CN113109265A - 一种细菌光热检测试剂、试剂盒及检测方法 - Google Patents

一种细菌光热检测试剂、试剂盒及检测方法 Download PDF

Info

Publication number
CN113109265A
CN113109265A CN202110291508.1A CN202110291508A CN113109265A CN 113109265 A CN113109265 A CN 113109265A CN 202110291508 A CN202110291508 A CN 202110291508A CN 113109265 A CN113109265 A CN 113109265A
Authority
CN
China
Prior art keywords
mpba
aunps
bacterial
reagent
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110291508.1A
Other languages
English (en)
Inventor
郑来宝
董雯佳
楼永良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou Medical University
Original Assignee
Wenzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Medical University filed Critical Wenzhou Medical University
Priority to CN202110291508.1A priority Critical patent/CN113109265A/zh
Publication of CN113109265A publication Critical patent/CN113109265A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于微生物检测技术领域,具体涉及一种细菌光热检测试剂、试剂盒及检测方法。将MPBA功能化至AuNPs表面,MPBA包含两个官能团:可与Au结合的巯基基团,以及与细菌细胞壁中的肽聚糖共价结合的硼酸基团。当体系不存在细菌时,继续添加过量的MPBA可以通过形成环酯选择性地结合顺式二醇基团,引起MPBA‑AuNPs聚集,使溶液从红色转变为蓝色。而当体系中存在细菌时,将MPBA‑AuNPs固定在细菌表面,过量的MPBA引起AuNPs聚集不明显。由于聚集的和未聚集状态的AuNPs的光热转换效率不同,经激光器照射后,溶液产生的温度变化不同,通过普通数字温度计检测温度变化即可定量转化为对应细菌浓度。

