units: monomer, polymer chain segment, linear polymer unit, non-crosslinked polymer unit, polymer cluster unit, etc.; At the same time, mutual conversion and dynamic reversibility can be achieved between the dynamic polymer and the above units by bonding and dissociation of the organoborate linkage.
  • the dynamic polymer which may contain a silicone borate bond only on the polymer chain backbone of the crosslinked network, and may contain a silicone borate only on the crosslinked link backbone between the polymer chains of the crosslinked network.
  • the bond may also contain a silicon borate linkage on the crosslinked link backbone between the polymer chain backbone of the crosslinked network and the polymer chain.
  • the organoborate silicon ester bond contained in the crosslinked network has the following structure:
  • At least one silicon borate bond (BO-Si) is formed between the boron atom and the silicon atom; at least one carbon atom in the structure is connected to the boron atom through a boron-carbon bond, and at least one organic group passes through the a boron-carbon bond is attached to the boron atom; Representing a linkage to a polymer chain, a crosslinked network chain, or any other suitable group/atom, the boron atom and the silicon atom respectively access the crosslinked network through at least one of said linkages.
  • BO-Si silicon borate bond
  • the dynamic polymer has a crosslinked structure.
  • crosslinked structure means that the dynamic polymer has a three-dimensional infinite network structure, which is generally passed through at least one single group containing three or more functional groups/reactive groups capable of participating in the crosslinking reaction.
  • a component such as a body or a prepolymer is involved in homopolymerization or copolymerization, or is formed by a linear or nonlinear cross-linking reaction between polymer chains.
  • the polymer chain backbone is any segment present in the crosslinked network; the crosslinks between the polymer chains may be one atom, one single bond, one group, one segment , a cluster, etc., so the crosslinked link skeleton between the polymer chains can also be regarded as a polymer chain skeleton.
  • the crosslinked linking skeleton on the chain skeleton and/or the polymer chain contains a silicon borate linkage, and the dissociation and bonding of the polymer network structure can be achieved by dissociation and bonding of the organoborate silicon ester bond. Dynamic polymers therefore have a "dynamic crosslinked structure".
  • the organoborate linkage is formed by reacting an organoborate group and/or an organoborate group with a silanol and/or a silanol precursor.
  • any suitable organic boronic acid group and/or organic boronic acid ester group may be combined with a silanol group and/or a silanol precursor to form an organoborate silicon ester bond, preferably an organic boronic acid group and a silanol group, an organic boronic acid group and a silanol precursor, an organoborate group and a silanol group to form a silicone borate linkage, more preferably an organoborate group and a silanol group, an organoborate group and a silanol group to form a silicone borate linkage, more preferably The organoborate group and the silanol group form a silicone borate linkage.
  • the organoboronic acid group described in the present invention refers to a structural unit (B-OH) composed of a boron atom and a hydroxyl group bonded to the boron atom, and wherein the boron atom passes through at least one carbon atom through boron.
  • the carbon bonds are connected and at least one organic group is attached to the boron atom through the boron-carbon bond.
  • one hydroxyl group (-OH) in the organoboronic acid group is a functional group.
  • the organoborate group as used in the present invention refers to a structural unit composed of a boron atom, an oxygen atom bonded to the boron atom, and a hydrocarbon group or a silane group bonded to the oxygen atom (B-OR).
  • R is a hydrocarbon group mainly composed of carbon or a hydrogen atom or a silane group mainly composed of silicon or a hydrogen atom, which is bonded to an oxygen atom through a carbon atom or a silicon atom, and wherein a boron atom passes through at least one carbon atom through boron
  • an ester group (-OR) in the organoborate group is a functional group.
  • the silanol group in the present invention refers to a structural unit (Si-OH) composed of a silicon atom and a hydroxyl group connected to the silicon atom, wherein the silanol group may be a silanol group (ie, a silyl group)
  • the silicon atom is connected to at least one carbon atom through a silicon carbon bond, and at least one organic group is bonded to the silicon atom through the silicon carbon bond, or may be an inorganic silicon hydroxy group (ie, the silicon atom in the silicon hydroxy group is not Attached to the organic group), preferably a silicone hydroxyl group.
  • one hydroxyl group (-OH) in the silanol group is a functional group.
  • the silanol precursor as described in the present invention refers to a structural unit (Si-X) composed of a silicon atom and a group capable of hydrolyzing a hydroxyl group connected to the silicon atom, wherein X is Hydrolyzed to give a hydroxyl group, which may be selected from the group consisting of halogen, cyano, oxocyano, thiocyano, alkoxy, amino, sulfate, borate, acyl, acyloxy, acylamino, alkoxide base.
  • one of the silyl hydroxyl precursors which can be hydrolyzed to give a hydroxyl group (-X) is a functional group.
  • the functional group described in the present invention refers to a hydroxyl group in the above-mentioned organoboronic acid group, or an ester group in an organic boronic acid ester group, or a hydroxyl group in a silicon hydroxyl group. Or a group in the silanol precursor which can be hydrolyzed to give a hydroxyl group, or a combination thereof.
  • the organoboronic acid group and the organic boronic acid ester group may be present in the same compound or in different compounds; the silicic hydroxyl group and the silanol precursor are generally present in different compounds, but when It may also be present in the same compound when coexisting; it may also be present in the same compound when the organoboronic acid group and/or the organoboronic acid ester group may coexist with the silanol group and/or the silanol precursor.
  • the compound containing an organic boronic acid group and/or an organic boronic acid ester group but not containing a silicon hydroxyl group and/or a silanol precursor is the organoboron compound (I) described in the present invention, which may be a molecular weight.
  • a small molecule compound of not more than 1000 Da may also be a macromolecular compound having a molecular weight of more than 1000 Da; a compound containing a silyl hydroxyl group and/or a silanol precursor but not containing an organic boronic acid group and/or an organic boronic acid ester group is in the present invention.
  • the compound of the silyl hydroxy precursor is the compound (III) described in the present invention, which may be a small molecule compound having a molecular weight of not more than 1000 Da, or a macromolecular compound having a molecular weight of more than 1000 Da.
  • organoboron compound (I) containing an organic boronic acid group and/or an organic boronic acid ester group described in the present invention may be as follows Structure representation:
  • A is a module containing an organoboronic acid group and/or an organic boronic acid ester group
  • m is the number of modules A, m ⁇ 1
  • L is a substituent group on a single module A, or two or more modules A linking group between A
  • p is the number of groups L, p ⁇ 1.
  • the organoborate group-containing module A may be selected from any one or any of the following structures:
  • K 1 is a group directly bonded to a boron atom, and is selected from any one of the following structures: a hydrogen atom, a hetero atom group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a polymer chain residue having a molecular weight of more than 1000 Da;
  • the cyclic structure in A4 is a non-aromatic or aromatic boron heterocyclic group containing at least one organic boronic acid group, and the boron atom is placed in a cyclic structure, and the cyclic structure may be a small molecular ring or a large a molecular ring, which is preferably a 3- to 100-membered ring, more preferably a 3- to 50-membered ring, more preferably a 3- to 10-membered ring; and the ring-forming atoms of the cyclic structure in A4 are each independently a carbon atom, a boron atom or Other heteroatoms
  • the cyclic structure in A4 may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any one, or a hybridized form of any one: boron heterocycle, boron a cyclic hydrocarbon, a boron benzene, a borane, a borax, a porphyrin, a boron heteroarene; the cyclic structure listed is preferably a boron heterocyclopentane, a boron heterocyclohexane, a boron heterocyclohexene, a boron Cyclohexadiene, boron heterocyclohexenone, boron benzene.
  • groups an unsaturated form of any one, a substituted form of any one, or a hybridized form of any one: boron heterocycle, boron a cyclic hydrocarbon, a boron benzene, a borane, a borax, a porphy
  • the organoborate group-containing module A may be selected from any one or any of the following structures:
  • K 2 is a group directly bonded to a boron atom, and is selected from any one of the following structures: a hydrogen atom, a hetero atom group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a polymer chain residue having a molecular weight of more than 1000 Da;
  • R 1 , R 2 , R 3 , R 4 , and R 6 are a monovalent organic group or a monovalent organosilicon group directly bonded to an oxygen atom, which is directly bonded to an oxygen atom through a carbon atom or a silicon atom, and is selected from the group consisting of Any of the following structures: a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, a small molecular silane group having a molecular weight of not more than 1000 Da, and a polymer chain residue having a molecular weight of more than 1000 Da; and
  • R 5 is a divalent organic group directly bonded to two oxygen
  • a group or a divalent organosilicon group directly bonded to an oxygen atom through a carbon atom or a silicon atom which is selected from any one of the following structures: a divalent small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a divalent small molecular weight of not more than 1000 Da a molecular silane group having a divalent polymer chain residue having a molecular weight of more than 1000 Da; wherein the cyclic structure in B5 is a non-aromatic or aromatic boron heterocyclic group containing at least one organoborate group, and the boron atom is placed ring
  • the cyclic structure may be a small molecule ring or a macromolecular ring, which is preferably a 3- to 100-membered ring, more preferably a 3- to 50-membered ring, more preferably a 3- to 10-membered ring; and a ring in B5.
  • the ring-forming atoms of the like structure are each independently a carbon atom, a boron atom or other hetero atom, and at least one ring-forming atom is a boron atom and constitutes an organic borate group, and at least one ring-forming atom is bonded to the group L;
  • B5 The hydrogen atoms in the ring-forming atoms in the ring structure may or may not be substituted; the ring structure in B5 may be a single ring structure, a polycyclic structure, a spiro structure, a fused ring structure, or a bridged ring structure.
  • Nested ring structure Indicates a linkage to a group L; the boron atoms in the various structures are bonded to at least one carbon atom through a boron-carbon bond, and at least one organic group is attached to the boron atom through the boron-carbon bond.
  • the cyclic structure in B5 may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any one, or a hybridized form of any one: boron heterocycle, boron a cyclic hydrocarbon, a boron benzene, a borane, a borax, a porphyrin, a boron heteroarene; the cyclic structure listed is preferably a boron heterocyclopentane, a boron heterocyclohexane, a boron heterocyclohexene, a boron Cyclohexadiene, boron heterocyclohexenone, boron benzene.
  • groups an unsaturated form of any one, a substituted form of any one, or a hybridized form of any one: boron heterocycle, boron a cyclic hydrocarbon, a boron benzene, a borane, a borax, a porphy
  • one boron atom may be bonded to one hydroxyl group and one ester group at the same time, and at least one boron hydroxyl group and at least one may be simultaneously contained in the same module.
  • Borate ester groups for example:
  • the compound contains both an organic boronic acid group and an organic boronic acid ester group to help regulate its solubility, reaction rate, reaction degree and other parameters, as well as properties that can be used to regulate the dynamic properties of dynamic polymers.
  • the module A containing an organic boronic acid group and/or an organic boric acid ester group when present in a polymer and has two or more of the linkages, it may be attached to a non-ring or a failure.
  • the polymer chain of the cluster may also be attached to the pendant/side chain of the ring or cluster; when there is only one such linkage, it may be attached to any position of the polymer chain.
  • a suitable organoboron compound (I) formed is as follows:
  • g, h, j are each independently a fixed value or an average value, g ⁇ 1, h ⁇ 1, j ⁇ 1.
  • organoboron compound (I) is only proposed to better illustrate the typical structure of the organoboron compound (I) under such conditions, and is only a representative structure under this condition, instead of Limitation of the scope of protection of the present invention.
  • the module A may be selected from the same structure or a plurality of different structures, in which case p ⁇ 1, L is a linking group between two or more modules A; when p ⁇ 2, L may It is selected from the same structure or a plurality of different structures; the L structure may be selected from any one or more of the following: a single bond, a hetero atom linkage group, a divalent or polyvalent small molecule hydrocarbon group having a molecular weight of not more than 1000 Da, A divalent or polyvalent polymer chain residue having a molecular weight greater than 1000 Da.
  • L When L is selected from a single bond, it may be selected from a boron boron single bond, a carbon carbon single bond, a carbon nitrogen single bond, a nitrogen nitrogen single bond, a boron carbon single bond, a boron nitrogen single bond; preferably a boron boron single bond, boron Carbon single bond, carbon carbon single bond.
  • a suitable organoboron compound (I) formed is as follows:
  • g and h are each independently a fixed value or an average value, g ⁇ 1, h ⁇ 1.
  • organoboron compound (I) is only proposed to better illustrate the typical structure of the organoboron compound (I) under such conditions, and is only a representative structure under this condition, instead of Limitation of the scope of protection of the present invention.
  • L When L is selected from a hetero atom linking group, it may be selected from any one or a combination of any of the following: an ether group, a thio group, a thioether group, a divalent tertiary amine group, a trivalent tertiary amine group, and a divalent silicon.
  • a trivalent silicon group a tetravalent silicon group, a divalent phosphorus group, a trivalent phosphorus group, a divalent boron group, a trivalent boron group
  • the hetero atom linking group is preferably an ether group, a sulfur group, a divalent tertiary amine group, Trivalent tertiary amine group.
  • An example of a suitable organoboron compound (I) formed is as follows:
  • g and h are each independently a fixed value or an average value, g ⁇ 1, h ⁇ 1.
  • organoboron compound (I) is only proposed to better illustrate the typical structure of the organoboron compound (I) under such conditions, and is only a representative structure under this condition, instead of Limitation of the scope of protection of the present invention.
  • L is selected from a divalent or polyvalent small molecule hydrocarbon group having a molecular weight of not more than 1000 Da, it generally contains from 1 to 71 carbon atoms, and the valence of the hydrocarbon group may be from 2 to 144, which may or may not contain a hetero atom group. Contains a hetero atom group.
  • the divalent or polyvalent small molecule hydrocarbyl group may be selected from any of the following groups, an unsaturated form of either, a substituted form of either, or a hybridized form of either: Two to one hundred and forty four valences C 1-71 alkyl, two to one hundred and forty four valence ring C 3-71 alkyl, two to six valent phenyl, two to eight benzyl, two to one hundred four a tetrakis-valent aromatic hydrocarbon group; L is preferably a di-tetravalent methyl group, a di- to hexavalent ethyl group, a di-octavalent propyl group, a di-hexavalent cyclopropane group, a di- to 12-valent cyclohexyl group, or a di-hexavalent benzene group.
  • An example of a suitable organoboron compound (I) formed is as follows:
  • g and h are each independently a fixed value or an average value, g ⁇ 1, h ⁇ 1.
  • organoboron compound (I) is only proposed to better illustrate the typical structure of the organoboron compound (I) under such conditions, and is only a representative structure under this condition, instead of Limitation of the scope of protection of the present invention.
  • L is selected from a divalent or multivalent polymer chain residue having a molecular weight greater than 1000 Da
  • it can be any suitable divalent or polyvalent polymer chain residue including, but not limited to, a divalent or polyvalent carbon chain polymer.
  • L is selected from a divalent or multivalent carbon chain polymer residue
  • it may be any suitable polymer residue in which the macromolecular backbone is mainly composed of carbon atoms, which may be selected from any one of the following groups.
  • L is preferably a divalent or polyvalent polyethylene chain residue, a divalent or polyvalent polypropylene chain residue, a divalent or polyvalent polystyrene chain residue, a divalent or polyvalent polyvinyl chloride chain residue, and a divalent Or a polyvalent polybutadiene chain residue, a divalent or polyvalent polyisoprene chain residue, a divalent or polyvalent polyacrylic acid chain residue, a divalent or polyvalent polyacrylamide chain residue, a divalent Or a polyvalent polyacrylonitrile chain residue.
  • An example of a suitable organoboron compound (I) formed is as follows:
  • g, h, i, j, k are each independently a fixed value or an average value, preferably g ⁇ 36, h ⁇ 36, i ⁇ 36, j ⁇ 12, k ⁇ 12.
  • organoboron compound (I) is only proposed to better illustrate the typical structure of the organoboron compound (I) under such conditions, and is only a representative structure under this condition, instead of Limitation of the scope of protection of the present invention.
  • L When L is selected from a divalent or multivalent heterochain polymer residue, it may be any suitable macromolecular backbone having a polymer residue mainly composed of a carbon atom and a hetero atom such as nitrogen, oxygen or sulfur. Any of the following groups, any of the unsaturated forms, any of the substituted forms, or any of the hybrid forms: divalent or polyvalent polyether chain residues, such as divalent or more Valence of ethylene oxide chain residues, divalent or polyvalent polyoxypropylene chain residues, divalent or polyvalent polytetrahydrofuran chain residues, divalent or polyvalent epoxy resin chain residues, divalent or more a phenolic resin chain residue, a divalent or polyvalent polyphenylene ether chain residue, etc.; a divalent or multivalent polyester chain residue such as a divalent or polyvalent polycaprolactone chain residue, divalent or more Valence polyvalerolactone chain residue, divalent or polyvalent polylactide chain residue, divalent or polyvalent polyethylene terephthalate
  • L is preferably a divalent or polyvalent polyethylene oxide chain residue, a divalent or polyvalent polytetrahydrofuran chain residue, a divalent or polyvalent epoxy resin chain residue, a divalent or polyvalent polycaprolactone chain residue A divalent or polyvalent polylactide chain residue, a divalent or multivalent polyamide chain residue.
  • An example of a suitable organoboron compound (I) formed is as follows:
  • g, h, i, j, k are each independently a fixed value or an average value, preferably g ⁇ 36, h ⁇ 36, i ⁇ 36, j ⁇ 12, k ⁇ 12.
  • organoboron compound (I) is only proposed to better illustrate the typical structure of the organoboron compound (I) under such conditions, and is only a representative structure under this condition, instead of Limitation of the scope of protection of the present invention.
  • L When L is selected from a divalent or multivalent organic polymer residue, it may be any suitable macromolecular backbone mainly composed of inorganic element heteroatoms such as silicon, boron, aluminum and the like, and heteroatoms such as nitrogen, oxygen, sulfur and phosphorus.
  • a polymer residue constituting which may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any one, or a hybridized form of either: divalent or polyvalent silicone Polymer-like chain residues, such as divalent or polyvalent polyorganosilane chain residues, divalent or polyvalent polyorganosiloxane chain residues, divalent or polyvalent polyorganosilane chain residues, divalent Or polyvalent polyorganosilane chain residues, divalent or polyvalent polyorganosiloxane chain residues, divalent or polyvalent polyorganophosphosiloxane chain residues, divalent or polyvalent polyorganometallic silicon Oxylkane chain residue; divalent or polyvalent organoboron polymer chain residue, such as a divalent or polyvalent polyorganoborane chain residue, a divalent or polyvalent polyorgano borazane Chain residue, divalent or polyvalent polyorganosulfide chain residue, divalent or polyvalent polyorganophosphorane chain
  • L is preferably a divalent or polyvalent polyorganosilane chain residue, a divalent or polyvalent polyorganosiloxane chain residue, a divalent or polyvalent polyorganoborane chain residue.
  • An example of a suitable organoboron compound (I) formed is as follows:
  • g, h, i, j, k, and l are each independently a fixed value or an average value, preferably g ⁇ 36, h ⁇ 36, i ⁇ 36, j ⁇ 36, k ⁇ 12, l ⁇ 12.
  • organoboron compound (I) is only proposed to better illustrate the typical structure of the organoboron compound (I) under such conditions, and is only a representative structure under this condition, instead of Limitation on the scope of protection of the present invention set.
  • the silicon-containing compound (II) containing a silanol group and/or a silanol precursor as described in the present invention may be an organic silicon-containing compound or an inorganic silicon-containing compound, which may be represented by the following structure:
  • G is a module containing a silanol and/or a silanol precursor
  • n is the number of modules G, n ⁇ 1
  • J is a substituent group on a single module G, or two or more modules G The linking group
  • q is the number of groups J, q ⁇ 1.
  • the silanol-containing module G may be selected from any one or any of the following structures:
  • K 3 , K 4 , K 5 , K 6 , and K 7 are groups directly bonded to a silicon atom, each of which is independently selected from any one of the following structures: a hydrogen atom, a hetero atom group, and a molecular weight of not more than 1000 Da.
  • Small molecular hydrocarbon group polymer chain residue with molecular weight greater than 1000 Da, inorganic small molecular chain residue with molecular weight not exceeding 1000 Da, inorganic macromolecular chain residue with molecular weight greater than 1000 Da; wherein, cyclic structure in C7, C8, C9
  • the non-aromatic or aromatic silicon heterocyclic group containing at least one silanol group, the silicon atom is placed in a ring structure, and the ring structure may be a small molecule ring or a macromolecular ring, which is preferably 3 to 100.
  • the ring more preferably a 3- to 50-membered ring, more preferably a 3- to 10-membered ring;
  • the ring-forming atoms of the cyclic structure in C7, C8, and C9 are each independently a carbon atom, a silicon atom, or other hetero atom, and At least one ring-forming atom is a silicon atom and constitutes a silanol group, and at least one ring-forming atom is bonded to the group J;
  • the ring structure in C7, C8, and C9 may be substituted for each of the hydrogen atoms on the ring atom, or may not be Substituted;
  • the cyclic structure in C7, C8, C9 can be Cyclic structure, polycyclic structure, spiro ring structure, ring structure fused, bridged ring structure, the nested loop structure; Indicates the connection to the group J.
  • the cyclic structure in C7, C8, C9 may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any one, or a hybridized form of any one: a silicon heterocycle Alkane, silicon heterocyclocarbon, cyclosiloxane, cyclosilazane, cyclosilane, cyclosilane, cyclosilane, sila, silazane, silanthene, silanthene, silice Aromatic hydrocarbons; the cyclic structures listed are preferably silacyclopentane, silacyclohexane, silylene heterocyclohexene, silylene heterocyclohexadiene, silahexenone, silabenzene, cyclotrisiloxane , cyclotetrasiloxane, cyclohexasiloxane, cyclotrisilazane, cyclotetrasilazane, cycl
  • the module G containing a silanol precursor may be selected from any one or any of the following structures:
  • K 8 , K 9 , K 10 , K 11 , and K 12 are groups directly bonded to a silicon atom, each of which is independently selected from any one of the following structures: a hydrogen atom, a hetero atom group, and a molecular weight of not more than 1000 Da.
  • Small molecular hydrocarbon group polymer chain residue with molecular weight greater than 1000 Da, inorganic small molecular chain residue with molecular weight not exceeding 1000 Da, inorganic macromolecular chain residue with molecular weight greater than 1000 Da;
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , X 10 , X 11 , X 12 , X 13 , X 14 are hydrolyzable groups directly bonded to a silicon atom, including but not limited to halogen, cyano, Oxy cyano, thiocyano, alkoxy, amino, sulfate, borate, acyl, acyloxy, acylamino, alkoxide, preferably halogen, alkoxy; wherein D7, D8, D9
  • the cyclic structure is a non-aromatic or aromatic silicon heterocyclic group containing at least one silano
  • the ring-forming atoms of the cyclic structure in 9 are each independently a carbon atom, a silicon atom or other hetero atom, and at least one ring-forming atom is a silicon atom and constitutes a silanol precursor, and at least one ring-forming atom and a group J
  • the hydrogen atoms on the ring-forming atoms in the ring structure of D7, D8, and D9 may or may not be substituted; the ring structure in D7, D8, and D9 may be a single ring structure or a polycyclic structure.
  • Spiro structure fused ring structure, bridge ring structure, nested ring structure; Indicates the connection to the group J. It should be noted that in the above structure, a ring may also be formed between suitable different groups K, between different groups X, and between the group K and the group X.
  • the cyclic structure in D7, D8, D9 may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any one, or a hybridized form of any one: a silicon heterocycle Alkane, silicon heterocyclocarbon, cyclosiloxane, cyclosilazane, cyclosilane, cyclosilane, cyclosilane, sila, silazane, silanthene, silanthene, silice Aromatic hydrocarbons; the cyclic structures listed are preferably silacyclopentane, silacyclohexane, silylene heterocyclohexene, silylene heterocyclohexadiene, silahexenone, silabenzene, cyclotrisiloxane , cyclotetrasiloxane, cyclohexasiloxane, cyclotrisilazane, cyclotetrasilazane, cycl
  • At least one hydroxyl group and at least one hydroxyl group precursor may be simultaneously bonded to one silicon atom, and at least one silanol group may be simultaneously contained in the same module and at least A silanol precursor.
  • the compound contains both silanol and silanol precursors to help regulate its solubility, reaction rate, degree of reaction, and other properties that can be used to regulate the dynamics of dynamic polymers.
  • the module G containing a silanol group and/or a silanol precursor when present in a polymer and has two or more of the linkages, it may be attached to a non-cyclic or non-clustered group.
  • the polymer chain may also be attached to the pendant or side chain of the ring or cluster; when there is only one such linkage, it may be attached to any position of the polymer chain.
  • the structure may be selected from any one or more of the following: a hydrogen atom, a hetero atom group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, a polymer chain residue having a molecular weight of more than 1000 Da, and a small inorganic molecular chain residue having a molecular weight of not more than 1000 Da.
  • An example of a suitable silicon-containing compound (II) formed is as follows:
  • g, h, j are each independently a fixed value or an average value, g ⁇ 1, h ⁇ 1, j ⁇ 1.
  • the module G may be selected from the same structure or a plurality of different structures, in which case q ⁇ 1, J is a linking group between two or more modules G; when q ⁇ 2, J may It is selected from the same structure or a plurality of different structures; the J structure may be selected from any one or more of the following: a single bond, a hetero atom linkage group, a divalent or polyvalent small molecule hydrocarbon group having a molecular weight of not more than 1000 Da, A divalent or polyvalent polymer chain residue having a molecular weight of more than 1000 Da, a divalent or polyvalent inorganic small molecular chain residue having a molecular weight of not more than 1000 Da, and a divalent or polyvalent inorganic macromolecular chain residue having a molecular weight of more than 1000 Da.
  • J When J is selected from a single bond, it may be selected from a silicon-silicon single bond, a carbon-carbon single bond, a carbon-nitrogen single bond, a nitrogen-nitrogen single bond, a silicon-carbon single bond, a silicon-nitrogen single bond; preferably a silicon-silicon single bond, carbon-carbon Single button, silicon carbon single button.
  • a silicon-containing compound (II) formed is as follows:
  • g and h are each independently a fixed value or an average value, g ⁇ 1, h ⁇ 1.
  • J When J is selected from a hetero atom linking group, it may be selected from any one or a combination of any of the following: an ether group, a thio group, a thioether group, a divalent tertiary amine group, a trivalent tertiary amine group, and a divalent silicon.
  • a trivalent silicon group a tetravalent silicon group, a divalent phosphorus group, a trivalent phosphorus group, a divalent boron group, a trivalent boron group
  • the hetero atom linking group is preferably an ether group, a sulfur group, a divalent tertiary amine group, Trivalent tertiary amine group.
  • An example of a suitable silicon-containing compound (II) formed is as follows:
  • g and h are each independently a fixed value or an average value, g ⁇ 1, h ⁇ 1.
  • J When J is selected from a divalent or polyvalent small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, it generally contains from 1 to 71 carbon atoms, and the valence of the hydrocarbon group may be from 2 to 144, which may or may not contain a hetero atom group. Contains a hetero atom group.
  • the divalent or polyvalent small molecule hydrocarbyl group may be selected from any of the following groups, an unsaturated form of either, a substituted form of either, or a hybridized form of either: Two to one hundred and forty four valences C 1-71 alkyl, two to one hundred and forty four valence ring C 3-71 alkyl, two to six valent phenyl, two to eight benzyl, two to one hundred four A tetravalent aromatic hydrocarbon group; J is preferably a di-tetravalent methyl group, a di- to hexavalent ethyl group, a di- to octavalent propyl group, a di- to 12-valent cyclohexyl group, or a di-hexavalent phenyl group.
  • An example of a suitable silicon-containing compound (II) formed is as follows:
  • g and h are each independently a fixed value or an average value, g ⁇ 1, h ⁇ 1.
  • J When J is selected from a divalent or multivalent polymer chain residue having a molecular weight greater than 1000 Da, it can be any suitable divalent or polyvalent polymer chain residue including, but not limited to, a divalent or polyvalent carbon chain polymer. Residue, divalent or multivalent heterochain polymer residue, divalent or multivalent element organic polymer residue.
  • the polymer may be a homopolymer or a copolymer composed of any monomer, oligomer or polymer; the polymer chain may be a flexible chain or a rigid chain.
  • J When J is selected from a divalent or multivalent carbon chain polymer residue, it may be any suitable polymer residue in which the macromolecular backbone is mainly composed of carbon atoms, which may be selected from any one of the following groups.
  • J preferably a divalent or polyvalent polyethylene chain residue, a divalent or polyvalent polypropylene chain residue, a divalent or polyvalent polystyrene chain residue, a divalent or polyvalent polyvinyl chloride chain residue, and a divalent Or a polyvalent polybutadiene chain residue, a divalent or polyvalent polyisoprene chain residue, a divalent or polyvalent polyacrylic acid chain residue, a divalent or polyvalent polyacrylamide chain residue, a divalent Or a polyvalent polyacrylonitrile chain residue.
  • An example of a suitable silicon-containing compound (II) formed is as follows:
  • g, h, i, j, k are each independently a fixed value or an average value, preferably g ⁇ 36, h ⁇ 36, i ⁇ 36, j ⁇ 12, k ⁇ 12.
  • J When J is selected from a divalent or multivalent heterochain polymer residue, it may be any suitable macromolecular backbone having a polymer residue mainly composed of a carbon atom and a hetero atom such as nitrogen, oxygen or sulfur. Any of the following groups, any of the unsaturated forms, any of the substituted forms, or any of the hybrid forms: divalent or polyvalent polyether chain residues, such as divalent or more Valence of ethylene oxide chain residues, divalent or polyvalent polyoxypropylene chain residues, divalent or polyvalent polytetrahydrofuran chain residues, divalent or polyvalent epoxy resin chain residues, divalent or more a phenolic resin chain residue, a divalent or polyvalent polyphenylene ether chain residue, etc.; a divalent or multivalent polyester chain residue such as a divalent or polyvalent polycaprolactone chain residue, divalent or more Valence polyvalerolactone chain residue, divalent or polyvalent polylactide chain residue, divalent or polyvalent polyethylene terephthalate
  • J preferably a divalent or polyvalent polyethylene oxide chain residue, a divalent or polyvalent polytetrahydrofuran chain residue, a divalent or polyvalent epoxy resin chain residue, a divalent or polyvalent polycaprolactone chain residue A divalent or polyvalent polylactide chain residue, a divalent or multivalent polyamide chain residue.
  • An example of a suitable silicon-containing compound (II) formed is as follows:
  • g, h, i, j, k are each independently a fixed value or an average value, preferably g ⁇ 36, h ⁇ 36, i ⁇ 36, j ⁇ 12, k ⁇ 12.
  • J When J is selected from a divalent or multivalent organic polymer residue, it may be any suitable macromolecular backbone mainly composed of inorganic element heteroatoms such as silicon, boron, aluminum and the like, and heteroatoms such as nitrogen, oxygen, sulfur and phosphorus.
  • a polymer residue constituting which may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any one, or a hybridized form of either: divalent or polyvalent silicone Polymer-like chain residues, such as divalent or polyvalent polyorganosilane chain residues, divalent or polyvalent polyorganosiloxane chain residues, divalent or polyvalent polyorganosilane chain residues, divalent Or polyvalent polyorganosilane chain residues, divalent or polyvalent polyorganosilicon sulphur An alkyl chain residue, a divalent or polyvalent polyorganophosphosiloxane chain residue, a divalent or polyvalent polyorganosiloxane chain residue; a divalent or polyvalent organoboron polymer chain residue, such as Divalent or polyvalent polyorganoborane chain residue, divalent or polyvalent polyorganosilane chain residue, divalent or polyvalent polyorganosulfide chain residue, divalent or polyvalent polyorganophosphorus Alky
  • J is preferably a divalent or polyvalent polyorganosilane chain residue, a divalent or polyvalent polyorganosiloxane chain residue, a divalent or polyvalent polyorganoborane chain residue.
  • An example of a suitable silicon-containing compound (II) formed is as follows:
  • g, h, i, j, k, and l are each independently a fixed value or an average value, preferably g ⁇ 36, h ⁇ 36, i ⁇ 36, j ⁇ 36, k ⁇ 12, l ⁇ 12.
  • J is selected from a divalent or multivalent inorganic small molecular chain residue having a molecular weight of not more than 1000 Da, it may be any suitable molecular main chain and side chain mainly composed of inorganic element hetero atoms such as silicon, boron, aluminum, and nitrogen, Inorganic small molecular chain residues composed of hetero atoms such as oxygen, sulfur, phosphorus, etc., in general, the divalent or multivalent inorganic small molecular chain residues may be selected from any one of the following groups, or not a saturated form, a substituted form of any one, or a hybridized form of either: a divalent or polyvalent silane chain residue, a divalent or polyvalent siloxane chain residue, a divalent or polyvalent sulphur compound Chain residue, divalent or polyvalent sulfur nitrogen compound chain residue, divalent or polyvalent phosphazene compound chain residue, divalent or polyvalent phosphorous oxide chain residue, divalent or polyvalent borane chain residue .
  • J is preferably a divalent or multivalent silane chain residue, a divalent or polyvalent siloxane chain residue, a divalent or polyvalent phosphazene compound chain residue, a divalent or polyvalent borane chain residue.
  • An example of a suitable silicon-containing compound (II) formed is as follows:
  • g and h are each independently a fixed value or an average value, g ⁇ 1, h ⁇ 1.
  • J is selected from a divalent or multivalent inorganic macromolecular chain residue having a molecular weight of more than 1000 Da, it may be any suitable macromolecular main chain and side chain mainly composed of inorganic element heteroatoms such as silicon, boron, aluminum, and nitrogen, An inorganic macromolecular chain residue composed of a hetero atom such as oxygen, sulfur or phosphorus.
  • J may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any one, or a hybridized form of any one: a divalent or polyvalent polysilane chain residue, two Valence or polyvalent polysiloxane chain residue, divalent or polyvalent polysulfide chain residue, divalent or polyvalent polysulfide chain residue, divalent or polyvalent polyphosphate chain residue, divalent or A polyvalent polyphosphazene chain residue, a divalent or polyvalent polychlorophosphazene chain residue, a divalent or polyvalent polyborane chain residue.
  • J is preferably a divalent or polyvalent polysilane chain residue, a divalent or polyvalent polysiloxane chain residue, a divalent or polyvalent polyphosphazene chain residue, a divalent or polyvalent polyborane chain residue.
  • An example of a suitable silicon-containing compound (II) formed is as follows:
  • g, h, i are each independently a fixed value or an average value, preferably g ⁇ 36, h ⁇ 36, i ⁇ 36.
  • J may also be selected from any of the following groups of inorganic macromolecules with residues or any surface-modified inorganic macromolecule with residues: zeolite type molecular sieve, aluminum phosphate molecular sieve, zirconium phosphate molecular sieve, miscellaneous Multi-acid salt molecular sieve, diamond, graphite, carbon fiber, white phosphorus, red phosphorus, phosphorus pentoxide, molybdenum sulfide, silicon dioxide, silicon disulfide, silicon nitride, silicon carbide, talc, kaolin, montmorillonite, mica, asbestos, Feldspar, cement, glass, quartz, ceramics, boron oxide, sulfur nitride, calcium silicide, silicate, glass fiber, cerium oxide, magnesium oxide, mercury oxide, borohydride, boron nitride, boron carbide, nitriding Aluminum, diaspore, gibbsite, corundum, titanium dioxide.
  • the suitable silicon-containing compound (II) formed is generally an inorganic structure, for example, silicon nitride having a silicon hydroxy group on the surface, silicon carbide having a silicon hydroxy group on the surface, silicon dioxide having a silicon hydroxy group on the surface, and a surface having Silicate silicate, glass fiber with silanol on the surface.
  • the compound (III) containing both an organic boronic acid group and/or an organic boronic acid ester group and a silanol group and/or a silanol precursor as described in the present invention may be represented by the following structure:
  • A is a module containing an organic boronic acid group and/or an organic boronic acid ester group, and the specific definition thereof can be referred to the definition of the module A in the organoboron compound (I), and details are not described herein again, wherein A preferably contains organic boric acid.
  • the module of the ester group; x is the number of the module A, x ⁇ 1; when x ⁇ 2, the module A may be selected from the same structure or a plurality of different structures; and G is a precursor containing a silicon hydroxy group and/or a silanol group.
  • module G is preferably a module containing a silicon hydroxy precursor
  • y is the number of modules G, y ⁇ 1
  • T is a linking group between two or more A, or between two or more G, or between A and G.
  • the T structure may be selected from any one or more of the following: a single bond, a hetero atom linkage group, a divalent or polyvalent small molecule hydrocarbon group having a molecular weight of not more than 1000 Da, and a divalent or multivalent polymerization having a molecular weight of more than 1000 Da.
  • Chain residue; v is the number of groups T, v ⁇ 1; when v ⁇ 2, T can be selected from the same structure or multiple different knots .
  • T When T is selected from a single bond, it may be selected from a carbon-carbon single bond, a carbon-nitrogen single bond, a nitrogen-nitrogen single bond, a boron-carbon single bond, a boron-nitrogen single bond, a borosilicate single bond, a silicon-silicon single bond, a silicon-carbon single A bond, a silicon-nitrogen single bond; preferably a carbon-carbon single bond, a silicon-silicon single bond, or a borosilicate single bond.
  • An example of a suitable compound (III) formed is as follows:
  • g and h are each independently a fixed value or an average value, g ⁇ 1, h ⁇ 1.
  • T When T is selected from a hetero atom linking group, it may be selected from any one or a combination of any of the following: an ether group, a thio group, a thioether group, a divalent tertiary amine group, a trivalent tertiary amine group, and a divalent silicon.
  • Base trivalent silicon, tetravalent silicon, divalent phosphorus, trivalent phosphorus, divalent boron
  • the trivalent boron group; the hetero atom linking group is preferably an ether group, a thio group, a divalent tertiary amino group, or a trivalent tertiary amine group.
  • An example of a suitable compound (III) formed is as follows:
  • g and h are each independently a fixed value or an average value, g ⁇ 1, h ⁇ 1.
  • T When T is selected from a divalent or polyvalent small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, it generally contains from 1 to 71 carbon atoms, and the valence of the hydrocarbon group may be from 2 to 144, which may or may not contain a hetero atom group. Contains a hetero atom group.
  • the divalent or polyvalent small molecule hydrocarbyl group may be selected from any of the following groups, an unsaturated form of either, a substituted form of either, or a hybridized form of either: Two to one hundred and forty four valences C 1-71 alkyl, two to one hundred and forty four valence ring C 3-71 alkyl, two to six valent phenyl, two to eight benzyl, two to one hundred four A tetravalent aromatic hydrocarbon group; T is preferably a di-tetravalent methyl group, a di-hexavalent ethyl group, a di- to octavalent propyl group, a di- to 12-valent cyclohexyl group, or a di-hexavalent phenyl group.
  • An example of a suitable compound (III) formed is as follows:
  • g and h are each independently a fixed value or an average value, g ⁇ 1, h ⁇ 1.
  • T When T is selected from a divalent or multivalent polymer chain residue having a molecular weight greater than 1000 Da, it can be any suitable divalent or polyvalent polymer chain residue including, but not limited to, a divalent or polyvalent carbon chain polymer. Residue, divalent or multivalent heterochain polymer residue, divalent or multivalent element organic polymer residue.
  • the polymer may be a homopolymer or a copolymer composed of any monomer, oligomer or polymer; the polymer chain may be a flexible chain or a rigid chain.
  • T When T is selected from a divalent or multivalent carbon chain polymer residue, it may be any suitable polymer residue in which the macromolecular backbone is mainly composed of carbon atoms, which may be selected from any one of the following groups.
  • T preferably a divalent or multivalent polyethylene chain residue, a divalent or polyvalent polypropylene chain residue, a divalent or polyvalent polystyrene chain residue, a divalent or polyvalent polyvinyl chloride chain residue, and a divalent Or a polyvalent polybutadiene chain residue, a divalent or polyvalent polyisoprene chain residue, a divalent or polyvalent polyacrylic acid chain residue, a divalent or polyvalent polyacrylamide chain residue, a divalent Or a polyvalent polyacrylonitrile chain residue.
  • An example of a suitable compound (III) formed is as follows:
  • g, h, i, j, k, l are each independently a fixed value or an average value, preferably g ⁇ 36, h ⁇ 36, i ⁇ 36, j ⁇ 12, k ⁇ 12, l ⁇ 12.
  • T When T is selected from a divalent or multivalent heterochain polymer residue, it may be any suitable macromolecular backbone mainly composed of a carbon atom and a polymer residue composed of a hetero atom such as nitrogen, oxygen or sulfur. Any of the following groups, any of the unsaturated forms, any of the substituted forms, or any of the hybrid forms: divalent or polyvalent polyether chain residues, such as divalent or more Valence of ethylene oxide chain residues, divalent or polyvalent polyoxypropylene chain residues, divalent or polyvalent polytetrahydrofuran chain residues, divalent or polyvalent epoxy resin chain residues, divalent or more a phenolic resin chain residue, a divalent or polyvalent polyphenylene ether chain residue, etc.; a divalent or multivalent polyester chain residue such as a divalent or polyvalent polycaprolactone chain residue, divalent or more Valence polyvalerolactone chain residue, divalent or polyvalent polylactide chain residue, divalent or polyvalent polyethylene terephthal
  • T preferably a divalent or polyvalent polyethylene oxide chain residue, a divalent or polyvalent polytetrahydrofuran chain residue, a divalent or polyvalent epoxy resin chain residue, a divalent or polyvalent polycaprolactone chain residue A divalent or polyvalent polylactide chain residue, a divalent or multivalent polyamide chain residue.
  • An example of a suitable compound (III) formed is as follows:
  • g, h, i, j, k, l are each independently a fixed value or an average value, preferably g ⁇ 36, h ⁇ 36, i ⁇ 36, j ⁇ 12, k ⁇ 12, l ⁇ 12.
  • T When T is selected from a divalent or multivalent element organic polymer residue, it may be any suitable macromolecular backbone mainly composed of silicon, a polymer residue composed of a hetero atom of an inorganic element such as boron or aluminum and a hetero atom such as nitrogen, oxygen, sulfur or phosphorus, which may be selected from any one of the following groups, an unsaturated form of any one, or any one of them.
  • T is preferably a divalent or polyvalent polyorganosilane chain residue, a divalent or polyvalent polyorganosiloxane chain residue, a divalent or polyvalent polyorganoborane chain residue.
  • An example of a suitable compound (III) formed is as follows:
  • g, h, i, j, k, and l are each independently a fixed value or an average value, preferably g ⁇ 36, h ⁇ 36, i ⁇ 36, j ⁇ 36, k ⁇ 12, l ⁇ 12.
  • the group L in the structure of the organoboron compound (I), the group J in the structure of the silicon-containing compound (II), and the group T in the structure of the compound (III) are selected from the group consisting of a ring structure other than the ring structure.
  • the group A may be attached to the end of L or may be attached to any position in L;
  • the group G may be attached to the end of J or may be attached to any position in J;
  • groups A and G It can be connected to the end of T or to any position in T.
  • the group L in the structure of the organoboron compound (I), the group J in the structure of the silicon-containing compound (II), and the group T in the structure of the compound (III) are selected from a two-dimensional or three-dimensional cluster structure
  • the cluster structure is generally formed by ordinary covalent bonds, and the organoboronic acid groups and/or organoborate groups and silanol and/or silanol precursors in the cluster structure are usually dispersed around the periphery of the cluster and only at the periphery of the cluster.
  • a dynamic polymerization/crosslinking reaction is carried out.
  • the resulting dynamic polymer dissociates into cluster units upon dissociation of the dynamically reversible organoborate linkages contained therein.
  • the silicon-containing compound (II) which may be a monofunctional, difunctional, trifunctional or polyfunctional compound, for example, for the structure
  • Organic boron compound (I) which is monofunctional, difunctional, trifunctional, tetrafunctional, respectively; for example, for
  • the silicon-containing compound (II) which is a monofunctional, difunctional, trifunctional, tetrafunctional group, respectively; for the compound (III), it may be a bifunctional, trifunctional or polyfunctional compound, for example, for the structure
  • the compound (III) which is a bifunctional group, a trifunctional group, a tetrafunctional group, and a pentafunctional group, respectively.
  • the other reactive groups described in the present invention refer to those which can be spontaneously or can be chemically reacted under the conditions of an initiator or light, heat, irradiation, or catalysis to form a common bond other than the organoborate bond.
  • a valence group suitable groups are, for example, a hydroxyl group, a phenolic hydroxyl group, a carboxyl group, an acyl group, an amide group, an acyloxy group, an amino group, an aldehyde group, a sulfonic acid group, a sulfonyl group, a decyl group, an alkenyl group, an alkynyl group, a cyanogen group.
  • Base azine, sulfhydryl, halogen, isocyanate group, anhydride group, epoxy group, acrylate group, acrylamide group, maleimide group, N-hydroxysuccinimide group , norbornene group, azo group, azide group, heterocyclic group, etc.; other reactive groups are preferably hydroxy, carboxyl, amino, thiol, alkenyl, isocyanate groups, epoxy groups, acrylic acid Ester group, acrylamide group.
  • some suitable structures have been given in the foregoing examples.
  • the ordinary covalent linkage established by polymerization/crosslinking of other reactive groups must ensure that the degree of crosslinking of the resulting polymer is lower than the gel point, so that the organoborate linkage in the dynamic polymer Upon dissociation, the polymer system can be dissociated into smaller units for recyclability or reconstitution purposes. It should be noted that all of the "other reactive groups" present in the present invention are only used for derivatization and/or to form common covalent linkages.
  • the dynamic polymer is obtained by at least the following components participating in a reaction to form a silicone borate linkage:
  • the dynamic polymer is obtained by at least the following components participating in the reaction to form a silicone borate linkage and a common covalent bond:
  • the dynamic polymer is obtained by at least the following components participating in a reaction to form a silicone borate linkage:
  • Organic boron compound (I) and/or at least one silicon-containing compound (II) containing a silanol group and/or a silanol precursor wherein compound (III), organoboron compound (I), silicon-containing compound (II) Both contain two or more functional groups, and at least one compound (III) or at least one organoboron compound (I) or at least one silicon-containing compound (II) contains three or more functional groups.
  • a fourth preparation embodiment of the present invention wherein at least the following components participate in the reaction to form a silicone borate bond and a common Covalent bond to obtain the dynamic polymer:
  • Organic boron compound (I) and/or at least one silicon-containing compound (II) containing a silanol group and/or a silanol precursor wherein compound (III) contains two or more functional groups, an organoboron compound ( I), the silicon-containing compound (II) contains one or more functional groups, and at least one compound (III) or at least one organoboron compound (I) or at least one silicon-containing compound (II) contains one or more other Reactive group.
  • a suitable amount of a monofunctional organoboron compound (I) and/or a monofunctional silicon-containing compound (II) component may also be selectively introduced, which may be adjusted by component formulation.
  • Monofunctional compounds can function to adjust crosslink density, dynamics, mechanical strength, and the like.
  • the reaction of other reactive groups may also be carried out by introducing a boronic acid-free and/or organic boronic acid ester group, a silanol group and/or a silanol precursor, a silicon silicate bond.
  • the components of the compound containing other reactive groups are achieved together.
  • the compound containing only other reactive groups may be any suitable compound which can be reacted with other reactive groups in the organoboron compound (I) and/or the silicon-containing compound (II) and/or the compound (III). The purpose of obtaining a dynamic polymer having a "dynamic crosslinked structure" is obtained.
  • the compound (III) for preparing the dynamic polymer may be selected from the same compound (III) or may be selected from the different compound (III); when it is selected from When the same compound (III) is obtained, the dynamic polymer is obtained by a reaction between an intramolecular and/or intermolecular organoboronic acid group and/or an organic boronic acid ester group and a silanol group and/or a silanol precursor. .
  • the raw material components can be polymerized/crosslinked by using the organoborate or the common covalent bond as a linking point to obtain a higher molecular weight.
  • Dynamic polymer wherein, the functional group contained in the raw material component may be completely or partially reacted, and it is not required that all of the organoboronic acid group and/or the organic boronic acid ester group and the silanol group and/or the silanol precursor are completely reacted with each other to form a functional group.
  • the organoborate silicon ester bond is sufficient as long as the formed organoborate linkage is sufficient to maintain the dynamic polymer structure.
  • a fifth production embodiment of the present invention wherein at least one or more compounds (IV) containing at least one organoborate linkage and at least one other reactive group are polymerized by other reactive groups. a cross-linking reaction to obtain the dynamic polymer; or at least one or more compounds (IV) containing at least one organoborate linkage and at least one other reactive group and no organoborate linkages but The compound containing at least one other reactive group obtains the dynamic polymer by a polymerization/crosslinking reaction between other reactive groups.
  • the compound (IV) containing a silicon silicate bond and other reactive groups may be a small molecule compound having a molecular weight of not more than 1000 Da, or a macromolecular compound having a molecular weight of more than 1000 Da; in the compound (IV) It may contain an organic boronic acid group and/or an organic boronic acid ester group, a silanol group and/or a silanol precursor; a compound which does not contain a silicon borate bond but contains other reactive groups, which may be a small molecular weight of not more than 1000 Da.
  • the molecular compound may also be a macromolecular compound having a molecular weight of more than 1000 Da.
  • the compound (IV) containing a silicone borate bond and other reactive groups described in the present invention may be represented by the following structure:
  • E is a module containing a silicon borate linkage
  • u is the number of modules E, u ⁇ 1
  • Y is a substituent group on a single module E, or a substituent group on a single module E and two or a linking group between the plurality of modules E, and at least one group Y is bonded to a boron atom of a silicon borate linkage, and at least one group Y is bonded to a silicon atom of a silicon borate linkage
  • In the at least one group Y at least one other reactive group is contained, and the number of other reactive groups contained in all the groups Y is 2 or more
  • r is the number of the groups Y, and r ⁇ 2.
  • the module E containing a silicone borate bond can be represented by the following structure:
  • K 13 , K 16 , and K 20 are groups directly bonded to a boron atom, each of which is independently selected from any one of the following structures: a hydrogen atom, a hetero atom group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a molecular weight.
  • K 14 , K 15 , K 17 , K 18 , K 19 , K 21 are groups directly bonded to a silicon atom, each of which is independently selected from any one of the following structures: a hydrogen atom a hetero atomic group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, a polymer chain residue having a molecular weight of more than 1000 Da, an inorganic small molecular chain residue having a molecular weight of not more than 1000 Da, and an inorganic macromolecular chain residue having a molecular weight of more than 1000 Da; Indicates the linkage to the group Y.
