WO2015029504A1 - 次亜臭素酸安定化組成物の製造方法、次亜臭素酸安定化組成物、および分離膜のスライム抑制方法 - Google Patents

次亜臭素酸安定化組成物の製造方法、次亜臭素酸安定化組成物、および分離膜のスライム抑制方法 Download PDF

Info

Publication number
WO2015029504A1
WO2015029504A1 PCT/JP2014/062571 JP2014062571W WO2015029504A1 WO 2015029504 A1 WO2015029504 A1 WO 2015029504A1 JP 2014062571 W JP2014062571 W JP 2014062571W WO 2015029504 A1 WO2015029504 A1 WO 2015029504A1
Authority
WO
WIPO (PCT)
Prior art keywords
hypobromous acid
producing
bromine
composition
acid
Prior art date
Application number
PCT/JP2014/062571
Other languages
English (en)
French (fr)
Inventor
吉川 浩
染谷 新太郎
雅人 都司
千晴 大森
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52586086&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015029504(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to AU2014313502A priority Critical patent/AU2014313502C1/en
Priority to KR1020187013587A priority patent/KR101972727B1/ko
Priority to SG11201601207UA priority patent/SG11201601207UA/en
Priority to US14/912,763 priority patent/US10420344B2/en
Priority to KR1020167004146A priority patent/KR20160032229A/ko
Priority to CN201480047664.1A priority patent/CN105517959B/zh
Priority to KR1020197007000A priority patent/KR102061679B1/ko
Publication of WO2015029504A1 publication Critical patent/WO2015029504A1/ja
Priority to SA516370626A priority patent/SA516370626B1/ar
Priority to US16/542,826 priority patent/US11666055B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/766Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens by means of halogens other than chlorine or of halogenated compounds containing halogen other than chlorine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/20Oxygen compounds of bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling

Definitions

  • the present invention relates to a process for the preparation of a hypobromous acid stabilization composition for controlling biofouling of aqueous systems and to a hypobromous acid stabilization composition.
  • the present invention also relates to a slime suppression method for separation membranes such as RO membranes.
  • Sodium hypochlorite is mainly used as a bactericidal agent to control biofouling in water systems such as industrial water systems such as cooling water and paper making processes, but when higher bactericidal performance is sought, The use of a large amount of sodium chlorate may cause corrosion of piping and may cause odor problems. Therefore, in such a case, sodium hypobromous acid having higher bactericidal performance is used, but sodium hypobromous acid is unstable, and industrially, it is preferable to use a bromine compound such as sodium bromide and the A technique is employed in which sodium hypochlorite is generated in the system by mixing immediately before using sodium chlorite.
  • a bromine compound such as sodium bromide
  • hypobromous acid-stabilizing composition As a one-component hypobromous acid-stabilizing composition, various bromine oxide preparations comprising a bromine stabilizer such as sulfamic acid, bromine, hydroxide and the like have been proposed.
  • a bromine stabilizer such as sulfamic acid, bromine, hydroxide and the like
  • Patent documents 1 and 2 disclose a method of using hypochlorous acid generated by reacting a bromine compound using sodium hypochlorite as an oxidizing agent.
  • Patent Document 1 is a method of adding sulfamic acid to a premix solution of sodium hypochlorite and a bromine compound
  • Patent Document 2 is a method of adding a bromine compound to a premix solution of sodium hypochlorite and sulfamic acid. Is a method of adding It is recommended to add at a temperature of about 10 to about 45.degree.
  • Example 2 of Patent Document 3 and Example 4 of Example 3 Patent Document 4 It is described in.
  • another example of Example 2 of Patent Document 3 and Example 4 of Patent Document 4 have high corrosiveness and a serious problem
  • another example of Example 2 of Patent Document 3 is a stimulus.
  • this method also utilizes the oxidizing power of bromic acid generated during the reaction in terms of generation of a large amount of crystals.
  • bromate remained in what was actually manufactured by the same method.
  • Patent Document 5 Although there is a document which describes that hypobromous acid solution is temporarily used for washing the reverse osmosis membrane (Patent Document 5), it is only temporary because hypobromous acid itself is used. Even with such use, the membrane may be degraded. In addition, it is a cleaning application limited to temporary use, which is fundamentally different from the permanent slime suppression treatment in which the reverse osmosis membrane is continuously contacted.
  • Patent Document 6 There is also a document (Patent Document 6) in which it is described that hypobromous acid is injected into the front stage of the reverse osmosis membrane, but only hypobromous acid itself is used. Further, the method of Patent Document 6 is a method as "pretreatment" of water flowing into the reverse osmosis membrane, and hypobromous acid in water is reductively decomposed immediately before flowing into the reverse osmosis membrane, and is continuous It is fundamentally different from permanent slime suppression treatment in which the reverse osmosis membrane is contacted.
  • RO apparatus it is normal to adjust pH to the acidic side (for example, pH 4.0 grade
  • An object of the present invention is to provide a method for producing a one-component hypobromous acid-stabilized composition substantially free of bromate ion, excellent in bactericidal performance, hardly corroding to metal, and excellent in storage stability And a hypobromous acid stabilizing composition.
  • Another object of the present invention is to provide a method for suppressing slime in a separation membrane, which has a sufficient slime suppressing effect by suppressing deterioration of the separation membrane and deterioration of the water quality such as treated water (permeated water) and concentrated water. .
  • the present invention comprises the steps of adding bromine to a mixed solution containing water, an alkali hydroxide and sulfamic acid under an inert gas atmosphere and reacting them, wherein the addition rate of bromine is 25 weight to the total amount of the composition % Or less is a method for producing a hypobromous acid-stabilized composition.
  • the method for producing the hypobromous acid stabilizing composition it is preferable to react the bromine under the condition that the oxygen concentration in the reactor is controlled to 6% or less.
  • the reaction temperature at the time of addition of the bromine in a range of 0 ° C. or more and 25 ° C. or less.
  • the ratio of the equivalent of the sulfamic acid to the equivalent of the bromine is preferably in the range of 1.01 to 1.1.
  • the equivalent ratio of the sulfamic acid to the alkali hydroxide before addition of the bromine is preferably in the range of 0.28 to 0.35.
  • the pH of the composition is preferably more than 13.5.
  • an alkali hydroxide to the composition to set the pH to more than 13.5.
  • the inert gas is preferably at least one of nitrogen and argon.
  • the alkali hydroxide is preferably at least one of sodium hydroxide and potassium hydroxide.
  • the alkali hydroxide is preferably sodium hydroxide and potassium hydroxide.
  • the present invention also includes the step of adding bromine to a mixed solution containing water, an alkali hydroxide and sulfamic acid under an inert gas atmosphere to make the reaction, wherein the addition ratio of bromine is relative to the amount of the whole composition It is a hypobromous acid stabilization composition manufactured by the method which is 25 weight% or less.
  • the content of bromate ion is preferably less than 5 mg / kg.
  • the present invention also relates to a hypobromous acid-stabilized composition obtained by the method for producing a hypobromous acid-stabilized composition described above in the feed water or wash water to a membrane separation apparatus provided with a separation membrane, or It is a slime suppression method of the separation membrane which makes a bromic acid stabilization composition exist.
  • the separation membrane is preferably a polyamide polymer membrane.
  • the said membrane separation apparatus is equipped with RO membrane as a separation membrane, and pH of the water supply to the said membrane separation apparatus is 5.5 or more.
  • the concentration of bromate in the hypobromous acid stabilizing composition is less than 5 mg / kg.
  • bromine is added to a mixed solution containing water, alkali hydroxide and sulfamic acid under an inert gas atmosphere and reacted to make the addition rate of bromine 25% by weight or less with respect to the total amount of the composition
  • the method for producing a one-component hypobromous acid-stabilized composition substantially free of bromate ions, excellent in bactericidal performance, hardly corroding to metals, and excellent in storage stability Bromic acid stabilized compositions can be provided.
  • the hypobromous acid-stabilized composition obtained by the method for producing a hypobromous acid-stabilized composition in the feed water or wash water to a membrane separation apparatus provided with a separation membrane or
  • the bromic acid stabilizing composition By the presence of the bromic acid stabilizing composition, deterioration of the separation membrane and deterioration of the water quality such as treated water (permeated water) and concentrated water can be suppressed, and a sufficient slime suppressing effect can be obtained.
  • Embodiments of the present invention will be described below.
  • the present embodiment is an example for implementing the present invention, and the present invention is not limited to the present embodiment.
  • bromine is allowed to react with a mixture of water, alkali hydroxide and sulfamic acid under an inert gas atmosphere, preferably under a condition where the oxygen concentration in the reactor is controlled to 6% or less.
  • an inert gas atmosphere preferably under a condition where the oxygen concentration in the reactor is controlled to 6% or less.
  • hypobromite stabilized composition mainly sulfamate - hypobromite, sodium salt (- O-SO 2 -NH- Br, - O-SO 2 -NBr 2, and the other Containing stabilized hypobromite).
  • the hypobromous acid stabilizing composition according to the present embodiment is obtained by adding bromine to a mixed solution containing water, an alkali hydroxide and sulfamic acid under an inert gas atmosphere to cause a reaction.
  • the key to the method for producing the hypobromous acid stabilization composition according to the present embodiment is to react bromine in a mixed solution of water, an alkali hydroxide and sulfamic acid under an inert gas atmosphere.
  • Patent Document 3 states that "the step of adding bromine or bromine chloride is carried out without exposing bromine to air", the method for removing oxygen in the reactor is not mentioned.
  • Patent Document 3 states that "in order to prevent elemental bromine from being exposed to air, it is preferable to add bromine directly to the stabilization solution by means of a Teflon (registered trademark) tube". It does not mention the removal of oxygen and can not be a means to remove oxygen in the reaction vessel.
  • the oxygen concentration in the reactor during the reaction of bromine is preferably 6% or less, more preferably 4% or less, still more preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the reaction of bromine exceeds 6%, the amount of bromic acid produced in the reaction system may increase.
  • the inert gas used for the reaction is not limited, but is preferably at least one of fluorine and argon from the viewpoint of production etc., and particularly preferably nitrogen from the viewpoint of production cost and the like.
  • the addition rate of bromine is 25% by weight or less with respect to the total amount of the composition, and preferably 1% by weight or more and 20% by weight or less.
  • the addition rate of bromine exceeds 25% by weight with respect to the total amount of the composition, the amount of generated bromic acid in the reaction system increases. If it is less than 1% by weight, control of biofouling may be inferior.
  • the ratio of the equivalent of sulfamic acid to the equivalent of bromine is preferably in the range of 1.01 to 1.1, and more preferably in the range of 1.02 to 1.05. If the ratio of the equivalent of sulfamic acid to the equivalent of bromine is less than 1.01, the amount of bromate produced in the reaction system may increase, and if it exceeds 1.1, the corrosiveness may increase. .
  • the pH of the composition is preferably above 13.5, and more preferably above 13.7. When the pH of the composition is 13.5 or less, corrosion may be high.
  • the alkali hydroxide is added in its entirety before adding bromine, or in order to increase the accuracy of the final pH of the composition, add a portion to the composition after adding bromine, and the pH of the composition exceeds 13.5. It may be However, the pH is preferably 7 or more at the time of a mixture of water, alkali hydroxide and sulfamic acid.
  • alkali hydroxide in place of sodium hydroxide, other alkali hydroxides such as potassium hydroxide may be used, or may be used in combination.
  • sodium hydroxide and potassium hydroxide may be used in combination from the viewpoint of product stability at low temperatures and the like.
  • the alkali hydroxide may be used in solid form or as an aqueous solution.
  • the equivalent ratio of sulfamic acid to alkali hydroxide before addition of bromine is in the range of 0.28 to 0.35. Is preferred. If the equivalent ratio of sulfamic acid to alkali hydroxide before addition of bromine is less than 0.28, bromate ions may be formed, and if it exceeds 0.35, corrosiveness may be increased. .
  • the reaction temperature at the time of bromine addition is preferably controlled in the range of 0 ° C. or more and 25 ° C. or less, but is more preferably controlled in the range of 0 ° C. or more and 15 ° C. or less from the viewpoint of production cost.
  • the reaction temperature at the time of bromine addition exceeds 25 ° C., the amount of bromic acid produced in the reaction system may increase, and when it is less than 0 ° C., freezing may occur.
  • the sulfamic acid-hypobromous acid sodium salt composition substantially does not contain bromate ion, and the composition is made of a metal material It can be handled safely because it hardly corrodes even when in contact with it.
  • the hypobromous acid-stabilized composition obtained by the method for producing a hypobromous acid-stabilized composition according to the present embodiment is substantially free of bromate ion, and the content of bromate ion is, for example, 5 mg / day. It is less than kg.
  • substantially free of bromate ions means achieving below the detection limit using an analytical technique that can be the best available technology (BAT).
  • the ion chromatography method is shown as an analysis method of bromate ion in patent document 3 and it is described that it is less than 50 mg / L of a detection lower limit
  • the post column-ion chromatography method which the present inventors used Is used to achieve a lower limit of detection of 5 mg / kg, ie 5 to 50 mg / kg of bromate ions can be detected, and indeed, as shown in the examples below, in a hypobromous acid stabilized composition In some cases, 5 to 50 mg / kg of bromate ion was detected.
  • the evaluation standard value of bromic acid is set at 0.005 mg / L.
  • bromate stabilization composition Detecting 5 to 50 mg / kg of bromate ion in the composition, and considering bromine in the composition, considering that the bromate stabilization composition is used, for example, diluted 10,000 to 100,000 times It is very significant to achieve an acid ion content of less than 5 mg / kg.
  • the effective bromine concentration contained in the composition is preferably in the range of 1% by weight to 25% by weight, and more preferably in the range of 1% by weight to 20% by weight, based on the total amount of the composition. If the effective bromine concentration is less than 1% by weight based on the total amount of the composition, the control of biofouling may be inferior, and if it exceeds 25% by weight, the amount of generated bromate in the reaction system may increase. There is.
  • composition for controlling the biofouling of the water system is brought into contact with the metal material.
  • the composition for controlling the biofouling of the water system is often injected into the system using a chemical injection device, and since the composition is not diluted and used as a stock solution, the injection piping may be corroded or It is desirable to avoid problems such as corrosion of connecting piping from the line to the target water treatment system.
  • corrosion problems in sodium hypochlorite solution and the like have not yet been fundamentally solved, and for example, Patent Document 3 also describes that a stable oxidized bromine compound is a "corrosive solution", In fact, high metal corrosion results were obtained.
  • a corrosion rate (MDD) described later is a criterion that hardly causes corrosion even when the hypobromous acid stabilizing composition is brought into contact with a metal material.
  • the method for producing a hypobromous acid-stabilized composition according to the present embodiment is substantially free of bromate ions, excellent in bactericidal performance, hardly corroded with metals, and stable in storage stability. An excellent one-component hypobromous acid-stabilized composition is obtained.
  • hypobromous acid stabilizing composition according to the present embodiment can be used, for example, as a bactericide for controlling biofouling in an industrial water system such as cooling water, or in an aqueous system such as a papermaking process.
  • the method for suppressing slime of a separation membrane comprises stabilizing the hypobromous acid obtained by the method for producing the above-mentioned hypobromous acid-stabilized composition in water supply or washing water to a membrane separation apparatus equipped with a separation membrane Method of making the composition present.
  • the method for suppressing slime in a separation membrane comprises reacting a “bromine-based oxidizing agent” or a “bromine compound with a chlorine-based oxidizing agent in water supplied to a membrane separation apparatus equipped with the separation membrane or in washing water”. Substance and a sulfamic acid compound are present. It is believed that this produces a hypobromous acid stabilized composition in the feed or wash water.
  • a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound or “water reaction to a membrane separation device equipped with a separation membrane” or It is a method in which a hypobromous acid stabilizing composition, which is a reaction product of a reaction product of a bromine compound and a chlorine-based oxidizing agent, and a sulfamic acid compound is present.
  • the method for suppressing slime of a separation membrane comprises, for example, “bromine”, “bromine chloride” or “sodium bromide” in the feed water or wash water to a membrane separation apparatus equipped with a separation membrane. It is a method in which a “reactant with hypochlorous acid” and a “sulfamic acid compound” are present.
  • the method for suppressing slime in a separation membrane includes, for example, “reaction product of bromine and a sulfamic acid compound”, “bromine chloride,” in feed water or wash water to a membrane separation apparatus equipped with a separation membrane. Or a reaction product of a reaction product of sodium bromide and hypochlorous acid with a sulfamic acid compound.
  • a "bromine-based oxidizing agent” or a "reactant of a bromine compound and a chlorine-based oxidizing agent” which comprises the above-mentioned hypobromous acid-stabilized composition obtained by the method for producing the above-mentioned hypobromous acid-stabilized composition
  • the slime of the separation membrane can be suppressed by the presence of the “sulfamic acid compound” and the presence of these reaction products.
  • membrane contamination by microorganisms can be reliably suppressed without substantially degrading the performance of the separation membrane.
  • the slime suppression method of the separation membrane according to the present embodiment makes it possible to perform slime suppression processing in which the influence on the membrane performance and the post-stage water quality is minimized while having a high slime suppression effect.
  • hypobromous acid-stabilized composition obtained by the above-described method for producing a hypobromous acid-stabilized composition may be injected into a water supply to the membrane separation apparatus or washing water by a chemical injection pump or the like.
  • bromine-based oxidizing agent or “reactant of bromine compound and chlorine-based oxidizing agent” and “sulfamic acid compound” are injected into a feed water or wash water to a membrane separation apparatus by a dosing pump or the like. do it.
  • the "bromine-based oxidizing agent” or the "reactant of a bromine compound and a chlorine-based oxidizing agent” and the “sulfamic acid compound” may be separately added to the water system, or they may be mixed with each other before being added to the water system. You may add.
  • reaction product of a bromine-based oxidizing agent and a sulfamic acid compound or “a reactant of a bromine compound and a chlorine-based oxidizing agent, and a sulfamic acid compound
  • the reaction product of (1) may be injected by a chemical pump or the like.
  • the ratio of the equivalent of “sulfamic acid compound” to the equivalent of “bromine-based oxidizing agent” or “reactant of bromine compound and chlorine-based oxidizing agent” is preferably 1 or more, and is in the range of 1 or more and 2 or less. Is more preferred. If the ratio of the equivalent of “sulfamic acid compound” to the equivalent of “bromine-based oxidizing agent” or “reactant of bromine compound and chlorine-based oxidizing agent” is less than 1, the membrane may be deteriorated, and If exceeded, the manufacturing cost may increase.
  • the effective halogen concentration in contact with the separation membrane is preferably 0.01 to 100 mg / L in terms of effective chlorine concentration. If it is less than 0.01 mg / L, sufficient slime suppression effect may not be obtained, and if it is more than 100 mg / L, the separation membrane may be deteriorated and piping etc. may be corroded.