Description

一种细菌光热检测试剂、试剂盒及检测方法
技术领域
本发明属于微生物检测技术领域,具体涉及一种细菌光热检测试剂、试剂盒及检测方法。
背景技术
微生物的快速检测在食品安全、水环境监测、公共安全和医疗诊断等方面具有重要意义。传统的微生物检测的方法主要包括培养法、聚合酶链式反应(PCR)和酶联免疫吸附试验(ELISA)等,但这些方法往往具有耗时、灵敏度低和特异性差或者需要专业的设备和专业人员的弊端。
而近年来,随着生命科学、物理学、分析化学、纳米科学以及信息科学和其他相关技术的发展,基于纳米材料的比色法在分析检测领域引起了极大的关注,但比色法的信号读取方式分为两种,一种基于肉眼的颜色判断,灵敏度较低;另一种需借助酶标仪或分光光度计,依赖于大型仪器的方式无法满足床旁检测简便、即时的需求。
基于便携式温度计的生物传感器在快速检测得到广泛讨论,但其在微生物检测领域应用较少,且已有的基于温度计的微生物检测方法操作繁琐。
发明内容
本发明的目的是为了克服现有技术存在的缺点和不足,而提供一种细菌光热检测试剂、试剂盒及检测方法。
本发明的第一方面,提供一种细菌光热检测试剂,其包含巯基苯硼酸(MPBA)修饰的纳米金颗粒。其中,MPBA具体可选择4-MPBA或3-MPBA。
进一步的,MPBA修饰的纳米金颗粒的制备为:用柠檬酸盐还原法合成胶体金纳米颗粒,得到柠檬酸根阴离子稳定的胶体金纳米颗粒混合体系,然后加入MPBA反应,得到MPBA修饰的纳米金颗粒。
进一步的,所加入的MPBA浓度为0.04 mM,加入MPBA后反应时间为20 min。
本发明的第二方面,提供一种细菌光热检测试剂盒,其包含试剂一、试剂二、激光器、温度检测装置;
所述试剂一为如上所述的细菌光热检测试剂;
所述试剂二包含MPBA。
进一步的,所述激光器可形成照射功率为1 W/cm2的激光。
本发明的第三方面,提供一种细菌光热检测方法,包括以下步骤:
(1)将如权利要求1-3任一项所述的细菌光热检测试剂与待测溶液反应;
(2)在步骤(1)反应结束后的体系中加入MPBA,进行反应;
(3)将步骤(2)反应结束后的体系用激光照射,并使用温度检测装置监测温度变化。
进一步的,步骤(1)中,反应的时间为15-45min。
进一步的,步骤(2)中,MPBA加入的浓度为0.5 mM,反应时间为30 min。
进一步的,步骤(3)中,激光照射采用激光器照射功率的1 W/cm2,照射时间3 min。
本发明的有益效果如下:本发明将MPBA功能化至AuNPs表面,MPBA包含两个官能团:可与Au结合的巯基基团,以及与细菌细胞壁中的肽聚糖共价结合的硼酸基团。当体系不存在细菌时,继续添加过量的MPBA(50 μM)可以通过形成环酯选择性地结合顺式二醇基团,中和斥力从而引起MPBA-AuNPs聚集,使溶液从红色转变为蓝色。而当体系中存在细菌时,MPBA-AuNPs将通过共价键与细菌细胞壁上存在的多糖的顺式-二醇基团结合,从而将MPBA-AuNPs固定在细菌表面,过量的MPBA引起AuNPs聚集不明显。由于聚集的和未聚集状态的AuNPs的光热转换效率不同,经激光器照射后,溶液产生的温度变化不同,通过普通数字温度计检测温度变化即可定量转化为对应细菌浓度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1 为基于4-MPBA诱导纳米金聚集的细菌光热检测原理图;
图2为4-MPBA诱导纳米金聚集体系的可行性验证;(A)-(D)分别为4-MPBA-AuNPs、4-MPBA-AuNPs+E.coli O157:H7、4-MPBA-AuNPs+过量4-MPBA和4-MPBA-AuNPs+E.coliO157:H7+过量4-MPBA的透射电镜图像(TEM);(E)为经激光照射后对应温度上升值图像;(F)为UV-vis中吸光度的变化;
图3为基于4-MPBA诱导纳米金聚集体系反应条件的优化;激光器照射功率(A)和时间(B),4-MPBA功能化浓度和时间(C),细菌与4-MPBA-AuNPs体系孵育时间(D),过量4-MPBA聚集浓度(E)及时间(F);
图4为大肠杆菌的检测性能。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
以下实施例中所使用的材料及来源如下:氯金酸购自上海麦克林生化科技有限公司。柠檬酸三钠和4-巯基苯硼酸购自Sigma-Aldrich(美国)。碳酸氢铵购自阿拉丁化学有限公司。实验用水均为超纯水,电导率为18.2 MΩ cm。
以下实施例中所使用的仪器如下:多功能酶标仪(SpectraMax iD3,美谷分子仪器有限公司,上海)、高速冷冻离心机(5417 R 型,Eppendorf,德国)、集热式恒温加热磁力搅拌器(DF-101S型,上海力辰邦西仪器科技有限公司)、红外光热检测平台(MW-GX-660/2000MW,长春镭仕光电科技有限公司),紫外可见光谱分析仪(凌析 V-3000,上海凌析仪器有限公司)、便携式温度计(榛利GL637,福州榛利机光电科技有限公司)、JEM-2100F高分辨透射电子显微镜(JEM-2100F,日本东京)等。
实施例1: 4-MPBA-AuNP的合成
胶体金纳米颗粒用柠檬酸盐还原法合成,具体过程如下:在剧烈搅拌下,通过油浴将100 mL HAuCl4(0.01% w/w)溶液加热至120℃,然后将10 mL 38.8 mM柠檬酸三钠快速加入上述溶液中。溶液的颜色从浅黄色变为无色,最后呈酒红色,持续加热15分钟后停止加热,继续搅拌至溶液冷却至室温(〜2 h)。通过在4℃下以5,000 rpm离心30分钟获得产物,并将其重新分散在缓冲溶液(10 mM NH4HCO3)中,得到柠檬酸根阴离子稳定的AuNPs混合体系,4°C保存备用。
将4-MPBA(0.004 mM)添加到柠檬酸根阴离子稳定的AuNPs混合体系中,制备4-MPBA-AuNPs。
实施例2:利用AuNPs的光热效应进行细菌检测
实验所用的大肠杆菌O157:H7(E. coli O157:H7)为本实验室保存菌株,使用Luria-Bertani(LB)液体培养基(胰蛋白胨1%,氯化钠1%,酵母提取物0.5%,水100 mL)培养,单个菌落在恒温摇床下(250 rpm,37℃)培养至对数期(6-12 h)。然后,以4000 rpm离心5分钟,去离子水洗涤三次,使用缓冲溶液(10 mM NH4HCO3)将细菌稀释至不同浓度(101-109cfu/mL)。
将1 mL新制备的4-MPBA-AuNPs溶液与不同浓度的大肠杆菌混合,在室温下反应适当的时间(30 min)。然后,通过添加过量的4-MPBA(0.05 mM)以诱导4-MPBA-AuNPs聚集。将混合溶液用激光(660 nm,1 W/cm2)照射3分钟,并使用数字温度计监测温度变化。
本实施例提供一种基于4-MPBA诱导纳米金聚集的细菌光热检测方法,其原理如图1所示,首先,将4-MPBA功能化至AuNPs表面,4-MPBA包含两个官能团:可与Ag或Au结合的巯基基团,以及与细菌细胞壁中的肽聚糖共价结合的硼酸基团。当体系不存在细菌时,继续添加过量的4-MPBA(50 μM)可以通过形成环酯选择性地结合顺式二醇基团,中和斥力从而引起4-MPBA-AuNPs聚集,使溶液从红色转变为蓝色。而当体系中存在细菌时,4-MPBA-AuNPs将通过共价键与细菌细胞壁上存在的多糖的顺式-二醇基团结合,从而将4-MPBA-AuNPs固定在细菌表面,过量的4-MPBA引起AuNPs聚集不明显。由于聚集的和未聚集状态的AuNPs的光热转换效率不同,经功率为1.0 W/cm2的660 nm激光器照射3分钟后,溶液产生的温度变化不同,通过普通数字温度计检测温度变化即可定量转化为对应细菌浓度。
如图2(A)-(E)所示,分散状态的4-MPBA-AuNPs,及其与细菌结合引起的温度上升均不显著,而加入过量4-MPBA后,引起温度剧烈上升,此时当体系中存在细菌时,温度上升受到抑制。由此证实本研究具有可行性。通过图2F中的UV-vis中吸光度的变化进一步验证温度变化。
实施例3:基于4-MPBA诱导纳米金聚集的细菌光热检测方法的条件优化
对激光器照射功率和时间、4-MPBA功能化浓度和时间、细菌与4-MPBA-AuNPs体系反应时间、过量4-MPBA聚集浓度及时间进行优化,如图3所示,其最优检测条件为激光器照射功率1 W/cm2,照射时间3 min,4-MPBA功能化浓度和时间为0.04 mM,20 min,细菌与4-MPBA-AuNPs体系反应时间为30 min,过量4-MPBA聚集浓度和时间为0.5 mM,30 min。
优化后的最优检测条件下,对E. coli O157:H7进行检测。如图4A所示,当细菌浓度低于107 cfu / mL时,由于颜色相似,肉眼很难区分不同浓度的样品。而通过我们的光热检测法,E. coli O157:H7线性检测范围可扩增至105 cfu/mL-109 cfu/mL,最低检测限为1.97×104 cfu/mL,比肉眼比色法提高约三个数量级。
实施例4:试样检测
使用过滤后的自来水,稀释的牛奶和血液作为模拟样品,其中加入浓度为109 cfu/mL的E. coli O157:H7,使用上述检测流程对其进行检测。如表1所示,大肠杆菌回收率范围为97.14%-104.20%,由此证实该方法具有潜在的实际应用价值。
表1 大肠杆菌O157:H7在自来水,牛奶和血液样本中的回收率
Figure DEST_PATH_IMAGE001
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (9)