  • a ring may also be formed between suitable different groups K, between different groups Y, and between the group K and the group Y; the group Y may pass through the Si-O bond. It is connected to a boron atom and can also be connected to a silicon atom through a BO bond.
  • the module E containing a organoborate linkage may be passed through any one or any of the modules A containing an organic boronic acid group and/or an organic boronic acid ester group as mentioned in the present invention.
  • Any one or any of several modules G containing a silanol and/or a silanol precursor may be subjected to a condensation reaction or transesterification between an organoborate group and/or an organoborate group and a silanol group and/or a silanol precursor. The reaction is obtained.
  • Y is a substituent group on a single module E
  • Y may be selected from the same structure or a plurality of different structures, and Y contains other reactive groups The amount and structure must ensure that the dynamic polymer is obtainable; the Y structure may be selected from any one or more of the following: a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a polymer chain residue having a molecular weight of more than 1000 Da.
  • the module E may be selected from the same structure or a plurality of different structures, in which case r ⁇ 2, Y is a substituent group on a single module E and a linking group between two or more modules E , Y may be selected from the same structure or a plurality of different structures, and the number and structure of other reactive groups contained in Y must ensure that the dynamic polymer can be obtained; the Y structure may be selected from a molecular weight of not more than 1000 Da.
  • the dynamic crosslinked polymer can be obtained by utilizing the dynamics of the organoborate silicon carboxylate bond and the polymerization/crosslinking reaction of other reactive groups under suitable conditions.
  • the compound (IV) containing a silicon borate bond and other reactive groups it is generally a monomer containing a silicon borate bond, an oligomer containing a silicon borate bond, and a bond containing an organoborate. Prepolymer.
  • Compound (IV) can be produced by any suitable method, including preparation by a suitable organoboron compound (I) and a silicon-containing compound (II).
  • the compound (IV) can be produced by reacting at least one organoboron compound (I) containing other reactive groups and at least one silicon-containing compound (II) containing other reactive groups, or at least An organoboron compound (I) containing another reactive group is prepared by reacting at least one silicon-containing compound (II) which does not contain other reactive groups, and may also be passed through at least one other reactive group.
  • the organoboron compound (I) is prepared by reacting at least one silicon-containing compound (II) containing other reactive groups; the compound (IV) may also be contained by at least one of The compound (III) of its reactive group or its reaction with the organoboron compound (I) and/or the silicon-containing compound (II) is prepared.
  • a compound which does not contain a silicon borate bond but contains other reactive groups may be any suitable compound which is capable of reacting with other reactive groups in the compound (IV) to obtain the "dynamic crosslinking".
  • the purpose of the structure of the dynamic polymer is fine.
  • this embodiment is also a preferred embodiment of the present invention since it has particular advantages for preparing dynamic polymers in certain specific situations.
  • the dynamic polymers of the present invention are not limited to being prepared using several of the embodiments described above, and may be in combination with the above-described several embodiments or with other embodiments.
  • the organoboron compound (I), the silicon-containing compound (II), the compound (III), and the compound (IV) are used as raw materials to prepare a dynamic polymer, whether in the form of a raw material or a synthetic raw material.
  • the form of the compound, or in the form of an intermediate product of a synthetic polymer, as it may be derived in accordance with the teachings of the present invention, is intended to be included within the scope of the invention.
  • those skilled in the art can also practice the above-described dynamic polymers by rationally utilizing the above several compounds in accordance with the teachings of the present invention.
  • the dynamic polymer can be obtained by using at least one or more of the following compounds as a raw material:
  • the hetero atom group referred to in the present invention may be any suitable hetero atom-containing group, which may be selected from any of the following groups, but the invention is not limited thereto: halogen, hydroxyl, thiol , carboxyl group, nitro group, primary amino group, silicon group, phosphorus group, triazole, isoxazole, amide group, imide group, enamine group, carbonate group, carbamate group, orthoester group , phosphate group, phosphite group, phosphite group, phosphonate group, phosphoryl group, phosphoryl group, hypophosphoryl group, carboxamide, phosphoramide, phosphoramidite, pyrophosphoramide, cyclophosphamide, different Cyclophosphamide, thiophosphoramide, aconitamide, peptide bond, azo group, ureido group, isoureido group, isothiourea group, allophanate group, thiourea
  • the small molecular hydrocarbon group having a molecular weight of not more than 1000 Da as referred to in the present invention generally has 1 to 71 carbon atoms, and may or may not contain a hetero atom group.
  • the small molecule hydrocarbyl group may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any one, or a hybridized form of either: C 1-71 alkane Base, ring C 3-71 alkyl, phenyl, benzyl, aromatic hydrocarbon; small molecular hydrocarbon group is preferably methyl, ethyl, propyl, propylene, butyl, butylene, pentyl, hexyl, heptyl, octyl A group, a fluorenyl group, a fluorenyl group, a cyclohexyl group, a phenyl group; more preferably a methyl group, an ethyl group, a propyl group
  • Polymer chain residues having a molecular weight greater than 1000 Da as referred to in the present invention may be any suitable polymer chain residues including, but not limited to, carbon chain polymer residues, hetero chain polymer residues, elemental organic Polymer residue.
  • the polymer may be a homopolymer or a copolymer composed of any monomer, oligomer or polymer; the polymer chain may be a flexible chain or a rigid chain.
  • the carbon chain polymer residue may be any suitable polymer residue mainly composed of carbon atoms in a main chain, which may be selected from any one of the following groups, and the unsaturated group of any one of them.
  • polyolefin chain residues such as polyethylene chain residues, polypropylene chain residues, polyisobutylene chain residues, polystyrene chain residues Base, polyvinyl chloride chain residue, polyvinylidene chloride chain residue, polyvinyl fluoride chain residue, polytetrafluoroethylene chain residue, Polychlorotrifluoroethylene chain residue, polyvinyl acetate chain residue, polyvinyl alkyl ether chain residue, polybutadiene chain residue, polyisoprene chain residue, polychloroprene chain Residue, polynorbornene chain residue, etc.; polyacrylic chain residue, such as polyacrylic acid chain residue, polyacrylamide chain residue, polymethyl acrylate
  • the heterochain polymer residue may be any suitable macromolecular backbone mainly composed of a carbon atom and a hetero atom composed of nitrogen, oxygen, sulfur or the like, which may be selected from any one of the following groups.
  • Any of the unsaturated forms, any of the substituted forms, or any of the hybrid forms polyether chain residues, such as polyethylene oxide chain residues, polypropylene oxide chain residues , polytetrahydrofuran chain residue, epoxy resin chain residue, phenolic resin chain residue, polyphenylene ether chain residue, etc.; polyester chain residue, such as polycaprolactone chain residue, polyvalerolactone chain residue Base, polylactide chain residue, polyethylene terephthalate chain residue, unsaturated polyester chain residue, alkyd resin chain residue, polycarbonate chain residue, etc.; polyamine chain residue a base such as a polyamide chain residue, a polyimide chain residue, a polyurethane chain residue, a polyurea chain residue, a urea resin chain residue, a
  • the elemental organic polymer residue may be any suitable macromolecular backbone mainly composed of a hetero atom of an inorganic element such as silicon, boron or aluminum and a hetero atom composed of nitrogen, oxygen, sulfur, phosphorus or the like. It may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any one, or a hybridized form of either: a silicone-based polymer chain residue, such as a polyorganosilane chain.
  • the small molecular silane group having a molecular weight of not more than 1000 Da as mentioned in the present invention may be any suitable molecular main chain mainly composed of silicon atoms and small molecular silane groups composed of nitrogen, oxygen, sulfur, phosphorus and the like.
  • the small molecular silane group may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any one, or a hybridized form of any one: a silanol chain residue a base, a siloxane chain residue, a silazane chain residue, a silazane chain residue; preferably a silane chain residue or a siloxane chain residue.
  • the inorganic small molecular chain residue having a molecular weight of not more than 1000 Da as mentioned in the present invention may be any suitable molecular main chain and side chain mainly composed of inorganic element hetero atoms such as silicon, boron, aluminum, and nitrogen, oxygen, Inorganic small molecular chain residues composed of hetero atoms such as sulfur and phosphorus, in general, the inorganic small molecular chain residues may be selected from any one of the following groups, any of the unsaturated forms, or any one of them.
  • the inorganic macromolecular chain residue having a molecular weight of more than 1000 Da as mentioned in the present invention may be any suitable macromolecular main chain and side chain mainly composed of inorganic element hetero atoms such as silicon, boron, aluminum, and nitrogen, oxygen,
  • the structure of the small molecular hydrocarbon group, the polymer chain residue, the small molecule silane chain residue, the inorganic small molecular chain residue, and the inorganic macromolecular chain residue is not particularly limited, and may be a linear chain or a branched chain.
  • Multi-arm structure star shape, comb shape, dendritic shape, supramolecular shape, single ring shape, multiple ring shape, spiral ring shape, fused ring shape, bridge ring shape, chain shape with ring structure, two-dimensional and three-dimensional cluster shape;
  • the small molecular hydrocarbon group, the polymer chain residue, the small molecule silane chain residue, the inorganic small molecular chain residue, and the inorganic macromolecular chain residue may contain a soft segment or a rigid segment.
  • a dynamic polymer having a dynamic cross-linking structure which contains a silicon borate linkage on a polymer chain backbone of a crosslinked network and/or a crosslinked link skeleton between polymer chains means that the dynamic polymer may contain a silicone borate linkage on the polymer chain backbone of the crosslinked network or may comprise a crosslinked link backbone between the polymer chains of the crosslinked network.
  • the bond exists as a "polymeric link point and/or a cross-linking point of a dynamic polymer" in the presence of "and/or”, meaning that the organoborate bond can exist as a polymeric link to the dynamic polymer, or as The cross-linking point of the dynamic polymer exists or exists as both a polymeric linking point and a cross-linking point of the dynamic polymer; for example, in the specification, "A is an organic boric acid group and/or an organic boric acid.
  • the "organic group” as used in the present invention refers to a group mainly composed of a carbon element and a hydrogen element as a skeleton, which may be a small molecular group having a molecular weight of not more than 1000 Da, or a molecular weight of more than 1000 Da.
  • suitable groups are, for example, methyl, ethyl, vinyl, phenyl, benzyl, carboxyl, aldehyde, acetyl, acetonyl and the like.
  • organosilicon group refers to a group mainly composed of a silicon element and a hydrogen element as a skeleton, which may be a small molecule silane group having a molecular weight of not more than 1000 Da, or a molecular weight of more than 1000 Da.
  • suitable groups are, for example, a silane group, a siloxane group, a silothane group, a silazane group or the like.
  • the "ordinary covalent bond" as used in the present invention refers to a covalent bond other than a dynamic covalent bond in the conventional sense, which is an interaction formed by a shared electron pair between atoms, usually It is more difficult to break at temperatures (generally not higher than 100 ° C) and during normal times (generally less than 1 day), including but not limited to common carbon-carbon bonds, carbon-oxygen bonds, carbon-hydrogen bonds, carbon-nitrogen A bond, a carbon-sulfur bond, a nitrogen-hydrogen bond, a nitrogen-oxygen bond, a hydrogen-oxygen bond, a nitrogen-nitrogen bond, or the like.
  • molecular weight means the relative molecular mass of a substance, and its molecular weight is generally monodisperse for a small molecule compound, a small molecule group, and some macromolecular compounds having a fixed structure, a macromolecular group. That is, it has a fixed molecular weight; and for a substance having a polydisperse molecular weight such as an oligomer, a high polymer, an oligomer residue, or a polymer residue, the molecular weight generally means an average molecular weight.
  • the small molecule compound or small molecule group in the present invention specifically refers to a compound or a group having a molecular weight of not more than 1000 Da; the macromolecular compound and the macromolecular group specifically refer to a compound or a group having a molecular weight of more than 1000 Da.
  • polymerization refers to a process in which a reactant having a relatively high molecular weight is synthesized by a reaction form of a lower molecular weight reactant by polycondensation, polyaddition, ring-opening polymerization or the like.
  • the reactants are generally monomers, oligomers, prepolymers, etc. which have a polymerization ability (that is, can be polymerized spontaneously or can be polymerized by an initiator or an external energy).
  • Compound The product obtained by polymerization of one reactant is referred to as a homopolymer.
  • a product obtained by polymerization of two or more reactants is referred to as a copolymer.
  • the "polymerization" described in the present invention includes a linear growth process of a reactant molecular chain, a branching process including a reactant molecular chain, and a ring-forming process including a reactant molecular chain, but not
  • the cross-linking process comprising the molecular chain of the reactants that is, the term “polymerization” refers to the process of polymer chain polymerization growth of the reactants other than the cross-linking reaction process.
  • crosslinking refers to the formation of a two-dimensional, three-dimensional cluster type by chemical linkage between a reactant molecule and/or a reactant molecule by a dynamic covalent bond and an optional common covalent bond.
  • the process of forming a three-dimensional infinite network product When cross-linking with ordinary covalent bonds, it is necessary to ensure that the degree of crosslinking of the common covalent cross-linking of the polymer is lower than that of the gel point, so that the polymer system can be decomposed when the dynamically reversible silicone borate bond is dissociated. Divided into smaller non-crosslinked and/or cluster units.
  • hetero atom as used in the present invention means a common non-carbon atom such as a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom, a silicon atom or a boron atom.
  • alkyl as used in the present invention means a saturated hydrocarbon group having a linear or branched structure. Where appropriate, an alkyl group can have a specified number of carbon atoms, for example, a C 1-4 alkyl group, which includes 1, 2, 3 or 4 carbon atoms in a straight or branched chain arrangement. alkyl.
  • alkyl groups include, but are not limited to, methyl, ethyl, propyl, n-butyl, isobutyl, tert-butyl, n-pentyl, 2-methylbutyl, 3-methylbutyl, 4 -methylbutyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 5-methylpentyl, 2-ethylbutyl, 3-ethylbutyl , heptyl, octyl, sulfhydryl, sulfhydryl.
  • cycloalkyl refers to a saturated cyclic hydrocarbon.
  • the cycloalkyl ring can include the specified number of carbon atoms.
  • a 3 to 8 membered cycloalkyl group includes 3, 4, 5, 6, 7, or 8 carbon atoms.
  • suitable cycloalkyl groups include, but are not limited to, cyclopropyl, cyclohexyl, cycloheptyl, and cyclooctyl.
  • aromatic hydrocarbon group means any stable monocyclic or polycyclic carbon ring of up to 7 atoms in each ring, wherein at least one ring is aromatic.
  • aryl groups include, but are not limited to, phenyl, biphenyl, naphthyl, binaphthyl, tetrahydronaphthyl, indanyl, fluorenyl, hydrazino, phenanthryl, phenanthrenyl.
  • heteroarylalkyl denotes a stable monocyclic or polycyclic ring of up to 7 atoms in each ring, wherein at least one ring is aromatic and at least one ring contains O, N, S, P, Heteroatoms such as Si and B.
  • the single ring structure mentioned in the ring structure of the present invention means that only one ring is contained in the ring structure, for example:
  • the polycyclic structure referred to refers to two or more independent rings in the ring structure, for example:
  • spiral ring structure refers to a ring structure in which a ring structure consists of two or more rings sharing one atom with each other, for example:
  • the fused ring structure (which also includes a bicyclic, aryl ring structure) refers to a ring structure in which a ring structure consists of two or more rings sharing each other by two adjacent atoms. Structure, for example:
  • the bridged ring structure referred to refers to a ring structure in which a ring structure consists of two or more rings by sharing two or more adjacent atoms, and has a three-dimensional cage structure, for example.
  • a ring structure in which a ring structure consists of two or more rings by sharing two or more adjacent atoms, and has a three-dimensional cage structure, for example.
  • the nested ring structure referred to refers to a ring structure in which a ring structure is composed of two or more rings connected or nested with each other, for example:
  • the range of the number of carbon atoms in the group is also indicated in the subscript position of C, indicating the number of carbon atoms of the group, for example, C 1-10 means “having 1 to 10 The carbon atom", C 3-20 means “having 3 to 20 carbon atoms”.
  • the "unsaturated C 3-20 hydrocarbyl group” means a compound having an unsaturated bond in a C 3-20 hydrocarbyl group.
  • the "substituted C 3-20 hydrocarbon group” means a compound obtained by substituting a hydrogen atom of a C 3-20 hydrocarbon group.
  • hybrid C 3-20 hydrocarbon group means a compound obtained by substituting a carbon atom in a C 3-20 hydrocarbon group with a hetero atom.
  • a group may be selected from a C 1-10 hydrocarbyl group, it may be selected from a hydrocarbon group of any one of the carbon atoms in the range indicated by the subscript, that is, selected from C 1 , C 2 , C 3 , C 4 , C And a hydrocarbon group of any one of C 6 , C 7 , C 8 , C 9 and C 10 hydrocarbon groups.
  • the subscripts marked in the interval form indicate that any integer within the range may be selected, and the range includes two endpoints.
  • the structure involved has an isomer, it may be any one of them unless otherwise specified.
  • the alkyl group is not particularly specified, it means a hydrocarbon group formed by losing a hydrogen atom at any position.
  • propyl refers to any of n-propyl and isopropyl
  • propylene refers to any of 1,3-propylene, 1,2-propylene, and isopropylidene.
  • substituted by “substituted hydrocarbon group” means that any one or more hydrogen atoms at any position in the substituted “hydrocarbon group” may be substituted with any substituent.
  • the substituents therein are not particularly limited, unless otherwise specified.
  • a compound for a compound, a group or an atom, it may be substituted and hybridized at the same time, for example, a nitrophenyl group is substituted for a hydrogen atom, and a -CH 2 -CH 2 -CH 2 - is replaced by -CH 2 -S- CH(CH 3 )-.
  • the organoboronic acid group and the organic boronic acid ester group constituting the dynamic polymer organoborate silicon silicate bond are susceptible to being contained by unshared electron pairs due to the electron deficiency of the boron atom in the group.
  • the nuclear reagent is attacked to produce a bond; and for the silanol group constituting the organoborate silicon ester bond (including a silanol precursor capable of being converted into a silyl group), the silanol oxygen atom contains an unshared electron pair, and the silanol group It has strong polarity and high activity, and it can carry out relatively rapid dehydration condensation reaction, transesterification reaction, etc.
  • the bond forms a polymer.
  • the invention utilizes the high reactivity of the organoboronic acid group and the organic boronic acid ester group and the silicic hydroxyl group, and the strong dynamic reversibility of the organoboric acid silicon ester bond can be obtained under mild conditions.
  • the organoborate group and/or the organic borate group are used to form the organoborate silicon ester bond, so that the components constituting the organoborate silicon ester bond are more abundantly selected, and the structure, dynamic reversibility and mechanical properties of the dynamic polymer are obtained.
  • the regulation of solvent resistance and the like is greatly improved, and the polymer is expanded. Application range.
  • organoboron compound (I) containing an organic boronic acid group and/or an organic boronic acid ester group is mixed with a silicon-containing compound (II) containing a silanol group and/or a silanol group precursor in a dissolved or molten state, organic
  • organoboronic acid group in the boron compound (I) can be rapidly reacted with the silanol group in the silicon-containing compound (II) to form a silicone boronic acid ester bond, thereby obtaining a dynamic polymer;
  • the acid ester group may be directly transesterified with a silanol group in the silicon-containing compound (II) to form an organoborate silicon ester bond, or may be first hydrolyzed to form an organoboronic acid group and then with a silicon hydroxyl group in the silicon-containing compound (II).
  • the condensation reaction is carried out to form a silicon silicate bond to obtain a dynamic polymer; the silanol precursor in the silicon-containing compound (II) can be directly condensed with the organic boronic acid group in the organoboron compound (I) by removing small molecules.
  • the reaction may also be followed by hydrolysis to form a silanol group, followed by condensation reaction with an organoborate group in the organoboron compound (I), or transesterification with an organoborate group in the organoboron compound (I).
  • the reaction forms a silicone borate linkage to give a dynamic polymer.
  • an organoboron compound (I) containing an organic boronic acid group and a silicon-containing compound (II) containing a silanol precursor, an organoboron compound containing an organic boronic acid ester group (I), and a silicon-containing compound containing a silanol group are preferably used.
  • organoboron compound-containing organoboron compound (I) or a silicon-containing compound (Si) containing a silanol precursor it is generally required to carry out the reaction at a higher temperature or by in situ hydrolysis of one of them. The condensation reaction is then carried out.
  • one or more organoboron compounds (I) and one or more silicon-containing compounds (II) may be contained at the same time.
  • the compound (III) containing both an organic boronic acid group and/or an organic boronic acid ester group and a silanol group and/or a silanol precursor it is generally required to make the compound (III) by controlling the reaction conditions and adding a suitable reaction assistant.
  • the organoboronic acid group can be reacted with a silanol precursor contained in the same or different compound (III) to form a silicon borate linkage, or the organoborate group in the compound (III) can be the same species or The silanol precursor contained in the different compound (III) is reacted to form a silicon borate linkage, or the organoborate group in the compound (III) is first hydrolyzed to obtain an organoborate group, and then the same or different species.
  • the silanol precursor contained in the compound (III) is reacted to form an organoborate silicon ester bond, or the organoborate group in the compound (III) and the silanol precursor contained in the same or different compound (III)
  • the silanol group obtained by the hydrolysis is subjected to a condensation reaction to form a silicon borate linkage, or the organoborate group and the silanol precursor in the compound (III) are simultaneously hydrolyzed and then reduced.
  • the reaction forms a silicone borate linkage to give a dynamic polymer.
  • one or more organoboron compounds (I) and/or one or more silicon-containing compounds (II) may be contained.
  • the organoboron compound (I), the silicon-containing compound (II), and the compound (III), in the process of forming a dynamic polymer in addition to utilizing the organic boronic acid group and/or the organic boronic acid ester group and the silanol group contained in the compound.
  • the silanol precursor it is also possible to selectively utilize other reactive groups for common covalent attachment through polymerization/crosslinking reactions, thereby interacting with organoboronic acid groups and/or organoborate groups and silanols. Together with and/or the silanol precursor, the reaction results in a dynamic polymer.
  • the compound (IV) is generally reacted with each other by other reactive groups contained in the compound (IV), or by other reactive groups contained in the compound (IV) and other compounds.
  • the mutual reaction between the other reactive groups results in a dynamic polymer containing a silicon borate linkage.
  • a dynamic polymer can be obtained by a reaction such as the following: a condensation reaction is carried out by a hydroxyl group contained in the compound and a carboxyl group contained in the compound to form an ester bond, thereby obtaining a dynamic polymerization.
  • the amide bond is formed by the condensation reaction between the amino group contained in the compound and the carboxyl group contained in the compound to obtain a dynamic polymer; the ring-opening reaction is carried out by the epoxy group contained in the compound and the hydroxyl group, amino group and sulfhydryl group contained in the compound.
  • an ether bond, a secondary amine bond, or a thioether bond to obtain a dynamic polymer; performing free radical polymerization by an olefin contained in the compound under the action of an initiator or an external energy to obtain a dynamic polymer; in an initiator or an additive Under the action of energy, the anion/cation polymerization of the olefin contained in the compound is carried out to obtain a dynamic polymer; the epoxy bond is formed by ring-opening polymerization of the epoxy group contained in the compound to obtain an ether bond, thereby obtaining a dynamic polymer; Catalyzed by the azide group and compound contained in the compound Some alkynyl groups undergo a CuAAC reaction to obtain a dynamic polymer; The mercapto group contained in the compound and the olefin contained in the compound are subjected to a thiol-ene click reaction to obtain a dynamic polymer; and an addition reaction between the double bonds contained in the compound is carried out to obtain a dynamic polymer or
  • An organoboron compound (I) for preparing a dynamic polymer a silicon-containing compound (II), a compound (III), a compound (IV), and other compounds containing other reactive groups, which may be gases, liquids, crystals, Powder, granules, gelatinous, paste, etc.
  • the organoboron compound (I) as a raw material and the organic boronic acid in the compound (III) may be present in the form of an organic boronic acid or an organic boronic acid ester.
  • the compound raw material in the form of organic borate ester is relatively stable, which is favorable for transportation and preservation; in addition, by using the raw material containing organic borate ester, the degree of polymerization and cross-linking in the final dynamic polymer can be better regulated. Parameters such as degree and dynamics can regulate the overall performance of the polymer.
  • the silicon-containing compound (II) as a raw material and the silanol group in the compound (III) may be present in the form of a silanol group or a silanol precursor.
  • the silicon-hydroxyl group in the silicon-containing compound (II) or the compound (III) exists in the form of a silanol precursor, in the process of hydrolyzing into a silicon-hydroxyl group, water required for hydrolysis can be obtained from various sources, which may be The artificial addition may also be adsorption of the raw material or the surface of the substrate, or it may be water vapor contained in the atmosphere, or may be formed by a chemical reaction.
  • the silicon-containing compound (II) and the compound (III) may be selectively added with a small amount of a condensation inhibitor in order to avoid self-condensation of the silicon hydroxyl group, so that the reaction system is kept as neutral as possible;
  • the polar inert solvent dissolves the formed silanol in an organic solvent to reduce its interaction in the aqueous medium; it can also slow down the condensation reaction by adjusting the reaction temperature.
  • the compound in the form of a silicon hydroxy precursor is relatively stable as a raw material, which is favorable for transportation and preservation, and can also regulate the synthesis process and performance parameters of the polymer by utilizing the difference in group activity.
  • some condensation inhibitors may be selectively added, generally in order to keep the system under neutral or near-neutral conditions, and avoid silicon-silicon condensed silicon. An oxane, thereby enabling a high yield of a compound containing a silanol group.
  • the organoboron compound (I) reacted therewith is in an excessive state, and for the silicon-containing compound (II) solid or liquid, It is added to the organoboron compound (I) in a form of slow addition or dropwise addition.
  • the organic boronic acid in the compound (III) is preferably selected in the form of an organic boronic acid ester, and the silicon hydroxyl group in the compound (III) is preferably selected as a silicon hydroxy precursor.
  • a non-polar inert solvent should be used as a reaction solvent as much as possible, and stored under low temperature conditions; at the same time, some condensation needs to be added during the synthesis of the raw material. Inhibitors, and try to ensure that compound (III) is ready for use.
  • the molar equivalent of the organoboronic acid group and/or the organic boronic acid ester group is generally required to be larger than the molar equivalent of the silanol group and/or the silanol precursor, and the silicon is controlled by controlling conditions such as temperature and pH.
  • the hydroxyl and/or silanol precursors are fully reacted with the organoboronic acid groups and/or organoborate groups.
  • the raw material component for preparing the dynamic polymer is preferably matched with the organoboron compound (I) and the silicon-containing compound (II). Choice, but compound (III) is also an important component of dynamic polymer raw materials, and it has its specific advantages in some specific cases and cannot be ignored.
  • the compound (IV) can be prepared by selecting a suitable organoboron compound (I) and a silicon-containing compound (II), and then preparing the compound.
  • Compound (IV) can be obtained by a suitable polymerization/crosslinking method to obtain a dynamic polymer, and the prepared compound (IV) can be obtained by a suitable polymerization/crosslinking method with other optional compounds not containing a silicon borate linkage.
  • Dynamic polymer Dynamic polymer.
  • the suitable polymerization method can be carried out by any suitable polymerization reaction generally used in the art, including but not limited to condensation polymerization, addition polymerization, ring-opening polymerization; Polymerization package These include, but are not limited to, radical polymerization, anionic polymerization, cationic polymerization, and coordination polymerization.
  • the compound (IV) and the compound containing other reactive groups can be carried out by any one of the above-mentioned polymerization methods by any suitable polymerization process generally used in the art to obtain dynamic polymerization. Things.
  • a polymerization process such as melt polymerization, solution polymerization, or interfacial polymerization; for example, when a compound ( IV)
  • a compound containing other reactive groups is obtained as a dynamic polymer in the form of a radical polymerization
  • it can be carried out by a polymerization process such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization or the like; for example, when the compound (IV) When a compound containing another reactive group is obtained as a dynamic polymer in the form of ion polymerization, it can be carried out by a polymerization process such as melt polymerization, solution polymerization, or interfacial polymerization; for example, when a compound ( IV) When a compound containing other reactive groups is obtained as
  • the melt polymerization mentioned in the above polymerization process is generally carried out by subjecting the compound (IV) and the compound containing other reactive groups to a molten state, using an initiator or light, heat, irradiation, catalysis, etc.
  • the polymerization is carried out under conditions to obtain a dynamic polymer in a molten state;
  • the solution polymerization mentioned is usually carried out by dissolving the compound (IV), a compound containing another reactive group, and an initiator in a suitable solvent for polymerization.
  • Dynamic polymer the interfacial polymerization mentioned, which is usually carried out by dissolving compound (IV) and a compound containing other reactive groups in two mutually incompatible solvents at the interface of the solution (or The organic phase of the interface is polymerized to obtain a dynamic polymer; the bulk polymerization mentioned is usually carried out by using compound (IV), a compound containing other reactive groups in a small amount of initiator or light, heat, and radiation.
  • the polymerization is carried out under the conditions of irradiation, catalysis and the like to obtain a dynamic polymer; the suspension polymerization mentioned is usually carried out by mixing the compound (IV) with the initiator and the like.
  • the compound of the reactive group is stirred into small droplets and suspended in an aqueous medium to be polymerized to obtain a dynamic polymer; the emulsion polymerization mentioned is usually carried out by using the compound (IV) and other reactive groups.
  • the compound is dispersed in an aqueous medium in which the initiator is dissolved by means of an emulsifier to form an emulsion and then polymerized to obtain a dynamic polymer; the slurry polymerization mentioned is usually carried out by using the compound (IV) and containing other compounds.
  • the compound of the reactive group is dissolved in a suitable solvent, and the initiator is polymerized in the form of a dispersion to carry out polymerization, and the obtained dynamic polymer is precipitated as a precipitate; the gas phase polymerization mentioned, its usual implementation method
  • the compound (IV) and a compound containing another reactive group are polymerized in a gas phase state by an initiator or light, heat, irradiation, or catalysis to obtain a dynamic polymer.
  • the organoboron compound (I), the silicon-containing compound (II), and other reactive groups in the compound (III) may also form a common covalent bond between the compounds by the above polymerization method.
  • the organoboron compound (I), the silicon-containing compound (II), and the compound (III) can also be used to prepare a dynamic polymer by a solution polymerization process or an emulsion polymerization process.
  • the solution polymerization process and the emulsion polymerization process have the advantages of being capable of reducing the viscosity of the system, facilitating mass transfer and heat transfer, facilitating temperature control, and avoiding local overheating.
  • the obtained solution and emulsion are convenient for concentration or dispersion, and are favorable for coating. Overlay, blending, etc.
  • a certain proportion of the raw materials may be mixed to prepare a dynamic polymer by any suitable mixing means of materials known in the art, which may be a batch, semi-continuous or continuous process mixture; Similarly, dynamic polymers can be formed in a batch, semi-continuous or continuous process.
  • the mixing modes employed include, but are not limited to, solution agitation mixing, melt agitation mixing, kneading, kneading, opening, melt extrusion, ball milling, etc., wherein solution agitation mixing, melt agitation mixing, and melt extrusion are preferred.
  • the form of energy supply during material mixing includes, but is not limited to, heating, illumination, radiation, microwave, ultrasound.
  • the molding methods used include, but are not limited to, extrusion molding, injection molding, compression molding, tape casting, calender molding, and casting molding.
  • the dynamic polymer can also be blended with certain additives and fillers to form a dynamic polymer composite system, but these additives are not all necessary.
  • a specific method for preparing a dynamic polymer by stirring and mixing a solution is usually carried out by stirring and dispersing the raw materials in a dissolved or dispersed form in a respective solvent or a common solvent in a reactor.
  • the mixing reaction temperature is controlled at 0 to 200 ° C, preferably 25 to 120 ° C, more preferably 25 to 80 ° C, and the mixing and stirring time is controlled to be 0.5 to 12 h, preferably 1 to 4 h.
  • the product obtained after the mixing and stirring can be poured into a suitable mold and placed at 0-150 ° C, preferably 25-80 ° C, for 0-48 h.
  • the solvent may be selected as a solution, an emulsion, a suspension, a paste, a gel, or the like, or may be selected in the form of a film, a block, or the like. Solid polymer sample.
  • the dynamic polymer is prepared by the method using the compound (IV) as a raw material, it is usually necessary to add an initiator to the solvent to initiate polymerization to obtain a dynamic polymer, or to add a dispersant and an oil-soluble initiator.
  • the suspension is initiated by suspension polymerization or slurry polymerization to obtain a dynamic polymer, or an initiator and an emulsifier are added to prepare an emulsion to initiate polymerization by emulsion polymerization to obtain a dynamic polymer.
  • the methods of solution polymerization, suspension polymerization, slurry polymerization, and emulsion polymerization employed are all known to those skilled in the art and widely used, and can be adjusted according to actual conditions, and will not be further developed here.
  • the solvent used in the above preparation method should be selected according to the actual conditions such as the reactants, products and reaction processes, including but not limited to any one of the following solvents or a mixed solvent of any of several solvents: deionized water, acetonitrile, acetone, Butanone, benzene, toluene, xylene, ethyl acetate, diethyl ether, methyl tert-butyl ether, tetrahydrofuran, methanol, ethanol, chloroform, dichloromethane, 1,2-dichloroethane, dimethyl sulfoxide, Dimethylformamide, dimethylacetamide, N-methylpyrrolidone, isopropyl acetate, n-butyl acetate, trichloroethylene, mesitylene, dioxane, Tris buffer, citrate buffer, acetic acid Buffer solution, phosphate buffer solution, boric acid buffer solution, etc.; preferably deionized
  • the liquid concentration of the compound to be disposed is not particularly limited depending on the structure, molecular weight, solubility, and desired dispersion state of the selected reactant, and a preferred compound liquid concentration is 0.1 to 10 mol/L, and more preferably 0.1 to 1 mol/L.
  • a specific method for preparing a dynamic polymer by melt-mixing usually by directly stirring or mixing the raw materials in a reactor, and then stirring and mixing the mixture, generally in the case where the raw material is a gas, a liquid or a solid having a low melting point.
  • the mixing reaction temperature is controlled at 0 to 200 ° C, preferably 25 to 120 ° C, more preferably 25 to 80 ° C
  • the mixing and stirring time is controlled to be 0.5 to 12 h, preferably 1 to 4 h.
  • the product obtained after the mixing and stirring may be poured into a suitable mold and placed at 0 to 150 ° C, preferably 25 to 80 ° C, for 0 to 48 hours to obtain a polymer sample.
  • the dynamic polymer is prepared by the method using the compound (IV) as a raw material, it is usually necessary to add a small amount of the initiator to initiate polymerization to obtain a dynamic polymer by melt polymerization or gas phase polymerization.
  • the methods of melt polymerization and gas phase polymerization used are all known to those skilled in the art and widely used, and can be adjusted according to actual conditions, and will not be developed in detail here.
  • a specific method for preparing a dynamic polymer by melt extrusion mixing is usually carried out by adding a raw material to an extruder for extrusion blending at an extrusion temperature of 0 to 280 ° C, preferably 50 to 150 ° C.
  • the reaction product can be directly cast into a suitable size, or the obtained extruded sample can be crushed and then sampled by an injection molding machine or a molding machine.
  • the injection temperature is 0-280 ° C, preferably 50-150 ° C
  • the injection pressure is preferably 60-150 MPa
  • the molding temperature is 0-280 ° C, preferably 25-150 ° C, more preferably 25-80 ° C
  • the molding time is 0.5-60 min, preferably
  • the molding pressure is preferably 4-15 MPa at 1-10 min.
  • the spline can be placed in a suitable mold and placed at 0-150 ° C, preferably 25-80 ° C, for 0-48 h to give the final polymer sample.
  • the composition selection and formulation ratio of the selected organoboron compound (I), silicon-containing compound (II), compound (III), compound (IV), and other reactive group-containing compounds are selected. It can be flexibly grasped, but should be reasonably designed and combined according to the properties of the target material and the structure of the selected compound, the number of reactive groups contained, and the molecular weight.
  • the organoboron compound (I), the silicon-containing compound (II), the compound (III), the compound (IV), and the compound containing other reactive groups are added to ensure functional groups and/or other reactions in the reactant system.
  • the molar equivalent ratio of the group is in an appropriate range.
  • the molar equivalent ratio of the organoboron compound (I), the silicon-containing compound (II), the organoborate group and/or the organoborate group contained in the compound (III) to the silanol group and/or the silanol precursor functional group is preferably 0.1 to
  • the range of 10 is more preferably in the range of 0.3 to 3, and more preferably in the range of 0.8 to 1.2, wherein the number of moles of the organoboronic acid group and/or the organic boronic acid ester group functional group may be appropriately excessive.
  • the molar equivalent ratio of the other reactive group of the crosslinking reaction is preferably in the range of 0.1 to 10, more preferably in the range of 0.3 to 3, still more preferably in the range of 0.8 to 1.2.
  • those skilled in the art can adjust according to actual needs.
  • the organoboron compound (I), the silicide (II), the compound (III), and the compound (IV) are used to prepare a dynamic polymer containing a silicon borate linkage, and the structure of the compound is designed and Adjustment, according to the need, different numbers of functional groups, molecular segments of different structures, molecular segments of different molecular weights, reactive groups, functional groups and other organic structures are introduced into the compound raw materials, and become dynamic polymerization through the preparation process.
  • the structural components of the material thereby achieving regulation of the dynamic polymer structure over a wide range.
  • the diversity of dynamic polymer structures also allows them to exhibit a wide range of properties and can be applied to different fields depending on the properties of the polymer.
  • the organic structure used (such as organic boron structure, silicone) Structure) can be an effective medium for technicians to regulate and design dynamic polymer structures.
  • organic structure used such as organic boron structure, silicone
  • These advantages and characteristics are often difficult to achieve in the field of inorganic compounds.
  • inorganic compounds such as inorganic boric acid, inorganic borate, etc.
  • they tend to have a single structure, a fixed number of functional groups, and a heterogeneous reaction.
  • the polymer obtained has the general structure and properties, and the obtained inorganic boronic acid silicate bond is easily hydrolyzed and hydrolyzed, which limits its use.
  • a dynamic polymer having different dynamic activities can be prepared by designing a functional group structure in the organoboron compound (I), the silicon-containing compound (II), and the compound (III).
  • a dynamic polymer can be prepared by using a phenylboronic acid/phenylborate structure in which an aminomethyl group is attached or an amide boronic acid/phenyl boronate structure in an ortho position, and an ortho-aminomethyl or amide group can be used.
  • a strong electron withdrawing group such as a fluorine atom, an acetate group, a pyridyl group, a piperidinyl group, etc.
  • a strong electron withdrawing group such as a fluorine atom, an acetate group, a pyridyl group, a piperidinyl group, etc.
  • the reaction rate with the silanol and/or the silanol precursor is also greatly improved; the resulting dynamic polymer can exhibit higher dynamic activity, and the organoborate linkage in the polymer is milder.
  • the dynamic reversibility can be demonstrated under the conditions, and the dynamic polymer can be prepared and used under milder conditions, which expands the application range of the polymer.
  • dynamic polymers by adjusting the number of functional groups in the organoboron compound (I), the silicon-containing compound (II), and the compound (III), dynamic polymers having different degrees of crosslinking can be prepared, and dynamic polymerization is carried out.
  • the properties of the material also vary with the degree of crosslinking.
  • the mechanical strength and mechanical modulus are generally low, the toughness and ductility are excellent, the thermal stability and dimensional stability are poor, and the texture is generally in macroscopic performance. It is soft, has low surface hardness, and can be stretched in a wide range.
  • the flexible film can be used as a flexible film, an adhesive, a sealant, or as a solution or an emulsion as a coating or an impregnating agent.
  • the mechanical strength and modulus are generally higher, and the toughness, thermal stability, wear resistance and creep resistance are improved, but ductility It will be reduced, generally in the macroscopic performance of a colloid or solid with better resilience or rigidity; it can generally be used as a film, fiber or block material with a certain strength.
  • At least one compound having a polyfunctional number is used to prepare a dynamic polymer having a dynamic crosslinked structure.
  • a bifunctional compound is used alone to form a dynamic polymer, since the difunctional compound itself has a small number of reactive functional groups, and when the molecular weight of the compound is large, these reactive functional groups may be embedded in the polymerization due to the crimping of the molecular chain. In the chain, the reaction cannot be carried out, and the reaction efficiency between the organoboronic acid group and/or the organic boronic acid ester group functional group and the silanol group and/or the silanol precursor functional group is lowered. Meanwhile, the dynamic polymerization reaction is simply carried out by using the bifunctional compound. It is a linear dynamic polymer.
  • the materials made from such polymers usually have low mechanical strength and mechanical modulus, and have poor thermal stability, dimensional stability and solvent resistance, which limits their application. .
  • the polyfunctional compound is used for polymerization, the dynamic polymerization reaction activity point is increased, the dynamic crosslinking efficiency is improved, and the dynamic crosslinking point in the polymer is increased, thereby improving the utilization rate of dynamic covalent bonds in the dynamic polymer.
  • the dynamic properties of the organoborate silicon carboxylate bond itself are well represented.
  • a dynamic polymer having a dynamic crosslinked structure is obtained, which is used as a material
  • the dynamically crosslinked polymer material is improved in mechanical properties, thermal stability, wear resistance, solvent resistance and creep resistance relative to linear dynamic polymer materials, thereby expanding the dynamics.
  • the range of applications of polymers are used for polymerization.
  • Dynamic polymers having different properties can be prepared, and the obtained dynamic polymer can have one or more glass transition temperatures.
  • the compound which is relatively easy to rotate within the dynamic polymer molecular segment produced by it, generally has a low glass transition temperature (generally not higher than 25 ° C) and a lower melting point (generally not higher than 100 ° C).
  • the fluidity is good; the material usually shows macroscopically high flexibility, low brittleness, stretching and bending, good solubility, but weak rigidity, heat resistance and dimensional stability, which can generally be used as a gel. , adhesives, elastic materials for use.
  • a dynamic polymerization obtained therefrom Due to the relative difficulty of rotation within the molecular segment, it generally has a high glass transition temperature (generally higher than 25 ° C), a higher melting point (generally higher than 100 ° C) and a larger melt viscosity; the material is usually macroscopic It has large rigidity and surface hardness, strong dimensional stability, heat resistance and chemical resistance, but has low ductility and can generally be used as structural parts.
  • the resulting dynamic polymer When simultaneously using a compound containing a flexible chain and a rigid chain and/or a compound which can be simultaneously polymerized into a flexible and rigid chain, the resulting dynamic polymer generally has a plurality of distinct glass transition temperatures, and the polymer material is moderate. Its rigidity, hardness and flexibility, its mechanical properties can be adjusted according to different formulations, generally can be used as a film, paint, damping material.
  • the dynamic polymer having a flexible structure can exhibit more excellent dynamic reversibility and tensile toughness, it is preferred to utilize an organoboron compound (I) having a flexible structure and/or which can be polymerized into a flexible chain,
  • a dynamic polymer is prepared by containing a silicon compound (II), a compound (III), a compound (IV), and a compound containing another reactive group.
  • Dynamic polymers with different crosslink densities also exhibit different properties due to differences in crosslink density.
  • the lower the crosslink density of the dynamic polymer the greater the molecular weight of the polymer chain between the crosslinks, and vice versa.
  • the preparation of the dynamic polymer it is also possible to introduce a function in the organoboron compound (I), the silicon-containing compound (II), the compound (III), the compound (IV), and a compound containing other reactive groups.
  • the manner of the group controls the performance of the dynamic polymer.
  • the hydrolysis resistance of the dynamic polymer is improved by introducing a hydrophobic group
  • the dynamic polymer having fluorescence is prepared by introducing a fluorescent group
  • the oxidation resistance of the dynamic polymer is improved by introducing an antioxidant group
  • the introduction of an acidic group or a basic group regulates the dynamics of the dynamic polymer and the like.
  • it is also possible to achieve compatibility between components by introducing structural components or coupling groups similar to those of other polymers. .
  • the above description is only a part of the regulation of the performance of the dynamic polymer which can be exerted on the structure of the compound component as a raw material in the present invention, and is adjustable for the design of the dynamic polymer structure, performance and use in the present invention.
  • the scope is wide, and often can also reflect many unexpected practical effects, which are difficult to be exhaustive, and those skilled in the art can adjust according to the idea of the present invention.
  • additives that can be added during the preparation of the dynamic polymer can improve the polymer preparation process, improve product quality and yield, reduce product cost, or impart a unique application property to the product.
  • the additive which may be added may be selected from any one or any of the following auxiliary agents: a synthetic auxiliary agent, including a catalyst, an initiator, a stabilizing auxiliary agent, including an antioxidant, a light stabilizer, and a heat stabilizer; Additives for improving mechanical properties, including toughening agents; additives for improving processability, package Including lubricants, mold release agents; softening and lightening additives, including plasticizers, foaming agents, dynamic regulators; additives to change surface properties, including antistatic agents, emulsifiers, dispersants; Coloring auxiliaries, including colorants, fluorescent whitening agents, matting agents; flame retardant and smoke suppressing additives, including flame retardants; other additives, including nucleating agents, rheological agents, thickeners, leveling agents Agent.
  • the catalyst in the additive which can be added, which can accelerate the reaction rate of the reactant in the reaction process by changing the reaction route and reducing the activation energy of the reaction. It includes, but is not limited to, any one or any of the following catalysts: sodium hydroxide, potassium hydroxide, calcium hydroxide, ethylenediamine, triethanolamine, triethylamine, pyridine, 4-dimethylaminopyridine, imidazole, Diisopropylethylamine, sodium carbonate, sodium hydrogencarbonate, acetic acid, sulfuric acid, phosphoric acid, carbonic acid, hypochlorous acid, hydrofluoric acid; among them, the catalyst is preferably sodium hydroxide, triethylamine or acetic acid.
  • the amount of the catalyst to be used is not particularly limited and is usually from 0.01 to 0.5% by weight.
  • the initiator in the additive which can be added which can cause activation of the monomer molecule during the polymerization reaction to generate a radical, increase the reaction rate, and promote the reaction, including but not limited to any one or more of the following Initiator: organic peroxides, such as lauroyl peroxide, benzoyl peroxide (BPO), diisopropyl peroxydicarbonate, dicyclohexyl peroxydicarbonate, diperoxydicarbonate (4-tert Butyl cyclohexyl) ester, t-butyl peroxybenzoate, t-butyl peroxypivalate, di-tert-butyl peroxide, dicumyl hydroperoxide; azo compounds such as azo diiso Nitrile (AIBN), azobisisoheptanenitrile; inorganic peroxides such as ammonium persulfate, potassium persulfate, etc.; wherein the initiator is preferably lauroyl per
  • the antioxidant in the additive which can be added which can delay the oxidation process of the polymer sample, ensure that the material can be smoothly processed and prolonged, including but not limited to any one or more of the following Antioxidants: hindered phenols such as 2,6-di-tert-butyl-4-methylphenol, 1,1,3-tris(2-methyl-4hydroxy-5-tert-butylphenyl)butane , tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid] pentaerythritol ester, 2,2'-methylenebis(4-methyl-6-tert-butylphenol); Sulfur-containing hindered phenols such as 4,4'-thiobis-[3-methyl-6-tert-butylphenol], 2,2'-thiobis-[4-methyl-6-tert-butyl Phenol]; triazine-based hindered phenol, such as 1,3,5-bis[ ⁇ -(
  • the light stabilizer in the additive which can be added can prevent photoaging of the polymer sample and prolong its service life, including but not limited to any one or any of the following light stabilizers: light shielding agent, such as Carbon black, titanium dioxide, zinc oxide, calcium sulfite; ultraviolet absorbers such as 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octyloxybenzophenone, 2-(2) -hydroxy-3,5-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2,4,6-tri 2-hydroxy-4-n-butoxyphenyl)-1,3,5-s-triazine, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate; pioneer UV absorber, Such as p-tert-butylphenyl salicylate, bisphenol A disalicylate; UV quencher, such as bis(3,5-di-tert-butyl
