WO2016175006A1 - アンモニア性窒素含有排水の処理方法およびアンモニア性窒素分解剤 - Google Patents
アンモニア性窒素含有排水の処理方法およびアンモニア性窒素分解剤 Download PDFInfo
- Publication number
- WO2016175006A1 WO2016175006A1 PCT/JP2016/061379 JP2016061379W WO2016175006A1 WO 2016175006 A1 WO2016175006 A1 WO 2016175006A1 JP 2016061379 W JP2016061379 W JP 2016061379W WO 2016175006 A1 WO2016175006 A1 WO 2016175006A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitrogen
- bromine
- sulfamic acid
- ammonia
- acid compound
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
- C02F1/586—Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing ammoniacal nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/50—Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/76—Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
Definitions
- the present invention relates to a method for treating wastewater containing ammonia nitrogen and wastewater such as sewage containing ammonia nitrogen and an ammoniacal nitrogen decomposing agent.
- wastewater for example, sewage and wastewater from fish processing plants need to be sterilized so that the number of coliforms is 3000 or less before discharge, in order to comply with the wastewater standards and total volume regulations. It is desirable to reduce as much as possible the content of components subject to wastewater regulations such as nitrogen.
- a chlorine-based oxidizer such as hypochlorite is generally used as a disinfectant for sewage, etc., but if the treated water contains ammoniacal nitrogen, the chlorine-based oxidant reacts with ammoniacal nitrogen. Therefore, there is a problem that the disinfection effect becomes insufficient. Therefore, recently, it has been proposed to use a bromine-based oxidizing agent as a disinfectant component. If a component that has the effect of decomposing ammonia nitrogen contained in wastewater is used as a disinfectant component, it will reduce the burden of biological treatment such as nitrification and denitrification in the subsequent stage, and it is possible to perform treatment that is advantageous from the viewpoint of wastewater treatment. it can.
- Patent Document 1 discloses a disinfectant containing hypobromous acid or a salt thereof as a disinfectant for drainage such as sewage.
- Patent Document 2 discloses a disinfection method using a solid disinfectant composed of 1-bromo-3-chloro-5,5-dimethylhydantoin as a disinfection method for discharged sewage containing ammonia or ammonium ions. This method can also handle sewage treatment in rainy weather.
- Patent Document 1 requires a storage facility for two types of chemicals, bromide salt and hypochlorite, to obtain hypobromite or a salt thereof, and a reaction device for reacting these, Will become enormous.
- the method described in Patent Document 2 since the disinfectant is solid, a dissolution apparatus is required, and the equipment is similarly enormous.
- An object of the present invention is to provide an ammoniacal nitrogen-containing wastewater treatment method and an ammoniacal nitrogen decomposing agent capable of treating ammoniacal nitrogen-containing wastewater by a simple method.
- the present invention relates to an ammoniacal nitrogen-containing wastewater in which a bromine-based oxidizing agent or a reaction product of a bromine compound and a chlorine-based oxidizing agent and a sulfamic acid compound are present in an ammoniacal nitrogen-containing wastewater containing ammonia nitrogen. It is a processing method.
- a mixture or reaction product of a bromine-based oxidant or a reaction product of a bromine compound and a chlorine-based oxidant and a sulfamic acid compound is present in an ammoniacal nitrogen-containing wastewater containing ammonia nitrogen. It is a processing method of the waste water containing ammonia nitrogen.
- the present invention relates to an ammoniacal nitrogen-containing wastewater containing a mixture of bromine and a sulfamic acid compound or a reaction product of bromine and a sulfamic acid compound in an ammoniacal nitrogen-containing wastewater containing ammonia nitrogen. It is a processing method.
- the bromine-based oxidant or a reaction product of the bromine compound and a chlorine-based oxidant and the sulfamic acid compound are present in the ammoniacal nitrogen-containing wastewater. After that, it is preferable to further treat the treated water with reduced ammoniacal nitrogen with a reverse osmosis membrane.
- the method for treating ammonia nitrogen-containing wastewater in the ammonia nitrogen-containing wastewater, a mixture of the bromine-based oxidant, or a reaction product of the bromine compound and a chlorine-based oxidant, and the sulfamic acid compound, or After the reaction product is present, it is preferable to further treat the treated water with reduced ammoniacal nitrogen with a reverse osmosis membrane.
- the ammonia nitrogen-containing wastewater contains a mixture of bromine and a sulfamic acid compound or a reaction product of bromine and a sulfamic acid compound.
- the ratio of the equivalent of the sulfamic acid compound to the equivalent of bromine is preferably in the range of 0.5 to 1.5.
- the ratio of the effective halogen molar concentration in terms of effective chlorine concentration to the molar concentration of ammonia nitrogen in the ammoniacal nitrogen-containing wastewater is preferably 1.6 or more.
- the concentration of ammonia nitrogen in the ammonia nitrogen-containing wastewater is preferably 5 mg / L or more.
- the present invention relates to an ammoniacal nitrogen decomposer for decomposing ammonia nitrogen in wastewater containing ammonia nitrogen, comprising a bromine-based oxidant, a reaction product of a bromine compound and a chlorine-based oxidant, and a sulfamic acid compound. And an ammoniacal nitrogen decomposing agent.
- the present invention relates to an ammoniacal nitrogen decomposing agent for decomposing ammonia nitrogen in waste water containing ammonia nitrogen, comprising a bromine-based oxidizing agent or a reaction product of a bromine compound and a chlorine-based oxidizing agent, and a sulfamic acid compound. And an ammoniacal nitrogen decomposing agent containing a mixture or reaction product.
- the present invention is an ammonia nitrogen decomposing agent for decomposing ammonia nitrogen in waste water containing ammonia nitrogen, comprising a mixture of bromine and a sulfamic acid compound, or a reaction product of bromine and a sulfamic acid compound. Contains ammoniacal nitrogen decomposer.
- the ratio of the equivalent of the sulfamic acid compound to the equivalent of bromine is preferably in the range of 0.5 to 1.5.