1.一种细菌光热检测试剂,其特征在于:其包含MPBA修饰的纳米金颗粒。
2.根据权利要求1所述的细菌光热检测试剂,其特征在于:MPBA修饰的纳米金颗粒的制备为:用柠檬酸盐还原法合成胶体金纳米颗粒,得到柠檬酸根阴离子稳定的胶体金纳米颗粒混合体系,然后加入MPBA反应,得到MPBA修饰的纳米金颗粒。
3. 根据权利要求2所述的细菌光热检测试剂,其特征在于:所加入的MPBA浓度为0.04mM,加入MPBA后反应时间为20 min。
4.一种细菌光热检测试剂盒,其特征在于:其包含试剂一、试剂二、激光器、温度检测装置;
所述试剂一为如权利要求1-3任一项所述的细菌光热检测试剂;
所述试剂二包含MPBA。
5. 根据权利要求4所述的细菌光热检测试剂盒,其特征在于:所述激光器可形成照射功率为1 W/cm2的激光。
6.一种细菌光热检测方法,其特征在于包括以下步骤:
(1)将如权利要求1-3任一项所述的细菌光热检测试剂与待测溶液反应;
(2)在步骤(1)反应结束后的体系中加入MPBA,进行反应;
(3)将步骤(2)反应结束后的体系用激光照射,并使用温度检测装置监测温度变化。
7.根据权利要求6所述的细菌光热检测方法,其特征在于:步骤(1)中,反应的时间为15-45min。
8. 根据权利要求6所述的细菌光热检测方法,其特征在于:步骤(2)中,MPBA加入的浓度为0.5 mM,反应时间为30 min。
9. 根据权利要求6所述的细菌光热检测方法,其特征在于:步骤(3)中,激光照射采用激光器照射功率的1 W/cm2,照射时间3 min。
CN202110291508.1A 2021-03-18 2021-03-18 一种细菌光热检测试剂、试剂盒及检测方法 Pending CN113109265A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110291508.1A CN113109265A (zh) 2021-03-18 2021-03-18 一种细菌光热检测试剂、试剂盒及检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110291508.1A CN113109265A (zh) 2021-03-18 2021-03-18 一种细菌光热检测试剂、试剂盒及检测方法