  • the heat stabilizer in the additive which can be added can make the polymer sample not undergo chemical change due to heat during processing or use, or delay the change to achieve the purpose of prolonging the service life, including but not limited to Following One or more heat stabilizers: lead salts, such as tribasic lead sulfate, lead dibasic phosphite, lead dibasic stearate, lead dibasic lead, tribasic maleic acid Lead, salt-based lead silicate, lead stearate, lead salicylate, lead dibasic phthalate, basic lead carbonate, silica gel coprecipitated lead silicate; metal soap: such as cadmium stearate, Barium stearate, calcium stearate, lead stearate, zinc stearate; organotin compounds such as di-n-butyltin dilaurate, di-n-octyl tin dilaurate, di(n-butyl) maleate, double Monooctyl maleate, di-n
  • the toughening agent in the additive which can be added can reduce the brittleness of the polymer sample, increase the toughness, and improve the load bearing strength of the material, including but not limited to any one or any of the following toughening agents: methacrylic acid Methyl ester-butadiene-styrene copolymer resin, chlorinated polyethylene resin, ethylene-vinyl acetate copolymer resin and modified product thereof, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-butyl Ethylene copolymer, ethylene propylene rubber, ethylene propylene diene rubber, butadiene rubber, styrene butadiene rubber, styrene-butadiene-styrene block copolymer, etc.; wherein the toughening agent is preferably ethylene propylene rubber, acrylonitrile - Butadiene-styrene copolymer (ABS),
  • the lubricant in the additive which can be added can improve the lubricity of the polymer sample, reduce friction and reduce interfacial adhesion performance, including but not limited to any one or any of the following lubricants: saturated hydrocarbons and Halogenated hydrocarbons such as paraffin wax, microcrystalline paraffin, liquid paraffin, low molecular weight polyethylene, oxidized polyethylene wax; fatty acids such as stearic acid, hydroxystearic acid; fatty acid esters such as fatty acid lower alcohol esters, fatty acids Polyol esters, natural waxes, ester waxes and saponified waxes; aliphatic amides such as stearic acid amide or stearic acid amide, oleamide or oleic acid amide, erucamide, N, N'-ethylene bis stearamide ; fatty alcohols and polyols, such as stearyl alcohol, cetyl alcohol, pentaerythritol; metal soaps, such as lead ste
  • the release agent in the additive which can be added which can make the polymer sample easy to release, and the surface is smooth and clean, including but not limited to any one or any of the following mold release agents: paraffin hydrocarbon, soap Class, dimethyl silicone oil, ethyl silicone oil, methyl phenyl silicone oil, castor oil, waste engine oil, mineral oil, molybdenum disulfide, polyethylene glycol, vinyl chloride resin, polystyrene, silicone rubber, etc.;
  • the release agent is preferably dimethicone or polyethylene glycol.
  • the amount of the releasing agent to be used is not particularly limited and is usually from 0.5 to 2% by weight.
  • plasticizer in the additive which can increase the plasticity of the polymer sample, so that the hardness, modulus, softening temperature and embrittlement temperature of the polymer decrease, elongation, flexibility and flexibility Increased, including but not limited to any one or any of the following plasticizers: phthalates such as dibutyl phthalate, dioctyl phthalate, diisooctyl phthalate , diheptyl phthalate, diisononyl phthalate, diisononyl phthalate, butyl benzyl phthalate, butyl phthalate, butyl phthalate, phthalic acid Dicyclohexyl ester, bis(tris) phthalate, di(2-ethyl)hexyl terephthalate; phosphates such as tricresyl phosphate, diphenyl-2-ethyl Hexyl ester; fatty acid esters such as di(2-ethyl)hexyl a
  • the foaming agent in the additive which can be added can make the polymer sample foam into pores, thereby obtaining a lightweight, heat-insulating, sound-insulating, elastic polymer material, including but not limited to any of the following Or any of a number of blowing agents: physical blowing agents, such as propane, methyl ether, pentane, neopentane, hexane, isopentane, heptane, isoheptane, petroleum ether, acetone, benzene, toluene, butyl Alkane, diethyl ether, methyl chloride, dichloromethane, dichloroethylene, dichlorodifluoromethane, chlorotrifluoromethane; inorganic blowing agents such as sodium hydrogencarbonate, ammonium carbonate, ammonium hydrogencarbonate; organic foaming agents such as N , N'-dinitropentamethylenetetramine, N,N'-dimethyl-N,N'-dinitroso-ter
  • the blowing agent is preferably sodium hydrogencarbonate, ammonium carbonate, azodicarbonamide (foaming agent AC), N, N'-dinitropentamethyltetramine (foaming agent H), N, N' -Dimethyl-N,N'-dinitroso-terephthalamide (foaming agent NTA), physical microsphere foaming agent, and the amount of the foaming agent to be used are not particularly limited, and are generally 0.1 to 30% by weight. .
  • the dynamic modifier in the additive which can be added can enhance the dynamics of the adjustment of the organoborate silicon ester bond in order to obtain the optimum desired performance, which is generally a compound with a free hydroxyl group or a free carboxyl group, including but not only It is limited to water, sodium hydroxide, alcohol (including silanol), carboxylic acid, and the like.
  • the amount of the dynamic regulator used is not particularly limited and is usually from 0.1 to 10% by weight.
  • the antistatic agent in the additive which can be added can guide or eliminate the harmful charge accumulated in the polymer sample, so that it does not cause inconvenience or harm to production and life, including but not limited to any one of the following or Several antistatic agents: anionic antistatic agents, such as alkyl sulfonates, sodium p-nonylphenoxypropane sulfonate, alkyl phosphate diethanolamine salts, alkylphenol polyoxyethylene ether sulfonic acid triethanolamine , p-Mercapto-diphenyl ether sulfonate, alkyl polyoxyethylene ether sulfonate triethanolamine, phosphate derivative, phosphate, phosphoric acid polyethylene oxide alkyl ether alcohol ester, alkyl double [two (2 -Hydroxyethylamine)]phosphate, phosphate derivative, fatty amine sulfonate, sodium butyrate sulfonate; cationic antistatic agent, such as fatty ammoni
  • the antistatic agent is preferably lauryl trimethyl ammonium chloride, octadecyl dimethyl hydroxyethyl quaternary ammonium nitrate (anti- Electrostatic agent SN), alkyl phosphate diethanolamine salt (antistatic agent P).
  • the amount of the antistatic agent to be used is not particularly limited and is usually from 0.3 to 3 wt.%.
  • the emulsifier in the additive which can be added can improve the surface tension between various constituent phases in the polymer mixture containing the auxiliary agent to form a uniform and stable dispersion system or emulsion, which is preferably used.
  • emulsion polymerization/crosslinking including but not limited to any one or any of the following emulsifiers: anionic, such as higher fatty acid salts, alkyl sulfonates, alkyl benzene sulfonates, alkyl naphthalene sulfonates Sodium, succinate sulfonate, petroleum sulfonate, fatty alcohol sulfate, castor oil sulfate, Sulfated butyl ricinate, phosphate ester, fatty acyl-peptide condensate; cationic, such as alkyl ammonium salt, alkyl quaternary ammonium salt, alkyl pyridinium salt; zwitterionic type, such as carboxy
  • the dispersing agent in the additive which can be added enables the solid floc cluster in the polymer mixture to be dispersed into fine particles and suspended in the liquid, uniformly dispersing solid and liquid particles which are difficult to be dissolved in the liquid, and can also Preventing sedimentation and agglomeration of particles to form a stable suspension, including but not limited to any one or any of the following dispersants: anionic, such as sodium alkyl sulfate, sodium alkylbenzene sulfonate, sodium petroleum sulfonate ; cationic; nonionic, such as fatty alcohol polyoxyethylene ether, sorbitan fatty acid polyoxyethylene ether; inorganic type, such as silicate, condensed phosphate; polymer type, such as starch, gelatin, water soluble Ethylene oxide condensate of gum, lecithin, carboxymethyl cellulose, hydroxyethyl cellulose, sodium alginate, lignosulfonate, ⁇ -naphthalenes
  • the colorant in the additive which can be added can make the polymer product exhibit the desired color and increase the surface color, including but not limited to any one or any of the following colorants: inorganic pigments such as titanium white , chrome yellow, cadmium red, iron red, molybdenum chrome red, ultramarine blue, chrome green, carbon black; organic pigments, such as Lisol Baohong BK, lake red C, blush, Jiaji R red, turnip red, Permanent solid red HF3C, plastic red R and clomo red BR, permanent orange HL, fast yellow G, Ciba plastic yellow R, permanent yellow 3G, permanent yellow H 2 G, indigo blue B, indigo green , plastic violet RL, aniline black; organic dyes, such as thioindigo, reduced yellow 4GF, Shilin blue RSN, salt-based rose essence, oil-soluble yellow, etc.; among them, the choice of colorants depends on the color requirements of the sample, not Need special restrictions.
  • the amount of the coloring agent to be used is not
  • the optical brightener in the additive which can be added enables the dyed material to obtain a fluorite-like sparkling effect, including but not limited to any one or any of the following fluorescent whitening agents: diphenyl Ethylene type, coumarin type, pyrazoline type, benzooxazole type, phthalimide type, etc.; among them, the fluorescent whitening agent is preferably sodium stilbene biphenyl disulfonate (fluorescent whitening agent CBS) , 4,4-bis(5-methyl-2-benzoxazolyl)stilbene (fluorescent brightener KSN), 2,2-(4,4'-distyryl) bisbenzone Azole (fluorescent brightener OB-1).
  • the amount of the fluorescent whitening agent to be used is not particularly limited and is usually from 0.002 to 0.03 wt.%.
  • the matting agent in the additive that can be added enables diffuse reflection when incident light reaches the surface of the polymer, resulting in a low-gloss matt and matte appearance, including but not limited to any one or more of the following Matting agent: precipitated barium sulfate, silica, hydrous gypsum powder, talc powder, titanium dioxide, polymethyl urea resin, etc.; wherein the matting agent is preferably silica.
  • the amount of the matting agent to be used is not particularly limited and is usually 2 to 5 wt.%.
  • the flame retardant in the additive that can be added can increase the flame resistance of the material, including but not limited to any one or any of the following flame retardants: phosphorus, such as red phosphorus, tricresyl phosphate, Triphenyl phosphate, tricresyl phosphate, toluene diphenyl phosphate; halogen-containing phosphates such as tris(2,3-dibromopropyl)phosphate, tris(2,3-dichloropropyl) phosphate; Organic halides, such as high chlorine content chlorinated paraffins, 1,1,2,2-tetrabromoethane, decabromodiphenyl ether, perchlorocyclopentanane; inorganic flame retardants, such as antimony trioxide, Aluminum hydroxide, magnesium hydroxide, zinc borate; reactive flame retardant, such as chloro-bromic anhydride, bis(2,3-dibromopropyl) fumarate, te
  • the nucleating agent in the additive which can be added can shorten the molding cycle of the material and improve the transparency and surface of the product by changing the crystallization behavior of the polymer, accelerating the crystallization rate, increasing the crystal density, and promoting the grain size miniaturization.
  • nucleating agents benzoic acid, adipic acid , sodium benzoate, talc, sodium p-phenolate, silica, dibenzylidene sorbitol and its derivatives, ethylene propylene rubber, ethylene propylene diene rubber, etc.; wherein the nucleating agent is preferably dioxane Silicon, dibenzylidene sorbitol (DBS), EPDM rubber.
  • the amount of the nucleating agent to be used is not particularly limited and is usually from 0.1 to 1% by weight.
  • the rheological agent in the additive which can be added can ensure good paintability and appropriate film thickness of the polymer in the coating process, prevent sedimentation of solid particles during storage, and improve redispersibility thereof.
  • rheological agents including but not limited to any one or any of the following rheological agents: inorganic, such as barium sulfate, zinc oxide, alkaline earth metal oxides, calcium carbonate, lithium chloride, sodium sulfate, magnesium silicate, gas phase dioxide Silicon, water glass, colloidal silica; organometallic compounds such as aluminum stearate, aluminum alkoxides, titanium chelate, aluminum chelate; organic, such as organic bentonite, hydrogenated castor oil, hydrogenated castor oil / An amide wax, a cellulose derivative, an isocyanate derivative, a hydroxy compound, an acrylic emulsion, an acrylic copolymer, a polyethylene wax, a cellulose ester, etc.; wherein the rheological agent is preferably an organic bentonit
  • the thickener in the additive which can be added can impart good thixotropy and proper consistency to the polymer mixture, thereby satisfying various aspects such as stability performance and application performance during production, storage and use.
  • Requirements including but not limited to any one or any of the following thickeners: low molecular substances such as fatty acid salts, fatty alcohol polyoxyethylene ether sulfates, alkyl dimethylamine oxides, fatty acid monoethanolamides, Fatty acid diethanolamide, fatty acid isopropylamide, sorbitan tricarboxylate, glycerol trioleate, cocoamidopropyl betaine, 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazoline; High molecular substances, such as bentonite, artificial hectorite, micronized silica, colloidal aluminum, plant polysaccharides, microbial polysaccharides, animal protein, cellulose, starch, alginic acid, polymethacrylate a
  • the leveling agent in the additive which can be added can ensure the smoothness and uniformity of the polymer coating film, improve the surface quality of the coating film, and improve the decorative property, including but not limited to any one or any of the following levels.
  • Agent polydimethylsiloxane, polymethylphenylsiloxane, cellulose acetate butyrate, polyacrylate, silicone resin, etc.; wherein the leveling agent is preferably polydimethylsiloxane, Polyacrylate.
  • the amount of the leveling agent to be used is not particularly limited and is usually from 0.5 to 1.5% by weight.
  • additives which can be added are preferably initiators, antioxidants, light stabilizers, heat stabilizers, toughening agents, plasticizers, emulsifiers, dispersants, foaming agents, flame retardants Agent, dynamic regulator.
  • the filler which may be added may be selected from any one or any of the following fillers: an inorganic non-metallic filler, a metal and an oxide filler thereof, an organic filler, and a metal organic compound filler.
  • the inorganic non-metallic fillers that can be added include, but are not limited to, any one or more of the following: calcium carbonate, clay, barium sulfate, calcium sulfate and calcium sulfite, talc, white carbon, quartz, mica powder , clay, asbestos, asbestos fiber, feldspar, chalk, limestone, barite powder, gypsum, graphite, carbon black, graphene, carbon nanotubes, graphene oxide, molybdenum disulfide, slag, flue ash, wood flour Shell powder, diatomaceous earth, red mud, wollastonite, silicon aluminum black, aluminum hydroxide, magnesium hydroxide, fly ash, oil shale powder, expanded perlite powder, conductive carbon black, vermiculite, iron Mud, white mud, alkaline mud, boron mud, (hollow) glass microbeads, foamed microspheres, foamable particles, glass powder, cement, glass fiber, carbon fiber, quartz fiber
  • the metal to be added and the oxide filler thereof include, but are not limited to, any one or more of the following: powders, nanoparticles, copper, silver, nickel, palladium, iron, gold, and the like, and oxides or alloys thereof.
  • a fiber, a liquid metal wherein the nanoparticle may be selected from the group consisting of nano gold particles, nano silver particles, nano palladium particles, nano magnetic particles (for example, iron oxides such as Fe 3 O 4 , ⁇ -Fe 2 O 3 ; Pure metals such as Fe, Co; other magnetic compounds such as MgFe 2 O 4 , MnFe 2 O 4 , CoFe 2 O 4 ; magnetic alloys such as CoPt 3 , FePt, etc.; wherein the liquid metal includes, but is not limited to, mercury, gallium , gallium indium liquid alloy, gallium indium tin liquid alloy, other gallium-based liquid metal alloys, and the like.
  • the organic fillers that can be added include, but are not limited to, any one or more of the following: 1 natural organic fillers such as fur, natural rubber, cotton, cotton linters, hemp, jute, flax, asbestos, cellulose, acetic acid Cellulose, shellac, chitin, chitosan, lignin, starch, protein, enzyme, hormone, lacquer, wood, wood flour, shell powder, glycogen, xylose, silk, etc.; 2 synthetic resin fillers, such as propylene Nitrile-acrylate-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, cellulose acetate, polychlorotrifluoroethylene, chlorinated polyethylene, chlorinated polyvinyl chloride, epoxy resin, ethylene-propylene Copolymer, ethylene-vinyl acetate copolymer, high density polyethylene, high impact polystyrene, low density polyethylene, medium density polyethylene,
  • the metal organic compound filler to be added includes, but is not limited to, any one or more of the following: an alkyl metal compound filler such as methyl mercury, tetraethyl lead, tributyltin, tricarbonyl cyclopentadiene a manganese metal, a metal ruthenium or the like; an aromatic metal compound filler, such as phenylmercury, triphenyltin, metal furan, metal naphthalene, etc.; wherein the metal organic compound filler, which may be a compound molecule or a compound crystal .
  • an alkyl metal compound filler such as methyl mercury, tetraethyl lead, tributyltin, tricarbonyl cyclopentadiene a manganese metal, a metal ruthenium or the like
  • an aromatic metal compound filler such as phenylmercury, triphenyltin, metal furan, metal naphthalene, etc.
  • the type of filler to be added is not limited, and is mainly determined according to the required material properties, and preferably calcium carbonate, barium sulfate, talc, carbon black, graphene, glass microbeads, (hollow) glass microbeads, and foamed microspheres.
  • glass fiber carbon fiber, natural rubber, chitosan, starch, protein, polyethylene, polypropylene, polyvinyl chloride, ethylene-vinyl acetate copolymer, isoprene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber , neoprene, butyl rubber, ethylene propylene rubber, silicone rubber, thermoplastic elastomer, polyamide fiber, polycarbonate fiber, polyester fiber, polyacrylonitrile fiber; the amount of filler used is not particularly limited, generally 1- 30wt.%.
  • the amount of the raw materials of the dynamic polymer components is not particularly limited, and those skilled in the art can adjust according to the actual preparation conditions and the properties of the target polymer.
  • the dynamic polymer properties are widely adjustable and can be applied to various fields, and have broad application prospects in military aerospace equipment, functional coatings and coatings, biomedicine, biomedical materials, energy, construction, bionics, smart materials. In other fields, it has shown impressive results.
  • dynamic polymers by utilizing the dilatancy of dynamic polymers, it can be applied to oil well production, fuel explosion protection, etc. It can also be applied to the production of damping shock absorbers for various motor vehicles, mechanical equipment, bridges.
  • the polymer material can dissipate a large amount of energy to dampen the vibration when it is subjected to vibration, thereby effectively alleviating the vibration of the vibrating body.
  • the stress responsiveness of the dynamic polymer can also be utilized as a suction.
  • the dynamic reversibility and stress rate dependence of dynamic polymers produce stress-sensitive polymer materials, some of which can be used to prepare toys and fitness materials with magical effects of fluidity and elastic conversion, and can also be used to prepare roads. And the speed lock of the bridge.
  • a self-healing adhesive for use in the bonding of various materials, and also to prepare polymers with good plasticity and recoverable properties.
  • Sealing glue Based on the dynamic reversibility of the organoborate silicon carboxylate bond, it is possible to design a scratch-resistant coating with self-repairing function, thereby prolonging the service life of the coating and achieving long-lasting corrosion protection of the base material;
  • formula design can prepare polymer gasket or polymer sheet with self-repairing function, which can imitate the principle of healing of biological damage, enabling the material to self-heal the internal or external damage, eliminating hidden dangers and prolonging the material.
  • the service life has shown great application potential in the fields of military industry, aerospace, electronics and bionics.
  • the organoborate silicon ester bond when used as a sacrificial bond, it can impart excellent toughness to the polymer material by absorbing a large amount of energy under an external force, thereby obtaining a polymer film and fiber having excellent toughness.
  • Or plate widely used in military, aerospace, sports, energy, construction and other fields.
  • organoboron compound (a) (using AIBN as initiator and triethylamine as catalyst), using thiol-ene click reaction with vinyl boronic acid, dibutyl vinyl borate and 1,6-hexanedithiol
  • the solution was dissolved in tetrahydrofuran solvent to prepare a solution of 0.8 mol/L; 40 ml of a tetrahydrofuran solution in which an organoboron compound was dissolved was poured into a dry and clean flask, 4 ml of deionized water was added, and a little acetic acid was added dropwise to mix well.
  • the elastic modulus G'max and the minimum elastic modulus G'min were tested, wherein the test temperature was 25 ° C, the test frequency ranged from 0.1 to 100 rad / s, and the maximum elastic modulus G' max of the polymer fluid was measured to be 8.91. ⁇ 10 3 Pa, the minimum elastic modulus G' min is 7.13 Pa, and the dynamic polymer imparts a "shear thickening" effect to the polymer fluid.
  • the polymer can be applied to the explosion-proof of a flammable liquid. After the polymer is added to the liquid, the flammable liquid is less likely to cause splashing due to an increase in viscosity during agitation, thereby increasing safety. It can also be applied to oil recovery engineering to increase the viscosity of the displacement phase in the oil displacement process, thereby improving oil recovery.
  • phenylboronic acid-terminated polyethylene glycol using polyethylene glycol 400, 2-bromopropionyl bromide as raw material and triethylamine as catalyst
  • dibromo-terminated polyethylene glycol in a dry and clean three-necked flask. Then it is hydrolyzed with 2-aminomethylbenzeneboronic acid to obtain the final product), heated to 80 ° C, a small amount of deionized water and acetic acid are added dropwise, and then 42 ml of methoxy is added dropwise with stirring.
  • Silane-modified silicone oil (made of dimethylvinylmethoxysilane, terminal hydrogen-based silicone oil having a viscosity of about 2000 mPa ⁇ s as a raw material, and hydrosilylation under Pt catalytic conditions), under heating After stirring for 30 minutes, the components were thoroughly mixed uniformly, 2 ml of triethylamine was added, and the reaction was continued for 2 hours to obtain a polymer fluid having a certain viscosity.
  • the apparent viscosity of the polymer fluid was tested using a rotational viscometer with a test temperature of 25 ° C, a shear rate constant of 0.1 s -1 , and an apparent viscosity of the polymer fluid of 22,680 mPa ⁇ s.
  • the dynamic polymer fluid of this structure exhibits distinct dynamic properties and "shear thickening" which can be applied to textiles or foams to make impact resistant articles, for example as sportswear or as sportswear. The mat is used.
  • borate-terminated polyether diisopropyl (bromomethyl)borate and polyetheramine with a molecular weight of about 2000 by hydrocarbylation
  • borate-terminated polyether diisopropyl (bromomethyl)borate and polyetheramine with a molecular weight of about 2000 by hydrocarbylation
  • the apparent viscosity of the polymer fluid was tested using a rotational viscometer with a test temperature of 25 ° C, a shear rate constant of 0.1 s -1 , and an apparent viscosity of the polymer fluid of 51,400 mPa ⁇ s.
  • Another beaker was taken, and 80 ml of deionized water, 0.8 g of sodium dodecylbenzenesulfonate, 0.4 g of hydroxyethylcellulose, 0.2 g of stearic acid and 0.2 g of oleic acid were added thereto, and the mixture was uniformly mixed by stirring.
  • 30 ml of polymer fluid was poured into a beaker, and the mixture was stirred rapidly.
  • a milky white liquid having a certain viscosity was obtained, and 0.2 g of previously ground titanium white powder, ultramarine blue, and soft carbon black mixed powder was added thereto.
  • a viscous sample having a certain viscosity is obtained, and the polymer sample is poured into a suitable mold, and placed in an oven at 80 ° C under vacuum for 4-6 hours, and then cooled to room temperature for 30 minutes to finally obtain a gel.
  • the polymer sample can be stretched over a wide range at a slower stretching rate to produce creep; however, if it is stretched quickly, it exhibits elastic characteristics and can be quickly restored after being pressed with a finger.
  • dumbbell-shaped spline 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm size, and subjected to a tensile test using a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 0.67 ⁇ 0.14 MPa.
  • the tensile modulus is 0.79 ⁇ 0.39MPa, and the elongation at break can reach 1003 ⁇ 312%.
  • This material can be made into a plasticine-like toy with different colors and magical elasticity.
  • silicic acid borate compound (a) (using methyl lithium, vinyl lithium and trimethyl borate to prepare methyl vinyl boric acid; using methyl vinyl boric acid, mercapto succinic acid as raw material, After the intermediate product is obtained by a thiol-ene click reaction at 80 ° C, it is obtained by condensation reaction with aminoethylaminoisobutyldimethylmethoxysilane at 50 ° C), 0.01 mol of 4-aminobutyric acid.
  • the reaction mixture was subjected to suction filtration to remove the solvent to obtain the crude product, which was eluted with n-hexane/dichloromethane (3:1) and dried to give the final product.
  • the product is dissolved in tetrahydrofuran, and a certain amount of methanol is added to obtain a gel with mechanical sensitivity, which can be applied to a damping material.
  • the organoboron compound (a) (using 1-hydroxyborocyclopropene as a raw material, and reacting it with hydrobromic acid to obtain 2-bromo-1-hydroxyborane; and 1,3,5- Triacryloylhexahydro-1,3,5-triazine, 2-aminoethanethiol is used as raw material, AIBN is used as initiator, triethylamine is used as catalyst, and intermediate product is obtained by thiol-ene click reaction, and then with 2 -Bromo-1-hydroxyborane is prepared by a hydrocarbylation reaction) dissolved in a tetrahydrofuran solvent and configured to a 0.4 mol/L solution; a certain amount of a silicon-containing compound (b) is obtained (1-chloro-1-methyl)
  • the base-silacyclo-3-ene is used as a raw material, and is reacted with hydrobromic acid to obtain 3-bromo-1-chloro-1-methyl-silacyclopent
  • the resulting polymer sample is gelatinous and has a certain elasticity. Extend within a certain range. It was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm size, and subjected to a tensile test using a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 1.28 ⁇ 0.52 MPa. The tensile modulus was 1.79 ⁇ 0.89 MPa, and the elongation at break was 392 ⁇ 73%.
  • the obtained product also has good plasticity, can be placed in different shapes of the mold according to actual needs, and a certain degree of stress is applied under a certain temperature condition, and the polymer product of different shapes can be formed according to the mold.
  • the cross section is pasted (in this process, the cross section may be slightly wetted), and a certain pressure is placed in a mold at 50 ° C. 6- At 8h, the crack at the sample fit disappeared, and the polymer can be re-formed into a gasket material to reflect the self-healing and recyclability of the polymer material.
  • the solvent was removed in a vacuum oven for 24 hours, and then cooled to room temperature for 30 minutes to finally obtain a blocky hard polymer sample having a certain strength and rigidity but poor toughness and ductility. It was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm, and tensile test was performed by a tensile tester at a tensile rate of 10 mm/min, and the tensile strength of the sample was measured to be 2.12 ⁇ 0.34 MPa.
  • the tensile modulus is 3.97 ⁇ 1.12 MPa, which is crushed and placed in a mold at 80 ° C for 12 h to be reshaped, and the recyclable property thereof can be used as a substitute for glass products.
  • silane-modified polycaprolactam (a) was added to a three-necked flask (with acryloyl chloride as initiator and NaOH as a catalyst to initiate ring-opening polymerization of caprolactam to olefin monocapped polycaprolactam, which was then combined with hydrazine methyltriethoxylate.
  • the base silane uses AIBN as the initiator, triethylamine as the catalyst, and the final product by the thiol-ene click reaction, and 1.53 g of the organoboron compound (b) (the dipropenyl borohydride and 1,3,5- Triazine-2,4,6-trithiol with AIBN as initiator, triethylamine as catalyst, by thiol-ene click reaction), 100ml DMF solvent, heated to 80 ° C for stirring and dissolution, then add 10ml Deionized water, add a little acetic acid dropwise, continue to stir and mix for 30 min, add 4 ml of triethylamine, continue to stir the reaction at 80 ° C for 3 h, the viscosity of the solution increases during the reaction, until the reaction is completed, a certain viscosity is obtained.
  • organoboron compound (b) the dipropenyl borohydride and 1,3,5- Triazine-2,4,6-trithiol
  • Consistent polymer fluid Using a rotational rheometer maximum elastic modulus G polymer fluid 'max and the minimum elastic modulus G' min test, wherein the test temperature is 25 °C, the test frequency range of 0.1 ⁇ 100rad / s, measured polymer flow
  • the maximum elastic modulus G' max of the body is 4.49 ⁇ 10 4 Pa
  • the minimum elastic modulus G′ min is 23.24 Pa.
  • the dynamic polymer has dilatancy, and its viscosity increases under the action of shear stress, and the modulus increases. This polymer is applied to oil well production or applied to the surface of the substrate for the preparation of energy absorbing materials.
  • the present embodiment can be used as a super hot melt adhesive or a room temperature self-adhesive material, and can be repaired by heating when a defect occurs on the surface thereof, and can be dissociated by a silicon borate bond.
  • Non-crosslinkable branched polymer is recovered.
  • organoboron compound (a) and organoboron compound (c) trimethylolpropane tris(3-mercaptopropionate), diisopropyl propylene borate as raw material, AIBN as initiator , triethylamine as a catalyst, obtained by a thiol-ene click reaction) dissolved in a tetrahydrofuran solvent, configured to a solution of 0.3 mol / L; weigh a certain amount of a mixture of the silicon-containing compound (b) and the silicon-containing compound (d) (According to trimethylolpropane tris(3-mercaptopropionate), methacryl dichlorosilane as raw material, AIBN as initiator, triethylamine as catalyst, prepared by thiol-ene click reaction) dissolved in tetrahydrofuran In the solvent, a solution of 0.3 mol/L was placed.
  • the reaction was carried out under light irradiation for 10 min, and then the reaction solution was poured into a suitable mold, placed in a vacuum oven at 60 ° C for 24 h for further reaction and drying, and then cooled to room temperature for 30 min. Finally, a sample of agar-like polymer is obtained.
  • the sample has a certain elasticity and toughness, and can be stretched within a certain range, and can be quickly rebounded by pressing it with a finger.
  • the obtained product also has good plasticity, can be placed in different shapes of the mold according to actual needs, and a certain degree of stress is applied under a certain temperature condition, and the polymer product of different shapes can be formed according to the mold.
  • the polymer can be made into a resilient gasket and a resilient gasket for use.
  • silane-modified polycaprolactone (with allyl alcohol)
  • stannous octoate is used as a catalyst to initiate ring-opening polymerization of ⁇ -caprolactone to obtain olefin monocapped polycaprolactone, which is then acrylated to obtain olefin double-capped polycaprolactone, and then ⁇ - ⁇ propyltrimethoxysilane with AIBN as initiator and triethylamine as catalyst, the final product was obtained by thiol-ene click reaction.
  • the obtained dynamic polymer emulsion can be used as a building exterior wall coating, or can be made into a latex film with excellent adhesion, scrub resistance, solvent resistance and water resistance, or can be made into a functional fabric finishing. It can also be used as a soft finishing agent for leather.
  • the boric acid-terminated tri-arm polysiloxane (a) (using 3-bromo-4-(bromomethyl)benzaldehyde as a raw material, and methyltriphenylphosphonium bromide, potassium t-butoxide at room temperature The reaction was carried out for 24 h, and then heated to 100 ° C for 24 h in a water/dioxane mixed solvent, and then reacted with tert-butyldimethylsilyl chloride and imidazole in DMF solvent for 20 h, and then reacted with methanol and methoxy.
  • Methyl chloride was reacted in tetrahydrofuran solvent for 4 h, then Mg was used as a catalyst, heated to 60 ° C for 3 h, then added tributyl borate at room temperature for 8 h, and purified to obtain 2-(hydroxymethyl)phenylboronic acid cyclic monoester ethylene.
  • octamethylcyclotetrasiloxane phenyltris(dimethylsiloxane)silane as raw material, concentrated sulfuric acid as catalyst, synthesizing trifunctional hydrogen polysiloxane by ring-opening polymerization, and then And 2-(hydroxymethyl)phenylboronic acid cyclic monoester ethylene obtained by a hydrosilylation reaction under Pt catalysis) dissolved in a tetrahydrofuran solvent, configured as a 0.2 mol/L solution, and 20 ml of the sample is added thereto.
  • silane-terminated three-arm Propylene oxide (b) (using glycerol, propylene oxide as raw material, boron trifluoride etherate as catalyst, synthesizing hydroxyl-terminated three-arm polypropylene oxide by cationic ring-opening polymerization, and then esterifying it with acrylic acid
  • b silane-terminated three-arm Propylene oxide
  • the reaction is obtained by dissolving the three-armed polypropylene oxide triacrylate and then reacting it with 1,2-ethanedithiol and dimethylvinylchlorosilane by thiol-ene, and dissolving in tetrahydrofuran solvent.
  • silane-terminated tri-arm polysiloxane (c) (with octamethylcyclotetrasiloxane, phenyl tris(dimethylsilane) Oxyalkyl)silane is used as raw material, concentrated sulfuric acid is used as catalyst, and tri-terminated hydrogen polysiloxane is synthesized by ring-opening polymerization, and then reacted with dimethylvinylchlorosilane under Pt catalysis by hydrosilylation reaction.
  • the dumbbell-shaped spline was cut into 80.0 ⁇ 10.0 ⁇ (0.08 ⁇ 0.02) mm, and the tensile test was performed by a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 2.14 ⁇ 0.35 MPa.
  • the tensile modulus was 2.83 ⁇ 1.34 MPa, and the elongation at break was 673 ⁇ 121%.
  • QB/T 1130-91 plastic right angle tear test method a straight angle non-cut type standard sample was taken to test the film tear performance.
  • the transverse tear strength of the sample was 4.72 ⁇ 0.38 MPa and the longitudinal tear strength was 4.93. ⁇ 0.52 MPa.
  • the polymer film exhibits superior overall properties, has a certain tensile strength and good tear resistance, and can be stretched to a greater extent. After the polymer film was cut, the cross-section was placed in a mold at 50 ° C for 2-4 h, and the crack at the cross section disappeared, and the sample was re-formed to have a self-repairing function.
  • Such dynamic polymers can be used to make functional films, or can be used as films for automobiles and furniture, or as stretch wrap films, which are scratch resistant and can be recycled and reused.
  • organoborate-terminated tetra-arm ester compound (a) to a three-necked flask (p-isopropenylboronic acid pinacol ester and pentaerythritol tetrakis-mercaptopropionate with AIBN as initiator, triethyl)
  • the amine is a catalyst prepared by a thiol-ene click reaction, heated to 120 ° C under stirring, 5 mg of BHT antioxidant is added, and then 13.12 g of a boric acid-terminated four-arm compound (b) is weighed (using a 2-formyl group) Phenylboronic acid, ammonia as raw material, toluene as solvent, 2-aminomethylbenzeneboronic acid synthesized by Petasis reaction, and then obtained by hydrocarbylation reaction with tetrabromopentanol) were added to a three-necked flask and stirred to make it Mix well; then take 29
  • the mixture After 1 h, the mixture has a certain viscosity. At this time, 1 g of titanium alloy powder, 1 g of ceramic powder, 2 g of calcium sulfate are added, and after stirring uniformly, the reaction is continued at 120 ° C for 2 h to obtain a viscous polymer sample, which is poured. Into the appropriate mold, and placed in a vacuum oven at 100 ° C for 4-6h for further reaction, then cooled to room temperature for 30min. Finally, a blocky, hard, polymer sample with a certain gloss on the surface is obtained.
  • the polymer sample has a smooth surface with a certain strength and rigidity. After being crushed and placed in a mold at 100 ° C for 6-8 hours, the sample can be re-formed. Polymer materials can be used in orthopedic treatment as orthopedic correction products and equipment.
  • dendritic organoboron compound (a) (using DMPA as a photoinitiator, ultraviolet light as a light source, and reacting vinyl boronic acid with 1,2-ethanedithiol by thiol-ene click reaction to obtain mercaptoboronic acid; DMPA is used as photoinitiator and ultraviolet light is used as the light source.
  • the first intermediate product is obtained by the thiol-ene click reaction of triallylamine and 1,2-ethanedithiol, and then continues to pass through the thiol with triallylamine.
  • the polymer sample was poured into a suitable mold, and the sample was placed in an oven at 50 ° C for 24 hours to remove the solvent, and then cooled to room temperature for 30 minutes to finally obtain a transparent film-like polymer sample.
  • the dumbbell-shaped spline was cut into 80.0 ⁇ 10.0 ⁇ (0.08 ⁇ 0.02) mm, and the tensile test was performed by a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 2.65 ⁇ 0.45 MPa.
  • the tensile modulus was 4.23 ⁇ 0.94 MPa, and the elongation at break was 864 ⁇ 157%.
  • a certain amount of acrylic acid-organic boric acid copolymer (a) (using 2-formylbenzeneboronic acid, allylamine as raw material, toluene as solvent, synthesizing 2-(allylamine)methylphenylboronic acid by Petasis reaction, and then reacting with acrylic acid
  • the solution obtained by free radical copolymerization under AIBN initiation conditions was dissolved in deionized water to prepare a 0.4 mol/L solution, and 40 ml of the solution was added to a dry clean beaker for use.
  • the viscosity of the mixture solution increased continuously.
  • 3.2 g of Fe 3 O 4 particles surface-modified with silane coupling agent A151 and 1.5 g of hydroxyethyl cellulose were added, and the mixture was ultrasonicated for 1 min.
  • the Fe 3 O 4 particles are uniformly dispersed therein, and then the liquid is continuously stirred and reacted under heating.
  • the mixture was poured into a suitable mold, placed in an oven at 50 ° C for 24 hours for drying and further reaction, and finally a magnetic dynamic polymer gel in which Fe 3 O 4 particles were dispersed was obtained.
  • the polymer gel can be reshaped, and the polymer gel also exhibits excellent tensile toughness.
  • the prepared magnetic gel can exhibit various deformations such as elongation, contraction or bending under the action of a magnetic field, and the excellent toughness of the gel itself makes the network structure of the gel in the process. It will not be damaged.
  • Dynamic polymer gels are widely used in targeted drug release, cell separation and labeling, protein adsorption and separation due to their unique flexibility and permeability.
  • organoboric acid-silane-modified silicone oil (a) was added to a three-necked flask (methyl sulfonyl silicone oil having a molecular weight of about 60,000, dimethyl vinyl borate, methyl vinyl diethoxysilane as a raw material, and DMPA as a raw material).
  • the photoinitiator is prepared by thiol-ene click reaction under ultraviolet light irradiation, and after heating to 80 ° C to be uniformly mixed, 4 ml of deionized water is added, a small amount of acetic acid is added dropwise, and polymerization is carried out under stirring. During the polymerization process, the viscosity of the silicone oil is continuously increased.
  • a polymer liquid having a large viscosity can be obtained, poured into a suitable mold, placed in a vacuum oven at 80 ° C for 4 hours, and then cooled. After standing at room temperature for 30 min, a transparent polymer sample having a soft surface and a large viscosity was finally obtained.
  • the surface strength of the polymer material is low and amorphous. Under the action of external force, the material is easy to stretch and exhibits good tensile toughness, and can be stretched to a large extent without breaking (elongation at break exceeds 2000). %). When defects appear on the surface, it is heated in a vacuum oven at 60 ° C for 2-4 h, and the defects disappear.
  • the dynamic bond in the dynamic polymer is particularly resistant to hydrolysis and can remain transparent for a long period of time.
  • the polymer can be used as a super hot melt adhesive or a room temperature self-adhesive material with self-healing properties, and can also be used as a speed.
  • the media of the locker is used for bridge and road construction.
  • phenylboronic acid copolymerized modified isoprene rubber (a) (with AIBN as initiator, isoprene and 3-vinylbenzeneboronic acid by free radical copolymerization), 4g of silane-modified polysilsesquioxane (b) (Polypropyltriethoxysilane is used as a raw material, ferric chloride and HCl are used as catalysts, hydrolyzed and condensed to obtain a mercapto-modified polysilsesquioxane, and then combined with methylvinyldichlorosilane.
  • vinyl cyclopropane using DMPA as a photoinitiator, obtained by thiol-ene click reaction under ultraviolet light irradiation) adding to a small internal mixer for 20 minutes, adding 5 g of white carbon black and 6 g of titanium dioxide 0.05 g of barium stearate and 0.15 g of stearic acid were further mixed for 20 min. After the additive and the rubber compound are thoroughly mixed, the kneaded material is taken out for cooling, placed in a double roll machine and pressed into a sheet, and cooled at room temperature to cut pieces.
  • the prepared polymer sheet was immersed in water at 90 ° C for crosslinking, and then taken out, placed in a vacuum oven at 80 ° C for 6 h for further reaction and drying, and then cooled to room temperature for 30 min, and the sample was taken out from the mold to finally obtain
  • the rubbery dynamic polymer material has good plasticity, can be prepared into different shapes according to the size of the mold, and can be stretched and stretched in a wide range, showing excellent tensile toughness.
  • maleic anhydride is grafted on the surface of the cluster, and then 3-aminopropylmethyldimethoxysilane is added to obtain the final product by amidation reaction.
  • 3.12 g of phenylborate-silane-modified ethylene-propylene rubber (Using low molecular weight ethylene-propylene rubber as raw material, using dibenzoyl peroxide as a crosslinking agent to form a small cluster structure, then grafting maleic anhydride on the surface of the cluster, and then adding 4-aminobenzeneboronic acid Pinacol ester, 3-aminopropylmethyldimethoxysilane After the amidation reaction to obtain the final product), slowly added to the beaker under stirring, heated to 80 ° C and stirred for 30 min, then added 1.0 mg of BHT antioxidant, 2 ml of triethylamine, and continued to stir at 80 ° C.
  • a viscous polymer liquid was obtained, which was placed in a suitable mold, placed in a vacuum oven at 80 ° C for 24 h to remove the solvent, then cooled to room temperature for 30 min, and the sample was taken out from the mold to finally obtain a rubbery shape.
  • Dynamic polymer It was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm, and tensile test was performed by a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 3.53 ⁇ 0.69 MPa.
  • the tensile modulus is 4.38 ⁇ 1.34 MPa, and the elongation at break can reach 947 ⁇ 274%.
  • the polymer sample not only exhibits a certain strength, but also exhibits excellent toughness. It can be used as a sealing strip, sealing ring or elastic cushioning pad; the material shows good adhesion during use. It has good elasticity, good vibration and stress buffering effect, and also shows excellent hydrolysis resistance. When the surface is damaged, the healing of the damaged portion can be achieved by heating to re-form, and the self-repair and recycling of the material can be realized.
  • borate-modified polybutadiene (a) in a dry and clean beaker (using terminal amino 1,3-polybutadiene, (bromomethyl)borate diisopropyl ester as raw material , obtained by hydrocarbylation reaction, 2.4 g of silica having a silanol group on the surface, and then adding 40 ml of a benzene solvent thereto, and uniformly mixing by stirring at 50 ° C, and then adding 16 mg of dodecylbenzenesulfonate.
  • the tensile modulus was 2.74 ⁇ 0.82 MPa, and the elongation at break was 502 ⁇ 149%.
  • the pulled polymer sample was recovered and placed in a mold at 80 ° C for 4-8 h to be reshaped.
  • the polymer sample can be used as a sealant or a recyclable elastic ball toy, which can exhibit good toughness and elasticity, and can be pressed into products of different shapes and sizes according to needs. Samples that are damaged or no longer needed can be recycled for use in new products.
  • boric acid-modified polystyrene (with AIBN as initiator, prepared by free-radical copolymerization with styrene and 4-vinylbenzeneboronic acid) into a dry clean beaker, and pour 80 ml of toluene into it. After the solvent was heated to 50 ° C and dissolved by stirring, 1.5 g of glass microfibers with silanol groups on the surface were added to the beaker, and 6 mg of silane coupling agent KH550 and 6 mg of sodium dodecylbenzenesulfonate were added to continue stirring. After 30 min, 4 mg of hydroxypropylcellulose was added, and the reaction was heated to 80 ° C for 3 h.
  • the mixture was placed in a suitable mold and dried in a vacuum oven at 50 ° C for 24 h to finally obtain a bulk polymerization in which glass microfibers were dispersed.
  • the sample has high surface hardness and certain mechanical strength. The texture is hard, the elasticity and toughness are poor. After hammering and crushing with a hammer, it is observed that the glass microfibers in the matrix are tightly combined with the matrix.
  • the crushed material was placed in a mold and heated to 180 ° C, and molded under a pressure of 5 MPa for 5 min, which was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm, and subjected to a tensile test using a tensile tester.
  • the tensile rate is 10mm/min
  • the tensile strength of the sample is 4.24 ⁇ 1.73MPa
  • the tensile modulus is 9.12 ⁇ 3.08MPa
  • the chemical resistance is good.
  • the obtained polymer material can be used as the glass.
  • Product substitutes, rigid packaging boxes, decorative panels are used.
  • a silicon borate polymer (a) (using benzoyl peroxide as an initiator, radically polymerizing propylene and diisopropyl propylene borate at 80 ° C to obtain an intermediate product, Dissolved with hydrazine methyl dimethyl ethoxysilane in a tetrahydrofuran / water mixed solvent, using triethylamine as a catalyst, transesterification at 80 ° C to obtain the final product), 3.92 g of a silicon borate compound ( b) (using methyl lithium, vinyl lithium and trimethyl borate to prepare methyl vinyl boric acid; methyl vinyl boric acid, 5-hexenyldimethylchlorosilane as raw material, chloroform / water mixture As solvent, triethylamine is used as catalyst, condensation reaction is carried out at 50 ° C), 0.2 g of plasticizer DOP, 0.05 g of dimethicone is added to a dry and clean three-necke
  • the mixture was uniformly mixed, and 0.04 g of AIBN, 0.5 g of triethylamine was added, and the reaction was carried out under nitrogen atmosphere at 100 ° C for 4 h. After the reaction was completed, it was poured into a suitable mold, and the reaction was carried out in a vacuum oven at 80 ° C under vacuum for 4-6 hours, and then cooled to room temperature for 30 minutes to finally obtain a hard gelatinous polymer sample.
  • the polymer sample has a certain strength and compressibility and can be stretched within a certain range.
  • dumbbell-shaped spline 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm size, and subjected to a tensile test using a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 3.84 ⁇ 0.88 MPa.
  • the tensile modulus was 6.03 ⁇ 1.42 MPa, and the elongation at break was 473 ⁇ 46%.
  • the sample after the breaking is applied with stress at the section (in this process, the section can be slightly wetted), and the section can be re-bonded after being heated in a mold of 80 ° C for 6-8 hours, which has self-repairing properties and can also be shaped according to different shapes.
  • the mold reshapes the material.
  • the material can be used as a stress-carrying material in a fine mold, and has the function of carrying stress, and has certain deformability, and plays a buffering role. When cracks or breakage occur, it can also be repaired by heating.
  • phenylborate-silane-modified polybutadiene epoxy resin (a) (based on polybutadiene epoxy resin with a molecular weight of about 2000, which is separately mixed with 4-aminobenzeneboronic acid
  • the alcohol ester and methylaminopropyl dimethyl methoxysilane were prepared by ring opening reaction of epoxy group), added to a three-necked flask, heated to 80 ° C, and incubated with nitrogen for 1 h, then 0.5 g of triethylamine was added.
  • the polymer can be used as an electronic packaging material or an adhesive, which can be recycled and reused during use, and the polymer sample has a long service life.
  • organoboric acid modified silicone rubber using methyl mercapto silicone rubber, vinyl boric acid as raw material, DMPA as photoinitiator, by thiol-ene click reaction under ultraviolet light irradiation
  • 10g dimethoxy Silane-modified silicone rubber using methyl vinyl silicone rubber, ⁇ -mercaptopropyl methyldimethoxysilane as raw material, DMPA as photoinitiator, under thiol-ene click reaction under ultraviolet light irradiation
  • 2g, 2g methyl silicone rubber particles were added to a small internal mixer for 20min, after adding 10g silica, 12g titanium dioxide, 1.75g ferric oxide, 0.035g silicone oil, continue to mix for 30min, so that additives and glue The material was thoroughly mixed well, and then the rubber was taken out, placed in a twin roll machine and pressed into a sheet, and cooled at room temperature to cut pieces.
  • the prepared polymer sheet was immersed in water at 90 ° C for crosslinking, and then taken out, placed in a vacuum oven at 80 ° C for 6 h for further reaction and drying, and then cooled to room temperature for 30 min, and the sample was taken out from the mold to finally obtain Soft rubbery dynamic sealant. It was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm size, and subjected to a tensile test using a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 2.33 ⁇ 0.27 MPa.
  • the tensile modulus was 3.04 ⁇ 0.52 MPa, and the elongation at break was 843 ⁇ 264%.
  • the polymer sample not only exhibits very good tensile toughness, but also has good plasticity and resilience. It can be prepared into different shapes according to the size of the mold. After pressing the surface, the depression can quickly recover when the surface appears. When it is damaged, it can be reshaped by heating to achieve recycling.
  • the obtained silicone rubber product can be made into various types of seals, or can be used for railway traffic by making rubber sleeper pad fittings by using the good shock absorption and insulation properties.
  • acrylamide-boric acid copolymer (a) was weighed in a dry and clean beaker (3-(allylamino)propane was prepared by hydrocarbylation using 3-bromopropylboronic acid and allylamine as raw materials. After the boric acid, it is combined with N,N-dimethylacryloyl The amine is subjected to free radical polymerization using AIBN as an initiator to obtain a final product, and 40 ml of deionized water is added thereto, and the mixture is continuously stirred and dissolved at 50 ° C. After the dissolution is completed, a small amount of 1 mol/L is added dropwise thereto.
  • acrylamide-silane copolymer (b) (using 2-acrylic acid-3-(diethoxymethylsilyl)propyl ester as raw material, AIBN as initiator, and N with N N-dimethyl acrylamide is prepared by radical polymerization, and is slowly added to the acrylamide-boric acid copolymer solution. In the process, it is dissolved and mixed by continuous stirring. After the dissolution is completed, 1.08 g of graphene is sequentially added.
  • the pulled polymer sample can be recovered and placed in a mold at 80 ° C for 6-8 hours to reshape.
  • the polymer sample can be made into a graphene composite dynamic polymer thermal conductive gasket, which can be pressed into products of different shape and size according to requirements, and damaged or no longer needed samples. It can be recycled and made into new products.
  • boric acid modified polynorbornene (a) (using vinyl boronic acid and cyclopentadiene as raw materials, the boric acid modified norbornene is obtained by Diels-Alder reaction, and then it is combined with norbornene.
  • the metallocene catalyst/methylaluminoxane is a catalytic system obtained by addition polymerization, and is dissolved in o-dichlorobenzene solvent to prepare a solution of 0.8 mol/L, and 50 ml of the solution is added to a dry and clean flask. A small amount of deionized water and acetic acid were added dropwise and stirred for use.
  • silane-modified polynorbornene (b) (using methylvinyldiethoxysilane and cyclopentadiene as raw materials, silane-modified norbornene is obtained by Diels-Alder reaction, and then It is prepared by adding and reacting norbornene with a metallocene catalyst/methylaluminoxane as a catalytic system by addition polymerization to prepare a solution of 0.8 mol/L in o-dichlorobenzene solvent, and slowly adding 50 ml therefrom.
  • the solution was heated in a water bath of 80 ° C throughout the addition process, and the mixture was uniformly mixed by continuous stirring. After the addition of the solution was completed, stirring was continued for 30 min, then 4 ml of triethylamine was added, and the mixture was heated to 100 ° C and stirred for 3 hours to obtain a dynamic polymer solution.
  • the needle tube with the dynamic polymer solution is used as the positive electrode, the circular aluminum plate is used as the negative electrode, the distance between the electric fields is adjusted, the voltage is applied, and the droplets of the needle are changed from spherical to spindle shape to form a jet.
  • the prepared polynorbornene fiber can be used for making human organs, electronic packaging materials or resist materials of silicon integrated circuits, and has great application prospects in nano tubes, optical fibers and integrated circuits.
  • a dynamic polymer sample having flame retardancy It was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm, and tensile test was performed by a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 5.98 ⁇ 1.23 MPa.
  • the tensile modulus is 9.51 ⁇ 2.13 MPa, and the elongation at break is 147 ⁇ 36%.
  • the sample has certain mechanical properties and good flame retardancy.
  • the prepared samples also have good plasticity, and can be molded into polymer products of different appearances according to different shapes of the mold.
  • the polymer sample can be used as a flame-retardant sheet and can be recycled and reused.
  • the obtained products also have good plasticity, and can be molded into polymer products of different appearances according to different shapes of the mold.
  • the polymer sample can be made into a bend resistant hose material, and after it is broken, it can be recycled and reused.
  • AIBN is an initiator, which is obtained by radical polymerization, dissolved in a toluene solvent to prepare a 0.05 mol/L solution; 20 ml of each of two organic boron compound solutions is added to a dry and clean beaker, and 4 ml of deionized is added.
  • the polymer sample can be made into a sealant or a recyclable elastic pellet, which can exhibit good toughness and elasticity, and can be pressed into products of different shapes and sizes according to needs, and is damaged. Samples that are no longer needed can be recycled for use in new products.
  • phenylborate modified polybutadiene (a) (using DMPA as photoinitiator, ultraviolet light as light source, 4-mercaptophenylboronic acid pinacol ester and terminal amine polybutadiene through thiol-ene Click reaction to obtain) 20g silane-modified polybutadiene (b) (using DMPA as photoinitiator and ultraviolet light as light source, passing ⁇ methylmethyldiethoxysilane and terminal amine polybutadiene After thiol-ene click reaction, the mixture is heated to 80 ° C and mixed uniformly.
  • the obtained polyurethane foam has good thermal insulation properties, and has the advantages of low density, high specific strength, recyclability, self-repair, etc., and can be applied to the production of recyclable foam filling materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

一种具有动态交联结构的动态聚合物,其在交联网络的聚合物链骨架上和/或聚合物链之间的交联链接骨架上含有有机硼酸硅酯键,其中,所述的有机硼酸硅酯键是形成/维持动态聚合物结构的必要条件。此类动态聚合物结构丰富,性能多样,通过对反应物结构的调控,可制备出不同性质的动态聚合物。此外,由于聚合物中有机硼酸硅酯键所具有的强动态可逆性,使聚合物可体现出刺激响应性、自修复性、可回收性等功能特性;同时,有机硼酸硅酯键的存在,也使聚合物能起到吸能效果,并能在特定结构中对聚合物材料进行增韧。该动态聚合物可用于制作减震缓冲材料、抗冲击防护材料、自修复材料、韧性材料等。

Description

[根据细则37.2由ISA制定的发明名称] 具有动态交联结构的动态聚合物 技术领域
本发明涉及智能聚合物领域,具体涉及一种由动态可逆共价键构成的具有动态交联结构的动态聚合物。
背景技术
动态化学是结合了超分子化学和共价化学中的动态共价化学而发展起来的交叉学科。传统的分子化学关注的是稳定的共价相互作用,而动态化学关注的则是一些相对较弱的非共价相互作用和可逆共价键。在这其中,超分子化学是基于非共价的分子间的相互作用,这些非共价相互作用与传统共价键相比,一般键能较弱,受热力学影响较大,所形成的超分子结构在某种程度上而言并不是一个稳定的体系,容易遭到破坏,对其表征、研究及应用造成了诸多限制。而对于动态共价化学而言,其具有一些类似超分子化学的特征,在适宜的条件下可以发生可逆的共价键“断裂”和“形成”;而相比于超分子化学,由于动态共价化学中的动态共价键的键能大于分子间相互作用力,使得动态共价键具有一定的强度,能够形成较为稳定的分子结构。动态共价键良好地结合了超分子非共价相互作用的可逆性与共价键的稳固性,使得其得到了广泛的应用,在构筑功能分子和材料、开发化学传感器、调控生物分子、控制智能分子开关和机器等方面表现出了重要作用。
动态聚合物则是由动态化学键链接形成的一类新颖的聚合物体系。根据链接动态聚合物的动态化学键的不同,动态聚合物可以分为基于超分子相互作用的物理型动态聚合物和基于动态共价键的共价型动态聚合物。由动态可逆共价键构造的共价型动态聚合物,由于动态可逆共价键所具有的特殊性质,也具有显著的特点。相对于物理型动态聚合物,动态可逆共价聚合物更加稳定,往往也具有更为优良的机械性能;而动态可逆共价键的存在,也保证了聚合物在适宜的条件下能够体现出刺激响应性、自修复性、可回收性、可再加工性等特性。
但是,传统动态聚合物中的化学平衡过程由于涉及共价键的断裂和形成,往往比较缓慢,仍常常需要添加催化剂或外界提供能量来加速平衡过程。此外,某些可逆共价键自身在实际使用过程中也存在着一定缺陷,这些都对动态聚合物的使用环境及应用领域造成了限制。例如,传统的酯交换反应是人们最早应用的可逆交换反应,但是酯交换反应的条件比较苛刻,一般需要在加碱、回流条件下才能完成,同时传统的酯键的动态活性较差,从而对利用酯交换反应构筑的动态聚合物的应用产生了限制;基于呋喃-马来酰亚胺Diels-Alder环加成反应的产物一般需要在高温条件下进行解离反应,并且在有机溶剂中此反应过程进行缓慢;伯胺与醛反应生成的亚胺键,其受酸碱度影响强烈,造成此类亚胺键在通常条件下难以稳定;氨基转移可逆交换反应则需要在特殊蛋白酶的作用下才能进行;基于烷氧氮基的动态可逆键,其解离反应温度往往也要达到100-130℃,同时,烷氧氮基解离生成的碳中心自由基对氧和高温敏感,由此带来的不可逆键合会对材料的性能造成影响;含有三硫代酯基团的动态聚合物则需要在紫外光照射条件下才能发生动态交换反应;动态共价键中的双硫键动态性较好,其可在低温条件下进行交换反应,但硫醇自身稳定性较差,在使用过程中会与周围空气作用产生连续氧化而使得可逆体系中的硫醇含量不断降低,影响材料的使用。诸如此类情况的存在,使得动态可逆共价键本身所具有的特性在通常条件下难以得到充分地体现,需要发展一种新型的动态聚合物,使得体系中的动态可逆共价键能够同时满足可逆反应速度快、反应条件温和、可逆反应可控的条件,以解决现有技术中存在的上述问题。
发明内容
本发明针对上述背景,提供了一种以有机硼酸硅酯键为基础,在交联网络的聚合物链骨 架上和/或聚合物链之间的交联链接骨架上含有有机硼酸硅酯键的具有动态交联结构的动态聚合物。所述的动态聚合物稳定性好,动态可逆性强,可不需要额外加入催化剂和促进剂等外部添加剂,也可无需光照和高温条件,在一般的温和条件下即可具有良好的动态可逆性,并可体现出可塑性、胀流性、自修复性、可回收性、可再加工性以及仿生力学性能等特性。
本发明通过如下技术方案予以实现:
一种具有动态交联结构的动态聚合物,其在交联网络的聚合物链骨架上和/或聚合物链之间的交联链接骨架上含有有机硼酸硅酯键。其中,所述的有机硼酸硅酯键作为动态聚合物的聚合链接点和/或交联链接点而存在,是形成/维持动态聚合物结构的必要条件。
所述的交联网络中含有的有机硼酸硅酯键,其具有如下结构:
Figure PCTCN2017083513-appb-000001
其中,硼原子和硅原子之间至少形成一个硼酸硅酯键(B-O-Si);所述结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
Figure PCTCN2017083513-appb-000002
表示与聚合物链、交联网络链或者其他任意合适的基团/原子的连接,硼原子和硅原子分别通过至少一个所述连接接入交联网络。
在本发明的实施方式中,所述的有机硼酸硅酯键由有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体反应而成。
本发明中所述的有机硼酸基,其指的是由硼原子以及与该硼原子相连的一个羟基所组成的结构基元(B-OH),且其中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。在本发明中,有机硼酸基中的一个羟基(-OH)即为一个官能团。
所述的有机硼酸酯基,指的是由硼原子、与该硼原子相连的一个氧原子和与该氧原子相连的烃基或硅烷基所组成的结构基元(B-OR,其中R为以碳、氢原子为主的烃基或以硅、氢原子为主的硅烷基,其通过碳原子或硅原子与氧原子相连),且其中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。在本发明中,有机硼酸酯基中的一个酯基(-OR)即为一个官能团。
本发明中所述的硅羟基,其指的是由硅原子以及与该硅原子相连的一个羟基所组成的结构基元(Si-OH),其中,硅羟基可为有机硅羟基(即硅羟基中的硅原子至少与一个碳原子通过硅碳键相连,且至少有一个有机基团通过所述硅碳键连接到硅原子上),也可为无机硅羟基(即硅羟基中的硅原子不与有机基团相连接),优选为有机硅羟基。在本发明中,硅羟基中的一个羟基(-OH)即为一个官能团。
本发明中所述的硅羟基前驱体,其指的是由硅原子以及与该硅原子相连的一个可水解得到羟基的基团所组成的结构基元(Si-X),其中,X为可水解得到羟基的基团,其可选自卤素、氰基、氧氰基、硫氰基、烷氧基、氨基、硫酸酯基、硼酸酯基、酰基、酰氧基、酰氨基、醇盐基。在本发明中,硅羟基前驱体中的一个可水解得到羟基的基团(-X)即为一个官能团。
在本发明中所述的动态聚合物,其可通过以下实施方式进行制备:
本发明的第一种制备实施方式,通过至少以下组分参与反应生成有机硼酸硅酯键获得所述的动态聚合物:
至少一种含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I),至少一种含有硅羟基和/或硅羟基前驱体的含硅化合物(II);其中,有机硼化合物(I)和含硅化合物(II)含有两个或两个以上官能团,且至少一种有机硼化合物(I)或至少一种含硅化合物(II)含有三个或三个以上官能团。
本发明的第二种制备实施方式,通过至少以下组分参与反应生成有机硼酸硅酯键和普通共价键获得所述的动态聚合物:
至少一种含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I),至少一种含有硅羟基和/或硅羟基前驱体的含硅化合物(II);其中,有机硼化合物(I)和含硅化合物(II)含有一个或一个以上官能团,且至少一种有机硼化合物(I)或至少一种含硅化合物(II)含有一个或一个以上其他反应性基团。
本发明的第三种制备实施方式,通过至少以下组分参与反应生成有机硼酸硅酯键获得所述的动态聚合物:
至少一种同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III),或者其与至少一种含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I)和/或至少一种含有硅羟基和/或硅羟基前驱体的含硅化合物(II);其中,化合物(III)、有机硼化合物(I)、含硅化合物(II)均含有两个或两个以上官能团,且至少一种化合物(III)或至少一种有机硼化合物(I)或至少一种含硅化合物(II)含有三个或三个以上官能团。
本发明的第四种制备实施方式,通过至少以下组分参与反应生成有机硼酸硅酯键和普通共价键获得所述的动态聚合物:
至少一种同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III),或者其与至少一种含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I)和/或至少一种含有硅羟基和/或硅羟基前驱体的含硅化合物(II);其中,化合物(III)含有两个或两个以上官能团,有机硼化合物(I)、含硅化合物(II)含有一个或一个以上官能团,且至少一种化合物(III)或至少一种有机硼化合物(I)或至少一种含硅化合物(II)含有一个或一个以上其他反应性基团。
在以上所述的制备实施方式中,还可选择性地引入合适量的单官能团的有机硼化合物(I)和/或单官能团的含硅化合物(II)组分,可以通过组分配方的调节,获得所述的动态交联结构。单官能团化合物可以起到调节交联密度、动态性、机械力学强度等作用。
在以上所述的制备实施方式中,其他反应性基团的反应还可以通过引入不含有机硼酸基和/或有机硼酸酯基、硅羟基和/或硅羟基前驱体、有机硼酸硅酯键但含有其他反应性基团的化合物组分来一起实现。仅含有其他反应性基团的化合物可以是任意合适的化合物,其可以达到与有机硼化合物(I)和/或含硅化合物(II)和/或化合物(III)中的其他反应性基团反应获得具有所述“动态交联结构”的动态聚合物的目的。
在以上所述的制备实施方式中,用于制备所述动态聚合物的化合物(III),其可以选自同一种化合物(III),也可以选自不同种化合物(III);当其选自同一种化合物(III)时,其通过分子内和/或分子间的有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前驱体之间的反应获得所述的动态聚合物。
在本发明中所述的其他反应性基团,指的是能够自发地,或者能够在引发剂或光、热、辐照、催化等条件下进行衍生化反应,或者进行聚合/交联反应,生成除有机硼酸硅酯键以外的普通共价键的基团,合适的基团举例如:羟基、酚羟基、羧基、酰基、酰胺基、酰氧基、氨基、醛基、磺酸基、磺酰基、巯基、烯基、炔基、氰基、嗪基、胍基、卤素、异氰酸酯基团、酸酐基团、环氧基团、丙烯酸酯基团、丙烯酰胺基团、马来酰亚胺基团、N-羟基琥珀酰亚胺基团、降冰片烯基团、偶氮基团、叠氮基团、杂环基团等;其他反应性基团优选羟基、羧基、氨基、巯基、烯基、异氰酸酯基团、环氧基团、丙烯酸酯基团、丙烯酰胺基团。
在本发明中所述的含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I),其可以如下结构表示:
Figure PCTCN2017083513-appb-000003
其中,A为含有有机硼酸基和/或有机硼酸酯基的模块;m为模块A的个数,m≥1;L为单个模块A上的取代基团,或者为两个或多个模块A之间的连接基团;p为基团L的个数,p≥1。
所述的含有有机硼酸基的模块A,其可选自以下任一种或任几种结构:
Figure PCTCN2017083513-appb-000004
其中,K1为与硼原子直接相连的基团,其选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;其中,A4中的环状结构为含有至少一个有机硼酸基的非芳香性或芳香性硼杂环基团,硼原子置于环状结构中,环状结构可以是小分子环,也可以是大分子环,其优选为3~100元环,更优选为3~50元环,更优选为3~10元环;A4中的环状结构的成环原子各自独立地为碳原子、硼原子或其他杂原子,且至少一个成环原子为硼原子并构成有机硼酸基,且至少一个成环原子与基团L相连;A4中的环状结构各个成环原子上的氢原子可以被取代,也可以不被取代;A4中的环状结构可以为单环结构、多环结构、螺环结构、稠环结构、桥环结构、嵌套环结构;
Figure PCTCN2017083513-appb-000005
表示与基团L的连接;所述各种结构中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。
所述的含有有机硼酸酯基的模块A,其可选自以下任一种或任几种结构:
Figure PCTCN2017083513-appb-000006
其中,K2为与硼原子直接相连的基团,其选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;R1、R2、R3、R4、R6为与氧原子直接相连的一价有机基团或一价有机硅基团,其通过碳原子或硅原子与氧原子直接相连,其选自以下任一种结构:分子量不超过1000Da的小分子烃基、分子量不超过1000Da的小分子硅烷基、分子量大于1000Da的聚合物链残基;R5为与两个氧原子直接相连的二价有机基团或二价有机硅基团,其通过碳原子或硅原子与氧原子直接相连,其选自以下任一种结构:分子量不超过1000Da的二价小分子烃基、分子量不超过1000Da的二价小分子硅烷基、分子量大于1000Da的二价聚合物链残基;其中,B5中的环状结构为含有至少一个有机硼酸酯基的非芳香性或芳香性硼杂环基团,硼原子置于环状结构中,环状结构可以是小分子环,也可以是大分子环,其优选为3~100元环,更优选为3~50元环,更优选为3~10元环;B5中的环状结构的成环原子各自独立地为碳原子、硼原子或其他杂原子,且至少一个成环原子为硼原子并构成有机硼酸酯基,且至少一个成环原子与基团L相连;B5中的环状结构各个成环原子上的氢原子可以被取代,也可以不被取代;B5中的环状结构可以为单环结构、多环结构、螺环结构、稠环结构、桥环结构、嵌套环结构;
Figure PCTCN2017083513-appb-000007
表示与基团L的连接;所述各种结构中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。
本发明中,含有有机硼酸基和/或有机硼酸酯基的模块A中,一个硼原子上可以同时连接一个羟基和一个酯基,同一个模块中也可以同时有至少一个硼羟基和至少一个硼酸酯基。
在本发明中,当所述的含有有机硼酸基和/或有机硼酸酯基的模块A存在于聚合物中,且有两个或多个所述连接时,其可以连接于不成环或不成团簇的聚合物链中,也可以连接于环状或团簇的侧基/侧链中;当只有一个所述连接时,其可以连接于聚合物链的任何位置。
当m=1时,p=1或者2,L为单个模块A上的取代基团;当p=2时,L可选自同一种结构或多种不同结构;所述的L结构可选自以下任一种或任几种:分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基。
当m>1时,模块A可选自同一种结构或多种不同结构,此时p≥1,L为两个或多个模块A之间的连接基团;当p≥2时,L可选自同一种结构或多种不同结构;所述的L结构可选自以下任一种或任几种:单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基。
在本发明中所述的含有硅羟基和/或硅羟基前躯体的含硅化合物(II),其可为有机含硅化合物,或者为无机含硅化合物,其可以如下结构表示:
Figure PCTCN2017083513-appb-000008
其中,G为含有硅羟基和/或硅羟基前驱体的模块;n为模块G的个数,n≥1;J为单个模块G上的取代基团,或者为两个或多个模块G之间的连接基团;q为基团J的个数,q≥1。
所述的含有硅羟基的模块G,其可以选自以下任一种或任几种结构:
Figure PCTCN2017083513-appb-000009
其中,K3、K4、K5、K6、K7为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;其中,C7、C8、C9中的环状结构为含有至少一个硅羟基的非芳香性或芳香性硅杂环基团,硅原子置于环状结构中,环状结构可以是小分子环,也可以是大分子环,其优选为3~100元环,更优选为3~50元环,更优选为3~10元环;C7、C8、C9中的环状结构的成环原子各自独立地为碳原子、硅原子或其他杂原子,且至少一个成环原子为硅原子并构成硅羟基,且至少一个成环原子与基团J相连;C7、C8、C9中的环状结构各个成环原子上的氢原子可以被取代,也可以不被取代;C7、C8、C9中的环状结构可以为单环结构、多环结构、螺环结构、稠环结构、桥环结构、嵌套环结构;
Figure PCTCN2017083513-appb-000010
表示与基团J的连接。
所述的含有硅羟基前驱体的模块G,其可以选自以下任一种或任几种结构:
Figure PCTCN2017083513-appb-000011
Figure PCTCN2017083513-appb-000012
其中,K8、K9、K10、K11、K12为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14为与硅原子直接相连的可水解基团,包括但不仅限于卤素、氰基、氧氰基、硫氰基、烷氧基、氨基、硫酸酯基、硼酸酯基、酰基、酰氧基、酰氨基、醇盐基,优选卤素、烷氧基;其中,D7、D8、D9中的环状结构为含有至少一个硅羟基前驱体的非芳香性或芳香性硅杂环基团,硅原子置于环状结构中,环状结构可以是小分子环,也可以是大分子环,其优选为3~100元环,更优选为3~50元环,更优选为3~10元环;D7、D8、D9中的环状结构的成环原子各自独立地为碳原子、硅原子或其他杂原子,且至少一个成环原子为硅原子并构成硅羟基前驱体,且至少一个成环原子与基团J相连;D7、D8、D9中的环状结构各个成环原子上的氢原子可以被取代,也可以不被取代;D7、D8、D9中的环状结构可以为单环结构、多环结构、螺环结构、稠环结构、桥环结构、嵌套环结构;
Figure PCTCN2017083513-appb-000013
表示与基团J的连接。在上述结构中,在合适的不同基团K之间、不同基团X之间以及基团K和基团X之间也可以成环。
本发明中,含有硅羟基和/或硅羟基前躯体的模块G中,一个硅原子上可以同时连接至少一个羟基和至少一个羟基前驱体,同一个模块中也可以同时有至少一个硅羟基和至少一个硅羟基前驱体。
在本发明中,当所述的含有硅羟基和/或硅羟基前驱体的模块G存在于聚合物中,且有两个或多个所述连接时,其可以连接于不成环或不成团簇的聚合物链中,也可以连接于环状或团簇的侧基/侧链中;当只有一个所述连接时,其可以连接于聚合物链的任何位置。
当n=1时,q=1、2或者3,J为单个模块G上的取代基团;当q=2或者3时,J可选自同一种结构或多种不同结构;所述的J结构可选自以下任一种或任几种:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基。
当n>1时,模块G可选自同一种结构或多种不同结构,此时q≥1,J为两个或多个模块G之间的连接基团;当q≥2时,J可选自同一种结构或多种不同结构;所述的J结构可选自以下任一种或任几种:单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基、分子量不超过1000Da的二价或多价无机小分子链残基、分子量大于1000Da的二价或多价无机大分子链残基。
在本发明中所述的同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III),其可以如下结构表示:
Figure PCTCN2017083513-appb-000014
其中,A为含有有机硼酸基和/或有机硼酸酯基的模块,其具体定义可参考有机硼化合物(I)中模块A的定义,这里不再赘述;x为模块A的个数,x≥1;当x≥2时,模块A可选自同一种结构或多种不同结构;G为含有硅羟基和/或硅羟基前驱体的模块,其具体定义可参考含硅化合物(II)中模块G的定义,这里不再赘述;y为模块G的个数,y≥1;当y≥2时,模块G可选自同一种结构或多种不同结构;T为两个或多个A之间、或者两个或多个G之间、或者A与G之间的连接基团,所述的T结构可选自以下任一种或任几种:单键、杂原子连接基、 分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基;v为基团T的个数,v≥1;当v≥2时,T可选自同一种结构或多种不同结构。
在有机硼化合物(I)、含硅化合物(II)、化合物(III)中,除了含有有机硼酸基和/或有机硼酸酯基、硅羟基和/或硅羟基前驱体外,还可以选择性地含有其他反应性基团。
本发明的第五种制备实施方式,至少由一种或一种以上含有至少一个有机硼酸硅酯键以及至少一个其他反应性基团的化合物(IV)通过其他反应性基团之间的聚合/交联反应获得所述的动态聚合物;或者至少由一种或一种以上含有至少一个有机硼酸硅酯键以及至少一个其他反应性基团的化合物(IV)与不含有有机硼酸硅酯键但含有至少一个其他反应性基团的化合物通过其他反应性基团之间的聚合/交联反应获得所述的动态聚合物。
对于化合物(IV),其一般为含有有机硼酸硅酯键的单体、含有有机硼酸硅酯键的低聚物、含有有机硼酸硅酯键的预聚物。
在本发明中所述的含有有机硼酸硅酯键和其他反应性基团的化合物(IV),其可以如下结构表示:
Figure PCTCN2017083513-appb-000015
其中,E为含有有机硼酸硅酯键的模块;u为模块E的个数,u≥1;Y为单个模块E上的取代基团,或者为单个模块E上的取代基团和两个或多个模块E之间的连接基团,且至少一个基团Y与有机硼酸硅酯键的硼原子相连,至少一个基团Y与有机硼酸硅酯键的硅原子相连;其中,在至少一个基团Y中含有至少一个其他反应性基团,并且在所有基团Y中含有的其他反应性基团数大于等于2;r为基团Y的个数,r≥2。
所述的含有有机硼酸硅酯键的模块E,其可以如下结构表示:
Figure PCTCN2017083513-appb-000016
其中,K13、K16、K20为与硼原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;K14、K15、K17、K18、K19、K21为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;
Figure PCTCN2017083513-appb-000017
表示与基团Y的连接。在上述结构中,在合适的不同基团K之间、不同基团Y之间以及基团K和基团Y之间也可以成环;基团Y可通过Si-O键与硼原子相连,也可通过B-O键与硅原子相连。
当u=1时,r=2、3、4或5,Y为单个模块E上的取代基团,Y可选自同一种结构或多种不同结构,并且Y含有的其他反应性基团的数量和结构必须保证可以获得所述的动态聚合物;所述的Y结构可选自以下任一种或任几种:分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基。
当u>1时,模块E可选自同一种结构或多种不同结构,此时r≥2,Y为单个模块E上的取代基团和两个或多个模块E之间的连接基团,Y可选自同一种结构或多种不同结构,并且Y含有的其他反应性基团的数量和结构必须保证可以获得所述的动态聚合物;所述的Y结构可选自分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基中的任一种或任几种以及单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分 子量大于1000Da的二价或多价聚合物链残基中的任一种或任几种。
当与有机硼酸硅酯键的硼原子相连的基团Y和与有机硼酸硅酯键的硅原子相连的基团Y之间形成环状结构时,则可得到有机硼酸硅酯键位于环状结构中的化合物(IV),此时在合适的条件下,可利用有机硼酸硅酯键的动态性和其他反应性基团的聚合/交联反应,获得所述的动态交联聚合物。
本发明中的动态聚合物不仅限于利用上述实施方式进行制备。但凡在实施方式中利用有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)作为原料进行制备动态聚合物,无论其是以原料的形式,还是以合成原料的化合物的形式,亦或者是以合成聚合物的中间产物的形式,由于其均可根据本发明的指导所得出,理应包含在本发明的专利保护范围内。
综上所述,可至少利用以下一种或几种化合物作为原料获得所述的动态聚合物:
含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I);含有硅羟基和/或硅羟基前躯体的含硅化合物(II);同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III);含有有机硼酸硅酯键和其他反应性基团的化合物(IV);其中,有机硼化合物(I),含硅化合物(II),化合物(III)均含有至少一个官能团;其中,有机硼化合物(I),含硅化合物(II),化合物(III)可含有,也可不含有其他反应性基团;其中,有机硼化合物(I)或者含硅化合物(II)不单独作为原料制备所述的动态聚合物。
有机硼化合物(I)和/或化合物(III)通过有机硼酸基和/或有机硼酸酯基与含硅化合物(II)和/或化合物(III)中的硅羟基(包括能够通过转化得到硅羟基的硅羟基前驱体)进行缩合反应或酯交换反应形成有机硼酸硅酯键,得到动态聚合物。此外,有机硼化合物(I)、含硅化合物(II)、化合物(III)还可选择性地利用其他反应性基团通过聚合/交联反应进行普通共价连接,从而与有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体一起,共同反应得到动态聚合物。
对于含有有机硼酸硅酯键的化合物(IV),其一般是通过化合物(IV)中所含有的其他反应性基团之间的相互反应,或者通过化合物(IV)中所含有的其他反应性基团与其他不含有有机硼酸硅酯键的化合物中所含有的其他反应性基团之间的相互反应,从而得到含有有机硼酸硅酯键的动态聚合物。
在动态聚合物的制备过程中,还可以加入某些可添加的助剂、填料进行共混来共同组成动态聚合物,但这些添加物并不是必须的。
所述的动态聚合物性能大范围可调,可应用于各个领域,具有广阔的应用前景,在军事航天设备、功能涂料及涂层、生物医药、生物医用材料、能源、建筑、仿生、智能材料等领域,都体现出令人瞩目的应用效果。具体来说,可将其应用于制作减震器、缓冲材料、抗冲击防护材料、运动防护制品、军警防护制品、自修复性涂层、自修复性板材、自修复性粘结剂、韧性材料、玩具、力传感器等制品。
与现有技术相比,本发明具有以下有益效果:
(1)本发明中动态聚合物的结构丰富,性能多样。通过利用含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I)、含有硅羟基和/或硅羟基前驱体的含硅化物(II)、同时含有有机硼酸基和/或有机硼酸酯基和硅羟基和/或硅羟基前驱体的化合物(III)以及含有有机硼酸硅酯键的化合物(IV)作为反应原料进行配方组合制备动态聚合物,使得反应原料本身所具有的结构多样性的优势得到充分体现。在本发明中,通过调整原料化合物中的官能团数、分子结构、分子量和/或在原料化合物中引入具有反应性的基团、促进动态性的基团、具有功能性的基团和/或调整原料组成等参数,可制备出具有不同结构的动态聚合物,从而使动态聚合物体现出丰富各异的性能。所述有机硼化合物的使用,有利于在动态聚合物的制备过程中进行均相反应,在反应过程中提高了反应效率,也改善了产物的均匀性和水解稳定性。而一些由 无机硼化合物所制得的无机硼酸硅酯键往往由于结构单一,官能团数固定,且无机硼化合物一般进行的是异相反应,制得的产物容易吸水水解而失效,因此无法达到相应的效果。
(2)动态聚合物的动态反应性强、动态反应条件温和。相比于现有的其他动态共价体系,本发明充分利用了有机硼酸硅酯键兼具有的良好的热稳定性和高动态可逆性,可在无需催化剂、无需高温、光照或特定pH的条件下实现动态聚合物的合成和动态可逆性,在提高了制备效率的同时,也降低了使用环境的局限性,扩展了聚合物的应用范围。此外,通过可选择性地控制其他条件(如加入助剂、调整反应温度等),能够在适当的环境下,加速或淬灭动态共价化学平衡,使其处于所需的状态,这在现有的超分子化学以及动态共价体系里面是较难做到的。
(3)有机硼酸硅酯键的动态可逆性还可以通过调整有机硼酸硅酯键邻近基团的结构和聚合物链的结构进行调控。相比于普通共价键和现有的一般动态共价键,有机硼酸硅酯键在受力时可以更好地作为可调控的“可牺牲键”发生可逆断裂而消耗大量能量,使得应力主要集中于有机硼酸硅酯键处进行耗散,起到吸能作用,并在特定结构中起到优异的增韧效果;相比于现有的超分子相互作用力,本发明中有机硼酸硅酯键的共价键本质又使得断裂所需的能量更高,从而可以耗散更多的能量,更好地提升材料的吸能特性和韧性;与无机硼酸硅酯键相比,其又具有更大的调控自由度。
参考下述实施方式说明、实施例和所附权利要求书,本发明的这些和其他特征以及优点将变得显而易见。
具体实施方式
本发明涉及一种具有动态交联结构的动态聚合物,其在交联网络的聚合物链骨架上和/或聚合物链之间的交联链接骨架上含有有机硼酸硅酯键。其中,所述的有机硼酸硅酯键作为动态聚合物的聚合链接点和/或交联链接点而存在,是形成/维持动态聚合物结构的必要条件;动态聚合物中含有的有机硼酸硅酯键一旦解离,聚合物体系即可分解成以下任一种或任几种单元:单体、聚合物链片段、直链聚合物单元、非交联聚合物单元、聚合物团簇单元等;同时,动态聚合物和上述单元之间可通过有机硼酸硅酯键的键合和解离实现相互转化和动态可逆。
所述的动态聚合物,其可以仅在交联网络的聚合物链骨架上含有有机硼酸硅酯键,可以仅在交联网络的聚合物链之间的交联链接骨架上含有有机硼酸硅酯键,也可以同时在交联网络的聚合物链骨架上和聚合物链之间的交联链接骨架上含有有机硼酸硅酯键。
所述的交联网络中含有的有机硼酸硅酯键,其具有如下结构:
Figure PCTCN2017083513-appb-000018
其中,硼原子和硅原子之间至少形成一个硼酸硅酯键(B-O-Si);所述结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
Figure PCTCN2017083513-appb-000019
表示与聚合物链、交联网络链或者其他任意合适的基团/原子的连接,硼原子和硅原子分别通过至少一个所述连接接入交联网络。
所述的动态聚合物,其具有交联结构。所述的“交联结构”,指的是动态聚合物具有三维无限网状结构,其一般是通过至少一种含有三个或三个以上能够参与交联反应的官能团/反应性基团的单体或预聚物等组分参与均聚、共聚而成,或者通过线性或非线性的聚合物链间的交联反应形成。在交联网络中,所述的聚合物链骨架是存在于交联网络中的任意链段;聚合物链之间的交联链接可以为一个原子、一个单键、一个基团、一个链段、一个团簇等,因此聚合物链之间的交联链接骨架也可以视为聚合物链骨架。在本发明中,由于在交联网络的聚 合物链骨架上和/或聚合物链之间的交联链接骨架上含有有机硼酸硅酯键,并且通过有机硼酸硅酯键的解离和键合可以实现聚合物网络结构的解体和重建,因此动态聚合物具有的是“动态交联结构”。
在本发明的实施方式中,所述的有机硼酸硅酯键由有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体反应而成。其中,可以采用任意合适的有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体组合来形成有机硼酸硅酯键,优选采用有机硼酸基与硅羟基、有机硼酸基与硅羟基前躯体、有机硼酸酯基与硅羟基来形成有机硼酸硅酯键,更优选采用有机硼酸基与硅羟基、有机硼酸酯基与硅羟基来形成有机硼酸硅酯键,更优选采用有机硼酸酯基与硅羟基来形成有机硼酸硅酯键。
本发明中所述的有机硼酸基,其指的是由硼原子以及与该硼原子相连的一个羟基所组成的结构基元(B-OH),且其中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。在本发明中,有机硼酸基中的一个羟基(-OH)即为一个官能团。
本发明中所述的有机硼酸酯基,其指的是由硼原子、与该硼原子相连的一个氧原子以及与该氧原子相连的烃基或硅烷基所组成的结构基元(B-OR,其中R为以碳、氢原子为主的烃基或以硅、氢原子为主的硅烷基,其通过碳原子或硅原子与氧原子相连),且其中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。在本发明中,有机硼酸酯基中的一个酯基(-OR)即为一个官能团。
本发明中所述的硅羟基,其指的是由硅原子以及与该硅原子相连的一个羟基所组成的结构基元(Si-OH),其中,硅羟基可为有机硅羟基(即硅羟基中的硅原子至少与一个碳原子通过硅碳键相连,且至少有一个有机基团通过所述硅碳键连接到硅原子上),也可为无机硅羟基(即硅羟基中的硅原子不与有机基团相连接),优选为有机硅羟基。在本发明中,硅羟基中的一个羟基(-OH)即为一个官能团。
本发明中所述的硅羟基前驱体,其指的是由硅原子以及与该硅原子相连的一个可水解得到羟基的基团所组成的结构基元(Si-X),其中,X为可水解得到羟基的基团,其可选自卤素、氰基、氧氰基、硫氰基、烷氧基、氨基、硫酸酯基、硼酸酯基、酰基、酰氧基、酰氨基、醇盐基。合适的硅羟基前驱体举例如:Si-Cl,Si-CN,Si-CNS,Si-CNO,Si-SO4CH3,Si-OB(OCH3)2,Si-NH2,Si-N(CH3)2,Si-OCH3,Si-COCH3,Si-OCOCH3,Si-CONH2,Si-O-N=C(CH3)2,Si-ONa。在本发明中,硅羟基前驱体中的一个可水解得到羟基的基团(-X)即为一个官能团。
在本发明中所述的官能团,在没有其他特别指明的情况下,均指的是以上所述的有机硼酸基中的羟基、或者有机硼酸酯基中的酯基、或者硅羟基中的羟基、或者硅羟基前驱体中的可水解得到羟基的基团、或者它们的组合。
在本发明中,有机硼酸基和有机硼酸酯基可以存在于相同的化合物中,也可以存在于不同的化合物中;硅羟基和硅羟基前躯体一般存在于不同的化合物中,但当其可以共存时也可以存在于同一化合物中;当有机硼酸基和/或有机硼酸酯基可以与硅羟基和/或硅羟基前躯体共存时,也可以存在于相同的化合物中。在本发明中,含有有机硼酸基和/或有机硼酸酯基但不含有硅羟基和/或硅羟基前躯体的化合物即为本发明中所述的有机硼化合物(I),其可以是分子量不超过1000Da的小分子化合物,也可以是分子量大于1000Da的大分子化合物;含有硅羟基和/或硅羟基前驱体但不含有机硼酸基和/或有机硼酸酯基的化合物即为本发明中所述的含硅化合物(II),其可以是分子量不超过1000Da的小分子化合物,也可以是分子量大于1000Da的大分子化合物;同时含有机硼酸基和/或有机硼酸酯基和硅羟基和/或硅羟基前驱体的化合物即为本发明中所述的化合物(III),其可以是分子量不超过1000Da的小分子化合物,也可以是分子量大于1000Da的大分子化合物。
在本发明中所述的含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I),其可以如下 结构表示:
Figure PCTCN2017083513-appb-000020
其中,A为含有有机硼酸基和/或有机硼酸酯基的模块;m为模块A的个数,m≥1;L为单个模块A上的取代基团,或者为两个或多个模块A之间的连接基团;p为基团L的个数,p≥1。
所述的含有有机硼酸基的模块A,其可选自以下任一种或任几种结构:
Figure PCTCN2017083513-appb-000021
其中,K1为与硼原子直接相连的基团,其选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;其中,A4中的环状结构为含有至少一个有机硼酸基的非芳香性或芳香性硼杂环基团,硼原子置于环状结构中,环状结构可以是小分子环,也可以是大分子环,其优选为3~100元环,更优选为3~50元环,更优选为3~10元环;A4中的环状结构的成环原子各自独立地为碳原子、硼原子或其他杂原子,且至少一个成环原子为硼原子并构成有机硼酸基,且至少一个成环原子与基团L相连;A4中的环状结构各个成环原子上的氢原子可以被取代,也可以不被取代;A4中的环状结构可以为单环结构、多环结构、螺环结构、稠环结构、桥环结构、嵌套环结构;
Figure PCTCN2017083513-appb-000022
表示与基团L的连接;所述各种结构中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。
其中,A4中的环状结构可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:硼杂环烷、硼杂环烃、硼杂苯、硼杂萘、硼杂蒽、硼杂菲、硼杂芳烃;所列的环状结构优选硼杂环戊烷、硼杂环己烷、硼杂环己烯、硼杂环己二烯、硼杂环己烯酮、硼杂苯。举例如:
Figure PCTCN2017083513-appb-000023
所述的含有有机硼酸酯基的模块A,其可选自以下任一种或任几种结构:
Figure PCTCN2017083513-appb-000024
其中,K2为与硼原子直接相连的基团,其选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;R1、R2、R3、R4、R6为与氧原子直接相连的一价有机基团或一价有机硅基团,其通过碳原子或硅原子与氧原子直接相连,其选自以下任一种结构:分子量不超过1000Da的小分子烃基、分子量不超过1000Da的小分子硅烷基、分子量大于1000Da的聚合物链残基;R5为与两个氧原子直接相连的二价有机基团或二价有机硅基团,其通过碳原子或硅原子与氧原子直接相连,其选自以下任一种结构:分子量不超过1000Da的二价小分子烃基、分子量不超过1000Da的二价小分子硅烷基、分子量大于1000Da的二价聚合物链残基;其中,B5中的环状结构为含有至少一个有机硼酸酯基的非芳香性或芳香性硼杂环基团,硼原子置于环状结构中,环状结构可以是小分子环,也可以是大分子环,其优选为3~100元环,更优选为3~50元环,更优选为3~10元环;B5中的环状结构的成环原子各自独立地为碳原子、硼原子或其他杂原子,且至少一个成环原子为硼原子并构成有机硼酸酯基,且至少一个成环原子与基团L相连;B5中的环状结构各个成环原子上的氢原子可以被取代,也可以不被取代;B5中的环状结构可以为单环结构、多环结构、螺环结构、稠环结构、桥环结构、嵌套环结构;
Figure PCTCN2017083513-appb-000025
表示与基团L的连接;所述各种结构中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。
其中,B5中的环状结构可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:硼杂环烷、硼杂环烃、硼杂苯、硼杂萘、硼杂蒽、硼杂菲、硼杂芳烃;所列的环状结构优选硼杂环戊烷、硼杂环己烷、硼杂环己烯、硼杂环己二烯、硼杂环己烯酮、硼杂苯。举例如:
Figure PCTCN2017083513-appb-000026
本发明中,含有有机硼酸基和/或有机硼酸酯基的模块A中,一个硼原子上可以同时连接一个羟基和一个酯基,同一个模块中也可以同时含有至少一个硼羟基和至少一个硼酸酯基,举例如:
Figure PCTCN2017083513-appb-000027
化合物同时含有有机硼酸基和有机硼酸酯基有助于调控其溶解性、反应速率、反应程度等参数,以及可用于调控动态聚合物的动态性等性能。
在本发明中,当所述的含有有机硼酸基和/或有机硼酸酯基的模块A存在于聚合物中,且有两个或多个所述连接时,其可以连接于不成环或不成团簇的聚合物链中,也可以连接于环状或团簇的侧基/侧链中;当只有一个所述连接时,其可以连接于聚合物链的任何位置。
当m=1时,p=1或者2,L为单个模块A上的取代基团;当p=2时,L可选自同一种结构或多种不同结构;所述的L结构可选自以下任一种或任几种:分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基。形成的合适的有机硼化合物(I)结构举例如下:
Figure PCTCN2017083513-appb-000028
其中,g、h、j各自独立地为一个固定值或平均值,g≥1、h≥1、j≥1。
上述举例的有机硼化合物(I)的结构仅为更好地说明有机硼化合物(I)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当m>1时,模块A可选自同一种结构或多种不同结构,此时p≥1,L为两个或多个模块A之间的连接基团;当p≥2时,L可选自同一种结构或多种不同结构;所述的L结构可选自以下任一种或任几种:单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基。
当L选自单键时,其可选自硼硼单键、碳碳单键、碳氮单键、氮氮单键、硼碳单键、硼氮单键;优选为硼硼单键、硼碳单键、碳碳单键。形成的合适的有机硼化合物(I)结构举例如下:
Figure PCTCN2017083513-appb-000029
Figure PCTCN2017083513-appb-000030
其中,g、h各自独立地为一个固定值或平均值,g≥1、h≥1。
上述举例的有机硼化合物(I)的结构仅为更好地说明有机硼化合物(I)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当L选自杂原子连接基时,其可选自以下任一种或任几种的组合:醚基、硫基、硫醚基、二价叔胺基、三价叔胺基、二价硅基、三价硅基、四价硅基、二价磷基、三价磷基、二价硼基、三价硼基;杂原子连接基优选为醚基、硫基、二价叔胺基、三价叔胺基。形成的合适的有机硼化合物(I)结构举例如下:
Figure PCTCN2017083513-appb-000031
其中,g、h各自独立地为一个固定值或平均值,g≥1、h≥1。
上述举例的有机硼化合物(I)的结构仅为更好地说明有机硼化合物(I)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当L选自分子量不超过1000Da的二价或多价小分子烃基时,其一般含有1到71个碳原子,烃基的价态可为2-144价,其可含有杂原子基团,也可不含有杂原子基团。概括地讲,所述的二价或多价小分子烃基可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二到一百四十四价C1-71烷基、二到一百四十四价环C3-71烷基、二到六价苯基、二到八价苄基、二到一百四十四价芳烃基;L优选二到四价甲基、二到六价乙基、二到八价丙基,二到六价环丙烷基、二到十二价环己基、二到六价苯基。形成的合适的有机硼化合物(I)结构举例如下:
Figure PCTCN2017083513-appb-000032
Figure PCTCN2017083513-appb-000033
其中,g、h各自独立地为一个固定值或平均值,g≥1、h≥1。
上述举例的有机硼化合物(I)的结构仅为更好地说明有机硼化合物(I)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当L选自分子量大于1000Da的二价或多价聚合物链残基时,其可为任意合适的二价或多价聚合物链残基,包括但不仅限于二价或多价碳链聚合物残基、二价或多价杂链聚合物残基、二价或多价元素有机聚合物残基,其中,聚合物可为均聚物,也可为任几种单体、低聚物或聚合物组成的共聚物,聚合物链可为柔性链,也可为刚性链。
当L选自二价或多价碳链聚合物残基时,其可以是任意合适的大分子主链主要由碳原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价聚烯烃类链残基,如二价或多价聚乙烯链残基、二价或多价聚丙烯链残基、二价或多价聚异丁烯链残基、二价或多价聚苯乙烯链残基、二价或多价聚氯乙烯链残基、二价或多价聚偏氯乙烯链残基、二价或多价聚氟乙烯链残基、二价或多价聚四氟乙烯链残基、二价或多价聚三氟氯乙烯链残基、二价或多价聚醋酸乙烯酯链残基、二价或多价聚乙烯基烷基醚链残基、二价或多价聚丁二烯链残基、二价或多价聚异戊二烯链残基、二价或多价聚氯丁二烯链残基、二价或多价聚降冰片烯链残基等;二价或多价聚丙烯酸类链残基,如二价或多价聚丙烯酸链残基、二价或多价聚丙烯酰胺链残基、二价或多价聚丙烯酸甲酯链残基、二价或多价聚甲基丙烯酸甲酯链残基等;二价或多价聚丙烯腈类链残基,如二价或多价聚丙烯腈链残基等。L优选二价或多价聚乙烯链残基、二价或多价聚丙烯链残基、二价或多价聚苯乙烯链残基、二价或多价聚氯乙烯链残基、二价或多价聚丁二烯链残基、二价或多价聚异戊二烯链残基、二价或多价聚丙烯酸链残基、二价或多价聚丙烯酰胺链残基、二价或多价聚丙烯腈链残基。形成的合适的有机硼化合物(I)结构举例如下:
Figure PCTCN2017083513-appb-000034
Figure PCTCN2017083513-appb-000035
其中,g、h、i、j、k各自独立地为一个固定值或平均值,优选g≥36、h≥36、i≥36、j≥12、k≥12。
上述举例的有机硼化合物(I)的结构仅为更好地说明有机硼化合物(I)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当L选自二价或多价杂链聚合物残基时,其可以是任意合适的大分子主链主要由碳原子和氮、氧、硫等杂原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价聚醚类链残基,如二价或多价聚环氧乙烷链残基、二价或多价聚环氧丙烷链残基、二价或多价聚四氢呋喃链残基、二价或多价环氧树脂链残基、二价或多价酚醛树脂链残基、二价或多价聚苯醚链残基等;二价或多价聚酯类链残基,如二价或多价聚己内酯链残基、二价或多价聚戊内酯链残基、二价或多价聚丙交酯链残基、二价或多价聚对苯二甲酸乙二醇酯链残基、二价或多价不饱和聚酯链残基、二价或多价醇酸树脂链残基、二价或多价聚碳酸酯链残基等;二价或多价聚胺类链残基,如二价或多价聚酰胺链残基、二价或多价聚酰亚胺链残基、二价或多价聚氨酯链残基、二价或多价聚脲链残基、二价或多价脲醛树脂链残基、二价或多价蜜胺树脂链残基等;二价或多价聚硫类链残基、如二价或多价聚砜链残基、二价或多价聚苯硫醚链残基等。L优选二价或多价聚环氧乙烷链残基、二价或多价聚四氢呋喃链残基、二价或多价环氧树脂链残基、二价或多价聚己内酯链残基、二价或多价聚丙交酯链残基、二价或多价聚酰胺链残基。形成的合适的有机硼化合物(I)结构举例如下:
Figure PCTCN2017083513-appb-000036
其中,g、h、i、j、k各自独立地为一个固定值或平均值,优选g≥36、h≥36、i≥36、j≥12、k≥12。
上述举例的有机硼化合物(I)的结构仅为更好地说明有机硼化合物(I)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当L选自二价或多价元素有机聚合物残基时,其可以是任意合适的大分子主链主要由硅、硼、铝等无机元素杂原子和氮、氧、硫、磷等杂原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价有机硅类聚合物链残基,如二价或多价聚有机硅烷链残基、二价或多价聚有机硅氧烷链残基、二价或多价聚有机硅硼烷链残基、二价或多价聚有机硅氮烷链残基、二价或多价聚有机硅硫烷链残基、二价或多价聚有机磷硅氧烷链残基、二价或多价聚有机金属硅氧烷链残基;二价或多价有机硼类聚合物链残基,如二价或多价聚有机硼烷链残基、二价或多价聚有机硼氮烷 链残基、二价或多价聚有机硼硫烷链残基、二价或多价聚有机硼磷烷链残基等;二价或多价有机磷类聚合物链残基;二价或多价有机铅类聚合物链残基;二价或多价有机锡类聚合物链残基;二价或多价有机砷类聚合物链残基;二价或多价有机锑类聚合物链残基。L优选二价或多价聚有机硅烷链残基、二价或多价聚有机硅氧烷链残基、二价或多价聚有机硼烷链残基。形成的合适的有机硼化合物(I)结构举例如下:
Figure PCTCN2017083513-appb-000037
其中,g、h、i、j、k、l各自独立地为一个固定值或平均值,优选g≥36、h≥36、i≥36、j≥36、k≥12、l≥12。
上述举例的有机硼化合物(I)的结构仅为更好地说明有机硼化合物(I)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限 定。
在本发明中所述的含有硅羟基和/或硅羟基前躯体的含硅化合物(II),其可为有机含硅化合物,或者为无机含硅化合物,其可以如下结构表示:
Figure PCTCN2017083513-appb-000038
其中,G为含有硅羟基和/或硅羟基前驱体的模块;n为模块G的个数,n≥1;J为单个模块G上的取代基团,或者为两个或多个模块G之间的连接基团;q为基团J的个数,q≥1。
所述的含有硅羟基的模块G,其可以选自以下任一种或任几种结构:
Figure PCTCN2017083513-appb-000039
其中,K3、K4、K5、K6、K7为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;其中,C7、C8、C9中的环状结构为含有至少一个硅羟基的非芳香性或芳香性硅杂环基团,硅原子置于环状结构中,环状结构可以是小分子环,也可以是大分子环,其优选为3~100元环,更优选为3~50元环,更优选为3~10元环;C7、C8、C9中的环状结构的成环原子各自独立地为碳原子、硅原子或其他杂原子,且至少一个成环原子为硅原子并构成硅羟基,且至少一个成环原子与基团J相连;C7、C8、C9中的环状结构各个成环原子上的氢原子可以被取代,也可以不被取代;C7、C8、C9中的环状结构可以为单环结构、多环结构、螺环结构、稠环结构、桥环结构、嵌套环结构;
Figure PCTCN2017083513-appb-000040
表示与基团J的连接。
其中,C7、C8、C9中的环状结构可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:硅杂环烷、硅杂环烃、环硅氧烷、环硅氮烷、环硅硫烷、环硅磷烷、环硅硼烷、硅杂苯、硅杂萘、硅杂蒽、硅杂菲、硅杂芳烃;所列的环状结构优选硅杂环戊烷、硅杂环己烷、硅杂环己烯、硅杂环己二烯、硅杂环己烯酮、硅杂苯、环三硅氧烷、环四硅氧烷、环六硅氧烷、环三硅氮烷、环四硅氮烷、环六硅氮烷。举例如:
Figure PCTCN2017083513-appb-000041
Figure PCTCN2017083513-appb-000042
所述的含有硅羟基前驱体的模块G,其可以选自以下任一种或任几种结构:
Figure PCTCN2017083513-appb-000043
其中,K8、K9、K10、K11、K12为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14为与硅原子直接相连的可水解基团,包括但不仅限于卤素、氰基、氧氰基、硫氰基、烷氧基、氨基、硫酸酯基、硼酸酯基、酰基、酰氧基、酰氨基、醇盐基,优选卤素、烷氧基;其中,D7、D8、D9中的环状结构为含有至少一个硅羟基前驱体的非芳香性或芳香性硅杂环基团,硅原子置于环状结构中,环状结构可以是小分子环,也可以是大分子环,其优选为3~100元环,更优选为3~50元环,更优选为3~10元环;D7、D8、D9中的环状结构的成环原子各自独立地为碳原子、硅原子或其他杂原子,且至少一个成环原子为硅原子并构成硅羟基前驱体,且至少一个成环原子与基团J相连;D7、D8、D9中的环状结构各个成环原子上的氢原子可以被取代,也可以不被取代;D7、D8、D9中的环状结构可以为单环结构、多环结构、螺环结构、稠环结构、桥环结构、嵌套环结构;
Figure PCTCN2017083513-appb-000044
表示与基团J的连接。需要指出的是,在上述结构中,在合适的不同基团K之间、不同基团X之间以及基团K和基团X之间也可以成环。
其中,D7、D8、D9中的环状结构可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:硅杂环烷、硅杂环烃、环硅氧烷、环硅氮烷、环硅硫烷、环硅磷烷、环硅硼烷、硅杂苯、硅杂萘、硅杂蒽、硅杂菲、硅杂芳烃;所列的环状结构优选硅杂环戊烷、硅杂环己烷、硅杂环己烯、硅杂环己二烯、硅杂环己烯酮、硅杂苯、环三硅氧烷、环四硅氧烷、环六硅氧烷、环三硅氮烷、环四硅氮烷、环六硅氮烷。举例如:
Figure PCTCN2017083513-appb-000045
Figure PCTCN2017083513-appb-000046
本发明中,含有硅羟基和/或硅羟基前躯体的模块G中,一个硅原子上可以同时连接至少一个羟基和至少一个羟基前驱体,同一个模块中也可以同时含有至少一个硅羟基和至少一个硅羟基前驱体。举例如:
Figure PCTCN2017083513-appb-000047
化合物同时含有硅羟基和硅羟基前驱体有助于调控其溶解性、反应速率、反应程度等参数,以及可用于调控动态聚合物的动态性等性能。
在本发明中,当所述的含有硅羟基和/或硅羟基前驱体的模块G存在于聚合物中,且有两个或多个所述连接时,其可以连接于不成环或不成团簇的聚合物链中,也可以连接于环状或团簇的侧基/侧链中;当只有一个所述连接时,其可以连接于聚合物链的任何位置。
当n=1时,q=1、2或者3,J为单个模块G上的取代基团;当q=2或者3时,J可选自同一种结构或多种不同结构;所述的J结构可选自以下任一种或任几种:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基。形成的合适的含硅化合物(II)结构举例如下:
Figure PCTCN2017083513-appb-000048
Figure PCTCN2017083513-appb-000049
其中,g、h、j各自独立地为一个固定值或平均值,g≥1、h≥1、j≥1。
上述举例的含硅化合物(II)的结构仅为更好地说明含硅化合物(II)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当n>1时,模块G可选自同一种结构或多种不同结构,此时q≥1,J为两个或多个模块G之间的连接基团;当q≥2时,J可选自同一种结构或多种不同结构;所述的J结构可选自以下任一种或任几种:单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基、分子量不超过1000Da的二价或多价无机小分子链残基、分子量大于1000Da的二价或多价无机大分子链残基。
当J选自单键时,其可选自硅硅单键、碳碳单键、碳氮单键、氮氮单键、硅碳单键、硅氮单键;优选硅硅单键、碳碳单键、硅碳单键。形成的合适的含硅化合物(II)结构举例如下:
Figure PCTCN2017083513-appb-000050
Figure PCTCN2017083513-appb-000051
其中,g、h各自独立地为一个固定值或平均值,g≥1、h≥1。
上述举例的含硅化合物(II)的结构仅为更好地说明含硅化合物(II)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当J选自杂原子连接基时,其可选自以下任一种或任几种的组合:醚基、硫基、硫醚基、二价叔胺基、三价叔胺基、二价硅基、三价硅基、四价硅基、二价磷基、三价磷基、二价硼基、三价硼基;杂原子连接基优选为醚基、硫基、二价叔胺基、三价叔胺基。形成的合适的含硅化合物(II)结构举例如下:
Figure PCTCN2017083513-appb-000052
Figure PCTCN2017083513-appb-000053
其中,g、h各自独立地为一个固定值或平均值,g≥1、h≥1。
上述举例的含硅化合物(II)的结构仅为更好地说明含硅化合物(II)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当J选自分子量不超过1000Da的二价或多价小分子烃基时,其一般含有1到71个碳原子,烃基的价态可为2-144价,其可含有杂原子基团,也可不含有杂原子基团。概括地讲,所述的二价或多价小分子烃基可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二到一百四十四价C1-71烷基、二到一百四十四价环C3-71烷基、二到六价苯基、二到八价苄基、二到一百四十四价芳烃基;J优选二到四价甲基、二到六价乙基、二到八价丙基、二到十二价环己基、二到六价苯基。形成的合适的含硅化合物(II)结构举例如下:
Figure PCTCN2017083513-appb-000054
Figure PCTCN2017083513-appb-000055
其中,g、h各自独立地为一个固定值或平均值,g≥1、h≥1。
上述举例的含硅化合物(II)的结构仅为更好地说明含硅化合物(II)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当J选自分子量大于1000Da的二价或多价聚合物链残基时,其可为任意合适的二价或多价聚合物链残基,包括但不仅限于二价或多价碳链聚合物残基、二价或多价杂链聚合物残基、二价或多价元素有机聚合物残基。其中,聚合物可为均聚物,也可为任几种单体、低聚物或聚合物组成的共聚物;聚合物链可为柔性链,也可为刚性链。
当J选自二价或多价碳链聚合物残基时,其可以是任意合适的大分子主链主要由碳原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价聚烯烃类链残基,如二价或多价聚乙烯链残基、二价或多价聚丙烯链残基、二价或多价聚异丁烯链残基、二价或多价聚苯乙烯链残基、二价或多价聚氯乙烯链残基、二价或多价聚偏氯乙烯链残基、二价或多价聚氟乙烯链残基、二价或多价聚四氟乙烯链残基、二价或多价聚三氟氯乙烯链残基、二价或多价聚醋酸乙烯酯链残基、二价或多价聚乙烯基烷基醚链残基、二价或多价聚丁二烯链残基、二价或多价聚异戊二烯链残基、二价或多价聚氯丁二烯链残基、二价或多价聚降冰片烯链残基等;二价或多价聚丙烯酸类链残基,如二价或多价聚丙烯酸链残基、二价或多价聚丙烯酰胺链残基、二价或多价聚丙烯酸甲酯链残基、二价或多价聚甲基丙烯酸甲酯链残基等;二价或多价聚丙烯腈类链残基,如二价或多价聚丙烯腈链残基等。J优选二价或多价聚乙烯链残基、二价或多价聚丙烯链残基、二价或多价聚苯乙烯链残基、二价或多价聚氯乙烯链残基、二价或多价聚丁二烯链残基、二价或多价聚异戊二烯链残基、二价或多价聚丙烯酸链残基、二价或多价聚丙烯酰胺链残基、二价或多价聚丙烯腈链残基。形成的合适的含硅化合物(II)结构举例如下:
Figure PCTCN2017083513-appb-000056
Figure PCTCN2017083513-appb-000057
其中,g、h、i、j、k各自独立地为一个固定值或平均值,优选g≥36、h≥36、i≥36、j≥12、k≥12。
上述举例的含硅化合物(II)的结构仅为更好地说明含硅化合物(II)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当J选自二价或多价杂链聚合物残基时,其可以是任意合适的大分子主链主要由碳原子和氮、氧、硫等杂原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价聚醚类链残基,如二价或多价聚环氧乙烷链残基、二价或多价聚环氧丙烷链残基、二价或多价聚四氢呋喃链残基、二价或多价环氧树脂链残基、二价或多价酚醛树脂链残基、二价或多价聚苯醚链残基等;二价或多价聚酯类链残基,如二价或多价聚己内酯链残基、二价或多价聚戊内酯链残基、二价或多价聚丙交酯链残基、二价或多价聚对苯二甲酸乙二醇酯链残基、二价或多价不饱和聚酯链残基、二价或多价醇酸树脂链残基、二价或多价聚碳酸酯链残基等;二价或多价聚胺类链残基,如二价或多价聚酰胺链残基、二价或多价聚酰亚胺链残基、二价或多价聚氨酯链残基、二价或多价聚脲链残基、二价或多价脲醛树脂链残基、二价或多价蜜胺树脂链残基等;二价或多价聚硫类链残基、如二价或多价聚砜链残基、二价或多价聚苯硫醚链残基等。J优选二价或多价聚环氧乙烷链残基、二价或多价聚四氢呋喃链残基、二价或多价环氧树脂链残基、二价或多价聚己内酯链残基、二价或多价聚丙交酯链残基、二价或多价聚酰胺链残基。形成的合适的含硅化合物(II)结构举例如下:
Figure PCTCN2017083513-appb-000058
Figure PCTCN2017083513-appb-000059
其中,g、h、i、j、k各自独立地为一个固定值或平均值,优选g≥36、h≥36、i≥36、j≥12、k≥12。
上述举例的含硅化合物(II)的结构仅为更好地说明含硅化合物(II)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当J选自二价或多价元素有机聚合物残基时,其可以是任意合适的大分子主链主要由硅、硼、铝等无机元素杂原子和氮、氧、硫、磷等杂原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价有机硅类聚合物链残基,如二价或多价聚有机硅烷链残基、二价或多价聚有机硅氧烷链残基、二价或多价聚有机硅硼烷链残基、二价或多价聚有机硅氮烷链残基、二价或多价聚有机硅硫 烷链残基、二价或多价聚有机磷硅氧烷链残基、二价或多价聚有机金属硅氧烷链残基;二价或多价有机硼类聚合物链残基,如二价或多价聚有机硼烷链残基、二价或多价聚有机硼氮烷链残基、二价或多价聚有机硼硫烷链残基、二价或多价聚有机硼磷烷链残基等;二价或多价有机磷类聚合物链残基;二价或多价有机铅类聚合物链残基;二价或多价有机锡类聚合物链残基;二价或多价有机砷类聚合物链残基;二价或多价有机锑类聚合物链残基。J优选二价或多价聚有机硅烷链残基、二价或多价聚有机硅氧烷链残基、二价或多价聚有机硼烷链残基。形成的合适的含硅化合物(II)结构举例如下:
Figure PCTCN2017083513-appb-000060
其中,g、h、i、j、k、l各自独立地为一个固定值或平均值,优选g≥36、h≥36、i≥36、j≥36、k≥12、l≥12。
上述举例的含硅化合物(II)的结构仅为更好地说明含硅化合物(II)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当J选自分子量不超过1000Da的二价或多价无机小分子链残基时,其可以是任意合适的分子主链和侧链均主要由硅、硼、铝等无机元素杂原子和氮、氧、硫、磷等杂原子构成的无机小分子链残基,概括地讲,所述的二价或多价无机小分子链残基可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价硅烷链残基、二价或多价硅氧化合物链残基、二价或多价硫硅化合物链残基、二价或多价硫氮化合物链残基、二价或多价磷腈化合物链残基、二价或多价磷氧化合物链残基、二价或多价硼烷链残基。J优选二价或多价硅烷链残基、二价或多价硅氧化合物链残基、二价或多价磷腈化合物链残基、二价或多价硼烷链残基。形成的合适的含硅化合物(II)结构举例如下:
Figure PCTCN2017083513-appb-000061
其中,g、h各自独立地为一个固定值或平均值,g≥1、h≥1。
上述举例的含硅化合物(II)的结构仅为更好地说明含硅化合物(II)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当J选自分子量大于1000Da的二价或多价无机大分子链残基时,其可以是任意合适的大分子主链和侧链均主要由硅、硼、铝等无机元素杂原子和氮、氧、硫、磷等杂原子构成的无机大分子链残基。
其中,J可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价聚硅烷链残基、二价或多价聚硅氧烷链残基、二价或多价聚硫硅链残基、二价或多价聚硫氮链残基、二价或多价聚磷酸链残基、二价或多价聚磷腈链残基、二价或多价聚氯代磷腈链残基、二价或多价聚硼烷链残基。J优选二价或多价聚硅烷链残基、二价或多价聚硅氧烷链残基、二价或多价聚磷腈链残基、二价或多价聚硼烷链残基。形成的合适的含硅化合物(II)结构举例如下:
Figure PCTCN2017083513-appb-000062
其中,g、h、i各自独立地为一个固定值或平均值,优选g≥36、h≥36、i≥36。
上述举例的含硅化合物(II)的结构仅为更好地说明含硅化合物(II)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
J也可选自以下组中任一种带有残基的无机大分子或任一种经过表面改性的带有残基的无机大分子:沸石型分子筛、磷酸铝分子筛、磷酸锆分子筛、杂多酸盐分子筛、金刚石、石墨、碳纤维、白磷、红磷、五氧化磷、硫化钼、二氧化硅、二硫化硅、氮化硅、碳化硅、滑石、高岭土、蒙脱石、云母、石棉、长石、水泥、玻璃、石英、陶瓷、氧化硼、氮化硫、硅化钙、硅酸盐、玻璃纤维、氧化铍、氧化镁、氧化汞、硼氢化物、氮化硼、碳化硼、氮化铝、水铝石、水铝矿、刚玉、二氧化钛。J优选经过表面改性的石墨、经过表面改性的碳纤维、经过表面改性的二氧化硅、经过表面改性的氮化硅、经过表面改性的碳化硅、经过表面改性的硅酸盐、经过表面改性的玻璃纤维、经过表面改性的氮化硼。形成的合适的含硅化合物(II)一般为无机结构,举例如:表面带有硅羟基的氮化硅、表面带有硅羟基的碳化硅、表面带有硅羟基的二氧化硅、表面带有硅羟基的硅酸盐、表面带有硅羟基的玻璃纤维。
在本发明中所述的同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III),其可以如下结构表示:
Figure PCTCN2017083513-appb-000063
其中,A为含有有机硼酸基和/或有机硼酸酯基的模块,其具体定义可参考有机硼化合物(I)中模块A的定义,这里不再赘述,其中,A优选为含有有机硼酸酯基的模块;x为模块A的个数,x≥1;当x≥2时,模块A可选自同一种结构或多种不同结构;G为含有硅羟基和/或硅羟基前驱体的模块,其具体定义可参考含硅化合物(II)中模块G的定义,这里不再赘述,其中,G优选为含有硅羟基前驱体的模块;y为模块G的个数,y≥1;当y≥2时,模块G可选自同一种结构或多种不同结构;T为两个或多个A之间、或者两个或多个G之间、或者A与G之间的连接基团,所述的T结构可选自以下任一种或任几种:单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基;v为基团T的个数,v≥1;当v≥2时,T可选自同一种结构或多种不同结构。
当T选自单键时,其可选自碳碳单键、碳氮单键、氮氮单键、硼碳单键、硼氮单键、硼硅单键、硅硅单键、硅碳单键、硅氮单键;优选为碳碳单键、硅硅单键、硼硅单键。形成的合适的化合物(III)结构举例如下:
Figure PCTCN2017083513-appb-000064
其中,g、h各自独立地为一个固定值或平均值,g≥1、h≥1。
上述举例的化合物(III)的结构仅为更好地说明化合物(III)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当T选自杂原子连接基时,其可选自以下任一种或任几种的组合:醚基、硫基、硫醚基、二价叔胺基、三价叔胺基、二价硅基、三价硅基、四价硅基、二价磷基、三价磷基、二价硼 基、三价硼基;杂原子连接基优选为醚基、硫基、二价叔胺基、三价叔胺基。形成的合适的化合物(III)结构举例如下:
Figure PCTCN2017083513-appb-000065
其中,g、h各自独立地为一个固定值或平均值,g≥1、h≥1。
上述举例的化合物(III)的结构仅为更好地说明化合物(III)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当T选自分子量不超过1000Da的二价或多价小分子烃基时,其一般含有1到71个碳原子,烃基的价态可为2-144价,其可含有杂原子基团,也可不含有杂原子基团。概括地讲,所述的二价或多价小分子烃基可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二到一百四十四价C1-71烷基、二到一百四十四价环C3-71烷基、二到六价苯基、二到八价苄基、二到一百四十四价芳烃基;T优选二到四价甲基、二到六价乙基、二到八价丙基、二到十二价环己基、二到六价苯基。形成的合适的化合物(III)结构举例如下:
Figure PCTCN2017083513-appb-000066
Figure PCTCN2017083513-appb-000067
其中,g、h各自独立地为一个固定值或平均值,g≥1、h≥1。
上述举例的化合物(III)的结构仅为更好地说明化合物(III)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当T选自分子量大于1000Da的二价或多价聚合物链残基时,其可为任意合适的二价或多价聚合物链残基,包括但不仅限于二价或多价碳链聚合物残基、二价或多价杂链聚合物残基、二价或多价元素有机聚合物残基。其中,聚合物可为均聚物,也可为任几种单体、低聚物或聚合物组成的共聚物;聚合物链可为柔性链,也可为刚性链。
当T选自二价或多价碳链聚合物残基时,其可以是任意合适的大分子主链主要由碳原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价聚烯烃类链残基,如二价或多价聚乙烯链残基、二价或多价聚丙烯链残基、二价或多价聚异丁烯链残基、二价或多价聚苯乙烯链残基、二价或多价聚氯乙烯链残基、二价或多价聚偏氯乙烯链残基、二价或多价聚氟乙烯链残基、二价或多价聚四氟乙烯链残基、二价或多价聚三氟氯乙烯链残基、二价或多价聚醋酸乙烯酯链残基、二价或多价聚乙烯基烷基醚链残基、二价或多价聚丁二烯链残基、二价或多价聚异戊二烯链残基、二价或多价聚氯丁二烯链残基、二价或多价聚降冰片烯链残基等;二价或多价聚丙烯酸类链残基,如二价或多价聚丙烯酸链残基、二价或多价聚丙烯酰胺链残基、二价或多价聚丙烯酸甲酯链残基、二价或多价聚甲基丙烯酸甲酯链残基等;二价或多价聚丙烯腈类链残基,如二价或多价聚丙烯腈链残基等。T优选二价或多价聚乙烯链残基、二价或多价聚丙烯链残基、二价或多价聚苯乙烯链残基、二价或多价聚氯乙烯链残基、二价或多价聚丁二烯链残基、二价或多价聚异戊二烯链残基、二价或多价聚丙烯酸链残基、二价或多价聚丙烯酰胺链残基、二价或多价聚丙烯腈链残基。形成的合适的化合物(III)结构举例如下:
Figure PCTCN2017083513-appb-000068
Figure PCTCN2017083513-appb-000069
其中,g、h、i、j、k、l各自独立地为一个固定值或平均值,优选g≥36、h≥36、i≥36、j≥12、k≥12、l≥12。
上述举例的化合物(III)的结构仅为更好地说明化合物(III)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当T选自二价或多价杂链聚合物残基时,其可以是任意合适的大分子主链主要由碳原子和氮、氧、硫等杂原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价聚醚类链残基,如二价或多价聚环氧乙烷链残基、二价或多价聚环氧丙烷链残基、二价或多价聚四氢呋喃链残基、二价或多价环氧树脂链残基、二价或多价酚醛树脂链残基、二价或多价聚苯醚链残基等;二价或多价聚酯类链残基,如二价或多价聚己内酯链残基、二价或多价聚戊内酯链残基、二价或多价聚丙交酯链残基、二价或多价聚对苯二甲酸乙二醇酯链残基、二价或多价不饱和聚酯链残基、二价或多价醇酸树脂链残基、二价或多价聚碳酸酯链残基等;二价或多价聚胺类链残基,如二价或多价聚酰胺链残基、二价或多价聚酰亚胺链残基、二价或多价聚氨酯链残基、二价或多价聚脲链残基、二价或多价脲醛树脂链残基、二价或多价蜜胺树脂链残基等;二价或多价聚硫类链残基、如二价或多价聚砜链残基、二价或多价聚苯硫醚链残基等。T优选二价或多价聚环氧乙烷链残基、二价或多价聚四氢呋喃链残基、二价或多价环氧树脂链残基、二价或多价聚己内酯链残基、二价或多价聚丙交酯链残基、二价或多价聚酰胺链残基。形成的合适的化合物(III)结构举例如下:
Figure PCTCN2017083513-appb-000070
Figure PCTCN2017083513-appb-000071
其中,g、h、i、j、k、l各自独立地为一个固定值或平均值,优选g≥36、h≥36、i≥36、j≥12、k≥12、l≥12。
上述举例的化合物(III)的结构仅为更好地说明化合物(III)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
当T选自二价或多价元素有机聚合物残基时,其可以是任意合适的大分子主链主要由硅、 硼、铝等无机元素杂原子和氮、氧、硫、磷等杂原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价有机硅类聚合物链残基,如二价或多价聚有机硅烷链残基、二价或多价聚有机硅氧烷链残基、二价或多价聚有机硅硼烷链残基、二价或多价聚有机硅氮烷链残基、二价或多价聚有机硅硫烷链残基、二价或多价聚有机磷硅氧烷链残基、二价或多价聚有机金属硅氧烷链残基;二价或多价有机硼类聚合物链残基,如二价或多价聚有机硼烷链残基、二价或多价聚有机硼氮烷链残基、二价或多价聚有机硼硫烷链残基、二价或多价聚有机硼磷烷链残基等;二价或多价有机磷类聚合物链残基;二价或多价有机铅类聚合物链残基;二价或多价有机锡类聚合物链残基;二价或多价有机砷类聚合物链残基;二价或多价有机锑类聚合物链残基。T优选二价或多价聚有机硅烷链残基、二价或多价聚有机硅氧烷链残基、二价或多价聚有机硼烷链残基。形成的合适的化合物(III)结构举例如下:
Figure PCTCN2017083513-appb-000072
Figure PCTCN2017083513-appb-000073
其中,g、h、i、j、k、l各自独立地为一个固定值或平均值,优选g≥36、h≥36、i≥36、j≥36、k≥12、l≥12。
上述举例的化合物(III)的结构仅为更好地说明化合物(III)在此条件下所具有的典型结构而提出,仅为此条件下比较有代表性的一些结构,而非对本发明保护范围的限定。
需要说明的是,当有机硼化合物(I)结构中的基团L、含硅化合物(II)结构中的基团J、化合物(III)结构中的基团T选自除环状结构以外的链形结构时,基团A可连接于L的末端,也可连接于L中的任意位置;基团G可连接于J的末端,也可连接于J中的任意位置;基团A和G可连接于T的末端,也可连接于T中的任意位置。当有机硼化合物(I)结构中的基团L、含硅化合物(II)结构中的基团J、化合物(III)结构中的基团T选自二维或三维团簇结构时,所述的团簇结构一般通过普通共价键形成,团簇结构中的有机硼酸基和/或有机硼酸酯基和硅羟基和/或硅羟基前驱体通常分散于团簇外围并且只在团簇外围进行动态聚合/交联反应。因此,得到的动态聚合物在其所含有的动态可逆的有机硼酸硅酯键解离后,即解离成团簇单元。
对于有机硼化合物(I)、含硅化合物(II)、化合物(III),其有机硼酸基中的任一个羟基、有机硼酸酯基中的任一个酯基、硅羟基中的任一个羟基、硅羟基前驱体中的任一个可水解得到羟基的基团均为一个官能团。对于有机硼化合物(I)、含硅化合物(II),其可以为单官能团、双官能团、三官能团或多官能团化合物,例如,对于结构为
Figure PCTCN2017083513-appb-000074
的有机硼化合物(I),其分别为单官能团、双官能团、三官能团、四官能团;再例如,对于结构为
Figure PCTCN2017083513-appb-000075
的含硅化合物(II),其分别为单官能团、双官能团、三官能团、四官能团;对于化合物(III),其可以为双官能团、三官能团或多官能团化合物,例如,对于结构为
Figure PCTCN2017083513-appb-000076
Figure PCTCN2017083513-appb-000077
的化合物(III),其分别为双官能团、三官能团、四官能团、五官能团。
在有机硼化合物(I)、含硅化合物(II)、化合物(III)中,除了含有有机硼酸基和/或有机硼酸酯基、硅羟基和/或硅羟基前驱体外,还可以选择性地含有其他反应性基团。
本发明中所述的其他反应性基团,指的是能够自发地,或者能够在引发剂或光、热、辐照、催化等条件下进行化学反应生成除有机硼酸硅酯键以外的普通共价键的基团;合适的基团举例如:羟基、酚羟基、羧基、酰基、酰胺基、酰氧基、氨基、醛基、磺酸基、磺酰基、巯基、烯基、炔基、氰基、嗪基、胍基、卤素、异氰酸酯基团、酸酐基团、环氧基团、丙烯酸酯基团、丙烯酰胺基团、马来酰亚胺基团、N-羟基琥珀酰亚胺基团、降冰片烯基团、偶氮基团、叠氮基团、杂环基团等;其他反应性基团优选羟基、羧基、氨基、巯基、烯基、异氰酸酯基团、环氧基团、丙烯酸酯基团、丙烯酰胺基团。作为举例,部分合适的结构已经在前述例子中给出。
在本发明中所述的其他反应性基团,其在体系中起到的作用,一是进行衍生化反应制备功能化(如疏水性、荧光性、抗氧化性等功能特性)的动态聚合物,二是在所述的化合物本身或其与其他化合物之间或与其反应产物之间直接通过所述的其他反应性基团的反应形成普通共价键,从而使得所述化合物和/或其反应产物的分子量增大/官能度增加,促进形成所述的具有动态交联结构的动态聚合物和/或增加所述动态聚合物的交联密度。在本发明中,由其他反应性基团聚合/交联建立起的普通共价连接,必须保证得到的聚合物的交联度低于凝胶点,使得动态聚合物中的有机硼酸硅酯键解离时,聚合物体系可以解离成更小的单元,达到可回收或重建的目的。需要说明的是,在本发明中出现的所有“其他反应性基团”,仅用于进行衍生化和/或形成普通共价连接。
在本发明中所述的动态聚合物,其可通过以下实施方式进行制备:
本发明的第一种制备实施方式,通过至少以下组分参与反应生成有机硼酸硅酯键获得所述的动态聚合物:
至少一种含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I),至少一种含有硅羟基和/或硅羟基前驱体的含硅化合物(II);其中,有机硼化合物(I)和含硅化合物(II)含有两个或两个以上官能团,且至少一种有机硼化合物(I)或至少一种含硅化合物(II)含有三个或三个以上官能团。
本发明的第二种制备实施方式,通过至少以下组分参与反应生成有机硼酸硅酯键和普通共价键获得所述的动态聚合物:
至少一种含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I),至少一种含有硅羟基和/或硅羟基前驱体的含硅化合物(II);其中,有机硼化合物(I)和含硅化合物(II)含有一个或一个以上官能团,且至少一种有机硼化合物(I)或至少一种含硅化合物(II)含有一个或一个以上其他反应性基团。
本发明的第三种制备实施方式,通过至少以下组分参与反应生成有机硼酸硅酯键获得所述的动态聚合物:
至少一种同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III),或者其与至少一种含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I)和/或至少一种含有硅羟基和/或硅羟基前驱体的含硅化合物(II);其中,化合物(III)、有机硼化合物(I)、含硅化合物(II)均含有两个或两个以上官能团,且至少一种化合物(III)或至少一种有机硼化合物(I)或至少一种含硅化合物(II)含有三个或三个以上官能团。
本发明的第四种制备实施方式,通过至少以下组分参与反应生成有机硼酸硅酯键和普通 共价键获得所述的动态聚合物:
至少一种同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III),或者其与至少一种含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I)和/或至少一种含有硅羟基和/或硅羟基前驱体的含硅化合物(II);其中,化合物(III)含有两个或两个以上官能团,有机硼化合物(I)、含硅化合物(II)含有一个或一个以上官能团,且至少一种化合物(III)或至少一种有机硼化合物(I)或至少一种含硅化合物(II)含有一个或一个以上其他反应性基团。
在以上所述的制备实施方式中,还可选择性地引入合适量的单官能团的有机硼化合物(I)和/或单官能团的含硅化合物(II)组分,可以通过组分配方的调节,获得所述的动态交联结构。单官能团化合物可以起到调节交联密度、动态性、机械力学强度等作用。
在以上所述的制备实施方式中,其他反应性基团的反应还可以通过引入不含有机硼酸基和/或有机硼酸酯基、硅羟基和/或硅羟基前驱体、有机硼酸硅酯键但含有其他反应性基团的化合物组分来一起实现。仅含有其他反应性基团的化合物可以是任意合适的化合物,其可以达到与有机硼化合物(I)和/或含硅化合物(II)和/或化合物(III)中的其他反应性基团反应获得具有“动态交联结构”的动态聚合物的目的。
在以上所述的制备实施方式中,用于制备所述动态聚合物的化合物(III),其可以选自同一种化合物(III),也可以选自不同种化合物(III);当其选自同一种化合物(III)时,其通过分子内和/或分子间的有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前驱体之间的反应获得所述的动态聚合物。
在动态聚合物的制备过程中,作为原料的化合物相互参与反应之后,原料组分之间能够以有机硼酸硅酯键或普通共价键为链接点进行聚合/交联,得到具有更高分子量的动态聚合物。其中,原料组分中含有的官能团可以完全反应,也可以部分反应,并不要求其中所有的有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体都完全相互反应形成有机硼酸硅酯键,只要形成的有机硼酸硅酯键足以维持动态聚合物结构即可。
在本发明中,由于利用上述几种实施方式制备动态聚合物的制备过程步骤简单,操作容易,可控性强,因此是本发明的优选实施方式。
在本发明中所述的动态聚合物,还可通过以下实施方式进行制备:
本发明的第五种制备实施方式,至少由一种或一种以上含有至少一个有机硼酸硅酯键以及至少一个其他反应性基团的化合物(IV)通过其他反应性基团之间的聚合/交联反应获得所述的动态聚合物;或者至少由一种或一种以上含有至少一个有机硼酸硅酯键以及至少一个其他反应性基团的化合物(IV)与不含有有机硼酸硅酯键但含有至少一个其他反应性基团的化合物通过其他反应性基团之间的聚合/交联反应获得所述的动态聚合物。
其中,含有有机硼酸硅酯键和其他反应性基团的化合物(IV),其可以是分子量不超过1000Da的小分子化合物,也可以是分子量大于1000Da的大分子化合物;在化合物(IV)中也可含有有机硼酸基和/或有机硼酸酯基、硅羟基和/或硅羟基前驱体;不含有有机硼酸硅酯键但含有其他反应性基团的化合物,其可以是分子量不超过1000Da的小分子化合物,也可以是分子量大于1000Da的大分子化合物。
在本发明中所述的含有有机硼酸硅酯键和其他反应性基团的化合物(IV),其可以如下结构表示:
Figure PCTCN2017083513-appb-000078
其中,E为含有有机硼酸硅酯键的模块;u为模块E的个数,u≥1;Y为单个模块E上的取代基团,或者为单个模块E上的取代基团和两个或多个模块E之间的连接基团,且至少一个基团Y与有机硼酸硅酯键的硼原子相连,至少一个基团Y与有机硼酸硅酯键的硅原子相连;其 中,在至少一个基团Y中含有至少一个其他反应性基团,并且在所有基团Y中含有的其他反应性基团数大于等于2;r为基团Y的个数,r≥2。
所述的含有有机硼酸硅酯键的模块E,其可以如下结构表示:
Figure PCTCN2017083513-appb-000079
其中,K13、K16、K20为与硼原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;K14、K15、K17、K18、K19、K21为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;
Figure PCTCN2017083513-appb-000080
表示与基团Y的连接。需要指出的是,在上述结构中,在合适的不同基团K之间、不同基团Y之间以及基团K和基团Y之间也可以成环;基团Y可通过Si-O键与硼原子相连,也可通过B-O键与硅原子相连。
在本发明中,所述的含有有机硼酸硅酯键的模块E,可以通过本发明中所提到的任一种或任几种含有有机硼酸基和/或有机硼酸酯基的模块A与任一种或任几种含有硅羟基和/或硅羟基前驱体的模块G通过有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前驱体之间的缩合反应或酯交换反应所得。
当u=1时,r=2、3、4或5,Y为单个模块E上的取代基团,Y可选自同一种结构或多种不同结构,并且Y含有的其他反应性基团的数量和结构必须保证可以获得所述的动态聚合物;所述的Y结构可选自以下任一种或任几种:分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基。
当u>1时,模块E可选自同一种结构或多种不同结构,此时r≥2,Y为单个模块E上的取代基团和两个或多个模块E之间的连接基团,Y可选自同一种结构或多种不同结构,并且Y含有的其他反应性基团的数量和结构必须保证可以获得所述的动态聚合物;所述的Y结构可选自分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基中的任一种或任几种以及单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基中的任一种或任几种,其具体定义可参考基团L和基团T,这里不再一一说明。
当与有机硼酸硅酯键的硼原子相连的基团Y和与有机硼酸硅酯键的硅原子相连的基团Y之间形成环状结构时,则可得到有机硼酸硅酯键位于环状结构中的化合物(IV),此时在合适的条件下,可利用有机硼酸硅酯键的动态性和其他反应性基团的聚合/交联反应,获得所述的动态交联聚合物。
对于含有有机硼酸硅酯键和其他反应性基团的化合物(IV),其一般为含有有机硼酸硅酯键的单体、含有有机硼酸硅酯键的低聚物、含有有机硼酸硅酯键的预聚物。化合物(IV)可通过任意合适的方法制备,包括通过合适的有机硼化合物(I)和含硅化合物(II)进行制备。优选地,化合物(IV)可以通过至少一种含有其他反应性基团的有机硼化合物(I)和至少一种含有其他反应性基团的含硅化合物(II)进行反应制备,也可以通过至少一种含有其他反应性基团的有机硼化合物(I)与至少一种不含有其他反应性基团的含硅化合物(II)进行反应制备,也可以通过至少一种不含有其他反应性基团的有机硼化合物(I)与至少一种含有其他反应性基团的含硅化合物(II)进行反应制备;化合物(IV)也可以通过至少一种含有其 他反应性基团的化合物(III)或其与有机硼化合物(I)和/或含硅化合物(II)进行反应制备。
同理,不含有有机硼酸硅酯键但含有其他反应性基团的化合物可以是任意合适的化合物,其能够达到与化合物(IV)中的其他反应性基团反应获得具有所述“动态交联结构”的动态聚合物的目的即可。
含有其他反应性基团的化合物在反应过程中,组分之间能够通过所含有的其他反应性基团相互反应形成普通共价链接,从而得到具有所述“动态交联结构”的动态聚合物。
在本发明中,由于此实施方式在某些特定情况下用于制备动态聚合物有其特定的优势,因此也是本发明的优选实施方式。
本发明中的动态聚合物不仅限于利用以上所述的几种实施方式进行制备,其也可以是上述几种实施方式或其与其他种实施方式的组合。但凡在实施方式中利用有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)作为原料进行制备动态聚合物,无论其是以原料的形式,还是以合成原料的化合物的形式,亦或者是以合成聚合物的中间产物的形式,由于其均可根据本发明的指导所得出,理应包含在本发明的专利保护范围内。同样地,本领域的技术人员也可以根据本发明的指导,合理地利用上述几种化合物实施得到所述的动态聚合物。
综上所述,可至少利用以下一种或几种化合物作为原料获得所述的动态聚合物:
含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I);含有硅羟基和/或硅羟基前躯体的含硅化合物(II);同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III);含有有机硼酸硅酯键和其他反应性基团的化合物(IV);其中,有机硼化合物(I),含硅化合物(II),化合物(III)均含有至少一个官能团;其中,有机硼化合物(I),含硅化合物(II),化合物(III)可含有,也可不含有其他反应性基团;其中,有机硼化合物(I)或者含硅化合物(II)不单独作为原料制备所述的动态聚合物。
在本发明中所提到的杂原子基团,其可以是任意合适的含有杂原子的基团,其可选自以下任一种基团,但本发明不仅限于此:卤素、羟基、硫醇、羧基、硝基、伯胺基、硅基、磷基、三氮唑、异噁唑、酰胺基、酰亚胺基、烯胺基、碳酸酯基、氨基甲酸酯基、原酸酯基、磷酸酯基、亚磷酸酯基、次磷酸酯基、膦酸酯基、磷酰基、亚磷酰基、次磷酰基、碳酰胺、磷酰胺、亚磷酰胺、焦磷酰胺、环磷酰胺、异环磷酰胺、硫代磷酰胺、乌头酰基、肽键、偶氮基、脲基、异脲基、异硫脲基、脲基甲酸酯基、硫脲基甲酸酯基、胍基、脒基、氨基胍基、氨基脒基、亚氨酸基、硝酰基、亚硝酰基、磺酸基、磺酸酯基、亚磺酸酯基、磺酰胺基、亚磺酰胺基、磺酰肼基、磺酰脲基、马来酰亚胺、三唑啉二酮。
在本发明中所提到的分子量不超过1000Da的小分子烃基,其一般含有1到71个碳原子,其可含有杂原子基团,也可不含有杂原子基团。概括地讲,所述的小分子烃基可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:C1-71烷基、环C3-71烷基、苯基、苄基、芳烃基;小分子烃基优选为甲基、乙基、丙基、丙烯、丁基、丁烯、戊基、己基、庚基、辛基、壬基、癸基、环己基、苯基;更优选为甲基、乙基、丙基、苯基。
在本发明中所提到的分子量大于1000Da的聚合物链残基,其可为任意合适的聚合物链残基,包括但不仅限于碳链聚合物残基、杂链聚合物残基、元素有机聚合物残基。其中,聚合物可为均聚物,也可为任几种单体、低聚物或聚合物组成的共聚物;聚合物链可为柔性链,也可为刚性链。
其中,所述的碳链聚合物残基,其可以是任意合适的大分子主链主要由碳原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:聚烯烃类链残基,如聚乙烯链残基、聚丙烯链残基、聚异丁烯链残基、聚苯乙烯链残基、聚氯乙烯链残基、聚偏氯乙烯链残基、聚氟乙烯链残基、聚四氟乙烯链残基、 聚三氟氯乙烯链残基、聚醋酸乙烯酯链残基、聚乙烯基烷基醚链残基、聚丁二烯链残基、聚异戊二烯链残基、聚氯丁二烯链残基、聚降冰片烯链残基等;聚丙烯酸类链残基,如聚丙烯酸链残基、聚丙烯酰胺链残基、聚丙烯酸甲酯链残基、聚甲基丙烯酸甲酯链残基等;聚丙烯腈类链残基,如聚丙烯腈链残基等;优选聚乙烯链残基、聚丙烯链残基、聚苯乙烯链残基、聚氯乙烯链残基、聚丁二烯链残基、聚异戊二烯链残基、聚丙烯酸链残基、聚丙烯酰胺链残基、聚丙烯腈链残基;所述的碳链聚合物残基,其可通过点击反应形成。
所述的杂链聚合物残基,其可以是任意合适的大分子主链主要由碳原子和氮、氧、硫等杂原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:聚醚类链残基,如聚环氧乙烷链残基、聚环氧丙烷链残基、聚四氢呋喃链残基、环氧树脂链残基、酚醛树脂链残基、聚苯醚链残基等;聚酯类链残基,如聚己内酯链残基、聚戊内酯链残基、聚丙交酯链残基、聚对苯二甲酸乙二醇酯链残基、不饱和聚酯链残基、醇酸树脂链残基、聚碳酸酯链残基等;聚胺类链残基,如聚酰胺链残基、聚酰亚胺链残基、聚氨酯链残基、聚脲链残基、脲醛树脂链残基、蜜胺树脂链残基等;聚硫类链残基、如聚砜链残基、聚苯硫醚链残基等;优选聚环氧乙烷链残基、聚四氢呋喃链残基、环氧树脂链残基、聚己内酯链残基、聚丙交酯链残基、聚酰胺链残基;所述的杂链聚合物残基,其可通过点击反应,如CuAAC反应、thiol-ene反应形成。
所述的元素有机聚合物残基,其可以是任意合适的大分子主链主要由硅、硼、铝等无机元素杂原子和氮、氧、硫、磷等杂原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:有机硅类聚合物链残基,如聚有机硅烷链残基、聚有机硅氧烷链残基、聚有机硅硼烷链残基、聚有机硅氮烷链残基、聚有机硅硫烷链残基、聚有机磷硅氧烷链残基、聚有机金属硅氧烷链残基;有机硼类聚合物链残基,如聚有机硼烷链残基、聚有机硼氮烷链残基、聚有机硼硫烷链残基、聚有机硼磷烷链残基等;有机磷类聚合物链残基;有机铅类聚合物链残基;有机锡类聚合物链残基;有机砷类聚合物链残基;有机锑类聚合物链残基;优选聚有机硅烷链残基、聚有机硅氧烷链残基、聚有机硼烷链残基。
在本发明中所提到的分子量不超过1000Da的小分子硅烷基,其可以是任意合适的分子主链主要由硅原子和氮、氧、硫、磷等杂原子构成的小分子硅烷基,概括地讲,所述的小分子硅烷基可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:硅碳烷链残基、硅氧烷链残基、硅硫烷链残基、硅氮烷链残基;优选硅碳烷链残基、硅氧烷链残基。
在本发明中所提到的分子量不超过1000Da的无机小分子链残基,其可以是任意合适的分子主链和侧链均主要由硅、硼、铝等无机元素杂原子和氮、氧、硫、磷等杂原子构成的无机小分子链残基,概括地讲,所述的无机小分子链残基可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:硅烷链残基、硅氧化合物链残基、硫硅化合物链残基、硫氮化合物链残基、磷腈化合物链残基、磷氧化合物链残基、硼烷链残基;优选硅烷链残基、硅氧化合物链残基、磷腈化合物链残基、硼烷链残基。
在本发明中所提到的分子量大于1000Da的无机大分子链残基,其可以是任意合适的大分子主链和侧链均主要由硅、硼、铝等无机元素杂原子和氮、氧、硫、磷等杂原子构成的无机大分子链残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:聚硅烷链残基、聚硅氧烷链残基、聚硫硅链残基、聚硫氮链残基、聚磷酸链残基、聚磷腈链残基、聚氯代磷腈链残基、聚硼烷链残基;也可选自以下组中任一种带有残基的无机大分子或任一种经过表面改性的带有残基的无机大分子:沸石型分子筛、磷酸铝分子筛、磷酸锆分子筛、杂多酸盐分子筛、金刚石、石墨、碳纤维、白磷、红磷、五氧化磷、硫化钼、二氧化硅、二硫化硅、氮化硅、碳化硅、滑石、高岭土、蒙脱石、云母、石 棉、长石、水泥、玻璃、石英、陶瓷、氧化硼、氮化硫、硅化钙、硅酸盐、玻璃纤维、氧化铍、氧化镁、氧化汞、硼氢化物、氮化硼、碳化硼、氮化铝、水铝石、水铝矿、刚玉、二氧化钛;优选聚硅烷链残基、聚硅氧烷链残基、聚磷腈链残基、聚硼烷链残基、经过表面改性的石墨、经过表面改性的碳纤维、经过表面改性的二氧化硅、经过表面改性的氮化硅、经过表面改性的碳化硅、经过表面改性的硅酸盐、经过表面改性的玻璃纤维、经过表面改性的氮化硼。
对于小分子烃基、聚合物链残基、小分子硅烷链残基、无机小分子链残基、无机大分子链残基的结构并未作特别限定,其可以是直链形、支链形、多臂结构形、星形、梳形、树枝形、超分子形、单环形、多环形、螺环形、稠环形、桥环形、带环状结构的链形、二维和三维团簇形;在小分子烃基、聚合物链残基、小分子硅烷链残基、无机小分子链残基、无机大分子链残基中,可以含有柔性链段,也可含有刚性链段。
为了说明的简明性,在本发明的说明书中,利用连接词“和/或”来表示所述的术语可以包含选自连接词“和/或”之前所述的选项,或者选自连接词“和/或”之后所述的选项,或者同时选自连接词“和/或”之前和之后所述的选项这三种情况。例如,说明书中“一种具有动态交联结构的动态聚合物,其在交联网络的聚合物链骨架上和/或聚合物链之间的交联链接骨架上含有有机硼酸硅酯键”中的“和/或”,其含义即是动态聚合物可以在交联网络的聚合物链骨架上含有有机硼酸硅酯键,或者在交联网络的聚合物链之间的交联链接骨架上含有有机硼酸硅酯键,或者同时在交联网络的聚合物链骨架上和聚合物链之间的交联链接骨架上含有有机硼酸硅酯键;再例如,说明书中“所述的有机硼酸硅酯键作为动态聚合物的聚合链接点和/或交联链接点而存在”中的“和/或”,其含义即是有机硼酸硅酯键可以作为动态聚合物的聚合链接点而存在,或者作为动态聚合物的交联链接点而存在,或者同时作为动态聚合物的聚合链接点和交联链接点而存在;再例如,说明书中“A为含有有机硼酸基和/或有机硼酸酯基的模块”中的“和/或”,其含义即是A为含有有机硼酸基的模块,或者为含有有机硼酸酯基的模块,或者为同时含有有机硼酸基和有机硼酸酯基的模块。在本发明说明书中其他地方出现的连接词“和/或”,均代表此类含义。
本发明中所述的“有机基团”,指的是主要以碳元素和氢元素作为骨架所构成的基团,其可以是分子量不超过1000Da的小分子基团,也可以是分子量大于1000Da的聚合物链残基,合适的基团举例如:甲基、乙基、乙烯基、苯基、苄基、羧基、醛基、乙酰基、丙酮基等。
本发明中所述的“有机硅基团”,指的是主要以硅元素和氢元素作为骨架所构成的基团,其可以是分子量不超过1000Da的小分子硅烷基,也可以是分子量大于1000Da的有机硅类聚合物链残基,合适的基团举例如:硅烷基、硅氧烷基、硅硫烷基、硅氮烷基等。
本发明中所述的“普通共价键”,指的即是传统意义上的除动态共价键以外的共价键,其为原子间通过共用电子对所形成的一种相互作用,在通常温度下(一般不高于100℃)和通常时间内(一般小于1天)较难发生断裂,其包括但不限于通常的碳-碳键、碳-氧键、碳-氢键、碳-氮键、碳-硫键、氮-氢键、氮-氧键、氢-氧键、氮-氮键等。
本发明中所用术语“分子量”均代表物质的相对分子质量,对于小分子化合物、小分子基团及某些具有固定结构的大分子化合物、大分子基团而言,其分子量一般具有单分散性,也即具有固定分子量;而对于低聚物,高聚物、低聚物残基、高聚物残基等具有多分散性分子量的物质,其分子量一般指代平均分子量。其中,本发明中的小分子化合物、小分子基团特指分子量不超过1000Da的化合物或基团;大分子化合物、大分子基团特指分子量大于1000Da的化合物或基团。
本发明中所用术语“聚合”,指的是较低分子量的反应物通过缩聚、加聚、开环聚合等反应形式合成具有较高分子量的产物的过程。在这其中,反应物一般为具有聚合能力(即能够自发地进行聚合,或者能够在引发剂或外加能作用下进行聚合)的单体、低聚物、预聚物等 化合物。由一种反应物进行聚合得到的产物称为均聚物。由两种或两种以上反应物进行聚合得到的产物称为共聚物。需要指出的是,在本发明中所述的“聚合”,其包含反应物分子链的线性增长过程,包含反应物分子链的支化过程,包含反应物分子链的成环过程,但并不包含反应物分子链的交联过程;即所述的“聚合”,指的是除交联反应过程之外的反应物分子链聚合增长过程。
本发明中所用术语“交联”,指的是反应物分子间和/或反应物分子内通过动态共价键和可选的普通共价键的化学连接形成具有二维、三维团簇型进而形成三维无限网状型产物的过程。在以普通共价键进行交联时,必须保证聚合物的普通共价交联的交联度低于凝胶点,以便使得动态可逆的有机硼酸硅酯键解离时,聚合物体系可以解离为更小的非交联和/或团簇单元。
本发明中所用术语“杂原子”是指氮原子、氧原子、硫原子、磷原子、硅原子、硼原子等常见的非碳原子。
本发明中所用术语“烷基”是指具有直链或支链结构的饱和烃基。在适当的情况下,烷基可具有指定的碳原子数,例如,C1-4烷基,所述烷基包括在直链或支链排列中具有1、2、3或4个碳原子的烷基。合适的烷基的实例包括但不限于甲基、乙基、丙基、正丁基、异丁基、叔丁基、正戊基、2-甲基丁基、3-甲基丁基、4-甲基丁基、正己基、2-甲基戊基、3-甲基戊基、4-甲基戊基、5-甲基戊基、2-乙基丁基、3-乙基丁基、庚基、辛基、壬基、癸基。
本发明中所用术语“环烷基”是指饱和的环烃。环烷基环可包括指定的碳原子数。例如,3至8元环烷基包括3、4、5、6、7或8个碳原子。合适的环烷基的实例包括但不限于环丙基、环己基、环庚基和环辛基。
本发明中所用术语“芳烃基”意指在各个环中至多7个原子的任何稳定的单环或多环碳环,其中至少一个环为芳香族的。此类芳基的实例包括但不限于苯基、联苯基、萘基、联萘基、四氢萘基、茚满基、蒽基、联蒽基、菲基、联菲基。
本发明中所用术语“杂芳烃基”表示在各个环中至多7个原子的稳定的单环或多环,其中至少一个环为芳香族且至少一个环含有选自O、N、S、P、Si、B等杂原子。
在本发明的环状结构中所提到的单环结构,指的是在环状结构中只含有一个环,举例如:
Figure PCTCN2017083513-appb-000081
所提到的多环结构,指的是在环状结构中含有两个或两个以上独立的环,举例如:
Figure PCTCN2017083513-appb-000082
所提到的螺环结构,指的是在环状结构中含有由两个或多个环彼此间通过共用一个原子构成的环状结构,举例如:
Figure PCTCN2017083513-appb-000083
所提到的稠环结构(其也包括二环、芳并环结构),指的是在环状结构中含有由两个或多个环彼此间通过共用两个相邻的原子构成的环状结构,举例如:
Figure PCTCN2017083513-appb-000084
所提到的桥环结构,指的是在环状结构中含有由两个或多个环彼此间通过共用两个以上相邻的原子构成的环状结构,其具有三维的笼状结构,举例如:
Figure PCTCN2017083513-appb-000085
所提到的嵌套环结构,指的是在环状结构中含有由两个或多个环彼此间相连或嵌套构成的环状结构,举例如:
Figure PCTCN2017083513-appb-000086
为简便起见,本发明中也将基团中的碳原子数范围以下标形式标注在C的下标位置,表示该基团具有的碳原子数,例如C1-10表示“具有1至10个碳原子”、C3-20表示“具有3至20个碳原子”。“不饱和的C3-20烃基”指C3-20烃基中含有不饱和键的化合物。“取代的C3-20烃基”指C3-20烃基的氢原子被取代得到的化合物。“杂化的C3-20烃基”指C3-20烃基中的碳原子被杂原子取代得到的化合物。当一个基团可选自C1-10烃基时,其可选自下标所示范围中任一种碳原子数的烃基,即可选自C1、C2、C3、C4、C5、C6、C7、C8、C9、C10烃基中任一种烃基。本发明中,在没有特别说明的情况下,以区间形式标记的下标均表示可选自该范围内任一整数,该范围包括两个端点。
当涉及到的结构具有同分异构体时,没有特别指定的情况下,可以为其中任一种异构体。如对于烷基,没有特别指定的情况下,指失去任一位置的氢原子形成的烃基。具体地,如丙基指正丙基、异丙基中任一种,亚丙基指1,3-亚丙基、1,2-亚丙基、异亚丙基中任一种。
本发明中“取代的”,以“取代的烃基”为例,指被取代的“烃基”中任一位置的任一个或一个以上的氢原子可以被任一取代基所取代。没有特别限定的情况下,其中的取代基没有特别限制。
对于一个化合物、一个基团或一个原子,可以同时被取代和被杂化,例如硝基苯基取代氢原子,又如-CH2-CH2-CH2-被替换为-CH2-S-CH(CH3)-。
在本发明中,对于构成动态聚合物有机硼酸硅酯键的有机硼酸基和有机硼酸酯基,由于基团中硼原子所具有的缺电子性,使得其易被含有未共用电子对的亲核试剂所进攻而产生键合;而对于构成有机硼酸硅酯键的硅羟基(包括能够通过转化得到硅羟基的硅羟基前驱体),由于硅羟基氧原子上含有未共用电子对,以及硅羟基本身所具有的强极性和高活性,其在与有机硼酸基和/或有机硼酸酯基相接触的过程中,能够进行较为快速的脱水缩合反应、酯交换反应等反应形成有机硼酸硅酯键,从而构成聚合物。本发明正是利用了有机硼酸基和有机硼酸酯基与硅羟基所具有的高反应活性,有机硼酸硅酯键所具有的较强的动态可逆性,制得了在较为温和的条件下即可体现出动态效果的动态聚合物。同时,利用有机硼酸基和/或有机硼酸酯基来形成有机硼酸硅酯键,使得构成有机硼酸硅酯键的组分选择更为丰富,对于动态聚合物的结构、动态可逆性、力学性能、耐溶剂性等方面的调控性大大提高,扩展了聚合物的 应用范围。
当将含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I)与含有硅羟基和/或硅羟基前驱体的含硅化合物(II)在溶解或熔融状态下进行混合时,有机硼化合物(I)中的有机硼酸基能够与含硅化合物(II)中的硅羟基进行快速的缩合反应形成有机硼酸硅酯键,从而得到动态聚合物;有机硼化合物(I)中的有机硼酸酯基,可以直接与含硅化合物(II)中的硅羟基进行酯交换反应形成有机硼酸硅酯键,也可以先通过水解形成有机硼酸基后再与含硅化合物(II)中的硅羟基进行缩合反应形成有机硼酸硅酯键,从而得到动态聚合物;含硅化合物(II)中的硅羟基前驱体,可以直接与有机硼化合物(I)中的有机硼酸基通过脱去小分子进行缩合反应,也可以先通过水解形成硅羟基后,再与有机硼化合物(I)中的有机硼酸基进行缩合反应,或者与有机硼化合物(I)中的有机硼酸酯基进行酯交换反应形成有机硼酸硅酯键,从而得到动态聚合物。其中,优选利用含有有机硼酸基的有机硼化合物(I)与含有硅羟基前驱体的含硅化合物(II)、含有有机硼酸酯基的有机硼化合物(I)与含有硅羟基的含硅化合物(II)形成有机硼酸硅酯键得到动态聚合物,更优选利用含有有机硼酸酯基的有机硼化合物(I)与含有硅羟基的含硅化合物(II)形成有机硼酸硅酯键得到动态聚合物。当使用含有有机硼酸酯基的有机硼化合物(I)或含有硅羟基前驱体的含硅化合物(II)进行反应时,一般需要较高温度进行反应,或者通过对其中之一进行原位水解后进行缩合反应。一个聚合体系中,可以同时含有一种或者多种有机硼化合物(I)以及一种或者多种含硅化合物(II)。
对于同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III),其一般需要通过控制反应条件以及添加合适的反应助剂,使化合物(III)中的有机硼酸基能够与同种或者不同种化合物(III)中含有的硅羟基前驱体进行反应形成有机硼酸硅酯键,或者使化合物(III)中的有机硼酸酯基能够与同种或者不同种化合物(III)中含有的硅羟基前驱体进行反应形成有机硼酸硅酯键,或者使化合物(III)中的有机硼酸酯基先通过水解得到有机硼酸基后再与同种或者不同种化合物(III)中含有的硅羟基前驱体进行反应形成有机硼酸硅酯键,或者使化合物(III)中的有机硼酸酯基与同种或者不同种化合物(III)中含有的硅羟基前躯体先通过水解得到的硅羟基进行缩合反应形成有机硼酸硅酯键,或者使化合物(III)中的有机硼酸酯基和硅羟基前躯体同时先水解再进行缩合反应形成有机硼酸硅酯键,从而得到动态聚合物。一个聚合体系中,除可以含有一种或者多种化合物(III)外,还可以同时含有一种或者多种有机硼化合物(I)和/或一种或者多种含硅化合物(II)。
对于有机硼化合物(I)、含硅化合物(II)、化合物(III),其在形成动态聚合物的过程中,除了利用化合物中含有的有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体进行反应外,还可选择性地利用其他反应性基团通过聚合/交联反应进行普通共价连接,从而与有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体一起,共同反应得到动态聚合物。
对于化合物(IV),其一般是通过化合物(IV)中所含有的其他反应性基团之间的相互反应,或者通过化合物(IV)中所含有的其他反应性基团与其他化合物中所含有的其他反应性基团之间的相互反应,从而得到含有有机硼酸硅酯键的动态聚合物。
对于含有其他反应性基团的化合物参与的实施方式,其可通过诸如如下形式的反应得到动态聚合物:通过化合物中含有的羟基和化合物中含有的羧基进行缩合反应形成酯键,从而得到动态聚合物;通过化合物中含有的氨基和化合物中含有的羧基进行缩合反应形成酰胺键,从而得到动态聚合物;通过化合物中含有的环氧基团和化合物中含有的羟基、氨基、巯基进行开环反应形成醚键、仲胺键、硫醚键,从而得到动态聚合物;在引发剂或外加能的作用下,通过化合物中含有的烯烃进行自由基聚合,从而得到动态聚合物;在引发剂或外加能的作用下,通过化合物中含有的烯烃进行阴/阳离子聚合,从而得到动态聚合物;通过化合物中含有的环氧基团进行开环聚合形成醚键,从而得到动态聚合物;在一价铜催化下,通过化合物中含有的叠氮基团和化合物中含有的炔基进行CuAAC反应,从而得到动态聚合物;通过化合 物中含有的巯基和化合物中含有的烯烃进行thiol-ene点击反应,从而得到动态聚合物;通过化合物中含有的双键之间的加成反应,从而得到动态聚合物等。
用于制备动态聚合物的有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、其他含有其他反应性基团的化合物,其可以是气体、液体、晶体、粉末、颗粒、胶状、膏状等。
在制备动态聚合物的过程中,作为原料的有机硼化合物(I)、化合物(III)中的有机硼酸,其可以有机硼酸或有机硼酸酯的形式存在。其中,以有机硼酸酯形式存在的化合物原料较为稳定,有利于运输与保存;另外,通过使用含有有机硼酸酯的原料,可以更好地调控最终的动态聚合物中的聚合度、交联度以及动态性等参数,从而可以调控聚合物的综合性能。
在制备动态聚合物的过程中,作为原料的含硅化合物(II)、化合物(III)中的硅羟基,其可以硅羟基或硅羟基前驱体的形式存在。其中,含硅化合物(II)、化合物(III)中的硅羟基以硅羟基前驱体形式存在时,其在水解成硅羟基的过程中,可以有多种来源获得水解所需的水,可以是人为加入的,也可以是原料或基材表面吸附的,也可以是大气中含有的水汽,也可以是化学反应生成的。含硅化合物(II)、化合物(III)在水解的过程中,为了避免硅羟基的自缩合,可以选择性地加入少量缩合抑制剂,使得反应体系尽量保持在中性;也可以加入适量的非极性惰性溶剂,使得生成的硅醇溶解于有机溶剂中,减少其在水介质中的相互作用;也可以通过调节反应温度,减缓缩合反应的发生。其中,以硅羟基前驱体形式存在的化合物作为原料较为稳定,有利于运输与保存,也可通过利用基团活性的不同来调控聚合物的合成过程和性能参数。
在含硅化合物(II)原料的合成和使用过程中,可以选择性地加入一些缩合抑制剂,其一般是为了使体系能够保持在中性或接近中性的条件下,避免硅羟基缩合成硅氧烷,从而能够得到高产率的含有硅羟基的化合物。在含硅化合物(II)的使用过程中,尽量保证合成好的或水解后的含硅化合物(II)现合现用;更为合适的选择是,在含硅化合物(II)合成或水解之后,紧接着就控制条件将其与有机硼化合物(I)进行缩合反应,得到动态聚合物。在将含硅化合物(II)与有机硼化合物(I)反应的过程中,尽量保证与其进行反应的有机硼化合物(I)处于过量的状态下,对于含硅化合物(II)固体或液体,多采用缓慢添加或滴加的形式加入到有机硼化合物(I)中。
当原料选自化合物(III)时,为保证原料的稳定性,化合物(III)中的有机硼酸优先选择以有机硼酸酯的形式存在,化合物(III)中的硅羟基优先选择以硅羟基前驱体的形式存在,并且在化合物(III)的制备过程中,应尽量使用非极性惰性溶剂作为反应溶剂,并在低温条件下进行保存;同时,在原料的合成过程中往往也需要加入一些缩合抑制剂,并尽量保证化合物(III)现合现用。在化合物(III)中,有机硼酸基和/或有机硼酸酯基的摩尔当量一般情况下需大于硅羟基和/或硅羟基前躯体的摩尔当量,并通过控制温度,pH等条件,使得硅羟基和/或硅羟基前躯体与有机硼酸基和/或有机硼酸酯基充分反应。
考虑到化合物(III)在制备以及保存过程中所采用的方式方法相对较为繁杂,因此用于制备动态聚合物的原料组分优先在有机硼化合物(I)与含硅化合物(II)中进行搭配选择,但化合物(III)也是动态聚合物原料的重要组成之一,在某些特定情况下具有其特定的优势,不能忽略。
当选用含有有机硼酸硅酯键的化合物(IV)来制备动态聚合物时,可先通过选用合适的有机硼化合物(I)和含硅化合物(II)制备化合物(IV),再将制备好的化合物(IV)通过合适的聚合/交联方法得到动态聚合物,也可将制备好的化合物(IV)与其他可选的不含有有机硼酸硅酯键的化合物通过合适的聚合/交联方法得到动态聚合物。
其中,所述的合适的聚合方法,其可以通过本领域所通用的任一种合适的聚合反应来进行,包括但不仅限于缩合聚合反应、加成聚合反应、开环聚合反应;其中,加成聚合反应包 括但不仅限于自由基聚合反应、阴离子聚合反应、阳离子聚合反应、配位聚合反应。
在具体实施过程中,化合物(IV)、含有其他反应性基团的化合物可利用上述的任一种聚合反应方法,通过本领域所通用的任一种合适的聚合工艺来实施,以得到动态聚合物。例如,当化合物(IV)、含有其他反应性基团的化合物以缩合聚合的形式得到动态聚合物时,其可通过熔融聚合、溶液聚合、界面聚合等聚合工艺进行实施;又例如,当化合物(IV)、含有其他反应性基团的化合物以自由基聚合的形式得到动态聚合物时,其可通过本体聚合、溶液聚合、悬浮聚合、乳液聚合等聚合工艺进行实施;再例如,当化合物(IV)、含有其他反应性基团的化合物以离子聚合的形式得到动态聚合物时,其可通过溶液聚合、淤浆聚合、气相聚合等聚合工艺进行实施。
在上述聚合工艺中所提到的熔融聚合,其通常的实施方法是将化合物(IV)、含有其他反应性基团的化合物处于熔融状态下,利用引发剂或光、热、辐照、催化等条件进行聚合,得到熔融状态的动态聚合物;所提到的溶液聚合,其通常的实施方法是将化合物(IV)、含有其他反应性基团的化合物、引发剂溶于适当溶剂中进行聚合得到动态聚合物;所提到的界面聚合,其通常的实施方法是将化合物(IV)、含有其他反应性基团的化合物溶解在两种互不相溶的溶剂中,在溶液的界面上(或界面有机相一侧)进行聚合得到动态聚合物;所提到的本体聚合,其通常的实施方法是将化合物(IV)、含有其他反应性基团的化合物在少量引发剂或光、热、辐照、催化等条件下进行聚合得到动态聚合物;所提到的悬浮聚合,其通常的实施方法是将化合物(IV)、溶解有引发剂的含有其他反应性基团的化合物搅拌成小液滴,悬浮在水介质中进行聚合得到动态聚合物;所提到的乳液聚合,其通常的实施方法是将化合物(IV)、含有其他反应性基团的化合物借助乳化剂的作用分散在溶解有引发剂的水介质中,形成乳液后再进行聚合得到动态聚合物;所提到的淤浆聚合,其通常的实施方法是将化合物(IV)、含有其他反应性基团的化合物溶于适当溶剂中,引发剂则以分散体的形式存在于溶剂中进行聚合,得到的动态聚合物以沉淀的形式析出;所提到的气相聚合,其通常的实施方法是将化合物(IV)、含有其他反应性基团的化合物在气相状态下,利用引发剂或光、热、辐照、催化等条件进行聚合得到动态聚合物。
在本发明的实施方式中,有机硼化合物(I)、含硅化合物(II)、化合物(III)中的其他反应性基团也可通过上述的聚合方法在化合物间形成普通共价连接。有机硼化合物(I)、含硅化合物(II)、化合物(III)亦可以采用溶液聚合工艺、乳液聚合工艺来制备动态聚合物。所述的溶液聚合工艺、乳液聚合工艺,其具有能够降低体系粘度,易于传质传热、便于温度控制、可避免局部过热的优势,所获得的溶液、乳液便于浓缩或分散,有利于进行涂覆、混合等操作。
在本发明的各制备实施方式中,可通过本领域已知的任意合适的材料混合方式将一定配比的原料通过混合制备动态聚合物,其可以是间歇、半连续或连续工艺形式的混合;同样地,也可选择间歇、半连续或连续工艺形式对动态聚合物进行成型。采用的混合方式包括但不仅限于溶液搅拌混合、熔融搅拌混合、捏合、密炼、开炼、熔融挤出、球磨等,其中优选溶液搅拌混合、熔融搅拌混合和熔融挤出。在物料混合过程中的能量提供形式包括但不仅限于加热、光照、辐射、微波、超声。采用的成型方式包括但不仅限于挤出成型、注射成型、模压成型、流延成型、压延成型、铸塑成型。
在聚合物的制备过程中,动态聚合物还可以与某些可添加的助剂、填料进行共混来组成动态聚合物复合体系,但这些添加物并不都是必须的。
利用溶液搅拌混合制备动态聚合物的具体方法,通常是将原料以溶解或分散的形式在各自的溶剂中或者共同的溶剂中在反应器中进行搅拌混合。通常,混合反应温度控制在0-200℃,优选25-120℃,更优选25-80℃,混合搅拌时间控制在0.5-12h,优选1-4h。可将混合搅拌后得到的产物浇注到合适的模具中,在0-150℃,优选25-80℃温度条件下,放置0-48h,得到 聚合物样品。此过程中可根据需要选择保留溶剂制成以溶液、乳浊液、悬浊液、膏状、胶状等形式存在的聚合物样品,或者选择除去溶剂制成膜状、块状等形式存在的固态聚合物样品。
以化合物(IV)作为原料利用此方法制备动态聚合物时,通常还需要视情况在溶剂中加入引发剂以溶液聚合的方式来引发聚合得到动态聚合物,或者加入分散剂和油溶性引发剂配制成悬浮液以悬浮聚合或淤浆聚合的方式来引发聚合得到动态聚合物,或者加入引发剂和乳化剂配制成乳浊液以乳液聚合的方式来引发聚合得到动态聚合物。所采用的溶液聚合、悬浮聚合、淤浆聚合以及乳液聚合的方法,均为本领域的技术人员所熟知并广泛使用的聚合方法,可依据实际情况进行调整,这里不再详细展开。
上述制备方法中所用到的溶剂,应根据反应物、产物及反应过程等实际情况进行选择,包括但不仅限于以下任一种溶剂或任几种溶剂的混合溶剂:去离子水、乙腈、丙酮、丁酮、苯、甲苯、二甲苯、乙酸乙酯、乙醚、甲基叔丁基醚、四氢呋喃、甲醇、乙醇、氯仿、二氯甲烷、1,2-二氯乙烷、二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、醋酸异丙酯、醋酸正丁酯、三氯乙烯、均三甲苯、二恶烷、Tris缓冲液、柠檬酸缓冲液、乙酸缓冲溶液、磷酸缓冲溶液、硼酸缓冲溶液等;优选去离子水、甲苯、氯仿、二氯甲烷、1,2-二氯乙烷、四氢呋喃、二甲基甲酰胺、磷酸缓冲溶液。
上述制备方法中,所配置的化合物液体浓度根据所选反应物的结构、分子量、溶解度及所需的分散状态而定,没有特别限定,优选的化合物液体浓度为0.1~10mol/L,更优选为0.1~1mol/L。
利用熔融搅拌混合制备动态聚合物的具体方法,通常是将原料在反应器中直接搅拌混合或加热熔融后搅拌混合反应,此种方式一般在原料为气体、液体或熔点较低的固体的情况下使用。通常,混合反应温度控制在0-200℃,优选25-120℃,更优选25-80℃,混合搅拌时间控制在0.5-12h,优选1-4h。可将混合搅拌后得到的产物浇注到合适的模具中,在0-150℃,优选25-80℃温度条件下,放置0-48h,得到聚合物样品。
以化合物(IV)作为原料利用此方法制备动态聚合物时,通常还需要视情况加入少量引发剂以熔融聚合或气相聚合的方式来引发聚合得到动态聚合物。其所采用的熔融聚合、气相聚合的方法,均为本领域的技术人员所熟知并广泛使用的聚合方法,可依据实际情况进行调整,这里不再详细展开。
利用熔融挤出混合制备动态聚合物的具体方法,通常是将原料加入到挤出机中进行挤出共混反应,挤出温度为0-280℃,优选50-150℃。反应产物可直接流延成型后裁成合适尺寸,或者将得到的挤出样品进行破碎后,利用注塑机或者模压机进行制样。注塑温度为0-280℃,优选50-150℃,注塑压力优选60-150MPa;模压温度为0-280℃,优选25-150℃,更优选25-80℃,模压时间为0.5-60min,优选1-10min,模压压力优选4-15MPa。可将样条置于合适的模具中,在0-150℃,优选25-80℃温度条件下,放置0-48h,得到最终的聚合物样品。
在动态聚合物的制备过程中,所选用的有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、含有其他反应性基团的化合物的成分选择和配方比例可以灵活把握,但应根据目标材料性能以及所选化合物的结构、含有的反应性基团数和分子量进行合理的设计和组合。其中,所添加的有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、含有其他反应性基团的化合物应保证反应物体系中的官能团和/或其他反应性基团的摩尔当量比处于适当的范围。有机硼化合物(I)、含硅化合物(II)、化合物(III)中含有的有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体官能团的摩尔当量比优选0.1~10的范围,更优选0.3~3的范围,更优选0.8~1.2的范围,其中,有机硼酸基和/或有机硼酸酯基官能团摩尔数可适当过量。当有机硼化合物(I)、含硅化合物(II)、化合物(III)中含有的官能团的摩尔当量比接近1:1时,可以得到反应程度高、稳定性好的动态聚合物;当有机硼化合物(I)、含硅化合物(II)、化合物(III)中含有的官能团的摩尔当量比偏离1:1时,则 可以得到动态性较好的动态聚合物。同样地,当选用化合物(IV)、含有其他反应性基团的化合物作为反应组分制备动态聚合物时,反应物体系中其他反应性基团的摩尔当量比也应处于适当的范围,进行聚合/交联反应的其他反应性基团的摩尔当量比优选0.1~10的范围,更优选0.3~3的范围,更优选0.8~1.2的范围。在实际制备过程中,本领域的技术人员可根据实际需要进行调整。
在本发明中利用有机硼化合物(I)、含硅化物(II)、化合物(III)以及化合物(IV)制备含有有机硼酸硅酯键的动态聚合物的过程中,通过对化合物结构的设计和调整,可以依据需要将不同数量的官能团、不同结构的分子链段、不同分子量的分子链段、反应性基团、功能性基团等有机结构引入到化合物原料中,并通过制备过程成为动态聚合物的结构组分,从而在较大范围内实现对动态聚合物结构的调控。动态聚合物结构的多样性,也使得其体现出丰富各异的性能,并可根据聚合物所具有的性能将其应用于不同的领域。更为重要的是,本领域的技术人员往往也可根据实际应用的需要,从源头对聚合物的结构和性能进行设计;在这过程中,所采用的有机结构(如有机硼结构、有机硅结构)则能够成为技术人员调控和设计动态聚合物结构的有效媒介。而上述的这些优势和特点,在无机化合物领域中往往很难实现,对于无机化合物(例如无机硼酸,无机硼酸盐等),其往往结构单一,官能团数固定,进行的是异相反应,利用其所制得的聚合物一般结构、性质雷同,且获得的无机硼酸硅酯键容易吸水水解,对其使用造成了限制。
其中,通过对有机硼化合物(I)、含硅化合物(II)、化合物(III)中官能团结构的设计,可以制备出具有不同动态活性的动态聚合物。例如,利用邻位连有氨甲基的苯硼酸/苯硼酸酯结构或者邻位连有酰胺基的苯硼酸/苯硼酸酯结构制备动态聚合物,邻位的氨甲基或酰胺基能够起到促进动态性的效果;再例如,在有机硼酸基和/或有机硼酸酯基中的硼原子上连接有强吸电子基(如氟原子、乙酸基、吡啶基、哌啶基等)后,其与硅羟基和/或硅羟基前驱体的反应速率也大大提高;由此所得到的动态聚合物能够体现出更高的动态活性,使得聚合物中的有机硼酸硅酯键在较为温和的条件下即可表现出动态可逆性,也使得动态聚合物可在更为温和的条件下进行制备和使用,扩展了聚合物的应用范围。
在动态聚合物的制备过程中,通过调控有机硼化合物(I)、含硅化合物(II)、化合物(III)中的官能团数,可以制备出具有不同交联程度的动态聚合物,而动态聚合物的性能也随着交联程度的不同而有所差异。对于利用交联程度较低的动态聚合物所制成的材料,其通常力学强度和力学模量较低,韧性和延展性优良,热稳定性和尺寸稳定性较差,一般在宏观表现上质地柔软、表面硬度低、可进行大范围地拉伸;一般可将其作为柔性薄膜、胶黏剂、密封胶使用,或者配制成溶液或乳浊液作为涂料、浸渍剂进行使用。而对于利用交联程度较高的动态聚合物所制成的材料,通常其力学强度和模量较高,韧性、热稳定性、耐磨性及抗蠕变性都有所提高,但延展性会有所下降,一般在宏观表现上为具有更为优良的回弹性或呈现刚性的胶体或固体;一般可将其作为具有一定强度的薄膜、纤维或者块状材料进行使用。
在本发明中,至少利用一种具有多官能团数的化合物来制备具有动态交联结构的动态聚合物。单纯利用双官能团化合物来构成动态聚合物时,由于双官能团化合物本身所具有的活性官能团数较少,并且在化合物分子量较大时,这些活性官能团有可能因为分子链的卷曲缠绕而包埋在聚合物链中无法参加反应,降低了有机硼酸基和/或有机硼酸酯基官能团与硅羟基和/或硅羟基前驱体官能团之间的反应效率;同时,单纯地利用双官能团化合物进行动态聚合反应,制得的是线性的动态聚合物,利用此类聚合物制成的材料通常力学强度和力学模量较低,热稳定性、尺寸稳定性、耐溶剂性较差,对其应用造成了限制。而利用多官能团化合物进行聚合时,增加了动态聚合反应活性点,提高了动态交联效率,同时也使得聚合物中的动态交联点增多,提高了动态聚合物中动态共价键的利用率,使得有机硼酸硅酯键本身所具有的动态特性得以良好地体现。同时,得到的具有动态交联结构的动态聚合物,其在作为材料 使用时,相对于线性的动态聚合物材料,动态交联的聚合物材料在力学性能、热稳定性、耐磨性、耐溶剂性及抗蠕变性等方面均得到了提高,从而扩展了动态聚合物的应用范围。
在动态聚合物的制备过程中,通过调控有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、含有其他反应性基团的化合物中分子链的柔顺性,可以制备出具有不同性质特点的动态聚合物,获得的动态聚合物可以具有一个或者多个玻璃化转变温度。对于主要由柔性链(如聚乙烯链、聚乙二醇链、聚硅氧烷链、聚丁二烯链、聚丙烯酸链、聚酯链等)构成的化合物和/或可以聚合成柔性链的化合物,由其所制得的动态聚合物分子链段内旋转相对容易,一般具有较低的玻璃化转变温度(一般不高于25℃)和较低的熔点(一般不高于100℃),流动性好;材料通常在宏观上表现为柔韧性大,脆性低,可进行拉伸和弯曲,溶解性较好,但刚性、耐热性和尺寸稳定性较弱,一般可将其作为凝胶、胶黏剂、弹性材料进行使用。对于主要由刚性链(如聚乙炔链、聚芳酰胺链、聚苯醚链、聚苯并噻唑链等)构成的化合物和/或可以聚合成刚性链的化合物,由其所制得的动态聚合物由于分子链段内旋转相对困难,一般具有较高的玻璃化转变温度(一般高于25℃)、较高的熔点(一般高于100℃)和较大的熔体粘度;材料通常在宏观上具有较大的刚性和表面硬度,较强的尺寸稳定性、耐热性和耐化学腐蚀性,但延展性较低,一般可将其作为结构零部件进行使用。当同时采用含有柔性链和刚性链的化合物和/或可以同时聚合成柔性和刚性链的化合物时,所制得的动态聚合物一般存在多个差别明显的玻璃化转变温度,聚合物材料具有适中的刚性、硬度、柔顺性,其力学性能可以根据不同的配方进行调节,一般可将其作为薄膜、涂料、阻尼材料进行使用。在本发明中,由于具有柔性结构的动态聚合物能够体现出更为优良的动态可逆性和拉伸韧性,因此优选利用具有柔性结构和/或可以聚合成柔性链的有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、含有其他反应性基团的化合物来制备动态聚合物。
在动态聚合物的制备过程中,通过调控有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、含有其他反应性基团的化合物的分子量,可以制备出具有不同交联密度的动态聚合物,其由于交联密度的不同也表现出不同的性质特点。动态聚合物的交联密度越低,交联点之间的聚合物链分子量越大,反之则越小。对于交联密度较低的动态聚合物,其一般玻璃化转变温度和熔点较低,刚性和表面硬度较低,力学强度低,但能够体现出较好的动态活性;对于交联密度较高的动态聚合物,其一般玻璃化转变温度和熔点较高,能够表现出较好的力学强度、韧性和弹性,但动态活性会有所下降。本领域的技术人员可根据实际需要进行调整。
此外,在动态聚合物的制备过程中,还可通过在有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、含有其他反应性基团的化合物中引入功能性基团的方式对动态聚合物的性能进行调控。例如,通过引入疏水性基团来提高动态聚合物的耐水解性;通过引入荧光基团来制备具有荧光性的动态聚合物;通过引入抗氧化基团来提高动态聚合物的抗氧化性;通过引入酸性基团或碱性基团对动态聚合物的动态性进行调节等。又例如,当需要将动态聚合物与其他聚合物进行共混时,还可通过引入与其他聚合物相类似的结构组分或者偶联基团,来达到提高组分之间相容性的目的。
诸如以上所述仅是对本发明中作为原料的化合物组分结构所能起到的对动态聚合物性能调控的部分举例说明,对于本发明中动态聚合物结构、性能、用途的设计,其可调范围广泛,往往还可体现出许多意想不到的实际效果,难以做到穷举,本领域的技术人员可以根据本发明的思路进行调整。
在动态聚合物的制备过程中,所加入的某些可添加的助剂,其可以改善聚合物制备过程、提高产品质量和产量、降低产品成本或者赋予产品某种特有的应用性能。所述的可添加的助剂可选自以下任一种或任几种助剂:合成助剂,包括催化剂、引发剂;稳定化助剂,包括抗氧剂、光稳定剂、热稳定剂;改善力学性能的助剂,包括增韧剂;提高加工性能的助剂,包 括润滑剂、脱模剂;柔软化与轻质化的助剂,包括增塑剂、发泡剂、动态调节剂;改变表面性能的助剂,包括抗静电剂、乳化剂、分散剂;改变色光的助剂,包括着色剂、荧光增白剂、消光剂;难燃化与抑烟助剂,包括阻燃剂;其他助剂,包括成核剂、流变剂、增稠剂、流平剂。
所述的可添加的助剂中的催化剂,其能够通过改变反应途径,降低反应活化能来加速反应物在反应过程中的反应速率。其包括但不仅限于以下任一种或任几种催化剂:氢氧化钠、氢氧化钾、氢氧化钙、乙二胺、三乙醇胺、三乙胺、吡啶、4-二甲基氨基吡啶、咪唑、二异丙基乙基胺、碳酸钠、碳酸氢钠、乙酸、硫酸、磷酸,碳酸、次氯酸、氢氟酸;其中,催化剂优选氢氧化钠、三乙胺、乙酸。所用的催化剂用量没有特别限定,一般为0.01-0.5wt.%。
所述的可添加的助剂中的引发剂,其能够在聚合反应过程中引起单体分子活化而产生游离基,提高反应速率,促进反应进行,包括但不仅限于以下任一种或任几种引发剂:有机过氧化物,如过氧化月桂酰、过氧化苯甲酰(BPO)、过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯、过氧化二碳酸双(4-叔丁基环己基)酯、叔丁基过氧化苯甲酸酯、叔丁基过氧化特戊酸酯、二叔丁基过氧化物、过氧化氢二异丙苯;偶氮化合物,如偶氮二异丁腈(AIBN)、偶氮二异庚腈;无机过氧化物,如过硫酸铵、过硫酸钾等;其中,引发剂优选过氧化月桂酰、过氧化苯甲酰、偶氮二异丁腈、过硫酸钾。所用的引发剂用量没有特别限定,一般为0.1-1wt.%。
所述的可添加的助剂中的抗氧剂,其能够延缓聚合物样品的氧化过程,保证材料能够顺利地进行制备加工并延长其使用寿命,包括但不仅限于以下任一种或任几种抗氧剂:受阻酚类,如2,6-二叔丁基-4-甲基苯酚、1,1,3-三(2-甲基-4羟基-5-叔丁基苯基)丁烷、四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、2,2’-亚甲基双(4-甲基-6-叔丁基苯酚);含硫受阻酚类,如4,4’-硫代双-[3-甲基-6-叔丁基苯酚]、2,2’-硫代双-[4-甲基-6-叔丁基苯酚];三嗪系受阻酚,如1,3,5-二[β-(3,5-二叔丁基-4-羟基苯基)丙酰]-六氢均三嗪;三聚异氰酸酯受阻酚类,如三(3,5-二叔丁基-4-羟基苄基)-三异氰酸酯;胺类,如N,N’-二(β-萘基)对苯二胺、N,N’-二苯基对苯二胺、N-苯基-N’-环己基对苯二胺;含硫类,如硫代二丙酸二月桂酯、2-巯基苯并咪唑、2-巯基苯并噻唑;亚磷酸酯类,如亚磷酸三苯酯、亚磷酸三壬基苯酯、三[2.4-二叔丁基苯基]亚磷酸酯等;其中,抗氧剂优选茶多酚(TP)、丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)、叔丁基对苯二酚(TBHQ)、三[2.4-二叔丁基苯基]亚磷酸酯(抗氧剂168)、四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(抗氧剂1010)。所用的抗氧剂用量没有特别限定,一般为0.01-1wt.%。
所述的可添加的助剂中的光稳定剂,能够防止聚合物样品发生光老化,延长其使用寿命,其包括但不仅限于以下任一种或任几种光稳定剂:光屏蔽剂,如炭黑、二氧化钛、氧化锌、亚硫酸钙;紫外线吸收剂,如2-羟基-4-甲氧基二苯甲酮、2-羟基-4-正辛氧基二苯甲酮、2-(2-羟基-3,5-二叔丁基苯基)-5-氯苯并三唑、2-(2-羟基-5-甲基苯基)苯并三唑、2,4,6-三(2-羟基-4-正丁氧基苯基)-1,3,5-均三嗪、2-氰基-3,3-二苯基丙烯酸2-乙基己酯;先驱型紫外线吸收剂,如水杨酸对-叔丁基苯酯、双水杨酸双酚A酯;紫外线猝灭剂,如双(3,5-二叔丁基-4-羟基苄基膦酸单乙酯)、2,2’-硫代双(4-特辛基酚氧基)镍;受阻胺光稳定剂,如癸二酸双(2,2,6,6-四甲基哌啶)酯、苯甲酸(2,2,6,6-四甲基哌啶)酯、三(1,2,2,6,6-五甲基哌啶基)亚磷酸酯;其他光稳定剂,如3,5-二叔丁基-4-羟基苯甲酸(2,4-二叔丁基苯)酯、烷基磷酸酰胺、N,N’-二正丁基二硫代氨基甲酸锌、N,N’-二正丁基二硫代氨基甲酸镍等;其中,光稳定剂优选炭黑、癸二酸双(2,2,6,6-四甲基哌啶)酯(光稳定剂770)。所用的光稳定剂用量没有特别限定,一般为0.01-0.5wt.%。
所述的可添加的助剂中的热稳定剂,能够使得聚合物样品在加工或使用过程中不因受热而发生化学变化,或者延缓这些变化来达到延长使用寿命的目的,其包括但不仅限于以下任 一种或任几种热稳定剂:铅盐类,如三盐基硫酸铅、二盐基亚磷酸铅、二盐基硬脂酸铅、二盐基苯二甲酸铅、三盐基马来酸铅、盐基性硅酸铅、硬脂酸铅、水杨酸铅、二盐基邻苯二甲酸铅、碱式碳酸铅、硅胶共沉淀硅酸铅;金属皂类:如硬脂酸镉、硬脂酸钡、硬脂酸钙、硬脂酸铅、硬脂酸锌;有机锡化合物类,如二月桂酸二正丁基锡、二月桂酸二正辛基锡、马来酸二(正)丁基锡、双马来酸单辛酯二正辛基锡、二巯基乙酸异辛酯二正辛基锡、京锡C-102、二巯基乙酸异辛脂二甲基锡、二硫醇二甲基锡及其复配物;锑稳定剂,如硫醇锑盐、巯基乙酸酯硫醇锑、巯基羧酸酯锑、羧酸酯锑;环氧化合物类,如环氧化油、环氧脂肪酸酯、环氧树脂;亚磷酸酯类,如亚磷酸三芳酯、亚磷酸三烷酯、亚磷酸三芳烷酯、烷芳混合酯、聚合型亚磷酸酯;多元醇类,如季戊四醇、木糖醇、甘露醇、山梨糖醇、三羟甲基丙烷;复合热稳定剂,如共沉淀金属皂、液体金属皂复合稳定剂、有机锡复合稳定剂等;其中,热稳定剂优选硬脂酸钡、硬脂酸钙、二月桂酸二正丁基锡、马来酸二(正)丁基锡。所用的热稳定剂用量没有特别限定,一般为0.1-0.5wt.%。
所述的可添加的助剂中的增韧剂,能够降低聚合物样品脆性,增大韧性,提高材料承载强度,其包括但不仅限于以下任一种或任几种增韧剂:甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物树脂、氯化聚乙烯树脂、乙烯-醋酸乙烯酯共聚物树脂及其改性物、丙烯腈-丁二烯-苯乙烯共聚物、丙烯腈-丁二烯共聚物、乙丙胶、三元乙丙胶、顺丁胶、丁苯胶、苯乙烯-丁二烯-苯乙烯嵌段共聚物等;其中,增韧剂优选乙丙胶、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物树脂(MBS)、氯化聚乙烯树脂(CPE)。所用的增韧剂用量没有特别限定,一般为5-10wt.%。
所述的可添加的助剂中的润滑剂,能够提高聚合物样品的润滑性、减少摩擦、降低界面粘附性能,其包括但不仅限于以下任一种或任几种润滑剂:饱和烃和卤代烃类,如固体石蜡、微晶石蜡、液体石蜡、低分子量聚乙烯、氧化聚乙烯蜡;脂肪酸类,如硬脂酸、羟基硬脂酸;脂肪酸酯类,如脂肪酸低级醇酯、脂肪酸多元醇酯、天然蜡、酯蜡和皂化蜡;脂肪族酰胺类,如硬脂酰胺或硬脂酸酰胺、油酰胺或油酸酰胺、芥酸酰胺、N,N’-乙撑双硬脂酰胺;脂肪醇和多元醇类,如硬脂醇、鲸蜡醇、季戊四醇;金属皂类,如硬脂酸铅、硬脂酸钙、硬脂酸钡、硬脂酸镁、硬脂酸锌等;其中,润滑剂优选固体石蜡、液体石蜡、硬脂酸、低分子量聚乙烯。所用的润滑剂用量没有特别限定,一般为0.5-1wt.%。
所述的可添加的助剂中的脱模剂,它可使聚合物样品易于脱模,表面光滑、洁净,其包括但不仅限于以下任一种或任几种脱模剂:石蜡烃、皂类、二甲基硅油、乙基硅油、甲基苯基硅油、蓖麻油、废机油、矿物油、二硫化钼、聚乙二醇、氯乙烯树脂、聚苯乙烯、硅橡胶、等;其中,脱模剂优选二甲基硅油、聚乙二醇。所用的脱模剂用量没有特别限定,一般为0.5-2wt.%。
所述的可添加的助剂中的增塑剂,其能够增加聚合物样品的塑性,使得聚合物的硬度、模量、软化温度和脆化温度下降,伸长率、曲挠性和柔韧性提高,其包括但不仅限于以下任一种或任几种增塑剂:苯二甲酸酯类,如邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二异辛酯、邻苯二甲酸二庚酯、邻苯二甲酸二异癸酯、邻苯二甲酸二异壬酯、邻苯二甲酸丁苄酯、邻苯二甲酸丁酯乙醇酸丁酯、邻苯二甲酸二环己酯、邻苯二甲酸双(十三)酯、对苯二甲酸二(2-乙基)己酯;磷酸酯类,如磷酸三甲苯酯、磷酸(二苯-2-乙基)己酯;脂肪酸酯类,如己二酸二(2-乙基)己酯、癸二酸二(2-乙基)己酯;环氧化合物类,如环氧甘油酯类、环氧脂肪酸单酯类、环氧四氢邻苯二甲酸酯类、环氧大豆油、环氧硬脂酸(2-乙基)己酯、环氧大豆油酸2-乙基己酯、4,5-环氧四氢邻苯二甲酸二(2-乙基)己酯、黄杨乙酰蓖麻油酸甲酯;二元醇脂类,如C5~9酸乙二醇酯、C5~9酸二缩三乙二醇酯;含氯类,如绿化石蜡类、氯代脂肪酸酯;聚酯类,如乙二酸1,2-丙二醇系聚酯、癸二酸1,2-丙二醇聚酯、石油磺酸苯酯、偏苯三酸酯、柠檬酸酯、季戊四醇和双季戊四醇酯等;其中,增塑剂优选邻苯二甲 酸二辛酯(DOP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异辛酯(DIOP)、邻苯二甲酸二异壬酯(DINP)、邻苯二甲酸二异癸酯(DIDP)、磷酸三甲苯酯(TCP)。所用的增塑剂用量没有特别限定,一般为5-20wt.%。
所述的可添加的助剂中的发泡剂,能使得聚合物样品发泡成孔,从而得到质轻、隔热、隔音、富有弹性的聚合物材料,其包括但不仅限于以下任一种或任几种发泡剂:物理发泡剂,如丙烷、甲醚、戊烷、新戊烷、己烷、异戊烷、庚烷、异庚烷、石油醚、丙酮、苯、甲苯、丁烷、乙醚、氯甲烷、二氯甲烷、二氯乙烯、二氯二氟甲烷、三氟氯甲烷;无机发泡剂,如碳酸氢钠、碳酸铵、碳酸氢铵;有机发泡剂,如N,N’-二硝基五次甲基四胺、N,N’-二甲基-N,N’-二亚硝基对苯二甲酰胺、偶氮二甲酰胺、偶氮二碳酸钡、偶氮二碳酸二异丙酯、偶氮甲酰胺甲酸钾、偶氮二异丁腈、4,4’-氧代双苯磺酰肼、苯磺酰肼、三肼基三嗪、对甲苯磺酰氨基脲、联苯-4,4’-二磺酰叠氮;物理型微球/颗粒发泡剂,如阿克苏诺贝尔等公司生产的可发泡微球;发泡促进剂,如尿素、硬脂酸、月桂酸、水杨酸、三盐基性硫酸铅、二盐基亚磷酸铅、硬脂酸铅、硬脂酸镉、硬脂酸锌、氧化锌;发泡抑制剂,如马来酸、富马酸、硬脂酰氯、苯二甲酰氯、马来酸酐、苯二甲酸酐、对苯二酚、萘二酚、脂肪族胺、酰胺、肟、异氰酸酯、硫醇、硫酚、硫脲、硫化物、砜、环己酮、乙酰丙酮、六氯环戊二烯、二丁基马来酸锡等。其中,发泡剂优选碳酸氢钠、碳酸铵、偶氮二甲酰胺(发泡剂AC)、N,N’-二硝基五次甲基四胺(发泡剂H)、N,N’-二甲基-N,N’-二亚硝基对苯二甲酰胺(发泡剂NTA),物理型微球发泡剂、所用的发泡剂用量没有特别限定,一般为0.1-30wt%。
所述的可添加的助剂中的动态调节剂,能够提升调节有机硼酸硅酯键的动态性,以便获得最优化的期望性能,其一般是带有自由羟基或者自由羧基的化合物,包括但不仅限于水、氢氧化钠、醇(包括硅醇)、羧酸等。所用的动态调节剂用量没有特别限定,一般为0.1-10wt.%。
所述的可添加的助剂中的抗静电剂,可将聚合物样品中聚集的有害电荷引导或消除,使其不对生产和生活造成不便或危害,其包括但不仅限于以下任一种或任几种抗静电剂:阴离子型抗静电剂,如烷基磺酸盐、对壬基苯氧基丙烷磺酸钠、烷基磷酸酯二乙醇胺盐、烷基酚聚氧乙烯基醚磺酸三乙醇胺、对壬基二苯醚磺酸钾、烷基聚氧乙烯基醚磺酸三乙醇胺、磷酸酯衍生物、磷酸盐、磷酸聚环氧乙烷烷基醚醇酯、烷基双[二(2-羟乙基胺)]磷酸酯、磷酸酯衍生物、脂肪胺磺酸盐、丁酸酯磺酸钠;阳离子型抗静电剂,如脂肪铵盐酸盐、月桂基三甲基氯化铵、十二烷基三甲胺溴化物、N,N-鲸蜡基-乙基吗啉硫酸乙酯盐、硬脂酰胺丙基(2-羟乙基)二甲铵硝酸盐、烷基羟乙基二甲铵高氯酸盐、2-烷基-3,3-二羟乙基咪唑啉高氯酸盐、2-十七烷基-3-羟乙基-4-羧甲基咪唑啉、N,N-双(α-羟乙基)-N-3(十二烷氧基-2-羟丙基)甲铵硫酸甲酯盐;两性离子型抗静电剂,如烷基二羧甲基铵乙内盐、月桂基甜菜碱、N,N,N-三烷基铵乙酰(N’-烷基)胺乙内盐、N-月桂基-N,N-二聚氧化乙烯基-N-乙基膦酸钠、烷基二(聚氧乙烯)铵乙内盐氢氧化物、2-烷基-3-羟乙基-3-乙酸盐基咪唑啉季胺碱、N-烷基氨基酸盐;非离子型抗静电剂,如脂肪醇环氧乙烷加成物、脂肪酸环氧乙烷加成物、烷基酚环氧乙烷加成物、磷酸三聚氧乙烯基醚酯、甘油单脂肪酸酯、失水山梨醇单月桂酸酯的聚环氧乙烷加成物;高分子型抗静电剂,如乙二胺的环氧乙烷环氧丙烷加成物、聚乙二醇-对苯二甲酸酯-3,5-二苯甲酸酯磺酸钠共聚物、聚烯丙酰胺N-季铵盐取代物、聚4-乙烯基-1-丙酮基吡啶磷酸-对丁基苯酯盐等;其中,抗静电剂优选月桂基三甲基氯化铵、十八烷基二甲基羟乙基季铵硝酸盐(抗静电剂SN)、烷基磷酸酯二乙醇胺盐(抗静电剂P)。所用的抗静电剂用量没有特别限定,一般为0.3-3wt.%。
所述的可添加的助剂中的乳化剂,能够改善包含助剂的聚合物混合液中各种构成相之间的表面张力,使之形成均匀稳定的分散体系或乳浊液,其优选用于进行乳液聚合/交联,其包括但不仅限于以下任一种或任几种乳化剂:阴离子型,如高级脂肪酸盐、烷基磺酸盐、烷基苯磺酸盐、烷基萘磺酸钠、琥珀酸酯磺酸盐、石油磺酸盐、脂肪醇硫酸盐、蓖麻油硫酸酯盐、 硫酸化蓖麻酸丁酯盐、磷酸酯盐、脂肪酰-肽缩合物;阳离子型,如烷基铵盐、烷基季铵盐、烷基吡啶盐;两性离子型,如羧酸酯型、磺酸酯型、硫酸酯型、磷酸酯型;非离子型,如脂肪醇聚氧乙烯醚、烷基酚聚氧乙烯醚、脂肪酸聚氧乙烯酯、聚环氧丙烷-环氧乙烷加成物、甘油脂肪酸酯、季戊四醇脂肪酸酯、山梨醇及失水山梨醇脂肪酸酯、蔗糖脂肪酸酯、醇胺脂肪酰胺等;其中,乳化剂优选十二烷基苯磺酸钠、失水山梨醇脂肪酸酯、三乙醇胺硬脂酸酯(乳化剂FM)。所用的乳化剂用量没有特别限定,一般为1-5wt.%。
所述的可添加的助剂中的分散剂,能够使得聚合物混合液中固体絮凝团分散为细小的粒子而悬浮于液体中,均一分散那些难于溶解于液体的固体及液体颗粒,同时也能防止颗粒的沉降和凝聚,形成安定悬浮液,其包括但不仅限于以下任一种或任几种分散剂:阴离子型,如烷基硫酸酯钠盐、烷基苯磺酸钠、石油磺酸钠;阳离子型;非离子型,如脂肪醇聚氧乙烯醚、山梨糖醇酐脂肪酸聚氧乙烯醚;无机型,如硅酸盐、缩合磷酸盐;高分子型,如淀粉、明胶、水溶性胶、卵磷脂、羧甲基纤维素、羟乙基纤维素、海藻酸钠、木质素磺酸盐、β-萘磺酸甲醛缩合物、烷基苯酚甲醛缩合物的环氧乙烷缩合物、聚羧酸盐等;其中,分散剂优选十二烷基苯磺酸钠、萘系亚甲基磺酸盐(分散剂N)、脂肪醇聚氧乙烯醚。所用的分散剂用量没有特别限定,一般为0.3-0.8wt.%。
所述的可添加的助剂中的着色剂,可以使聚合物产品呈现出所需要的颜色,增加表面色彩,其包括但不仅限于以下任一种或任几种着色剂:无机颜料,如钛白、铬黄、镉红、铁红、钼铬红、群青、铬绿、炭黑;有机颜料,如立索尔宝红BK、色淀红C、苝红、嘉基R红、酞菁红、永固洋红HF3C、塑料大红R和克洛莫红BR、永固橙HL、耐晒黄G、汽巴塑料黄R、永固黄3G、永固黄H2G、酞青蓝B、酞青绿、塑料紫RL、苯胺黑;有机染料,如硫靛红、还原黄4GF、士林蓝RSN、盐基性玫瑰精、油溶黄等;其中,着色剂的选用根据样品颜色需求而定,不需要特别限定。所用的着色剂用量没有特别限定,一般为0.3-0.8wt.%。
所述的可添加的助剂中的荧光增白剂,能使所染物质获得类似荧石的闪闪发光的效应,其包括但不仅限于以下任一种或任几种荧光增白剂:二苯乙烯型、香豆素型、吡唑啉型、苯并氧氮型、苯二甲酰亚胺型等;其中,荧光增白剂优选二苯乙烯联苯二磺酸钠(荧光增白剂CBS)、4,4-双(5甲基-2-苯并噁唑基)二苯乙烯(荧光增白剂KSN)、2,2-(4,4’-二苯乙烯基)双苯并噁唑(荧光增白剂OB-1)。所用的荧光增白剂用量没有特别限定,一般为0.002-0.03wt.%。
所述的可添加的助剂中的消光剂,能够使得入射光到达聚合物表面时,发生漫反射,产生低光泽的亚光和消光外观,其包括但不仅限于以下任一种或任几种消光剂:沉降硫酸钡、二氧化硅、含水石膏粉、滑石粉、钛白粉、聚甲基脲树脂等;其中,消光剂优选二氧化硅。所用的消光剂用量没有特别限定,一般为2-5wt.%。
所述的可添加的助剂中的阻燃剂,能够增加材料的耐燃性,其包括但不仅限于以下任一种或任几种阻燃剂:磷系,如红磷、磷酸三甲酚酯、磷酸三苯酯、磷酸三甲苯酯、磷酸甲苯二苯酯;含卤磷酸酯类,如三(2,3-二溴丙基)磷酸酯、磷酸三(2,3-二氯丙)酯;有机卤化物,如高含氯量氯化石蜡、1,1,2,2-四溴乙烷、十溴二苯醚、全氯环戊癸烷;无机阻燃剂,如三氧化二锑、氢氧化铝、氢氧化镁、硼酸锌;反应型阻燃剂,如氯桥酸酐、双(2,3-二溴丙基)反丁烯二酸酯、四溴双酚A、四溴邻苯二甲酸酐等;其中,阻燃剂优选十溴二苯醚、磷酸三苯酯、磷酸三甲苯酯、磷酸甲苯二苯酯、三氧化二锑。所用的阻燃剂用量没有特别限定,一般为1-20wt.%。
所述的可添加的助剂中的成核剂,能够通过改变聚合物的结晶行为,加快结晶速率、增加结晶密度和促使晶粒尺寸微细化,达到缩短材料成型周期,提高制品透明性、表面光泽、抗拉强度、刚性、热变形温度、抗冲击性、抗蠕变性等物理机械性能的目的,其包括但不仅限于以下任一种或任几种成核剂:苯甲酸、己二酸、苯甲酸钠、滑石粉、对苯酚磺酸钠、二氧化硅、二苄叉山梨糖醇及其衍生物、乙丙橡胶、三元乙丙橡胶等;其中,成核剂优选二氧 化硅、二苄叉山梨糖醇(DBS)、三元乙丙橡胶。所用的成核剂用量没有特别限定,一般为0.1-1wt.%。
所述的可添加的助剂中的流变剂,能够保证聚合物在涂膜过程中具有良好的涂刷性和适当的涂膜厚度,防止贮存时固体颗粒的沉降,能够提高其再分散性,其包括但不仅限于以下任一种或任几种流变剂:无机类,如硫酸钡、氧化锌、碱土金属氧化物、碳酸钙、氯化锂、硫酸钠、硅酸镁、气相二氧化硅、水玻璃、胶态二氧化硅;有机金属化合物,如硬脂酸铝、烷醇铝、钛螯合物、铝螯合物;有机类,如有机膨润土、氢化蓖麻油、氢化蓖麻油/酰胺蜡、纤维素衍生物、异氰酸酯衍生物、羟基化合物、丙烯酸乳液、丙烯酸共聚物、聚乙烯蜡、纤维素酯等;其中,流变剂优选有机膨润土、聚乙烯蜡、疏水改性碱性可膨胀乳液(HASE)、碱性可膨胀乳液(ASE)。所用的流变剂用量没有特别限定,一般为0.1-1wt.%。
所述的可添加的助剂中的增稠剂,能够赋予聚合物混合液良好的触变性和适当的稠度,从而满足其在生产、贮存和使用过程中的稳定性能和应用性能等多方面的需求,其包括但不仅限于以下任一种或任几种增稠剂:低分子物质,如脂肪酸盐、脂肪醇聚氧乙烯醚硫酸盐、烷基二甲胺氧化物、脂肪酸单乙醇酰胺、脂肪酸二乙醇酰胺、脂肪酸异丙酰胺、脱水山梨醇三羧酸酯、甘油三油酸酯、椰子酰胺丙基甜菜碱、2-烷基-N-羧甲基-N-羟乙基咪唑啉;高分子物质,如皂土、人工水辉石、微粉二氧化硅、胶体铝、植物多糖类、微生物多糖类、动物蛋白、纤维素类、淀粉类、海藻酸类、聚甲基丙烯酸盐、甲基丙烯酸共聚物、顺酐共聚物、巴豆酸共聚物、聚丙烯酰胺、聚乙烯吡咯酮、聚醚、聚乙烯甲醚脲烷聚合物等;其中,增稠剂优选羟乙基纤维素、椰子油二乙醇酰胺、丙烯酸-甲基丙烯酸共聚物。所用的增稠剂用量没有特别限定,一般为0.1-1.5wt.%。
所述的可添加的助剂中的流平剂,能够保证聚合物涂膜的平整光滑均匀,改善涂膜表面质量、提高装饰性,其包括但不仅限于以下任一种或任几种流平剂:聚二甲基硅氧烷、聚甲基苯基硅氧烷、醋酸-丁酸纤维素、聚丙烯酸酯类、有机硅树脂等;其中,流平剂优选聚二甲基硅氧烷、聚丙烯酸酯。所用的流平剂用量没有特别限定,一般为0.5-1.5wt.%。
在动态聚合物的制备过程中,可添加的助剂优选引发剂、抗氧剂、光稳定剂、热稳定剂、增韧剂、增塑剂、乳化剂、分散剂、发泡剂、阻燃剂、动态调节剂。
所述的可添加的填料,其在聚合物样品中主要起到以下作用:①降低成型制件的收缩率,提高制品的尺寸稳定性、表面光洁度、平滑性以及平光性或无光性等;②调节材料的粘度;③满足不同性能要求,如提高材料冲击强度及压缩强度、硬度、刚度和模量、提高耐磨性、提高热变形温度、改善导电性及导热性等;④提高颜料的着色效果;⑤赋予光稳定性和耐化学腐蚀性;⑥起到增容作用,可降低成本,提高产品在市场上的竞争能力。
所述的可添加的填料,可选自以下任一种或任几种填料:无机非金属填料、金属及其氧化物填料、有机填料、金属有机化合物填料。
所述的可添加的无机非金属填料,包括但不仅限于以下任一种或任几种:碳酸钙、陶土、硫酸钡、硫酸钙和亚硫酸钙、滑石粉、白炭黑、石英、云母粉、粘土、石棉、石棉纤维、正长石、白垩、石灰石、重晶石粉、石膏、石墨、炭黑、石墨烯、碳纳米管、氧化石墨烯、二硫化钼、矿渣、烟道灰、木粉及壳粉、硅藻土、赤泥、硅灰石、硅铝炭黑、氢氧化铝、氢氧化镁、粉煤灰、油页岩粉、膨胀珍珠岩粉、导电炭黑、蛭石、铁泥、白泥、碱泥、硼泥、(中空)玻璃微珠、发泡微球、可发泡颗粒、玻璃粉、水泥、玻璃纤维、碳纤维、石英纤维、炭芯硼纤维、二硼化钛纤维、钛酸钙纤维、碳硅纤维、陶瓷纤维、晶须等。
所述的可添加的金属及其氧化物填料,包括但不限于以下任一种或任几种:铜、银、镍、钯、铁、金等及其氧化物或合金的粉末、纳米颗粒、纤维,液态金属;其中,所述的纳米颗粒可选自纳米金颗粒、纳米银颗粒、纳米钯颗粒、纳米磁性颗粒(例如,铁的氧化物如Fe3O4、γ-Fe2O3;纯金属如Fe、Co;其它磁性化合物如MgFe2O4、MnFe2O4、CoFe2O4;磁性合金如 CoPt3、FePt等);其中,所述的液态金属包括但不限于汞、镓、镓铟液态合金、镓铟锡液态合金、其它镓基液态金属合金等。
所述的可添加的有机填料,包括但不仅限于以下任一种或任几种:①天然有机填料,如皮毛、天然橡胶、棉花、棉绒、麻、黄麻、亚麻、石棉、纤维素、醋酸纤维素、虫胶、甲壳素、壳聚糖、木质素、淀粉、蛋白质、酶、激素、生漆、木材、木粉、壳粉、糖原、木糖、蚕丝等;②合成树脂填料,如丙烯腈-丙烯酸酯-苯乙烯共聚物、丙烯腈-丁二烯-苯乙烯共聚物、乙酸纤维素、聚三氟氯乙烯、氯化聚乙烯、氯化聚氯乙烯、环氧树脂、乙烯-丙烯共聚物、乙烯-乙酸乙烯酯共聚物、高密度聚乙烯、高抗冲聚苯乙烯、低密度聚乙烯、中密度聚乙烯、三聚氰胺-甲醛树脂、聚酰胺、聚丙烯酸、聚丙烯酰胺、聚丙烯腈、聚芳砜、聚苯并咪唑、聚对苯二甲酸丁二醇酯、聚碳酸酯、聚二甲基硅氧烷、聚乙二醇、聚酯、聚砜、聚醚砜、聚对苯二甲酸乙二醇酯、酚醛树脂、四氟乙烯-全氟丙烷共聚物、聚酰亚胺、聚丙烯酸甲酯、聚甲基丙烯腈、聚甲基丙烯酸甲酯、聚苯醚、聚丙烯、聚苯硫醚、聚苯砜、聚苯乙烯、聚四氟乙烯、聚氨酯、聚乙酸乙烯酯、聚氯乙烯、氯乙烯-乙酸乙烯酯共聚物、聚偏氯乙烯、聚乙烯吡咯烷酮、脲醛树脂、超高分子量聚乙烯、不饱和聚酯、聚醚醚酮等;③合成橡胶填料,如异戊橡胶、顺丁橡胶、丁苯橡胶、丁腈橡胶、氯丁橡胶、丁基橡胶、乙丙橡胶、硅橡胶、氟橡胶、聚丙烯酸酯橡胶、聚氨酯橡胶、氯醚橡胶、热塑性弹性体等;④合成纤维填料,如黏胶纤维、铜氨纤维、二乙酯纤维、三乙酯纤维、聚酰胺纤维、聚碳酸酯纤维、聚酯纤维、聚氨酯纤维、聚丙烯腈纤维、聚氯乙烯纤维、聚烯烃纤维、含氟纤维、聚四氟乙烯纤维、芳香族聚酰胺纤维、芳酰胺纤维或芳纶纤维等。
所述的可添加的金属有机化合物填料,包括但不仅限于以下任一种或任几种:烷基金属化合物填料,如甲基汞、四乙基铅、三丁锡、三羰基环戊二烯锰、金属杂茚等;芳香基金属化合物填料,如苯基汞、三苯基锡、金属呋喃、金属萘等;其中,所述的金属有机化合物填料,其可以为化合物分子,或者为化合物晶体。
其中,添加的填料类型不限定,主要根据所需求的材料性能而定,优选碳酸钙、硫酸钡、滑石粉、炭黑、石墨烯、玻璃微珠、(中空)玻璃微珠、发泡微球、玻璃纤维、碳纤维、天然橡胶、壳聚糖、淀粉、蛋白质、聚乙烯、聚丙烯、聚氯乙烯、乙烯-乙酸乙烯酯共聚物、异戊橡胶、顺丁橡胶、丁苯橡胶、丁腈橡胶、氯丁橡胶、丁基橡胶、乙丙橡胶、硅橡胶、热塑性弹性体、聚酰胺纤维、聚碳酸酯纤维、聚酯纤维、聚丙烯腈纤维;所用的填料用量没有特别限定,一般为1-30wt.%。
在动态聚合物的制备过程中,对动态聚合物各组分原料的添加量并未做特别的限定,本领域的技术人员可根据实际制备情况以及目标聚合物性能进行调整。
所述的动态聚合物性能大范围可调,可应用于各个领域,具有广阔的应用前景,在军事航天设备、功能涂料及涂层、生物医药、生物医用材料、能源、建筑、仿生、智能材料等领域,都体现出令人瞩目的应用效果。
例如,通过利用动态聚合物所具有的胀流性,可将其应用于油井采油、燃油防爆等方面;也可将其应用于制作阻尼减震器,用于各种机动车辆、机械设备、桥梁、建筑的震动隔离,聚合物材料在受到振动时,可以耗散大量能量起到阻尼效果,从而有效地缓和震动体的震动;也可利用动态聚合物所具有的应力响应性,将其作为吸能缓冲材料,应用于缓冲包装材料、运动防护制品、冲击防护制品以及军警用防护材料等方面,从而减少物品或人体在外力作用下所受到的震动和冲击,包括爆炸产生的冲击波等;通过动态聚合物所具有的动态可逆性和应力速率依赖性,制备出应力敏感型的聚合物材料,一部分可以应用于制备具有流动性和弹性转换的魔幻效果的玩具和健身材料,还可用于制备道路和桥梁的速度锁定器。
再例如,充分利用动态聚合物所具有的自修复性,可以制备出具有自修复功能的粘结剂,应用于各类材料的胶黏;也可用于制备具有良好可塑性并且可以回收修复的聚合物封堵胶; 基于有机硼酸硅酯键的动态可逆性,可以设计制备出具有自修复功能的耐刮擦涂层,从而延长涂层的使用寿命,实现对基体材料的长效防腐保护;通过合适的组分选择和配方设计,可以制备具有自修复功能的聚合物垫片或聚合物板材,从而可以模仿生物体损伤愈合的原理,使得材料能够对内部或者外部损伤进行自愈合,消除了隐患,延长了材料的使用寿命,在军工、航天、电子、仿生等领域表现出巨大的应用潜力。
再例如,将有机硼酸硅酯键作为可牺牲键进行使用时,其在外力作用下可通过吸收大量的能量而赋予聚合物材料以优异的韧性,从而可以获得韧性极佳的聚合物薄膜、纤维或者板材,广泛应用于军事、航天、运动、能源、建筑等领域。
下面结合一些具体实施方式对本发明所述的动态聚合物做进一步描述。具体实施例为进一步详细说明本发明,非限定本发明的保护范围。
实施例1
称取一定量的有机硼化合物(a)(以AIBN为引发剂、三乙胺为催化剂,利用乙烯基硼酸、乙烯基硼酸二丁酯与1,6-己二硫醇通过thiol-ene点击反应制得)溶解于四氢呋喃溶剂中配制成0.8mol/L的溶液;量取40ml溶解有有机硼化合物的四氢呋喃溶液倒入干燥洁净的烧瓶中,加入4ml的去离子水,滴加入少许乙酸混合均匀,再在其中慢慢加入5.02g的含硅化合物(b)(利用二甲基烯丙基氯硅烷、1,10-癸二硫醇为原料,以AIBN为引发剂、三乙胺为催化剂,通过thiol-ene点击反应制得)。在60℃条件下对上述混合溶液进行不断地搅拌,随着搅拌的进行,溶液的粘度不断上升,搅拌4h后,得到均相的动态聚合物流体,利用旋转流变仪对聚合物流体的最大弹性模量G’max和最小弹性模量G’min进行测试,其中,测试温度为25℃,测试频率范围为0.1~100rad/s,测得聚合物流体的最大弹性模量G’max为8.91×103Pa,最小弹性模量G’min为7.13Pa,动态聚合物赋予了聚合物流体以“剪切增稠”的效果。可将此聚合物应用于易燃液体的防爆,在液体中增加该聚合物后,易燃液体在搅拌使用的过程中由于粘度增加,不易产生飞溅,从而增加了安全性。也可应用于采油工程,增加驱油工艺中驱替相的粘度,从而提高原油采收率。
Figure PCTCN2017083513-appb-000087
实施例2
在干燥洁净的三口烧瓶中加入15ml苯硼酸封端的聚乙二醇(以聚乙二醇400、2-溴丙酰溴为原料,三乙胺为催化剂,制备双溴封端的聚乙二醇,然后将其与2-氨甲基苯硼酸通过烃基化反应制得最终产物),加热到80℃,在其中滴加入少量的去离子水和乙酸,然后在搅拌的状态下滴加入42ml的甲氧基硅烷改性硅油(以二甲基乙烯基甲氧基硅烷、粘度约为2000mPa·s的端氢基硅油为原料,在Pt催化条件下进行硅氢加成制得),在加热的状态下搅拌30min,使各组分充分混合均匀后,加入2ml三乙胺,继续反应2h,得到具有一定粘度的聚合物流体。利用旋转粘度计对聚合物流体的表观粘度进行测试,其中,测试温度为25℃,剪切速率恒定为0.1s-1,测得聚合物流体的表观粘度为22,680mPa·s。利用旋转流变仪对聚合物流体的最大弹性模量G’max和最小弹性模量G’min进行测试,其中,测试温度为25℃,测试频率范围为0.1~100rad/s,测得聚合物流体的最大弹性模量G’max为7.78×104Pa,最小弹性模量G’min为31.78Pa。此结构的动态聚合物流体体现出明显的动态特性和“剪切增稠”性,可将其施加于纺织品上或者泡沫体内,制作成抗冲击防护用品,例如作为运动用服装或者作为运动用护垫进行使用。
实施例3
在干燥洁净的三口烧瓶中加入15ml的硼酸酯封端聚醚(将(溴代甲基)硼酸二异丙酯与分 子量约为2000的聚醚胺通过烃基化反应制得),加热到90℃,加入3ml的去离子水,滴加入少量的乙酸,搅拌均匀后,滴加入21ml的甲基羟基硅油(粘度约为30mPa·s),通过搅拌使各组分充分混合30min后,加入2ml三乙胺,在加热搅拌的状态下继续反应3h,得到具有较大粘度的动态聚合物流体。利用旋转粘度计对聚合物流体的表观粘度进行测试,其中,测试温度为25℃,剪切速率恒定为0.1s-1,测得聚合物流体的表观粘度为51,400mPa·s。另取一个烧杯,在其中加入80ml的去离子水、0.8g十二烷基苯磺酸钠、0.4g羟乙基纤维素、0.2g硬脂酸和0.2g油酸,通过搅拌混合均匀后,取30ml聚合物流体倒入烧杯中,进行快速地搅拌混合,搅拌混合30min之后,得到具有一定粘度的乳白色液体,再在其中加入0.2g事先研磨好的钛白粉、群青、软质炭黑混合粉末,0.2g有机膨润土、0.2g聚二甲基硅氧烷、0.2g二月桂酸二丁基锡、微量荧光增白剂KSN、20mg光稳定剂770,搅拌混合均匀后,于室温放置12h后,则可得到由动态聚合物组成的水性乳液涂料,将涂料直接涂覆于底材表面进行晾干后,则可形成耐刮擦、可剥离再生的涂层。
实施例4
称取15.1g苯硼酸封端的聚四氢呋喃(以3-氨基苯硼酸为原料,将其与二溴封端的聚四氢呋喃(分子量约为2000)通过烃基化反应制得)加入到干燥洁净的三口烧瓶中,称取8.5g的羟基封端的甲基苯基硅油(分子量约为12,000)加入到三口烧瓶中,在搅拌的状态下将温度升到100℃进行混合后,加入1ml三乙胺,继续反应3h。反应结束后,得到具有一定粘度的粘稠样品,将聚合物样品浇注到合适的模具中,在真空条件下置于80℃烘箱中继续反应4-6h,之后冷却到室温放置30min,最终得到胶状的聚合物样品。聚合物样品在较慢的拉伸速率下能够进行大范围拉伸,产生蠕变;但若快速拉伸,则表现出弹性特征,用手指对其进行按压后能够快速复原。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为0.67±0.14MPa,拉伸模量为0.79±0.39MPa,断裂伸长率可达1003±312%。本材料可以制作成色彩各异、具有魔幻弹性的类似橡皮泥的玩具。
实施例5
Figure PCTCN2017083513-appb-000088
称取0.1mol的硼酸硅酯化合物(a)(利用甲基锂、乙烯基锂与硼酸三甲酯反应制得甲基乙烯基硼酸;以甲基乙烯基硼酸、巯基丁二酸为原料,在80℃条件下通过thiol-ene点击反应制得中间产物后,与氨基乙基氨基异丁基二甲基甲氧基硅烷在50℃条件下进行缩合反应制得),0.01mol 4-氨基丁酸,0.05mol二环己基碳二亚胺缩合剂,5mmol催化剂4-二甲氨基吡啶溶解于80ml的去离子水中,搅拌混合均匀后,在回流条件下反应5h。反应结束后,常压滤去生成的双环己基脲,再通过减压抽滤脱去溶剂得到白色残余物,将其提纯后得到膏状的固体动态聚合物。得到的动态聚合物表面柔软,具有较低的熔体粘度和较高的热稳定性,可以作为一种具有润滑效果的添加剂使用,可以提升材料在高剪切作用下的润滑性能。
实施例6
在干燥洁净的反应瓶中加入60ml的四氢呋喃溶剂,密封后,利用氩气鼓泡除氧1h,然后利用注射器加入0.3g乙炔基硼酸频哪醇酯(a),0.66g含有叠氮基团的硅烷(b)(利用11-溴代十一烷基三氯硅烷与叠氮化钠反应制得),0.28ml的N,N-二异丙基乙胺,19mg Cu(PPh3)3Br到反应瓶中。将反应瓶加热到60℃,在搅拌的状态下反应12h。反应完成后,将反应液进行抽滤除溶剂得初产物,利用正己烷/二氯甲烷(3:1)洗脱去杂质,干燥后得最终产物。产物溶 解于四氢呋喃中,加入一定量的甲醇,可以获得具有力学敏感性的凝胶,可以将其应用于阻尼材料。
Figure PCTCN2017083513-appb-000089
实施例7
将有机硼化合物(a)(以1-羟基硼杂环丙烯为原料,将其与氢溴酸通过加成反应制得2-溴-1-羟基硼杂环丙烷;以1,3,5-三丙烯酰基六氢-1,3,5-三嗪、2-氨基乙硫醇为原料,AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应制得中间产物后,再与2-溴-1-羟基硼杂环丙烷通过烃基化反应制得)溶解在四氢呋喃溶剂中,配置成0.4mol/L的溶液;取一定量含硅化合物(b)(以1-氯-1-甲基-硅杂环戊-3-烯为原料,将其与氢溴酸通过加成反应制得3-溴-1-氯-1-甲基-硅杂环戊烷;以三烯丙基胺、2-氨基乙硫醇为原料,AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应制得中间产物后,再与3-溴-1-氯-1-甲基-硅杂环戊烷通过烃基化反应制得)溶解在四氢呋喃溶剂中,配置成0.2mol/L的溶液;同时,取一定量的含硅化合物(c)(以三羟甲基丙烷三(3-巯基丙酸酯)、1-氯-乙烯基-硅杂环丁烷为原料,AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应制得)溶解于四氢呋喃溶剂中配制成0.2mol/L的溶液。在干燥洁净的烧杯中加入20ml配置好的有机硼化合物溶液,6ml的去离子水,滴加入少量的乙酸,在搅拌状态下滴加入20ml的含硅化合物(b)溶液和20ml的含硅化合物(c)溶液,在50℃条件下搅拌均匀后,再滴加入3ml的三乙胺,继续反应4h,在反应的过程中溶液粘度不断上升,直至反应结束后,得到有一定粘稠度的聚合物样品。将粘稠的聚合物样品倒入合适的模具中,置于50℃真空烘箱中24h进行干燥,之后冷却到室温放置30min,最终得到的聚合物样品呈胶状,有一定的弹性,并可在一定范围内进行延展。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为1.28±0.52MPa,拉伸模量为1.79±0.89MPa,断裂伸长率为392±73%。此外,制得的产品也具有良好的可塑性,可根据实际需要放置于不同形状的模具中,并在一定温度条件下略微施加一定应力,即可根据模具成型为不同形状的聚合物产品。在本实施例中,可将拉断的聚合物样品回收后,将断面处进行贴合(此过程中可选择对断面进行略微润湿),置于50℃的模具中施加一定压力放置6-8h,样品贴合处的裂纹消失,可将聚合物重新制成一种垫片材料进行使用,体现了聚合物材料的自修复性和可回收性。
Figure PCTCN2017083513-appb-000090
实施例8