- the concentration of ammoniacal nitrogen in the ammoniacal nitrogen-containing waste water is preferably 5 mg / L or more.
- ammonia-containing nitrogen-containing wastewater can be treated by a simple method.
- the method for treating ammonia-containing nitrogen-containing wastewater according to the embodiment of the present invention is a method in which “bromine-based oxidizing agent” and “sulfamic acid compound” are present in ammoniacal nitrogen-containing wastewater containing ammonia nitrogen, or In this method, a “reaction product of a bromine compound and a chlorine-based oxidant” and a “sulfamic acid compound” are present. Thereby, it is thought that the stabilized hypobromite composition produces
- the ammonia nitrogen-containing wastewater containing ammonia nitrogen contains “a mixture of bromine-based oxidant and sulfamic acid compound” or “bromine-based oxidant”.
- a stabilized hypobromite composition that is a "reaction product of a sulfamic acid compound” or "a mixture of a reaction product of a bromine compound and a chlorinated oxidant and a sulfamic acid compound” or This is a method in which a stabilized hypobromite composition which is a “reaction product of a reaction product of a bromine compound and a chlorine-based oxidant and a sulfamic acid compound” is present.
- the ammonia nitrogen-containing wastewater treatment method includes, for example, “bromine”, “bromine chloride”, “hypobromite” or “sodium bromide” in the ammonia nitrogen-containing wastewater.
- a reaction product with hypochlorous acid and a sulfamic acid compound are present.
- ammonia nitrogen-containing wastewater treatment method includes, for example, “a mixture of bromine and a sulfamic acid compound”, “a mixture of bromine chloride and a sulfamic acid compound” in the ammoniacal nitrogen-containing wastewater, Alternatively, a stabilized hypobromite composition which is “a mixture of a reaction product of sodium bromide and hypochlorous acid and a sulfamic acid compound” is present.
- reaction product of bromine and sulfamic acid compound “reaction of bromine chloride with sulfamic acid compound”
- reaction of bromine chloride with sulfamic acid compound A stabilized hypobromite composition that is a "product” or “reaction product of a reaction product of sodium bromide and hypochlorous acid and a sulfamic acid compound” is present.
- ammonia nitrogen in the ammonia nitrogen containing waste water can be efficiently decomposed, and the ammonia nitrogen containing waste water can be treated by a simple method.
- the ammoniacal nitrogen-containing wastewater can be treated using one kind of treatment agent.
- a disinfectant component in addition to the effect of reducing the number of coliforms (disinfection effect), a component having the effect of decomposing ammonia nitrogen is used, leading to a reduction in the burden of biological treatment such as nitrification and denitrification in the latter stage, An advantageous treatment can also be performed from the viewpoint of wastewater treatment.
- Sodium hypochlorite which is a chlorinated oxidant, reacts with ammonia nitrogen in waste water containing ammonia nitrogen to produce bound halogen (chloramine), which greatly degrades the decomposition performance of ammonia nitrogen.
- the stabilized hypobromite composition can directly decompose ammoniacal nitrogen without the formation of bound halogen, and therefore ammonia nitrogen compared to chlorine-based oxidizing agents such as sodium hypochlorite. It is considered that the decomposition effect is high and more efficient processing can be performed.
- the said stabilized hypobromite composition contains a sulfamic acid compound, compared with hypobromous acid or its salt, it is thought that the decomposition
- bromine-based oxidizing agent or “reaction product of bromine compound and chlorine-based oxidizing agent” and “sulfamic acid”
- the “compound” may be injected with a chemical injection pump or the like.
- the “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” and “sulfamic acid compound” may be added separately to the ammoniacal nitrogen-containing wastewater, or may be mixed together in the stock solution. The mixture may be added to the ammoniacal nitrogen-containing wastewater.
- reaction product of bromine-based oxidant and sulfamic acid compound or “reaction product of bromine-based compound and chlorine-based oxidant and sulfamic acid compound”
- product may be injected by a chemical injection pump or the like.
- the ratio of the equivalent of “sulfamic acid compound” to the equivalent of “bromine” in the “bromine-based oxidizing agent” or “reaction product of bromine compound and chlorine-based oxidizing agent”, or the ratio of “sulfamic acid compound” to the equivalent of “bromine” is preferably 0.1 or more, more preferably in the range of 0.5 to 1.5, and still more preferably in the range of 1 to 1.5.
- the ratio of the equivalent of the “sulfamic acid compound” to the equivalent of “bromine” is the bromine content [wt%] in the stabilized hypobromite composition expressed by the molecular weight of bromine (Br 2 ) (159.8).
- the sulfamic acid compound content [wt%] in the stabilized hypobromite composition relative to the value divided by) is divided by the molecular weight of the sulfamic acid compound (97.1 if the sulfamic acid compound is sulfamic acid). Represents the ratio of values. If the ratio of the equivalent amount of the “sulfamic acid compound” to the equivalent amount of “bromine” is less than 0.1, a sufficient ammonia nitrogen decomposition effect may not be obtained. May increase. If the equivalent ratio is in the range of 0.5 to 1.5, more preferably in the range of 0.7 to 1.5, ammoniacal nitrogen can be efficiently decomposed. Further, when the ratio of the equivalents is 1 or more, the stability of the preparation is good.
- the effective halogen concentration in the ammoniacal nitrogen-containing wastewater is preferably 1 to 50 mg / L in terms of effective chlorine concentration. If the amount is less than 1 mg / L, a sufficient ammonia nitrogen decomposition effect may not be obtained. If the amount is more than 50 mg / L, corrosion of piping or the like may occur.
- the ratio of the molar concentration of effective halogen in terms of effective chlorine concentration (added molar concentration of the stabilized hypobromite composition) to the molar concentration of ammoniacal nitrogen (NH 4 -N) in the wastewater containing ammonia nitrogen is 1 Is preferably 6 or more, and more preferably 2.0 or more. The greater this ratio, the higher the ammonia nitrogen reduction effect.