Publications (1)

Publication Number Publication Date
CN113109265A true CN113109265A (zh) 2021-07-13

Family

ID=76711863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110291508.1A Pending CN113109265A (zh) 2021-03-18 2021-03-18 一种细菌光热检测试剂、试剂盒及检测方法

Country Status (1)

Country Link
CN (1) CN113109265A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120302940A1 (en) * 2011-05-26 2012-11-29 Jackson State University Popcorn Shape Gold Nanoparticle For Targeted Diagnosis, Photothermal Treatment and In-Situ Monitoring Therapy Response for Cancer and Multiple Drug Resistance Bacteria
WO2013116513A2 (en) * 2012-01-31 2013-08-08 American University Of Cairo (Auc) Direct detection of disease biomarkers in clinical specimens using cationic nanoparticle-based assays & versatile and green methods forsynthesis of anisotropic silver nanostructures
US20160059033A1 (en) * 2013-03-29 2016-03-03 Wen-Shuo Kuo Method for Killing and Tracing Bacteria by Coating Same with Self-Assembled Gold Nanoshell Layer and Producing Photothermal Decomposition and Cold Light by means of Laser
US20170082615A1 (en) * 2015-09-19 2017-03-23 The Board Of Regents Of The University Of Texas System Nanomaterial-based photothermal immunosensing for quantitative detection of disease biomarkers
WO2018045866A1 (zh) * 2016-09-09 2018-03-15 翁秋梅 具有杂化交联网络的动态聚合物及其应用
CN108254366A (zh) * 2017-09-19 2018-07-06 中国科学院海洋研究所 一种基于苯硼酸功能化的银纳米粒子检测微生物的方法
CN111281976A (zh) * 2020-03-31 2020-06-16 中国人民解放军陆军军医大学第一附属医院 光热与化疗协同作用的功能化石墨烯靶向杀菌材料的制备方法与应用
CN111671901A (zh) * 2020-06-29 2020-09-18 长春理工大学 一种具有靶向识别的核酸适配体修饰二硫化钼纳米片光热剂
CN112301106A (zh) * 2020-10-30 2021-02-02 南京师范大学 具有光热响应的DNA修饰的金纳米颗粒的DNA-AuNP探针及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120302940A1 (en) * 2011-05-26 2012-11-29 Jackson State University Popcorn Shape Gold Nanoparticle For Targeted Diagnosis, Photothermal Treatment and In-Situ Monitoring Therapy Response for Cancer and Multiple Drug Resistance Bacteria
WO2013116513A2 (en) * 2012-01-31 2013-08-08 American University Of Cairo (Auc) Direct detection of disease biomarkers in clinical specimens using cationic nanoparticle-based assays & versatile and green methods forsynthesis of anisotropic silver nanostructures
US20160059033A1 (en) * 2013-03-29 2016-03-03 Wen-Shuo Kuo Method for Killing and Tracing Bacteria by Coating Same with Self-Assembled Gold Nanoshell Layer and Producing Photothermal Decomposition and Cold Light by means of Laser
US20170082615A1 (en) * 2015-09-19 2017-03-23 The Board Of Regents Of The University Of Texas System Nanomaterial-based photothermal immunosensing for quantitative detection of disease biomarkers
WO2018045866A1 (zh) * 2016-09-09 2018-03-15 翁秋梅 具有杂化交联网络的动态聚合物及其应用
CN108254366A (zh) * 2017-09-19 2018-07-06 中国科学院海洋研究所 一种基于苯硼酸功能化的银纳米粒子检测微生物的方法
CN111281976A (zh) * 2020-03-31 2020-06-16 中国人民解放军陆军军医大学第一附属医院 光热与化疗协同作用的功能化石墨烯靶向杀菌材料的制备方法与应用
CN111671901A (zh) * 2020-06-29 2020-09-18 长春理工大学 一种具有靶向识别的核酸适配体修饰二硫化钼纳米片光热剂
CN112301106A (zh) * 2020-10-30 2021-02-02 南京师范大学 具有光热响应的DNA修饰的金纳米颗粒的DNA-AuNP探针及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANZHOU ET AL: ""Gold Nanoparticle Aggregation-Induced Quantitative Photothermal Biosensing Using a Thermometer: A Simple and Universal Biosensing Platform"", 《ANALYTICAL CHEMISTRY》, no. 92, 24 January 2020 (2020-01-24), pages 2739 - 2746 *
杨瑞琴: "《纳米技术与潜指纹显现》", 30 September 2016, 中国人民公安大学出版社, pages: 209 - 212 *