  • Bromine-based oxidizing agents include bromine (liquid bromine), bromine chloride, bromate, bromate and the like.
  • formulations of "bromine and sulfamic acid compound” or “reaction product of bromine and sulfamic acid compound” using bromine are formulations of "hypochlorous acid and bromine compound and sulfamic acid” and "bromine chloride Compared to the formulation of “sulfamate and sulfamic acid”, and the leakage amount of effective halogen to membrane permeated water such as RO permeated water is smaller than RO membrane etc., so slime inhibitors for separation membranes such as RO membrane etc. Is more preferable.
  • bromine and a sulfamic acid compound be present in the water supplied to the membrane separation device provided with the separation membrane or in the washing water.
  • reaction product of bromine and a sulfamic acid compound be present in the feed water or wash water to the membrane separation apparatus provided with the separation membrane.
  • bromine compounds examples include sodium bromide, potassium bromide, lithium bromide and hydrobromic acid.
  • sodium bromide is preferable in terms of formulation cost and the like.
  • chlorine-based oxidizing agent for example, chlorine gas, chlorine dioxide, hypochlorous acid or its salt, chlorous acid or its salt, chloric acid or its salt, perchloric acid or its salt, chlorinated isocyanuric acid or its salt Etc.
  • alkali metal hypochlorite such as sodium hypochlorite and potassium hypochlorite, calcium hypochlorite, alkaline earth hypochlorite such as barium hypochlorite and the like
  • Metal salts alkali metal chlorite such as sodium chlorite and potassium chlorite, alkaline earth metal chlorite such as barium chlorite, and other metal chlorite such as nickel chlorite
  • alkali metal salts of chlorate such as ammonium chlorate, sodium chlorate and potassium chlorate, and alkali earth metal chlorates such as calcium chlorate and barium chlorate.
  • chlorine-based oxidizing agents may be used alone, or two or more thereof may be used in combination.
  • sodium hypochlorite is preferably used in terms of handleability and the like.
  • the sulfamic acid compound is a compound represented by the following general formula (1).
  • R 2 NSO 3 H (1) (Wherein, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • sulfamic acid compound for example, besides sulfamic acid (amidosulfuric acid) in which both of two R groups are hydrogen atoms, N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, N- A sulfamic acid compound in which one of two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms, N, N-dimethylsulfamic acid, N, Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc.
  • R groups such as sulfamic acid compounds and N-phenylsulfamic acid, both of which are alkyl groups having 1 to 8 carbon atoms Is a hydrogen atom and the other sulfamic acid compound or a salt thereof, such as an aryl group having 6 to 10 carbon atoms.
  • sulfamate salts include alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts, strontium salts and barium salts, manganese salts, copper salts, zinc salts, iron salts, cobalt salts, Other metal salts such as nickel salts, ammonium salts and guanidine salts can be mentioned.
  • the sulfamic acid compounds and their salts may be used alone or in combination of two or more.
  • sulfamic acid compound sulfamic acid (amidosulfuric acid) is preferably used from the viewpoint of environmental load and the like.
  • an alkali may be further present.
  • the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide.
  • Sodium hydroxide and potassium hydroxide may be used in combination from the viewpoint of product stability at low temperature and the like.
  • the alkali is not solid but may be used as an aqueous solution.
  • separation membranes examples include reverse osmosis membranes (RO membranes), nanofiltration membranes (NF membranes), microfiltration membranes (MF membranes), ultrafiltration membranes (UF membranes) and the like.
  • RO membranes reverse osmosis membranes
  • NF membranes nanofiltration membranes
  • MF membranes microfiltration membranes
  • UF membranes ultrafiltration membranes
  • the slime suppression method of the separation membrane according to the embodiment of the present invention can be suitably applied to the reverse osmosis membrane (RO membrane) in particular.
  • the slime suppression method of the separation membrane according to the embodiment of the present invention can be suitably applied to a polyamide-based polymer membrane, which is currently mainstream as a reverse osmosis membrane.
  • the polyamide-based polymer membrane has a relatively low resistance to an oxidizing agent, and when free chlorine and the like are continuously brought into contact with the polyamide-based polymer membrane, the membrane performance significantly decreases.
  • the method for suppressing slime in the separation membrane according to the present embodiment such a remarkable decrease in the membrane performance hardly occurs even in the polyamide polymer membrane.
  • the pH of water supplied to the RO apparatus is preferably 5.5 or more, 6.0 It is more preferable that it is the above, and it is further more preferable that it is 6.5 or more. If the pH of the water supplied to the RO device is less than 5.5, the amount of permeated water may decrease.
  • the upper limit of the pH of water supplied to the RO device is not particularly limited as long as it is equal to or lower than the application upper limit pH (for example, pH 10) of ordinary RO membranes, but considering scale precipitation of hardness components such as calcium,
  • the pH is preferably operated at, for example, 9.0 or less.
  • the slime suppression method of the separation membrane according to the present embodiment When the slime suppression method of the separation membrane according to the present embodiment is used, the deterioration of the RO membrane and the deterioration of the water quality of the treated water (permeated water) are suppressed by operating the pH of the water supplied to the RO device at 5.5 or more. Also, it is possible to secure a sufficient amount of permeated water while exhibiting a sufficient slime suppression effect.
  • a dispersant may be used in combination with the hypobromous acid stabilization composition for scale suppression.
  • the dispersant include polyacrylic acid, polymaleic acid, phosphonic acid and the like.
  • the amount of dispersant added to the water supply is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in RO concentrated water.
  • the RO concentration is made less than the silica concentration in RO concentrated water and the Langeria index which is an index of calcium scale is less than 0. Adjustment of the operating conditions such as the recovery rate of
  • RO apparatus seawater desalination, drainage recovery, etc. are mentioned, for example.
  • the slime inhibitor composition for a separation membrane contains the hypobromous acid stabilizing composition obtained by the method for producing the above-mentioned hypobromous acid stabilizing composition, and further contains an alkali. May be
  • the slime inhibitor composition for a separation membrane contains “a bromine-based oxidizing agent” or “a reactant of a bromine compound and a chlorine-based oxidizing agent” and a “sulfamic acid compound”. And may further contain an alkali.
  • the slime inhibitor composition for a separation membrane is “a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound” or “a reaction product of a bromine compound and a chlorine-based oxidizing agent, sulfamic acid
  • the reaction product of "the compound and” may be contained, and it may further contain an alkali.
  • the bromine-based oxidizing agent, the bromine compound, the chlorine-based oxidizing agent and the sulfamic acid compound are as described above.
  • the slime inhibitor composition for a separation membrane since the RO membrane and the like are not further degraded and the amount of leak of effective halogen to membrane permeated water such as RO permeated water is smaller, bromine and sulfamate Those containing a compound or those containing a reaction product of bromine and a sulfamic acid compound are preferred.
  • the slime inhibitor composition for a separation membrane according to the present embodiment has high oxidizing power and extremely high slime inhibitory power and slime peeling power, as compared with combined chlorine slime inhibitors such as chlorosulfamic acid. Also, it does not cause significant film deterioration such as hypochlorous acid and hypobromous acid, which have high oxidizing power. At normal use concentrations, the impact on membrane degradation can be substantially ignored. For this reason, it is optimal as a slime inhibitor for separation membranes such as RO membranes.
  • the slime inhibitor composition for a separation membrane according to this embodiment hardly permeates the RO membrane, so there is almost no influence on treated water quality. Moreover, since the concentration can be measured on site in the same manner as hypochlorous acid etc., more accurate concentration control is possible.
  • the pH of the composition is, for example, more than 13.0, more preferably more than 13.2.
  • the pH of the composition is 13.0 or less, the effective halogen in the composition may become unstable.
  • the bromate concentration in the separation membrane slime inhibitor composition is preferably less than 5 mg / kg.
  • concentration of bromate in the slime inhibitor composition for a separation membrane is 5 mg / kg or more, the concentration of bromate ions in the permeate may increase.
  • the slime inhibitor composition for a separation membrane mixes a bromine-based oxidizing agent and a sulfamic acid compound, or mixes a reaction product of a bromine compound and a chlorine-based oxidizing agent with a sulfamic acid compound. And alkali may be further mixed.
  • a slime inhibitor composition for separation membranes containing bromine and a sulfamic acid compound, or a slime inhibitor composition for separation membranes containing a reaction product of bromine and a sulfamic acid compound water
  • the bromate ion concentration in the composition is lowered, and the bromate ion concentration in the permeated water such as RO permeated water is lowered.
  • the inert gas used is not limited, but is preferably at least one of fluorine and argon from the viewpoint of production and the like, and particularly preferably nitrogen from the viewpoint of production cost and the like.
  • the oxygen concentration in the reactor at the time of addition of bromine is preferably 6% or less, more preferably 4% or less, still more preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the reaction of bromine exceeds 6%, the amount of bromic acid produced in the reaction system may increase.
  • the addition rate of bromine is preferably 25% by weight or less based on the total amount of the composition, and more preferably 1% by weight or more and 20% by weight or less. If the addition rate of bromine exceeds 25% by weight with respect to the total amount of the composition, the amount of bromic acid produced in the reaction system may increase. When it is less than 1% by weight, the bactericidal activity may be poor.
  • the reaction temperature at the time of bromine addition is preferably controlled in the range of 0 ° C. or more and 25 ° C. or less, but is more preferably controlled in the range of 0 ° C. or more and 15 ° C. or less from the viewpoint of production cost.
  • the reaction temperature at the time of bromine addition exceeds 25 ° C., the amount of bromic acid produced in the reaction system may increase, and when it is less than 0 ° C., freezing may occur.
  • Example 1 Into a 2 L 4-neck flask sealed by continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel is maintained at 1%, 1453 g of water and 361 g of sodium hydroxide are added and mixed Then, 300 g of sulfamic acid was added and mixed, while maintaining cooling so that the temperature of the reaction solution became 0 to 15 ° C., 456 g of liquid bromine was added, and further 230 g of 48% potassium hydroxide solution was added, An objective hypobromous acid-stabilized composition having a weight ratio of 10.7% of sulfamic acid, 16.3% of bromine and an equivalent ratio of sulfamic acid to equivalent of bromine of 1.08 by weight ratio to the total amount of the composition is obtained.
  • the pH of the resulting solution was 14.0 as measured by the glass electrode method.
  • the bromine content of the resulting solution is 16.3% as determined by a redox titration method using sodium thiosulfate after converting bromine to iodine with potassium iodide, and the theoretical content (16.3% 100.0% of the Moreover, the oxygen concentration in the reaction container in the case of a bromine reaction was measured using "Oxygen monitor JKO-02 LJDII" manufactured by Zico Corporation.
  • bromate ion concentration was determined by the postcolumn-ion chromatography method according to the analysis method of "JWWA K 120 (2008) Sodium hypochlorite for water 5.4.5 bromic acid for water use”. As a result of measuring by, the bromate ion concentration was less than 5 mg / kg of the lower limit of detection.
  • the test piece (SS-400) is washed with 15% hydrochloric acid to which a corrosion inhibitor for acid washing (Asahi Chemical Industry Co., Ltd., “Ivit”) is added, and the mass loss is determined.
  • the number of mg of corrosion loss per day to the surface area of 1 dm 2 of the test piece, that is, the MDD (mg / dm 2 ⁇ day) was determined by the following equation to be 0.4.
  • W (M1-M2) / (S ⁇ T)
  • W Corrosion rate (MDD)
  • M1 Mass of test piece before test (mg)
  • M2 Mass of test piece after test (mg)
  • S Surface area of test piece (dm 2 )
  • T It is the number of examination days.
  • Example 2 As a result of synthesizing under the same conditions as Example 1 while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel is maintained at 4%, the bromate ion concentration in the solution stock solution is detected It was less than 5 mg / kg of the lower limit value. Moreover, the corrosion rate (MDD) by a corrosion test was 0.6.
  • Example 36 The aqueous solution synthesized in Example 8, Example 15, and Example 16 was subjected to a low temperature storage test for 10 days using a constant temperature bath at -10.degree. As a result, only Example 8 did not freeze. From this, it was found that by using sodium hydroxide and potassium hydroxide in combination, a larger freezing point depression is obtained and the product stability at low temperature is excellent.
  • bromine is added to the mixed solution containing water, alkali hydroxide and sulfamic acid under an inert gas atmosphere and reacted, and the addition rate of bromine is 25% by weight or less with respect to the total amount of the composition
  • hypochlorous acid hypobromous acid, which are general slime inhibitors
  • Example 37 Liquid nitrogen: 16.9 wt% (wt%), sulfamic acid: 10.7 wt%, sodium hydroxide: 12.9 wt%, potassium hydroxide: 3.94 wt%, water under a nitrogen atmosphere The ingredients were mixed to prepare a composition. The pH of the composition was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 7.5% by weight. The detailed preparation method of the composition of Example 37 is as follows.
  • the bromine content of the resulting solution is 16.9% as determined by a redox titration method using sodium thiosulfate after converting bromine to iodine with potassium iodide, and the theoretical content (16.9% 100.0% of the Moreover, the oxygen concentration in the reaction container in the case of a bromine reaction was measured using "Oxygen monitor JKO-02 LJDII" manufactured by Zico Corporation. The bromate concentration was less than 5 mg / kg.
  • Example 38 Sodium bromide: 11% by weight, 12% aqueous solution of sodium hypochlorite: 50% by weight, sodium sulfamate: 14% by weight, sodium hydroxide: 8% by weight, water: the rest are mixed to prepare a composition did. The pH of the composition was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 6% by weight.
  • the detailed preparation method of the composition of Example 38 is as follows.
  • Example 39 Each composition of Example 38 was separately added to water.
  • Example 40 A composition containing bromine chloride, sodium sulfamate, sodium hydroxide was used. The pH of the composition was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 7% by weight.
  • Comparative Example 8 A 12% aqueous sodium hypochlorite solution was used.
  • Comparative Example 10 A composition was prepared by mixing a 12% aqueous solution of sodium hypochlorite: 50% by weight, sulfamic acid: 10% by weight, sodium hydroxide: 8% by weight, water: balance. The pH of the composition was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 6% by weight.
  • Test apparatus Flat membrane test apparatus Separation membrane: Polyamide-based polymer reverse osmosis membrane ES20 manufactured by Nitto Denko Corporation ⁇ Operating pressure: 0.75MPa Raw water: Sagami Harai water (pH 7.2, conductivity 240 ⁇ S / cm) Drug: The compositions prepared in Examples 37, 38, 40, Comparative Examples 8 and 10, and each composition of Example 39 and Comparative Example 9 have an effective halogen concentration (effective chlorine equivalent concentration) of 10 mg / L. As added
  • Examples 37 to 40 maintained high rejection rates of RO membranes, had low effective halogen concentration (effective chlorine equivalent concentration) of the permeate, and had high oxidizing power and high bactericidal activity. Among Examples 37 to 40, Example 37 retained the highest rejection rate of the RO membrane, and the effective halogen concentration (effective chlorine equivalent concentration) of the permeate was the lowest.
  • Comparative Example 8 Although the oxidizing power and the bactericidal activity were high, the rejection rate of the RO membrane decreased, and the effective halogen concentration (effective chlorine equivalent concentration) of the permeate was also high. In Comparative Example 9, although the oxidizing power and the bactericidal activity were high, the effective halogen concentration (effective chlorine equivalent concentration) of the permeate was high. In Comparative Example 10, the rejection rate of the RO membrane was hardly reduced, and although the effective halogen concentration (effective chlorine equivalent concentration) of the permeate was low, the oxidizing power was low and the bactericidal activity was also low.
  • Example 41 In the same manner as in Example 37, under a nitrogen atmosphere, liquid bromine: 17 wt% (wt%), sulfamic acid: 10.7 wt%, sodium hydroxide: 12.9 wt%, potassium hydroxide: 3.95.
  • the composition was prepared by mixing% by weight, water: the remainder.
  • the composition had a pH of 14, an effective halogen concentration (effective chlorine equivalent concentration) of 7.5% by weight, and a bromate concentration of less than 5 mg / kg.
  • Example 42 Liquid bromine: 17% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.95% by weight under the atmosphere without nitrogen purge. Water: The remainder was mixed to prepare a composition. The pH of the composition was 14, the effective halogen concentration (effective chlorine equivalent concentration) was 7.4% by weight, and the bromic acid concentration was 63 mg / kg.
  • Test apparatus Flat membrane test apparatus Separation membrane: Polyamide-based polymer reverse osmosis membrane ES20 manufactured by Nitto Denko Corporation ⁇ Operating pressure: 0.75MPa Raw water: Sagami Harai water (pH 7.2, conductivity 240 ⁇ S / cm) Drug: The compositions prepared in Examples 5 and 6 were added so that the effective halogen concentration (effective chlorine equivalent concentration) would be 50 mg / L.
  • Example 41 the concentration of bromate ions in the feed water and the permeate water was less than 1 ⁇ g / L.
  • Example 42 the bromate ion concentration in the feed water and the permeate was higher than that in Example 5.
  • Test apparatus Flat membrane test apparatus Separation membrane: Polyamide-based polymer reverse osmosis membrane ES20 manufactured by Nitto Denko Corporation ⁇ Operating pressure: 0.75MPa
  • Raw water Sagami Harai water (pH 7.2, conductivity 240 ⁇ S / cm)
  • Drug The composition prepared in Example 1 was added to have an effective halogen concentration (effective chlorine equivalent concentration) of 1 mg / L.
  • Examples 43-1 to 43-10 no reduction in rejection was observed, and deterioration of the RO film was suppressed (the rejection of RO film after 120 hours is 99% or more).
  • the rejection of RO film after 120 hours is 99% or more.
  • no significant decrease in the amount of permeated water was observed (the amount of permeated water of the RO membrane was maintained at 80% or more of the initial value after passing water for 24 hours).
  • no decrease in rejection was observed, and although the deterioration of the RO membrane was suppressed, the amount of permeated water decreased.