- bromine-based oxidizing agents examples include bromine (liquid bromine), bromine chloride, bromic acid, bromate, and hypobromite.
- the preparation of “bromine and sulfamic acid compound (mixture of bromine and sulfamic acid compound)” or “reaction product of bromine and sulfamic acid compound” using bromine is composed of “hypochlorous acid and bromine compound and Compared with the preparation of “sulfamic acid” and the preparation of “bromine chloride and sulfamic acid” and the like, it is more preferable because there is less by-product of bromic acid and it is less likely to cause corrosion of metallic materials such as piping.
- bromine and a sulfamic acid compound are present in the ammonia nitrogen-containing wastewater (a mixture of bromine and a sulfamic acid compound is present). Moreover, it is preferable that the reaction product of bromine and a sulfamic acid compound is present in the ammoniacal nitrogen-containing waste water.
- bromine compounds include sodium bromide, potassium bromide, lithium bromide, ammonium bromide and hydrobromic acid. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.
- Examples of the chlorine-based oxidizing agent include chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanuric acid or a salt thereof.
- examples of the salt include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite, alkaline earth hypochlorite such as calcium hypochlorite and barium hypochlorite.
- alkali metal chlorites such as sodium chlorite and potassium chlorite
- alkaline earth metal chlorites such as barium chlorite
- other metal chlorites such as nickel chlorite
- Alkali metal chlorates such as ammonium chlorate, sodium chlorate and potassium chlorate
- alkaline earth metal chlorates such as calcium chlorate and barium chlorate.
- chlorine-based oxidants may be used alone or in combination of two or more.
- sodium hypochlorite is preferably used from the viewpoint of handleability.
- the sulfamic acid compound is a compound represented by the following general formula (1).
- R 2 NSO 3 H (1) (In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)
- sulfamic acid compound examples include sulfamic acid (amidosulfuric acid) in which both two R groups are hydrogen atoms, N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, N- A sulfamic acid compound in which one of two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms, N, N-dimethylsulfamic acid, N, Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc.
- sulfamic acid amidosulfuric
- One of two R groups such as a sulfamic acid compound, N-phenylsulfamic acid and the like, both of which are alkyl groups having 1 to 8 carbon atoms Is a hydrogen atom and the other sulfamic acid compound or a salt thereof, such as an aryl group having 6 to 10 carbon atoms.
- the sulfamate include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper salt, zinc salt, iron salt, cobalt salt, Other metal salts such as nickel salts, ammonium salts, guanidine salts and the like can be mentioned.
- the sulfamic acid compounds and salts thereof may be used alone or in combination of two or more.
- sulfamic acid compound sulfamic acid (amidosulfuric acid) is preferably used from the viewpoint of environmental load.
- an alkali may be further present.
- the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. From the viewpoint of product stability at low temperatures, sodium hydroxide and potassium hydroxide may be used in combination. Further, the alkali is not solid and may be used as an aqueous solution.
- the pH of the ammonia nitrogen-containing wastewater to be treated is preferably in the range of 3 to 10, and more preferably in the range of 4 to 9.
- hypobromous acid tends to volatilize as bromine gas and the decomposition effect of ammonia nitrogen may be reduced. May volatilize and be easily removed as ammonia gas, and the effectiveness of the treatment according to the present invention may be reduced.
- the ammonia nitrogen-containing wastewater to be treated by the ammonia nitrogen-containing wastewater treatment method according to this embodiment is, for example, business wastewater including factory wastewater from a fish processing factory, sewage, or the like.
- the concentration of ammoniacal nitrogen in the ammoniacal nitrogen-containing wastewater to be treated is, for example, preferably 5 mg / L or more, and more preferably in the range of 5 mg / L to 500 mg / L.
- the method for treating ammonia nitrogen-containing wastewater according to the present embodiment is suitably applied to treatment of sewage and the like containing a relatively large amount of ammonia nitrogen of 5 mg / L or more.
- the effect of decomposing ammonia nitrogen contained in the waste water containing ammonia nitrogen can be exhibited. it can.
- wastewater containing ammonia nitrogen is treated with a reverse osmosis membrane, if the pH of the wastewater is high, free ammonia permeates the reverse osmosis membrane and leaks into the permeated water. .
- ammonia nitrogen is decomposed. It is preferable to treat the treated water with reduced water with a reverse osmosis membrane because the problem of free ammonia leaking into the permeated water can be suppressed.
- ammonia nitrogen decomposing agent contains “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” and “sulfamic acid compound”. You may contain.
- ammoniacal nitrogen decomposing agent according to the present embodiment is “a mixture of a bromine-based oxidizing agent and a sulfamic acid compound” or “a mixture of a reaction product of a bromine compound and a chlorine-based oxidizing agent and a sulfamic acid compound”. And may further contain an alkali.
- the ammoniacal nitrogen decomposing agent according to the present embodiment is a “reaction product of a bromine-based oxidant and a sulfamic acid compound” or “a reaction product of a bromine compound and a chlorinated oxidant, a sulfamic acid compound, Of the reaction product ", and may further contain an alkali.
- the bromine-based oxidizing agent, bromine compound, chlorine-based oxidizing agent, and sulfamic acid compound are as described above.
- the ammoniacal nitrogen decomposing agent one containing bromine and a sulfamic acid compound (bromine and the like) from the viewpoint of low corrosiveness to metal materials such as piping and less by-product of bromic acid.
- a mixture of sulfamic acid compounds for example, a mixture of bromine, sulfamic acid compound, alkali and water, or containing a reaction product of bromine and sulfamic acid compound, eg bromine and sulfamic acid compound And a mixture of an alkali and water.
- ammoniacal nitrogen decomposing agent according to the present embodiment is capable of decomposing ammonia nitrogen directly without generating bonded halogen, compared to chlorine-based oxidizing agents such as sodium hypochlorite, ammonia nitrogen. It is considered that the decomposition effect of is high. Moreover, since the ammoniacal nitrogen decomposing agent according to the present embodiment contains a sulfamic acid compound, it is considered that the ammonia nitrogen decomposing effect is higher than that of hypobromous acid or a salt thereof.