在干燥洁净的烧杯中加入8.28g化合物(a)(以乙烯基硼酸频哪醇酯、1,10-癸二硫醇、二甲基乙烯基甲氧基硅烷为原料,AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应得到),15.92g的4,4'-氧双(1,4-亚苯基)二硼酸(b),加入60ml的DMF,在80℃条件下进行加热,并通过搅拌使固体在溶剂中溶解混合均匀。在搅拌的状态下,加入4ml的去离子水,少 量的乙酸,混合均匀后,再依次缓慢加入2.64g的1,1,3,3,5,5-六乙氧基-1,3,5-三硅代环己烷(c),12.48g十四甲基-1,11-二氯六硅氧烷(d)。搅拌混合30min后,加入2.5ml的三乙胺,在110℃条件下进行反应,反应过程中,溶液粘度不断上升,加热反应4h后,将聚合物溶液倒入合适的模具中,置于80℃真空烘箱中24h进行除溶剂,之后冷却到室温放置30min,最终得到块状的硬质性聚合物样品,聚合物具有一定的强度和刚性,但韧性和延展性较差。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为10mm/min,测得样品拉伸强度为2.12±0.34MPa,拉伸模量为3.97±1.12MPa,将其破碎之后置于80℃模具中放置12h可重新成型,利用其所具有的可回收特性可作为玻璃制品替代品进行使用。
Figure PCTCN2017083513-appb-000091
实施例9
在三口烧瓶中加入10.13g硅烷改性聚己内酰胺(a)(以丙烯酰氯为引发剂,NaOH为催化剂,引发己内酰胺开环聚合成烯烃单封端的聚己内酰胺,然后将其与巯甲基三乙氧基硅烷以AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应得到最终产物),1.53g的有机硼化合物(b)(将丙烯基硼酸二异丙酯与1,3,5-三嗪-2,4,6-三硫醇以AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应制得),100ml DMF溶剂,加热到80℃进行搅拌溶解,再加入10ml的去离子水,滴加入少许乙酸,继续搅拌混合30min后,加入4ml三乙胺,在80℃条件下继续搅拌反应3h,在反应的过程中溶液粘度不断上升,直至反应结束后,得到有一定粘稠度的聚合物流体。利用旋转流变仪对聚合物流体的最大弹性模量G’max和最小弹性模量G’min进行测试,其中,测试温度为25℃,测试频率范围为0.1~100rad/s,测得聚合物流体的最大弹性模量G’max为4.49×104Pa,最小弹性模量G’min为23.24Pa,动态聚合物具有胀流性,在剪切应力作用下其粘度上升,模量提高,可将此聚合物应用于油井采油,或者将其涂覆于底材表面用于制备吸能材料。
Figure PCTCN2017083513-appb-000092
实施例10
在干燥洁净的三口烧瓶中加入40ml的四氢呋喃溶剂,密封后,利用氩气鼓泡除氧1h,然后利用注射器加入3.4g环状有机硼酸硅酯化合物(a)(将11-溴代十一烷基二甲基氯硅烷水解后与2-溴乙基甲基硼酸进行缩合反应制得两端为溴的有机硼酸硅酯化合物,然后将其与叠氮化钠反应制得两端为叠氮基团的有机硼酸硅酯化合物;将端羟基的丁二烯低聚物(分子量约为800)与5-炔基己酸在二环己基碳二亚胺、4-二甲氨基吡啶催化条件下通过酯化反应制得两端为炔基的丁二烯低聚物,然后将其与两端为叠氮基团的有机硼酸硅酯化合物以过量的四氢呋喃为溶剂,在碘化亚铜、N,N-二异丙基乙胺催化条件下制得),2ml 20%乙酸水溶液,在氩气保护下加热到50℃放置30min后,再加入0.05g 1,8-辛二硫醇,0.03g光催化剂DMPA,0.2g三乙胺。通过搅拌使反应物完全溶解之后,保持搅拌状态反应2h,然后再在紫外光照射下反应10min,反应完成后,将反应液倒入合适的模具中,置于50℃的真空烘箱中24h进行进一步的反应和除溶剂,最终可得到粘性的聚合物胶体,其表面强度和硬度较低,但可对其进行大范围的拉伸而不断裂(断裂伸长率可达1500%)。在本实施例中,可将其作为超级热熔胶或室温自粘性材料使用,并可在其表面出现缺陷时,通过加热对其进行修复,而且可以通过有机硼酸硅酯键的解离(形成非交联性支化高分子)进行回收。
Figure PCTCN2017083513-appb-000093
实施例11
称取一定量有机硼化合物(a)和有机硼化合物(c)的混合物(以三羟甲基丙烷三(3-巯基丙酸酯)、丙烯基硼酸二异丙酯为原料,AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应制得)溶解在四氢呋喃溶剂中,配置成0.3mol/L的溶液;称取一定量含硅化合物(b)和含硅化合物(d)的混合物(以三羟甲基丙烷三(3-巯基丙酸酯)、甲基丙烯基二氯硅烷为原料,AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应制得)溶解在四氢呋喃溶剂中,配置成0.3mol/L的溶液。在氩气保护条件下,在干燥洁净的烧瓶中加入20ml配置好的有机硼化合物溶液,滴加入少量的20%乙酸水溶液,加热到60℃,在搅拌状态下滴加入20ml的含硅化合物溶液,搅拌均匀后,再滴加入3ml的三乙胺,反应30min后,加入0.18g烯丙基醚,0.05g光催化剂DMPA,通过搅拌使反应物溶解完全后,保持搅拌状态反应2h,然后再在紫外光照射下反应10min,然后将反应液倒入合适的模具中,置于60℃真空烘箱中24h进行进一步的反应和干燥,之后冷却到室温放置30min。最终得到琼脂状的聚合物样品,样品具有一定的弹性和韧性,可在一定范围内进行延展,用手指对其进行按压可快速回弹。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为2.13±0.61MPa,拉伸模量为2.94±1.05MPa,断裂伸长率为327±46%。此外,制得的产品也具有良好的可塑性,可根据实际需要放置于不同形状的模具中,并在一定温度条件下略微施加一定应力,即可根据模具成型为不同形状的聚合物产品。在本实施例中,可将聚合物制成回弹性垫圈和回弹性垫片进行使用。
Figure PCTCN2017083513-appb-000094
实施例12
在三口烧瓶中加入15g戊烯基硼酸-甲基丙烯酸甲酯-丙烯酸丁酯共聚物(以过硫酸钾为引发剂,4-戊烯基硼酸、甲基丙烯酸甲酯、丙烯酸丁酯为原料,通过乳液聚合得到),100ml丙酮溶剂,加热到50℃进行搅拌溶解后,再加入10ml的去离子水,滴加入少许乙酸,慢慢加入2.5g硅烷改性的聚己内酯(以烯丙醇为引发剂,辛酸亚锡为催化剂,引发ε-己内酯开环聚合得烯烃单封端的聚己内酯,再将其与丙烯酸酯化得烯烃双封端的聚己内酯,再将其与γ-巯丙基三甲氧基硅烷以AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应得到最终产物),搅拌混合30min后,加入2ml三乙胺,在50℃条件下继续搅拌反应2h。反应结束后,通过减压抽滤脱去溶剂得到白色残余物,将其提纯后得到动态聚合物。取10g聚合物样品分散于40ml的去离子水中,加入0.4g十二烷基苯磺酸钠、0.2g羟乙基纤维素、0.1g硬脂酸和0.1g油酸,加热搅拌混合均匀后,得到具有一定粘度的聚丙烯酸酯乳液。可将制得的动态聚合物乳液用作建筑外墙涂料,也可制作成具有优良粘附性、耐擦洗性、耐溶剂性、耐水性的乳胶膜,也可制作成具有功能性的织物整理剂、涂饰剂,还可作为皮革的柔软整理剂进行使用。
实施例13
将硼酸封端的三臂聚硅氧烷(a)(以3-溴-4-(溴甲基)苯甲醛为原料,将其与甲基三苯基溴化磷、叔丁醇钾在室温下反应24h,再升温到100℃在水/二氧六环混合溶剂中反应24h,再将其与叔丁基二甲基氯硅烷、咪唑在DMF溶剂中反应20h,再将其与甲醇、甲氧甲基氯在四氢呋喃溶剂中反应4h,再以Mg为催化剂,加热到60℃反应3h,然后加入硼酸三丁酯室温反应8h,提纯后得到2-(羟甲基)苯硼酸环状单酯乙烯;以八甲基环四硅氧烷、苯基三(二甲基硅氧烷基)硅烷为原料,浓硫酸为催化剂,通过开环聚合法合成三端氢基聚硅氧烷,再将其与2-(羟甲基)苯硼酸环状单酯乙烯在Pt催化条件下通过硅氢加成反应制得)溶解在四氢呋喃溶剂中,配置成0.2mol/L的溶液,并从中取20ml样品加入到干燥洁净的烧瓶中,加入4ml的去离子水,滴加入少量的乙酸,混合均匀;取一定量硅烷封端的三臂聚环氧丙烷(b)(以丙三醇、环氧丙烷为原料,三氟化硼乙醚为催化剂,通过阳离子开环聚合合成羟基封端的三臂聚环氧丙烷,再将其与丙烯酸通过酯化反应得三臂聚环氧丙烷三丙烯酸酯,再将其分别与1,2-乙二硫醇、二甲基乙烯基氯硅烷通过thiol-ene点击反应后制得)溶解于四氢呋喃溶剂中,配制成0.1mol/L的溶液,并取20ml滴加入烧瓶中;取一定量硅烷封端的三臂聚硅氧烷(c)(以八甲基环四硅氧烷、苯基三(二甲基硅氧烷基)硅烷为原料,浓硫酸为催化剂,通过开环聚合法合成三端氢基聚硅氧烷,再将其与二甲基乙烯基氯硅烷在Pt催化条件下通过硅氢加成反应制得)溶解于四氢呋喃溶剂中,配制成0.2mol/L的溶液,并取20ml滴加入烧瓶中。 在50℃条件下对混合溶液进行搅拌,然后加入1.5ml三乙胺,继续搅拌1h后,溶液粘度开始上升,继续反应1h之后,将具有一定粘度的聚合物溶液倒入模具中,置于50℃烘箱中24h进行干燥,之后冷却到室温放置30min,最终得到的透明薄膜状的聚合物样品。将其裁成80.0×10.0×(0.08±0.02)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为2.14±0.35MPa,拉伸模量为2.83±1.34MPa,断裂伸长率为673±121%。依据QB/T 1130-91塑料直角撕裂性能试验方法制取直角无割口型标准试样进行薄膜撕裂性能测试,测得样品横向撕裂强度为4.72±0.38MPa,纵向撕裂强度为4.93±0.52MPa。聚合物薄膜呈现出较为优良的综合性能,具有一定的拉伸强度和良好的抗撕裂性能,并可进行较大程度的拉伸。将聚合物薄膜剪断之后,将断面处置于50℃的模具中贴合2-4h之后,断面处的裂纹消失,样品重新成膜,具有自修复功能。此类动态聚合物可应用于制备功能薄膜,或者可以作为汽车和家具的贴膜使用,也可作为拉伸包装薄膜进行使用,其耐刮擦并且可以进行回收和重复利用。
Figure PCTCN2017083513-appb-000095
实施例14
在三口烧瓶中加入22.4ml的有机硼酸酯封端的四臂酯类化合物(a)(将异丙烯基硼酸频哪醇酯与季戊四醇四-3-巯基丙酸酯以AIBN为引发剂、三乙胺为催化剂,通过thiol-ene点击反应制得),在搅拌状态下加热到120℃,加入5mg BHT抗氧剂,然后称取13.12g硼酸封端的四臂化合物(b)(利用2-甲酰基苯硼酸、氨气为原料,甲苯为溶剂,通过Petasis反应合成2-氨甲基苯硼酸,再将其与四溴季戊醇通过烃基化反应制得)加入到三口烧瓶中,通过搅拌使其混合均匀;再量取29.6ml的四臂聚硅氧烷(c)(以八甲基环四硅氧烷、四(二甲基硅氧基)硅烷为原料,浓硫酸为催化剂,通过开环聚合法合成四端氢基聚硅氧烷,再将其与甲基乙烯基二乙氧基硅烷在Pt催化条件下通过硅氢加成反应后再水解制得)滴加入混合液中;将反应物混合均匀之后,加入2ml三乙胺,在氮气保护状态下将混合液体在120℃反应1h后,混合液具有一定的粘度,此时加入1g钛合金粉末、1g陶瓷粉、2g硫酸钙,搅拌均匀后,继续在120℃反应2h,得到粘稠状的聚合物样品,将其倒入合适的模具中,并将样品置于100℃真空烘箱中放置4-6h进行进一步的反应,之后冷却到室温放置30min。最终得到块状的,呈硬质性的,表面具有一定光泽度的聚合物样品。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为10mm/min,测得样品拉伸强度为5.21±0.88MPa,拉伸模量为10.76±1.37MPa。聚合物样品表面光滑,具有一定的强度和刚性。将其破碎后置于100℃模具中放置6-8h后,样品可重新压制成型。可将聚合物材料用于骨科治疗,作为骨科校正产品和器材。
Figure PCTCN2017083513-appb-000096
实施例15
取一定量树枝状的有机硼化合物(a)(以DMPA作为光引发剂,紫外光为光源,将乙烯基硼酸与1,2-乙二硫醇通过thiol-ene点击反应制得巯基硼酸;以DMPA作为光引发剂,紫外光为光源,将三烯丙基胺与1,2-乙二硫醇通过thiol-ene点击反应制得一级中间产物后,再与三烯丙基胺继续通过thiol-ene点击反应制得二级中间产物,之后再与1,2-乙二硫醇通过thiol-ene点击反应制得三级中间产物,再与三烯丙基胺反应制得四级中间产物,最后与巯基硼酸通过thiol-ene点击反应制得最终产物)溶解于甲苯溶剂中配制成0.1mol/L的溶液;同时,取一定量二甲基羟基硅油(分子量约为4000)加热溶解于甲苯溶剂中配制成0.8mol/L的溶液;取一定量聚醚改性硅油(利用分子量约为2000的甲基含氢硅油和不饱和聚醚在Pt催化条件下进行硅氢加成制得中间产物后,再与二甲基乙烯基乙氧基硅烷继续通过硅氢加成得最终产物)加热溶解于甲苯溶剂中配制成0.8mol/L的溶液。各取20ml有机硼化合物溶液和两种硅油溶液加入到干燥洁净的烧瓶中,滴加入少量的20%乙酸水溶液,在80℃条件下搅拌均匀后,再加入2ml三乙胺,在80℃条件下继续搅拌反应2h。反应结束后,将聚合物样品倒入到合适的模具中,将样品置于50℃烘箱中24h进行除溶剂,之后冷却到室温放置30min,最终得到透明薄膜状的聚合物样品。将其裁成80.0×10.0×(0.08±0.02)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为2.65±0.45MPa,拉伸模量为4.23±0.94MPa,断裂伸长率为864±157%。依据QB/T 1130-91塑料直角撕裂性能试验方法制取直角无割口型标准试样进行薄膜撕裂性能测试,测得样品横向撕裂强度为7.25±1.01MPa,纵向撕裂强度为7.54±1.69MPa。聚合物薄膜柔软,并具有一定的拉伸强度、模量以及良好的抗撕裂性能,同时,薄膜在拉伸韧性方面的表现十分优异。将聚合物薄膜剪断之后,将断面处置于50℃的模具中贴合2-4h之后,断面处的裂纹消失,样品重新成膜,体现出自修复性。可通过对其进行结构设计,预制成充气垫缓冲包装材料进行使用,对被包装产品起到缓冲保护作用,并且材料也十分便于回收。
Figure PCTCN2017083513-appb-000097
实施例16
取一定量丙烯酸-有机硼酸共聚物(a)(以2-甲酰基苯硼酸、烯丙胺为原料,甲苯为溶剂,通过Petasis反应合成2-(烯丙胺)甲基苯硼酸,再将其与丙烯酸在AIBN引发条件下进行自由基共聚得到)溶解于去离子水中配制成0.4mol/L的溶液,从中取40ml加入到干燥洁净的烧杯中待用。取一定量乙烯基吡咯烷酮-硅烷共聚物(b)(以AIBN为引发剂,将乙烯基吡咯烷酮与乙烯基三异丙氧基硅烷通过自由基共聚制得)溶解于去离子水中配制成0.4mol/L的溶液,从中取40ml溶液在搅拌状态下缓慢加入到装有丙烯酸-有机硼酸共聚物水溶液的烧杯中。添加完溶液,对混合液搅拌30min,使各组分混合均匀后,滴加入少量三乙胺,置于50℃水浴锅中进行加热反应。随着反应的进行,混合物溶液粘度不断升高,反应30min后,加入3.2g经过硅烷偶联剂A151表面修饰的Fe3O4粒子和1.5g羟乙基纤维素,对混合液超声1min,使Fe3O4粒子在其中分散均匀,接着继续在加热条件下对液体进行不断地搅拌反应。反应90min后,将混合液倒入合适的模具中,置于50℃烘箱中放置24h进行干燥以及进一步的反应,最终得到分散有Fe3O4粒子的磁性动态聚合物凝胶。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为1.42±0.34MPa,拉伸模量为2.03±0.92MPa,断裂伸长率为1031±180%。通过将氨甲基苯硼酸结构引入反应物中,使得制得的有机硼酸硅酯键具有良好的动态反应性,拉断的聚合物样品回收之后,仅需在50℃的模具中放置4-6h即可重新成型,同时,聚合物凝胶也体现出了优异的拉伸韧性。在本实施例中,所制得的磁性凝胶能够在磁场作用下表现出伸长、收缩或弯曲等多种形变,而凝胶本身所具有的优良韧性使得在此过程中凝胶的网络结构并不会受到损坏。动态聚合物凝胶可凭借其独特的柔韧性和渗透性广泛应用于靶向药物释放、细胞分离与标记、蛋白质吸附和分离等领域。
Figure PCTCN2017083513-appb-000098
实施例17
在三口烧瓶中加入60ml有机硼酸-硅烷改性硅油(a)(以分子量约为60,000的甲基巯基硅油、乙烯基硼酸二甲酯、甲基乙烯基二乙氧基硅烷为原料,以DMPA作为光引发剂,在紫外光照射条件下,通过thiol-ene点击反应制得),升温到80℃混合均匀后,加入4ml的去离子水,滴加入少量的乙酸,在搅拌状态下进行聚合反应。在聚合的过程中,硅油的粘度不断上升,反应90min后,可得到具有较大粘度的聚合物液体,将其倒入到合适的模具中,置于80℃真空烘箱中继续反应4h,之后冷却到室温放置30min,最终得到表面柔软并具有较大粘性的透明聚合物样品。聚合物材料表面强度较低,具有无定型性,在外力作用下,材料较易延展,并体现出良好的拉伸韧性,能够进行较大程度的拉伸而不断裂(断裂伸长率超过2000%)。在其表面出现缺陷时,置于60℃真空烘箱中加热2-4h,缺陷消失。在本实施例中,动态聚合物中的动态键特别耐水解,可以长期保持透明状态,可将聚合物作为带有自修复特性的超级热熔胶或室温自粘性材料使用,也可用于作为速度锁定器的介质而用于桥梁和道路建设。
Figure PCTCN2017083513-appb-000099
实施例18
称取25g苯硼酸共聚改性异戊橡胶(a)(以AIBN为引发剂,将异戊二烯和3-乙烯基苯硼酸通过自由基共聚得到)、4g硅烷改性聚倍半硅氧烷(b)(以巯丙基三乙氧基硅烷为原料,三氯化铁、HCl为催化剂,水解缩合得巯基改性的聚倍半硅氧烷,再将其与甲基乙烯基二氯硅烷,乙烯基环丙烷以DMPA作为光引发剂,在紫外光照射条件下,通过thiol-ene点击反应制得)加入到小型密炼机中进行混炼20min后,加入5g白炭黑、6g钛白粉、0.05g硬脂酸钡、0.15g硬脂酸继续混炼20min。添加剂与胶料充分混合均匀后,取出混炼后的物料进行冷却,置于双辊机中压制成薄片,在室温下进行冷却,裁片。将制得的聚合物薄片浸于90℃的水中进行交联,然后取出,于80℃真空烘箱中放置6h进行进一步的反应和干燥,之后冷却到室温放置30min,从模具中取出样品,最终得到橡胶态的动态聚合物材料,其具有良好的可塑性,可依据模具尺寸制备成不同形状的产品,并可在较大范围内进行拉伸延展,体现出十分优异的拉伸韧性。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为1.02±0.31MPa,拉伸模量为1.52±0.44MPa,断裂伸长率为1207±342%。在聚合物材料表面用刀片进行刻划后,将其置于80℃真空烘箱中放置4-6h后,划痕消失(此过程中可选择对表面进行略微润湿),样品 能够进行自修复。此聚合物材料在常态下可以保持柔软,并在受到冲击时表现出临时刚性,而在冲击之后,又变回正常的柔性状态,利用样品所具有的应力响应特性,可将其制作成橡胶基压敏垫使用。
Figure PCTCN2017083513-appb-000100
实施例19
称取3.64g苯硼酸酯改性乙丙橡胶(以低分子量二元乙丙橡胶为原料,利用过氧化二苯甲酰作为交联剂进行反应形成小团簇结构后,再在团簇表面接枝马来酸酐,再加入4-氨基苯硼酸频哪醇酯通过酰胺化反应制得最终产物)加到干燥洁净的烧杯中,倒入40ml的二甲苯溶剂进行加热搅拌,再加入4ml的去离子水,滴加入少量的乙酸,再称取2.48g硅烷改性乙丙橡胶(以低分子量二元乙丙橡胶为原料,利用过氧化二苯甲酰作为交联剂进行反应形成小团簇结构后,再在团簇表面接枝马来酸酐,再加入3-氨丙基甲基二甲氧基硅烷通过酰胺化反应制得最终产物)、3.12g苯硼酸酯-硅烷改性乙丙橡胶(以低分子量二元乙丙橡胶为原料,利用过氧化二苯甲酰作为交联剂进行反应形成小团簇结构后,再在团簇表面接枝马来酸酐,再加入4-氨基苯硼酸频哪醇酯、3-氨丙基甲基二甲氧基硅烷通过酰胺化反应制得最终产物),在搅拌状态下缓慢加入到烧杯中,加热到80℃搅拌混合30min后,加入1.0mg BHT抗氧剂,2ml三乙胺,继续在80℃条件下进行搅拌反应3h,得到粘稠的聚合物液体,将其置于合适的模具中,在80℃真空烘箱中放置24h进行除溶剂,之后冷却到室温放置30min,从模具中取出样品,最终得到橡胶状的动态聚合物。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为3.53±0.69MPa,拉伸模量为4.38±1.34MPa,断裂伸长率可达947±274%。聚合物样品不仅体现出一定的强度,而且表现出了十分优异的韧性,可将其作为一种密封条、密封圈或者弹性缓冲垫片进行使用;在使用过程中,材料表现出了良好的粘弹性,具有良好的隔离震动和应力缓冲效果,同时也表现出了优良的耐水解性。当其表面出现破损时,通过加热可实现破损处的愈合从而重新成型,实现材料的自修复和回收利用。
实施例20
在干燥洁净的烧杯中分别称取7.2g硼酸酯改性的聚丁二烯(a)(以端氨基1,3-聚丁二烯、(溴代甲基)硼酸二异丙酯为原料,通过烃基化反应制得),2.4g表面带有硅羟基的二氧化硅,再在其中加入40ml苯溶剂,在50℃条件下通过搅拌混合均匀后,再加入16mg的十二烷基苯磺酸钠,8mg的羟丙基纤维素,加热到70℃继续反应2h,之后将具有一定粘度的混合液置于合适的模具中在50℃真空烘箱中干燥24h,最终得到分散有二氧化硅的聚丁二烯聚合物。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为1.87±0.42MPa,拉伸模量为2.74±0.82MPa,断裂伸长率为502±149%。将拉断的聚合物样品回收后,在80℃的模具中放置4-8h可重新成型。 在本实施例中,可将聚合物样品制成一种密封胶或可回收性弹性小球玩具进行使用,其能够体现出良好的韧性和弹性,并且可依据需要压制成不同形状尺寸的产品,破损或不再需要的样品可进行回收,制成新的产品使用。
Figure PCTCN2017083513-appb-000101
实施例21
称取8.5g硼酸改性的聚苯乙烯(以AIBN为引发剂,利用苯乙烯和4-乙烯基苯硼酸通过自由基共聚制得)加入到干燥洁净的烧杯中,在其中倒入80ml的甲苯溶剂,加热到50℃通过搅拌进行溶解之后,在烧杯中加入1.5g表面带有硅羟基的玻璃微纤,再加入6mg硅烷偶联剂KH550、6mg的十二烷基苯磺酸钠,继续搅拌30min后,加入4mg的羟丙基纤维素,加热到80℃继续反应3h,之后将混合液置于合适的模具中在50℃真空烘箱中干燥24h,最终得到分散有玻璃微纤的块状聚合物样品,其具有较高的表面硬度和一定的力学强度,质地较硬,弹性和韧性较差,用锤子将其敲击破碎之后,观察发现基体中的玻璃微纤与基体结合紧密。将破碎料放入模具中加热到180℃,在5MPa压力下模压成型5min,将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为10mm/min,测得样品拉伸强度为4.24±1.73MPa,拉伸模量为9.12±3.08MPa,其具有良好的耐化学药品性,可将制得的聚合物材料作为玻璃制品替代品、硬质性包装盒、装饰板材进行使用。
实施例22
称取17.4g的硼酸硅酯聚合物(a)(以过氧化苯甲酰为引发剂,将丙烯、丙烯基硼酸二异丙酯在80℃条件下进行自由基聚合得到中间产物后,将其与巯甲基二甲基乙氧基硅烷溶解在四氢呋喃/水混合溶剂中,以三乙胺为催化剂,在80℃条件下进行酯交换反应制得最终产物),3.92g的硼酸硅酯化合物(b)(利用甲基锂、乙烯基锂与硼酸三甲酯反应制得甲基乙烯基硼酸;以甲基乙烯基硼酸、5-己烯基二甲基氯硅烷为原料,氯仿/水混合液为溶剂,三乙胺为催化剂,在50℃条件下进行缩合反应制得),0.2g增塑剂DOP,0.05g二甲基硅油加入到干燥洁净的三口烧瓶中,在氮气保护条件下加热到100℃搅拌熔融,混合均匀后,加入0.04g AIBN,0.5g三乙胺,在100℃氮气保护条件下反应4h。反应结束后,将其浇注到合适的模具中,在真空条件下置于80℃真空烘箱中继续反应4-6h,之后冷却到室温放置30min,最终得到硬质胶状的聚合物样品。聚合物样品具有一定的强度和可压缩性,能在一定范围内进行拉伸。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为3.84±0.88MPa,拉伸模量为6.03±1.42MPa,断裂伸长率为473±46%。拉断后的样品在断面处施加应力(此过程中可选择对断面进行略微润湿),置于80℃模具中加热6-8h后断面可重新粘合,具有自修复性能,也可根据不同形状的模具对材料进行重新成型。本材料可以作为应力承载材料在精细模具中进行使用,起到承载应力作用的同时,又具有一定的可变形性,起到缓冲作用,在其出现裂纹或破损时,还可通过加热进行修复。
Figure PCTCN2017083513-appb-000102
实施例23
称取25g苯硼酸酯-硅烷改性的聚丁二烯环氧树脂(a)(以分子量约为2000的聚丁二烯环氧树脂为原料,将其分别与4-氨基苯硼酸频哪醇酯、甲氨基丙基二甲基甲氧基硅烷通过环氧基团开环反应制得)加入到三口烧瓶中,升温到80℃,通氮气保温1h后,加入0.5g三乙胺,在搅拌状态下缓慢加入1.8gγ-巯丙基甲基二甲氧基硅烷,反应2h后,再滴加入少量20%乙酸水溶液,在搅拌状态下进行交联反应。在反应的过程中,液体的粘度不断上升,反应2h之后,得到粘稠状的黄色聚合物样品,此时将其倒入到合适的模具中,置于80℃真空烘箱中继续反应4h,之后冷却到室温放置30min,最终得到类似麦芽糖的聚合物样品,其强度较低,但具有较大的粘性及非常良好的拉伸韧性,可进行较大程度的拉伸而不断裂(断裂伸长率可达1000%)。在本实施例中,可将聚合物作为电子封装材料或胶黏剂使用,在使用的过程中,可对其进行回收重复利用,聚合物样品具有较长的使用寿命。
Figure PCTCN2017083513-appb-000103
实施例24
称取23g有机硼酸改性硅橡胶(以甲基巯基硅橡胶、乙烯基硼酸为原料,DMPA作为光引发剂,在紫外光照射条件下,通过thiol-ene点击反应制得)、10g二甲氧基硅烷改性硅橡胶(以甲基乙烯基硅橡胶、γ-巯丙基甲基二甲氧基硅烷为原料,DMPA作为光引发剂,在紫外光照射条件下,通过thiol-ene点击反应制得)、2g甲基硅橡胶颗粒加入到小型密炼机中混炼20min后,加入10g二氧化硅、12g钛白粉、1.75g三氧化二铁、0.035g硅油继续混炼30min,使得添加剂与胶料充分混合均匀,之后取出胶料,置于双辊机中压制成薄片,在室温下进行冷却,裁片。将制得的聚合物薄片浸于90℃的水中进行交联,然后取出,于80℃真空烘箱中放置6h进行进一步的反应和干燥,之后冷却到室温放置30min,从模具中取出样品,最终得到柔软的橡胶状的动态封堵胶。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为2.33±0.27MPa,拉伸模量为3.04±0.52MPa,断裂伸长率为843±264%。聚合物样品不仅体现出十分优良的拉伸韧性,还具有良好的可塑性和回弹性;可依据模具尺寸制备成不同形状的产品,对其表面进行按压之后,凹陷处能够迅速回复,当其表面出现破损时,通过加热可重新成型,实现回收利用。可将得到的硅橡胶制品制作成各类密封件,或者利用其所具有的良好减震性和绝缘性,制作成橡胶轨枕垫配件而应用于铁路交通。
实施例25
在干燥洁净的烧杯中称取5.28g的丙烯酰胺-硼酸共聚物(a)(以3-溴丙基硼酸、烯丙胺为原料,通过烃基化反应制得(3-(烯丙基氨基)丙基)硼酸后,再将其与N,N-二甲基丙烯酰 胺以AIBN为引发剂,进行自由基聚合得到最终产物),并在其中加入40ml的去离子水,置于50℃条件下不断地搅拌溶解,溶解完全后,在其中滴加入少量1mol/L的NaOH溶液;称取5.20g的丙烯酰胺-硅烷共聚物(b)(以2-丙烯酸-3-(二乙氧基甲基硅烷基)丙基酯为原料,AIBN为引发剂,将其与N,N-二甲基丙烯酰胺通过自由基聚合后制得)缓慢添加到丙烯酰胺-硼酸共聚物溶液中,在此过程中通过不断搅拌使其溶解混合,溶解完全后,依次加入1.08g石墨烯粉、0.05g十二烷基苯磺酸钠,在50℃条件下搅拌30min后,再加入0.02g的羟乙基纤维素,之后将混合溶液置于50℃条件下继续进行反应。随着反应的进行,溶液的粘度不断上升,加热反应2.5h之后,得到粘稠状的聚合物样品,将其置于50℃烘箱中24h进行干燥除溶剂,再将干燥后的样品置于模具中,在80℃下压制成型。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为2.08±0.56MPa,拉伸模量为2.83±1.22MPa,断裂伸长率为434±87%。可将拉断的聚合物样品进行回收后,置于80℃的模具中放置6-8h重新成型。在本实施例中,可将聚合物样品制成一种石墨烯复合动态聚合物导热垫片进行使用,这种导热垫片可依据需要压制成不同形状尺寸的产品,破损或不再需要的样品可进行回收,制成新的产品使用。
Figure PCTCN2017083513-appb-000104
实施例26
取一定量硼酸改性的聚降冰片烯(a)(以乙烯基硼酸、环戊二烯为原料,通过Diels-Alder反应制得硼酸改性的降冰片烯,再将其与降冰片烯以茂金属催化剂/甲基铝氧烷为催化体系,通过加成聚合反应制得)加热溶解于邻二氯苯溶剂中配制成0.8mol/L的溶液,从中取50ml加入到干燥洁净的烧瓶中,滴加入少量的去离子水和乙酸搅拌均匀待用。取一定量硅烷改性的聚降冰片烯(b)(以甲基乙烯基二乙氧基硅烷、环戊二烯为原料,通过Diels-Alder反应制得硅烷改性的降冰片烯,再将其与降冰片烯以茂金属催化剂/甲基铝氧烷为催化体系,通过加成聚合反应制得)加热溶解于邻二氯苯溶剂中配制成0.8mol/L的溶液,从中取50ml缓慢加入到之前配置好的硼酸改性的聚降冰片烯混合溶液中,在整个加入过程中,溶液处于80℃水浴加热条件,并通过不断搅拌使混合液混合均匀。溶液添加完成后,继续搅拌30min,然后加入4ml三乙胺,加热到100℃搅拌反应3h,得到动态聚合物溶液。利用静电纺丝技术,将装有动态聚合物溶液的针管做正极,圆形铝板做负极,调节电场间的距离,施加电压,通过调节使针头的液滴由球形变成纺锤形并形成喷射流,在纺丝过程中溶剂部分挥发,在接收屏上得到聚合物纤维,然后把纤维置于60℃真空烘箱中干燥12h,得到动态聚合物纤维制品。利用显微镜对纤维直径进行观测,发现得到的聚合物纤维直径处于1~2μm的范围。可将制得的聚降冰片烯纤维用于制作人体器官、电子封装材料或者硅集成电路的抗蚀材料,在纳米管材、光纤、集成电路方面具有巨大的应用前景。
Figure PCTCN2017083513-appb-000105
实施例27
取30g硼酸酯-乙烯共聚物(以AIBN为引发剂,在80℃条件下将异丙烯基硼酸频那醇酯与乙烯进行无规共聚制得)、15g硅烷-乙烯共聚物(以AIBN为引发剂,在80℃条件下将甲基乙烯基二乙氧基硅烷与乙烯进行无规共聚制得)、5g聚乙烯、1g阻燃剂TPP、0.5g三氧化二锑、0.5g硬脂酸、0.05g抗氧剂168、0.1g抗氧剂1010、0.1g二月桂酸二正丁基锡、0.25g二甲基硅油混合均匀后,加入到小型挤出机中进行挤出共混,挤出温度为140-160℃,得到的挤出样条进行造粒之后,利用小型注塑机进行制样,注射温度为140-160℃,而后将制得的薄片样条置于90℃水中进行交联,然后取出,置于模具中,在120℃氮气保护条件下放置4-6h进行干燥以及进一步的反应,最终得到具有阻燃性能的动态聚合物样品。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为5.98±1.23MPa,拉伸模量为9.51±2.13MPa,断裂伸长率为147±36%,样品具有一定的力学性能以及良好的阻燃性。此外,制得的样品也具有良好的可塑性,可根据不同形状的模具成型为不同外观的聚合物产品。在本实施例中,可将聚合物样品制成阻燃板材使用,并能对其进行回收重复利用。
实施例28
取60g氯乙烯-硼酸酯共聚物(以AIBN为引发剂,将氯乙烯与丙烯基硼酸二异丙酯通过自由基聚合制得),30g氯乙烯-硅烷共聚物(以AIBN为引发剂,将丙烯基三氯硅烷与氯乙烯通过自由基共聚制得)、10g聚氯乙烯、20g邻苯二甲酸二辛脂、10g MBS增韧剂、1g硬脂酸、0.1g抗氧剂168、0.2g抗氧剂1010、0.2g二月桂酸二正丁基锡、0.5g二甲基硅油混合均匀后,加入到小型挤出机中进行挤出共混,挤出温度为120-140℃,得到的挤出样条进行造粒之后,利用小型注塑机进行制样,注射温度为130-150℃,而后将制得的薄片样条置于90℃水中进行交联,然后取出,置于模具中,在100℃氮气保护条件下放置4-6h进行干燥以及进一步的反应,最终得到增韧的动态聚合物样品。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为10.49±1.22MPa,拉伸模量为15.94±2.17MPa,断裂伸长率为773±106%,聚合物样品具有良好的柔韧性,可进行较大范围的拉伸。此外,制得的产品也具有良好的可塑性,可根据不同形状的模具成型为不同外观的聚合物产品。在本实施例中,可将聚合物样品制成耐弯曲的软管材料进行使用,在其出现破损之后,可对其进行回收重复利用。
实施例29
称取一定量的2,5-二硼酸噻吩溶解于甲苯溶剂中,配制成0.2mol/L的溶液;称取一定量的氯丙烯-苯硼酸共聚物(以氯丙烯、4-乙烯基苯硼酸为原料,AIBN为引发剂,通过自由基聚合得到)溶解于甲苯溶剂中,配制成0.05mol/L的溶液;各取20ml两种有机硼化合物溶液加入到干燥洁净的烧杯中,加入4ml去离子水和少量的乙酸,再加入10mg的BHT抗氧剂,混合均匀后,在搅拌状态下依次缓慢加入1.72g二苯基硅二醇、4.70g氯丙烯-硅烷共聚物(以氯丙烯、苯乙烯乙基三甲氧基硅烷为原料,AIBN为引发剂,通过自由基聚合制得),加热到80℃对混合溶液进行缓慢搅拌,让各项组分溶解混合均匀后,滴加入2ml三乙胺继续搅拌反应。溶液的粘度随着搅拌的进行不断上升,混合反应2h之后,得到膏状的聚合物样品,此时将其倒入到合适的模具中,置于50℃真空烘箱中干燥24h,之后冷却到室温放置30 min,最终得到的类琼脂状的聚合物样品,用手指对样品表面进行按压,样品能够较快地回弹,表现出良好的弹性,此外,样品也可在一定范围内进行延展。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为2.97±0.36MPa,拉伸模量为4.77±1.43MPa,断裂伸长率为576±137%。在本实施例中,可将聚合物样品制成一种密封胶或可回收性弹性小球进行使用,其能够体现出良好的韧性和弹性,并且可依据需要压制成不同形状尺寸的产品,破损或不再需要的样品可进行回收,制成新的产品使用。
实施例30
取20g苯硼酸酯改性聚丁二烯(a)(以DMPA作为光引发剂,紫外光为光源,将4-巯基苯硼酸频哪醇酯与端胺基聚丁二烯通过thiol-ene点击反应制得),20g硅烷改性聚丁二烯(b)(以DMPA作为光引发剂,紫外光为光源,将巯甲基甲基二乙氧基硅烷与端胺基聚丁二烯通过thiol-ene点击反应制得)加热到80℃混合均匀后,加入1.0g蒸馏水,1.2g三乙胺,搅拌反应4h后,加入0.2g二月桂酸二丁基锡,0.8g硅油泡沫稳定剂,高速搅拌混合均匀后,加入4.5g三甲基-1,6-六亚甲基二异氰酸酯迅速混合,并高速搅拌30s,当混合物发白冒泡时,迅速将其倒入合适的模具中,置于80℃条件下成型发泡12h,最终可得到聚氨酯泡沫材料。将其制成20.0×20.0×20.0mm尺寸的块状样品,利用万能试验机进行压缩性能测试,压缩速率为2mm/min,测得样品压缩强度为0.37±0.09MPa。得到的聚氨酯泡沫材料具有良好的绝热保温性能,还具有密度小、比强度高、可回收利用、可自修复等优点,可将其应用于制作可回收性泡沫填充材料。
Figure PCTCN2017083513-appb-000106
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种具有动态交联结构的动态聚合物,其特征在于,其在交联网络的聚合物链骨架上,或者聚合物链之间的交联链接骨架上,或者同时在聚合物链骨架上和聚合物链之间的交联链接骨架上含有有机硼酸硅酯键;其中,所述的有机硼酸硅酯键,其具有如下结构:
    Figure PCTCN2017083513-appb-100001
    其中,硼原子和硅原子之间至少形成一个硼酸硅酯键,且结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;所述的有机硼酸硅酯键作为动态聚合物的聚合链接点,或者交联链接点,或者同时作为聚合链接点和交联链接点而存在,是形成/维持动态聚合物结构的必要条件。
  2. 根据权利要求1所述的具有动态交联结构的动态聚合物,其特征在于,其至少利用以下一种或几种化合物作为原料得到:
    有机硼化合物(I),其含有有机硼酸基、或者有机硼酸酯基、或者有机硼酸基和有机硼酸酯基的组合;含硅化合物(II),其含有硅羟基、或者硅羟基前驱体、或者硅羟基和硅羟基前驱体的组合;化合物(III),其同时含有有机硼酸基、或者有机硼酸酯基、或者有机硼酸基和有机硼酸酯基的组合以及硅羟基、或者硅羟基前驱体、或者硅羟基和硅羟基前驱体的组合;化合物(IV),其含有有机硼酸硅酯键以及其他反应性基团;其中,有机硼化合物(I),含硅化合物(II),化合物(III)均含有至少一个官能团;其中,有机硼化合物(I)或者含硅化合物(II)不单独作为原料制备所述的动态聚合物;
    其中,化合物原料中含有的有机硼酸基,指的是由硼原子以及与该硼原子相连的一个羟基所组成的结构基元,且其中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    其中,化合物原料中含有的有机硼酸酯基,指的是由硼原子、与该硼原子相连的一个氧原子和与该氧原子相连的烃基或硅烷基所组成的结构基元,且其中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    其中,化合物原料中含有的硅羟基,指的是由硅原子以及与该硅原子相连的一个羟基所组成的结构基元;
    其中,化合物原料中含有的硅羟基前驱体,指的是由硅原子以及与该硅原子相连的一个可水解得到羟基的基团所组成的结构基元,其中,可水解得到羟基的基团选自卤素、氰基、氧氰基、硫氰基、烷氧基、氨基、硫酸酯基、硼酸酯基、酰基、酰氧基、酰氨基、醇盐基;
    其中,化合物原料中含有的官能团,指的是有机硼酸基中的羟基、或者有机硼酸酯基中的酯基、或者硅羟基中的羟基、或者硅羟基前驱体中的可水解得到羟基的基团、或者它们的 组合;其中,有机硼酸基中的一个羟基即为一个官能团,有机硼酸酯基中的一个酯基即为一个官能团,硅羟基中的一个羟基即为一个官能团,硅羟基前驱体中的一个可水解得到羟基的基团即为一个官能团;
    其中,化合物原料中含有的其他反应性基团,指的是能够进行衍生化反应,或者进行聚合/交联反应生成除有机硼酸硅酯键以外的普通共价键的基团,其选自羟基、酚羟基、羧基、酰基、酰胺基、酰氧基、氨基、醛基、磺酸基、磺酰基、巯基、烯基、炔基、氰基、嗪基、胍基、卤素、异氰酸酯基团、酸酐基团、环氧基团、丙烯酸酯基团、丙烯酰胺基团、马来酰亚胺基团、N-羟基琥珀酰亚胺基团、降冰片烯基团、偶氮基团、叠氮基团、杂环基团。
  3. 根据权利要求2所述的具有动态交联结构的动态聚合物,其特征在于,所述的有机硼化合物(I),其以如下结构表示:
    Figure PCTCN2017083513-appb-100002
    其中,A为含有有机硼酸基、或者有机硼酸酯基、或者有机硼酸基和有机硼酸酯基的模块;m为模块A的个数,m≥1;L为单个模块A上的取代基团,或者为两个或多个模块A之间的连接基团,其选自以下任一种或任几种结构:分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基;其中,m=1时,L为单个模块A上的取代基团,其选自分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基中的任一种或任几种;m>1时,L为两个或多个模块A之间的连接基团,其选自单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基中的任一种或任几种;p为基团L的个数,p≥1;
    所述的含硅化合物(II),其以如下结构表示:
    Figure PCTCN2017083513-appb-100003
    其中,G为含有硅羟基、或者硅羟基前驱体、或者硅羟基和硅羟基前驱体的模块;n为模块G的个数,n≥1;J为单个模块G上的取代基团,或者为两个或多个模块G之间的连接基团,其选自以下任一种或任几种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基、单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基、分子量不超过1000Da的二价或多价无机小分子链残基、分子量大于1000Da的二价或多价无机大分子链残基;其中,n=1时,J为单个模块G上的取代基团,其选自氢原子、杂原子基团、分子量不 超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基中的任一种或任几种;n>1时,J为两个或多个模块G之间的连接基团,其选自单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基、分子量不超过1000Da的二价或多价无机小分子链残基、分子量大于1000Da的二价或多价无机大分子链残基中的任一种或任几种;q为基团J的个数,q≥1;
    所述的化合物(III),其以如下结构表示:
    Figure PCTCN2017083513-appb-100004
    其中,A为含有有机硼酸基、或者有机硼酸酯基、或者有机硼酸基和有机硼酸酯基的模块;x为模块A的个数,x≥1;G为含有硅羟基、或者硅羟基前驱体、或者硅羟基和硅羟基前驱体的模块;y为模块G的个数,y≥1;T为两个或多个A之间、或者两个或多个G之间、或者A与G之间的连接基团,其选自以下任一种或任几种结构:单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基;v为基团T的个数,v≥1;
    所述的化合物(IV),其以如下结构表示:
    Figure PCTCN2017083513-appb-100005
    其中,E为含有有机硼酸硅酯键的模块;u为模块E的个数,u≥1;Y为单个模块E上的取代基团,或者为单个模块E上的取代基团和两个或多个模块E之间的连接基团,且至少一个基团Y与有机硼酸硅酯键的硼原子相连,至少一个基团Y与有机硼酸硅酯键的硅原子相连;其中,在至少一个基团Y中含有至少一个其他反应性基团,并且在所有基团Y中含有的其他反应性基团数大于等于2;所述的基团Y,其选自以下任一种或任几种结构:分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基;其中,u=1时,Y为单个模块E上的取代基团,其选自分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基中的任一种或任几种;u>1时,Y为单个模块E上的取代基团和两个或多个模块E之间的连接基团,其选自分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基中的任一种或任几种以及单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基中的任一种或任几种;r为基团Y的个数,r≥2;
    其中,所述的含有有机硼酸基的模块A,其选自以下任一种或任几种结构:
    Figure PCTCN2017083513-appb-100006
    其中,K1为与硼原子直接相连的基团,其选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;其中,A4中的环状结构为含有至少一个有机硼酸基的非芳香性或芳香性硼杂环基团;A4中的环状结构的成环原子各自独立地为碳原子、硼原子或其他杂原子,且至少一个成环原子为硼原子并构成有机硼酸基,且至少一个成环原子与基团L或基团T相连;所述各种结构中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    所述的含有有机硼酸酯基的模块A,其选自以下任一种或任几种结构:
    Figure PCTCN2017083513-appb-100007
    其中,K2为与硼原子直接相连的基团,其选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;R1、R2、R3、R4、R6为与氧原子直接相连的一价有机基团或一价有机硅基团,其通过碳原子或硅原子与氧原子直接相连,其选自以下任一种结构:分子量不超过1000Da的小分子烃基、分子量不超过1000Da的小分子硅烷基、分子量大于1000Da的聚合物链残基;R5为与两个氧原子直接相连的二价有机基团或二价有机硅基团,其通过碳原子或硅原子与氧原子直接相连,其选自以下任一种结构:分子量不超过1000Da的二价小分子烃基、分子量不超过1000Da的二价小分子硅烷基、分子量大于1000Da的二价聚合物链残基;其中,B5中的环状结构为含有至少一个有机硼酸酯基的非芳香性或芳香性硼杂环基团;B5中的环状结构的成环原子各自独立地为碳原子、硼原子或其他杂原子,且至少一个成环原子为硼原子并构成有机硼酸酯基,且至少一个成环原子与基团L或基团T相连;所述各种结构中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    所述的含有硅羟基的模块G,其选自以下任一种或任几种结构:
    Figure PCTCN2017083513-appb-100008
    Figure PCTCN2017083513-appb-100009
    其中,K3、K4、K5、K6、K7为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;其中,C7、C8、C9中的环状结构为含有至少一个硅羟基的非芳香性或芳香性硅杂环基团;C7、C8、C9中的环状结构的成环原子各自独立地为碳原子、硅原子或其他杂原子,且至少一个成环原子为硅原子并构成硅羟基,且至少一个成环原子与基团J或基团T相连;
    所述的含有硅羟基前驱体的模块G,其选自以下任一种或任几种结构:
    Figure PCTCN2017083513-appb-100010
    其中,K8、K9、K10、K11、K12为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14为与硅原子直接相连的可水解基团,其选自卤素、氰基、氧氰基、硫氰基、烷氧基、氨基、硫酸酯基、硼酸酯基、酰基、酰氧基、酰氨基、醇盐基;其中,D7、D8、D9中的环状结构为含有至少一个硅羟基前驱体的非芳香性或芳香性硅杂环基团;D7、D8、D9中的环状结构的成环原子各自独立地为碳原子、硅原子或其他杂原子,且至少一个成环原子为硅原子并构成硅羟基前驱体,且至少一个成环原子与基团J或基团T相连;
    所述的含有有机硼酸硅酯键的模块E,其选自以下任一种或任几种结构:
    Figure PCTCN2017083513-appb-100011
    其中,K13、K16、K20为与硼原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;K14、K15、K17、K18、K19、K21为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基。
  4. 根据权利要求3所述的具有动态交联结构的动态聚合物,其特征在于,所述的杂原子基团,其选自以下任一种基团:卤素、羟基、硫醇、羧基、硝基、伯胺基、硅基、磷基、三氮唑、异噁唑、酰胺基、酰亚胺基、烯胺基、碳酸酯基、氨基甲酸酯基、硫酯基、原酸酯基、磷酸酯基、亚磷酸酯基、次磷酸酯基、膦酸酯基、磷酰基、亚磷酰基、次磷酰基、碳酰胺、磷酰胺、亚磷酰胺、焦磷酰胺、环磷酰胺、异环磷酰胺、硫代磷酰胺、乌头酰基、肽键、偶氮基、脲基、异脲基、异硫脲基、脲基甲酸酯基、硫脲基甲酸酯基、胍基、脒基、氨基胍基、氨基脒基、亚氨酸基、亚氨酸硫酯基、硝酰基、亚硝酰基、磺酸基、磺酸酯基、亚磺酸酯基、磺酰胺基、亚磺酰胺基、磺酰肼基、磺酰脲基、马来酰亚胺、三唑啉二酮;
    所述的分子量不超过1000Da的小分子烃基,其选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:C1-71烷基、环C3-71烷基、苯基、苄基、芳烃基;
    所述的分子量大于1000Da的聚合物链残基,其选自均聚或共聚形式的碳链聚合物残基、杂链聚合物残基、元素有机聚合物残基;
    所述的分子量不超过1000Da的小分子硅烷基,其选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:硅碳烷链残基、硅氧烷链残基、硅硫烷链残基、硅氮烷链残基;
    所述的分子量不超过1000Da的无机小分子链残基,其选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:硅烷链残基、硅氧化合物链残基、硫硅化合物链残基、硫氮化合物链残基、磷腈化合物链残基、磷氧化合物链残基、硼烷链残基;
    所述的分子量大于1000Da的无机大分子链残基,其选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:聚硅烷链残基、聚硅氧烷链残基、聚硫硅链残基、聚硫氮链残基、聚磷酸链残基、聚磷腈链残基、聚氯代磷腈链残基、聚硼烷链残基;或者选自以下组中任一种带有残基的无机大分子或任一种经过表面改性的带有残基的无机大分子:沸石型分子筛、磷酸铝分子筛、磷酸锆分子筛、杂多酸盐分子筛、金刚石、 石墨、碳纤维、白磷、红磷、五氧化磷、硫化钼、二氧化硅、二硫化硅、氮化硅、碳化硅、滑石、高岭土、蒙脱石、云母、石棉、长石、水泥、玻璃、石英、陶瓷、氧化硼、氮化硫、硅化钙、硅酸盐、玻璃纤维、氧化铍、氧化镁、氧化汞、硼氢化物、氮化硼、碳化硼、氮化铝、水铝石、水铝矿、刚玉、二氧化钛;
    所述的单键,其选自硼硼单键、碳碳单键、碳氮单键、氮氮单键、硼碳单键、硼氮单键、硼硅单键、硅硅单键、硅碳单键、硅氮单键;
    所述的杂原子连接基,其选自以下任一种或任几种的组合:醚基、硫基、硫醚基、二价叔胺基、三价叔胺基、二价硅基、三价硅基、四价硅基、二价磷基、三价磷基、二价硼基、三价硼基。
  5. 根据权利要求2所述的具有动态交联结构的动态聚合物,其特征在于,构成动态聚合物的原料组分还包括以下任一种或任两种可添加物:助剂、填料;
    其中,可添加的助剂选自以下任一种或任几种助剂:催化剂、引发剂、抗氧剂、光稳定剂、热稳定剂、增韧剂、润滑剂、脱模剂、增塑剂、发泡剂、动态调节剂、抗静电剂、乳化剂、分散剂、着色剂、荧光增白剂、消光剂、阻燃剂、成核剂、流变剂、增稠剂、流平剂;
    其中,可添加的填料选自以下任一种或任几种填料:无机非金属填料、金属及其氧化物填料、有机填料、金属有机化合物填料。
  6. 根据权利要求2到5中任一项所述的具有动态交联结构的动态聚合物,其特征在于,其通过至少以下组分参与反应生成有机硼酸硅酯键获得:
    至少一种有机硼化合物(I),至少一种含硅化合物(II);其中,有机硼化合物(I)和含硅化合物(II)含有两个或两个以上官能团,且至少一种有机硼化合物(I)或至少一种含硅化合物(II)含有三个或三个以上官能团。
  7. 根据权利要求2到5中任一项所述的具有动态交联结构的动态聚合物,其特征在于,其通过至少以下组分参与反应生成有机硼酸硅酯键和普通共价键获得:
    至少一种有机硼化合物(I),至少一种含硅化合物(II);其中,有机硼化合物(I)和含硅化合物(II)含有一个或一个以上官能团,且至少一种有机硼化合物(I)或至少一种含硅化合物(II)含有一个或一个以上其他反应性基团。
  8. 根据权利要求2到5中任一项所述的具有动态交联结构的动态聚合物,其特征在于,其通过至少以下组分参与反应生成有机硼酸硅酯键获得:至少一种化合物(III);其中,化合物(III)含有两个或两个以上官能团。
  9. 根据权利要求8所述的具有动态交联结构的动态聚合物,其特征在于,参与反应生成有机硼酸硅酯键的化合物组分还包括:
    至少一种有机硼化合物(I),或者至少一种含硅化合物(II),或者至少一种有机硼化合物(I)和至少一种含硅化合物(II)的组合;
    其中,有机硼化合物(I)、含硅化合物(II)含有两个或两个以上官能团,且至少一种化合物(III)或至少一种有机硼化合物(I)或至少一种含硅化合物(II)含有三个或三个以上官能团。
  10. 根据权利要求2到5中任一项所述的具有动态交联结构的动态聚合物,其特征在于,其通过至少以下组分参与反应生成有机硼酸硅酯键和普通共价键获得:至少一种化合物(III);其中,化合物(III)含有两个或两个以上官能团。
  11. 根据权利要求10所述的具有动态交联结构的动态聚合物,其特征在于,参与反应生成有机硼酸硅酯键和普通共价键的化合物组分还包括:
    至少一种有机硼化合物(I),或者至少一种含硅化合物(II),或者至少一种有机硼化合物(I)和至少一种含硅化合物(II)的组合;
    其中,有机硼化合物(I)、含硅化合物(II)含有一个或一个以上官能团,且至少一种化合物(III)或至少一种有机硼化合物(I)或至少一种含硅化合物(II)含有一个或一个以上其他反应性基团。
  12. 根据权利要求2到5中任一项所述的具有动态交联结构的动态聚合物,其特征在于,其通过至少以下组分参与反应生成普通共价键获得:
    至少一种含有至少一个有机硼酸硅酯键以及至少一个其他反应性基团的化合物(IV)。
  13. 根据权利要求12所述的具有动态交联结构的动态聚合物,其特征在于,参与反应生成普通共价键的化合物组分还包括:
    至少一种不含有有机硼酸硅酯键但含有至少一个其他反应性基团的化合物;其中,化合物中含有的其他反应性基团能够与化合物(IV)中含有的其他反应性基团参与反应。
  14. 根据权利要求1到5中任一项所述的具有动态交联结构的动态聚合物,其特征在于,其应用于以下制品:减震器、缓冲材料、抗冲击防护材料、运动防护制品、军警防护制品、自修复性涂层、自修复性板材、自修复性粘结剂、韧性材料、玩具、力传感器。
PCT/CN2017/083513 2016-06-01 2017-05-08 具有动态交联结构的动态聚合物 WO2017206671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610382046.3A CN107446135B (zh) 2016-06-01 2016-06-01 一种具有动态交联结构的动态聚合物
CN201610382046.3 2016-06-01

Publications (1)

Publication Number Publication Date
WO2017206671A1 true WO2017206671A1 (zh) 2017-12-07

Family

ID=60479701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083513 WO2017206671A1 (zh) 2016-06-01 2017-05-08 具有动态交联结构的动态聚合物

Country Status (2)

Country Link
CN (1) CN107446135B (zh)
WO (1) WO2017206671A1 (zh)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110105544A (zh) * 2019-06-04 2019-08-09 安徽工业大学 一种基于双重修复机制的自修复材料制备方法
CN110423354A (zh) * 2019-08-26 2019-11-08 北京理工大学 Zif-67@ zif-8掺杂聚环三磷腈阻燃剂及其制备方法
CN112951482A (zh) * 2021-02-26 2021-06-11 无锡帝科电子材料股份有限公司 一种电子元器件浆料及加工工艺
CN113402875A (zh) * 2021-07-08 2021-09-17 齐齐哈尔大学 一种氧化石墨烯/粉煤灰改性再生聚氨酯复合材料及其制备方法
CN114057973A (zh) * 2021-12-07 2022-02-18 广州予能新材料科技有限公司 一种有机硅改性聚氨酯材料及其制备方法
US20220119677A1 (en) * 2019-01-31 2022-04-21 Elkem Silicones Shanghai Co., Ltd. Curable silicone composition with a good flame resistance
CN114773756A (zh) * 2022-05-24 2022-07-22 四川大学 一种热机械稳定超分子弹性体材料及其制备方法
CN114957898A (zh) * 2022-06-02 2022-08-30 西南科技大学 一种可逆应力响应材料及其制备方法和应用
CN115360431A (zh) * 2022-08-16 2022-11-18 厦门大学 一种聚丁二烯基高电导率聚合物电解质的制备方法及其应用
US11530340B1 (en) 2022-06-30 2022-12-20 CreateMe Technologies LLC Cyclodextrin-azobenzene adhesives for apparel products
US11530336B1 (en) 2022-06-30 2022-12-20 CreateMe Technologies LLC Methods of assembling apparel products having cyclodextrin-azobenzene adhesives
US11542413B1 (en) 2022-06-30 2023-01-03 CreateMe Technologies LLC Methods of disassembling apparel products having imine adhesives
US11542412B1 (en) 2022-06-30 2023-01-03 CreateMe Technologies LLC Methods of disassembling apparel products having cyclodextrin-azobenzene adhesives
US11629272B1 (en) 2022-06-30 2023-04-18 CreateMe Technologies LLC Methods of assembling apparel products having thioester adhesives
US11634616B1 (en) 2022-06-30 2023-04-25 CreateMe Technologies LLC Methods of assembling apparel products having boronate adhesives
US11632995B1 (en) 2022-06-30 2023-04-25 CreateMe Technologies LLC Methods of assembling apparel products having disulfide adhesives
US11653709B1 (en) 2022-06-30 2023-05-23 CreateMe Technologies LLC Methods of disassembling apparel products having disulfide adhesives
US11655397B1 (en) 2022-06-30 2023-05-23 CreateMe Technologies LLC Methods of assembling apparel products having cycloalkene adhesives
US11692111B1 (en) 2022-06-30 2023-07-04 CreateMe Technologies LLC Methods of disassembling apparel products having shape memory adhesives
US11712873B1 (en) 2022-06-30 2023-08-01 CreateMe Technologies LLC Boronate adhesives for apparel products
US11713405B1 (en) 2022-06-30 2023-08-01 CreateMe Technologies LLC Methods of disassembling apparel products having thioester adhesives
US11730217B1 (en) 2022-06-30 2023-08-22 CreateMe Technologies LLC Methods of disassembling apparel products having cycloalkene adhesives
US11730215B1 (en) 2022-06-30 2023-08-22 CreateMe Technologies LLC Thioester adhesives for apparel products
US11732159B1 (en) 2022-06-30 2023-08-22 CreateMe Technologies LLC Methods of disassembling apparel products having boronate adhesives
US11752234B1 (en) 2022-06-30 2023-09-12 CreateMe Technologies LLC Shape memory adhesives for apparel products
CN117125714A (zh) * 2023-10-27 2023-11-28 宁德时代新能源科技股份有限公司 硅基材料及其制备方法、负极极片、电池和用电设备
US11849791B1 (en) 2022-06-30 2023-12-26 Createme Technologies Inc. Methods of assembling apparel products having imine adhesives
US11857013B1 (en) 2022-06-30 2024-01-02 Createme Technologies Inc. Methods of assembling apparel products having shape memory adhesives
US11905440B1 (en) 2022-06-30 2024-02-20 Createme Technologies Inc. Disulfide adhesives for apparel products

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805309B (zh) * 2016-09-09 2021-03-19 翁秋梅 一种非共价交联结构的动态聚合物及其应用
CN107805308B (zh) * 2016-09-09 2022-04-15 翁秋梅 一种具有杂化交联网络的动态聚合物及其应用
CN107805311B (zh) * 2016-09-09 2022-04-01 翁秋梅 一种具有杂化交联网络的动态聚合物及其应用
WO2019114702A1 (zh) * 2017-12-12 2019-06-20 东丽先端材料研究开发(中国)有限公司 聚硅氧烷及太阳能、半导体用掺杂浆料
CN108192020B (zh) * 2018-01-03 2020-05-08 兰州石化职业技术学院 一种智能型两性离子聚合物材料的制备方法
CN108070044B (zh) * 2018-02-05 2021-01-08 中国科学院长春应用化学研究所 一种凝胶材料及其制备方法
CN110396231B (zh) * 2018-04-24 2022-03-15 中国石油化工股份有限公司 具有自愈合功能的橡胶组合物及其制备方法和应用
CN108813800B (zh) * 2018-06-15 2021-06-29 郑州电力高等专科学校 一种高耐磨防静电鞋
CN109517240B (zh) * 2018-10-30 2021-01-05 西北工业大学 一种具有动态交联结构的丁腈橡胶的制备方法
CN111607055B (zh) * 2019-02-22 2021-07-16 中国科学院化学研究所 一种基于动态可逆共价键的高分子量聚氨酯及其制备方法和应用
CN109943078A (zh) * 2019-02-27 2019-06-28 中红普林医疗用品股份有限公司 一种可自修复的硅胶手套的制备方法
CN112409886A (zh) * 2019-03-30 2021-02-26 刘小龙 基于石墨烯的防腐涂层的加工工艺
CN110330692B (zh) * 2019-07-23 2021-06-01 华侨大学 一种液体橡胶系动态交联剂及其应用
CN110373814B (zh) * 2019-07-29 2020-07-10 四川大学 对位芳纶纳米纤维膜及其制备方法
CN110669225B (zh) * 2019-09-11 2022-03-18 复旦大学 一种可重复加工的热固性聚合物的合成方法
CN110757849B (zh) * 2019-09-12 2021-04-13 界首市楷讯塑胶科技有限公司 一种耐腐蚀改性高分子塑料薄膜的制备工艺
CN110846726B (zh) * 2019-11-20 2022-03-29 东北农业大学 一种冷鲜肉托盘包装的3d抑菌吸水气凝胶及其制备方法和应用
CN111251500A (zh) * 2020-01-21 2020-06-09 翁秋梅 一种带皮胀流性聚合物泡沫颗粒及其制备方法
CN111253583B (zh) * 2020-01-21 2023-05-16 厦门天策材料科技有限公司 一种胀流性杂化动态聚合物及其实现胀流性的方法
CN111548714B (zh) * 2020-05-29 2022-07-15 陕西科技大学 一种自修复型水性聚合物复合涂饰剂及其制备方法和应用
CN111793185B (zh) * 2020-07-17 2022-04-08 哈尔滨工业大学 一种基于酚醛树脂的印刷电路板基板的制备、重塑及回收方法
CN111894380B (zh) * 2020-07-29 2022-04-22 宜兴市优力健体育用品有限公司 一种天窗用抗震保护型发泡条及结构
CN111978559B (zh) * 2020-09-08 2021-10-08 四川大学 具有mof结构的高强度自凝固复合骨植入体及其制备
CN112267208A (zh) * 2020-10-28 2021-01-26 闽江学院 利用电纺技术将漆酚制成具有纳米纤维结构薄膜的方法
CN112876631B (zh) * 2021-01-19 2022-03-04 江南大学 一种可循环回收、可修复的热固性树脂、制备方法及应用
CN113621215B (zh) * 2021-07-28 2024-02-09 哈尔滨工业大学 有机-无机杂化生物质酚醛树脂耐烧蚀材料的制备方法
CN113717385A (zh) * 2021-09-09 2021-11-30 广州海润新材料科技有限公司 一种具有剪切变硬特征的玻璃高分子
CN114042439B (zh) * 2021-12-15 2023-06-30 中国人民解放军96901部队23分队 含铀废水吸附剂及其制备方法
CN114350334B (zh) * 2022-01-20 2022-12-16 嘉华特种水泥股份有限公司 一种抗高温韧性固井水泥浆体系
CN114597403B (zh) * 2022-02-28 2023-12-19 河北零点新能源科技有限公司 一种碘化亚铜悬浊液作为添加剂提高锂电池负极材料石墨容量的方法
CN115739044A (zh) * 2022-11-15 2023-03-07 西安工程大学 广域pH有机阳离子型脱色吸附剂及其制备方法
CN116987278A (zh) * 2023-08-04 2023-11-03 浙江永通新材料股份有限公司 一种低温可自愈合聚硅氧烷超分子弹性体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258437A (en) * 1991-06-27 1993-11-02 Shin-Etsu Chemical Co., Ltd. Silicone putty compositions
CN101343421A (zh) * 2008-08-28 2009-01-14 上海交通大学 pH调控释放的动态聚合物封装体系的制备方法
WO2013127989A1 (en) * 2012-03-02 2013-09-06 Fundación Cidetec Self-healing elastomeric material
CN105111470A (zh) * 2015-08-13 2015-12-02 四川大学 一种可逆共价交联聚硅氧烷弹性体及其制备方法与应用
CN105646872A (zh) * 2016-02-26 2016-06-08 翁秋梅 一种动态聚合物材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100137440A (ko) * 2008-03-04 2010-12-30 다우 코닝 코포레이션 보로실록산 조성물, 보로실록산 접착제, 코팅된 기판 및 적층 기판
US20110021736A1 (en) * 2008-03-04 2011-01-27 Bizhong Zhu Polyborosiloxane and Method of Preparing Same
CN102234375B (zh) * 2010-04-21 2013-10-30 华东理工大学 聚苯乙炔基硅氧硼烷及其制备方法
EP2847249A4 (en) * 2012-03-14 2016-12-28 Medipacs Inc SMART POLYMER MATERIALS WITH EXCESSIVE REACTIVE MOLECULES
CN103319719B (zh) * 2012-03-19 2015-07-22 香港纺织及成衣研发中心有限公司 一种智能应力响应型硅硼聚合物微凝胶的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258437A (en) * 1991-06-27 1993-11-02 Shin-Etsu Chemical Co., Ltd. Silicone putty compositions
CN101343421A (zh) * 2008-08-28 2009-01-14 上海交通大学 pH调控释放的动态聚合物封装体系的制备方法
WO2013127989A1 (en) * 2012-03-02 2013-09-06 Fundación Cidetec Self-healing elastomeric material
CN105111470A (zh) * 2015-08-13 2015-12-02 四川大学 一种可逆共价交联聚硅氧烷弹性体及其制备方法与应用
CN105646872A (zh) * 2016-02-26 2016-06-08 翁秋梅 一种动态聚合物材料

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220119677A1 (en) * 2019-01-31 2022-04-21 Elkem Silicones Shanghai Co., Ltd. Curable silicone composition with a good flame resistance
CN110105544A (zh) * 2019-06-04 2019-08-09 安徽工业大学 一种基于双重修复机制的自修复材料制备方法
CN110423354A (zh) * 2019-08-26 2019-11-08 北京理工大学 Zif-67@ zif-8掺杂聚环三磷腈阻燃剂及其制备方法
CN112951482A (zh) * 2021-02-26 2021-06-11 无锡帝科电子材料股份有限公司 一种电子元器件浆料及加工工艺
CN113402875A (zh) * 2021-07-08 2021-09-17 齐齐哈尔大学 一种氧化石墨烯/粉煤灰改性再生聚氨酯复合材料及其制备方法
CN114057973A (zh) * 2021-12-07 2022-02-18 广州予能新材料科技有限公司 一种有机硅改性聚氨酯材料及其制备方法
CN114773756A (zh) * 2022-05-24 2022-07-22 四川大学 一种热机械稳定超分子弹性体材料及其制备方法
CN114773756B (zh) * 2022-05-24 2023-08-22 四川大学 一种热机械稳定超分子弹性体材料及其制备方法
CN114957898B (zh) * 2022-06-02 2023-04-25 西南科技大学 一种可逆应力响应材料及其制备方法和应用
CN114957898A (zh) * 2022-06-02 2022-08-30 西南科技大学 一种可逆应力响应材料及其制备方法和应用
US11634616B1 (en) 2022-06-30 2023-04-25 CreateMe Technologies LLC Methods of assembling apparel products having boronate adhesives
US11752234B1 (en) 2022-06-30 2023-09-12 CreateMe Technologies LLC Shape memory adhesives for apparel products
US11713405B1 (en) 2022-06-30 2023-08-01 CreateMe Technologies LLC Methods of disassembling apparel products having thioester adhesives
US11629272B1 (en) 2022-06-30 2023-04-18 CreateMe Technologies LLC Methods of assembling apparel products having thioester adhesives
US11530340B1 (en) 2022-06-30 2022-12-20 CreateMe Technologies LLC Cyclodextrin-azobenzene adhesives for apparel products
US11632995B1 (en) 2022-06-30 2023-04-25 CreateMe Technologies LLC Methods of assembling apparel products having disulfide adhesives
US11712873B1 (en) 2022-06-30 2023-08-01 CreateMe Technologies LLC Boronate adhesives for apparel products
US11653709B1 (en) 2022-06-30 2023-05-23 CreateMe Technologies LLC Methods of disassembling apparel products having disulfide adhesives
US11730217B1 (en) 2022-06-30 2023-08-22 CreateMe Technologies LLC Methods of disassembling apparel products having cycloalkene adhesives
US11692111B1 (en) 2022-06-30 2023-07-04 CreateMe Technologies LLC Methods of disassembling apparel products having shape memory adhesives
US11905440B1 (en) 2022-06-30 2024-02-20 Createme Technologies Inc. Disulfide adhesives for apparel products
US11542412B1 (en) 2022-06-30 2023-01-03 CreateMe Technologies LLC Methods of disassembling apparel products having cyclodextrin-azobenzene adhesives
US11655397B1 (en) 2022-06-30 2023-05-23 CreateMe Technologies LLC Methods of assembling apparel products having cycloalkene adhesives
US11730215B1 (en) 2022-06-30 2023-08-22 CreateMe Technologies LLC Thioester adhesives for apparel products
US11530336B1 (en) 2022-06-30 2022-12-20 CreateMe Technologies LLC Methods of assembling apparel products having cyclodextrin-azobenzene adhesives
US11732159B1 (en) 2022-06-30 2023-08-22 CreateMe Technologies LLC Methods of disassembling apparel products having boronate adhesives
US11542413B1 (en) 2022-06-30 2023-01-03 CreateMe Technologies LLC Methods of disassembling apparel products having imine adhesives
US11857013B1 (en) 2022-06-30 2024-01-02 Createme Technologies Inc. Methods of assembling apparel products having shape memory adhesives
US11849791B1 (en) 2022-06-30 2023-12-26 Createme Technologies Inc. Methods of assembling apparel products having imine adhesives
CN115360431A (zh) * 2022-08-16 2022-11-18 厦门大学 一种聚丁二烯基高电导率聚合物电解质的制备方法及其应用
CN117125714A (zh) * 2023-10-27 2023-11-28 宁德时代新能源科技股份有限公司 硅基材料及其制备方法、负极极片、电池和用电设备
CN117125714B (zh) * 2023-10-27 2024-03-29 宁德时代新能源科技股份有限公司 硅基材料及其制备方法、负极极片、电池和用电设备

Also Published As

Publication number Publication date
CN107446135A (zh) 2017-12-08
CN107446135B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2017206671A1 (zh) 具有动态交联结构的动态聚合物
CN107805308B (zh) 一种具有杂化交联网络的动态聚合物及其应用
CN107805309B (zh) 一种非共价交联结构的动态聚合物及其应用
CN107805311B (zh) 一种具有杂化交联网络的动态聚合物及其应用
CN108341960B (zh) 一种含有组合动态共价键的动态聚合物及其应用
WO2018137508A1 (zh) 具有杂化交联结构的动态聚合物及其应用
CN108341951B (zh) 一种具有杂化交联结构的动态聚合物及其应用
CN108341961B (zh) 一种含有组合动态共价键的动态聚合物制备及其应用
CN107129580A (zh) 一种动态聚合物材料及其应用
CN109666167B (zh) 一种杂化动态聚合物组合物
CN108610486A (zh) 一种基于组合杂化交联动态聚合物的吸能方法
CN108341958A (zh) 一种基于杂化动态聚合物的吸能方法
CN109666121B (zh) 一种杂化动态交联聚合物及其应用
CN108342049B (zh) 一种物理分相动态聚合物及其应用
CN111378165A (zh) 一种组合杂化交联动态聚合物及其应用
WO2018137505A1 (zh) 具有杂化键合结构的动态聚合物或组成及其应用
CN108341948A (zh) 一种杂化交联动态聚合物及其应用
CN108342002A (zh) 一种具有杂化交联网络的动态聚合物及其应用
CN108341944A (zh) 一种基于动态聚合物的吸能方法
CN108342037A (zh) 一种基于杂化交联网络动态聚合物的吸能方法
CN111378168A (zh) 一种组合吸能方法及其用途
CN108341959A (zh) 一种动态聚合物及其应用
CN108341943A (zh) 一种杂化动态聚合物及其应用
CN111378159A (zh) 一种基于杂化交联动态聚合物的吸能方法及材料
CN109666156A (zh) 一种基于杂化动态聚合物组合物的吸能方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17805616

Country of ref document: EP

Kind code of ref document: A1