Abstract

 臭素酸イオンを実質的に含まない、かつ殺菌性能に優れ、金属に対する腐食性がほとんどなく、保存安定性に優れる1液系の次亜臭素酸安定化組成物の製造方法を提供する。水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含み、臭素の添加率が組成物全体の量に対して25重量%以下である次亜臭素酸安定化組成物の製造方法である。

Description

次亜臭素酸安定化組成物の製造方法、次亜臭素酸安定化組成物、および分離膜のスライム抑制方法
 本発明は、水系の生物付着を制御するための次亜臭素酸安定化組成物の製造方法および次亜臭素酸安定化組成物に関する。
 また、本発明は、RO膜等の分離膜のスライム抑制方法に関する。
 冷却水等の工業用水システムや製紙工程等の水系での生物付着を制御するための殺菌剤としては次亜塩素酸ナトリウムが主に使用されているが、より高い殺菌性能を求める場合に次亜塩素酸ナトリウムを大量に使用すると配管が腐食したり、臭気の問題が生じることがある。そこで、このような場合には、より高い殺菌性能のある次亜臭素酸ナトリウムが使用されるが、次亜臭素酸ナトリウムは不安定であり、工業的には臭化ナトリウム等の臭素化合物と次亜塩素酸ナトリウムを使用する直前に混合して系内で次亜臭素酸ナトリウムを生成させる手法が採られている。しかし、この場合も、2液の均一混合の煩雑さや、腐食の問題等が残っており、保存安定性に優れる1液系の次亜臭素酸安定化組成物が求められている。
 1液系の次亜臭素酸安定化組成物として、スルファミン酸等の臭素安定化剤、臭素、水酸化物等からなる酸化臭素調合物が種々提案されてきた。
 臭化物イオンを活性化して次亜臭素酸塩にするために、臭素安定化剤に加えて、次亜塩素酸塩等の酸化剤を添加することも提案されている。酸化剤として次亜塩素酸ナトリウムを用い、臭素化合物を反応させて生成する次亜臭素酸を利用する方法が、特許文献1および特許文献2に記載されている。特許文献1は、次亜塩素酸ナトリウムと臭素化合物とからなるプレミックス溶液にスルファミン酸を添加する方法であり、特許文献2は、次亜塩素酸ナトリウムとスルファミン酸からなるプレミックス溶液に臭素化合物を添加する方法である。いずれもスルファミン酸からの生成物が分解するとして、好ましくは約10~約45℃、特に好ましくは約20℃で添加することが推奨されている。しかしながら、これらの方法では、次亜塩素酸ナトリウムに由来する塩素および塩化物イオンが生成物に残存し、腐食性等の問題があった。また、次亜臭素酸が不安定であり、臭素酸が副生する問題があった。
 塩素系酸化剤に代わる酸化剤として臭素酸を反応させる方法が、特許文献3の実施例1および実施例2に記載されている。反応機構として次の2つの式が記載されており、臭素酸が反応に関与するのが肝要の困子となっている。しかし、安全性等の点から工業的に臭素酸を原料に用いることは問題であった。
  2Br+BrO +3H → 3HBrO  (2)
  HBrO+O-SO-NH → O-SO-NH-Br,O-SO-NBr,および他の安定した酸化臭素化合物  (3)
 そこで、酸化剤を用いず、臭素のみを反応させて、酸化臭素系組成物を得る方法が、特許文献3の実施例2の別の実施例、および実施例3、特許文献4の実施例4に記載されている。しかしながら、特許文献3の実施例2の別の実施例、および特許文献4の実施例4では、腐食性が高く大きな問題があること、さらに特許文献3の実施例2の別の実施例は刺激臭が強く保存安定性が劣る問題がある。また、特許文献3の実施例3では、大量の結晶の生成が確認されており、結晶を大量に生成させるという点でも本方法は反応中に生成する臭素酸の酸化力を利用したものであり、実際に同様の方法で製造したものには臭素酸が残存する問題があった。
 一方、RO膜等の分離膜のスライム抑制方法としては、各種のスライム抑制剤を使用する方法が知られている。次亜塩素酸、次亜臭素酸等の酸化系薬剤は代表的なスライム抑制剤であるが、膜を劣化させるという問題がある。
 次亜臭素酸溶液を一時的に逆浸透膜の洗浄用として使用することが記載されている文献があるが(特許文献5)、あくまで次亜臭素酸そのものを使用するものであるため、一時的な使用であっても膜を劣化させるおそれがある。また、一時的な使用に限定した洗浄用途であり、連続的に逆浸透膜に接触させる恒久的なスライム抑制処理とは根本的に異なる。
 次亜臭素酸を逆浸透膜の前段に注入することが記載されている文献(特許文献6)もあるが、あくまで次亜臭素酸そのものを使用するものである。また、特許文献6の方法は、逆浸透膜に流入する水の「前処理」としての方法であり、水中の次亜臭素酸は逆浸透膜への流入直前で還元分解処理されており、連続的に逆浸透膜に接触させる恒久的なスライム抑制処理とは根本的に異なる。
 一方、次亜塩素酸をスルファミン酸で安定化させたクロロスルファミン酸等の結合塩素系の酸化系薬剤によるスライム抑制処理も提案されている(特許文献7)。これら結合塩素系の酸化系薬剤は膜の劣化への影響は小さいが、スライム抑制効果が不十分である。
 なお、RO装置においては、スケール抑制対策のためにpHを酸性側(例えば、pH4.0等)に調整して運転することが通常である(例えば、特許文献8参照)。
特表平11-501974号公報 特表平11-511779号公報 特表2002-543048号公報 特表2002-516827号公報 国際公開第2009/128328号パンフレット 特開2011-050843号公報 特開2006-263510号公報 特開平7-163979号公報
 本発明の目的は、臭素酸イオンを実質的に含まない、かつ殺菌性能に優れ、金属に対する腐食性がほとんどなく、保存安定性に優れる1液系の次亜臭素酸安定化組成物の製造方法および次亜臭素酸安定化組成物を提供することにある。
 また、本発明の目的は、分離膜の劣化、処理水(透過水)や濃縮水等の水質悪化を抑制し、十分なスライム抑制効果を有する、分離膜のスライム抑制方法を提供することにある。
 本発明は、水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含み、前記臭素の添加率が組成物全体の量に対して25重量%以下である次亜臭素酸安定化組成物の製造方法である。
 また、前記次亜臭素酸安定化組成物の製造方法において、反応器内の酸素濃度を6%以下に制御した条件で前記臭素を反応させることが好ましい。
 また、前記次亜臭素酸安定化組成物の製造方法において、前記臭素の添加の際の反応温度を0℃以上25℃以下の範囲に制御することが好ましい。
 また、前記次亜臭素酸安定化組成物の製造方法において、前記臭素の当量に対する前記スルファミン酸の当量の比が、1.01~1.1の範囲であることが好ましい。
 また、前記次亜臭素酸安定化組成物の製造方法において、前記臭素の添加前における前記スルファミン酸の前記水酸化アルカリに対する当量比が0.28~0.35の範囲であることが好ましい。
 また、前記次亜臭素酸安定化組成物の製造方法において、組成物のpHが13.5超であることが好ましい。
 また、前記次亜臭素酸安定化組成物の製造方法において、前記組成物に水酸化アルカリを追加し、pHを13.5超とすることが好ましい。
 また、前記次亜臭素酸安定化組成物の製造方法において、前記不活性ガスが、窒素およびアルゴンのうちの少なくとも1つであることが好ましい。
 また、前記次亜臭素酸安定化組成物の製造方法において、前記水酸化アルカリが、水酸化ナトリウムおよび水酸化カリウムのうちの少なくとも1つであることが好ましい。
 また、前記次亜臭素酸安定化組成物の製造方法において、前記水酸化アルカリが、水酸化ナトリウムおよび水酸化カリウムであることが好ましい。
 また、本発明は、水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含み、前記臭素の添加率が組成物全体の量に対して25重量%以下である方法により製造される次亜臭素酸安定化組成物である。
 また、前記次亜臭素酸安定化組成物において、臭素酸イオンの含有量が、5mg/kg未満であることが好ましい。
 また、本発明は、分離膜を備える膜分離装置への給水または洗浄水中に、前記次亜臭素酸安定化組成物の製造方法で得られた次亜臭素酸安定化組成物、または前記次亜臭素酸安定化組成物を存在させる分離膜のスライム抑制方法である。
 また、前記分離膜のスライム抑制方法において、前記分離膜が、ポリアミド系高分子膜であることが好ましい。
 また、前記分離膜のスライム抑制方法において、前記膜分離装置が分離膜としてRO膜を備え、前記膜分離装置への給水のpHが5.5以上であることが好ましい。
 また、前記分離膜のスライム抑制方法において、前記次亜臭素酸安定化組成物中の臭素酸濃度が5mg/kg未満であることが好ましい。
 本発明では、水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させ、臭素の添加率を組成物全体の量に対して25重量%以下とすることにより、臭素酸イオンを実質的に含まない、かつ殺菌性能に優れ、金属に対する腐食性がほとんどなく、保存安定性に優れる1液系の次亜臭素酸安定化組成物の製造方法および次亜臭素酸安定化組成物を提供することができる。
 また、本発明では、分離膜を備える膜分離装置への給水または洗浄水中に、前記次亜臭素酸安定化組成物の製造方法で得られた次亜臭素酸安定化組成物、または前記次亜臭素酸安定化組成物を存在させることにより、分離膜の劣化、処理水(透過水)や濃縮水等の水質悪化を抑制し、十分なスライム抑制効果を得ることができる。
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
 本発明者らが鋭意検討した結果、水、水酸化アルカリおよびスルファミン酸の混合液に臭素を不活性ガス雰囲気下、好ましくは反応器内の酸素濃度を6%以下に制御した条件下で反応させ、臭素の添加率を組成物全体の量に対して25重量%以下とすることで、臭素酸イオンを実質的に含まない、かつ殺菌性能に優れ、金属に対する腐食性がほとんどなく、保存安定性に優れる1液系の次亜臭素酸安定化組成物が得られることを見出した。臭素を不活性ガス雰囲気下で反応させ、かつ、臭素の添加率を組成物全体の量に対して25重量%以下とすることで、反応系内の臭素酸生成を低減させ、かつ腐食性が低減する。さらに臭素酸生成量と腐食性が、スルファミン酸当量と臭素当量の比率、臭素の添加前におけるスルファミン酸の水酸化アルカリに対する当量比、組成物pH、反応温度等にも依存する傾向にあることを見出し、最終的に、臭素酸を反応系内にほとんど生成させず、かつ腐食性を抑えた、保存安定性に優れる、水系の生物付着を制御するための1液系の次亜臭素酸安定化組成物、およびその製造方法を見出すことに成功した。
 本発明の実施形態に係る次亜臭素酸安定化組成物は、主としてスルファミン酸-次亜臭素酸ナトリウム塩(O-SO-NH-Br,O-SO-NBr,および他の安定化次亜臭素酸塩)を含むものである。本実施形態に係る次亜臭素酸安定化組成物は、水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させることにより得られる。
 本実施形態に係る次亜臭素酸安定化組成物の製造方法の肝要は、水、水酸化アルカリおよびスルファミン酸の混合液に臭素を不活性ガス雰囲気下で反応させることである。特許文献3には、「臭素または塩化臭素を添加するステップは、臭素を空気に曝露せずに実施する」と記載があるものの、反応器内の酸素の除去方法には言及されていない。同じく特許文献3には、「元素臭素が空気に曝露されるのを防ぐため、臭素はテフロン(登録商標)管によって安定化溶液に直接加えることが好ましい」と記載があるが、反応器内の酸素の除去には言及しておらず、反応容器中の酸素を除去する手段にはなり得ない。一方、反応容器内の空気を不活性ガスで置換して反応させると分圧の効果により溶液中の酸素が追い出され、下式に示される臭素酸生成の反応が生じることがほとんどない。
  Br+3/2O → BrO
 臭素の反応の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。
 反応に用いる不活性ガスは限定されないが、製造等の面から室素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。
 反応容器内の酸素を除去する上で、不活性ガスを溶液内でバブリングすることや、反応容器内を減圧することも効果的である。
 臭素の添加率は、組成物全体の量に対して25重量%以下であり、1重量%以上20重量%以下であることが好ましい。臭素の添加率が組成物全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する。1重量%未満であると、生物付着の制御に劣る場合がある。
 臭素の当量に対するスルファミン酸の当量の比は、1.01~1.1の範囲であることが好ましく、1.02~1.05の範囲であることがより好ましい。臭素の当量に対するスルファミン酸の当量の比が1.01未満であると、反応系内の臭素酸の生成量が増加する場合があり、1.1を超えると、腐食性が高くなる場合がある。
 組成物のpHは13.5超であることが好ましいが、13.7超であることがより好ましい。組成物のpHが13.5以下であると、腐食性が高くなる場合がある。
 水酸化アルカリは、臭素添加前に全量加えても、あるいは組成物の最終pHの精度を上げるため、臭素添加後の組成物に一部を分けて加えて、組成物のpHを13.5超としてもよい。ただし、水、水酸化アルカリおよびスルファミン酸の混合液の時点でpH7以上であることが好ましい。
 水酸化アルカリとして、水酸化ナトリウムの代わりに、水酸化カリウム等の他の水酸化アルカリを用いてもよく、また併用してもよい。特に、低温時の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用するとよい。水酸化アルカリは固形で用いても、水溶液として用いてもよい。
 水酸化アルカリは臭素を添加する前後で、発熱対策等の点から分割して投入することも可能であるが、その場合、臭素添加前のスルファミン酸ナトリウム溶液としては、pH7以上であることが好ましい。
 また臭素添加前に高アルカリであると、臭素酸イオンを生成してしまう可能性があるため、臭素の添加前におけるスルファミン酸の水酸化アルカリに対する当量比は、0.28~0.35の範囲であることが好ましい。臭素の添加前におけるスルファミン酸の水酸化アルカリに対する当量比が0.28未満であると、臭素酸イオンを生成してしまう場合があり、0.35を超えると、腐食性が高くなる場合がある。
 臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。
 本実施形態に係る次亜臭素酸安定化組成物の製造方法により、主としてスルファミン酸-次亜臭素酸ナトリウム塩組成物が、臭素酸イオンを実質的に含有せず、また、組成物を金属材質と接触させてもほとんど腐食が進行しないことから、安全に取扱うことが可能である。
 本実施形態に係る次亜臭素酸安定化組成物の製造方法により得られる次亜臭素酸安定化組成物は、臭素酸イオンを実質的に含まず、臭素酸イオンの含有量が、例えば5mg/kg未満である。本明細書において「臭素酸イオンを実質的に含まない」とは、利用可能な最良の技術(BAT:Best Available Technology)となり得る分析手法を用いて、検出限界未満を達成することである。特許文献3には臭素酸イオンの分析方法としてイオンクロマトグラフィ法が示されており、検出下限の50mg/L未満であるとの記載があるが、本発明者らが用いたポストカラム-イオンクロマトグラフィ法を用いれば、検出下限5mg/kgを達成し、すなわち5~50mg/kgの臭素酸イオンを検出することができ、また実際に後述の実施例に示す通り、次亜臭素酸安定化組成物中に5~50mg/kgの臭素酸イオンが検出されたものがある。水道法に基づいた厚生労働省監修の「水道用薬品類の評価のための試験方法ガイドライン」では、臭素酸の評価基準値は0.005mg/Lと定められており、本実施形態に係る次亜臭素酸安定化組成物が例えば10,000~100,000倍希釈して用いられることを考えると、組成物中の5~50mg/kgの臭素酸イオンを検出すること、そして組成物中の臭素酸イオンの含有量が5mg/kg未満を達成することは非常に有意義である。
 組成物に含まれる有効臭素濃度は、組成物全体の量に対して1重量%~25重量%の範囲であることが好ましく、1重量%~20重量%の範囲であることがより好ましい。有効臭素濃度が組成物全体の量に対して1重量%未満であると、生物付着の制御に劣る場合があり、25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。
 水系の生物付着を制御するための組成物を金属材質と接触させてもほとんど腐食が進行しないことが望ましい。水系の生物付着を制御するための組成物は薬品注入装置を用いて系内に注入される場合が多く、組成物を希釈せず、原液で用いることから、注入配管が腐食したり、薬注ラインから対象となる水処理系への接続配管が腐食したりするトラブルを回避することが望ましい。実際に次亜塩素酸ナトリウム溶液等における腐食トラブルは未だに根本的な解決はされておらず、例えば特許文献3においても、安定した酸化臭素化合物が「腐食性溶液」であると記載されており、実際に金属腐食性が高い結果が得られた。
 次亜臭素酸安定化組成物を金属材質と接触させてもほとんど腐食が進行しない基準は、後述する腐食速度(MDD)で1未満が好ましい。
 このように、本実施形態に係る次亜臭素酸安定化組成物の製造方法により、臭素酸イオンを実質的に含まない、かつ殺菌性能に優れ、金属に対する腐食性がほとんどなく、保存安定性に優れる1液系の次亜臭素酸安定化組成物が得られる。
 本実施形態に係る次亜臭素酸安定化組成物は、例えば、冷却水等の工業用水システムや製紙工程等の水系での生物付着を制御するための殺菌剤として用いることができる。
<分離膜のスライム抑制方法>
 本発明の実施形態に係る分離膜のスライム抑制方法は、分離膜を備える膜分離装置への給水または洗浄水中に、上記次亜臭素酸安定化組成物の製造方法により得られる次亜臭素酸安定化組成物を存在させる方法である。
 また、本発明の実施形態に係る分離膜のスライム抑制方法は、分離膜を備える膜分離装置への給水または洗浄水中に、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」と、を存在させる方法である。これにより、給水または洗浄水中で、次亜臭素酸安定化組成物が生成すると考えられる。
 また、本発明の実施形態に係る分離膜のスライム抑制方法は、分離膜を備える膜分離装置への給水または洗浄水中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」である次亜臭素酸安定化組成物を存在させる方法である。
 具体的には本発明の実施形態に係る分離膜のスライム抑制方法は、分離膜を備える膜分離装置への給水または洗浄水中に、例えば、「臭素」、「塩化臭素」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」と、を存在させる方法である。
 また、本発明の実施形態に係る分離膜のスライム抑制方法は、分離膜を備える膜分離装置への給水または洗浄水中に、例えば、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」を存在させる方法である。
 上記次亜臭素酸安定化組成物の製造方法により得られる次亜臭素酸安定化組成物を存在させる、また、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とを存在させる、また、これらの反応生成物を存在させることで、分離膜のスライムを抑制することができる。また、分離膜の性能をほとんど劣化させることなく、微生物による膜汚染を確実に抑制することができる。本実施形態に係る分離膜のスライム抑制方法により、高いスライム抑制効果を有しながら、膜性能、後段水質への影響を最小限に抑えたスライム抑制処理が可能となる。
 例えば、膜分離装置への給水または洗浄水中に、上記次亜臭素酸安定化組成物の製造方法により得られる次亜臭素酸安定化組成物を薬注ポンプ等により注入すればよい。
 または、例えば、膜分離装置への給水または洗浄水中に、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とを薬注ポンプ等により注入すればよい。「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とは別々に水系に添加してもよく、または、原液同士で混合させてから水系に添加してもよい。
 または、例えば、膜分離装置への給水または洗浄水中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」を薬注ポンプ等により注入すればよい。
 「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、膜を劣化させる可能性があり、2を超えると、製造コストが増加する場合がある。
 分離膜に接触する有効ハロゲン濃度は有効塩素濃度換算で、0.01~100mg/Lであることが好ましい。0.01mg/L未満であると、十分なスライム抑制効果を得ることができない場合があり、100mg/Lより多いと、分離膜の劣化、配管等の腐食を引き起こす可能性がある。
 臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩等が挙げられる。
 これらのうち、臭素を用いた「臭素とスルファミン酸化合物」または「臭素とスルファミン酸化合物との反応生成物」の製剤は、「次亜塩素酸と臭素化合物とスルファミン酸」の製剤および「塩化臭素とスルファミン酸」の製剤等に比べて、RO膜等をより劣化させず、RO透過水等の膜透過水への有効ハロゲンのリーク量がより少ないため、RO膜等の分離膜用スライム抑制剤としてはより好ましい。
 すなわち、本発明の実施形態に係る分離膜のスライム抑制方法は、分離膜を備える膜分離装置への給水または洗浄水中に、臭素と、スルファミン酸化合物とを存在させることが好ましい。また、分離膜を備える膜分離装置への給水または洗浄水中に、臭素とスルファミン酸化合物との反応生成物を存在させることが好ましい。
 臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム及び臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。
 塩素系酸化剤としては、例えば、塩素ガス、二酸化塩素、次亜塩素酸またはその塩、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌル酸またはその塩等が挙げられる。これらのうち、塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等が挙げられる。これらの塩素系酸化剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。塩素系酸化剤としては、取り扱い性等の点から、次亜塩素酸ナトリウムを用いるのが好ましい。
 スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
  RNSOH   (1)
(式中、Rは独立して水素原子または炭素数1~8のアルキル基である。)
 スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N-メチルスルファミン酸、N-エチルスルファミン酸、N-プロピルスルファミン酸、N-イソプロピルスルファミン酸、N-ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1~8のアルキル基であるスルファミン酸化合物、N,N-ジメチルスルファミン酸、N,N-ジエチルスルファミン酸、N,N-ジプロピルスルファミン酸、N,N-ジブチルスルファミン酸、N-メチル-N-エチルスルファミン酸、N-メチル-N-プロピルスルファミン酸等の2個のR基の両方が炭素数1~8のアルキル基であるスルファミン酸化合物、N-フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6~10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。
 本実施形態に係る分離膜のスライム抑制方法において、さらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温時の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。
 分離膜としては、逆浸透膜(RO膜)、ナノろ過膜(NF膜)、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)等が挙げられる。これらのうち、特に逆浸透膜(RO膜)に、本発明の実施形態に係る分離膜のスライム抑制方法を好適に適用することができる。また、逆浸透膜として昨今主流であるポリアミド系高分子膜に本発明の実施形態に係る分離膜のスライム抑制方法を好適に適用することができる。ポリアミド系高分子膜は、酸化剤に対する耐性が比較的低く、遊離塩素等をポリアミド系高分子膜に連続的に接触させると、膜性能の著しい低下が起こる。しかしながら、本実施形態に係る分離膜のスライム抑制方法ではポリアミド高分子膜においても、このような著しい膜性能の低下はほとんど起こらない。
 本実施形態に係る分離膜のスライム抑制方法において、膜分離装置が分離膜としてRO膜を備えるRO装置の場合、RO装置への給水のpHが5.5以上であることが好ましく、6.0以上であることがより好ましく、6.5以上であることがさらに好ましい。RO装置への給水のpHが5.5未満であると、透過水量が低下する場合がある。また、RO装置への給水のpHの上限値については、通常のRO膜の適用上限pH(例えば、pH10)以下であれば特に制限はないが、カルシウム等の硬度成分のスケール析出を考慮すると、pHは例えば9.0以下で運転することが好ましい。本実施形態に係る分離膜のスライム抑制方法を用いる場合、RO装置への給水のpHが5.5以上で運転することにより、RO膜の劣化、処理水(透過水)の水質悪化を抑制し、十分なスライム抑制効果を発揮しつつ、十分な透過水量の確保も可能となる。
 RO装置において、RO装置への給水のpH5.5以上でスケールが発生する場合には、スケール抑制のために分散剤を次亜臭素酸安定化組成物と併用してもよい。分散剤としては、例えば、ポリアクリル酸、ポリマレイン酸、ホスホン酸等が挙げられる。分散剤の給水への添加量は、例えば、RO濃縮水中の濃度として0.1~1,000mg/Lの範囲である。
 また、分散剤を使用せずにスケールの発生を抑制するためには、例えば、RO濃縮水中のシリカ濃度を溶解度以下に、カルシウムスケールの指標であるランゲリア指数を0以下になるように、RO装置の回収率等の運転条件を調整することが挙げられる。
 RO装置の用途としては、例えば、海水淡水化、排水回収等が挙げられる。
<分離膜用スライム抑制剤組成物>
 本実施形態に係る分離膜用スライム抑制剤組成物は、上記次亜臭素酸安定化組成物の製造方法により得られる次亜臭素酸安定化組成物を含有するものであり、さらにアルカリを含有してもよい。
 また、本実施形態に係る分離膜用スライム抑制剤組成物は、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とを含有するものであり、さらにアルカリを含有してもよい。
 また、本実施形態に係る分離膜用スライム抑制剤組成物は、「臭素系酸化剤とスルファミン酸化合物との反応生成物」、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」を含有するものであり、さらにアルカリを含有してもよい。
 臭素系酸化剤、臭素化合物、塩素系酸化剤およびスルファミン酸化合物については、上述した通りである。
 本実施形態に係る分離膜用スライム抑制剤組成物としては、RO膜等をより劣化させず、RO透過水等の膜透過水への有効ハロゲンのリーク量がより少ないため、臭素と、スルファミン酸化合物とを含有するもの、または、臭素とスルファミン酸化合物との反応生成物を含有するものが好ましい。
 本実施形態に係る分離膜用スライム抑制剤組成物は、クロロスルファミン酸等の結合塩素系スライム抑制剤と比較すると、酸化力が高く、スライム抑制力、スライム剥離力が著しく高いにもかかわらず、同じく酸化力の高い次亜塩素酸、次亜臭素酸のような著しい膜劣化をほとんど引き起こすことがない。通常の使用濃度では、膜劣化への影響は実質的に無視することができる。このため、RO膜等の分離膜用スライム抑制剤としては最適である。
 本実施形態に係る分離膜用スライム抑制剤組成物は、次亜塩素酸とは異なり、RO膜をほとんど透過しないため、処理水水質への影響がほとんどない。また、次亜塩素酸等と同様に現場で濃度を測定することができるため、より正確な濃度管理が可能である。
 組成物のpHは、例えば、13.0超であり、13.2超であることがより好ましい。組成物のpHが13.0以下であると組成物中の有効ハロゲンが不安定になる場合がある。
 分離膜用スライム抑制剤組成物中の臭素酸濃度は、5mg/kg未満であることが好ましい。分離膜用スライム抑制剤組成物中の臭素酸濃度が5mg/kg以上であると、透過水の臭素酸イオンの濃度が高くなる場合がある。
<分離膜用スライム抑制剤組成物の製造方法>
 本実施形態に係る分離膜用スライム抑制剤組成物は、臭素系酸化剤とスルファミン酸化合物とを混合する、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物とを混合することにより得られ、さらにアルカリを混合してもよい。
 臭素と、スルファミン酸化合物とを含有する分離膜用スライム抑制剤組成物、または、臭素とスルファミン酸化合物との反応生成物を含有する分離膜用スライム抑制剤組成物の製造方法としては、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含むことが好ましい。不活性ガス雰囲気下で添加して反応させることにより、組成物中の臭素酸イオン濃度が低くなり、RO透過水等の透過水中の臭素酸イオン濃度が低くなる。
 用いる不活性ガスとしては限定されないが、製造等の面から室素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。
 臭素の添加の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。
 臭素の添加率は、組成物全体の量に対して25重量%以下であることが好ましく、1重量%以上20重量%以下であることがより好ましい。臭素の添加率が組成物全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。1重量%未満であると、殺菌力が劣る場合がある。
 臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
<実施例1>
 反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つロフラスコに1453gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0~15℃になるように冷却を維持しながら、456gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.3%、臭素の当量に対するスルファミン酸の当量比が1.08である、目的の次亜臭素酸安定化組成物を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14.0であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.3%であり、理論含有率(16.3%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO-02 LJDII」を用いて測定した。
 実施例1で生じた溶液原液にて、臭素酸イオン濃度を、「JWWA K 120(2008)水道用次亜塩素酸ナトリウム5.4.5 臭素酸」の分析方法に則りポストカラム-イオンクロマトグラフィ法で測定した結果、臭素酸イオン濃度は検出下限値の5mg/kg未満であった。
 実施例1で生じた溶液原液に、金属片を浸漬させた腐食試験を実施した。なお、本腐食試験は、「JIS K 0100工業用水腐食性試験方法」に則り実施した。
[試験条件]
  試験片:SS-400(#400)
  試験片表面積:0.01dm(1mm×10mm×10mm)
  試験温度:25℃
  試験期間:3日間
  評価項目:腐食速度(MDD)
 腐食速度に関しては、試験終了後に試験片(SS-400)を、酸洗浄用腐食抑制剤(朝日化学工業社製、「イビット」)を加えた15%塩酸で洗浄し、質量減を求め、そこから下式により、試験片の表面積1dmに対する1日当たりの腐食減量のmg数、すなわちMDD(mg/dm・day)を求めたところ、0.4であった。
  W=(M1-M2)/(S×T)
 ここで、W:腐食速度(MDD)、M1:試験片の試験前の質量(mg)、M2:試験片の試験後の質量(mg)、S:試験片の表面積(dm)、T:試験日数である。
<実施例2>
 反応容器内の酸素濃度が4%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら、実施例1と同様の条件で合成した結果、溶液原液中の臭素酸イオン濃度は検出下限値の5mg/kg未満であった。また腐食試験による腐食速度(MDD)は0.6であった。
<実施例3~35、比較例1~7>
 表1に示す条件で実施例1と同様にして、サンプルを合成し、臭素酸イオン濃度および腐食性(腐食速度)を評価した。不活性ガスで置換していない場合の酸素濃度は実測していないが、大気中の酸素濃度21%前後と考えられる。結果を表1、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<実施例36>
 実施例8、実施例15および実施例16で合成した水溶液を-10℃の恒温槽を用いて、10日間、低温保存試験を実施した。その結果、実施例8のみが凍結しなかった。このことから、水酸化ナトリウムと水酸化カリウムとを併用することで、より大きな凝固点降下が得られ、低温時の製品安定性に優れることがわかった。
 以上のように、水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させ、臭素の添加率を組成物全体の量に対して25重量%以下とする実施例の方法により、臭素酸イオンを実質的に含まない、かつ殺菌性能に優れ、金属に対する腐食性がほとんどなく、保存安定性に優れる1液系の次亜臭素酸安定化組成物が得られた。
 次に、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物とを使用した場合と、一般的なスライム抑制剤である次亜塩素酸、次亜臭素酸、クロロスルファミン酸を使用した場合のRO膜排除率への影響、透過水への影響、酸化力、殺菌力について比較した。
<実施例37>
[組成物の調製]
 窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、組成物を調製した。組成物のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7.5重量%であった。実施例37の組成物の詳細な調製方法は以下の通りである。
 反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0~15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の組成物を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO-02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。
<実施例38>
 臭化ナトリウム:11重量%、12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸ナトリウム:14重量%、水酸化ナトリウム:8重量%、水:残分を混合して、組成物を調製した。組成物のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は6重量%であった。実施例38の組成物の詳細な調製方法は以下の通りである。
 反応容器に17gの水を入れ、11gの臭化ナトリウムを加え撹拌して溶解させた後、50gの12%次亜塩素酸ナトリウム水溶液を加え混合し、次いで14gのスルファミン酸ナトリウムを加え撹拌して溶解させた後、8gの水酸化ナトリウムを加え撹拌し溶解させて目的の組成物を得た。
<実施例39>
 実施例38の各組成を水中に別々に添加した。
<実施例40>
 塩化臭素、スルファミン酸ナトリウム、水酸化ナトリウムを含有する組成物を使用した。組成物のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7重量%であった。
<比較例8>
 12%次亜塩素酸ナトリウム水溶液を使用した。
<比較例9>
 臭化ナトリウム:15重量%、12%次亜塩素酸ナトリウム水溶液:42.4重量%、を水中に別々に添加した。
<比較例10>
 12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸:10重量%、水酸化ナトリウム:8重量%、水:残分を混合して、組成物を調製した。組成物のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は6重量%であった。
[RO膜排除率への影響、透過水への影響、酸化力の比較試験]
 以下の条件で、逆浸透膜装置の原水に、実施例37,38,40、比較例8,10で調製した組成物、および実施例39、比較例9の各組成を添加して、RO膜の排除率への影響、透過水への影響、酸化力を比較した。
(試験条件)
・試験装置:平膜試験装置
・分離膜:日東電工(株)製、ポリアミド系高分子逆浸透膜 ES20
・運転圧力:0.75MPa
・原水:相模原井水(pH7.2、導電率240μS/cm)
・薬剤:実施例37,38,40、比較例8,10で調製した組成物、および実施例39、比較例9の各組成を、有効ハロゲン濃度(有効塩素換算濃度)として10mg/Lとなるように添加
(評価方法)
・RO膜の排除率への影響:30日通水後の導電率排除率(%)
  (100-[透過水導電率/給水導電率]×100)
・透過水への影響:薬剤添加1時間後の透過水中の有効ハロゲン濃度(有効塩素換算濃度、mg/L)を、残留塩素測定装置(Hach社製、「DR-4000」)を使用してDPD法により測定
・酸化力:1時間後の給水の酸化還元電位(ORP)を、酸化還元電位測定装置(東亜DKK製、RM-20P型ORP計)を使用して測定
[殺菌力の比較試験]
 以下の条件で、模擬水に実施例37,38,40、比較例8,10で調製した組成物、および実施例39、比較例9の各組成を添加して、殺菌力を比較した。
(試験条件)
・水:相模原井水に普通ブイヨンを添加し、一般細菌数が105CFU/mlとなるよう調整した模擬水
・薬剤:実施例37,38,40、比較例8,10で調製した組成物、および実施例39、比較例9の各組成を、有効ハロゲン濃度(有効塩素換算濃度)として1mg/Lとなるよう添加(有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR-4000」)を使用してDPD法により測定)
(評価方法)
・薬剤添加後24時間後の一般細菌数を菌数測定キット(三愛石油製、バイオチェッカーTTC)を使用して測定
 試験結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例37~40は、高いRO膜の排除率を保持し、透過水の有効ハロゲン濃度(有効塩素換算濃度)も低く、酸化力、殺菌力も高かった。実施例37~40の中では、実施例37が、最も高いRO膜の排除率を保持し、透過水の有効ハロゲン濃度(有効塩素換算濃度)が最も低かった。
 比較例8は、酸化力、殺菌力は高いものの、RO膜の排除率が低下し、透過水の有効ハロゲン濃度(有効塩素換算濃度)も高かった。比較例9は、酸化力、殺菌力は高いものの、透過水の有効ハロゲン濃度(有効塩素換算濃度)が高かった。比較例10は、RO膜の排除率はほとんど低下しておらず、透過水の有効ハロゲン濃度(有効塩素換算濃度)も低いものの、酸化力が低く、殺菌力も低かった。
 このように、RO膜を備える膜分離装置への給水中に、臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、を存在させることにより、または、臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物を存在させることにより、分離膜の劣化、処理水の水質悪化を抑制し、十分なスライム抑制効果を得ることができた。
[透過水の臭素酸イオンの濃度の比較実験]
 組成物調製時の窒素ガスパージの有無による透過水の臭素酸イオンの濃度を比較した。
<実施例41>
 実施例37と同様にして、窒素雰囲気下で、液体臭素:17重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.95重量%、水:残分を混合して、組成物を調製した。組成物のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7.5重量%であり、臭素酸濃度は5mg/kg未満であった。
<実施例42>
 窒素パージを行わず、大気下で、液体臭素:17重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.95重量%、水:残分を混合して、組成物を調製した。組成物のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7.4重量%であり、臭素酸濃度は63mg/kgであった。
(試験条件)
・試験装置:平膜試験装置
・分離膜:日東電工(株)製、ポリアミド系高分子逆浸透膜 ES20
・運転圧力:0.75MPa
・原水:相模原井水(pH7.2、導電率240μS/cm)
・薬剤:実施例5,6で調製した組成物を、有効ハロゲン濃度(有効塩素換算濃度)として50mg/Lとなるように添加
(評価方法)
・透過水の臭素酸イオン濃度を、イオンクロマトグラフ-ポストカラム吸光光度法で測定した。
 試験結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例41では、給水、透過水中の臭素酸イオン濃度は1μg/L未満であった。実施例42では、給水、透過水中の臭素酸イオン濃度は、実施例5に比べて高かった。
[RO装置への給水のpHによる透過水量、膜排除率への影響の比較試験]
 RO装置への給水のpHによる透過水量、膜排除率への影響を比較した。
(試験条件)
・試験装置:平膜試験装置
・分離膜:日東電工(株)製、ポリアミド系高分子逆浸透膜 ES20
・運転圧力:0.75MPa
・原水:相模原井水(pH7.2、導電率240μS/cm)
・薬剤:実施例1で調製した組成物を、有効ハロゲン濃度(有効塩素換算濃度)として1mg/Lとなるよう添加(有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR-4000」)を使用してDPD法により測定)
・RO膜給水pH:4.0(実施例43-1),5.0(実施例43-2),5.5(実施例43-3),6.0(実施例43-4),6.5(実施例43-5),7.0(実施例43-6),7.5(実施例43-7),8.0(実施例43-8),8.5(実施例43-9),9.0(実施例43-10)
(評価方法)
・RO膜の排除率への影響:120時間通水後の導電率排除率(%)
  (100-[透過水導電率/給水導電率]×100)
・透過水量への影響:24時間通水後の透過水量の保持率(%,対初期値)
 試験結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例43-1~43-10では、排除率の低下は認められず、RO膜の劣化が抑制された(120時間後のRO膜の排除率が99%以上)。特に、実施例43-3~43-10では、透過水量の顕著な低下も認められなかった(24時間通水後に、RO膜の透過水量を初期値の80%以上保持)。一方、実施例43-1,43-2では、排除率の低下は認められず、RO膜の劣化は抑制されたものの、透過水量が低下した。

Claims (16)

  1.  水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含み、
     前記臭素の添加率が組成物全体の量に対して25重量%以下であることを特徴とする次亜臭素酸安定化組成物の製造方法。
  2.  請求項1に記載の次亜臭素酸安定化組成物の製造方法であって、
     反応器内の酸素濃度を6%以下に制御した条件で前記臭素を反応させることを特徴とする次亜臭素酸安定化組成物の製造方法。
  3.  請求項1または2に記載の次亜臭素酸安定化組成物の製造方法であって、
     前記臭素の添加の際の反応温度を0℃以上25℃以下の範囲に制御することを特徴とする次亜臭素酸安定化組成物の製造方法。
  4.  請求項1~3のいずれか1項に記載の次亜臭素酸安定化組成物の製造方法であって、
     前記臭素の当量に対する前記スルファミン酸の当量の比が、1.01~1.1の範囲であることを特徴とする次亜臭素酸安定化組成物の製造方法。
  5.  請求項1~4のいずれか1項に記載の次亜臭素酸安定化組成物の製造方法であって、
     前記臭素の添加前における前記スルファミン酸の前記水酸化アルカリに対する当量比が0.28~0.35の範囲であることを特徴とする次亜臭素酸安定化組成物の製造方法。
  6.  請求項1~5のいずれか1項に記載の次亜臭素酸安定化組成物の製造方法であって、
     組成物のpHが13.5超であることを特徴とする次亜臭素酸安定化組成物の製造方法。
  7.  請求項6に記載の次亜臭素酸安定化組成物の製造方法であって、
     前記組成物に水酸化アルカリを追加し、pHを13.5超とすることを特徴とする次亜臭素酸安定化組成物の製造方法。
  8.  請求項1~7のいずれか1項に記載の次亜臭素酸安定化組成物の製造方法であって、
     前記不活性ガスが、窒素およびアルゴンのうちの少なくとも1つであることを特徴とする次亜臭素酸安定化組成物の製造方法。
  9.  請求項1~8のいずれか1項に記載の次亜臭素酸安定化組成物の製造方法であって、
     前記水酸化アルカリが、水酸化ナトリウムおよび水酸化カリウムのうちの少なくとも1つであることを特徴とする次亜臭素酸安定化組成物の製造方法。
  10.  請求項9に記載の次亜臭素酸安定化組成物の製造方法であって、
     前記水酸化アルカリが、水酸化ナトリウムおよび水酸化カリウムであることを特徴とする次亜臭素酸安定化組成物の製造方法。
  11.  水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含み、前記臭素の添加率が組成物全体の量に対して25重量%以下であることを特徴とする次亜臭素酸安定化組成物。
  12.  請求項11に記載の次亜臭素酸安定化組成物であって、
     臭素酸イオンの含有量が、5mg/kg未満であることを特徴とする次亜臭素酸安定化組成物。
  13.  分離膜を備える膜分離装置への給水または洗浄水中に、
     請求項1~10のいずれか1項に記載の次亜臭素酸安定化組成物の製造方法で得られた次亜臭素酸安定化組成物、または請求項11または12に記載の次亜臭素酸安定化組成物を存在させることを特徴とする分離膜のスライム抑制方法。
  14.  請求項13に記載の分離膜のスライム抑制方法であって、
     前記分離膜が、ポリアミド系高分子膜であることを特徴とする分離膜のスライム抑制方法。
  15.  請求項13または14に記載の分離膜のスライム抑制方法であって、
     前記膜分離装置が分離膜としてRO膜を備え、
     前記膜分離装置への給水のpHが5.5以上であることを特徴とする分離膜のスライム抑制方法。
  16.  請求項13~15のいずれか1項に記載の分離膜のスライム抑制方法であって、
     前記次亜臭素酸安定化組成物中の臭素酸濃度が5mg/kg未満であることを特徴とする分離膜のスライム抑制方法。
PCT/JP2014/062571 2013-08-28 2014-05-12 次亜臭素酸安定化組成物の製造方法、次亜臭素酸安定化組成物、および分離膜のスライム抑制方法 WO2015029504A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2014313502A AU2014313502C1 (en) 2013-08-28 2014-05-12 Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
KR1020187013587A KR101972727B1 (ko) 2013-08-28 2014-05-12 차아브로민산 안정화 조성물의 제조 방법, 차아브로민산 안정화 조성물 및 분리막의 슬라임 억제 방법
SG11201601207UA SG11201601207UA (en) 2013-08-28 2014-05-12 Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
US14/912,763 US10420344B2 (en) 2013-08-28 2014-05-12 Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
KR1020167004146A KR20160032229A (ko) 2013-08-28 2014-05-12 차아브로민산 안정화 조성물의 제조 방법, 차아브로민산 안정화 조성물 및 분리막의 슬라임 억제 방법
CN201480047664.1A CN105517959B (zh) 2013-08-28 2014-05-12 次溴酸稳定化组合物的制造方法、次溴酸稳定化组合物、以及分离膜的抑污方法
KR1020197007000A KR102061679B1 (ko) 2013-08-28 2014-05-12 분리막의 슬라임 억제 방법
SA516370626A SA516370626B1 (ar) 2013-08-28 2016-02-25 طريقة لإنتاج تركيبة حمض هيبوبروموز مُثبَّتة، وتركيبة حمض هيبوبروموز مُثبَّتة، وطريقة تثبيط طين لغشاء فصل
US16/542,826 US11666055B2 (en) 2013-08-28 2019-08-16 Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013176912 2013-08-28
JP2013-176912 2013-08-28
JP2014090914A JP6401491B2 (ja) 2013-08-28 2014-04-25 分離膜のスライム抑制方法、逆浸透膜またはナノろ過膜用スライム抑制剤組成物、および分離膜用スライム抑制剤組成物の製造方法
JP2014-090914 2014-04-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/912,763 A-371-Of-International US10420344B2 (en) 2013-08-28 2014-05-12 Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
US16/542,826 Division US11666055B2 (en) 2013-08-28 2019-08-16 Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane

Publications (1)

Publication Number Publication Date
WO2015029504A1 true WO2015029504A1 (ja) 2015-03-05

Family

ID=52586086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062571 WO2015029504A1 (ja) 2013-08-28 2014-05-12 次亜臭素酸安定化組成物の製造方法、次亜臭素酸安定化組成物、および分離膜のスライム抑制方法

Country Status (10)

Country Link
US (2) US10420344B2 (ja)
JP (1) JP6401491B2 (ja)
KR (3) KR101972727B1 (ja)
CN (2) CN105517959B (ja)
AU (1) AU2014313502C1 (ja)
MY (1) MY181427A (ja)
SA (1) SA516370626B1 (ja)
SG (2) SG10201702983PA (ja)
TW (1) TWI597235B (ja)
WO (1) WO2015029504A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136304A1 (ja) * 2015-02-24 2016-09-01 オルガノ株式会社 逆浸透膜の改質方法、逆浸透膜、ホウ素含有水の処理方法、および分離膜の運転方法
WO2016135916A1 (ja) * 2015-02-26 2016-09-01 オルガノ株式会社 水処理剤組成物、水処理剤組成物の製造方法および水処理方法
WO2016175006A1 (ja) * 2015-04-30 2016-11-03 オルガノ株式会社 アンモニア性窒素含有排水の処理方法およびアンモニア性窒素分解剤
JPWO2015170495A1 (ja) * 2014-05-08 2017-04-20 オルガノ株式会社 ろ過処理システムおよびろ過処理方法
CN107428566A (zh) * 2015-03-31 2017-12-01 栗田工业株式会社 反渗透膜处理系统的运行方法以及反渗透膜处理系统
WO2018084061A1 (ja) * 2016-11-07 2018-05-11 オルガノ株式会社 逆浸透膜処理方法および逆浸透膜処理システム
CN109982567A (zh) * 2016-12-01 2019-07-05 奥加诺株式会社 水处理剂组合物、水处理方法及水处理剂组合物的保管或使用方法
JP2019122943A (ja) * 2018-01-19 2019-07-25 オルガノ株式会社 水処理方法および水処理装置
US10420344B2 (en) 2013-08-28 2019-09-24 Organo Corporation Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6513424B2 (ja) * 2015-02-24 2019-05-15 オルガノ株式会社 分離膜の殺菌方法
JP6649697B2 (ja) * 2015-05-12 2020-02-19 オルガノ株式会社 水の殺菌方法
CN108495822A (zh) 2016-02-18 2018-09-04 奥加诺株式会社 使用有反浸透膜的水处理系统及水处理方法
JP6299796B2 (ja) * 2016-03-29 2018-03-28 栗田工業株式会社 海水淡水化方法及び海水淡水化設備
CN109071273A (zh) * 2016-04-06 2018-12-21 三菱重工工程株式会社 水处理系统、水处理方法
JP6837301B2 (ja) * 2016-07-25 2021-03-03 オルガノ株式会社 逆浸透膜処理方法および逆浸透膜処理システム
JP6682401B2 (ja) * 2016-08-18 2020-04-15 オルガノ株式会社 逆浸透膜を用いる水処理方法
JP2018030074A (ja) * 2016-08-23 2018-03-01 オルガノ株式会社 ポリアミド系逆浸透膜、およびそのポリアミド系逆浸透膜の製造方法
JP6823401B2 (ja) * 2016-08-23 2021-02-03 オルガノ株式会社 低分子有機物含有水の処理方法および逆浸透膜の改質方法
JP6779706B2 (ja) * 2016-08-23 2020-11-04 オルガノ株式会社 逆浸透膜を用いる水処理方法
CN109863122B (zh) 2016-10-25 2022-01-25 奥加诺株式会社 使用反渗透膜的水处理方法和水处理装置
JP6807219B2 (ja) * 2016-11-18 2021-01-06 オルガノ株式会社 逆浸透膜処理システムおよび逆浸透膜処理方法
JP7144922B2 (ja) * 2017-05-09 2022-09-30 オルガノ株式会社 逆浸透膜の運転方法および逆浸透膜装置
KR101911929B1 (ko) 2017-05-26 2018-10-25 애큐랩(주) 안정화된 할로겐계 산화성 살균제를 이용한 역삼투 수처리 방법
CN107261853A (zh) * 2017-08-20 2017-10-20 合肥信达膜科技有限公司 一种反渗透膜的清洗方法
JP7008470B2 (ja) * 2017-10-26 2022-01-25 オルガノ株式会社 逆浸透膜処理方法および逆浸透膜処理システム
JP7127464B2 (ja) * 2018-10-03 2022-08-30 三浦工業株式会社 水処理システム
JP7212490B2 (ja) * 2018-10-05 2023-01-25 オルガノ株式会社 水処理装置および水処理方法
WO2020071177A1 (ja) * 2018-10-05 2020-04-09 オルガノ株式会社 水処理装置、水処理方法、正浸透膜処理方法、正浸透膜処理システムおよび水処理システム
JP7228492B2 (ja) * 2019-08-29 2023-02-24 オルガノ株式会社 水処理装置および水処理方法
JP7141919B2 (ja) * 2018-11-08 2022-09-26 オルガノ株式会社 逆浸透膜処理方法、逆浸透膜処理システム、水処理方法、および水処理システム
CN115553300A (zh) * 2021-12-02 2023-01-03 上海未来企业股份有限公司 一种广谱性杀生剥离剂及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516827A (ja) * 1998-06-01 2002-06-11 アルベマール・コーポレーシヨン 濃臭素水溶液およびそれの製造
JP2002543048A (ja) * 1999-04-21 2002-12-17 ナルコ ケミカル カンパニー 安定した酸化臭素調合物、生物付着制御のためのその製造方法および使用
JP2006263510A (ja) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd 膜分離用スライム防止剤及び膜分離方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988444A (en) * 1989-05-12 1991-01-29 E. I. Du Pont De Nemours And Company Prevention of biofouling of reverse osmosis membranes
US4992209A (en) * 1989-10-26 1991-02-12 Nalco Chemical Company Method for inhibiting corrosion in cooling systems and compositions therefor, containing a nitrite corrosion inhibitor and bromosulfamate
JP3187629B2 (ja) 1993-12-16 2001-07-11 オルガノ株式会社 逆浸透膜処理方法
JP3919259B2 (ja) 1995-07-24 2007-05-23 オルガノ株式会社 超純水製造装置
JP3098041B2 (ja) 1995-12-07 2000-10-10 ザ、プロクター、エンド、ギャンブル、カンパニー 漂白組成物の製法
JPH09220449A (ja) 1996-02-15 1997-08-26 Kurita Water Ind Ltd 膜分離装置
US5683654A (en) 1996-03-22 1997-11-04 Nalco Chemical Co Process to manufacture stabilized alkali or alkaline earth metal hypobromite and uses thereof in water treatment to control microbial fouling
CN1189808A (zh) * 1996-03-22 1998-08-05 诺尔科化学公司 稳定的碱金属或碱土金属次溴酸盐及其制备方法
JPH11511779A (ja) 1996-05-15 1999-10-12 ザ、プロクター、エンド、ギャンブル、カンパニー 塩素源および臭素源を含んでなる漂白組成物の製造方法およびその生成物
US6037318A (en) 1996-05-15 2000-03-14 The Procter & Gamble Company Process for manufacturing bleaching compositions comprising chlorine and bromine sources and product thereof
US5942126A (en) * 1997-01-03 1999-08-24 Nalco Chemical Company Process to manufacture stabilized alkali or alkaline earth metal hypobromite and uses thereof in water treatment to control microbial fouling
US6440476B2 (en) 1997-01-03 2002-08-27 Nalco Chemical Company Method to improve quality and appearance of leafy vegetables by using stabilized bromine
US6652889B2 (en) * 1998-06-01 2003-11-25 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation and use
US6156229A (en) 1998-06-29 2000-12-05 Nalco Chemical Company Stable oxidizing bromine formulations, method of manufacture and uses thereof for biofouling control
US6287473B1 (en) 1998-06-29 2001-09-11 Nalco Chemical Company Stable oxidizing bromine formulations, method of manufacture and uses thereof for biofouling control
IL157717A0 (en) * 2001-03-02 2004-03-28 Milbridge Invest Pty Ltd Stabilised hypobromous acid solutions
US6660307B2 (en) * 2001-04-16 2003-12-09 United States Filter Corporation Process for generating stabilized bromine compounds
JP2003117553A (ja) 2001-10-16 2003-04-22 Toray Ind Inc 造水方法および造水装置
IL149499A (en) 2002-05-06 2006-10-31 Bromine Compounds Ltd Process for the preparation of concentrated solutions of stabilized hypobromites
US7939042B2 (en) * 2002-05-06 2011-05-10 Bromine Compounds Ltd. Process for the preparation of concentrated solutions of stabilized hypobromites
US6699684B2 (en) * 2002-07-23 2004-03-02 Nalco Company Method of monitoring biofouling in membrane separation systems
WO2004022491A1 (en) 2002-09-04 2004-03-18 Biolab, Inc. Disinfection of reverse osmosis membrane
US7309503B2 (en) * 2004-05-10 2007-12-18 Enviro Tech Chemical Services, Inc. Methods for the preparation of concentrated aqueous bromine solutions and high activity bromine-containing solids
AR064779A1 (es) 2007-01-12 2009-04-22 Albemarle Corp Tratamiento microbicida de frutas y verduras comestibles
WO2009128328A1 (ja) 2008-04-14 2009-10-22 栗田工業株式会社 逆浸透膜モジュールの運転方法
JP4966936B2 (ja) 2008-09-10 2012-07-04 オルガノ株式会社 分離膜用スライム防止剤組成物、膜分離方法および分離膜用スライム防止剤組成物の製造方法
JP2011050843A (ja) 2009-09-01 2011-03-17 Metawater Co Ltd 被処理水の淡水化方法および淡水化システム
JP5828460B2 (ja) * 2010-03-19 2015-12-09 バックマン・ラボラトリーズ・インターナショナル・インコーポレーテッドBuckman Laboratories International Incorporated バイオエタノール生産において抗生物質代替物を用いたプロセス
JP2013034938A (ja) 2011-08-08 2013-02-21 Toray Ind Inc 膜モジュールの洗浄方法
JP2013169511A (ja) 2012-02-21 2013-09-02 Toshiba Corp 膜ろ過システム
JP2013202481A (ja) 2012-03-28 2013-10-07 Toray Ind Inc 分離膜モジュールの洗浄方法
JP5918109B2 (ja) 2012-11-20 2016-05-18 オルガノ株式会社 次亜臭素酸安定化組成物の製造方法および次亜臭素酸安定化組成物
JP6401491B2 (ja) 2013-08-28 2018-10-10 オルガノ株式会社 分離膜のスライム抑制方法、逆浸透膜またはナノろ過膜用スライム抑制剤組成物、および分離膜用スライム抑制剤組成物の製造方法
CN104624055A (zh) * 2013-11-12 2015-05-20 艺康美国股份有限公司 膜分离装置的生物粘泥抑制剂和抑制方法
SG11201609169UA (en) * 2014-05-08 2016-12-29 Organo Corp Filtration treatment system and filtration treatment method
JP2018097398A (ja) * 2016-12-07 2018-06-21 トヨタ自動車株式会社 視線推定システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516827A (ja) * 1998-06-01 2002-06-11 アルベマール・コーポレーシヨン 濃臭素水溶液およびそれの製造
JP2002543048A (ja) * 1999-04-21 2002-12-17 ナルコ ケミカル カンパニー 安定した酸化臭素調合物、生物付着制御のためのその製造方法および使用
JP2006263510A (ja) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd 膜分離用スライム防止剤及び膜分離方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10420344B2 (en) 2013-08-28 2019-09-24 Organo Corporation Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
US11666055B2 (en) 2013-08-28 2023-06-06 Organo Corporation Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
US10351444B2 (en) 2014-05-08 2019-07-16 Organo Corporation Filtration treatment system and filtration treatment method
JPWO2015170495A1 (ja) * 2014-05-08 2017-04-20 オルガノ株式会社 ろ過処理システムおよびろ過処理方法
WO2016136304A1 (ja) * 2015-02-24 2016-09-01 オルガノ株式会社 逆浸透膜の改質方法、逆浸透膜、ホウ素含有水の処理方法、および分離膜の運転方法
WO2016135916A1 (ja) * 2015-02-26 2016-09-01 オルガノ株式会社 水処理剤組成物、水処理剤組成物の製造方法および水処理方法
CN107428566A (zh) * 2015-03-31 2017-12-01 栗田工业株式会社 反渗透膜处理系统的运行方法以及反渗透膜处理系统
JPWO2016175006A1 (ja) * 2015-04-30 2017-12-21 オルガノ株式会社 アンモニア性窒素含有排水の処理方法およびアンモニア性窒素分解剤
WO2016175006A1 (ja) * 2015-04-30 2016-11-03 オルガノ株式会社 アンモニア性窒素含有排水の処理方法およびアンモニア性窒素分解剤
WO2018084061A1 (ja) * 2016-11-07 2018-05-11 オルガノ株式会社 逆浸透膜処理方法および逆浸透膜処理システム
JPWO2018084061A1 (ja) * 2016-11-07 2019-04-11 オルガノ株式会社 逆浸透膜処理方法および逆浸透膜処理システム
CN109982567A (zh) * 2016-12-01 2019-07-05 奥加诺株式会社 水处理剂组合物、水处理方法及水处理剂组合物的保管或使用方法
JP2019122943A (ja) * 2018-01-19 2019-07-25 オルガノ株式会社 水処理方法および水処理装置

Also Published As

Publication number Publication date
MY181427A (en) 2020-12-21
US10420344B2 (en) 2019-09-24
CN105517959A (zh) 2016-04-20
SA516370626B1 (ar) 2018-05-24
US11666055B2 (en) 2023-06-06
SG11201601207UA (en) 2016-03-30
KR20180053434A (ko) 2018-05-21
KR20190028812A (ko) 2019-03-19
CN105517959B (zh) 2020-04-28
AU2014313502C1 (en) 2017-03-09
JP2015062889A (ja) 2015-04-09
JP6401491B2 (ja) 2018-10-10
CN110078194B (zh) 2021-10-22
KR102061679B1 (ko) 2020-01-02
TWI597235B (zh) 2017-09-01
US20190364902A1 (en) 2019-12-05
AU2014313502B2 (en) 2016-11-24
CN110078194A (zh) 2019-08-02
SG10201702983PA (en) 2017-06-29
US20160198721A1 (en) 2016-07-14
TW201512078A (zh) 2015-04-01
AU2014313502A1 (en) 2016-04-21
KR101972727B1 (ko) 2019-08-16
KR20160032229A (ko) 2016-03-23

Similar Documents

Publication Publication Date Title
US11666055B2 (en) Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
JP6534524B2 (ja) ろ過処理システムおよびろ過処理方法
WO2016104356A1 (ja) 分離膜のスライム抑制方法
JP6533056B2 (ja) ろ過処理システムおよびろ過処理方法
WO2015170495A1 (ja) ろ過処理システムおよびろ過処理方法
JP6837301B2 (ja) 逆浸透膜処理方法および逆浸透膜処理システム
JP6513424B2 (ja) 分離膜の殺菌方法
TWI727106B (zh) 利用逆滲透膜的水處理方法及水處理裝置
JP6630562B2 (ja) 分離膜のスライム抑制方法
JP6682401B2 (ja) 逆浸透膜を用いる水処理方法
JP7013141B2 (ja) 逆浸透膜を用いる水処理方法
JP7008470B2 (ja) 逆浸透膜処理方法および逆浸透膜処理システム
JP7471143B2 (ja) 水処理方法および水処理装置
JP2018069124A (ja) 逆浸透膜を用いる水処理装置および水処理方法
JP2018069120A (ja) 逆浸透膜を用いる水処理方法および水処理装置
JP2016120487A (ja) 水の殺菌方法
WO2018037582A1 (ja) 逆浸透膜を用いる水処理方法
JP2020131134A (ja) 分離膜用スライム抑制剤、分離膜用スライム抑制剤の製造方法、および分離膜のスライム抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167004146

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201601002

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14912763

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014313502

Country of ref document: AU

Date of ref document: 20140512

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14840053

Country of ref document: EP

Kind code of ref document: A1