- the pH of the ammoniacal nitrogen decomposing agent is, for example, more than 13.0, and more preferably more than 13.2.
- the pH of the ammoniacal nitrogen decomposing agent is 13.0 or less, the effective halogen in the decomposing agent may become unstable.
- the bromic acid concentration in the ammoniacal nitrogen decomposing agent is preferably less than 5 mg / kg. When the bromic acid concentration in the ammoniacal nitrogen decomposing agent is 5 mg / kg or more, the concentration of bromate ions in the treated water may increase.
- the ammoniacal nitrogen decomposing agent according to this embodiment is obtained by mixing a bromine-based oxidizing agent and a sulfamic acid compound, or by mixing a reaction product of a bromine compound and a chlorine-based oxidizing agent and a sulfamic acid compound. Further, an alkali may be mixed.
- an ammoniacal nitrogen decomposing agent containing bromine and a sulfamic acid compound or an ammoniacal nitrogen decomposing agent containing a reaction product of bromine and a sulfamic acid compound water, an alkali and a sulfamic acid compound are used. It is preferable to include a step of reacting by adding bromine to the mixed solution containing inert gas atmosphere or a step of adding bromine to the mixed solution containing water, alkali and sulfamic acid compound under inert gas atmosphere. By adding and reacting under an inert gas atmosphere, or adding under an inert gas atmosphere, the bromate ion concentration in the decomposition agent is lowered.
- the inert gas to be used is not limited, at least one of nitrogen and argon is preferable from the viewpoint of production and the like, and nitrogen is particularly preferable from the viewpoint of manufacturing cost and the like.
- the oxygen concentration in the reactor upon addition of bromine is preferably 6% by volume or less, more preferably 4% by volume or less, further preferably 2% by volume or less, and particularly preferably 1% by volume or less. If the oxygen concentration in the reactor during the reaction of bromine exceeds 6% by volume, the amount of bromic acid produced in the reaction system may increase.
- the addition ratio of bromine is preferably 25% by weight or less, and more preferably 1% by weight or more and 20% by weight or less based on the total amount of the decomposition agent.
- the amount of bromic acid produced in the reaction system may increase. If it is less than 1% by weight, the decomposition effect of ammoniacal nitrogen may be inferior.
- the reaction temperature at the time of bromine addition is preferably controlled in the range of 0 ° C. to 25 ° C., but more preferably in the range of 0 ° C. to 15 ° C. from the viewpoint of production cost.
- the reaction temperature at the time of bromine addition exceeds 25 degreeC, the production amount of the bromic acid in a reaction system may increase, and when it is less than 0 degreeC, it may freeze.
- compositions A, B, C-1, C-2, C-3, C-4 and the hypobromite composition D used in the examples are as follows.
- composition A was obtained.
- the pH of the resulting solution was 14 as measured by the glass electrode method.
- the bromine content of the resulting solution was 16.9% by weight as measured by a redox titration method using sodium thiosulfate after bromine was converted to iodine with potassium iodide, and the theoretical content (16.9) % By weight) was 100.0%.
- the oxygen concentration in the reaction vessel during the bromine reaction was measured using “Oxygen Monitor JKO-02 LJDII” manufactured by Zico Corporation.
- the bromic acid concentration was less than 5 mg / kg.
- Electrode type Glass electrode type pH meter: IOL-30, manufactured by Toa DKK Corporation
- Electrode calibration Neutral phosphate pH (6.86) standard solution (type 2) manufactured by Kanto Chemical Co., boric acid manufactured by the same company Salt temperature (9.18) Standard solution (type 2) was measured by two-point calibration
- Measurement value Immerse the electrode in the measurement solution and use the value after stabilization as the measurement value.
- Stabilized hypobromite composition B was prepared based on the description in International Patent Application Publication No. 03/093171.
- Stabilized hypobromite composition B is a composition containing liquid bromine, sulfamate, and sodium hydroxide.
- the pH of the stabilized hypobromite composition B was 14, the bromine content was 16.1% by weight, and the ratio of the sulfamic acid equivalent to the bromine equivalent was 1.45.
- the ratio of the equivalent of sulfamic acid to the equivalent of bromine in the stabilized hypobromite composition C-1 is calculated by the following equation.
- hypobromite composition D It is a composition prepared by the following procedure.
- the pH of the hypobromite composition D was 12, and the bromine content was 11.3 wt%.
- a stabilized hypobromite composition A (Example 1-1), a stabilized hypobromite composition B (Example 2), a stabilized hypobromite composition C-1, C-2, C-3, C-4 (Examples 3-1, 3-2, 3-3, 3-4), hypobromite composition D (Comparative Example 1), or hypochlorous acid Sodium (Comparative Example 2) was added to an effective halogen of 10 mg / L asCl 2 or stabilized hypobromite composition A was added to 1 mg / L asCl 2 (Example 1-2). .
- the total halogen concentration (effective chlorine equivalent concentration) was measured according to the following procedure.
- Effective halogen concentration is determined by diluting the sample and using HACH's multi-item water quality analyzer DR / 4000 (measurement item is “total chlorine”), effective chlorine measurement method (DPD (diethyl-p-phenylenediamine) method) (Mg / L asCl 2 ).
- the effective halogen referred to here is a value measured by an effective chlorine measuring method (DPD method).
- an effective bromine concentration (mg / L asCl 2 ) which is an effective halogen concentration in terms of chlorine, can be calculated from the effective chlorine concentration, and the measured value by the effective chlorine measurement method (DPD method) is 2.25 (159.8).
- ammoniacal nitrogen (NH 4 -N) concentration (mg / L asN) was measured according to the pack test (ammonium nitrogen, model WAK-NH 4 ) of Kyoritsu Riken Co., Ltd. It was measured using the color development principle of absorptiometry.
- Example 1-3 to 1-7 As simulated waste water, ammonium chloride was dissolved in Sagamihara city water from which residual chlorine was removed with activated carbon so that the concentration of ammonia nitrogen (NH 4 -N) would be 7.8 mg-N / L (0.56 mmol / L). An aqueous solution was prepared. The prepared simulated waste water had a pH of 7.2. Stabilized hypobromite composition A (Examples 1-3 to 1-7) was added to the prepared simulated waste water as an effective halogen at 15 mg / L asCl 2 (0.21 mmol / L) (Example 1-3).
- Example 1 40 mg / L asCl 2 (0.56 mmol / L) (Example 1-4), 61 mg / L asCl 2 (0.87 mmol / L) (Example 1-5), 79 mg / L asCl 2 (1.11 mmol) / L) (Example 1-6) and 99 mg / L asCl 2 (1.40 mmol / L) (Example 1-7) were added. While the test solution was stirred with a digital stirrer at 500 rpm, the change over time in the ammoniacal nitrogen (NH 4 -N) concentration (after 10 minutes and after 30 minutes) was measured. After 30 minutes, the total halogen concentration of the test water was measured. The results are shown in Table 3. The total halogen concentration (effective chlorine equivalent concentration) and ammoniacal nitrogen (NH 4 -N) concentration (mg / L asN) were measured by the methods described above.
- Example 4 Using the sewage containing ammonia nitrogen, which is the water quality described in Table 4, evaluation tests of the ammonia nitrogen decomposition performance and disinfection performance of the stabilized hypobromite composition were carried out.
- a drug stabilized hypobromite composition A
- a predetermined amount of the treated water is collected, the ammoniacal nitrogen (NH 4 -N) concentration is measured, and sodium thiosulfate is added to deactivate the effective chlorine, and then the Petri film The number of coliforms was measured using a CC plate.
- NH 4 -N ammoniacal nitrogen
- the stabilized hypobromite composition exhibits the effect of decomposing ammonia nitrogen in addition to the effect of reducing the number of coliforms, even for sewage containing a relatively large amount of ammonia nitrogen. Was confirmed.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明の実施形態に係るアンモニア性窒素含有排水の処理方法は、アンモニア性窒素を含有するアンモニア性窒素含有排水中に、「臭素系酸化剤」と「スルファミン酸化合物」とを存在させる方法、または「臭素化合物と塩素系酸化剤との反応物」と「スルファミン酸化合物」とを存在させる方法である。これにより、アンモニア性窒素含有排水中で、安定化次亜臭素酸組成物が生成すると考えられる。
R2NSO3H (1)
(式中、Rは独立して水素原子または炭素数1~8のアルキル基である。)
本実施形態に係るアンモニア性窒素分解剤は、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とを含有するものであり、さらにアルカリを含有してもよい。
本実施形態に係るアンモニア性窒素分解剤は、臭素系酸化剤とスルファミン酸化合物とを混合する、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物とを混合することにより得られ、さらにアルカリを混合してもよい。
実施例で用いた安定化次亜臭素酸組成物A,B,C-1,C-2,C-3,C-4および次亜臭素酸塩組成物Dは下記のとおりである。
窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、組成物を調製した。組成物のpHは14、臭素含有率は16.9重量%であった。安定化次亜臭素酸組成物Aの詳細な調製方法は以下の通りである。
電極タイプ:ガラス電極式
pH測定計:東亜ディーケーケー社製、IOL-30型
電極の校正:関東化学社製中性リン酸塩pH(6.86)標準液(第2種)、同社製ホウ酸塩pH(9.18)標準液(第2種)の2点校正で行った
測定温度:25℃
測定値:測定液に電極を浸漬し、安定後の値を測定値とし、3回測定の平均値
国際特許出願公開第03/093171号の記載内容に基づき安定化次亜臭素酸組成物Bを調製した。安定化次亜臭素酸組成物Bは、液体臭素、スルファミン酸塩、水酸化ナトリウムを含有する組成物である。安定化次亜臭素酸組成物BのpHは14、臭素含有率は16.1重量%、臭素の当量に対するスルファミン酸の当量の比は1.45であった。
特表平11-506139号公報の記載内容に基づき、下記手順で作製した組成物である。組成物のpHは14、臭素含有率は11.3重量%であった。
(1)表1に示す重量分の純水に、40重量%臭化ナトリウム水溶液の混合液を27.0グラム加え、撹拌した。
(2)(1)の溶液に、12重量%次亜塩素酸ナトリウム溶液を41.7g加え、撹拌した。
(3)56.0gの純水、26.0gのスルファミン酸、18.0gの水酸化ナトリウムから組成された安定化水溶液を作製した。
(4)(2)の溶液に、(3)の安定化溶液を表1に示す重量分だけ撹拌させながら加え、目的の安定化次亜臭素酸組成物C-1,C-2,C-3,C-4を得た。
臭素の当量に対するスルファミン酸の当量の比=(2.6×0.26/97.1)/(11.3/159.8)=0.1
下記手順で作製した組成物である。次亜臭素酸塩組成物DのpHは12、臭素含有率は11.3重量%であった。
(1)31.3gの純水に、40重量%臭化ナトリウム水溶液の混合液を27.0g加え、撹拌した。
(2)(1)の溶液に、12重量%次亜塩素酸ナトリウム溶液を41.7g加え、撹拌して目的の次亜臭素酸塩組成物Dを得た。
模擬排水として、活性炭で残留塩素を除去した相模原市水に、アンモニア性窒素(NH4-N)の濃度が7.8mg-N/L(0.56mmol/L)になるように塩化アンモニウムを溶解させた水溶液を調製した。調製した模擬排水のpHは7.2であった。調製した模擬排水に、安定化次亜臭素酸組成物A(実施例1-1)、安定化次亜臭素酸組成物B(実施例2)、安定化次亜臭素酸組成物C-1,C-2,C-3,C-4(実施例3-1,3-2,3-3,3-4)、次亜臭素酸塩組成物D(比較例1)、または次亜塩素酸ナトリウム(比較例2)を、有効ハロゲンとして10mg/L asCl2になるように、または安定化次亜臭素酸組成物Aを1mg/L asCl2になるように(実施例1-2)添加した。試験液をデジタルスターラにより500rpmで撹拌しながら、アンモニア性窒素(NH4-N)濃度の経時変化(10分後、30分後)を測定した。30分後に、試験水の全ハロゲン濃度を測定した。結果を表2に示す。
模擬排水として、活性炭で残留塩素を除去した相模原市水に、アンモニア性窒素(NH4-N)の濃度が7.8mg-N/L(0.56mmol/L)になるように塩化アンモニウムを溶解させた水溶液を調製した。調製した模擬排水のpHは7.2であった。調製した模擬排水に、安定化次亜臭素酸組成物A(実施例1-3~1-7)を、有効ハロゲンとして15mg/L asCl2(0.21mmol/L)(実施例1-3)、40mg/L asCl2(0.56mmol/L)(実施例1-4)、61mg/L asCl2(0.87mmol/L)(実施例1-5)、79mg/L asCl2(1.11mmol/L)(実施例1-6)、99mg/L asCl2(1.40mmol/L)(実施例1-7)になるように、添加した。試験液をデジタルスターラにより500rpmで撹拌しながら、アンモニア性窒素(NH4-N)濃度の経時変化(10分後、30分後)を測定した。30分後に、試験水の全ハロゲン濃度を測定した。結果を表3に示す。なお、全ハロゲン濃度(有効塩素換算濃度)、アンモニア性窒素(NH4-N)濃度(mg/L asN)は前述の方法で測定した。
表4に記載されている水質である、アンモニア性窒素を含有する下水を用いて、安定化次亜臭素酸組成物のアンモニア性窒素分解性能および消毒性能の評価試験を実施した。300mLビーカに、有効ハロゲンとして5mg/L asCl2になるように薬剤(安定化次亜臭素酸組成物A)を添加し、デジタルスターラにより250rpmで撹拌した。薬剤を添加してから3分後に、処理した水を所定量採取し、アンモニア性窒素(NH4-N)濃度を測定するとともに、有効塩素を失活させるためチオ硫酸ナトリウムを添加後、ペトリフィルムCCプレートにより大腸菌群数の測定を行った。
Claims (14)
- アンモニア性窒素を含有するアンモニア性窒素含有排水中に、
臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、
スルファミン酸化合物と、
を存在させることを特徴とするアンモニア性窒素含有排水の処理方法。 - アンモニア性窒素を含有するアンモニア性窒素含有排水中に、
臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物と、
スルファミン酸化合物と、
の混合物または反応生成物を存在させることを特徴とするアンモニア性窒素含有排水の処理方法。 - アンモニア性窒素を含有するアンモニア性窒素含有排水中に、
臭素とスルファミン酸化合物との混合物を存在させる、または、臭素とスルファミン酸化合物との反応生成物を存在させることを特徴とするアンモニア性窒素含有排水の処理方法。 - 請求項1に記載のアンモニア性窒素含有排水の処理方法であって、
前記アンモニア性窒素含有排水中に、前記臭素系酸化剤、または前記臭素化合物と塩素系酸化剤との反応物と、前記スルファミン酸化合物と、を存在させた後に、アンモニア性窒素が低減された処理水をさらに逆浸透膜で処理することを特徴とするアンモニア性窒素含有排水の処理方法。 - 請求項2に記載のアンモニア性窒素含有排水の処理方法であって、
前記アンモニア性窒素含有排水中に、前記臭素系酸化剤、もしくは前記臭素化合物と塩素系酸化剤との反応物と、前記スルファミン酸化合物と、の混合物または反応生成物を存在させた後に、アンモニア性窒素が低減された処理水をさらに逆浸透膜で処理することを特徴とするアンモニア性窒素含有排水の処理方法。 - 請求項3に記載のアンモニア性窒素含有排水の処理方法であって、
前記アンモニア性窒素含有排水中に、前記臭素とスルファミン酸化合物との混合物を存在させた後に、または、前記臭素とスルファミン酸化合物との反応生成物を存在させた後に、アンモニア性窒素が低減された処理水をさらに逆浸透膜で処理することを特徴とするアンモニア性窒素含有排水の処理方法。 - 請求項1~6のいずれか1項に記載のアンモニア性窒素含有排水の処理方法であって、
臭素の当量に対するスルファミン酸化合物の当量の比が、0.5~1.5の範囲であることを特徴とするアンモニア性窒素含有排水の処理方法。 - 請求項1~7のいずれか1項に記載のアンモニア性窒素含有排水の処理方法であって、
前記アンモニア性窒素含有排水中のアンモニア性窒素のモル濃度に対する、有効塩素濃度換算の有効ハロゲンのモル濃度の比が、1.6以上であることを特徴とするアンモニア性窒素含有排水の処理方法。 - 請求項1~8のいずれか1項に記載のアンモニア性窒素含有排水の処理方法であって、
前記アンモニア性窒素含有排水中のアンモニア性窒素の濃度が、5mg/L以上であることを特徴とするアンモニア性窒素含有排水の処理方法。 - アンモニア性窒素含有排水中のアンモニア性窒素を分解するためのアンモニア性窒素分解剤であって、
臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、
スルファミン酸化合物と、
を含むことを特徴とするアンモニア性窒素分解剤。 - アンモニア性窒素含有排水中のアンモニア性窒素を分解するためのアンモニア性窒素分解剤であって、
臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物と、
スルファミン酸化合物と、
の混合物または反応生成物を含むことを特徴とするアンモニア性窒素分解剤。 - アンモニア性窒素含有排水中のアンモニア性窒素を分解するためのアンモニア性窒素分解剤であって、
臭素とスルファミン酸化合物との混合物、または、臭素とスルファミン酸化合物との反応生成物を含むことを特徴とするアンモニア性窒素分解剤。 - 請求項10~12のいずれか1項に記載のアンモニア性窒素分解剤であって、
臭素の当量に対するスルファミン酸化合物の当量の比が、0.5~1.5の範囲であることを特徴とするアンモニア性窒素分解剤。 - 請求項10~13のいずれか1項に記載のアンモニア性窒素分解剤であって、
前記アンモニア性窒素含有排水中のアンモニア性窒素の濃度が、5mg/L以上であることを特徴とするアンモニア性窒素分解剤。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017515459A JP6412639B2 (ja) | 2015-04-30 | 2016-04-07 | アンモニア性窒素含有排水の処理方法およびアンモニア性窒素分解剤 |
KR1020177034332A KR102040042B1 (ko) | 2015-04-30 | 2016-04-07 | 암모니아성 질소 함유 배수의 처리 방법 및 암모니아성 질소분해제 |
CN201680025926.3A CN107531523B (zh) | 2015-04-30 | 2016-04-07 | 含氨性氮废水的处理方法和氨性氮分解剂 |
SG11201708538VA SG11201708538VA (en) | 2015-04-30 | 2016-04-07 | Method for treating ammoniacal nitrogen-containing wastewater and ammoniacal nitrogen decomposer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015092757 | 2015-04-30 | ||
JP2015-092757 | 2015-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016175006A1 true WO2016175006A1 (ja) | 2016-11-03 |
Family
ID=57199666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/061379 WO2016175006A1 (ja) | 2015-04-30 | 2016-04-07 | アンモニア性窒素含有排水の処理方法およびアンモニア性窒素分解剤 |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP6412639B2 (ja) |
KR (1) | KR102040042B1 (ja) |
CN (1) | CN107531523B (ja) |
SG (1) | SG11201708538VA (ja) |
TW (1) | TWI698400B (ja) |
WO (1) | WO2016175006A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018069124A (ja) * | 2016-10-25 | 2018-05-10 | オルガノ株式会社 | 逆浸透膜を用いる水処理装置および水処理方法 |
JP2018183751A (ja) * | 2017-04-27 | 2018-11-22 | オルガノ株式会社 | 逆浸透膜を用いる水処理方法および水処理装置 |
JP2019034262A (ja) * | 2017-08-10 | 2019-03-07 | 水ing株式会社 | アンモニア性窒素含有排水の消毒方法 |
JP2019034893A (ja) * | 2017-08-10 | 2019-03-07 | 水ing株式会社 | アンモニア性窒素含有排水の消毒方法及び消毒剤 |
JP2019072718A (ja) * | 2017-08-10 | 2019-05-16 | 水ing株式会社 | アンモニア性窒素含有排水の消毒方法 |
JP2019100781A (ja) * | 2017-11-30 | 2019-06-24 | オルガノ株式会社 | 次亜臭素酸またはその塩および安定化次亜臭素酸組成物の濃度測定方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102462490B1 (ko) * | 2021-02-22 | 2022-11-03 | (주) 테크윈 | 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55106592A (en) * | 1979-02-13 | 1980-08-15 | Babcock Hitachi Kk | Method of disposing of drained water |
JP2003004722A (ja) * | 2001-06-26 | 2003-01-08 | Mitsubishi Chemicals Corp | 水中微生物数測定装置 |
JP2004167347A (ja) * | 2002-11-19 | 2004-06-17 | Jfe Engineering Kk | 排水の消毒方法及びその装置 |
WO2005019117A1 (en) * | 2003-08-14 | 2005-03-03 | Acculab Co., Ltd. | Method of controlling microbial fouling in aqueous system |
JP2009255069A (ja) * | 2008-03-27 | 2009-11-05 | Omega:Kk | 水処理システム |
JP2010094576A (ja) * | 2008-10-14 | 2010-04-30 | Omega:Kk | 排水の浄化方法 |
WO2015029504A1 (ja) * | 2013-08-28 | 2015-03-05 | オルガノ株式会社 | 次亜臭素酸安定化組成物の製造方法、次亜臭素酸安定化組成物、および分離膜のスライム抑制方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4628132B2 (ja) | 1998-09-28 | 2011-02-09 | 荏原エンジニアリングサービス株式会社 | 排水を消毒する方法及び装置 |
US6270722B1 (en) * | 1999-03-31 | 2001-08-07 | Nalco Chemical Company | Stabilized bromine solutions, method of manufacture and uses thereof for biofouling control |
US6669904B1 (en) * | 1999-03-31 | 2003-12-30 | Ondeo Nalco Company | Stabilized bromine solutions, method of making and uses thereof for biofouling control |
JP2003012425A (ja) | 2001-06-28 | 2003-01-15 | Ebara Corp | 排水用消毒液及びそれを用いた排水の消毒方法並びに装置 |
MXPA04000154A (es) * | 2001-06-29 | 2004-06-03 | Lonza Ag | Mezclas de biocidas generadores de halogeno, estabilizadores de halogeno y biocidas que contienen nitrogeno. |
CN1176863C (zh) * | 2001-11-08 | 2004-11-24 | 北京燕山石油化工公司研究院 | 含氨氮污水回用于循环冷却水的方法 |
US9005671B2 (en) * | 2004-09-07 | 2015-04-14 | Albemarle Corporation | Concentrated aqueous bromine solutions and their preparation |
CN101209886B (zh) * | 2006-12-26 | 2010-09-01 | 蓝星环境工程有限公司 | 城市污水深度处理回用工艺 |
EP2196092B1 (en) * | 2007-09-27 | 2017-11-08 | Kurita Water Industries Ltd. | Bactericidal/algicidal method |
CN102771513A (zh) * | 2012-07-21 | 2012-11-14 | 辽宁力普工业技术有限公司 | 一种以单质溴为溴源的液体稳定溴杀菌剂的制备方法 |
JP6200243B2 (ja) * | 2013-08-28 | 2017-09-20 | オルガノ株式会社 | 水処理剤組成物の製造方法および水処理方法 |
JP6145360B2 (ja) * | 2013-08-28 | 2017-06-07 | オルガノ株式会社 | 水処理剤組成物、水処理剤組成物の製造方法および水処理方法 |
-
2016
- 2016-04-07 WO PCT/JP2016/061379 patent/WO2016175006A1/ja active Application Filing
- 2016-04-07 CN CN201680025926.3A patent/CN107531523B/zh active Active
- 2016-04-07 JP JP2017515459A patent/JP6412639B2/ja active Active
- 2016-04-07 SG SG11201708538VA patent/SG11201708538VA/en unknown
- 2016-04-07 KR KR1020177034332A patent/KR102040042B1/ko active IP Right Grant
- 2016-04-20 TW TW105112201A patent/TWI698400B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55106592A (en) * | 1979-02-13 | 1980-08-15 | Babcock Hitachi Kk | Method of disposing of drained water |
JP2003004722A (ja) * | 2001-06-26 | 2003-01-08 | Mitsubishi Chemicals Corp | 水中微生物数測定装置 |
JP2004167347A (ja) * | 2002-11-19 | 2004-06-17 | Jfe Engineering Kk | 排水の消毒方法及びその装置 |
WO2005019117A1 (en) * | 2003-08-14 | 2005-03-03 | Acculab Co., Ltd. | Method of controlling microbial fouling in aqueous system |
JP2009255069A (ja) * | 2008-03-27 | 2009-11-05 | Omega:Kk | 水処理システム |
JP2010094576A (ja) * | 2008-10-14 | 2010-04-30 | Omega:Kk | 排水の浄化方法 |
WO2015029504A1 (ja) * | 2013-08-28 | 2015-03-05 | オルガノ株式会社 | 次亜臭素酸安定化組成物の製造方法、次亜臭素酸安定化組成物、および分離膜のスライム抑制方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018069124A (ja) * | 2016-10-25 | 2018-05-10 | オルガノ株式会社 | 逆浸透膜を用いる水処理装置および水処理方法 |
JP7050414B2 (ja) | 2016-10-25 | 2022-04-08 | オルガノ株式会社 | 逆浸透膜を用いる水処理方法 |
JP2018183751A (ja) * | 2017-04-27 | 2018-11-22 | オルガノ株式会社 | 逆浸透膜を用いる水処理方法および水処理装置 |
JP7013141B2 (ja) | 2017-04-27 | 2022-02-15 | オルガノ株式会社 | 逆浸透膜を用いる水処理方法 |
JP2019034262A (ja) * | 2017-08-10 | 2019-03-07 | 水ing株式会社 | アンモニア性窒素含有排水の消毒方法 |
JP2019034893A (ja) * | 2017-08-10 | 2019-03-07 | 水ing株式会社 | アンモニア性窒素含有排水の消毒方法及び消毒剤 |
JP2019072718A (ja) * | 2017-08-10 | 2019-05-16 | 水ing株式会社 | アンモニア性窒素含有排水の消毒方法 |
JP2019100781A (ja) * | 2017-11-30 | 2019-06-24 | オルガノ株式会社 | 次亜臭素酸またはその塩および安定化次亜臭素酸組成物の濃度測定方法 |
JP6996955B2 (ja) | 2017-11-30 | 2022-01-17 | オルガノ株式会社 | 安定化次亜臭素酸組成物の濃度測定方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20170139676A (ko) | 2017-12-19 |
JP6412639B2 (ja) | 2018-10-24 |
TW201700409A (zh) | 2017-01-01 |
CN107531523B (zh) | 2020-12-18 |
KR102040042B1 (ko) | 2019-11-04 |
SG11201708538VA (en) | 2017-11-29 |
CN107531523A (zh) | 2018-01-02 |
TWI698400B (zh) | 2020-07-11 |
JPWO2016175006A1 (ja) | 2017-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6412639B2 (ja) | アンモニア性窒素含有排水の処理方法およびアンモニア性窒素分解剤 | |
AU2014313502C1 (en) | Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane | |
JP6649697B2 (ja) | 水の殺菌方法 | |
CN107108277B (zh) | 分离膜的黏质抑制方法 | |
JP6200243B2 (ja) | 水処理剤組成物の製造方法および水処理方法 | |
JP6145360B2 (ja) | 水処理剤組成物、水処理剤組成物の製造方法および水処理方法 | |
JP6837301B2 (ja) | 逆浸透膜処理方法および逆浸透膜処理システム | |
JP7013141B2 (ja) | 逆浸透膜を用いる水処理方法 | |
JP6506987B2 (ja) | 逆浸透膜の改質方法、およびホウ素含有水の処理方法 | |
JP2016155071A (ja) | 分離膜の殺菌方法 | |
JP2017214406A (ja) | 水処理剤組成物、水処理剤組成物の製造方法および水処理方法 | |
JP2016120486A (ja) | 分離膜のスライム抑制方法 | |
JP6779706B2 (ja) | 逆浸透膜を用いる水処理方法 | |
CN107249332B (zh) | 水处理剂组合物、水处理剂组合物的制造方法和水处理方法 | |
JP6548870B2 (ja) | 製紙工程水のスライム抑制方法 | |
JP2020131134A (ja) | 分離膜用スライム抑制剤、分離膜用スライム抑制剤の製造方法、および分離膜のスライム抑制方法 | |
JP2018008182A (ja) | 逆浸透膜を用いる水処理方法、および逆浸透膜におけるシリカの阻止率向上剤 | |
JP7050414B2 (ja) | 逆浸透膜を用いる水処理方法 | |
JP6630563B2 (ja) | 水の殺菌方法 | |
WO2020179789A1 (ja) | 逆浸透膜を用いる水処理方法および水処理装置 | |
JP2021181074A (ja) | 水処理方法および水処理装置 | |
TW202333807A (zh) | 水系統的微生物污染抑制方法 | |
JP2023183541A (ja) | イオン交換体の殺菌方法 | |
JP2018090513A (ja) | 水処理剤組成物、水処理方法、および水処理剤組成物の保管または使用方法 | |
JP2015202483A (ja) | アンモニア含有排水の処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16786283 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017515459 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201708538V Country of ref document: SG |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177034332 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16786283 Country of ref document: EP Kind code of ref document: A1 |