Similar Documents

Publication Publication Date Title
Huang et al. Gold nanoparticle-based dynamic light scattering immunoassay for ultrasensitive detection of Listeria monocytogenes in lettuces
HuiáShin et al. A facile and sensitive detection of pathogenic bacteria using magnetic nanoparticles and optical nanocrystal probes
Lu et al. Rapid and sensitive multimode detection of Salmonella typhimurium based on the photothermal effect and peroxidase-like activity of MoS2@ Au nanocomposite
Zhang et al. A simple and sensitive Ce (OH) CO3/H2O2/TMB reaction system for colorimetric determination of H2O2 and glucose
Ouyang et al. Upconversion nanoprobes based on a horseradish peroxidase-regulated dual-mode strategy for the ultrasensitive detection of Staphylococcus aureus in meat
Zhu et al. A non-enzymatic electrochemical immunoassay for quantitative detection of Escherichia coli O157: H7 using Au@ Pt and graphene
Huang et al. Colorimetric and photographic detection of bacteria in drinking water by using 4-mercaptophenylboronic acid functionalized AuNPs
Liu et al. Portable smartphone platform based on aggregation-induced enhanced emission carbon dots for ratiometric quantitative sensing of fluoride ions
CN108103146B (zh) 一种检测沙门氏菌的生物传感器
CN109387500B (zh) 一种基于磁氧化石墨烯复合金星@金-银合金纳米颗粒对大肠杆菌进行检测的方法
Liu et al. A sensitive and accurate fluorescent genosensor for Staphylococcus aureus detection
Kameta et al. Bioreactors Based on Enzymes Encapsulated in Photoresponsive Transformable Nanotubes and Nanocoils End‐Capped with Magnetic Nanoparticles
Zhang et al. Photoresponsive DNA-modified magnetic bead-assisted rolling circle amplification-driven visual photothermal sensing of Escherichia coli
CN104330399B (zh) 一种原位形成拉曼增强基底检测水中大肠杆菌的方法
Gong et al. Switched photoelectrochemistry of carbon dots for split-type immunoassay
Zhao et al. The development of thermal immunosensing for the detection of food-borne pathogens E. coli O157: H7 based on the novel substoichiometric photothermal conversion materials MoO3-x NPs
Zheng et al. Rapid photothermal detection of foodborne pathogens based on the aggregation of MPBA-AuNPs induced by MPBA using a thermometer as a readout
CN113899731B (zh) 一种基于核酸适配体对靶标菌和金纳米簇亲和力差异的副溶血性弧菌一步检测方法
Wei et al. Colorimetric detection of Salmonella typhimurium based on hexadecyl trimethyl ammonium bromide-induced supramolecular assembly of β-cyclodextrin-capped gold nanoparticles
Zhang et al. Bio-dye sensitized detection of Hg2+ based GO-ZnO-CdS nanohybrids
Ouyang et al. Mesoporous silica-modified upconversion biosensor coupled with real-time ion release properties for ultrasensitive detection of Staphylococcus aureus in meat
CN113109265A (zh) 一种细菌光热检测试剂、试剂盒及检测方法
Saylan Unveiling the pollution of bacteria in water samples through optic sensor
CN112098389B (zh) 一种单增李斯特菌的检测方法
Liang et al. High extinction coefficient material combined with multi-line lateral flow immunoassay strip for ultrasensitive detection of bacteria

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination