WO2018037582A1 - 逆浸透膜を用いる水処理方法 - Google Patents

逆浸透膜を用いる水処理方法 Download PDF

Info

Publication number
WO2018037582A1
WO2018037582A1 PCT/JP2016/088943 JP2016088943W WO2018037582A1 WO 2018037582 A1 WO2018037582 A1 WO 2018037582A1 JP 2016088943 W JP2016088943 W JP 2016088943W WO 2018037582 A1 WO2018037582 A1 WO 2018037582A1
Authority
WO
WIPO (PCT)
Prior art keywords
osmosis membrane
reverse osmosis
water
treated
bromine
Prior art date
Application number
PCT/JP2016/088943
Other languages
English (en)
French (fr)
Inventor
雄大 鈴木
吉川 浩
賢吾 河原
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61246460&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018037582(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to CN201680088095.4A priority Critical patent/CN109562330B/zh
Priority to SG11201810464WA priority patent/SG11201810464WA/en
Priority to KR1020197003798A priority patent/KR102164160B1/ko
Publication of WO2018037582A1 publication Critical patent/WO2018037582A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/022Membrane sterilisation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment

Definitions

  • the present invention relates to a water treatment method using a reverse osmosis membrane (RO membrane).
  • RO membrane reverse osmosis membrane
  • Chlorine oxidizers such as hypochlorous acid are typical fungicides and are usually added to the front of the reverse osmosis membrane for the purpose of sterilization in the system. Chlorine oxidizers are likely to degrade reverse osmosis membranes, so in general, chlorinated oxidants are reduced and decomposed immediately before reverse osmosis membranes, or chlorine oxidants flow into reverse osmosis membranes intermittently. It is operated by letting.
  • a bactericidal agent a method in which a combined chlorine agent comprising a chlorine-based oxidant and a sulfamic acid compound is present in the treated water of the reverse osmosis membrane (see Patent Document 1), a bromine-based oxidant, or A method of adding a mixture of a reaction product of a bromine compound and a chlorine-based oxidant and a sulfamic acid compound or a reaction product to water to be treated is known (see Patent Document 2).
  • Bactericides containing chlorine-based or bromine-based oxidants and sulfamic acid compounds have a high bactericidal ability, are resistant to oxidative degradation of polyamide-based reverse osmosis membranes, and have a high rejection rate in reverse osmosis membranes. Effective because it has little effect on the quality of treated water (permeated water).
  • JP 2006-263510 A Japanese Patent Laying-Open No. 2015-062889
  • the secondary permeate line may be subjected to slime contamination.
  • the water to be treated contains a low molecular weight organic substance (for example, a molecular weight of 200 or less)
  • the low molecular weight organic substance has a low blocking rate by the reverse osmosis membrane, even when the bactericide is effective on the primary side of the reverse osmosis membrane.
  • Slime contamination due to low molecular weight organic matter may occur on the secondary side.
  • An object of the present invention is to provide a water treatment method using a reverse osmosis membrane that suppresses slime contamination on the secondary side of the reverse osmosis membrane and also suppresses oxidative degradation of the reverse osmosis membrane.
  • the present invention is a water treatment method using a reverse osmosis membrane for treating water to be treated with a reverse osmosis membrane, wherein the bromine-based oxidizing agent or chlorine-based oxidizing agent and a sulfamic acid compound are contained in the water to be treated containing ammonia.
  • the present invention is a water treatment method using a reverse osmosis membrane for treating water to be treated with a reverse osmosis membrane, wherein a bactericidal agent containing bromine and a sulfamic acid compound is contained in the water to be treated containing ammonia.
  • This is a water treatment method using a reverse osmosis membrane.
  • the concentration of the disinfectant or the ammonia is adjusted so that the ratio of the ammonia concentration to the total chlorine concentration in the water to be treated is in the range of 0.01 to 1. It is preferable.
  • the reverse osmosis membrane is preferably an anion charged membrane.
  • the water to be treated contains 0.5 mg / L or more of an organic substance that passes through the reverse osmosis membrane.
  • the bactericidal agent is added and present in the water to be treated only when permeate is not used at a use point.
  • the water treatment method using a reverse osmosis membrane is a method in which a bactericide containing a bromine-based oxidant or a chlorine-based oxidant and a sulfamic acid compound is present in the water to be treated containing ammonia.
  • a disinfectant containing a bromine-based oxidant and a sulfamic acid compound is a disinfectant containing a stabilized hypobromite composition containing a mixture of a “bromine-based oxidant” and a “sulfamic acid compound”.
  • a disinfectant containing a stabilized hypobromite composition containing “reaction product of bromine-based oxidant and sulfamic acid compound”.
  • a disinfectant containing a chlorine-based oxidant and a sulfamic acid compound is a disinfectant containing a stabilized hypochlorous acid composition including a mixture of a “chlorine-based oxidant” and a “sulfamic acid compound”.
  • it may be a bactericide containing a stabilized hypochlorous acid composition containing a “reaction product of a chlorinated oxidant and a sulfamic acid compound”.
  • a water treatment method using a reverse osmosis membrane is a method of treating water to be treated with a reverse osmosis membrane, and in a water to be treated containing ammonia, a “bromine-based oxidant” and This is a method in which a mixture of “sulfamic acid compound” or a mixture of “chlorine oxidant” and “sulfamic acid compound” is present.
  • a mixture of “sulfamic acid compound” or a mixture of “chlorine oxidant” and “sulfamic acid compound” is present.
  • the water treatment method using the reverse osmosis membrane is a method of treating the water to be treated with the reverse osmosis membrane, and in the water to be treated containing ammonia, “bromine-based oxidizing agent and sulfamine”.
  • a stabilized hypochlorous acid composition that is a reaction product with an acid compound or a stabilized hypochlorous acid composition that is a reaction product of a chlorinated oxidant and a sulfamic acid compound is present. is there.
  • a water treatment method using a reverse osmosis membrane is a method of treating water to be treated with a reverse osmosis membrane, and in the water to be treated containing ammonia, “bromine”, “ This is a method in which a mixture of “bromine chloride”, “hypochlorous acid” or “reaction product of sodium bromide and hypochlorous acid” and “sulfamic acid compound” is present. Alternatively, it is a method in which a mixture of “hypochlorous acid” and “sulfamic acid compound” is present in the water to be treated containing ammonia.
  • the water treatment method using a reverse osmosis membrane is a method for treating water to be treated with a reverse osmosis membrane, and includes, for example, “bromine and sulfamic acid” in the water to be treated containing ammonia.
  • “Reaction product with compound”, “Reaction product with bromine chloride and sulfamic acid compound”, “Reaction product with hypobromite and sulfamic acid compound”, or “Reaction product with sodium bromide and hypochlorous acid” This is a method in which a stabilized hypobromite composition that is a reaction product of a reactant and a sulfamic acid compound is present.
  • a stabilized hypochlorous acid composition that is a “reaction product of hypochlorous acid and a sulfamic acid compound” is present in the water to be treated containing ammonia.
  • the present inventors have found that when ammonia is contained in the water to be treated, the disinfectant containing the stabilized hypobromite composition or the stabilized hypochlorous acid composition is likely to pass through the reverse osmosis membrane.
  • the water to be treated is treated with a reverse osmosis membrane by causing a bactericidal agent or a bactericidal agent containing a chlorine-based oxidizing agent and a sulfamic acid compound to be present in the water to be treated containing ammonia.
  • slime contamination can also be suppressed on the secondary side of the reverse osmosis membrane, and oxidation degradation of the reverse osmosis membrane can be suppressed.
  • the stabilized hypobromite composition or the stabilized hypochlorous acid composition is equal to or more than a chlorine-based oxidizing agent such as hypochlorous acid.
  • a chlorine-based oxidizing agent such as hypochlorous acid.
  • the stabilized hypobromite composition or the stabilized hypochlorous acid composition used in the water treatment method using the reverse osmosis membrane according to the present embodiment is a water treatment for treating water to be treated with a reverse osmosis membrane. It is suitable as a slime inhibitor used in the method.
  • a chemical injection pump containing “bromine-based oxidizing agent” or “chlorine-based oxidizing agent” and “sulfamic acid compound” in the water to be treated containing ammonia. You may inject
  • the “bromine-based oxidant” or “chlorine-based oxidant” and the “sulfamic acid compound” may be added separately to the water to be treated, or may be mixed with each other and then added to the water to be treated. Good.
  • a “reaction product of a bromine-based oxidant and a sulfamic acid compound” or a “reaction product of a chlorinated oxidant and a sulfamic acid compound” is added by a chemical injection pump or the like. It may be injected.
  • the ratio of the equivalent of the “sulfamic acid compound” to the equivalent of the “bromine-based oxidant” or “chlorine-based oxidant” is preferably 1 or more, A range of 1 or more and 2 or less is more preferable. If the ratio of the equivalent amount of “sulfamic acid compound” to the equivalent amount of “bromine-based oxidant” or “chlorine-based oxidant” is less than 1, there is a possibility of deteriorating the film. There is a case.
  • the total chlorine concentration in contact with the reverse osmosis membrane is preferably 0.01 to 100 mg / L in terms of effective chlorine concentration. If the amount is less than 0.01 mg / L, a sufficient slime-inhibiting effect may not be obtained. If the amount is more than 100 mg / L, the reverse osmosis membrane may be deteriorated and the piping may be corroded.
  • Disinfectant so that the ratio of ammonia concentration to total chlorine concentration in the water to be treated (ammonia concentration (mg / L) / disinfectant concentration (total chlorine concentration: mg / L)) is in the range of 0.01-1 Is preferably present, and more preferably the disinfectant is present so as to be in the range of 0.01 to 0.5. It is preferable that the disinfectant is present so that the ratio of the total chlorine concentration to the ammonia concentration in the water to be treated is 0.01 or more, since the effect of improving the transmittance of the disinfectant is sufficiently exhibited. If the ratio of the total chlorine concentration to the concentration of ammonia in the water to be treated is less than 0.01, the effect of improving the transmittance of the bactericide may not be sufficiently exhibited. Even if it exceeds 1, the addition of ammonia The effect of improving the transmittance of the bactericide due to is difficult to appear.
  • ammonia concentration (mg / L) / disinfectant concentration (total chlorine concentration: mg / L) is
  • an ammonia salt may be added, or other ammonia-containing water may be mixed.
  • the content of the organic substance that permeates the reverse osmosis membrane in the water to be treated is less than 0.5 mg / L, slime contamination hardly occurs on the secondary side of the reverse osmosis membrane.
  • the low molecular organic substance refers to an organic substance having a molecular weight of 200 or less, for example, an alcohol compound such as methanol, ethanol or isopropyl alcohol, an amine compound such as monoethanolamine or urea, or water having a molecular weight of 200 or less.
  • an alcohol compound such as methanol, ethanol or isopropyl alcohol
  • an amine compound such as monoethanolamine or urea
  • water having a molecular weight of 200 or less examples thereof include tetraalkylammonium salts such as tetramethylammonium oxide.
  • bromine-based oxidizing agents examples include bromine (liquid bromine), bromine chloride, bromic acid, bromate, and hypobromite.
  • Hypobromous acid may be produced by reacting a bromide such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid.
  • the preparation of “bromine and sulfamic acid compound (mixture of bromine and sulfamic acid compound)” or “reaction product of bromine and sulfamic acid compound” using bromine is composed of “hypochlorous acid and bromine compound and Compared to the preparation of “sulfamic acid” and the preparation of “bromine chloride and sulfamic acid”, etc., it is more preferable as a slime inhibitor for a reverse osmosis membrane because it produces less by-product of bromic acid and does not deteriorate the reverse osmosis membrane.
  • bromine and a sulfamic acid compound are present in the treated water containing ammonia (a mixture of bromine and sulfamic acid compound is present). It is preferable. Moreover, it is preferable to make the reaction product of a bromine and a sulfamic acid compound exist in to-be-processed water.
  • bromine compounds include sodium bromide, potassium bromide, lithium bromide, ammonium bromide and hydrobromic acid. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.
  • Examples of the chlorine-based oxidizing agent include chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanuric acid or a salt thereof.
  • examples of the salt include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite, alkaline earth hypochlorite such as calcium hypochlorite and barium hypochlorite.
  • alkali metal chlorites such as sodium chlorite and potassium chlorite
  • alkaline earth metal chlorites such as barium chlorite
  • other metal chlorites such as nickel chlorite
  • Alkali metal chlorates such as ammonium chlorate, sodium chlorate and potassium chlorate
  • alkaline earth metal chlorates such as calcium chlorate and barium chlorate.
  • chlorine-based oxidants may be used alone or in combination of two or more.
  • sodium hypochlorite is preferably used from the viewpoint of handleability.
  • the sulfamic acid compound is a compound represented by the following general formula (1).
  • R 2 NSO 3 H (1) (In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)
  • sulfamic acid compound examples include sulfamic acid (amidosulfuric acid) in which both two R groups are hydrogen atoms, N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, N- A sulfamic acid compound in which one of two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms, N, N-dimethylsulfamic acid, N, Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc.
  • sulfamic acid amidosulfuric
  • One of two R groups such as a sulfamic acid compound, N-phenylsulfamic acid and the like, both of which are alkyl groups having 1 to 8 carbon atoms Is a hydrogen atom and the other sulfamic acid compound or a salt thereof, such as an aryl group having 6 to 10 carbon atoms.
  • the sulfamate include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper salt, zinc salt, iron salt, cobalt salt, Other metal salts such as nickel salts, ammonium salts, guanidine salts and the like can be mentioned.
  • the sulfamic acid compounds and salts thereof may be used alone or in combination of two or more.
  • sulfamic acid compound sulfamic acid (amidosulfuric acid) is preferably used from the viewpoint of environmental load.
  • an alkali may be further present.
  • the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. From the viewpoint of product stability at low temperatures, sodium hydroxide and potassium hydroxide may be used in combination. Further, the alkali is not solid and may be used as an aqueous solution.
  • the water treatment method using a reverse osmosis membrane according to this embodiment can be suitably applied to polyamide polymer membranes that are currently mainstream as reverse osmosis membranes.
  • Polyamide polymer membranes have a relatively low resistance to oxidizing agents, and when free chlorine or the like is continuously brought into contact with the polyamide polymer membrane, the membrane performance is significantly reduced.
  • such a remarkable decrease in membrane performance hardly occurs even in the polyamide polymer membrane.
  • Reverse osmosis membranes include neutral membranes, anion charged membranes, and cation charged membranes.
  • a neutral membrane refers to a membrane having an zeta potential in the range of ⁇ 5 to 5 (mV) at pH 7.0, determined by the zeta potential measurement method described in the examples described later. Indicates a zeta potential of less than ⁇ 5 (mV) at pH 7.0.
  • Examples of commercially available neutral membranes include BW30XFR (manufactured by Dow Chemical), LFC3 (manufactured by Nitto Denko Corporation), TML20 (manufactured by Toray Industries, Inc.), and the like.
  • anion charged membranes examples include OFR-625 (manufactured by Organo Corporation), ES15, ES20, CPA3, CPA5 (manufactured by Nitto Denko Corporation), RE-8040BLN (manufactured by Unjin Co., Ltd.), and the like. It is done.
  • the permeability of the bactericide is higher than when a neutral membrane is used, and on the secondary side of the reverse osmosis membrane. Can further suppress slime contamination.
  • the obtained RO permeate may be circulated to the primary side of the reverse osmosis membrane together with the RO concentrated water. It is preferable that a disinfectant is added and present in the water to be treated only when water is not used at the point of use. Thereby, there is an effect that when the permeated water is used while the RO permeated water line is sterilized, the permeated water is not included in the permeated water.
  • the pH of the water to be treated supplied to the reverse osmosis membrane device including the reverse osmosis membrane is preferably 5.5 or more, and is 6.0 or more. More preferably, it is more preferably 6.5 or more. If the pH of the water to be treated is less than 5.5, the amount of permeated water may decrease.
  • the upper limit of the pH of the water to be treated is not particularly limited as long as it is equal to or lower than the application upper limit pH of a normal reverse osmosis membrane (for example, pH 10), but considering the scale precipitation of hardness components such as calcium, the pH Is preferably operated at, for example, 9.0 or less.
  • the degradation of the reverse osmosis membrane and the quality of the treated water (permeate) are suppressed by operating at a pH of the treated water of 5.5 or higher.
  • a dispersant when scale is generated at pH 5.5 or higher of water to be treated, a dispersant may be used in combination with the above bactericidal agent to suppress scale.
  • the dispersant include polyacrylic acid, polymaleic acid, and phosphonic acid.
  • the amount of the dispersant added to the water to be treated is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in the RO concentrated water.
  • Examples of the use of the reverse osmosis membrane device include pure water production, seawater desalination, and wastewater collection.
  • the disinfectant according to the present embodiment contains a stabilized hypobromite composition or a stabilized hypochlorous acid composition containing a mixture of “bromine-based oxidant or chlorine-based oxidant” and “sulfamic acid compound”. And may further contain an alkali.
  • the bactericide according to the present embodiment includes a stabilized hypobromite composition containing a “reaction product of a bromine-based oxidant and a sulfamic acid compound”, or “a reaction between a chlorine-based oxidant and a sulfamic acid compound. It contains a stabilized hypochlorous acid composition containing a “product” and may further contain an alkali.
  • the bromine-based oxidizing agent, bromine compound, chlorine-based oxidizing agent, and sulfamic acid compound are as described above.
  • one containing bromine and a sulfamic acid compound (containing a mixture of bromine and sulfamic acid compound), for example, bromine and sulfamic acid
  • a sulfamic acid compound for example, bromine and sulfamic acid
  • a mixture of a compound, an alkali and water, or a reaction product containing a reaction product of bromine and a sulfamic acid compound, for example, a reaction product of bromine and a sulfamic acid compound, and a mixture of an alkali and water is preferable.
  • a bactericide containing a bromine-based oxidant and a sulfamic acid compound is a bactericide containing a chlorine-based oxidant and a sulfamic acid compound.
  • a bactericide containing bromine and a sulfamic acid compound is a bactericide containing a chlorine-based oxidant and a sulfamic acid compound.
  • chlorosulfamic acid, etc. it has high oxidative power, and although it has extremely high slime-inhibiting power and slime peeling power, it can cause significant membrane deterioration like hypochlorous acid, which also has high oxidative power. Absent. At normal use concentrations, the effect on film degradation can be substantially ignored. For this reason, it is optimal as a disinfectant.
  • the disinfectant according to the present embodiment hardly permeates the reverse osmosis membrane, and therefore has little influence on the quality of treated water. Further, since the concentration can be measured on site in the same manner as hypochlorous acid or the like, more accurate concentration management is possible.
  • the pH of the germicide is, for example, more than 13.0, and more preferably more than 13.2.
  • the pH of the disinfectant is 13.0 or less, the effective halogen in the disinfectant may become unstable.
  • the bromic acid concentration in the germicide is preferably less than 5 mg / kg. If the bromate concentration in the bactericide is 5 mg / kg or more, the concentration of bromate ions in the RO permeate may increase.
  • the bactericidal agent according to the present embodiment is obtained by mixing a bromine-based oxidizing agent or a chlorine-based oxidizing agent and a sulfamic acid compound, and may further mix an alkali.
  • bromine is added to a mixed liquid containing water, an alkali and a sulfamic acid compound in an inert gas atmosphere. It is preferable to include a step of reacting or adding bromine to a mixed solution containing water, an alkali and a sulfamic acid compound in an inert gas atmosphere. By adding and reacting under an inert gas atmosphere or adding under an inert gas atmosphere, the bromate ion concentration in the disinfectant is lowered, and the bromate ion concentration in the RO permeated water is lowered.
  • the inert gas to be used is not limited, at least one of nitrogen and argon is preferable from the viewpoint of manufacturing and the like, and nitrogen is particularly preferable from the viewpoint of manufacturing cost and the like.
  • the oxygen concentration in the reactor during the addition of bromine is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the bromine reaction exceeds 6%, the amount of bromic acid produced in the reaction system may increase.
  • the addition rate of bromine is preferably 25% by weight or less, more preferably 1% by weight or more and 20% by weight or less, based on the total amount of the silica rejection improving agent.
  • the amount of bromic acid produced in the reaction system may increase. If it is less than 1% by weight, the sterilizing power may be inferior.
  • the reaction temperature at the time of bromine addition is preferably controlled in the range of 0 ° C. to 25 ° C., but more preferably in the range of 0 ° C. to 15 ° C. from the viewpoint of production cost.
  • the reaction temperature at the time of bromine addition exceeds 25 degreeC, the production amount of the bromic acid in a reaction system may increase, and when it is less than 0 degreeC, it may freeze.
  • composition 1 Preparation of Stabilized Hypobromite Composition (Composition 1)] Under nitrogen atmosphere, liquid bromine: 16.9% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.94% by weight, water: remaining The components were mixed to prepare a stabilized hypobromite composition (Composition 1).
  • the stabilized hypobromite composition had a pH of 14 and a total chlorine concentration of 7.5% by weight.
  • the detailed method for preparing the stabilized hypobromite composition is as follows.
  • Composition 1 was obtained.
  • the pH of the resulting solution was 14 as measured by the glass electrode method.
  • the bromine content of the resulting solution was 16.9% as measured by a redox titration method using sodium thiosulfate after bromine was converted to iodine with potassium iodide, and the theoretical content (16.9% ) Of 100.0%.
  • the oxygen concentration in the reaction vessel during the bromine reaction was measured using “Oxygen Monitor JKO-02 LJDII” manufactured by Zico Corporation.
  • the bromic acid concentration was less than 5 mg / kg.
  • Electrode type Glass electrode type pH meter: IOL-30, manufactured by Toa DKK Corporation
  • Electrode calibration Neutral phosphate pH (6.86) standard solution (type 2) manufactured by Kanto Chemical Co., boric acid manufactured by the same company Salt temperature (9.18) Standard solution (type 2) was measured by two-point calibration
  • Measurement value Immerse the electrode in the measurement solution and use the value after stabilization as the measurement value.
  • composition 2 12% sodium hypochlorite aqueous solution: 50% by weight, sulfamic acid: 12% by weight, sodium hydroxide: 8% by weight, water: the remainder is mixed to stabilize a hypochlorous acid composition (Composition 2) was prepared.
  • Composition 2 had a pH of 13.7 and a total chlorine concentration of 6.2% by weight.
  • the zeta potential of the reverse osmosis membrane was determined using a zeta potential / particle size measurement system ELSZseries manufactured by Otsuka Electronics Co., Ltd.
  • the zeta potential of the reverse osmosis membrane was calculated based on the measured electroosmosis plot from the following Mori-Okamoto equation and Smoluchowski equation.
  • a 10 mM NaCl aqueous solution (pH about 5.4) was used as a measurement solution. Two pairs of this aqueous solution and sample are prepared for each sample, one is adjusted to acidic (pH 2, 3, 4, 5, 6, 7) and the other is adjusted to alkaline (pH 8, 9), The zeta potential at each pH was measured.
  • pure water values (refractive index: 1.3328, viscosity: 0.8878, dielectric constant: 78.3) at 25 ° C. were used.
  • Example 1 and Comparative Example 1> The permeate concentration of the bactericide was measured by a flat membrane test.
  • a flat membrane cell a membrane master C70-F flow type flat membrane test cell manufactured by Nitto Denko Corporation was used.
  • a reverse osmosis membrane anion charged membrane “ES20” (polyamide anion charged membrane) manufactured by Nitto Denko Corporation was used.
  • the flat membrane was circular and had a diameter of 75 mm. The flow is shown in FIG.
  • the test water (treated water) was prepared by adding a bactericide to ultrapure water and using hydrochloric acid or sodium hydroxide so that the pH was 7.0.
  • the disinfectant concentration was about 6 mg / L in terms of total chlorine concentration.
  • the water temperature was adjusted using a chiller so as to be 25 ⁇ 1 ° C.
  • the operating pressure of the reverse osmosis membrane was 0.75 MPa.
  • the water supplied to the reverse osmosis membrane was passed at 5 L / min. After passing water for about 3 hours, the disinfectant concentration (total chlorine concentration) of treated water and permeated water was measured.
  • the total chlorine concentration is a value (mg / L asCl 2 ) measured by a total chlorine measurement method (DPD (diethyl-p-phenylenediamine) method) using a multi-item water quality analyzer DR / 4000 manufactured by HACH.
  • DPD diethyl-p-phenylenediamine
  • Example 1 As Example 1, ammonium chloride was added to the water to be treated so that the ammonia concentration became 1 mg / L, and the water concentration to be treated and the permeated water concentration of each bactericide at that time were measured to obtain the transmittance. The results are shown in Table 1.
  • Comparative Example 1 Comparative Example 1 Moreover, as Comparative Example 1, the treatment water concentration and the permeated water concentration of each bactericide when no ammonium chloride was added to the treatment water were measured, and the transmittance was obtained. The results are shown in Table 2.
  • Example 2 As a flat membrane, LFC3 (manufactured by Nitto Denko Corporation), TML20 (manufactured by Toray Industries, Inc.), an anion charged membrane, OFR-625 (manufactured by Organo Corporation), ES15, ES20, CPA5 (manufactured by Nitto Denko Corporation), a stabilized hypobromite composition (Composition 1) as a disinfectant, and the following conditions and methods in the flow of FIG. The permeated water concentration was measured at
  • the test water (treated water) was prepared by adding a bactericide to ultrapure water and using hydrochloric acid or sodium hydroxide so that the pH was 7.0.
  • the concentration of the bactericide was 10 mg / L in terms of total chlorine concentration.
  • the water temperature was adjusted using a chiller so as to be 25 ⁇ 1 ° C.
  • the operating pressure of the reverse osmosis membrane was 0.75 MPa.
  • the water supplied to the reverse osmosis membrane was passed at 5 L / min.
  • Ammonium chloride is added to the water to be treated so that the ammonia concentration becomes 0, 0.1, 0.5, 1, 5, 10 mg / L, and after passing for about 3 hours, the concentration of water to be treated for each bactericide (Total chlorine concentration) and permeate concentration (total chlorine concentration) were measured to determine the transmittance. The results are shown in Table 3 and FIG.
  • the permeability of the bactericide is higher than when a neutral membrane is used, and slime contamination can be further suppressed on the secondary side of the reverse osmosis membrane. all right.
  • Example 1 As described above, by the method of Example 1, it was possible to suppress slime contamination on the secondary side of the reverse osmosis membrane and to suppress oxidative deterioration of the reverse osmosis membrane.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

逆浸透膜の2次側においてもスライム汚染を抑制し、かつ逆浸透膜の酸化劣化を抑制する逆浸透膜を用いる水処理方法を提供する。被処理水を逆浸透膜で処理する、逆浸透膜を用いる水処理方法であって、アンモニアを含有する被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させる、逆浸透膜を用いる水処理方法である。

Description

逆浸透膜を用いる水処理方法
 本発明は、逆浸透膜(RO膜)を用いる水処理方法に関する。
 逆浸透膜(RO膜)を用いる水処理方法において、バイオファウリング対策として各種の殺菌剤(スライム抑制剤)が使用されることが一般的である。次亜塩素酸等の塩素系酸化剤は代表的な殺菌剤であり、系内の殺菌目的で通常は逆浸透膜の前段に添加される。塩素系酸化剤は逆浸透膜を劣化させる可能性が高いため、一般的には逆浸透膜の直前で塩素系酸化剤を還元分解するか、間欠的に塩素系酸化剤を逆浸透膜に流入させることで運用されている。
 また、殺菌剤(スライム抑制剤)として塩素系酸化剤とスルファミン酸化合物とからなる結合塩素剤を逆浸透膜の被処理水中に存在させる方法(特許文献1参照)や、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物との混合物もしくは反応生成物を被処理水に添加する方法(特許文献2参照)が知られている。
 塩素系酸化剤または臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤は、殺菌能力が高いうえにポリアミド系の逆浸透膜を酸化劣化させにくく、逆浸透膜での阻止率も高く、後段の処理水(透過水)質に影響が少ないため有効である。
特開2006-263510号公報 特開2015-062889号公報
 しかし、逆浸透膜で殺菌剤の大部分が阻止されてしまうため、逆浸透膜の1次側では殺菌剤が有効な場合でも2次側の透過水ラインがスライム汚染を受けることがある。特に被処理水が低分子(例えば、分子量200以下)の有機物を含む場合、低分子の有機物は逆浸透膜による阻止率が低いため、逆浸透膜の1次側では殺菌剤が有効な場合でも2次側で低分子の有機物に起因するスライム汚染が発生することがある。
 本発明の目的は、逆浸透膜の2次側においてもスライム汚染を抑制し、かつ逆浸透膜の酸化劣化を抑制する、逆浸透膜を用いる水処理方法を提供することにある。
 本発明は、被処理水を逆浸透膜で処理する、逆浸透膜を用いる水処理方法であって、アンモニアを含有する前記被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させる、逆浸透膜を用いる水処理方法である。
 また、本発明は、被処理水を逆浸透膜で処理する、逆浸透膜を用いる水処理方法であって、アンモニアを含有する前記被処理水中に、臭素とスルファミン酸化合物とを含む殺菌剤を存在させる、逆浸透膜を用いる水処理方法である。
 前記逆浸透膜を用いる水処理方法において、前記被処理水中の全塩素濃度に対する前記アンモニアの濃度の比が、0.01~1の範囲となるように前記殺菌剤または前記アンモニアの濃度を調整することが好ましい。
 前記逆浸透膜を用いる水処理方法において、前記逆浸透膜が、アニオン荷電膜であることが好ましい。
 前記逆浸透膜を用いる水処理方法において、前記被処理水が、前記逆浸透膜を透過する有機物を0.5mg/L以上含むことが好ましい。
 前記逆浸透膜を用いる水処理方法において、透過水をユースポイントで使用しないときのみに前記殺菌剤を添加して前記被処理水中に存在させることが好ましい。
 本発明では、逆浸透膜の2次側においてもスライム汚染を抑制し、かつ逆浸透膜の酸化劣化を抑制することができる。
実施例において逆浸透膜での阻止率の評価に用いた平膜試験装置の概略構成図である。 実施例および比較例におけるアンモニア/殺菌剤(全塩素)濃度比に対する殺菌剤透過率(%)を示す図である。
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
<逆浸透膜を用いる水処理方法>
 本発明の実施形態に係る逆浸透膜を用いる水処理方法は、アンモニアを含有する被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させる方法である。「臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤」は、「臭素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物を含有する殺菌剤であってもよいし、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物を含有する殺菌剤であってもよい。「塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤」は、「塩素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜塩素酸組成物を含有する殺菌剤であってもよいし、「塩素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜塩素酸組成物を含有する殺菌剤であってもよい。
 すなわち、本発明の実施形態に係る逆浸透膜を用いる水処理方法は、被処理水を逆浸透膜で処理する方法であって、アンモニアを含有する被処理水中に、「臭素系酸化剤」と「スルファミン酸化合物」との混合物、または「塩素系酸化剤」と「スルファミン酸化合物」との混合物を存在させる方法である。これにより、被処理水中で、安定化次亜臭素酸組成物または安定化次亜塩素酸組成物が生成すると考えられる。
 また、本発明の実施形態に係る逆浸透膜を用いる水処理方法は、被処理水を逆浸透膜で処理する方法であって、アンモニアを含有する被処理水中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜臭素酸組成物、または「塩素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜塩素酸組成物を存在させる方法である。
 具体的には本発明の実施形態に係る逆浸透膜を用いる水処理方法は、被処理水を逆浸透膜で処理する方法であって、アンモニアを含有する被処理水中に、「臭素」、「塩化臭素」、「次亜臭素酸」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」との混合物を存在させる方法である。または、アンモニアを含有する被処理水中に、「次亜塩素酸」と、「スルファミン酸化合物」との混合物を存在させる方法である。
 また、本発明の実施形態に係る逆浸透膜を用いる水処理方法は、被処理水を逆浸透膜で処理する方法であって、アンモニアを含有する被処理水中に、例えば、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、「次亜臭素酸とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」である安定化次亜臭素酸組成物を存在させる方法である。または、アンモニアを含有する被処理水中に、「次亜塩素酸とスルファミン酸化合物との反応生成物」である安定化次亜塩素酸組成物を存在させる方法である。
 本発明者らは検討を重ねたところ、被処理水にアンモニアが含まれるとき、安定化次亜臭素酸組成物または安定化次亜塩素酸組成物を含む殺菌剤が逆浸透膜を透過しやすくなることを見出した。この現象を利用して、アンモニアを含有する被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させることにより、被処理水を逆浸透膜で処理する水処理方法において、逆浸透膜の2次側においてもスライム汚染を抑制し、かつ逆浸透膜の酸化劣化を抑制することができる。
 このように、本実施形態に係る逆浸透膜を用いる水処理方法において、安定化次亜臭素酸組成物または安定化次亜塩素酸組成物は次亜塩素酸等の塩素系酸化剤と同等以上のスライム抑制効果を発揮するにも関わらず、塩素系酸化剤と比較すると、逆浸透膜への劣化影響が低いため、逆浸透膜でのファウリングを抑制しながら、逆浸透膜の酸化劣化を抑制できる。このため、本実施形態に係る逆浸透膜を用いる水処理方法で用いられる安定化次亜臭素酸組成物または安定化次亜塩素酸組成物は、被処理水を逆浸透膜で処理する水処理方法で用いるスライム抑制剤としては好適である。
 本実施形態に係る逆浸透膜を用いる水処理方法のうち、「臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤」の場合、塩素系酸化剤が存在しないため、逆浸透膜への劣化影響がより低い。塩素系酸化剤を含む場合は、塩素酸の生成が懸念される。
 本実施形態に係る逆浸透膜を用いる水処理方法のうち、「臭素系酸化剤」が、臭素である場合、塩素系酸化剤が存在しないため、逆浸透膜への劣化影響が著しく低い。
 本実施形態に係る逆浸透膜を用いる水処理方法では、例えば、アンモニアを含有する被処理水中に、「臭素系酸化剤」または「塩素系酸化剤」と「スルファミン酸化合物」とを薬注ポンプ等により注入してもよい。「臭素系酸化剤」または「塩素系酸化剤」と「スルファミン酸化合物」とは別々に被処理水に添加してもよく、または、原液同士で混合させてから被処理水に添加してもよい。
 また、例えば、アンモニアを含有する被処理水中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」または「塩素系酸化剤とスルファミン酸化合物との反応生成物」を薬注ポンプ等により注入してもよい。
 本実施形態に係る逆浸透膜を用いる水処理方法において、「臭素系酸化剤」または「塩素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」または「塩素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、膜を劣化させる可能性があり、2を超えると、製造コストが増加する場合がある。
 逆浸透膜に接触する全塩素濃度は有効塩素濃度換算で、0.01~100mg/Lであることが好ましい。0.01mg/L未満であると、十分なスライム抑制効果を得ることができない場合があり、100mg/Lより多いと、逆浸透膜の劣化、配管等の腐食を引き起こす可能性がある。
 被処理水中の全塩素濃度に対するアンモニアの濃度の比(アンモニア濃度(mg/L)/殺菌剤濃度(全塩素濃度:mg/L))が、0.01~1の範囲となるように殺菌剤を存在させることが好ましく、0.01~0.5の範囲となるように殺菌剤を存在させることがより好ましい。被処理水中のアンモニアの濃度に対する全塩素濃度の比が0.01以上となるように殺菌剤を存在させると、殺菌剤の透過率向上の効果が十分に表れるため好ましい。被処理水中のアンモニアの濃度に対する全塩素濃度の比が0.01未満であると、殺菌剤の透過率向上の効果が十分に表れない場合があり、1を超えて存在させても、アンモニア添加による殺菌剤の透過率の向上効果が表れにくくなる。
 被処理水にアンモニアが含まれていない場合は、アンモニア塩を添加してもよいし、他のアンモニア含有水を混合してもよい。
 被処理水が、逆浸透膜を透過する有機物を0.5mg/L以上含む場合、特に1.0mg/L以上500mg/L以下含む場合に、本実施形態に係る逆浸透膜を用いる水処理方法がより好適に適用することができる。被処理水中の、逆浸透膜を透過する有機物の含有量が0.5mg/L未満であると、逆浸透膜の2次側においてスライム汚染が発生しにくい。
 本明細書において低分子の有機物とは、分子量が200以下の有機物を指し、例えば、分子量が200以下の、メタノール、エタノール、イソプロピルアルコール等のアルコール化合物、モノエタノールアミン、尿素等のアミン化合物、水酸化テトラメチルアンモニム等のテトラアルキルアンモニウム塩等が挙げられる。
 臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩、次亜臭素酸等が挙げられる。次亜臭素酸は、臭化ナトリウム等の臭化物と次亜塩素酸等の塩素系酸化剤とを反応させて生成させたものであってもよい。
 これらのうち、臭素を用いた「臭素とスルファミン酸化合物(臭素とスルファミン酸化合物の混合物)」または「臭素とスルファミン酸化合物との反応生成物」の製剤は、「次亜塩素酸と臭素化合物とスルファミン酸」の製剤および「塩化臭素とスルファミン酸」の製剤等に比べて、臭素酸の副生が少なく、逆浸透膜をより劣化させないため、逆浸透膜用スライム抑制剤としてはより好ましい。
 すなわち、本発明の実施形態に係る逆浸透膜を用いる水処理方法は、アンモニアを含有する被処理水中に、臭素と、スルファミン酸化合物とを存在させる(臭素とスルファミン酸化合物の混合物を存在させる)ことが好ましい。また、被処理水中に、臭素とスルファミン酸化合物との反応生成物を存在させることが好ましい。
 臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム、臭化アンモニウムおよび臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。
 塩素系酸化剤としては、例えば、塩素ガス、二酸化塩素、次亜塩素酸またはその塩、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌル酸またはその塩等が挙げられる。これらのうち、塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等が挙げられる。これらの塩素系酸化剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。塩素系酸化剤としては、取り扱い性等の点から、次亜塩素酸ナトリウムを用いるのが好ましい。
 スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
  RNSOH   (1)
(式中、Rは独立して水素原子または炭素数1~8のアルキル基である。)
 スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N-メチルスルファミン酸、N-エチルスルファミン酸、N-プロピルスルファミン酸、N-イソプロピルスルファミン酸、N-ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1~8のアルキル基であるスルファミン酸化合物、N,N-ジメチルスルファミン酸、N,N-ジエチルスルファミン酸、N,N-ジプロピルスルファミン酸、N,N-ジブチルスルファミン酸、N-メチル-N-エチルスルファミン酸、N-メチル-N-プロピルスルファミン酸等の2個のR基の両方が炭素数1~8のアルキル基であるスルファミン酸化合物、N-フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6~10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。
 本実施形態に係る逆浸透膜を用いる水処理方法において、さらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温時の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。
 本実施形態に係る逆浸透膜を用いる水処理方法は、逆浸透膜として昨今主流であるポリアミド系高分子膜に好適に適用することができる。ポリアミド系高分子膜は、酸化剤に対する耐性が比較的低く、遊離塩素等をポリアミド系高分子膜に連続的に接触させると、膜性能の著しい低下が起こる。しかしながら、本実施形態に係る逆浸透膜を用いる水処理方法ではポリアミド高分子膜においても、このような著しい膜性能の低下はほとんど起こらない。
 逆浸透膜には、中性膜、アニオン荷電膜、およびカチオン荷電膜がある。本明細書では、中性膜は、後述する実施例に記載したゼータ電位の測定方法により求めた、pH7.0におけるゼータ電位が-5~5(mV)の範囲のものを指し、アニオン荷電膜は、pH7.0におけるゼータ電位が-5(mV)未満のものを指す。
 市販の中性膜としては、例えば、BW30XFR(ダウ・ケミカル社製)、LFC3(日東電工株式会社製)、TML20(東レ株式会社製)等が挙げられる。
 市販のアニオン荷電膜としては、例えば、OFR-625(以上、オルガノ株式会社製)、ES15、ES20、CPA3、CPA5(以上、日東電工株式会社製)、RE-8040BLN(ウンジン社製)等が挙げられる。
 本実施形態に係る逆浸透膜を用いる水処理方法では、アニオン荷電膜を用いた場合、中性膜を用いた場合に比べて、殺菌剤の透過率が高く、逆浸透膜の2次側においてもスライム汚染をより抑制することができる。
 本実施形態に係る逆浸透膜を用いる水処理方法では、透過水をユースポイントで使用しないときには、得たRO透過水をRO濃縮水とともに逆浸透膜の1次側に循環させてもよく、透過水をユースポイントで使用しないときのみに殺菌剤を添加して被処理水中に存在させることが好ましい。これにより、RO透過水ラインの殺菌を行いつつ、透過水を使用する際には透過水に殺菌剤が含まれなくなるという効果がある。
 本実施形態に係る逆浸透膜を用いる水処理方法において、逆浸透膜を備える逆浸透膜装置へ給水される被処理水のpHが5.5以上であることが好ましく、6.0以上であることがより好ましく、6.5以上であることがさらに好ましい。被処理水のpHが5.5未満であると、透過水量が低下する場合がある。また、被処理水のpHの上限値については、通常の逆浸透膜の適用上限pH(例えば、pH10)以下であれば特に制限はないが、カルシウム等の硬度成分のスケール析出を考慮すると、pHは例えば9.0以下で運転することが好ましい。本実施形態に係る逆浸透膜を用いる水処理方法を用いる場合、被処理水のpHが5.5以上で運転することにより、逆浸透膜の劣化、処理水(透過水)の水質悪化を抑制し、十分なスライム抑制効果を発揮しつつ、十分な透過水量の確保も可能となる。
 逆浸透膜装置において、被処理水のpH5.5以上でスケールが発生する場合には、スケール抑制のために分散剤を上記殺菌剤と併用してもよい。分散剤としては、例えば、ポリアクリル酸、ポリマレイン酸、ホスホン酸等が挙げられる。分散剤の被処理水への添加量は、例えば、RO濃縮水中の濃度として0.1~1,000mg/Lの範囲である。
 また、分散剤を使用せずにスケールの発生を抑制するためには、例えば、RO濃縮水中のシリカ濃度を溶解度以下に、カルシウムスケールの指標であるランゲリア指数を0以下になるように、逆浸透膜装置の回収率等の運転条件を調整することが挙げられる。
 逆浸透膜装置の用途としては、例えば、純水製造、海水淡水化、排水回収等が挙げられる。
<殺菌剤>
 本実施形態に係る殺菌剤は、「臭素系酸化剤または塩素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物または安定化次亜塩素酸組成物を含有するものであり、さらにアルカリを含有してもよい。
 また、本実施形態に係る殺菌剤は、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物、または「塩素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜塩素酸組成物を含有するものであり、さらにアルカリを含有してもよい。
 臭素系酸化剤、臭素化合物、塩素系酸化剤およびスルファミン酸化合物については、上述した通りである。
 本実施形態に係る殺菌剤としては、逆浸透膜をより劣化させないため、臭素と、スルファミン酸化合物とを含有するもの(臭素とスルファミン酸化合物の混合物を含有するもの)、例えば、臭素とスルファミン酸化合物とアルカリと水との混合物、または、臭素とスルファミン酸化合物との反応生成物を含有するもの、例えば、臭素とスルファミン酸化合物との反応生成物と、アルカリと、水との混合物が好ましい。
 本実施形態に係る殺菌剤のうち、臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤、特に臭素とスルファミン酸化合物とを含む殺菌剤は、塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤(クロロスルファミン酸等)と比較すると、酸化力が高く、スライム抑制力、スライム剥離力が著しく高いにもかかわらず、同じく酸化力の高い次亜塩素酸のような著しい膜劣化をほとんど引き起こすことがない。通常の使用濃度では、膜劣化への影響は実質的に無視することができる。このため、殺菌剤としては最適である。
 本実施形態に係る殺菌剤は、次亜塩素酸とは異なり、逆浸透膜をほとんど透過しないため、処理水水質への影響がほとんどない。また、次亜塩素酸等と同様に現場で濃度を測定することができるため、より正確な濃度管理が可能である。
 殺菌剤のpHは、例えば、13.0超であり、13.2超であることがより好ましい。殺菌剤のpHが13.0以下であると殺菌剤中の有効ハロゲンが不安定になる場合がある。
 殺菌剤中の臭素酸濃度は、5mg/kg未満であることが好ましい。殺菌剤中の臭素酸濃度が5mg/kg以上であると、RO透過水の臭素酸イオンの濃度が高くなる場合がある。
<殺菌剤の製造方法>
 本実施形態に係る殺菌剤は、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを混合することにより得られ、さらにアルカリを混合してもよい。
 臭素と、スルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有する殺菌剤の製造方法としては、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程、または、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加する工程を含むことが好ましい。不活性ガス雰囲気下で添加して反応させる、または、不活性ガス雰囲気下で添加することにより、殺菌剤中の臭素酸イオン濃度が低くなり、RO透過水中の臭素酸イオン濃度が低くなる。
 用いる不活性ガスとしては限定されないが、製造等の面から窒素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。
 臭素の添加の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。
 臭素の添加率は、シリカの阻止率向上剤全体の量に対して25重量%以下であることが好ましく、1重量%以上20重量%以下であることがより好ましい。臭素の添加率がシリカの阻止率向上剤全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。1重量%未満であると、殺菌力が劣る場合がある。
 臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
[安定化次亜臭素酸組成物(組成物1)の調製]
 窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、安定化次亜臭素酸組成物(組成物1)を調製した。安定化次亜臭素酸組成物のpHは14、全塩素濃度は7.5重量%であった。安定化次亜臭素酸組成物の詳細な調製方法は以下の通りである。
 反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0~15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の安定化次亜臭素酸組成物(組成物1)を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO-02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。
 なお、pHの測定は、以下の条件で行った。
  電極タイプ:ガラス電極式
  pH測定計:東亜ディーケーケー社製、IOL-30型
  電極の校正:関東化学社製中性リン酸塩pH(6.86)標準液(第2種)、同社製ホウ酸塩pH(9.18)標準液(第2種)の2点校正で行った
  測定温度:25℃
  測定値:測定液に電極を浸漬し、安定後の値を測定値とし、3回測定の平均値
[安定化次亜塩素酸組成物(組成物2)の調製]
 12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸:12重量%、水酸化ナトリウム:8重量%、水:残分を混合して、安定化次亜塩素酸組成物(組成物2)を調製した。組成物2のpHは13.7、全塩素濃度は、6.2重量%であった。
[逆浸透膜のゼータ電位の測定]
 逆浸透膜のゼータ電位は、大塚電子株式会社製、ゼータ電位・粒径測定システムELSZseriesを用いて、求めた。逆浸透膜のゼータ電位は、測定した電気浸透プロットより、下記森・岡本の式およびSmoluchowskiの式から計算した。
(森・岡本の式)
 Uobs(z)=AU(z/b)+ΔU(z/b)+(1-A)U+U
 ここで、
 z:セル中心位置からの距離
 Uobs(z):セル中のz位置における見かけの移動度
 A:1/[(2/3)-(0.420166/K)]
  K=a/b: 2aと2bはセル断面の横と縦の長さ、a>b
 U:粒子の真の移動度
 U:セルの上面、下面における平均移動度
 ΔU:セルの上面、下面における移動度の差
(Smoluchowskiの式)
 ζ=4πηU/ε
 ここで、
 U:電気移動度
 ε:溶媒の誘電率
 η:溶媒の粘度
 測定液として10mM NaCl水溶液(pH約5.4)を使用した。この水溶液と試料のペアを各試料について2組用意し、一方はpHを酸性(pH2,3,4,5,6,7)に、他方はpHをアルカリ性(pH8,9)に調整して、各pHにおけるゼータ電位を測定した。溶媒の物性値は25℃における純水の値(屈折率:1.3328、粘度:0.8878、誘電率:78.3)を使用した。
<実施例1および比較例1>
[試験条件および試験方法]
 平膜試験にて殺菌剤の透過水濃度を測定した。平膜セルは、日東電工社製のメンブレンマスターC70-Fフロー式平膜テストセルを用いた。平膜には、日東電工社製の逆浸透膜(アニオン荷電膜「ES20」(ポリアミド系アニオン荷電膜))を用いた。平膜は円形で、直径が75mmのものを用いた。フローを図1に示す。
 試験水(被処理水)は、超純水に殺菌剤を添加し、pHが7.0になるように塩酸または水酸化ナトリウムを用いて調製したものを使用した。殺菌剤の濃度は全塩素濃度で約6mg/Lとした。水温は25±1℃となるようにチラーを用いて調節した。逆浸透膜の操作圧は0.75MPaとした。逆浸透膜への供給水は5L/minで通水した。3時間程度の通水後、被処理水および透過水の殺菌剤濃度(全塩素濃度)を測定した。全塩素濃度は、HACH社の多項目水質分析計DR/4000を用いて、全塩素測定法(DPD(ジエチル-p-フェニレンジアミン)法)により測定した値(mg/L asCl)である。
(実施例1)
 実施例1として、被処理水にアンモニア濃度が1mg/Lとなるように塩化アンモニウムを添加し、そのときの各殺菌剤の被処理水濃度および透過水濃度を測定し、透過率を求めた。結果を表1に示す。
(比較例1)
 また、比較例1として、被処理水に塩化アンモニウムを添加しなかった場合の各殺菌剤の被処理水濃度および透過水濃度を測定し、透過率を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 このように、実施例1のように被処理水にアンモニアが存在することで、殺菌剤透過率が向上することがわかる。
<実施例2>
 実施例2では、平膜として、中性膜である、LFC3(日東電工株式会社製)、TML20(東レ株式会社製)、アニオン荷電膜である、OFR-625(オルガノ株式会社製)、ES15、ES20、CPA5(以上、日東電工株式会社製)を用い、殺菌剤として、安定化次亜臭素酸組成物(組成物1)を用い、実施例1と同様に図1のフローで下記条件および方法で透過水濃度を測定した。
 試験水(被処理水)は、超純水に殺菌剤を添加し、pHが7.0になるように塩酸または水酸化ナトリウムを用いて調製したものを使用した。殺菌剤の濃度は全塩素濃度で10mg/Lとした。水温は25±1℃となるようにチラーを用いて調節した。逆浸透膜の操作圧は0.75MPaとした。逆浸透膜への供給水は5L/minで通水した。被処理水にアンモニア濃度が0,0.1,0.5,1,5,10mg/Lとなるように塩化アンモニウムを添加し、3時間程度の通水後、各殺菌剤の被処理水濃度(全塩素濃度)および透過水濃度(全塩素濃度)を測定し、透過率を求めた。結果を表3および図2に示す。
Figure JPOXMLDOC01-appb-T000003
 このように、アニオン荷電膜を用いた場合、中性膜を用いた場合に比べて、殺菌剤の透過率が高く、逆浸透膜の2次側においてもスライム汚染をより抑制することができることがわかった。
 以上の通り、実施例1の方法により、逆浸透膜の2次側においてもスライム汚染を抑制し、かつ逆浸透膜の酸化劣化を抑制することができた。

Claims (6)

  1.  被処理水を逆浸透膜で処理する、逆浸透膜を用いる水処理方法であって、
     アンモニアを含有する前記被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させることを特徴とする、逆浸透膜を用いる水処理方法。
  2.  被処理水を逆浸透膜で処理する、逆浸透膜を用いる水処理方法であって、
     アンモニアを含有する前記被処理水中に、臭素とスルファミン酸化合物とを含む殺菌剤を存在させることを特徴とする、逆浸透膜を用いる水処理方法。
  3.  請求項1または2に記載の逆浸透膜を用いる水処理方法であって、
     前記被処理水中の全塩素濃度に対する前記アンモニアの濃度の比が、0.01~1の範囲となるように前記殺菌剤または前記アンモニアの濃度を調整することを特徴とする、逆浸透膜を用いる水処理方法。
  4.  請求項1~3のいずれか1項に記載の逆浸透膜を用いる水処理方法であって、
     前記逆浸透膜が、アニオン荷電膜であることを特徴とする、逆浸透膜を用いる水処理方法。
  5.  請求項1~4のいずれか1項に記載の逆浸透膜を用いる水処理方法であって、
     前記被処理水が、前記逆浸透膜を透過する有機物を0.5mg/L以上含むことを特徴とする、逆浸透膜を用いる水処理方法。
  6.  請求項1~5のいずれか1項に記載の逆浸透膜を用いる水処理方法であって、
     透過水をユースポイントで使用しないときのみに前記殺菌剤を添加して前記被処理水中に存在させることを特徴とする、逆浸透膜を用いる水処理方法。
PCT/JP2016/088943 2016-08-23 2016-12-27 逆浸透膜を用いる水処理方法 WO2018037582A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680088095.4A CN109562330B (zh) 2016-08-23 2016-12-27 使用反渗透膜的水处理方法
SG11201810464WA SG11201810464WA (en) 2016-08-23 2016-12-27 Water treatment method using reverse-osmosis membrane
KR1020197003798A KR102164160B1 (ko) 2016-08-23 2016-12-27 역침투막을 이용하는 수처리 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016162399A JP6779706B2 (ja) 2016-08-23 2016-08-23 逆浸透膜を用いる水処理方法
JP2016-162399 2016-08-23

Publications (1)

Publication Number Publication Date
WO2018037582A1 true WO2018037582A1 (ja) 2018-03-01

Family

ID=61246460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088943 WO2018037582A1 (ja) 2016-08-23 2016-12-27 逆浸透膜を用いる水処理方法

Country Status (6)

Country Link
JP (1) JP6779706B2 (ja)
KR (1) KR102164160B1 (ja)
CN (1) CN109562330B (ja)
SG (1) SG11201810464WA (ja)
TW (1) TWI703094B (ja)
WO (1) WO2018037582A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7492873B2 (ja) 2020-07-13 2024-05-30 オルガノ株式会社 水回収方法および水回収装置
JP7492876B2 (ja) 2020-07-21 2024-05-30 オルガノ株式会社 水処理方法および水処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185985A (ja) * 2003-12-26 2005-07-14 Toray Ind Inc 水の製造方法および製造装置
JP2013010718A (ja) * 2011-06-29 2013-01-17 Hakuto Co Ltd スライム剥離剤およびスライム剥離方法
JP2015062889A (ja) * 2013-08-28 2015-04-09 オルガノ株式会社 分離膜のスライム抑制方法、分離膜用スライム抑制剤組成物、および分離膜用スライム抑制剤組成物の製造方法
JP2016117033A (ja) * 2014-12-22 2016-06-30 オルガノ株式会社 膜分離処理システムおよび膜分離処理方法
JP2016120486A (ja) * 2014-12-25 2016-07-07 オルガノ株式会社 分離膜のスライム抑制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158683A (en) * 1991-09-03 1992-10-27 Ethyl Corporation Bromide separation and concentration using semipermeable membranes
JP2006263510A (ja) 2005-03-22 2006-10-05 Kurita Water Ind Ltd 膜分離用スライム防止剤及び膜分離方法
JPWO2012132892A1 (ja) * 2011-03-30 2014-07-28 栗田工業株式会社 逆浸透膜用スケール防止剤及びスケール防止方法
JP6364751B2 (ja) * 2013-11-19 2018-08-01 栗田工業株式会社 芳香族ポリアミド系逆浸透膜の洗浄剤及び洗浄方法
JP5910696B1 (ja) * 2014-10-06 2016-04-27 栗田工業株式会社 逆浸透膜の洗浄剤、洗浄液、および洗浄方法
CN104801195A (zh) * 2015-04-30 2015-07-29 浙江农林大学 清洗反渗透膜及纳滤膜有机物污染的新方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185985A (ja) * 2003-12-26 2005-07-14 Toray Ind Inc 水の製造方法および製造装置
JP2013010718A (ja) * 2011-06-29 2013-01-17 Hakuto Co Ltd スライム剥離剤およびスライム剥離方法
JP2015062889A (ja) * 2013-08-28 2015-04-09 オルガノ株式会社 分離膜のスライム抑制方法、分離膜用スライム抑制剤組成物、および分離膜用スライム抑制剤組成物の製造方法
JP2016117033A (ja) * 2014-12-22 2016-06-30 オルガノ株式会社 膜分離処理システムおよび膜分離処理方法
JP2016120486A (ja) * 2014-12-25 2016-07-07 オルガノ株式会社 分離膜のスライム抑制方法

Also Published As

Publication number Publication date
SG11201810464WA (en) 2018-12-28
KR20190028476A (ko) 2019-03-18
KR102164160B1 (ko) 2020-10-12
TWI703094B (zh) 2020-09-01
CN109562330A (zh) 2019-04-02
CN109562330B (zh) 2021-10-08
JP6779706B2 (ja) 2020-11-04
TW201808818A (zh) 2018-03-16
JP2018030061A (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6401491B2 (ja) 分離膜のスライム抑制方法、逆浸透膜またはナノろ過膜用スライム抑制剤組成物、および分離膜用スライム抑制剤組成物の製造方法
JP6688381B2 (ja) 逆浸透膜を用いた水処理システムおよび水処理方法
KR101990231B1 (ko) 역침투막의 개질 방법, 역침투막, 붕소 함유수의 처리 방법, 및 분리막의 운전 방법
KR101966569B1 (ko) 분리막의 슬라임 억제방법
WO2018092852A1 (ja) 逆浸透膜処理システムおよび逆浸透膜処理方法
JP7013141B2 (ja) 逆浸透膜を用いる水処理方法
KR102291224B1 (ko) 역침투막을 이용하는 수처리 방법 및 수처리 장치
JP6837301B2 (ja) 逆浸透膜処理方法および逆浸透膜処理システム
JP6513424B2 (ja) 分離膜の殺菌方法
WO2018037582A1 (ja) 逆浸透膜を用いる水処理方法
JP2016155067A (ja) 逆浸透膜の改質方法、逆浸透膜、およびホウ素含有水の処理方法
KR102215262B1 (ko) 저분자 유기물 함유수의 처리방법 및 처리시스템
JP2016120486A (ja) 分離膜のスライム抑制方法
JP6682401B2 (ja) 逆浸透膜を用いる水処理方法
JP2018008182A (ja) 逆浸透膜を用いる水処理方法、および逆浸透膜におけるシリカの阻止率向上剤
JP6974936B2 (ja) 逆浸透膜を用いる水処理方法
JP7144922B2 (ja) 逆浸透膜の運転方法および逆浸透膜装置
JP7050414B2 (ja) 逆浸透膜を用いる水処理方法
JP2020131134A (ja) 分離膜用スライム抑制剤、分離膜用スライム抑制剤の製造方法、および分離膜のスライム抑制方法
JP2019076864A (ja) 逆浸透膜処理方法および逆浸透膜処理システム
JP6933902B2 (ja) 逆浸透膜の改質方法、および、非荷電物質含有水の処理方法
KR20210126769A (ko) 역침투막을 이용하는 수처리 방법 및 수처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003798

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914255

Country of ref document: EP

Kind code of ref document: A1