WO2015008847A1 - 金属/樹脂複合構造体および金属部材 - Google Patents

金属/樹脂複合構造体および金属部材 Download PDF

Info

Publication number
WO2015008847A1
WO2015008847A1 PCT/JP2014/069111 JP2014069111W WO2015008847A1 WO 2015008847 A1 WO2015008847 A1 WO 2015008847A1 JP 2014069111 W JP2014069111 W JP 2014069111W WO 2015008847 A1 WO2015008847 A1 WO 2015008847A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
resin
metal member
composite structure
straight line
Prior art date
Application number
PCT/JP2014/069111
Other languages
English (en)
French (fr)
Inventor
井上 悟郎
佑樹 近藤
遥 高松
和樹 木村
正毅 三隅
浩士 奥村
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201480002139.8A priority Critical patent/CN104583458B/zh
Priority to BR112015004532-4A priority patent/BR112015004532B1/pt
Priority to IN995DEN2015 priority patent/IN2015DN00995A/en
Priority to MX2015002673A priority patent/MX366519B/es
Priority to US14/423,982 priority patent/US9987824B2/en
Priority to JP2014555029A priority patent/JP5714193B1/ja
Priority to KR1020157003123A priority patent/KR101548108B1/ko
Priority to EP14826820.4A priority patent/EP2894240B1/en
Publication of WO2015008847A1 publication Critical patent/WO2015008847A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D109/00Coating compositions based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09D109/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/10Homopolymers or copolymers of propene
    • C09D123/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/18Homopolymers or copolymers of nitriles
    • C09D133/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a metal / resin composite structure and a metal member.
  • Resin is used as an alternative to metal from the viewpoint of weight reduction of various parts.
  • a technique capable of joining and integrating a metal molded body and a resin molded body with an industrially advantageous method with high bonding strength has not been put into practical use.
  • Patent Documents 1 to 5 As a technology for joining and integrating metal moldings and resin moldings, engineering plastics with polar groups that have affinity with the metal member are joined to the metal member surface with fine irregularities (For example, Patent Documents 1 to 5).
  • Patent Documents 1 to 3 an aluminum alloy is immersed in a hydrazine aqueous solution to form a recess having a diameter of 30 to 300 nm on the surface, and then a polybutylene terephthalate resin (hereinafter referred to as “PBT”) is formed on the treated surface. ), Or a technique for joining a polyphenylene sulfide resin (hereinafter referred to as “PPS”).
  • PBT polybutylene terephthalate resin
  • PPS polyphenylene sulfide resin
  • Patent Document 4 an aluminum material is anodized in an electrolytic bath of phosphoric acid or sodium hydroxide to form an anodized film having a recess having a diameter of 25 nm or more on the surface of the aluminum material, A technique for joining an engineering plastic to a processing surface is disclosed.
  • Patent Document 5 discloses a technique in which fine irregularities or holes are formed in an aluminum alloy with a specific etching agent, and polyamide 6 resin, polyamide 66 resin, and PPS are injected into the holes.
  • Patent Documents 1 to 5 an engineering plastic having a polar group is used as a resin member.
  • non-polar polyolefin resins that have no affinity for metal members examples of applying the above technology include those using acid-modified polyolefin resins in which polar groups are introduced into polyolefin resins (patents) Reference 6).
  • the joining is performed by a laminating method or a pressing method by melt extrusion. It was.
  • the laminating method, the pressing method, etc. have a low degree of freedom in applicable shapes, and the acid-modified polyolefin-based resin adheres to places other than the places where bonding is desired. There was a drawback that the appearance could not be utilized.
  • oil-based paints have been used as paints for metal members used for home appliances, building materials, automobiles, etc.
  • water-based paints have been used from the viewpoints of environmental pollution reduction, occupational health and safety in recent years.
  • Epoxy resins, acrylic resins, polyester resins, polyurethane resins, and the like are used as paint components (resin components) contained in these water-based paints.
  • Examples of the prior art include an aqueous dispersion composition obtained by reacting an ethylene-unsaturated carboxylic acid copolymer and an epoxy compound (Patent Document 7), a vinyl copolymer having a hydrolyzable silyl group and an amineimide group.
  • a water-based anticorrosive coating composition comprising a coalescence, an uncured epoxy resin and an antirust pigment (Patent Document 8), a modifier component containing at least one of a diketone compound, a ketoester compound, a ketimine compound and a benzotriazole compound, a bisphenol type Examples thereof include an aqueous resin composition using an epoxy resin and a phosphoric acid compound (Patent Document 9), an aqueous dispersion urethane composition containing a dicarboxylic acid dihydrazide compound (Patent Document 10), and the like.
  • a resin member for example, a nonpolar thermoplastic resin having a low affinity with a metal member such as a polyolefin-based resin, a high melting point thermoplastic resin generally called a super engineering plastic, a heat having a glass transition temperature of 140 ° C. or higher. It was revealed that the joint strength of the metal / resin composite structure is inferior when a coating film made of a plastic resin, an amorphous thermoplastic resin, or an aqueous paint is used.
  • the present invention has been made in view of the above circumstances, and can directly join a metal member and a resin member made of a thermoplastic resin composition without any modification of the resin and the metal member.
  • the present invention provides a metal / resin composite structure excellent in bonding strength with a resin member.
  • the present invention provides a metal / resin composite structure in which coating film adhesion to a metal surface is remarkably improved. Furthermore, the present invention provides a metal / resin composite structure having high coating film adhesion even when the resin coating film formed on the metal surface is made of an aqueous paint.
  • the present inventors examined adjusting the ten-point average roughness (Rz) of the surface of the metal member in order to improve the bonding strength between the metal member and the resin member made of the thermoplastic resin composition.
  • Rz ten-point average roughness
  • the following metal / resin composite structure and metal member are provided.
  • a metal / resin composite structure formed by joining a metal member and a resin member made of a thermoplastic resin composition Conforms to JIS B0601 (corresponding international standard: ISO4287) for a total of 6 straight line parts consisting of any 3 straight line parts in parallel relation on the surface of the metal member and any 3 straight line parts orthogonal to the 3 straight line parts
  • (1) Includes one or more straight line portions with a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm of 30% or less.
  • One or more straight line portions having a load length ratio (Rmr) of a roughness curve at a cutting level of 40% and an evaluation length of 4 mm are 60% or less [3]
  • the average length (RSm) of the roughness curve elements of all the straight portions is more than 10 ⁇ m and less than 300 ⁇ m
  • RSm average length of the roughness curve elements of all the straight portions
  • the metal member is a metal / resin composite structure made of a metal material containing one or more metals selected from aluminum and aluminum alloys.
  • the thermoplastic resin composition has a glass transition temperature of 140 ° C.
  • thermoplastic resin composition is one or two selected from polystyrene resin, polyacrylonitrile resin, styrene-acrylonitrile copolymer resin, acrylonitrile-butadiene-styrene copolymer resin, polymethyl methacrylate resin, and polycarbonate resin.
  • a metal / resin composite structure in which the resin member is a coating film In the metal / resin composite structure according to [12] above, A metal / resin composite structure, wherein the coating film is obtained by applying a water-based paint to the surface of the metal member.
  • One or more straight line parts having a load length ratio (Rmr) of a roughness curve at a cutting level of 40% and an evaluation length of 4 mm are 60% or less [16]
  • Rz A metal member having a thickness exceeding 5 ⁇ m.
  • the average length (RSm) of the roughness curve elements of all straight portions exceeds 10 ⁇ m and is less than 300 ⁇ m [19]
  • the metal member is made of a metal material containing one or more metals selected from aluminum and aluminum alloys.
  • a metal / resin composite structure excellent in bonding strength between a metal member and a resin member made of a thermoplastic resin composition can be provided.
  • the present invention it is possible to provide a metal / resin composite structure in which a resin coating film formed on the surface of a metal member is firmly adhered to the surface of the metal member. Furthermore, even if the coating film is formed from a water-based paint, since the adhesion of the coating film is high, the metal / resin composite structure of the present invention is also from the viewpoint of reducing environmental pollution, occupational health, and safety. Are better.
  • FIG. 1 In order to explain the measurement points of a total of 6 linear parts consisting of arbitrary 3 linear parts in parallel relation and arbitrary 3 linear parts orthogonal to the 3 linear parts on the surface of the aluminum plate obtained in each preparation example FIG.
  • FIG. 1 is an external view showing an example of the structure of a metal / resin composite structure 106 according to an embodiment of the present invention.
  • the metal / resin composite structure 106 is obtained by joining a metal member 103 and a resin member 105 made of a thermoplastic resin composition (P), and joining the metal member 103 and the resin member 105 together.
  • the resin member 105 is a coating film
  • the metal / resin composite structure 106 is also referred to as a painted metal member.
  • the surface roughness measured in this manner satisfies the following requirements (1) and (2) simultaneously.
  • (1) Includes one or more straight line portions with a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm of 30% or less.
  • the 10-point average roughness (Rz) at 4 mm exceeds 2 ⁇ m.
  • the resin member 105 is made of a thermoplastic resin composition (P) containing a thermoplastic resin (A) as a resin component.
  • thermoplastic resin composition (P) constituting the resin member 105 penetrates into the uneven shape formed on the surface 110 of the metal member, and the metal and the resin are joined. And obtained by forming a metal-resin interface.
  • the metal member 103 and the resin member 105 can be formed without using an adhesive. It is possible to ensure the bonding property between the two. Specifically, when the thermoplastic resin composition (P) penetrates into the concavo-convex shape of the surface 110 of the metal member that simultaneously satisfies the above requirements (1) and (2), the metal member 103 and the resin member 105 It is possible to firmly join the metal member 103, which normally exhibits physical resistance (anchor effect) and difficult to join, to the resin member 105 made of the thermoplastic resin composition (P). It is thought that it became.
  • the metal / resin composite structure 106 obtained in this manner can also prevent moisture and moisture from entering the interface between the metal member 103 and the resin member 105. That is, the air tightness and water tightness at the adhesion interface of the metal / resin composite structure 106 can be improved.
  • each member constituting the metal / resin composite structure 106 will be described.
  • FIG. 3 is a schematic diagram for explaining a total of six linear portions including arbitrary three linear portions in parallel relation on the surface 110 of the metal member and arbitrary three linear portions orthogonal to the three linear portions.
  • the six straight lines for example, six straight lines B1 to B6 as shown in FIG. 3 can be selected.
  • a center line B1 passing through the center portion A of the joint surface 104 of the metal member 103 is selected as the reference line.
  • straight lines B2 and B3 that are parallel to the center line B1 are selected.
  • a center line B4 orthogonal to the center line B1 is selected, and straight lines B5 and B6 orthogonal to the center line B1 and parallel to the center line B4 are selected.
  • the vertical distances D1 to D4 between the straight lines are, for example, 2 to 5 mm.
  • the surface roughening process is normally performed not only on the joint surface 104 in the surface 110 of the metal member but also on the entire surface 110 of the metal member, for example, as shown in FIG.
  • the six straight line portions may be selected from locations other than the joint surface 104 on the same plane as the joint surface 104 of 103.
  • the bonding portion surface 104 of the metal member 103 is formed of the metal member 103. This is probably because the anchor effect between the resin member 105 and the resin member 105 can be effectively expressed.
  • the present inventors examined adjusting the ten-point average roughness (Rz) of the surface of the metal member in order to improve the bonding strength between the metal member and the resin member made of the thermoplastic resin composition. However, it has been clarified that the bonding strength between the metal member and the resin member cannot be sufficiently improved by simply adjusting the ten-point average roughness (Rz) of the surface of the metal member.
  • the present inventors considered that the scale of the load length ratio is effective as an index representing the sharpness of the uneven shape on the surface of the metal member.
  • the load length rate is small, it means that the sharpness of the uneven shape on the surface of the metal member is large, and when the load length rate is large, it means that the sharpness of the uneven shape on the surface of the metal member is small. Therefore, the present inventors pay attention to the scale of the load length ratio of the roughness curve of the metal member surface as a design guide for improving the bonding strength between the metal member and the resin member made of the thermoplastic resin composition. In addition, further diligent studies were conducted.
  • any three straight portions in parallel relation on the surface 110 of the metal member and any three straight portions orthogonal to the three straight portions may further satisfy one or more of the following requirements (1A) to (1C) for a total of 6 linear portions consisting of It is particularly preferable that the requirement (1C) is satisfied.
  • the requirement (1C) is the same as the requirement (3) described above.
  • a straight line portion with a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm is preferably 30% or less, preferably 2 straight portions or more, more preferably 3 straight portions or more, most preferably
  • a straight line portion having a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm is preferably 20% or less, preferably 1 straight line portion or more, more preferably 2 straight lines. Part or more, more preferably 3 straight parts or more, most preferably 6 straight parts are included.
  • (1C) Straight line part having a load length ratio (Rmr) of 60% or less of the roughness curve at a cutting level of 40% and an evaluation length of 4 mm Is preferably 1 straight part or more, more preferably 2 straight parts or more, further preferably 3 straight parts or more, and most preferably 6 straight parts
  • the average value of the load length ratio (Rmr) of the roughness curve at an evaluation length of 4 mm is preferably 0.1% or more and 40% or less, more preferably 0.5% or more and 30% or less, and still more preferably. Is from 1% to 20%, and most preferably from 2% to 15%.
  • what averaged the load length rate (Rmr) of the above-mentioned arbitrary 6 linear parts can be employ
  • Each load length ratio (Rmr) of the surface 110 of the metal member according to the present embodiment can be controlled by appropriately adjusting the conditions of the roughening treatment on the surface of the metal member 103.
  • the type and concentration of the etching agent, the temperature and time of the roughening treatment, the timing of the etching treatment, and the like are particularly cited as factors for controlling the load length ratios (Rmr).
  • any three straight portions in parallel relation on the surface 110 of the metal member and any three straight portions orthogonal to the three straight portions is preferable that the surface roughness measured in accordance with JIS B0601 (corresponding international standard: ISO4287) further satisfies the following requirement (2A) for a total of 6 linear portions consisting of (2A)
  • the 10-point average roughness (Rz) at an evaluation length of 4 mm of all straight portions is preferably more than 5 ⁇ m, more preferably 10 ⁇ m or more, and further preferably 15 ⁇ m or more.
  • the average value of the ten-point average roughness (Rz) on the surface 110 of the metal member is preferably more than 2 ⁇ m and less than 50 ⁇ m, more preferably Is more than 5 ⁇ m and 45 ⁇ m or less, more preferably 10 ⁇ m or more and 40 ⁇ m or less, and particularly preferably 15 ⁇ m or more and 30 ⁇ m or less.
  • what averaged the 10-point average roughness (Rz) of the above-mentioned arbitrary 6 linear parts can be employ
  • any three straight portions in parallel relation on the surface 110 of the metal member and any three straight portions orthogonal to the three straight portions is more than 10 ⁇ m and less than 300 ⁇ m, more preferably 20 ⁇ m or more and 200 ⁇ m or less.
  • the average value of the average length (RSm) of the roughness curve element on the surface 110 of the metal member is preferably more than 10 ⁇ m and less than 300 ⁇ m, More preferably, it is 20 ⁇ m or more and 200 ⁇ m or less.
  • the ten-point average roughness (Rz) of the surface 110 of the metal member according to the present embodiment and the average length (RSm) of the roughness curve element appropriately adjust the conditions of the roughening treatment for the surface 110 of the metal member. It is possible to control by.
  • the temperature and time of the roughening treatment, the etching amount, etc. are particularly cited as factors for controlling the ten-point average roughness (Rz) and the average length (RSm) of the roughness curve elements. .
  • the metal material which comprises the metal member 103 is not specifically limited, For example, iron, stainless steel, aluminum, an aluminum alloy, magnesium, a magnesium alloy, copper, a copper alloy, etc. can be mentioned. These may be used alone or in combination of two or more. Among these, aluminum (aluminum simple substance) and aluminum alloy are preferable from the viewpoint of light weight and high strength, and aluminum alloy is more preferable. As the aluminum alloy, alloy numbers 1050, 1100, 2014, 2024, 3003, 5052, 7075, etc. defined in JIS H4000 are preferably used.
  • the shape of the metal member 103 is not particularly limited as long as it can be joined to the resin member 105.
  • the metal member 103 can have a flat plate shape, a curved plate shape, a rod shape, a cylindrical shape, a lump shape, or the like.
  • the structure which consists of these combination may be sufficient.
  • the shape of the joint surface 104 to be joined to the resin member 105 is not particularly limited, and examples thereof include a flat surface and a curved surface.
  • the metal member 103 was processed into a predetermined shape as described above by metal removal such as cutting, pressing, etc., metal processing, punching, cutting, polishing, electric discharge processing, etc., and then the roughening process described later was performed. Those are preferred. In short, it is preferable to use a material processed into a necessary shape by various processing methods.
  • the surface of the metal member 103 according to the present embodiment can be formed, for example, by performing a roughening process using an etching agent.
  • etching agent for example, a material that has been used in the prior art.
  • factors such as the type and concentration of the etching agent, the temperature and time of the roughening process, the timing of the etching process, and the like are highly controlled.
  • it is important to highly control these factors.
  • an example of the roughening method of the metal member surface which concerns on this embodiment is shown.
  • the roughening method of the metal member surface which concerns on this embodiment is not limited to the following examples.
  • the metal member 103 does not have a thick film made of an oxide film, hydroxide, or the like on the surface on the joint side with the resin member 105.
  • the surface layer may be polished by mechanical polishing such as sand blasting, shot blasting, grinding, barrel processing, or chemical polishing before the next etching step. Good.
  • an alkaline aqueous solution such as a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution, or degreasing.
  • Patent Document 5 as an etchant used for surface roughening treatment of a metal member made of a metal material containing aluminum, an aspect using an alkaline etchant, an alkaline etchant and an acid etchant are used in combination.
  • An embodiment is disclosed in which an acid-based etching agent is treated and then washed with an alkaline solution.
  • the alkaline etching agent is preferably used from the viewpoint of workability because the reaction with the metal member is gentle.
  • the degree of roughening treatment on the surface of the metal member is weak and it is difficult to form a deep uneven shape. It became clear that there was.
  • Examples of the roughening treatment using the acid-based etching agent include treatment methods such as immersion and spraying.
  • the treatment temperature is preferably 20 to 40 ° C.
  • the treatment time is preferably about 5 to 350 seconds, and from the viewpoint of more uniformly roughening the surface of the metal member, 20 to 300 seconds is more preferred, and 50 to 300 seconds is particularly preferred.
  • the surface of the metal member 103 is roughened into a concavo-convex shape by the roughening treatment using the acid-based etching agent.
  • the etching amount (dissolution amount) of the metal member 103 in the depth direction when the acid-based etching agent is used is 0.1 to 500 ⁇ m when calculated from the mass, specific gravity and surface area of the dissolved metal member 103. It is preferably 5 to 500 ⁇ m, more preferably 5 to 100 ⁇ m.
  • the etching amount is equal to or greater than the lower limit, the bonding strength between the metal member 103 and the resin member 105 can be further improved. Further, if the etching amount is equal to or less than the above upper limit value, the processing cost can be reduced.
  • the etching amount can be adjusted by the processing temperature, processing time, and the like.
  • the entire surface of the metal member may be roughened, and only the surface to which the resin member 105 is bonded is partially formed.
  • the roughening treatment may be performed.
  • the ultrasonic cleaning conditions are not particularly limited as long as the generated smut can be removed, but the solvent used is preferably water, and the treatment time is preferably 1 to 20 minutes.
  • the specific acid type etching agent mentioned later is preferable.
  • an uneven shape suitable for improving adhesion between the surface of the metal member and the resin member containing the thermoplastic resin (A) is formed, and the metal member 103 is formed by the anchor effect. It is considered that the bonding strength between the resin member 105 and the resin member 105 is improved.
  • thermoplastic resin having a glass transition temperature of 140 ° C. or higher or a resin member containing an amorphous thermoplastic resin
  • an acid-based etching agent that can form a deep uneven shape on the surface of the metal member is used from the viewpoint of improving the adhesion strength with a coating film formed from an aqueous paint that is difficult to bond to the metal member by ordinary treatment. It is preferable.
  • the acid-based etching agent contains at least one of ferric ions and cupric ions and an acid, and may contain manganese ions, various additives, and the like as necessary.
  • the said ferric ion is a component which oxidizes a metal member, and this ferric ion can be contained in an acid type etching agent by mix
  • the ferric ion source include ferric nitrate, ferric sulfate, and ferric chloride.
  • ferric ion sources ferric chloride is preferable because it has excellent solubility and is inexpensive.
  • the content of the ferric ion in the acid-based etching agent is preferably 0.01 to 20% by mass, more preferably 0.1 to 12% by mass, and further preferably 0.5 to 7%. % By mass, still more preferably 1-6% by mass, particularly preferably 1-5% by mass. If content of the said ferric ion is more than the said lower limit, the fall of the roughening rate (dissolution rate) of a metal member can be prevented. On the other hand, if the content of the ferric ion is not more than the above upper limit value, the roughening rate can be properly maintained, so that it is more suitable for improving the bonding strength between the metal member 103 and the resin member 105. Roughening becomes possible.
  • cupric ion is a component which oxidizes a metal member, and can mix
  • cupric ion source examples include cupric sulfate, cupric chloride, cupric nitrate, and cupric hydroxide. Of the cupric ion sources, cupric sulfate and cupric chloride are preferred because they are inexpensive.
  • the content of the cupric ion in the acid-based etching agent is preferably 0.001 to 10% by mass, more preferably 0.01 to 7% by mass, and still more preferably 0.8. It is 05 to 1% by mass, still more preferably 0.1 to 0.8% by mass, still more preferably 0.15 to 0.7% by mass, and particularly preferably 0.15 to 0.4% by mass. If content of the said cupric ion is more than the said lower limit, the fall of the roughening rate (dissolution rate) of a metal member can be prevented.
  • the roughening rate can be maintained appropriately, so that it is more suitable for improving the bonding strength between the metal member 103 and the resin member 105. Roughening becomes possible.
  • the acid-based etching agent may contain only one of ferric ion and cupric ion, or may contain both, but both ferric ion and cupric ion It is preferable to contain.
  • the acid-based etching agent contains both ferric ions and cupric ions, a good roughened shape that is more suitable for improving the bonding strength between the metal member 103 and the resin member 105 can be easily obtained.
  • the contents of ferric ions and cupric ions are preferably in the above ranges.
  • the total content of ferric ions and cupric ions in the acid-based etching agent is preferably 0.011 to 20% by mass, more preferably 0.1 to 15% by mass, and still more preferably. Is 0.5 to 10% by mass, particularly preferably 1 to 5% by mass.
  • the acid-based etching agent may contain manganese ions in order to uniformly roughen the surface of the metal member.
  • Manganese ions can be contained in the acid-based etching agent by blending a manganese ion source.
  • the manganese ion source include manganese sulfate, manganese chloride, manganese acetate, manganese fluoride, and manganese nitrate.
  • manganese sulfate and manganese chloride are preferable from the viewpoint of being inexpensive.
  • the content of the manganese ion in the acid-based etching agent is preferably 0 to 1% by mass, more preferably 0 to 0.5% by mass.
  • the present inventors have confirmed that the manganese ion content exhibits sufficient bonding strength even when the thermoplastic resin (A) constituting the resin member 105 is 0% by mass when it is a polyolefin resin. ing. That is, when a polyolefin resin is used as the thermoplastic resin (A), the manganese ion content is preferably 0% by mass. On the other hand, when a thermoplastic resin other than the polyolefin resin is used, the content is not more than the upper limit. Manganese ions are used as appropriate.
  • the acid is a component that dissolves a metal oxidized by ferric ions and / or cupric ions.
  • the acid include inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, perchloric acid, and sulfamic acid, and organic acids such as sulfonic acid and carboxylic acid.
  • the carboxylic acid include formic acid, acetic acid, citric acid, oxalic acid, malic acid and the like. One or more of these acids can be added to the acid-based etching agent.
  • sulfuric acid is preferred because it has almost no odor and is inexpensive.
  • carboxylic acid is preferable from the viewpoint of uniformity of the roughened shape.
  • the acid content in the acid-based etching agent is preferably 0.1 to 50% by mass, more preferably 0.5 to 50% by mass, and 1 to 50% by mass. Is more preferably 1 to 30% by mass, still more preferably 1 to 25% by mass, and still more preferably 2 to 18% by mass. If content of the said acid is more than the said lower limit, the fall of the metal roughening rate (dissolution rate) can be prevented. On the other hand, if the content of the acid is not more than the upper limit, it is possible to prevent crystal precipitation of the metal salt when the liquid temperature is lowered, so that workability can be improved.
  • a surfactant may be added to prevent unevenness due to surface contaminants such as fingerprints, and other additives may be added as necessary. May be.
  • Other additives include halide ion sources added to form deep irregularities, such as sodium chloride, potassium chloride, sodium bromide, potassium bromide and the like.
  • thio compounds such as thiosulfate ions and thiourea added to increase the roughening treatment speed
  • azoles such as imidazole, triazole and tetrazole added to obtain a more uniform roughened shape
  • Examples thereof include a pH adjuster added to control the oxidization reaction.
  • the total content is preferably about 0.01 to 10% by mass in the acid-based etching agent.
  • the acid-based etching agent of this embodiment can be easily prepared by dissolving the above components in ion-exchanged water or the like.
  • the resin member 105 is made of a thermoplastic resin composition (P).
  • the thermoplastic resin composition (P) includes a thermoplastic resin (A) as a resin component and, if necessary, a filler (B). Furthermore, the thermoplastic resin composition (P) contains other compounding agents as necessary. For convenience, it is described that the resin member 105 is made of the thermoplastic resin composition (P) even when the resin member 105 is made of only the thermoplastic resin (A).
  • thermoplastic resin (A) is not particularly limited.
  • polyolefin resin polymethacrylic resin such as polymethyl methacrylate resin
  • polyacrylic resin such as polymethyl acrylate resin
  • polystyrene resin polyvinyl alcohol-poly Vinyl chloride copolymer resin
  • polyvinyl acetal resin polyvinyl butyral resin
  • polyvinyl formal resin polymethylpentene resin
  • maleic anhydride-styrene copolymer resin polycarbonate resin
  • polyphenylene ether resin polyether ether ketone resin
  • Aromatic polyether ketones such as resins, polyester resins, polyamide resins, polyamideimide resins, polyimide resins, polyetherimide resins, styrene elastomers, polyolefin elastomers -Polyurethane elastomer, polyester elastomer, polyamide elastomer, i
  • thermoplastic resin (A) from the viewpoint that the effect of improving the bonding strength between the metal member 103 and the resin member 105 can be more effectively obtained, the polyolefin resin, the polyester resin, and the polyamide resin are used. One or two or more selected thermoplastic resins are preferably used.
  • polystyrene-based resin a polymer obtained by polymerizing olefin can be used without any particular limitation.
  • examples of the olefin constituting the polyolefin resin include ethylene, ⁇ -olefin, and cyclic olefin.
  • Examples of the ⁇ -olefin include linear or branched ⁇ -olefins having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms. More specifically, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-octene, Decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene and the like can be mentioned.
  • cyclic olefins examples include cyclic olefins having 3 to 30 carbon atoms, and preferably 3 to 20 carbon atoms. More specifically, cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, 2-methyl-1,4,5,8-dimethano-1,2,3,4,4a, 5 , 8,8a-octahydronaphthalene and the like.
  • the olefin constituting the polyolefin resin is preferably ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1- Examples include pentene. Of these, ethylene, propylene, 1-butene, 1-hexene and 4-methyl-1-pentene are more preferable, and ethylene or propylene is more preferable.
  • the polyolefin resin may be obtained by polymerizing the above-mentioned olefin alone, or may be obtained by random copolymerization, block copolymerization, or graft copolymerization in combination of two or more. .
  • polyolefin resin may be a linear resin or one having a branched structure introduced therein.
  • polyester resin examples include aliphatic polyesters such as polylactic acid, polyglycolic acid, polycaprolactone, and polyethylene succinate, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate (PBT), and polycyclohexylenedimethylene terephthalate (PCT). ) And the like.
  • polyamide resins examples include ring-opening polymerization aliphatic polyamides such as PA6 and PA12; polycondensation polyamides such as PA66, PA46, PA610, PA612, and PA11; MXD6, PA6T, PA9T, PA6T / 66, PA6T / 6.
  • Semi-aromatic polyamides such as amorphous PA; polyaromatic polyamides such as poly (p-phenylene terephthalamide), poly (m-phenylene terephthalamide), poly (m-phenylene isophthalamide), amide elastomers, etc. It is done.
  • thermoplastic resin (A) from the viewpoint that the effect of improving the bonding strength between the metal member 103 and the resin member 105 can be more effectively obtained, a thermoplastic resin having a glass transition temperature of 140 ° C. or higher and amorphous One or two or more thermoplastic resins selected from the thermoplastic resins are preferably used.
  • thermoplastic resin having a glass transition temperature of 140 ° C. or higher is selected from, for example, polycarbonate resin, polyetheretherketone resin, polyetherketone resin and other aromatic polyetherketone, polyimide resin, and polyethersulfone resin. 1 type or 2 types or more are mentioned.
  • amorphous thermoplastic resin examples include polystyrene resin, polyacrylonitrile resin, styrene-acrylonitrile copolymer resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), polymethyl methacrylate resin, and polycarbonate resin. 1 type or 2 types or more selected from are mentioned.
  • the thermoplastic resin (A) has high fluidity in order to easily enter the uneven shape on the surface of the metal member 103. Therefore, in the present embodiment, the thermoplastic resin (A) has an MFR measured under a load of 2.16 kg in accordance with ASTM D1238, preferably 10 to 200 g / 10 min. The MFR can be measured at a temperature determined by each resin, such as 230 ° C. for a propylene polymer and 190 ° C. for an ethylene polymer.
  • the resin member 105 according to the present embodiment may be a coating film.
  • Various commercially available paints can be used for the coating film.
  • the types of paint are roughly classified into oil paint and water paint.
  • the oil paint include those obtained by dissolving a resin such as an acrylic resin, a polyolefin resin, a polyurethane resin, an epoxy resin, a phenol resin, a polyester resin, and an alkyd resin in an organic solvent.
  • water-based paints include acrylic resins, acrylic silicon resins, polyolefin resins, silicone resins, polyurethane resins, epoxy resins, phenol resins, polyester resins, alkyd resins, and biodegradable resins. What suspended resin in water is mentioned.
  • the coating film may be formed from either the oil-based paint or the water-based paint. Since the metal member 103 subjected to the surface roughening treatment has deep irregularities, the coating resin enters the recesses to form a coating film, so that the adhesion with the metal is high, and as a result, it is difficult to peel off. You can expect a situation. In the present embodiment, since the uneven shape applied to the metal member 103 subjected to the surface roughening treatment described above is formed with deep unevenness as described above, particularly like a water-based paint, Even if the coating resin is suspended in water and the molecules of each coating resin are in a large lump shape based on the surface tension, they can enter the recess when applied.
  • the metal / resin composite structure 106 of the present embodiment has a high adhesion even when using a water-based paint, in which it was difficult to form a highly adhesive coating film on the metal member surface by the conventional technology. It is very excellent in that it can form a protective coating film.
  • the thermoplastic resin composition (P) may further include a filler (B) from the viewpoint of adjusting the difference in linear expansion coefficient between the metal member 103 and the resin member 105 and improving the mechanical strength of the resin member 105.
  • one or more kinds can be selected from the group consisting of glass fiber, carbon fiber, carbon particle, clay, talc, silica, mineral, and cellulose fiber.
  • they are 1 type, or 2 or more types selected from glass fiber, carbon fiber, talc, and a mineral.
  • the shape of the filler (B) is not particularly limited, and may be any shape such as a fiber shape, a particle shape, or a plate shape.
  • the filler (B) preferably has a filler having a maximum length in the range of 10 nm to 600 ⁇ m in a fraction of 5 to 100%.
  • the maximum length is more preferably 30 nm to 550 ⁇ m, and still more preferably 50 nm to 500 ⁇ m.
  • the fraction of the filler (B) in the range of the maximum length is preferably 10 to 100%, more preferably 20 to 100%.
  • the filler (B) can easily move in the thermoplastic resin (A) melted during the molding of the thermoplastic resin composition (P).
  • the filler (B) can be present at a certain rate in the vicinity of the surface of the metal member. Therefore, as described above, the resin that interacts with the filler (B) enters the uneven shape on the surface of the metal member, so that it is possible to have stronger bonding strength.
  • thermoplastic resin composition (P) a thermoplastic resin composition
  • the length of the filler (B) is determined by removing the member made of the thermoplastic resin composition (P) from the resulting metal / resin composite structure 106 and then putting the thermoplastic resin composition (P) in the oven. It is calculated
  • the maximum length of the filler (B) is, as shown by L1 to L3 in the schematic diagram of FIG.
  • the fraction of the filler (B) is the number of all fillers (B) in the electron micrograph used to measure the length of the filler (B), and is included in the above range. It is obtained by calculating the number of fillers (B) to be obtained.
  • the number of fillers (B) may be one or two or more. When two or more kinds are used, all types of fillers (B) are collectively obtained by the method described above.
  • the filler (B) may be a filler having a maximum length exceeding 600 ⁇ m before kneading with the thermoplastic resin (A), and is cut and pulverized during kneading and molding.
  • the maximum length may be within the above range.
  • thermoplastic resin composition (P) includes the filler (B)
  • the content thereof is preferably 1 part by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (A). More preferably, they are 5 mass parts or more and 90 mass parts or less, Most preferably, they are 10 mass parts or more and 80 mass parts or less.
  • the filler (B) has an effect of controlling the linear expansion coefficient of the resin member 105 in addition to the effect of increasing the rigidity of the resin member 105.
  • the temperature dependence of the shape stability of the metal member 103 and the resin member 105 is often greatly different, so that a large temperature change occurs. And the composite is easily distorted. This distortion can be reduced when the resin member 105 contains the filler (B).
  • content of the said filler (B) exists in the said range, reduction of toughness can be suppressed.
  • thermoplastic resin composition (P) may contain other compounding agents for the purpose of imparting individual functions.
  • compounding agents examples include heat stabilizers, antioxidants, pigments, weathering agents, flame retardants, plasticizers, dispersants, lubricants, mold release agents, antistatic agents, and the like.
  • thermoplastic resin composition (P) The manufacturing method of a thermoplastic resin composition (P) is not specifically limited, Generally, it can manufacture by a well-known method. For example, the following method is mentioned. First, the thermoplastic resin (A), the filler (B) as necessary, and the other compounding agents as necessary are combined with a Banbury mixer, a single screw extruder, a twin screw extruder, a high speed twin screw. The thermoplastic resin composition (P) is obtained by mixing or melt-mixing using a mixing apparatus such as an extruder.
  • the manufacturing method of the metal / resin composite structure 106 is not particularly limited, and the thermoplastic resin composition (P) is formed into a desired resin member 105 shape with respect to the metal member 103 subjected to the surface roughening treatment. Thus, it is obtained by bonding while forming.
  • the molding method of the resin member 105 includes injection molding, extrusion molding, heat press molding, compression molding, transfer molding molding, casting molding, laser welding molding, reaction injection molding (RIM molding), rim molding (LIM molding), and thermal spraying.
  • a resin molding method such as molding can be employed.
  • thermoplastic resin composition (P) is dissolved or dissolved in a solvent.
  • a coating method in which the resin varnish is dispersed to prepare the resin varnish and the resin varnish is applied to the metal member 103 and other various coating methods can be employed. Examples of other coating methods include baking coating, electrodeposition coating, electrostatic coating, powder coating, and ultraviolet curable coating.
  • thermoplastic resin composition (P ) Is preferably produced by an injection molding method in which it is injected into a mold.
  • a method including the following steps (i) to (iii) is preferable.
  • Step for producing thermoplastic resin composition (P) (ii) Step for installing metal member 103 in a mold for injection molding (iii) Step for producing thermoplastic resin composition (P) for metal member 103 Process of injection molding into the mold so as to be in contact with at least a part to form the resin member 105
  • each process will be described.
  • thermoplastic resin composition (P) is as the manufacturing method of the above-mentioned thermoplastic resin composition (P).
  • the thermoplastic resin (A), the filler (B) as necessary, and the other compounding agents as necessary are combined with a Banbury mixer, a single screw extruder, a twin screw extruder, a high speed twin screw.
  • the thermoplastic resin composition (P) can be obtained by mixing or melt-mixing using a mixing apparatus such as an extruder.
  • thermoplastic resin composition (P) was obtained in step (i) in the mold so that at least a part of the thermoplastic resin composition (P) was in contact with the surface of the metal member 103 on which the concave shape was formed.
  • the thermoplastic resin composition (P) is injected and solidified.
  • the metal / resin composite structure 106 can be obtained by opening the mold and releasing the mold.
  • injection foam molding or high-speed heat cycle molding for rapidly heating and cooling the mold may be used in combination.
  • Injection foaming methods include adding a chemical foaming agent to the resin, injecting nitrogen gas or carbon dioxide directly into the cylinder of the injection molding machine, or injecting nitrogen gas or carbon dioxide in a supercritical state.
  • MuCell injection foam molding method in which it is injected into a cylinder part of a molding machine, and any method can obtain a metal / resin composite structure in which the resin member is a foam.
  • a counter pressure can be used as a mold control method, or a core back can be used depending on the shape of a molded product.
  • High-speed heat cycle molding can be carried out by connecting a rapid heating / cooling device to a mold.
  • the rapid heating / cooling apparatus may be a generally used system.
  • a heating method any one of a steam type, a pressurized hot water type, a hot water type, a hot oil type, an electric heater type, an electromagnetic induction overheating type, or a combination of them may be used.
  • a cooling method any one of a cold water type and a cold oil type or a combination thereof may be used.
  • the injection mold is heated to a temperature of 100 ° C. or more and 250 ° C. or less, and after the injection of the thermoplastic resin composition (P) is completed, the above injection mold is used. It is desirable to cool.
  • the preferable temperature of the mold is different depending on the thermoplastic resin (A) constituting the thermoplastic resin composition (P). If the resin is a crystalline resin and the melting point is less than 200 ° C., the temperature is 100 ° C. or more and 150 If it is a crystalline resin having a melting point of 200 ° C. or higher, 140 ° C. or higher and 250 ° C. or lower is desirable. About an amorphous resin, 50 to 250 degreeC is desirable and 100 to 180 degreeC is more desirable.
  • a method for forming a coating film on the metal member 103 will be described.
  • a method for forming a coating film on the metal member 103 a conventionally used coating film forming method can be used without limitation.
  • it can be performed by applying the above-mentioned various paints to the surface of the metal member 103 by a method such as spray coating such as air spray or airless spray, dip coating, brush coating, roller coating or coater coating.
  • spray coating such as air spray or airless spray
  • dip coating dip coating
  • brush coating roller coating or coater coating
  • the metal / resin composite structure 106 according to the present embodiment Since the metal / resin composite structure 106 according to the present embodiment has high productivity and high degree of freedom in shape control, it can be developed for various applications. Furthermore, since the metal / resin composite structure 106 according to the present embodiment exhibits high airtightness and watertightness, it is preferably used for applications according to these characteristics.
  • applications for household goods such as structural parts for vehicles, on-vehicle equipment, housings for electronic devices, housings for home appliances, structural parts, mechanical parts, various automotive parts, electronic device parts, furniture, kitchenware, etc. , Medical equipment, building material parts, other structural parts and exterior parts.
  • the following parts are designed so that the metal supports the parts where the strength is insufficient with resin alone.
  • An ECU box, an electrical component, etc. are mentioned.
  • building materials and furniture include glass window frames, handrails, curtain rails, chests, drawers, closets, bookcases, desks, chairs, and the like.
  • precision electronic components include connectors, relays, and gears.
  • a transport container, a suitcase, a trunk, etc. are mentioned as a transport container.
  • thermoplastic resin (A) combines the high thermal conductivity of the metal member 103 with the adiabatic property of the thermoplastic resin (A), and is used for parts used in equipment that optimally designs heat management, for example, various home appliances.
  • household appliances such as refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, televisions, clocks, ventilation fans, projectors, speakers, personal computers, mobile phones, smartphones, digital cameras, tablets
  • Electronic information devices such as type PCs, portable music players, portable game machines, chargers, and batteries.
  • toys sports equipment, shoes, sandals, bags, forks and knives, spoons, dishes such as dishes, ballpoint pens and mechanical pencils, files, binders and other stationery, frying pans and pans, kettles, frying, Examples include a ladle, a hole insulator, a whisk, a cooking tool such as a tongue, a lithium ion secondary battery component, a robot, and the like.
  • FIGS. 1 and 2 are used as a common view of each embodiment.
  • FIG. 1 is an external view schematically showing an example of the structure of a metal / resin composite structure 106 of a metal member 103 and a resin member 105.
  • FIG. 2 is a configuration diagram schematically showing an example of a process of manufacturing the metal / resin composite structure 106 of the metal member 103 and the resin member 105.
  • a metal member 103 that has been processed into a predetermined shape and has a joint surface (surface treatment region) 104 having a fine uneven surface on the surface is placed in an injection mold 102, and an injection molding machine 101.
  • Schematically shows a process of manufacturing the metal / resin composite structure 106 integrated with the metal member 103 on which the fine uneven surface is formed by injecting the thermoplastic resin composition (P) through the gate / runner 107. ing.
  • the adhesion of the coated metal member thus obtained was measured according to JIS K 5600-5-6 (cross-cut method).
  • the evaluation of adhesion swelling was based on the following criteria.
  • the surface roughness of the obtained surface-treated metal member was measured using a surface roughness measuring device “Surfcom 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)”, and cutting levels of 10%, 20%, The load length ratio (Rmr), ten-point average roughness (Rz), and average length of the roughness curve element (RSm) at 30%, 40%, 50%, 60%, 70% and 80% were determined.
  • Table 2A shows the etching rate obtained from the number of straight line portions where the value is 60% or less, the Rz value of 6 straight line portions, the average length (RSm) of roughness curve elements, and the mass ratio of the metal members before and after the etching process Show.
  • the surface roughness curve obtained by this measurement is shown in FIG.
  • the surface of the surface-treated metal member was observed with a scanning electron microscope (manufactured by JEOL, model number JSM-6701F) at a magnification of 5000 times. A photograph is shown in FIG.
  • Preparation Example 2A (Surface roughening treatment with acid-based etching agent 2A)
  • the same treatment was performed except that the acid-based etching agent 1A shown in Table 1A was changed to the acid-based etching agent 2A and etching was performed for 80 seconds, thereby obtaining a surface-treated metal member.
  • Table 2A shows Rmr, Rz, RSm, and the etching rate of the obtained surface-treated metal member.
  • the surface roughness curve obtained by this measurement is shown in FIG.
  • the surface of the surface-treated metal member was observed with a scanning electron microscope (manufactured by JEOL, model number JSM-6701F) at a magnification of 5000 times. A photograph is shown in FIG.
  • Preparation Example 3A (After surface roughening with acid-based etching agent 1A, treatment with alkaline solution) An aluminum plate (thickness: 1.6 mm) of alloy number 5052 defined in JIS H4000 was cut into a length of 45 mm and a width of 18 mm. This aluminum plate was etched by being immersed in an acid-based etching agent 1A (30 ° C.) having the composition shown in Table 1A for 40 seconds and rocking. Subsequently, it was washed with running water (1 minute). Next, the treated aluminum plate was immersed in a 5% by mass aqueous sodium hydroxide solution (25 ° C.) and swung for 30 seconds, followed by washing with water.
  • the treated aluminum plate was immersed in a 35% by mass nitric acid aqueous solution (25 ° C.) and shaken for 30 seconds, then washed with running water (1 minute) and dried to dry the surface.
  • a metal member was obtained.
  • Table 2A shows Rmr, Rz, RSm, and the etching rate of the obtained surface-treated metal member.
  • the surface roughness curve obtained by this measurement is shown in FIG.
  • the surface of the surface-treated metal member was observed with a scanning electron microscope (manufactured by JEOL, model number JSM-6701F) at a magnification of 5000 times. A photograph is shown in FIG.
  • Preparation Example 4A (Surface roughening treatment with acid-based etching agent 3A)
  • the same treatment was performed except that the acid-based etching agent 1A shown in Table 1A was changed to the acid-based etching agent 3A and etched for 160 seconds to obtain a surface-treated metal member.
  • Table 2A shows Rmr, Rz, RSm, and the etching rate of the obtained surface-treated metal member.
  • Preparation Example 5A (Surface roughening treatment with acid-based etching agent 3A)
  • the same treatment was performed except that the acid-based etching agent 1A shown in Table 1A was changed to the acid-based etching agent 3A and etching was performed for 80 seconds, thereby obtaining a surface-treated metal member.
  • Table 2A shows Rmr, Rz, RSm and etching rate of the obtained surface-treated metal member.
  • Preparation Example 6A (Surface roughening treatment with acid-based etching agent 3A) The same treatment was performed as in Preparation Example 1A, except that the acid-based etching agent 1A shown in Table 1A was changed to the acid-based etching agent 3A and etching was performed for 40 seconds, to obtain a surface-treated metal member.
  • Table 2A shows the etching rates of the obtained surface-treated metal members.
  • Preparation Example 7A (Surface roughening treatment with acid-based etching agent 4A)
  • the same treatment was performed except that the acid-based etching agent 1A shown in Table 1A was changed to the acid-based etching agent 4A and etching was performed for 320 seconds to obtain a surface-treated metal member.
  • Table 2A shows the etching rates of the obtained surface-treated metal members.
  • Preparation Example 8A (Surface roughening treatment with acid-based etching agent 4A)
  • the same treatment was performed except that the acid-based etching agent 1A shown in Table 1A was changed to the acid-based etching agent 4A and etching was performed for 160 seconds to obtain a surface-treated metal member.
  • Table 2A shows the etching rates of the obtained surface-treated metal members.
  • Preparation Example 9A (Surface roughening treatment with acid-based etching agent 4A)
  • the same treatment was performed except that the acid-based etching agent 1A shown in Table 1A was changed to the acid-based etching agent 4A and etching was performed for 80 seconds, thereby obtaining a surface-treated metal member.
  • Table 2A shows the etching rates of the obtained surface-treated metal members.
  • Preparation Example 10A (Surface roughening treatment with acid-based etching agent 4A)
  • the same treatment was performed except that the acid-based etching agent 1A shown in Table 1A was changed to the acid-based etching agent 4A and etching was performed for 40 seconds, to obtain a surface-treated metal member.
  • Table 2A shows the etching rates of the obtained surface-treated metal members.
  • Example 1A A small dumbbell metal insert mold 102 was attached to J85AD110H manufactured by Nippon Steel Works, and an aluminum plate (metal member 103) prepared according to Preparation Example 1A was installed in the mold 102.
  • a thermoplastic resin composition (P) in the mold 102 glass fiber reinforced polypropylene (Prime Polymer V7100, polypropylene (MFR (230 ° C., 2.16 kg load): 18 g / 10 min) 80 parts by mass, 20 parts by mass of glass fiber) is subjected to injection molding under the conditions of a cylinder temperature of 250 ° C., a mold temperature of 120 ° C., an injection speed of 25 mm / sec, a holding pressure of 80 MPa, and a holding time of 10 seconds, and the metal / resin composite structure 106 Got.
  • the evaluation results of the bonding strength are shown in Table 3A.
  • Example 2A A metal / resin composite structure 106 was obtained in the same manner as in Example 1A, except that in Example 1A, the aluminum plate prepared in Preparation Example 2A was installed instead of the aluminum plate prepared in Preparation Example 1A.
  • the evaluation results of the bonding strength are shown in Table 3A.
  • Example 3A In Example 1A, a metal / resin composite structure 106 was obtained in the same manner as in Example 1A, except that the aluminum plate prepared in Preparation Example 4A was installed instead of the aluminum plate prepared in Preparation Example 1A. The evaluation results of the bonding strength are shown in Table 3A.
  • Example 4A In Example 1A, a metal / resin composite structure 106 was obtained in the same manner as in Example 1A, except that the aluminum plate prepared in Preparation Example 5A was installed instead of the aluminum plate prepared in Preparation Example 1A. The evaluation results of the bonding strength are shown in Table 3A.
  • Example 5A In Example 1A, a metal / resin composite structure 106 was obtained in the same manner as in Example 1A, except that the aluminum plate prepared in Preparation Example 7A was installed instead of the aluminum plate prepared in Preparation Example 1A. The evaluation results of the bonding strength are shown in Table 3A.
  • Example 1A A metal / resin composite structure 106 was obtained in the same manner as in Example 1A, except that in Example 1A, the aluminum plate prepared in Preparation Example 3A was installed instead of the aluminum plate prepared in Preparation Example 1A.
  • the evaluation results of the bonding strength are shown in Table 3A.
  • Example 1A a metal / resin composite structure 106 was obtained in the same manner as in Example 1A, except that the aluminum plate prepared in Preparation Example 6A was installed instead of the aluminum plate prepared in Preparation Example 1A.
  • the evaluation results of the bonding strength are shown in Table 3A.
  • Example 1A a metal / resin composite structure 106 was obtained in the same manner as in Example 1A, except that the aluminum plate prepared in Preparation Example 8A was installed instead of the aluminum plate prepared in Preparation Example 1A.
  • the evaluation results of the bonding strength are shown in Table 3A.
  • Example 1A a metal / resin composite structure 106 was obtained in the same manner as in Example 1A, except that the aluminum plate prepared in Preparation Example 9A was installed instead of the aluminum plate prepared in Preparation Example 1A.
  • the evaluation results of the bonding strength are shown in Table 3A.
  • Example 1A a metal / resin composite structure 106 was obtained in the same manner as in Example 1A, except that the aluminum plate prepared in Preparation Example 10A was installed instead of the aluminum plate prepared in Preparation Example 1A.
  • the evaluation results of the bonding strength are shown in Table 3A.
  • Example 1A an uneven shape with sharp corners as shown in FIG. 5 is formed on the surface of the metal member treated in Preparation Example 1A, and the metal member obtained by entering the resin member 105 therein. / The resin composite structure 106 is considered to have high bonding strength.
  • Example 2A the surface of the metal member treated in Preparation Example 2A has a concavo-convex shape with sharper corners than in FIG. 5 as shown in FIG. 7, and the resin member enters here, It is considered that the obtained metal / resin composite structure 106 has higher bonding strength.
  • Comparative Example 1A the surface of the metal member treated in Preparation Example 3A was not formed with a sufficiently large uneven shape as shown in FIG. 9, and the resulting metal / resin composite structure 106 was The bonding strength was low.
  • the etching amount is an etching amount calculated from the mass difference between the aluminum parts before and after the etching process, the specific gravity of aluminum, and the surface area of the aluminum plate, and was adjusted by the etching time. The same applies to the “etching amount” shown below.
  • the surface of the surface-treated metal member was scanned with a scanning electron microscope (manufactured by JEOL, model number JSM-6). 701F) at an enlargement magnification of 5000 times. A photograph is shown in FIG.
  • Preparation Example 2B (After surface roughening with acid-based etching agent B, ultrasonic cleaning)
  • Preparation Example 1B After etching with the acid-based etching agent B, the same treatment was performed except that the water was washed with running water and ultrasonic washing (in water, 1 minute) was performed to obtain a surface-treated metal member. .
  • the surface of the surface-treated metal member was observed with a scanning electron microscope (manufactured by JEOL, model number JSM-6701F) at a magnification of 5000 times. A photograph is shown in FIG.
  • Preparation Example 3B (Surface roughening treatment with an acid-based etchant B following an alkali-based etchant treatment) An aluminum plate (thickness: 1.6 mm) of alloy number 5052 defined in JIS H4000 was cut into a length of 45 mm and a width of 18 mm. This aluminum plate was dipped in an alkaline etching agent (35 ° C.) having the composition shown in Table 2B, rocked for 1 minute, and then washed with running water (1 minute).
  • an alkaline etching agent 35 ° C.
  • the film was immersed in an acid-based etching agent B (30 ° C.) having the composition shown in Table 1B and rocked to etch only the etching amount shown in Table 3B, and then washed with running water (1 minute) and dried.
  • a surface-treated metal member was obtained.
  • the etching amount shown in Table 3B is the sum of the etching amount by the alkaline etching agent and the etching amount by the acid etching agent B.
  • Preparation Example 4B (Surface roughening treatment with an alkaline etchant) An aluminum plate (thickness: 1.6 mm) of alloy number 5052 defined in JIS H4000 was cut into a length of 45 mm and a width of 18 mm. This aluminum plate was immersed in an alkaline etching agent (35 ° C.) having the composition shown in Table 2B and rocked to etch only the etching amount shown in Table 3B. After washing with running water (1 minute), the treated aluminum plate was immersed in a 15% by weight aqueous nitric acid solution (25 ° C.) and shaken for 60 seconds, and then washed with running water (1 minute). The surface-treated metal member was obtained by performing and drying.
  • the surface of the surface-treated metal member was observed with a scanning electron microscope (manufactured by JEOL, model number JSM-6701F) at a magnification of 5000 times. A photograph is shown in FIG.
  • Preparation Example 5B (Surface roughening treatment with an alkaline etchant following an acid-based etchant B treatment)
  • An aluminum plate (thickness: 1.6 mm) of alloy number 5052 defined in JIS H4000 was cut into a length of 45 mm and a width of 18 mm.
  • the aluminum plate was dipped in an acid-based etching agent B (30 ° C.) having the composition shown in Table 1B, rocked for 1 minute, and then washed with running water (1 minute).
  • the substrate is immersed in an alkaline etching agent (35 ° C.) having the composition shown in Table 2B and rocked to etch only the etching amount shown in Table 3B, and then washed with running water (1 minute) and dried.
  • a surface-treated metal member was obtained.
  • the etching amount shown in Table 3B is the total of the etching amount by the acid-based etching agent B and the etching amount by the alkaline etching agent.
  • Preparation Example 6B (After surface roughening treatment with acid-based etching agent B, treatment with alkaline solution) An aluminum plate (thickness: 2 mm) with an alloy number of 5052 specified in JIS H4000 was cut into a length of 110 mm and a width of 25 mm. This aluminum plate was immersed in an acid-based etching agent B (30 ° C.) having the composition shown in Table 1B and swung to etch only the etching amount shown in Table 3B, and then washed with running water (1 minute). It was. Next, the treated aluminum plate was immersed in a 5% by mass aqueous sodium hydroxide solution (25 ° C.) and swung for 30 seconds, followed by washing with water. Next, the treated aluminum plate was immersed in a 35% by mass nitric acid aqueous solution (25 ° C.) and shaken for 30 seconds, then washed with running water (1 minute) and dried to dry the surface. A metal member was obtained.
  • the surface of the surface-treated metal member was scanned with a scanning electron microscope (manufactured by JEOL, model number JSM-6). 701F) at an enlargement magnification of 5000 times. A photograph is shown in FIG.
  • Example 1B A small dumbbell metal insert mold 102 was mounted on J85AD110H manufactured by Nippon Steel Works, and an aluminum plate (metal member 103) prepared according to Preparation Example 1B was installed in the mold 102.
  • a thermoplastic resin composition (P) in the mold 102 glass fiber reinforced polypropylene (Prime Polymer V7100, polypropylene (MFR (230 ° C., 2.16 kg load): 18 g / 10 min) 80 parts by mass, 20 parts by mass of glass fiber) is subjected to injection molding under the conditions of a cylinder temperature of 250 ° C., a mold temperature of 120 ° C., an injection speed of 25 mm / sec, a holding pressure of 80 MPa, and a holding time of 10 seconds, and the metal / resin composite structure 106 Got.
  • the evaluation results of the bonding strength are shown in Table 4B.
  • Example 2B In Example 1B, a metal / resin composite structure 106 was obtained in the same manner as in Example 1B, except that the aluminum plate prepared in Preparation Example 2B was installed instead of the aluminum plate prepared in Preparation Example 1B. The evaluation results of the bonding strength are shown in Table 4B.
  • Example 3B In Example 1B, as the thermoplastic resin composition (P), glass fiber reinforced polypropylene (V7100 manufactured by Prime Polymer Co., Ltd., 80 parts by mass of polypropylene (MFR (230 ° C., 2.16 kg load): 18 g / 10 min)), glass fiber 20 In place of (mass parts), glass fiber reinforced polypropylene (L-2040P manufactured by Prime Polymer Co., Ltd., polypropylene (MFR (230 ° C., 2.16 kg load): 20 g / 10 min) 80 parts by mass, glass fiber 20 parts by mass)) was used. Except for the above, a metal / resin composite structure 106 was obtained in the same manner as Example 1B. The evaluation results of the bonding strength are shown in Table 4B.
  • Example 4B In Example 1B, as the thermoplastic resin composition (P), glass fiber reinforced polypropylene (V7100 manufactured by Prime Polymer Co., Ltd., 80 parts by mass of polypropylene (MFR (230 ° C., 2.16 kg load): 18 g / 10 min)), glass fiber 20 Metal / resin composite structure in the same manner as in Example 1B except that homopolypropylene (J105G (MFR (230 ° C., 2.16 kg load): 9 g / 10 min)) manufactured by Prime Polymer Co., Ltd. was used instead of (mass parts). 106 was obtained. The evaluation results of the bonding strength are shown in Table 4B.
  • Example 5B A metal / resin composite structure 106 was obtained in the same manner as in Example 1B except that the aluminum plate prepared in Preparation Example 3B was installed instead of the aluminum plate prepared in Preparation Example 1B.
  • the evaluation results of the bonding strength are shown in Table 4B.
  • Example 1B a metal / resin composite structure 106 was obtained in the same manner as in Example 1B, except that the aluminum plate prepared in Preparation Example 4B was installed instead of the aluminum plate prepared in Preparation Example 1B.
  • the evaluation results of the bonding strength are shown in Table 4B.
  • Example 1B a metal / resin composite structure 106 was obtained in the same manner as in Example 1B, except that the aluminum plate prepared in Preparation Example 5B was installed instead of the aluminum plate prepared in Preparation Example 1B.
  • the evaluation results of the bonding strength are shown in Table 4B.
  • Example 1B a metal / resin composite structure 106 was obtained in the same manner as in Example 1B, except that the aluminum plate prepared in Preparation Example 6B was installed instead of the aluminum plate prepared in Preparation Example 1B.
  • the evaluation results of the bonding strength are shown in Table 4B.
  • Example 1B the surface of the metal member 103 treated in Preparation Example 1B was formed with a concavo-convex shape having sharp corners as shown in FIG. 12, and the resin member 105 entered here was obtained.
  • the metal / resin composite structure 106 is considered to have high bonding strength.
  • Example 2B the metal member 103 treated in Preparation Example 1B was further subjected to ultrasonic cleaning (in water, 1 minute) in Preparation Example 2B. Since the smut generated on the metal surface by the treatment could be removed, a concavo-convex shape with sharp corners as shown in FIG. 13 was formed, and the resin member 105 entered into the metal / resin thus obtained. The composite structure 106 is considered to have obtained higher bonding strength.
  • Example 3B glass fiber reinforced polypropylene (L-2040P) having a relatively long glass fiber length is used instead of the glass fiber reinforced polypropylene (V-7100) used in Example 1B. Similarly, high bonding strength is obtained.
  • Example 4B homopolypropylene (J105G) is used instead of glass fiber reinforced polypropylene (V-7100) in Example 1B, but high bonding strength is obtained as in Example 1B.
  • Example 5B the same method as in Example 1B was performed using the metal member 103 obtained in Preparation Example 3B and subjected to the surface roughening treatment with the acid-based etching agent B following the alkali-based etching agent treatment.
  • the obtained metal / resin composite structure 106 had a bonding strength comparable to that of Example 1B.
  • Comparative Example 1B the surface of the metal member treated in Preparation Example 4B was not formed with a sufficiently large uneven shape as shown in FIG. 14, and the obtained metal / resin composite structure 106 was The bonding strength was low.
  • Comparative Example 2B after etching with an acid-based etching agent B according to Preparation Example 5B, treatment with an alkaline etching agent was performed.
  • Comparative Example 3B after etching with an acid-based etching agent B according to Preparation Example 6B, A metal member treated with an aqueous sodium hydroxide solution and an aqueous nitric acid solution is used. Although it is assumed that sharp unevenness as shown in FIG. 12 is once formed on the surface of the metal member by the treatment with the acid-based etching agent B, the uneven shape is formed by the subsequent treatment with the alkaline etching agent or sodium hydroxide. This is considered to have resulted in a low bonding strength.
  • the metal surface shape according to Preparation Example 6B in Comparative Example 3B is shown in FIG.
  • Example 2C In Example 1C, a metal / resin composite structure 106 was obtained in the same manner as in Example 1C, except that the aluminum plate prepared in Preparation Example 2B was installed instead of the aluminum plate prepared in Preparation Example 1B. The evaluation results of the bonding strength are shown in Table 1C.
  • Example 3C In Example 1C, instead of the polyetherimide resin (1100F manufactured by SABIC Innovative Plastics) as the thermoplastic resin composition (P), a glass fiber reinforced polyimide resin (JGH3030 manufactured by Mitsui Chemicals, Tg is 250 ° C.) A metal / resin composite structure 106 was obtained in the same manner as in Example 1C except that 70 parts by mass of polyimide resin and 30 parts by mass of glass fiber) were used. The evaluation results of the bonding strength are shown in Table 1C.
  • a metal / resin composite structure 106 was obtained in the same manner as in Example 1C except that. The evaluation results of the bonding strength are shown in Table 1C.
  • the metal / resin composite structure 106 was obtained in the same manner as in Example 1C, except that (C) was used.
  • the evaluation results of the bonding strength are shown in Table 1C.
  • Example 6C A metal / resin composite structure 106 was obtained in the same manner as in Example 1C except that the aluminum plate prepared in Preparation Example 3B was installed instead of the aluminum plate prepared in Preparation Example 1B. The evaluation results of the bonding strength are shown in Table 1C.
  • Example 1C a metal / resin composite structure 106 was obtained in the same manner as in Example 1C, except that the aluminum plate prepared in Preparation Example 4B was installed instead of the aluminum plate prepared in Preparation Example 1B.
  • the evaluation results of the bonding strength are shown in Table 1C.
  • Example 1C a metal / resin composite structure was obtained in the same manner as in Example 1C except that the aluminum plate prepared in Preparation Example 5B was installed instead of the aluminum plate prepared in Preparation Example 1B.
  • the evaluation results of the bonding strength are shown in Table 1C.
  • Example 3C A metal / resin composite structure 106 was obtained in the same manner as in Example 1C except that in Example 1C, the aluminum plate prepared in Preparation Example 6B was installed instead of the aluminum plate prepared in Preparation Example 1B. The evaluation results of the bonding strength are shown in Table 1C.
  • Example 1C the surface of the metal member 103 treated in Preparation Example 1B was formed with an uneven shape with sharp corners as shown in FIG. 12, and the resin member 105 entered here was obtained.
  • the metal / resin composite structure 106 is considered to have high bonding strength.
  • Example 2C in Preparation Example 2B, the metal member treated in Preparation Example 1B was further subjected to ultrasonic cleaning (in water, 1 minute). Since the smut generated on the metal surface by the treatment could be removed, a concavo-convex shape with sharp corners as shown in FIG. 13 was formed, and the resin member 105 entered into the metal / resin thus obtained. It is considered that the composite structure 106 has developed higher bonding strength.
  • Example 3C glass fiber reinforced polyimide resin (JGH3030) is used in place of the polyetherimide resin (1100F) used in Example 1C, but high bonding strength is obtained as in Example 1C.
  • Example 4C polyethersulfone resin (4101GL20) is used in place of the polyetherimide resin (1100F) used in Example 1C, but high bonding strength is obtained as in Example 1C. Yes.
  • Example 5C glass fiber reinforced polycarbonate resin (GN3630H) is used in place of the polyetherimide resin (1100F) used in Example 1C, but high bonding strength is obtained as in Example 1C. ing.
  • Example 6C the same method as in Example 1C was performed using the metal member 103 obtained in Preparation Example 3B and subjected to the surface roughening treatment with the acid-based etching agent B following the alkali-based etching agent treatment.
  • the obtained metal / resin composite structure 106 had a bonding strength comparable to that in Example 1C.
  • Comparative Example 1C the surface of the metal member 103 treated in Preparation Example 4B was not formed with a sufficiently large uneven shape as shown in FIG. 14, and the obtained metal / resin composite structure 106 was obtained. Has a low bonding strength.
  • Comparative Example 2C after etching with an acid-based etching agent B according to Preparation Example 5B, treatment with an alkaline etching agent was performed.
  • Comparative Example 3C after etching with an acid-based etching agent B according to Preparation Example 6B, A metal member treated with an aqueous sodium hydroxide solution and an aqueous nitric acid solution is used. Although it is assumed that sharp unevenness as shown in FIG. 12 is once formed on the surface of the metal member by the treatment with the acid-based etching agent B, the uneven shape is formed by the subsequent treatment with the alkaline etching agent or sodium hydroxide. This is considered to have resulted in a low bonding strength.
  • the metal surface shape according to Preparation Example 6B in Comparative Example 3C is shown in FIG.
  • the etching amount is an etching amount calculated from the mass difference between the aluminum parts before and after the etching process, the specific gravity of aluminum, and the surface area of the aluminum plate, and was adjusted by the etching time. The same applies to the “etching amount” shown below.
  • Preparation Example 2D (After surface roughening with acid-based etching agent B, ultrasonic cleaning)
  • Preparation Example 1D after etching with the acid-based etching agent B, the same treatment was performed except that the water was washed with running water and ultrasonic washing (in water, 1 minute) was performed to obtain a surface-treated metal member. .
  • Preparation Example 3D (Surface roughening treatment with an acid-based etchant B following an alkali-based etchant treatment) An aluminum plate (thickness: 1 mm) of alloy number 5052 defined in JIS H4000 was cut into a length of 150 mm and a width of 75 mm. This aluminum plate was dipped in an alkaline etching agent (35 ° C.) having the composition shown in Table 2B, rocked for 1 minute, and then washed with running water (1 minute).
  • an alkaline etching agent 35 ° C.
  • the etching amount shown in Table 1D is the total of the etching amount by the alkaline etching agent and the etching amount by the acid etching agent B.
  • Preparation Example 4D (Surface roughening treatment with an alkaline etchant) An aluminum plate (thickness: 1 mm) of alloy number 5052 defined in JIS H4000 was cut into a length of 150 mm and a width of 75 mm. This aluminum plate was immersed in an alkaline etching agent (35 ° C.) having the composition shown in Table 2B and rocked to etch only the etching amount shown in Table 1D. After washing with running water (1 minute), the treated aluminum plate was immersed in a 15% by weight aqueous nitric acid solution (25 ° C.) and shaken for 60 seconds, and then washed with running water (1 minute). The surface-treated metal member was obtained by performing and drying.
  • Preparation Example 5D (Surface roughening treatment with an alkaline etchant following the acid etchant B treatment)
  • An aluminum plate (thickness: 1 mm) of alloy number 5052 defined in JIS H4000 was cut into a length of 150 mm and a width of 75 mm.
  • the aluminum plate was dipped in an acid-based etching agent B (30 ° C.) having the composition shown in Table 1B, rocked for 1 minute, and then washed with running water (1 minute).
  • the substrate is immersed in an alkaline etching agent (35 ° C.) having the composition shown in Table 2B and rocked to etch the etching amount shown in Table 1D, and then washed with running water (1 minute) and dried.
  • the etching amount shown in Table 1D is the total of the etching amount by the acid-based etching agent B and the etching amount by the alkaline etching agent.
  • Preparation Example 7D Japanese Patent Laid-Open No. 2005-119005, treatment described in Example 1
  • a commercially available aluminum degreasing agent “NE-6 (manufactured by Meltex)” was dissolved in water at a concentration of 15% to 75 ° C.
  • the aluminum plate was immersed in an aluminum degreasing tank containing this aqueous solution for 5 minutes and washed with water, and then immersed in a tank containing a 1% hydrochloric acid aqueous solution at 40 ° C. for 1 minute and washed with water. Subsequently, it was immersed in a bath containing 1% sodium hydroxide aqueous solution at 40 ° C. for 1 minute and washed with water.
  • the surface of the surface-treated metal member was observed with a scanning electron microscope (manufactured by JEOL, model number JSM-6701F) at a magnification of 100,000. A photograph is shown in FIG.
  • Example 1D An aqueous paint was applied to the aluminum plate prepared in Preparation Example 1D using an applicator so that the dry coating film became 40 ⁇ m, and then dried in an oven at 120 ° C. to obtain a coated metal member.
  • a water-dispersed polyolefin Mitsubishi Chemicals, Chemipearl (registered trademark) S300 was used. The evaluation results of adhesion are shown in Table 2D.
  • Example 2D In Example 1D, a coated metal member was obtained in the same manner as in Example 1D, except that the aluminum plate prepared in Preparation Example 2D was used instead of the aluminum plate prepared in Preparation Example 1D. The evaluation results of adhesion are shown in Table 2D.
  • Example 3D In Example 1D, instead of an aqueous dispersion polyolefin (Mitsui Chemicals, Chemipearl (registered trademark) S300; Ionomer) as a coating material, an aqueous dispersion polyolefin (Mitsui Chemicals, Chemipearl (registered trademark) M200; A coated metal member was obtained in the same manner as in Example 1D except that (low density polyethylene) was used. The evaluation results of adhesion are shown in Table 2D.
  • an aqueous dispersion polyolefin Mitsubishi Chemicals, Chemipearl (registered trademark) S300; Ionomer
  • an aqueous dispersion polyolefin Mitsubishi Chemicals, Chemipearl (registered trademark) M200
  • a coated metal member was obtained in the same manner as in Example 1D except that (low density polyethylene) was used.
  • the evaluation results of adhesion are shown in Table 2D.
  • Example 4D In Example 1D, instead of an aqueous dispersion polyolefin (Mitsui Chemicals, Chemipearl (registered trademark) S300; Ionomer) as a paint, an aqueous dispersion polyolefin (Mitsui Chemicals, Chemipearl (registered trademark) W310; A coated metal member was obtained in the same manner as in Example 1D except that (low molecular weight polyethylene) was used. The evaluation results of adhesion are shown in Table 2D.
  • aqueous dispersion polyolefin Mitsubishi Chemicals, Chemipearl (registered trademark) S300; Ionomer
  • Example 5D In Example 1D, a coated metal member was obtained in the same manner as in Example 1D, except that the aluminum plate prepared in Preparation Example 3D was used instead of the aluminum plate prepared in Preparation Example 1D. The evaluation results of adhesion are shown in Table 2D.
  • Example 1D a coated metal member was obtained in the same manner as in Example 1D, except that the aluminum plate prepared in Preparation Example 4D was used instead of the aluminum plate prepared in Preparation Example 1D.
  • the evaluation results of adhesion are shown in Table 2D.
  • Example 1D a coated metal member was obtained in the same manner as in Example 1D, except that the aluminum plate prepared in Preparation Example 5D was used instead of the aluminum plate prepared in Preparation Example 1D.
  • the evaluation results of adhesion are shown in Table 2D.
  • Example 1D a coated metal member was obtained in the same manner as in Example 1D, except that the aluminum plate prepared in Preparation Example 6D was used instead of the aluminum plate prepared in Preparation Example 1D.
  • the evaluation results of adhesion are shown in Table 2D.
  • Example 1D a coated metal member was obtained in the same manner as in Example 1D, except that the aluminum plate prepared in Preparation Example 7D was used instead of the aluminum plate prepared in Preparation Example 1D.
  • the evaluation results of adhesion are shown in Table 2D.
  • Example 1D the surface of the metal member 103 treated in Preparation Example 1D is formed with a concavo-convex shape having sharp corners as shown in FIG. 12, and a coating resin (resin made of aqueous dispersion polyolefin) is formed here. It is considered that the obtained coated metal member has high adhesion due to the entry of the member 105).
  • Example 2D the metal member treated in Preparation Example 1D was further subjected to ultrasonic cleaning (in water, 1 minute) in Preparation Example 2D. Since the smut generated on the metal surface by the treatment could be removed, a concavo-convex shape with sharp corners as shown in FIG. 13 was formed, and it was obtained by entering a coating resin made of aqueous dispersion polyolefin. It is considered that the coated metal member has high adhesion.
  • Example 3D instead of the ionomer (Mitsui Chemicals, Chemipearl S300 (registered trademark)) used in Example 1D, a low-density polyethylene (Mitsui Chemicals, Chemipearl M200 (registered trademark)) having a large particle size is used. However, adhesion was obtained as in Example 1D.
  • ionomer Mitsubishi Chemicals, Chemipearl S300 (registered trademark)
  • a low-density polyethylene Mitsubishi Chemicals, Chemipearl M200 (registered trademark)
  • Example 4D low molecular weight polyethylene (Mitsui Chemicals, Chemipearl W310 (registered trademark)) with a larger particle size is used instead of the ionomer (Mitsui Chemicals, Chemipearl S300 (registered trademark)) used in Example 1D. ) Is used, but adhesion is obtained as in Example 1D.
  • Example 5D the same method as in Example 1D was performed using the metal member 103 obtained in Preparation Example 3D and subjected to the surface roughening treatment with the acid-based etching agent B following the alkali-based etching agent treatment. The obtained coated metal member had adhesiveness comparable to that in Example 1D.
  • Comparative Example 1D as a result of applying a coating resin made of an aqueous dispersion polyolefin without performing surface treatment, a certain degree of adhesion was shown, but sufficient adhesion was not obtained.
  • Comparative Example 2D the surface of the metal member treated in Preparation Example 4D was not formed with a sufficiently large uneven shape as shown in FIG. 12, and the resulting coated metal member had low adhesion. .
  • Comparative Example 3D after etching with acid-based etching agent B according to Preparation Example 5D, the sample is treated with an alkaline etching agent.
  • Comparative Example 4D after etching with acid-based etching agent B according to Preparation Example 6D, A metal member treated with an aqueous sodium hydroxide solution and an aqueous nitric acid solution is used. Although it is assumed that sharp unevenness as shown in FIG. 12 is once formed on the surface of the metal member by the treatment with the acid-based etching agent B, the uneven shape is formed by the subsequent treatment with the alkaline etching agent or sodium hydroxide. Is considered to have deteriorated, resulting in low adhesion.
  • Comparative Example 5D the surface of the metal member treated in Preparation Example 7D was not formed with a sufficiently large uneven shape as shown in FIG. 16, and the obtained coated metal member had low adhesion. .
  • the metal / resin composite structure 106 of the present invention is obtained by integrating the metal member 103 and the resin member 105 without being easily peeled off, and can obtain a high bonding strength.
  • the metal / resin composite structure 106 of the present invention can realize various shapes by a relatively simple method. Therefore, the contribution of the present invention to the development of the industry is great.
  • the present invention includes the following aspects.
  • A1 In a metal / resin composite structure formed by joining a metal member made of a metal material containing aluminum and having a surface roughened treatment and a resin member made of a resin composition containing a polyolefin resin, The surface roughening treatment of the metal member is performed with an acid-based etching agent, The treatment with the acid-based etching agent is performed at the final stage of the surface roughening treatment of the metal member, The metal / resin composite structure, wherein the etching agent is an acid-based etching agent containing at least one of ferric ions and cupric ions and an acid.
  • the surface roughening treatment of the metal member is performed with an acid-based etching agent,
  • the treatment with the acid-based etching agent is performed at the final stage of the surface roughening treatment of the metal member,
  • the metal / resin composite structure, wherein the etching agent is an acid-based etching agent containing at least one of ferric ions and cupric ions and an acid.
  • a metal / resin composite structure formed by joining a metal member made of a metal material containing aluminum and subjected to a surface roughening treatment and a resin member made of a resin composition containing an amorphous thermoplastic resin
  • the surface roughening treatment of the metal member is performed with an acid-based etching agent
  • the treatment with the acid-based etching agent is performed at the final stage of the surface roughening treatment of the metal member
  • the metal / resin composite structure, wherein the etching agent is an acid-based etching agent containing at least one of ferric ions and cupric ions and an acid.
  • [B3] The metal / resin composite structure according to [B1] or [B2], in which the metal member is cleaned by ultrasonic cleaning following the surface roughening process of the metal member.
  • [B4] The metal / resin composite structure according to [B3] above, wherein the metal member is cleaned by ultrasonic cleaning following the surface roughening treatment step of the metal member.
  • the surface roughening treatment of the metal member is performed with an acid-based etching agent,
  • the treatment with the acid-based etching agent is performed at the final stage of the surface roughening treatment of the metal member,
  • the coated metal member, wherein the etchant is an acid-based etchant containing at least one of ferric ions and cupric ions and an acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • ing And Chemical Polishing (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 金属/樹脂複合構造体(106)は、金属部材(103)と、熱可塑性樹脂組成物(P)からなる樹脂部材(105)とが接合されてなる。金属部材(103)の表面(110)上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす。 (1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む (2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える

Description

金属/樹脂複合構造体および金属部材
 本発明は、金属/樹脂複合構造体および金属部材に関する。
 各種部品の軽量化の観点から、金属の代替品として樹脂が使用されている。しかし、全ての金属部品を樹脂で代替することは難しい場合も多い。そのような場合には、金属成形体と樹脂成形体を接合一体化することで新たな複合部品を製造することが考えられる。しかしながら、金属成形体と樹脂成形体を工業的に有利な方法で、かつ高い接合強度で接合一体化できる技術は実用化されていない。
 近年、金属成形体と樹脂成形体を接合一体化する技術として、金属部材の表面に微細な凹凸を形成させたものに、その金属部材と親和性を有する極性基を持つエンジニアリングプラスチックを接合させることが検討されている(例えば、特許文献1~5等)。
 例えば、特許文献1~3には、アルミニウム合金をヒドラジン水溶液で浸漬処理することによって、その表面に30~300nm径の凹部を形成した後、該処理面にポリブチレンテレフタレート樹脂(以下「PBT」という。)、またはポリフェニレンスルィド樹脂(以下「PPS」という。)を接合させる技術が開示されている。
 また、特許文献4には、アルミニウム素材を燐酸または水酸化ナトリウムの電解浴で陽極酸化処理することにより、アルミニウム素材の表面に直径が25nm以上である凹部を有する陽極酸化皮膜を形成した後、該処理面にエンジニアリングプラスチックを接合させる技術が開示されている。
 さらに、特許文献5には、アルミニウム合金に対し、特定のエッチング剤により微細な凹凸もしくは孔を形成し、その孔にポリアミド6樹脂、ポリアミド66樹脂、PPSを射出接合させる技術が開示されている。
 特許文献1~5では、樹脂部材として極性基を持つエンジニアリングプラスチックが用いられている。その一方で、金属部材と親和性を有しない非極性のポリオレフィン系樹脂に関して、上記の技術を適用した事例としては、ポリオレフィン系樹脂に極性基を導入した酸変性ポリオレフィン樹脂を用いるものがある(特許文献6)。しかしながら、当該樹脂と金属部材とを接合させるためには、樹脂を溶融させた状態に保ち、高圧で長時間接触させる必要があり、通常は溶融押出によるラミネート法、プレス法などで接合が行われていた。ただし、ラミネート法、プレス法などは、適用可能な形状の自由度が低い上、接合させたい場所以外にも酸変性ポリオレフィン系樹脂が付着することにより、部品の形状によっては、金属部材の性能や外観を活かせなくなるという欠点があった。
 また、従来、家電製品、建材、自動車用などに用いられる金属部材の塗料には、油性塗料が用いられてきていたが、近年の環境汚染性低減、労働衛生、安全性の観点から、水性塗料への移行が進んできている。これらの水性塗料に含まれる塗料成分(樹脂成分)としては、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂等が用いられている。
 従来技術の例としては、エチレン-不飽和カルボン酸共重合体とエポキシ化合物とを反応させて得られる水性分散組成物(特許文献7)、加水分解性シリル基とアミンイミド基を有するビニル系共重合体と未硬化エポキシ樹脂および防錆顔料からなる水系防錆塗料組成物(特許文献8)、ジケトン化合物、ケトエステル化合物、ケチミン化合物、ベンゾトリアゾール化合物のいずれか一種類以上含む改質剤成分、ビスフェノール型エポキシ樹脂およびリン酸化合物を用いた水性樹脂組成物(特許文献9)、ジカルボン酸ジヒドラジド化合物を含有してなる水分散型ウレタン組成物(特許文献10)等が挙げられる。
 しかしながら、上記樹脂組成物を含有する水性塗料を使用しても、金属表面への塗膜密着性を十分満足するまでには至っていない。
特開2004-216425号公報 特開2009-6721号公報 国際公開第2003/064150号パンフレット 国際公開第2004/055248号パンフレット 特開2013-52671号公報 特開2002-3805号公報 特開2002-241670号公報 特開平6-41471号公報 特開2003-2950号公報 特開2003-226728号公報
 本発明者らの検討によれば、特許文献1~10に開示されているような方法で得られた金属/樹脂複合構造体の接合強度は、まだまだ十分に満足できるものではないことが明らかになった。特に、樹脂部材として、例えば、ポリオレフィン系樹脂等の金属部材との親和性が低い非極性の熱可塑性樹脂や、一般にスーパーエンプラと呼ばれる高融点の熱可塑性樹脂、ガラス転移温度が140℃以上の熱可塑性樹脂、非晶性熱可塑性樹脂、水性塗料からなる塗膜を用いた場合に金属/樹脂複合構造体の接合強度に劣ることが明らかになった。
 本発明は上記事情に鑑みてなされたものであり、金属部材と、熱可塑性樹脂組成物からなる樹脂部材とを、樹脂の変性等を伴うことなく、直接接合することができ、かつ金属部材と樹脂部材との接合強度に優れた金属/樹脂複合構造体を提供するものである。
 また、本発明は、金属表面への塗膜密着性が著しく向上した金属/樹脂複合構造体を提供するものである。さらに本発明は、金属表面に形成される樹脂塗膜が、水性塗料からなる場合であっても塗膜密着性が高い金属/樹脂複合構造体を提供するものである。
 本発明者らは、金属部材と、熱可塑性樹脂組成物からなる樹脂部材との接合強度を向上させるために、金属部材の表面の十点平均粗さ(Rz)を調整することを検討した。
 しかし、金属部材の表面の十点平均粗さ(Rz)を単に調整するだけでは金属部材と樹脂部材との接合強度を十分に向上させることができないことが明らかとなった。
 そこで、本発明者らは、金属部材と、熱可塑性樹脂組成物からなる樹脂部材との接合強度を向上させるための設計指針についてさらに鋭意検討した。その結果、金属部材表面の粗さ曲線の負荷長さ率(Rmr)という尺度がこうした設計指針として有効であることを見出し、本発明に到達した。
 すなわち、本発明によれば、以下に示す金属/樹脂複合構造体および金属部材が提供される。
[1]
 金属部材と、熱可塑性樹脂組成物からなる樹脂部材とが接合してなる金属/樹脂複合構造体であって、
 上記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす金属/樹脂複合構造体。
 (1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
 (2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
[2]
 上記[1]に記載の金属/樹脂複合構造体において、
 上記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(3)をさらに満たす金属/樹脂複合構造体。
 (3)切断レベル40%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が60%以下である直線部を1直線部以上含む
[3]
 上記[1]または[2]に記載の金属/樹脂複合構造体において、
 上記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、すべての直線部の上記十点平均粗さ(Rz)が5μmを超える金属/樹脂複合構造体。
[4]
 上記[3]に記載の金属/樹脂複合構造体において、
 上記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、すべての直線部の上記十点平均粗さ(Rz)が15μm以上である金属/樹脂複合構造体。
[5]
 上記[1]乃至[4]いずれか一つに記載の金属/樹脂複合構造体において、
 上記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(4)をさらに満たす金属/樹脂複合構造体。
 (4)すべての直線部の、粗さ曲線要素の平均長さ(RSm)が10μmを超え300μm未満である
[6]
 上記[1]乃至[5]いずれか一つに記載の金属/樹脂複合構造体において、
 上記金属部材の上記表面が粗化処理されており、
 上記金属部材の上記粗化処理の工程の最終段階では、酸系エッチング剤による粗化処理が行われており、
 上記酸系エッチング剤が、第二鉄イオンおよび第二銅イオンの少なくとも一方と、酸とを含むものである、金属/樹脂複合構造体。
[7]
 上記[6]に記載の金属/樹脂複合構造体において、
 上記金属部材は、上記粗化処理の工程の後に、超音波洗浄により洗浄されたものである金属/樹脂複合構造体。
[8]
 上記[1]乃至[7]いずれか一つに記載の金属/樹脂複合構造体において、
 上記金属部材はアルミニウムおよびアルミニウム合金から選択される一種または二種以上の金属を含む金属材料からなるものである金属/樹脂複合構造体。
[9]
 上記[1]乃至[8]いずれか一つに記載の金属/樹脂複合構造体において、
 上記熱可塑性樹脂組成物が、ポリオレフィン系樹脂、ポリエステル系樹脂およびポリアミド系樹脂から選択される一種または二種以上の熱可塑性樹脂を含む金属/樹脂複合構造体。
[10]
 上記[1]乃至[8]いずれか一つに記載の金属/樹脂複合構造体において、
 上記熱可塑性樹脂組成物が、140℃以上のガラス転移温度を有する、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂、およびポリエーテルスルホン樹脂から選択される一種または二種以上の熱可塑性樹脂を含む金属/樹脂複合構造体。
[11]
 上記[1]乃至[8]いずれか一つに記載の金属/樹脂複合構造体において、
 上記熱可塑性樹脂組成物が、ポリスチレン樹脂、ポリアクリロニトリル樹脂、スチレン-アクリロニトリル共重合体樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂、ポリメタクリル酸メチル樹脂、およびポリカーボネート樹脂から選択される一種または二種以上の非晶性熱可塑性樹脂を含む金属/樹脂複合構造体。
[12]
 上記[1]乃至[11]いずれか一つに記載の金属/樹脂複合構造体において、
 上記樹脂部材が塗膜である金属/樹脂複合構造体。
[13]
 上記[12]に記載の金属/樹脂複合構造体において、
 上記塗膜が水性塗料を上記金属部材の表面に塗布することによって得られるものである金属/樹脂複合構造体。
[14]
 当該金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす、熱可塑性樹脂組成物からなる樹脂部材との接合のために用いられる金属部材。
 (1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
 (2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
[15]
 上記[14]に記載の金属部材において、
 上記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(3)をさらに満たす金属部材。
 (3)切断レベル40%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が60%以下である直線部を1直線部以上含む
[16]
 上記[14]または[15]に記載の金属部材において、
 上記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、すべての直線部の上記十点平均粗さ(Rz)が5μmを超える金属部材。
[17]
 上記[16]に記載の金属部材において、
 上記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、すべての直線部の上記十点平均粗さ(Rz)が15μm以上である金属部材。
[18]
 上記[14]乃至[17]いずれか一つに記載の金属部材において、
 上記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(4)をさらに満たす金属部材。
 (4)すべての直線部の、粗さ曲線要素の平均長さ(RSm)が10μmを超え300μm未満である
[19]
 上記[14]乃至[18]いずれか一つに記載の金属部材において、
 上記金属部材はアルミニウムおよびアルミニウム合金から選択される一種または二種以上の金属を含む金属材料からなるものである金属部材。
 本発明によれば、金属部材と、熱可塑性樹脂組成物からなる樹脂部材との接合強度に優れた金属/樹脂複合構造体を提供することができる。
 また、本発明によれば、金属部材の表面に形成された樹脂塗膜が、該金属部材表面と強固に密着した金属/樹脂複合構造体を提供することができる。さらに、該塗膜は水性塗料から形成されたものであっても、塗膜密着性が高いため、本発明の金属/樹脂複合構造体は環境汚染性低減、労働衛生、安全性の観点からも優れている。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明に係る実施形態の金属/樹脂複合構造体の構造の一例を模式的に示した外観図である。 本発明に係る実施形態の金属/樹脂複合構造体を製造する過程の一例を模式的に示した構成図である。 本実施形態に係る金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部の測定箇所を説明するための模式図である。 各調製例で得られたアルミニウム板の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部の測定箇所を説明するための模式図である。 調製例1Aで得られたアルミニウム板の表面の表面粗さ曲線を示す図である。 調製例1Aで得られたアルミニウム板の表面の拡大図を表す電子顕微鏡写真を示す図である。 調製例2Aで得られたアルミニウム板の表面の表面粗さ曲線を示す図である。 調製例2Aで得られたアルミニウム板の表面の拡大図を表す電子顕微鏡写真を示す図である。 調製例3Aで得られたアルミニウム板の表面の表面粗さ曲線を示す図である。 調製例3Aで得られたアルミニウム板の表面の拡大図を表す電子顕微鏡写真を示す図である。 充填材の最大長さの定義を模式的に示した概念図である。 調製例1Bで得られたアルミニウム板の表面の拡大図を表す電子顕微鏡写真を示す図である。 調製例2Bで得られたアルミニウム板の表面の拡大図を表す電子顕微鏡写真を示す図である。 調製例4Bで得られたアルミニウム板の表面の拡大図を表す電子顕微鏡写真を示す図である。 調製例6Bで得られたアルミニウム板の表面の拡大図を表す電子顕微鏡写真を示す図である。 調製例7Dで得られたアルミニウム板の表面の拡大図を表す電子顕微鏡写真を示す図である。
 以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。なお、文中の数字の間にある「~」は特に断りがなければ、以上から以下を表す。
[金属/樹脂複合構造体]
 まず、本実施形態に係る金属/樹脂複合構造体106について説明する。
 図1は、本発明に係る実施形態の金属/樹脂複合構造体106の構造の一例を示す外観図である。金属/樹脂複合構造体106は、金属部材103と、熱可塑性樹脂組成物(P)からなる樹脂部材105とが接合されており、金属部材103と樹脂部材105とを接合することにより得られる。
 なお、本実施形態において、樹脂部材105が塗膜の場合、金属/樹脂複合構造体106を塗装金属部材とも呼ぶ。
 金属部材の表面110上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす。
 (1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
 (2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
 樹脂部材105は、樹脂成分として熱可塑性樹脂(A)を含む熱可塑性樹脂組成物(P)からなる。
 本実施形態に係る金属/樹脂複合構造体106は、樹脂部材105を構成する熱可塑性樹脂組成物(P)が、金属部材の表面110に形成された凹凸形状に侵入して金属と樹脂が接合し、金属―樹脂界面を形成することにより得られる。
 金属部材103の表面110には、金属部材103と樹脂部材105との間の接合強度向上に適した凹凸形状が形成されているため、接着剤を使用せずに金属部材103と樹脂部材105との間の接合性確保が可能となる。
 具体的には上記要件(1)および(2)を同時に満たす金属部材の表面110の凹凸形状の中に熱可塑性樹脂組成物(P)が侵入することによって、金属部材103と樹脂部材105との間に物理的な抵抗力(アンカー効果)が効果的に発現し、通常では接合が困難な金属部材103と熱可塑性樹脂組成物(P)からなる樹脂部材105とを強固に接合することが可能になったものと考えられる。
 このようにして得られた金属/樹脂複合構造体106は、金属部材103と樹脂部材105の界面への水分や湿気の浸入を防ぐこともできる。つまり、金属/樹脂複合構造体106の付着界面における気密性や水密性を向上させることもできる。
 以下、金属/樹脂複合構造体106を構成する各部材について説明する。
<金属部材>
 以下、本実施形態に係る金属部材103について説明する。
 金属部材の表面110上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす。
 (1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
 (2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
 図3は、金属部材の表面110上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部を説明するための模式図である。
 上記6直線部は、例えば、図3に示すような6直線部B1~B6を選択することができる。まず、基準線として、金属部材103の接合部表面104の中心部Aを通る中心線B1を選択する。次いで、中心線B1と平行関係にある直線B2およびB3を選択する。次いで、中心線B1と直交する中心線B4を選択し、中心線B1と直交し、中心線B4と並行関係にある直線B5およびB6を選択する。ここで、各直線間の垂直距離D1~D4は、例えば、2~5mmである。
 なお、通常、金属部材の表面110中の接合部表面104だけでなく、金属部材の表面110全体に対し、表面粗化処理が施されているため、例えば、図4に示すように、金属部材103の接合部表面104と同一面で、接合部表面104以外の箇所から6直線部を選択してもよい。
 上記要件(1)および(2)を同時に満たすと、接合強度に優れた金属/樹脂複合構造体106が得られる理由は必ずしも明らかではないが、金属部材103の接合部表面104が、金属部材103と樹脂部材105との間のアンカー効果が効果的に発現できる構造になっているためと考えられる。
 本発明者らは、金属部材と、熱可塑性樹脂組成物からなる樹脂部材との接合強度を向上させるために、金属部材の表面の十点平均粗さ(Rz)を調整することを検討した。
 しかし、金属部材の表面の十点平均粗さ(Rz)を単に調整するだけでは金属部材と樹脂部材との接合強度を十分に向上させることができないことが明らかとなった。
 ここで、本発明者らは、負荷長さ率という尺度が金属部材表面の凹凸形状の鋭利性を表す指標として有効であると考えた。負荷長さ率が小さい場合は、金属部材表面の凹凸形状の鋭利性が大きいことを意味し、負荷長さ率が大きい場合は、金属部材表面の凹凸形状の鋭利性が小さいことを意味する。
 そこで、本発明者らは、金属部材と、熱可塑性樹脂組成物からなる樹脂部材との接合強度を向上させるための設計指針として、金属部材表面の粗さ曲線の負荷長さ率という尺度に注目し、さらに鋭意検討を重ねた。その結果、金属部材表面の負荷長さ率を特定値以下に調整することにより、金属部材103と樹脂部材105との間にアンカー効果が効果的に発現し、その結果、接合強度に優れた金属/樹脂複合構造体106が実現できることを見出して本発明を完成するに至った。
 金属部材103と樹脂部材105との接合強度をより一層向上させる観点から、金属部材の表面110上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1A)~(1C)のうち1つ以上の要件をさらに満たすことが好ましく、要件(1C)を満たすことがとりわけ好ましい。なお、要件(1C)は上述した要件(3)に同一である。
 (1A)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を好ましくは2直線部以上、より好ましくは3直線部以上、最も好ましくは6直線部含む
 (1B)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が20%以下である直線部を好ましくは1直線部以上、より好ましくは2直線部以上、さらに好ましくは3直線部以上、最も好ましくは6直線部含む
 (1C)切断レベル40%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が60%以下である直線部を好ましくは1直線部以上、より好ましくは2直線部以上、さらに好ましくは3直線部以上、最も好ましくは6直線部含む
 また、金属部材103と樹脂部材105との接合強度をより一層向上させる観点から、金属部材103の表面110上の、JIS B0601(対応国際規格:ISO4287)に準拠して測定される切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)の平均値が好ましくは0.1%以上40%以下であり、より好ましくは0.5%以上30%以下であり、さらに好ましくは1%以上20%以下であり、最も好ましくは2%以上15%以下である。
 なお、上記負荷長さ率(Rmr)の平均値は、前述の任意の6直線部の負荷長さ率(Rmr)を平均したものを採用することができる。
 本実施形態に係る金属部材の表面110の各負荷長さ率(Rmr)は、金属部材103の表面に対する粗化処理の条件を適切に調節することにより制御することが可能である。
 本実施形態においては、とくにエッチング剤の種類および濃度、粗化処理の温度および時間、エッチング処理のタイミング等が、上記各負荷長さ率(Rmr)を制御するための因子として挙げられる。
 金属部材103と樹脂部材105との接合強度をより一層向上させる観点から、金属部材の表面110上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(2A)をさらに満たすことが好ましい。
 (2A)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が好ましくは5μm超、より好ましくは10μm以上、さらに好ましくは15μm以上である
 金属部材103と樹脂部材105との接合強度をより一層向上させる観点から、金属部材の表面110上の、十点平均粗さ(Rz)の平均値が好ましくは2μmを超えて50μm以下、より好ましくは5μmを超えて45μm以下、さらに好ましくは10μm以上40μm以下、特に好ましくは15μm以上30μm以下である。
 なお、上記十点平均粗さ(Rz)の平均値は、前述の任意の6直線部の十点平均粗さ(Rz)を平均したものを採用することができる。
 金属部材103と樹脂部材105との接合強度をより一層向上させる観点から、金属部材の表面110上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(4)をさらに満たすことが好ましい。
(4)すべての直線部の、粗さ曲線要素の平均長さ(RSm)が10μmを超え300μm未満であり、より好ましくは20μm以上200μm以下である。
 金属部材103と樹脂部材105との接合強度をより一層向上させる観点から、金属部材の表面110上の、粗さ曲線要素の平均長さ(RSm)の平均値が好ましくは10μmを超え300μm未満、より好ましくは20μm以上200μm以下である。
 なお、上記粗さ曲線要素の平均長さ(RSm)の平均値は、前述の任意の6直線部のRSmを平均したものを採用することができる。
 本実施形態に係る金属部材の表面110の十点平均粗さ(Rz)および粗さ曲線要素の平均長さ(RSm)は、金属部材の表面110に対する粗化処理の条件を適切に調節することにより制御することが可能である。
 本実施形態においては、とくに粗化処理の温度および時間、エッチング量等が、上記十点平均粗さ(Rz)および粗さ曲線要素の平均長さ(RSm)を制御するための因子として挙げられる。
 金属部材103を構成する金属材料は特に限定されないが、例えば、鉄、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅および銅合金等を挙げることができる。これらは単独で使用してもよいし、二種以上組み合わせて使用してもよい。これらの中でも、軽量かつ高強度の点から、アルミニウム(アルミニウム単体)およびアルミニウム合金が好ましく、アルミニウム合金がより好ましい。
 アルミニウム合金としては、JIS H4000に規定された合金番号1050、1100、2014、2024、3003、5052、7075等が好ましく用いられる。
 金属部材103の形状は、樹脂部材105と接合できる形状であれば特に限定されず、例えば、平板状、曲板状、棒状、筒状、塊状等とすることができる。また、これらの組み合わせからなる構造体であってもよい。
 また、樹脂部材105と接合する接合部表面104の形状は、特に限定されないが、平面、曲面等が挙げられる。
 金属部材103は、金属材料を切断、プレス等による塑性加工、打ち抜き加工、切削、研磨、放電加工等の除肉加工によって上述した所定の形状に加工された後に、後述する粗化処理がなされたものが好ましい。要するに、種々の加工法により、必要な形状に加工されたものを用いることが好ましい。
(金属部材表面の粗化処理方法)
 次に、金属部材103の表面の粗化処理方法について説明する。
 本実施形態に係る金属部材103の表面は、例えば、エッチング剤を用いて粗化処理することにより形成することができる。
 ここで、エッチング剤を用いて金属部材の表面を粗化処理すること自体は従来技術においても行われてきた。しかし、本実施形態では、エッチング剤の種類および濃度、粗化処理の温度および時間、エッチング処理のタイミング、等の因子を高度に制御している。本実施形態に係る金属部材103の接合部表面104を得るためには、これらの因子を高度に制御することが重要となる。
 以下、本実施形態に係る金属部材表面の粗化処理方法の一例を示す。ただし、本実施形態に係る金属部材表面の粗化処理方法は、以下の例に限定されない。
(1)前処理工程
 まず、金属部材103は、樹脂部材105との接合側の表面に酸化膜や水酸化物等からなる厚い被膜がないことが望ましい。このような厚い被膜を除去するため、次のエッチング剤で処理する工程の前に、サンドブラスト加工、ショットブラスト加工、研削加工、バレル加工等の機械研磨や、化学研磨により表面層を研磨してもよい。また、樹脂部材105との接合側の表面に機械油等の著しい汚染がある場合は、水酸化ナトリウム水溶液や水酸化カリウム水溶液等のアルカリ性水溶液による処理や、脱脂を行なうことが好ましい。
(2)表面粗化処理工程
 本実施形態において金属部材の表面粗化処理方法としては、後述する酸系エッチング剤による処理を特定のタイミングで行うことが好ましい。具体的には、該酸系エッチング剤による処理を表面粗化処理工程の最終段階で行うことが好ましい。
 なお、上述した特許文献5には、アルミニウムを含む金属材料からなる金属部材の表面粗化処理に用いるエッチング剤として、アルカリ系エッチング剤を用いる態様、アルカリ系エッチング剤と酸系エッチング剤を併用する態様、酸系エッチング剤で処理した後アルカリ系溶液で洗浄する態様が開示されている。
 当該アルカリ系エッチング剤は、金属部材との反応が穏やかなため、作業性の観点からは好ましく用いられる。しかし、本発明者らの検討によれば、このようなアルカリ系エッチング剤は反応性が穏やかであるため、金属部材表面の粗化処理の度合いが弱く、深い凹凸形状を形成するのが困難であることが明らかになった。また、酸系エッチング剤処理を行った後アルカリ系エッチング剤やアルカリ系溶液を併用する場合には、酸系エッチング剤によって形成した深い凹凸形状を後のアルカリ系エッチング剤やアルカリ系溶液での処理により該凹凸形状を幾分か滑らかにしてしまうことが明らかになった。
 よって、当該アルカリ系エッチング剤を用いて処理した金属部材や、エッチング処理の最終工程でアルカリ系エッチング剤やアルカリ系溶液を使用して得られた金属部材では、熱可塑性樹脂組成物からなる樹脂部材との間で高い接合強度を保持することは難しいと考えられる。
 上記酸系エッチング剤を用いて粗化処理する方法としては、浸漬、スプレー等による処理方法が挙げられる。処理温度は20~40℃が好ましく、処理時間は5~350秒程度が好ましく、金属部材表面をより均一に粗化できる観点から、20~300秒がより好ましく、50~300秒が特に好ましい。
 上記酸系エッチング剤を用いた粗化処理によって、金属部材103の表面が凹凸形状に粗化される。上記酸系エッチング剤を用いた際の金属部材103の深さ方向のエッチング量(溶解量)は、溶解した金属部材103の質量、比重および表面積から算出した場合、0.1~500μmであることが好ましく、5~500μmであることがより好ましく、5~100μmであることが更に好ましい。エッチング量が上記下限値以上であれば、金属部材103と樹脂部材105との間の接合強度をより向上させることができる。また、エッチング量が上記上限値以下であれば、処理コストの低減が可能となる。エッチング量は、処理温度や処理時間等により調整できる。
 なお、本実施形態では、上記酸系エッチング剤を用いて金属部材を粗化処理する際、金属部材表面の全面を粗化処理してもよく、樹脂部材105が接合される面だけを部分的に粗化処理してもよい。
(3)後処理工程
 本実施形態では、上記表面粗化処理工程の後、通常、水洗および乾燥を行うことが好ましい。水洗の方法については特に制限はないが浸漬または流水にて所定時間洗浄することが好ましい。
 さらに、後処理工程としては、上記酸系エッチング剤を用いた処理により生じたスマット等を除去するため、超音波洗浄を施すことが好ましい。超音波洗浄の条件は、生じたスマット等を除去することができる条件であれば特に限定されないが、用いる溶媒としては水が好ましく、また、処理時間としては、好ましくは1~20分間である。
(酸系エッチング剤)
 本実施形態において、金属部材表面の粗化処理に用いられるエッチング剤としては、後述する特定の酸系エッチング剤が好ましい。上記特定のエッチング剤で処理することにより、金属部材の表面に、熱可塑性樹脂(A)を含む樹脂部材との間の密着性向上に適した凹凸形状が形成され、そのアンカー効果により金属部材103と樹脂部材105との間の接合強度が向上するものと考えられる。
 特に、通常の処理では金属部材と接合させることが難しいポリオレフィン系樹脂、ガラス転移温度が140℃以上の熱可塑性樹脂、または非晶性熱可塑性樹脂を含む樹脂部材との接合強度を向上させるという観点、または通常の処理では金属部材と接合させることが難しい水性塗料から形成される塗膜との密着強度を向上させるという観点からも、金属部材表面により深い凹凸形状を形成できる酸系エッチング剤を用いることが好ましい。
 以下、本実施形態で使用できる酸系エッチング剤の成分について説明する。
 上記酸系エッチング剤は、第二鉄イオンおよび第二銅イオンの少なくとも一方と、酸と、を含み、必要に応じて、マンガンイオン、各種添加剤等を含むことができる。
・第二鉄イオン
 上記第二鉄イオンは、金属部材を酸化する成分であり、第二鉄イオン源を配合することによって、酸系エッチング剤中に該第二鉄イオンを含有させることができる。上記第二鉄イオン源としては、硝酸第二鉄、硫酸第二鉄、塩化第二鉄等が挙げられる。上記第二鉄イオン源のうちでは、塩化第二鉄が溶解性に優れ、安価であるという点から好ましい。
 本実施形態において、酸系エッチング剤中の上記第二鉄イオンの含有量は、好ましくは0.01~20質量%、より好ましくは0.1~12質量%、さらに好ましくは0.5~7質量%、さらにより好ましくは1~6質量%、特に好ましくは1~5質量%である。上記第二鉄イオンの含有量が上記下限値以上であれば、金属部材の粗化速度(溶解速度)の低下を防ぐことができる。一方、上記第二鉄イオンの含有量が上記上限値以下であれば、粗化速度を適正に維持することができるため、金属部材103と樹脂部材105との間の接合強度向上により適した均一な粗化が可能になる。
・第二銅イオン
 上記第二銅イオンは金属部材を酸化する成分であり、第二銅イオン源を配合することによって、酸系エッチング剤中に該第二銅イオン含有させることができる。上記第二銅イオン源としては、硫酸第二銅、塩化第二銅、硝酸第二銅、水酸化第二銅等が挙げられる。上記第二銅イオン源のうちでは、硫酸第二銅、塩化第二銅が安価であるという点から好ましい。
 本実施形態において、酸系エッチング剤中の上記第二銅イオンの含有量は、0.001~10質量%であることが好ましく、より好ましくは0.01~7質量%、さらに好ましくは0.05~1質量%、さらにより好ましくは0.1~0.8質量%、さらにより好ましくは0.15~0.7質量%、特に好ましくは0.15~0.4質量%である。上記第二銅イオンの含有量が上記下限値以上であれば、金属部材の粗化速度(溶解速度)の低下を防ぐことができる。一方、上記第二銅イオンの含有量が上記上限値以下であれば、粗化速度を適正に維持することができるため、金属部材103と樹脂部材105との間の接合強度向上により適した均一な粗化が可能になる。
 上記酸系エッチング剤は、第二鉄イオンおよび第二銅イオンの一方のみを含むものであってもよく、両方を含むものであってもよいが、第二鉄イオンおよび第二銅イオンの両方を含むことが好ましい。酸系エッチング剤が第二鉄イオンおよび第二銅イオンの両方を含むことで、金属部材103と樹脂部材105との間の接合強度向上により適した良好な粗化形状が容易に得られる。
 上記酸系エッチング剤が、第二鉄イオンおよび第二銅イオンの両方を含む場合、第二鉄イオンおよび第二銅イオンのそれぞれの含有量が、上記範囲であることが好ましい。また、酸系エッチング剤中の第二鉄イオンと第二銅イオンの含有量の合計は、0.011~20質量%であることが好ましく、より好ましくは0.1~15質量%、さらに好ましくは0.5~10質量%、特に好ましくは1~5質量%である。
・マンガンイオン
 上記酸系エッチング剤には、金属部材表面をむらなく一様に粗化するために、マンガンイオンが含まれていてもよい。マンガンイオンは、マンガンイオン源を配合することによって、酸系エッチング剤中に該マンガンイオンを含有させることができる。上記マンガンイオン源としては、硫酸マンガン、塩化マンガン、酢酸マンガン、フッ化マンガン、硝酸マンガン等が挙げられる。上記マンガンイオン源のうちでは、硫酸マンガン、塩化マンガンが安価である等の点から好ましい。
 本実施形態において、酸系エッチング剤中の上記マンガンイオンの含有量は、0~1質量%であることが好ましく、より好ましくは0~0.5質量%である。上記マンガンイオンの含有量は、樹脂部材105を構成する熱可塑性樹脂(A)がポリオレフィン系樹脂の場合は0質量%であっても十分な接合強度を発現することを本発明者らは確認している。すなわち、熱可塑性樹脂(A)としてポリオレフィン系樹脂を用いる場合は上記マンガンイオン含有量は0質量%であることが好ましく、一方、ポリオレフィン系樹脂以外の熱可塑性樹脂を用いる場合は上記上限値以下のマンガンイオンが適宜使用される。
・酸
 上記酸は、第二鉄イオンおよび/または第二銅イオンにより酸化された金属を溶解させる成分である。上記酸としては、塩酸、臭化水素酸、硫酸、硝酸、リン酸、過塩素酸、スルファミン酸等の無機酸や、スルホン酸、カルボン酸等の有機酸が挙げられる。上記カルボン酸としては、ギ酸、酢酸、クエン酸、シュウ酸、リンゴ酸等が挙げられる。上記酸系エッチング剤には、これらの酸を一種または二種以上配合することができる。上記無機酸のうちでは、臭気がほとんどなく、安価である点から硫酸が好ましい。また、上記有機酸のうちでは、粗化形状の均一性の観点から、カルボン酸が好ましい。
 本実施形態において、酸系エッチング剤中の上記酸の含有量は、0.1~50質量%であることが好ましく、0.5~50質量%であることがより好ましく、1~50質量%であることがさらに好ましく、1~30質量%であることがさらにより好ましく、1~25質量%であることがさらにより好ましく、2~18質量%であることがさらにより好ましい。上記酸の含有量が上記下限値以上であれば、金属の粗化速度(溶解速度)の低下を防止できる。一方、上記酸の含有量が上記上限値以下であれば、液温が低下した際の金属塩の結晶析出を防止できるため、作業性を向上できる。
・他の成分
 本実施形態において使用できる酸系エッチング剤には、指紋等の表面汚染物による粗化のむらを防ぐために界面活性剤を添加してもよく、必要に応じて他の添加剤を添加してもよい。他の添加剤としては、深い凹凸を形成するために添加されるハロゲン化物イオン源、例えば、塩化ナトリウム、塩化カリウム、臭化ナトリウム、臭化カリウム等を例示できる。あるいは、粗化処理速度を上げるために添加されるチオ硫酸イオン、チオ尿素等のチオ化合物や、より均一な粗化形状を得るために添加されるイミダゾール、トリアゾール、テトラゾール等のアゾール類や、粗化反応を制御するために添加されるpH調整剤等も例示できる。これら他の成分を添加する場合、その合計含有量は、酸系エッチング剤中に0.01~10質量%程度であることが好ましい。
 本実施形態の酸系エッチング剤は、上記の各成分をイオン交換水等に溶解させることにより容易に調製することができる。
<樹脂部材>
 以下、本実施形態に係る樹脂部材105について説明する。
 樹脂部材105は熱可塑性樹脂組成物(P)からなる。熱可塑性樹脂組成物(P)は、樹脂成分として熱可塑性樹脂(A)と、必要に応じて充填材(B)と、含む。さらに、熱可塑性樹脂組成物(P)は必要に応じてその他の配合剤を含む。なお、便宜上、樹脂部材105が熱可塑性樹脂(A)のみからなる場合であっても、樹脂部材105は熱可塑性樹脂組成物(P)からなると記載する。
(熱可塑性樹脂(A))
 熱可塑性樹脂(A)としては特に限定されないが、例えば、ポリオレフィン系樹脂、ポリメタクリル酸メチル樹脂等のポリメタクリル系樹脂、ポリアクリル酸メチル樹脂等のポリアクリル系樹脂、ポリスチレン樹脂、ポリビニルアルコール-ポリ塩化ビニル共重合体樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリメチルペンテン樹脂、無水マレイン酸-スチレン共重合体樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂等の芳香族ポリエーテルケトン、ポリエステル系樹脂、ポリアミド系樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、スチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アイオノマー、アミノポリアクリルアミド樹脂、イソブチレン無水マレイン酸コポリマー、ABS、ACS、AES、AS、ASA、MBS、エチレン-塩化ビニルコポリマー、エチレン-酢酸ビニルコポリマー、エチレン-酢酸ビニル-塩化ビニルグラフトポリマー、エチレン-ビニルアルコールコポリマー、塩素化ポリ塩化ビニル樹脂、塩素化ポリエチレン樹脂、塩素化ポリプロピレン樹脂、カルボキシビニルポリマー、ケトン樹脂、非晶性コポリエステル樹脂、ノルボルネン樹脂、フッ素プラスチック、ポリテトラフルオロエチレン樹脂、フッ素化エチレンポリプロピレン樹脂、PFA、ポリクロロフルオロエチレン樹脂、エチレンテトラフルオロエチレンコポリマー、ポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリ塩化ビニリデン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリサルホン樹脂、ポリパラメチルスチレン樹脂、ポリアリルアミン樹脂、ポリビニルエーテル樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリメチルペンテン樹脂、オリゴエステルアクリレート、キシレン樹脂、マレイン酸樹脂、ポリヒドロキシブチレート樹脂、ポリスルホン樹脂、ポリ乳酸樹脂、ポリグルタミン酸樹脂、ポリカプロラクトン樹脂、ポリエーテルスルホン樹脂、ポリアクリロニトリル樹脂、スチレン-アクリロニトリル共重合体樹脂等が挙げられる。これらの熱可塑性樹脂は一種単独で使用してもよいし、二種以上組み合わせて使用してもよい。
 これらの中でも、熱可塑性樹脂(A)としては、金属部材103と樹脂部材105との接合強度向上効果がより効果的に得ることができる観点から、ポリオレフィン系樹脂、ポリエステル系樹脂およびポリアミド系樹脂から選択される一種または二種以上の熱可塑性樹脂が好適に用いられる。
 上記ポリオレフィン系樹脂は、オレフィンを重合して得られる重合体を特に限定なく使用することができる。
 上記ポリオレフィン系樹脂を構成するオレフィンとしては、例えば、エチレン、α-オレフィン、環状オレフィン等が挙げられる。
 上記α-オレフィンとしては、炭素原子数3~30、好ましくは炭素原子数3~20の直鎖状または分岐状のα-オレフィンが挙げられる。より具体的には、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等が挙げられる。
 上記環状オレフィンとしては、炭素原子数3~30の環状オレフィンが挙げられ、好ましくは炭素原子数3~20である。より具体的には、シクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、2-メチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン等が挙げられる。
 上記ポリオレフィン系樹脂を構成するオレフィンとして好ましくは、エチレン、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン等が挙げられる。これらのうち、より好ましくは、エチレン、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテンであり、さらに好ましくはエチレンまたはプロピレンである。
 上記ポリオレフィン系樹脂は、上述したオレフィンを一種単独で重合して得られたもの、または二種以上を組み合わせてランダム共重合、ブロック共重合、グラフト共重合して得られたものであってもよい。
 また、上記ポリオレフィン系樹脂としては、直鎖状のものであっても、分岐構造を導入したものであってもよい。
 上記ポリエステル系樹脂としては、例えば、ポリ乳酸、ポリグルコール酸、ポリカプロラクトン、ポリエチレンサクシネート等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート(PBT)、ポリシクロヘキシレンジメチレンテレフタレート(PCT)等が挙げられる。
 上記ポリアミド系樹脂としては、例えば、PA6、PA12等の開環重合系脂肪族ポリアミド;PA66、PA46、PA610、PA612、PA11等の重縮合系ポリアミド;MXD6、PA6T、PA9T、PA6T/66、PA6T/6、アモルファスPA等の半芳香族ポリアミド;ポリ(p-フェニレンテレフタルアミド)、ポリ(m-フェニレンテレフタルアミド)、ポリ(m-フェニレンイソフタルアミド)等の全芳香族ポリアミド、アミド系エラストマー等が挙げられる。
 また、熱可塑性樹脂(A)としては、金属部材103と樹脂部材105との接合強度向上効果がより効果的に得ることができる観点から、ガラス転移温度が140℃以上の熱可塑性樹脂および非晶性熱可塑性樹脂から選択される一種または二種以上の熱可塑性樹脂が好適に用いられる。
 上記ガラス転移温度が140℃以上の熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂などの芳香族ポリエーテルケトン、ポリイミド樹脂、およびポリエーテルスルホン樹脂から選択される一種または二種以上が挙げられる。
 上記非晶性熱可塑性樹脂としては、例えば、ポリスチレン樹脂、ポリアクリロニトリル樹脂、スチレン-アクリロニトリル共重合体樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂(ABS樹脂)、ポリメタクリル酸メチル樹脂、およびポリカーボネート樹脂から選択される一種または二種以上が挙げられる。
 熱可塑性樹脂(A)は、金属部材103表面の凹凸形状への進入を容易にするため、流動性が高いことが好ましい。そのため、本実施形態において熱可塑性樹脂(A)は、ASTM D1238に準拠し、2.16kg荷重の条件で測定されるMFRが、好ましくは10~200g/10minである。MFRは、プロピレン系重合体では230℃、エチレン系重合体では190℃等、それぞれの樹脂により決められている温度で測定することができる。
 本実施形態に係る樹脂部材105は、塗膜としてもよい。上記塗膜は、市販の各種塗料を用いることができる。
 上記塗料の種類としては、大きく分けて、油性塗料と水性塗料がある。油性塗料としては、例えば、アクリル系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール系樹脂、ポリエステル系樹脂、アルキッド系樹脂等の樹脂を有機溶媒に溶解したものが挙げられる。水性塗料としては、例えば、アクリル系樹脂、アクリルシリコン系樹脂、ポリオレフィン系樹脂、シリコン系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール系樹脂、ポリエステル系樹脂、アルキッド系樹脂、生分解性樹脂等の樹脂を水中に懸濁させたものが挙げられる。
 上記塗膜は、上記油性塗料もしくは水性塗料のいずれから形成されるものであってもよい。上記表面粗化処理がされた金属部材103は深い凹凸が形成されているため、該凹部に塗料樹脂が進入して塗膜を形成するので、金属との密着性が高く、その結果として剥がれにくい状況になることが期待できる。なお、本実施形態において、上述した表面粗化処理がされた金属部材103に施された凹凸形状は上述の通り、深い凹凸が形成されたものとなっているので、特に水性塗料のように、塗料樹脂が水中に懸濁し、各々の塗料樹脂の分子が表面張力に基づき大きな塊状になっているものであっても、塗布した際に、該凹部中に入り込むことが可能となる。したがって、本実施形態の金属/樹脂複合構造体106は、従来技術では金属部材表面に密着性が高い塗膜を形成することが困難であった水性塗料を用いた場合であっても、高密着性の塗膜を形成することができるという点で、非常に優れている。
(充填材(B))
 熱可塑性樹脂組成物(P)は、金属部材103と樹脂部材105との線膨張係数差の調整や樹脂部材105の機械的強度を向上させる観点から、充填材(B)をさらに含んでもよい。
 充填材(B)としては、例えば、ガラス繊維、炭素繊維、炭素粒子、粘土、タルク、シリカ、ミネラル、セルロース繊維からなる群から一種または二種以上を選ぶことができる。これらのうち、好ましくは、ガラス繊維、炭素繊維、タルク、ミネラルから選択される一種または二種以上である。
 充填材(B)の形状は特に限定されず、繊維状、粒子状、板状等どのような形状であってもよい。
 充填材(B)は、最大長さが10nm以上600μm以下の範囲にある充填材を数分率で5~100%有することが好ましい。当該最大長さは、より好ましくは、30nm以上550μm以下、さらに好ましくは50nm以上500μm以下である。また、該最大長さの範囲にある充填材(B)の数分率は、好ましくは、10~100%であり、より好ましくは20~100%である。
 充填材(B)の最大長さが上記範囲にあると、熱可塑性樹脂組成物(P)の成形時に溶融した熱可塑性樹脂(A)中を充填材(B)が容易に動くことができるので、後述する金属/樹脂複合構造体106の製造時において、金属部材表面付近にも一定程度の割合で充填材(B)を存在させることが可能となる。そのため、上述したように充填材(B)と相互作用をする樹脂が金属部材表面の凹凸形状に入り込むことで、より強固な接合強度を持つことが可能となる。
 また、上記数分率が上記範囲にあると、金属部材103表面の凹凸形状と作用するのに十分な数の充填材(B)が熱可塑性樹脂組成物(P)中に存在することになる。
 なお、充填材(B)の長さは、得られる金属/樹脂複合構造体106から熱可塑性樹脂組成物(P)からなる部材を外したのち、該熱可塑性樹脂組成物(P)をオーブン中で加熱することにより、完全に炭化させ、その後、炭化させた樹脂を取り除き、残った充填材(B)を走査型電子顕微鏡で測定することにより求められる。ここで、充填材(B)の最大長さとは、図11の模式図中でL1~L3で示すように、長方形であれば、3辺の内で最大の長さL1、円筒形であれば、円の長軸側の直径長さと円筒の高さとで長い方の長さL2、球または回転楕円体であれば、あらゆる断面の長軸側の直径長さをとった時のもっとも長い直径の長さL3のことである。
 充填材(B)の数分率は、上記充填材(B)の長さ測定を行う際に用いた電子顕微鏡写真に写るすべての充填材(B)の数を数え、そのうち、上記範囲に含まれる充填材(B)の数を算出することにより求められる。
 充填材(B)は1種類であっても2種類以上でもよく、2種類以上用いる場合は、全ての種類の充填材(B)をまとめて前述したような方法で最大長さを求める。
 なお、充填材(B)は、熱可塑性樹脂(A)と混練する前の段階では最大長さが600μmを超える充填材であってもよく、混練中および成形中に切断、粉砕されることで、最大長さが上記範囲に入ったものであってもよい。
 なお、熱可塑性樹脂組成物(P)が充填材(B)を含む場合、その含有量は、熱可塑性樹脂(A)100質量部に対して、好ましくは1質量部以上100質量部以下であり、より好ましくは5質量部以上90質量部以下であり、特に好ましくは10質量部以上80質量部以下である。
 充填材(B)は、樹脂部材105の剛性を高める効果の他、樹脂部材105の線膨張係数を制御できる効果がある。特に、本実施形態の金属部材103と樹脂部材105との複合体の場合は、金属部材103と樹脂部材105との形状安定性の温度依存性が大きく異なることが多いので、大きな温度変化が起こると複合体に歪みが掛かりやすい。樹脂部材105が上記充填材(B)を含有することにより、この歪みを低減することができる。また、上記充填材(B)の含有量が上記範囲内であることにより、靱性の低減を抑制することができる。
(その他の配合剤)
 熱可塑性樹脂組成物(P)には、個々の機能を付与する目的でその他の配合剤を含んでもよい。
 上記配合剤としては、熱安定剤、酸化防止剤、顔料、耐候剤、難燃剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤等が挙げられる。
(熱可塑性樹脂組成物(P)の製造方法)
 熱可塑性樹脂組成物(P)の製造方法は特に限定されず、一般的に公知の方法により製造することができる。例えば、以下の方法が挙げられる。まず、上記熱可塑性樹脂(A)、必要に応じて上記充填材(B)、さらに必要に応じて上記その他の配合剤とを、バンバリーミキサー、単軸押出機、2軸押出機、高速2軸押出機等の混合装置を用いて、混合または溶融混合することにより、熱可塑性樹脂組成物(P)が得られる。
[金属/樹脂複合構造体の製造方法]
 つづいて、本実施形態に係る金属/樹脂複合構造体106の製造方法について説明する。
 金属/樹脂複合構造体106の製造方法は特に限定されず、上記表面粗化処理を行った金属部材103に対して、上記熱可塑性樹脂組成物(P)を所望の樹脂部材105の形状になるように成形しながら接合させることにより得られる。
 樹脂部材105の成形方法としては、射出成形、押出成形、加熱プレス成形、圧縮成形、トランスファーモールド成形、注型成形、レーザー溶着成形、反応射出成形(RIM成形)、リム成形(LIM成形)、溶射成形等の樹脂成形方法を採用できる。
 また、金属部材103に熱可塑性樹脂組成物(P)皮膜をコーティングした金属部材-熱可塑性樹脂組成物皮膜からなる複合体を製造する場合は、熱可塑性樹脂組成物(P)を溶剤に溶解または分散させて樹脂ワニスを調製し、その樹脂ワニスを金属部材103に塗布するコーティング法や、その他の各種塗装方法を採用できる。その他の塗装方法としては、焼き付け塗装、電着塗装、静電塗装、粉体塗装、紫外線硬化塗装等を例示できる。
 これらの中でも、金属/樹脂複合構造体106の製造方法としては、射出成形法が好ましく、具体的には、金属部材103を射出成形金型のキャビティ部にインサートし、熱可塑性樹脂組成物(P)を金型に射出する射出成形法により製造することが好ましい。具体的には、以下の(i)~(iii)の工程を含む方法が好ましい。
(i)熱可塑性樹脂組成物(P)を製造する工程
(ii)金属部材103を射出成形用の金型内に設置する工程
(iii)熱可塑性樹脂組成物(P)を、金属部材103の少なくとも一部と接するように、上記金型内に射出成形し、樹脂部材105を形成する工程
 以下、各工程について説明する。
 (i)熱可塑性樹脂組成物(P)を製造する工程については、上述の熱塑性樹脂組成物(P)の製造方法の通りである。例えば、上記熱可塑性樹脂(A)、必要に応じて上記充填材(B)、さらに必要に応じて上記その他の配合剤とを、バンバリーミキサー、単軸押出機、2軸押出機、高速2軸押出機等の混合装置を用いて、混合または溶融混合することにより、熱可塑性樹脂組成物(P)を得ることができる。
 次いで、(ii)、(iii)の工程による射出成形方法について説明する。
 まず、射出成形用の金型を用意し、その金型を開いてその一部に金属部材103を設置する。その後、金型を閉じ、熱可塑性樹脂組成物(P)の少なくとも一部が金属部材103の表面に凹部形状を形成した面と接するように、上記金型内に(i)工程で得られた熱可塑性樹脂組成物(P)を射出して固化する。その後、金型を開き離型することにより、金属/樹脂複合構造体106を得ることができる。
 また、上記(i)~(iii)の工程による射出成形にあわせて、射出発泡成形や、金型を急速に加熱冷却する高速ヒートサイクル成形(RHCM、ヒート&クール成形)を併用してもよい。
 射出発泡成形の方法として、化学発泡剤を樹脂に添加する方法や、射出成形機のシリンダー部に直接、窒素ガスや炭酸ガスを注入する方法、あるいは、窒素ガスや炭酸ガスを超臨界状態で射出成形機のシリンダー部に注入するMuCell射出発泡成形法があるが、いずれの方法でも樹脂部材が発泡体である金属/樹脂複合構造体を得ることができる。また、いずれの方法でも、金型の制御方法として、カウンタープレッシャーを使用したり、成形品の形状によってはコアバックを利用したりすることも可能である。
 高速ヒートサイクル成形は、急速加熱冷却装置を金型に接続することにより、実施することができる。急速加熱冷却装置は、一般的に使用されている方式で構わない。加熱方法として、蒸気式、加圧熱水式、熱水式、熱油式、電気ヒータ式、電磁誘導過熱式のいずれか1方式またはそれらを複数組み合わせた方式でよい。冷却方法としては、冷水式、冷油式のいずれか1方式またはそれらを組み合わせた方式でよい。高速ヒートサイクル成形法の条件としては、例えば、射出成形金型を100℃以上250℃以下の温度に加熱し、熱可塑性樹脂組成物(P)の射出が完了した後、上記射出成形金型を冷却することが望ましい。金型を加熱する温度は、熱可塑性樹脂組成物(P)を構成する熱可塑性樹脂(A)によって好ましい範囲が異なり、結晶性樹脂で融点が200℃未満の樹脂であれば、100℃以上150℃以下が好ましく、結晶性樹脂で融点が200℃以上の樹脂であれば、140℃以上250℃以下が望ましい。非晶性樹脂については、50℃以上250℃以下が望ましく、100℃以上180℃以下がより望ましい。
 次に、金属部材103への塗膜の形成方法について説明する。
 金属部材103への塗膜の形成方法としては、従来用いられている塗膜の形成方法を制限なく利用することができる。
 例えば、エアスプレー、エアレススプレーなどのスプレー塗装、ディップ塗装、刷毛塗り、ローラー塗り、コーター塗り等の方法によって、上記各種塗料を金属部材103の表面に塗布することで行うことができる。
[金属/樹脂複合構造体の用途]
 本実施形態に係る金属/樹脂複合構造体106は、生産性が高く、形状制御の自由度も高いので、様々な用途に展開することが可能である。
 さらに、本実施形態に係る金属/樹脂複合構造体106は、高い気密性、水密性が発現するので、これらの特性に応じた用途に好適に用いられる。
 例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。
 より具体的には、樹脂だけでは強度が足りない部分を金属がサポートする様にデザインされた次のような部品である。車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ラジエータ、オイルパン、ステアリングホイール、ECUボックス、電装部品等が挙げられる。また、建材や家具類として、ガラス窓枠、手すり、カーテンレール、たんす、引き出し、クローゼット、書棚、机、椅子等が挙げられる。また、精密電子部品類として、コネクタ、リレー、ギヤ等が挙げられる。また、輸送容器として、輸送コンテナ、スーツケース、トランク等が挙げられる。
 また、金属部材103の高い熱伝導率と、熱可塑性樹脂(A)の断熱的性質とを組み合わせ、ヒートマネージメントを最適に設計する機器に使用される部品用途、例えば、各種家電にも用いることができる。具体的には、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカー等の家電製品類、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、電池等電子情報機器等が挙げられる。
 これらについては、金属部材103の表面を粗化することによって表面積が増加するため、金属部材103と樹脂部材105との間の接触面積が増加し、接触界面の熱抵抗を低減させることができることに由来する。
 その他の用途として、玩具、スポーツ用具、靴、サンダル、鞄、フォークやナイフ、スプーン、皿等の食器類、ボールペンやシャープペン、ファイル、バインダー等の文具類、フライパンや鍋、やかん、フライ返し、おたま、穴杓子、泡だて器、トング等の調理器具、リチウムイオン2次電池用部品、ロボット等が挙げられる。
 以上、本発明の金属/樹脂複合構造体の用途について述べたが、これらは本発明の用途の例示であり、上記以外の様々な用途に用いることもできる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、本実施形態を、実施例・比較例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。
 なお、図1、2は各実施例の共通の図として使用する。
 図1は、金属部材103と樹脂部材105との金属/樹脂複合構造体106の構造の一例を模式的に示した外観図である。
 図2は、金属部材103と樹脂部材105との金属/樹脂複合構造体106を製造する過程の一例を模式的に示した構成図である。具体的には所定形状に加工され、表面に微細凹凸面を有する接合部表面(表面処理領域)104が形成された金属部材103を射出成形用の金型102内に設置し、射出成形機101により、熱可塑性樹脂組成物(P)をゲート/ランナー107を通して射出し、微細凹凸面が形成された金属部材103と一体化された金属/樹脂複合構造体106を製造する過程を模式的に示している。
(金属部材表面の、粗さ曲線の負荷長さ率(Rmr)、十点平均粗さ(Rz)および粗さ曲線要素の平均長さ(RSm)の測定)
 表面粗さ測定装置「サーフコム1400D(東京精密社製)」を使用し、JIS B0601(対応ISO 4287)に準拠して測定される表面粗さのうち、粗さ曲線の負荷長さ率(Rmr)、十点平均粗さ(Rz)および粗さ曲線要素の平均長さ(RSm)を測定した。なお、測定条件は以下のとおりである。
 ・触針先端半径:5μm
 ・基準長さ:0.8mm
 ・評価長さ:4mm
 ・測定速度:0.06mm/sec
 測定は、金属部材の表面上の、平行関係にある任意の3直線部、および当該直線部と直交する任意の3直線部からなる合計6直線部についておこなった(図4参照)。なお、本実施例・比較例では、金属部材103の全面について粗化処理をおこなっているため、金属/樹脂複合構造体106の接合部表面104について粗さ曲線の負荷長さ率(Rmr)、十点平均粗さ(Rz)および粗さ曲線要素の平均長さ(RSm)の測定をおこなっても、図4に示す測定箇所と同様の評価結果が得られることが理解される。
(接合強度の評価方法および合否判定)
 引っ張り試験機「モデル1323(アイコーエンジニヤリング社製)」を使用し、引張試験機に専用の治具を取り付け、室温(23℃)にて、チャック間距離60mm、引張速度10mm/minの条件にて測定をおこなった。破断荷重(N)を金属/樹脂接合部分の面積で除することにより接合強度(MPa)を得た。
(金属部材と塗膜の密着性試験)
 JIS H4000に規定された合金番号5052のアルミニウム板(寸法:70×150×1t)にアプリケーターを用いて水性塗料を乾燥塗膜が40μmとなるように塗装し、乾燥させたのち、端部と背面も同一の水性塗料を用いて塗装した。この塗装金属部材を20℃、55%RH雰囲気下、一日間乾燥した。
 このようにして得られた塗装金属部材の密着性をJIS K 5600-5-6(クロスカット法)に準処して測定した。なお密着性の膨れの評価は下記の基準とした。
 [塗膜の密着性の評価]
  0:カットの縁が完全で滑らかで、どの格子の目にもはがれがない
  1:カットの交差点における塗膜の小さなはがれ。クロスカット部分で影響を受けるのは、明確に5%を上回ることはない
  2:塗膜がカットの縁に沿って、および/または交差点においてはがれている。クロスカット部分で影響を受けるのは明確に5%を超えるが15%を上回ることはない
  3:塗膜がカットの縁に沿って、部分的または全面的に大はがれを生じており、および/または目のいろいろな部分が部分的または全面的にはがれている。クロスカット部分で影響を受けるのは明確に15%を超えるが35%を上回ることはない
  4:塗膜がカットの縁に沿って、部分的または全面的に大はがれを生じており、および/または数か所の目が部分的または全面的にはがれている。クロスカット部分で影響を受けるのは明確に35%を超えるが65%を上回ることはない
  5:はがれの程度が分類4を超える場合
(金属部材の表面粗化処理A)
[調製例1A](酸系エッチング剤1Aによる表面粗化処理)
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:1.6mm)を、長さ45mm、幅18mmに切断した。このアルミニウム板を表1Aに示す組成の酸系エッチング剤1A(30℃)中に40秒間浸漬し、揺動させることによってエッチングした。次いで、流水で超音波洗浄(水中、1分)を行い、乾燥させることにより表面処理済みの金属部材を得た。
 得られた表面処理済みの金属部材の表面粗さを、表面粗さ測定装置「サーフコム1400D(東京精密社製)」を使用して測定し、6直線部について、切断レベル10%、20%、30%、40%、50%、60%、70%および80%における負荷長さ率(Rmr)、十点平均粗さ(Rz)および粗さ曲線要素の平均長さ(RSm)を求めた。このうち、切断レベル20%におけるRmr(20%)値、上記Rmr(20%)値が30%以下となる直線部の本数、切断レベル40%におけるRmr(40%)値、上記Rmr(40%)値が60%以下となる直線部の本数、6直線部のRz値、粗さ曲線要素の平均長さ(RSm)、エッチング処理前後の金属部材の質量比から求めたエッチング率を表2Aに示す。また本測定で得られた表面粗さ曲線を図5に示す。
 表面処理済みの金属部材の表面を、走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率5000倍にて観察した。写真を図6に示す。
[調製例2A](酸系エッチング剤2Aによる表面粗化処理)
 調製例1Aで、表1Aに示す酸系エッチング剤1Aを酸系エッチング剤2Aに変えて80秒間エッチングしたこと以外は同様の処理を行い、表面処理済みの金属部材を得た。
 得られた表面処理済み金属部材のRmr、Rz、RSm、およびエッチング率を表2Aに示す。また本測定で得られた表面粗さ曲線を図7に示す。
 表面処理済みの金属部材の表面を、走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率5000倍にて観察した。写真を図8に示す。
[調製例3A](酸系エッチング剤1Aによる表面粗化処理後、アルカリ系溶液による処理)
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:1.6mm)を、長さ45mm、幅18mmに切断した。このアルミニウム板を表1Aに示す組成の酸系エッチング剤1A(30℃)中に40秒間浸漬し、揺動させることによってエッチングした。次いで、流水で水洗(1分)を行った。次に5質量%の水酸化ナトリウム水溶液(25℃)中に上記処理後のアルミニウム板を浸漬して30秒間揺動させた後、水洗を行った。次に35質量%の硝酸水溶液(25℃)中に上記処理後のアルミニウム板を浸漬して30秒間揺動させた後、流水で水洗(1分)を行い、乾燥させることにより表面処理済みの金属部材を得た。
 得られた表面処理済み金属部材のRmr、Rz、RSm、およびエッチング率を表2Aに示す。また本測定で得られた表面粗さ曲線を図9に示す。
 表面処理済みの金属部材の表面を、走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率5000倍にて観察した。写真を図10に示す。
[調製例4A](酸系エッチング剤3Aによる表面粗化処理)
 調製例1Aで、表1Aに示す酸系エッチング剤1Aを酸系エッチング剤3Aに変えて160秒間エッチングしたこと以外は同様の処理を行い、表面処理済みの金属部材を得た。
 得られた表面処理済み金属部材のRmr、Rz、RSm、およびエッチング率を表2Aに示す。
[調製例5A](酸系エッチング剤3Aによる表面粗化処理)
 調製例1Aで、表1Aに示す酸系エッチング剤1Aを酸系エッチング剤3Aに変えて80秒間エッチングしたこと以外は同様の処理を行い、表面処理済みの金属部材を得た。
 得られた表面処理済み金属部材のRmr、Rz、RSmおよびエッチング率を表2Aに示す。
[調製例6A](酸系エッチング剤3Aによる表面粗化処理)
 調製例1Aで、表1Aに示す酸系エッチング剤1Aを酸系エッチング剤3Aに変えて40秒間エッチングしたこと以外は同様の処理を行い、表面処理済みの金属部材を得た。
 得られた表面処理済み金属部材のエッチング率を表2Aに示す。
[調製例7A](酸系エッチング剤4Aによる表面粗化処理)
 調製例1Aで、表1Aに示す酸系エッチング剤1Aを酸系エッチング剤4Aに変えて320秒間エッチングしたこと以外は同様の処理を行い、表面処理済みの金属部材を得た。
 得られた表面処理済み金属部材のエッチング率を表2Aに示す。
[調製例8A](酸系エッチング剤4Aによる表面粗化処理)
 調製例1Aで、表1Aに示す酸系エッチング剤1Aを酸系エッチング剤4Aに変えて160秒間エッチングしたこと以外は同様の処理を行い、表面処理済みの金属部材を得た。
 得られた表面処理済み金属部材のエッチング率を表2Aに示す。
[調製例9A](酸系エッチング剤4Aによる表面粗化処理)
 調製例1Aで、表1Aに示す酸系エッチング剤1Aを酸系エッチング剤4Aに変えて80秒間エッチングしたこと以外は同様の処理を行い、表面処理済みの金属部材を得た。
 得られた表面処理済み金属部材のエッチング率を表2Aに示す。
[調製例10A](酸系エッチング剤4Aによる表面粗化処理)
 調製例1Aで、表1Aに示す酸系エッチング剤1Aを酸系エッチング剤4Aに変えて40秒間エッチングしたこと以外は同様の処理を行い、表面処理済みの金属部材を得た。
 得られた表面処理済み金属部材のエッチング率を表2Aに示す。
[実施例1A]
 日本製鋼所社製のJ85AD110Hに小型ダンベル金属インサート金型102を装着し、金型102内に調製例1Aによって調製されたアルミニウム板(金属部材103)を設置した。次いで、その金型102内に熱可塑性樹脂組成物(P)として、ガラス繊維強化ポリプロピレン(プライムポリマー社製V7100、ポリプロピレン(MFR(230℃、2.16kg荷重):18g/10min)80質量部、ガラス繊維20質量部)を、シリンダー温度250℃、金型温度120℃、射出速度25mm/sec、保圧80MPa、保圧時間10秒の条件にて射出成形を行い、金属/樹脂複合構造体106を得た。接合強度の評価結果を表3Aに示す。
[実施例2A]
 実施例1Aにおいて、調製例1Aによって調製されたアルミニウム板に変えて、調製例2Aによって調製されたアルミニウム板を設置した以外は実施例1Aと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表3Aに示す。
[実施例3A]
 実施例1Aにおいて、調製例1Aによって調製されたアルミニウム板に変えて、調製例4Aによって調製されたアルミニウム板を設置した以外は実施例1Aと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表3Aに示す。
[実施例4A]
 実施例1Aにおいて、調製例1Aによって調製されたアルミニウム板に変えて、調製例5Aによって調製されたアルミニウム板を設置した以外は実施例1Aと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表3Aに示す。
[実施例5A]
 実施例1Aにおいて、調製例1Aによって調製されたアルミニウム板に変えて、調製例7Aによって調製されたアルミニウム板を設置した以外は実施例1Aと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表3Aに示す。
[比較例1A]
 実施例1Aにおいて、調製例1Aによって調製されたアルミニウム板に変えて、調製例3Aによって調製されたアルミニウム板を設置した以外は実施例1Aと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表3Aに示す。
[比較例2A]
 実施例1Aにおいて、調製例1Aによって調製されたアルミニウム板に変えて、調製例6Aによって調製されたアルミニウム板を設置した以外は実施例1Aと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表3Aに示す。
[比較例3A]
 実施例1Aにおいて、調製例1Aによって調製されたアルミニウム板に変えて、調製例8Aによって調製されたアルミニウム板を設置した以外は実施例1Aと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表3Aに示す。
[比較例4A]
 実施例1Aにおいて、調製例1Aによって調製されたアルミニウム板に変えて、調製例9Aによって調製されたアルミニウム板を設置した以外は実施例1Aと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表3Aに示す。
[比較例5A]
 実施例1Aにおいて、調製例1Aによって調製されたアルミニウム板に変えて、調製例10Aによって調製されたアルミニウム板を設置した以外は実施例1Aと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表3Aに示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1Aでは、調製例1Aにより処理した金属部材の表面に、図5に示すような鋭利な角のある凹凸形状が形成されており、ここに樹脂部材105が入り込むことにより、得られた金属/樹脂複合構造体106は高い接合強度となったものと考えられる。
 実施例2Aでは、調製例2Aにより処理した金属部材の表面に、図7に示すような図5よりもさらに鋭利な角のある凹凸形状が形成されており、ここに樹脂部材が入り込むことにより、得られた金属/樹脂複合構造体106はより高い接合強度となったものと考えられる。
 一方、比較例1Aでは、調製例3Aにより処理した金属部材の表面は、図9に示すように充分な大きさの凹凸形状が形成されておらず、得られた金属/樹脂複合構造体106は低い接合強度となった。
(金属部材の表面粗化処理B)
[調製例1B](酸系エッチング剤Bによる表面粗化処理)
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:1.6mm)を、長さ45mm、幅18mmに切断した。このアルミニウム板を表1Bに示す組成の酸系エッチング剤B(30℃)中に浸漬し、揺動させることによって、表3Bに示すエッチング量だけエッチングした後、流水で水洗(1分)を行い、乾燥させることにより表面処理済みの金属部材を得た。なお、上記エッチング量は、エッチング処理前後のアルミニウム製部品の質量差、アルミニウムの比重、およびアルミニウム板の表面積から算出したエッチング量であり、エッチング時間で調整した。以下に示す「エッチング量」も同様である。
 表面処理済みの金属部材の表面を、走査型電子顕微鏡(JEOL社製、型番JSM-6
701F)で拡大倍率5000倍にて観察した。写真を図12に示す。
[調製例2B](酸系エッチング剤Bによる表面粗化処理後、超音波洗浄)
 調製例1Bで、酸系エッチング剤Bでエッチングした後、流水で水洗に変えて、超音波洗浄(水中、1分)したこと以外は同様の処理を行い、表面処理済みの金属部材を得た。
 表面処理済みの金属部材の表面を、走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率5000倍にて観察した。写真を図13に示す。
[調製例3B](アルカリ系エッチング剤処理に続き酸系エッチング剤Bによる表面粗化処理)
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:1.6mm)を、長さ45mm、幅18mmに切断した。このアルミニウム板を表2Bに示す組成のアルカリ系エッチング剤(35℃)中に浸漬し、1分間揺動させた後、流水で水洗(1分)を行った。次いで、表1Bに示す組成の酸系エッチング剤B(30℃)中に浸漬し、揺動させることによって、表3Bに示すエッチング量だけエッチングした後、流水で水洗(1分)を行い、乾燥させることにより表面処理済みの金属部材を得た。なお、表3Bに示すエッチング量は、上記アルカリ系エッチング剤によるエッチング量と上記酸系エッチング剤Bによるエッチング量の合計である。
[調製例4B](アルカリ系エッチング剤による表面粗化処理)
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:1.6mm)を、長さ45mm、幅18mmに切断した。このアルミニウム板を表2Bに示す組成のアルカリ系エッチング剤(35℃)中に浸漬し、揺動させることによって、表3Bに示すエッチング量だけエッチングした。流水で水洗(1分)を行った後、15質量%の硝酸水溶液(25℃)中に上記処理後のアルミニウム板を浸漬して60秒間揺動させた後、流水で水洗(1分)を行い、乾燥させることにより表面処理済みの金属部材を得た。
 表面処理済みの金属部材の表面を、走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率5000倍にて観察した。写真を図14に示す。
[調製例5B](酸系エッチング剤B処理に続きアルカリ系エッチング剤による表面粗化処理)
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:1.6mm)を、長さ45mm、幅18mmに切断した。このアルミニウム板を表1Bに示す組成の酸系エッチング剤B(30℃)中に浸漬し、1分間揺動させた後、流水で水洗(1分)を行った。次いで、表2Bに示す組成のアルカリ系エッチング剤(35℃)中に浸漬し、揺動させることによって、表3Bに示すエッチング量だけエッチングした後、流水で水洗(1分)を行い、乾燥させることにより表面処理済みの金属部材を得た。なお、表3Bに示すエッチング量は、上記酸系エッチング剤Bによるエッチング量と上記アルカリ系エッチング剤によるエッチング量の合計である。
[調製例6B](酸系エッチング剤Bによる表面粗化処理後、アルカリ系溶液による処理)
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:2mm)を、長さ110mm、幅25mmに切断した。このアルミニウム板を表1Bに示す組成の酸系エッチング剤B(30℃)中に浸漬し、揺動させることによって、表3Bに示すエッチング量だけエッチングした後、流水で水洗(1分)を行った。次に5質量%の水酸化ナトリウム水溶液(25℃)中に上記処理後のアルミニウム板を浸漬して30秒間揺動させた後、水洗を行った。次に35質量%の硝酸水溶液(25℃)中に上記処理後のアルミニウム板を浸漬して30秒間揺動させた後、流水で水洗(1分)を行い、乾燥させることにより表面処理済みの金属部材を得た。
 表面処理済みの金属部材の表面を、走査型電子顕微鏡(JEOL社製、型番JSM-6
701F)で拡大倍率5000倍にて観察した。写真を図15に示す。
[実施例1B]
 日本製鋼所社製のJ85AD110Hに小型ダンベル金属インサート金型102を装着し、金型102内に調製例1Bによって調製されたアルミニウム板(金属部材103)を設置した。次いで、その金型102内に熱可塑性樹脂組成物(P)として、ガラス繊維強化ポリプロピレン(プライムポリマー社製V7100、ポリプロピレン(MFR(230℃、2.16kg荷重):18g/10min)80質量部、ガラス繊維20質量部)を、シリンダー温度250℃、金型温度120℃、射出速度25mm/sec、保圧80MPa、保圧時間10秒の条件にて射出成形を行い、金属/樹脂複合構造体106を得た。接合強度の評価結果を表4Bに示す。
[実施例2B]
 実施例1Bにおいて、調製例1Bによって調製されたアルミニウム板に変えて、調製例2Bによって調製されたアルミニウム板を設置した以外は実施例1Bと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表4Bに示す。
[実施例3B]
 実施例1Bにおいて、熱可塑性樹脂組成物(P)として、ガラス繊維強化ポリプロピレン(プライムポリマー社製V7100、ポリプロピレン(MFR(230℃、2.16kg荷重):18g/10min)80質量部、ガラス繊維20質量部)に変えて、ガラス繊維強化ポリプロピレン(プライムポリマー社製L-2040P、ポリプロピレン(MFR(230℃、2.16kg荷重):20g/10min)80質量部、ガラス繊維20質量部)を用いた以外は実施例1Bと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表4Bに示す。
[実施例4B]
 実施例1Bにおいて、熱可塑性樹脂組成物(P)として、ガラス繊維強化ポリプロピレン(プライムポリマー社製V7100、ポリプロピレン(MFR(230℃、2.16kg荷重):18g/10min)80質量部、ガラス繊維20質量部)に変えて、ホモポリプロピレン(プライムポリマー社製J105G(MFR(230℃、2.16kg荷重):9g/10min))を用いた以外は実施例1Bと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表4Bに示す。
[実施例5B]
 調製例1Bによって調製されたアルミニウム板に変えて、調製例3Bによって調製されたアルミニウム板を設置した以外は実施例1Bと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表4Bに示す。
[比較例1B]
 実施例1Bにおいて、調製例1Bによって調製されたアルミニウム板に変えて、調製例4Bによって調製されたアルミニウム板を設置した以外は実施例1Bと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表4Bに示す。
[比較例2B]
 実施例1Bにおいて、調製例1Bによって調製されたアルミニウム板に変えて、調製例5Bによって調製されたアルミニウム板を設置した以外は実施例1Bと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表4Bに示す。
[比較例3B]
 実施例1Bにおいて、調製例1Bによって調製されたアルミニウム板に変えて、調製例6Bによって調製されたアルミニウム板を設置した以外は実施例1Bと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表4Bに示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 実施例1Bでは、調製例1Bにより処理した金属部材103の表面に、図12に示すような鋭利な角のある凹凸形状が形成されており、ここに樹脂部材105が入り込むことにより、得られた金属/樹脂複合構造体106は高い接合強度となったものと考えられる。
 実施例2Bでは、調製例2Bにより、調製例1Bにより処理した金属部材103を、さらに超音波洗浄(水中、1分)した。当該処理により金属表面上に生じたスマットを除去できたことから、図13に示すような鋭利な角のある凹凸形状が形成され、ここに樹脂部材105が入り込むことにより、得られた金属/樹脂複合構造体106はさらに高い接合強度が得られたとなったものと考えられる。
 実施例3Bでは、実施例1Bで用いたガラス繊維強化ポリプロピレン(V-7100)に代えて相対的にガラス繊維長が長いガラス繊維強化ポリプロピレン(L-2040P)を用いているが、実施例1Bと同様に高い接合強度が得られている。
 また、実施例4Bでは、実施例1Bでガラス繊維強化ポリプロピレン(V-7100)に代えて、ホモポリプロピレン(J105G)を用いているが、実施例1Bと同様に高い接合強度が得られている。
 実施例5Bでは、調製例3Bで得られた、アルカリ系エッチング剤処理に続き、酸系エッチング剤Bによる表面粗化処理をした金属部材103を用いて実施例1Bと同様の方法を行ったが得られた金属/樹脂複合構造体106は実施例1Bの場合と遜色無い接合強度が得られた。
 一方、比較例1Bでは、調製例4Bにより処理した金属部材の表面は、図14に示すように充分な大きさの凹凸形状が形成されておらず、得られた金属/樹脂複合構造体106は低い接合強度となった。
 比較例2Bでは、調製例5Bにより、酸系エッチング剤Bでエッチングした後、アルカリ系エッチング剤で処理しており、比較例3Bでは、調製例6Bにより、酸系エッチング剤Bでエッチングした後、水酸化ナトリウム水溶液と硝酸水溶液で処理がなされた金属部材を用いている。酸系エッチング剤Bによる処理で金属部材の表面に一旦は図12に示すような鋭利な凹凸が形成されていると想定されるものの、その後のアルカリ系エッチング剤もしくは水酸化ナトリウムによる処理によって凹凸形状が損なわれ、低い接合強度となったものと考えられる。比較例3Bでの、調製例6Bによる金属表面形状を図15に示す。
[実施例1C]
 日本製鋼所社製のJ85AD110Hに小型ダンベル金属インサート金型102を装着し、金型102内に調製例1Bによって調製されたアルミニウム板(金属部材103)を設置した。次いで、その金型102内に熱可塑性樹脂組成物(P)として、ポリエーテルイミド樹脂(SABICイノベーティブプラスチックス社製1100F、Tg=217℃)を、シリンダー温度400℃、金型温度170℃、射出速度25mm/sec、保圧180MPa、保圧時間10秒の条件にて射出成形を行い、金属/樹脂複合構造体106を得た。接合強度の評価結果を表1Cに示す。
[実施例2C]
 実施例1Cにおいて、調製例1Bによって調製されたアルミニウム板に変えて、調製例2Bによって調製されたアルミニウム板を設置した以外は実施例1Cと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表1Cに示す。
[実施例3C]
 実施例1Cにおいて、熱可塑性樹脂組成物(P)として、ポリエーテルイミド樹脂(SABICイノベーティブプラスチックス社製1100F)に変えて、ガラス繊維強化ポリイミド樹脂(三井化学社製JGH3030、Tgが250℃であるポリイミド樹脂70質量部、ガラス繊維30質量部)を用いた以外は実施例1Cと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表1Cに示す。
[実施例4C]
 実施例1Cにおいて、熱可塑性樹脂組成物(P)として、ポリエーテルイミド樹脂(SABICイノベーティブプラスチックス社製1100F)に変えて、ポリエーテルスルホン樹脂(住友化学社製4101GL20、Tg=225℃)を用いた以外は実施例1Cと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表1Cに示す。
[実施例5C]
 実施例1Cにおいて、熱可塑性樹脂組成物(P)として、ポリエーテルイミド樹脂(SABICイノベーティブプラスチックス社製1100F)に変えて、ガラス繊維強化ポリカーボネート樹脂(帝人化成社製GN3630H、樹脂部のTg=150℃)を用いた以外は実施例1Cと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表1Cに示す。
[実施例6C]
 調製例1Bによって調製されたアルミニウム板に変えて、調製例3Bによって調製されたアルミニウム板を設置した以外は実施例1Cと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表1Cに示す。
[比較例1C]
 実施例1Cにおいて、調製例1Bによって調製されたアルミニウム板に変えて、調製例4Bによって調製されたアルミニウム板を設置した以外は実施例1Cと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表1Cに示す。
[比較例2C]
 実施例1Cにおいて、調製例1Bによって調製されたアルミニウム板に変えて、調製例5Bによって調製されたアルミニウム板を設置した以外は実施例1Cと同様にして金属/樹脂複合構造体を得た。接合強度の評価結果を表1Cに示す。
[比較例3C]
 実施例1Cにおいて、調製例1Bによって調製されたアルミニウム板に変えて、調製例6Bによって調製されたアルミニウム板を設置した以外は実施例1Cと同様にして金属/樹脂複合構造体106を得た。接合強度の評価結果を表1Cに示す。
Figure JPOXMLDOC01-appb-T000008
 実施例1Cでは、調製例1Bにより処理した金属部材103の表面に、図12に示すような鋭利な角のある凹凸形状が形成されており、ここに樹脂部材105が入り込むことにより、得られた金属/樹脂複合構造体106は高い接合強度となったものと考えられる。
 実施例2Cでは、調製例2Bにより、調製例1Bにより処理した金属部材を、さらに超音波洗浄(水中、1分)した。当該処理により金属表面上に生じたスマットを除去できたことから、図13に示すような鋭利な角のある凹凸形状が形成され、ここに樹脂部材105が入り込むことにより、得られた金属/樹脂複合構造体106はさらに高い接合強度を発現することになったものと考えられる。
 実施例3Cでは、実施例1Cで用いたポリエーテルイミド樹脂(1100F)に代えてガラス繊維強化ポリイミド樹脂(JGH3030)を用いているが、実施例1Cと同様に高い接合強度が得られている。
 また、実施例4Cでは、実施例1Cで用いたポリエーテルイミド樹脂(1100F)に代えて、ポリエーテルスルホン樹脂(4101GL20)を用いているが、実施例1Cと同様に高い接合強度が得られている。
 また、実施例5Cでは、実施例1Cで用いたポリエーテルイミド樹脂(1100F)に代えて、ガラス繊維強化ポリカーボネート樹脂(GN3630H)を用いているが、実施例1Cと同様に高い接合強度が得られている。
 実施例6Cでは、調製例3Bで得られた、アルカリ系エッチング剤処理に続き、酸系エッチング剤Bによる表面粗化処理をした金属部材103を用いて実施例1Cと同様の方法を行ったが得られた金属/樹脂複合構造体106は実施例1Cの場合と遜色無い接合強度が得られた。
 一方、比較例1Cでは、調製例4Bにより処理した金属部材103の表面は、図14に示すように充分な大きさの凹凸形状が形成されておらず、得られた金属/樹脂複合構造体106は低い接合強度となった。
 比較例2Cでは、調製例5Bにより、酸系エッチング剤Bでエッチングした後、アルカリ系エッチング剤で処理しており、比較例3Cでは、調製例6Bにより、酸系エッチング剤Bでエッチングした後、水酸化ナトリウム水溶液と硝酸水溶液で処理がなされた金属部材を用いている。酸系エッチング剤Bによる処理で金属部材の表面に一旦は図12に示すような鋭利な凹凸が形成されていると想定されるものの、その後のアルカリ系エッチング剤もしくは水酸化ナトリウムによる処理によって凹凸形状が損なわれ、低い接合強度となったものと考えられる。比較例3Cでの、調製例6Bによる金属表面形状を図15に示す。
(金属部材の表面粗化処理D)
[調製例1D](酸系エッチング剤Bによる表面粗化処理)
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:1mm)を、長さ150mm、幅75mmに切断した。このアルミニウム板を表1Bに示す組成の酸系エッチング剤B(30℃)中に浸漬し、揺動させることによって、表1Dに示すエッチング量だけエッチングした後、流水で水洗(1分)を行い、乾燥させることにより表面処理済みの金属部材を得た。なお、上記エッチング量は、エッチング処理前後のアルミニウム製部品の質量差、アルミニウムの比重、およびアルミニウム板の表面積から算出したエッチング量であり、エッチング時間で調整した。以下に示す「エッチング量」も同様である。
[調製例2D](酸系エッチング剤Bによる表面粗化処理後、超音波洗浄)
 調製例1Dで、酸系エッチング剤Bでエッチングした後、流水で水洗に変えて、超音波洗浄(水中、1分)したこと以外は同様の処理を行い、表面処理済みの金属部材を得た。
[調製例3D](アルカリ系エッチング剤処理に続き酸系エッチング剤Bによる表面粗化処理)
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:1mm)を、長さ150mm、幅75mmに切断した。このアルミニウム板を表2Bに示す組成のアルカリ系エッチング剤(35℃)中に浸漬し、1分間揺動させた後、流水で水洗(1分)を行った。次いで、表1Bに示す組成の酸系エッチング剤B(30℃)中に浸漬し、揺動させることによって、表1Dに示すエッチング量だけエッチングした後、流水で水洗(1分)を行い、乾燥させることにより表面処理済みの金属部材を得た。なお、表1Dに示すエッチング量は、上記アルカリ系エッチング剤によるエッチング量と上記酸系エッチング剤Bによるエッチング量の合計である。
[調製例4D](アルカリ系エッチング剤による表面粗化処理)
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:1mm)を、長さ150mm、幅75mmに切断した。このアルミニウム板を表2Bに示す組成のアルカリ系エッチング剤(35℃)中に浸漬し、揺動させることによって、表1Dに示すエッチング量だけエッチングした。流水で水洗(1分)を行った後、15質量%の硝酸水溶液(25℃)中に上記処理後のアルミニウム板を浸漬して60秒間揺動させた後、流水で水洗(1分)を行い、乾燥させることにより表面処理済みの金属部材を得た。
[調製例5D](酸系エッチング剤B処理に続きアルカリ系エッチング剤による表面粗化処理)
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:1mm)を、長さ150mm、幅75mmに切断した。このアルミニウム板を表1Bに示す組成の酸系エッチング剤B(30℃)中に浸漬し、1分間揺動させた後、流水で水洗(1分)を行った。次いで、表2Bに示す組成のアルカリ系エッチング剤(35℃)中に浸漬し、揺動させることによって、表1Dに示すエッチング量だけエッチングした後、流水で水洗(1分)を行い、乾燥させることにより表面処理済みの金属部材を得た。なお、表1Dに示すエッチング量は、上記酸系エッチング剤Bによるエッチング量と上記アルカリ系エッチング剤によるエッチング量の合計である。
[調製例6D](酸系エッチング剤Bによる表面粗化処理後、アルカリ系溶液による処理)
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:1mm)を、長さ150mm、幅75mmに切断した。このアルミニウム板を表1Bに示す組成の酸系エッチング剤B(30℃)中に浸漬し、揺動させることによって、表1Dに示すエッチング量だけエッチングした後、流水で水洗(1分)を行った。次に5質量%の水酸化ナトリウム水溶液(25℃)中に上記処理後のアルミニウム板を浸漬して30秒間揺動させた後、水洗を行った。次に35質量%の硝酸水溶液(25℃)中に上記処理後のアルミニウム板を浸漬して30秒間揺動させた後、流水で水洗(1分)を行い、乾燥させることにより表面処理済みの金属部材を得た。
[調製例7D](特開2005-119005号公報 実施例1に記載の処理)
 市販のアルミニウム脱脂剤「NE-6(メルテックス社製)」を15%濃度で水に溶かし75℃とした。この水溶液が入ったアルミニウム脱脂槽に上記アルミニウム板を5分間浸漬し水洗し、40℃の1%塩酸水溶液が入った槽に1分浸漬し水洗した。つづいて、40℃の1%水酸化ナトリウム水溶液が入った槽に1分浸漬し水洗した。次いで40℃の1%塩酸水溶液を入れた槽に1分浸漬し水洗し、60℃の2.5%濃度の1水和ヒドラジン水溶液を入れた第1ヒドラジン処理槽に1分浸漬し、40℃の0.5%濃度の1水和ヒドラジン水溶液を入れた第2ヒドラジン処理槽に0.5分浸漬し水洗した。これを40℃で15分間、60℃で5分程度温風乾燥させることにより、表面処理済みの金属部材を得た。
 表面処理済みの金属部材の表面を、走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率100000倍にて観察した。写真を図16に示す。
[実施例1D]
 調製例1Dによって調製されたアルミニウム板に、アプリケーターを用いて水性塗料を乾燥塗膜が40μmとなるように塗装し、次いで、120℃のオーブンにて乾燥を行い、塗装金属部材を得た。塗料としては、水性ディスパージョン化ポリオレフィン(三井化学社製、ケミパール(登録商標)S300)を用いた。密着性の評価結果を表2Dに示す。
[実施例2D]
 実施例1Dにおいて、調製例1Dによって調製されたアルミニウム板に代えて、調製例2Dによって調製されたアルミニウム板を用いた以外は実施例1Dと同様にして塗装金属部材を得た。密着性の評価結果を表2Dに示す。
[実施例3D]
 実施例1Dにおいて、塗料として、水性ディスパージョン化ポリオレフィン(三井化学社製、ケミパール(登録商標)S300;アイオノマー)に代えて、水性ディスパージョン化ポリオレフィン(三井化学社製、ケミパール(登録商標)M200;低密度ポリエチレン)を用いた以外は実施例1Dと同様にして塗装金属部材を得た。密着性の評価結果を表2Dに示す。
[実施例4D]
 実施例1Dにおいて、塗料として、水性ディスパージョン化ポリオレフィン(三井化学社製、ケミパール(登録商標)S300;アイオノマー)に代えて、水性ディスパージョン化ポリオレフィン(三井化学社製、ケミパール(登録商標)W310;低分子量ポリエチレン)を用いた以外は実施例1Dと同様にして塗装金属部材を得た。密着性の評価結果を表2Dに示す。
[実施例5D]
 実施例1Dにおいて、調製例1Dによって調製されたアルミニウム板に代えて、調製例3Dによって調製されたアルミニウム板を用いた以外は実施例1Dと同様にして塗装金属部材を得た。密着性の評価結果を表2Dに示す。
[比較例1D]
 JIS H4000に規定された合金番号5052のアルミニウム板(厚み:1mm)を、長さ150mm、幅75mmに切断した。このアルミニウム板に、アプリケーターを用いて水性塗料を乾燥塗膜が40μmとなるように塗装し、次いで、120℃のオーブンにて乾燥を行い、塗装金属部材を得た。塗料としては、水性ディスパージョン化ポリオレフィン(三井化学社製、ケミパール(登録商標)S300;アイオノマー)を用いた。密着性の評価結果を表2Dに示す。
[比較例2D]
 実施例1Dにおいて、調製例1Dによって調製されたアルミニウム板に代えて、調製例4Dによって調製されたアルミニウム板を用いた以外は実施例1Dと同様にして塗装金属部材を得た。密着性の評価結果を表2Dに示す。
[比較例3D]
 実施例1Dにおいて、調製例1Dによって調製されたアルミニウム板に代えて、調製例5Dによって調製されたアルミニウム板を用いた以外は実施例1Dと同様にして塗装金属部材を得た。密着性の評価結果を表2Dに示す。
[比較例4D]
 実施例1Dにおいて、調製例1Dによって調製されたアルミニウム板に代えて、調製例6Dによって調製されたアルミニウム板を用いた以外は実施例1Dと同様にして塗装金属部材を得た。密着性の評価結果を表2Dに示す。
[比較例5D]
 実施例1Dにおいて、調製例1Dによって調製されたアルミニウム板に代えて、調製例7Dによって調製されたアルミニウム板を用いた以外は実施例1Dと同様にして塗装金属部材を得た。密着性の評価結果を表2Dに示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 実施例1Dでは、調製例1Dにより処理した金属部材103の表面に、図12に示すような鋭利な角のある凹凸形状が形成されており、ここに水性ディスパージョン化ポリオレフィンからなる塗料樹脂(樹脂部材105)が入り込むことにより、得られた塗装金属部材は高い密着性となったものと考えられる。
 実施例2Dでは、調製例2Dにより、調製例1Dにより処理した金属部材を、さらに超音波洗浄(水中、1分)した。当該処理により金属表面上に生じたスマットを除去できたことから、図13に示すような鋭利な角のある凹凸形状が形成され、水性ディスパージョン化ポリオレフィンからなる塗料樹脂が入り込むことにより、得られた塗装金属部材は高い密着性となったものと考えられる。
 実施例3Dでは、実施例1Dで用いたアイオノマー(三井化学社製、ケミパールS300(登録商標))にかえて粒子径の大きい低密度ポリエチレン(三井化学社製、ケミパールM200(登録商標))を用いているが、実施例1Dと同様に密着性が得られている。
 また、実施例4Dでは、実施例1Dで用いたアイオノマー(三井化学社製、ケミパールS300(登録商標))にかえて更に粒子径の大きい低分子量ポリエチレン(三井化学社製、ケミパールW310(登録商標))を用いているが、実施例1Dと同様に密着性が得られている。
 実施例5Dでは、調製例3Dで得られた、アルカリ系エッチング剤処理に続き、酸系エッチング剤Bによる表面粗化処理をした金属部材103を用いて実施例1Dと同様の方法を行ったが得られた塗装金属部材は実施例1Dの場合と遜色無い密着性が得られた。
 一方、比較例1Dでは、表面処理を実施せずに水性ディスパージョン化ポリオレフィンからなる塗料樹脂を塗装した結果、ある程度の密着性を示したものの、充分な密着性は得られなかった。
 比較例2Dでは、調製例4Dにより処理した金属部材の表面は、図12に示すように充分な大きさの凹凸形状が形成されておらず、得られた塗装金属部材は低い密着性となった。
 比較例3Dでは、調製例5Dにより、酸系エッチング剤Bでエッチングした後、アルカリ系エッチング剤で処理しており、比較例4Dでは、調製例6Dにより、酸系エッチング剤Bでエッチングした後、水酸化ナトリウム水溶液と硝酸水溶液で処理がなされた金属部材を用いている。酸系エッチング剤Bによる処理で金属部材の表面に一旦は図12に示すような鋭利な凹凸が形成されていると想定されるものの、その後のアルカリ系エッチング剤もしくは水酸化ナトリウムによる処理によって凹凸形状が損なわれ、低い密着性となったものと考えられる。
 比較例5Dでは、調製例7Dにより処理した金属部材の表面は、図16に示すように充分な大きさの凹凸形状が形成されておらず、得られた塗装金属部材は低い密着性となった。
 以上詳述したように、本発明の金属/樹脂複合構造体106は、金属部材103と樹脂部材105とが容易に剥がれることなく一体化されたものであり、高い接合強度を得ることができる。
 本発明の金属/樹脂複合構造体106は、様々な形状を比較的簡便な方法で実現することができる。そのため、本発明の産業の発展への寄与は大きい。
 この出願は、2013年7月18日に出願された日本特許出願特願2013-149031、2013年8月9日に出願された日本特許出願特願2013-166751、2013年11月14日に出願された日本特許出願特願2013-235731および2014年7月4日に出願された日本特許出願特願2014-138787を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は以下の態様を含む。
[A1]
 アルミニウムを含む金属材料からなり、表面粗化処理がされた金属部材と、ポリオレフィン系樹脂を含む樹脂組成物からなる樹脂部材が接合してなる金属/樹脂複合構造体において、
 上記金属部材の表面粗化処理が、酸系エッチング剤によってなされたものであり、
 該酸系エッチング剤による処理が、金属部材の表面粗化処理の工程の最終段階において行われており、
 上記エッチング剤が、第二鉄イオンおよび第二銅イオンの少なくとも一方と、酸とを含む酸系エッチング剤である金属/樹脂複合構造体。
[A2]
 上記金属部材が、該金属部材の表面粗化処理の工程に続いて、超音波洗浄により洗浄されたものである上記[A1]に記載の金属/樹脂複合構造体。
[B1]
 アルミニウムを含む金属材料からなり、表面粗化処理がされた金属部材と、ガラス転移温度が140℃以上の熱可塑性樹脂を含む樹脂組成物からなる樹脂部材が接合してなる金属/樹脂複合構造体において、
 上記金属部材の表面粗化処理が、酸系エッチング剤によってなされたものであり、
 該酸系エッチング剤による処理が、金属部材の表面粗化処理の工程の最終段階において行われており、
 上記エッチング剤が、第二鉄イオンおよび第二銅イオンの少なくとも一方と、酸とを含む酸系エッチング剤である金属/樹脂複合構造体。
[B2]
 アルミニウムを含む金属材料からなり、表面粗化処理がされた金属部材と、非晶性熱可塑性樹脂を含む樹脂組成物からなる樹脂部材が接合してなる金属/樹脂複合構造体において、
 上記金属部材の表面粗化処理が、酸系エッチング剤によってなされたものであり、
 該酸系エッチング剤による処理が、金属部材の表面粗化処理の工程の最終段階において行われており、
 上記エッチング剤が、第二鉄イオンおよび第二銅イオンの少なくとも一方と、酸とを含む酸系エッチング剤である金属/樹脂複合構造体。
[B3]
 上記金属部材が、該金属部材の表面粗化処理の工程に続いて、超音波洗浄により洗浄されたものである上記[B1]または[B2]に記載の金属/樹脂複合構造体。
[B4]
 上記金属部材が、該金属部材の表面粗化処理の工程に続いて、超音波洗浄により洗浄されたものである上記[B3]に記載の金属/樹脂複合構造体。
[C1]
 アルミニウムを含む金属材料からなり表面粗化処理がされた金属部材の表面に、塗膜が形成された塗装金属部材であって、
 上記金属部材の表面粗化処理が、酸系エッチング剤によってなされたものであり、
 該酸系エッチング剤による処理が、金属部材の表面粗化処理の工程の最終段階において行われており、
 上記エッチング剤が、第二鉄イオンおよび第二銅イオンの少なくとも一方と、酸とを含む酸系エッチング剤である塗装金属部材。
[C2]
 上記金属部材の表面に、水性塗料を塗布することにより塗膜を形成する、上記[C1]に記載の塗装金属部材の製造方法。

Claims (19)

  1.  金属部材と、熱可塑性樹脂組成物からなる樹脂部材とが接合してなる金属/樹脂複合構造体であって、
     前記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす金属/樹脂複合構造体。
     (1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
     (2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
  2.  請求項1に記載の金属/樹脂複合構造体において、
     前記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(3)をさらに満たす金属/樹脂複合構造体。
     (3)切断レベル40%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が60%以下である直線部を1直線部以上含む
  3.  請求項1または2に記載の金属/樹脂複合構造体において、
     前記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、すべての直線部の前記十点平均粗さ(Rz)が5μmを超える金属/樹脂複合構造体。
  4.  請求項3に記載の金属/樹脂複合構造体において、
     前記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、すべての直線部の前記十点平均粗さ(Rz)が15μm以上である金属/樹脂複合構造体。
  5.  請求項1乃至4いずれか一項に記載の金属/樹脂複合構造体において、
     前記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(4)をさらに満たす金属/樹脂複合構造体。
     (4)すべての直線部の、粗さ曲線要素の平均長さ(RSm)が10μmを超え300μm未満である
  6.  請求項1乃至5いずれか一項に記載の金属/樹脂複合構造体において、
     前記金属部材の前記表面が粗化処理されており、
     前記金属部材の前記粗化処理の工程の最終段階では、酸系エッチング剤による粗化処理が行われており、
     前記酸系エッチング剤が、第二鉄イオンおよび第二銅イオンの少なくとも一方と、酸とを含むものである、金属/樹脂複合構造体。
  7.  請求項6に記載の金属/樹脂複合構造体において、
     前記金属部材は、前記粗化処理の工程の後に、超音波洗浄により洗浄されたものである金属/樹脂複合構造体。
  8.  請求項1乃至7いずれか一項に記載の金属/樹脂複合構造体において、
     前記金属部材はアルミニウムおよびアルミニウム合金から選択される一種または二種以上の金属を含む金属材料からなるものである金属/樹脂複合構造体。
  9.  請求項1乃至8いずれか一項に記載の金属/樹脂複合構造体において、
     前記熱可塑性樹脂組成物が、ポリオレフィン系樹脂、ポリエステル系樹脂およびポリアミド系樹脂から選択される一種または二種以上の熱可塑性樹脂を含む金属/樹脂複合構造体。
  10.  請求項1乃至8いずれか一項に記載の金属/樹脂複合構造体において、
     前記熱可塑性樹脂組成物が、140℃以上のガラス転移温度を有する、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂、およびポリエーテルスルホン樹脂から選択される一種または二種以上の熱可塑性樹脂を含む金属/樹脂複合構造体。
  11.  請求項1乃至8いずれか一項に記載の金属/樹脂複合構造体において、
     前記熱可塑性樹脂組成物が、ポリスチレン樹脂、ポリアクリロニトリル樹脂、スチレン-アクリロニトリル共重合体樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂、ポリメタクリル酸メチル樹脂、およびポリカーボネート樹脂から選択される一種または二種以上の非晶性熱可塑性樹脂を含む金属/樹脂複合構造体。
  12.  請求項1乃至11いずれか一項に記載の金属/樹脂複合構造体において、
     前記樹脂部材が塗膜である金属/樹脂複合構造体。
  13.  請求項12に記載の金属/樹脂複合構造体において、
     前記塗膜が水性塗料を前記金属部材の表面に塗布することによって得られるものである金属/樹脂複合構造体。
  14.  当該金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす、熱可塑性樹脂組成物からなる樹脂部材との接合のために用いられる金属部材。
     (1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
     (2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
  15.  請求項14に記載の金属部材において、
     前記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(3)をさらに満たす金属部材。
     (3)切断レベル40%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が60%以下である直線部を1直線部以上含む
  16.  請求項14または15に記載の金属部材において、
     前記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、すべての直線部の前記十点平均粗さ(Rz)が5μmを超える金属部材。
  17.  請求項16に記載の金属部材において、
     前記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、すべての直線部の前記十点平均粗さ(Rz)が15μm以上である金属部材。
  18.  請求項14乃至17いずれか一項に記載の金属部材において、
     前記金属部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(4)をさらに満たす金属部材。
     (4)すべての直線部の、粗さ曲線要素の平均長さ(RSm)が10μmを超え300μm未満である
  19.  請求項14乃至18いずれか一項に記載の金属部材において、
     前記金属部材はアルミニウムおよびアルミニウム合金から選択される一種または二種以上の金属を含む金属材料からなるものである金属部材。
PCT/JP2014/069111 2013-07-18 2014-07-17 金属/樹脂複合構造体および金属部材 WO2015008847A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201480002139.8A CN104583458B (zh) 2013-07-18 2014-07-17 金属/树脂复合结构体及金属构件
BR112015004532-4A BR112015004532B1 (pt) 2013-07-18 2014-07-17 Estrutura de compósito de resina metálica e membro de metal
IN995DEN2015 IN2015DN00995A (ja) 2013-07-18 2014-07-17
MX2015002673A MX366519B (es) 2013-07-18 2014-07-17 Estructura compuesta de metal-resina y miembro metalico.
US14/423,982 US9987824B2 (en) 2013-07-18 2014-07-17 Metal-resin composite structure and metal member
JP2014555029A JP5714193B1 (ja) 2013-07-18 2014-07-17 金属/樹脂複合構造体および金属部材
KR1020157003123A KR101548108B1 (ko) 2013-07-18 2014-07-17 금속/수지 복합 구조체 및 금속 부재
EP14826820.4A EP2894240B1 (en) 2013-07-18 2014-07-17 Metal/resin composite structure and use of metal member

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013149031 2013-07-18
JP2013-149031 2013-07-18
JP2013166751 2013-08-09
JP2013-166751 2013-08-09
JP2013235731 2013-11-14
JP2013-235731 2013-11-14
JP2014138787 2014-07-04
JP2014-138787 2014-07-04

Publications (1)

Publication Number Publication Date
WO2015008847A1 true WO2015008847A1 (ja) 2015-01-22

Family

ID=52346289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069111 WO2015008847A1 (ja) 2013-07-18 2014-07-17 金属/樹脂複合構造体および金属部材

Country Status (10)

Country Link
US (1) US9987824B2 (ja)
EP (1) EP2894240B1 (ja)
JP (2) JP5714193B1 (ja)
KR (1) KR101548108B1 (ja)
CN (2) CN106903839B (ja)
BR (1) BR112015004532B1 (ja)
IN (1) IN2015DN00995A (ja)
MX (1) MX366519B (ja)
TW (1) TWI648152B (ja)
WO (1) WO2015008847A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142119A (ja) * 2015-02-05 2016-08-08 三井化学株式会社 ドアチェッカー用アームおよびドアチェッカー
CN105835276A (zh) * 2015-01-30 2016-08-10 现代自动车株式会社 金属和塑料复合体的制造方法
JP2016190412A (ja) * 2015-03-31 2016-11-10 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2016190411A (ja) * 2015-03-31 2016-11-10 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2017019164A (ja) * 2015-07-09 2017-01-26 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2017019165A (ja) * 2015-07-09 2017-01-26 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2017087567A (ja) * 2015-11-10 2017-05-25 三井化学株式会社 樹脂被膜金属材料
JP2017136839A (ja) * 2016-01-29 2017-08-10 三井化学株式会社 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法、ニッケルめっき化鉄鋼部材およびニッケルめっき化鉄鋼部材の製造方法
WO2017209011A1 (ja) 2016-05-31 2017-12-07 三井化学株式会社 金属/樹脂複合構造体、金属部材および金属部材の製造方法
JP2018034351A (ja) * 2016-08-30 2018-03-08 三井化学株式会社 金属/繊維強化樹脂複合構造体および金属/繊維強化樹脂複合構造体の製造方法
JP2018052017A (ja) * 2016-09-30 2018-04-05 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2018140559A (ja) * 2017-02-28 2018-09-13 三井化学株式会社 マグネシウム合金/樹脂複合構造体およびマグネシウム合金/樹脂複合構造体の製造方法
JP2018167418A (ja) * 2017-03-29 2018-11-01 三井化学株式会社 金属/繊維強化プラスチック複合構造体
JP2019018547A (ja) * 2017-07-14 2019-02-07 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
WO2019082983A1 (ja) 2017-10-27 2019-05-02 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
WO2019164008A1 (ja) 2018-02-26 2019-08-29 三井化学株式会社 異材接合体および電子部品収納用筐体
JP2020001344A (ja) * 2018-06-29 2020-01-09 三井化学株式会社 金属/樹脂複合構造体およびその製造方法
JP2020001271A (ja) * 2018-06-28 2020-01-09 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
WO2020059128A1 (ja) 2018-09-21 2020-03-26 三井化学株式会社 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および冷却装置
WO2020158820A1 (ja) 2019-01-29 2020-08-06 三井化学株式会社 アルミニウム系金属樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属樹脂複合構造体の製造方法
WO2020241314A1 (ja) 2019-05-28 2020-12-03 三井化学株式会社 冷却装置及び冷却装置の製造方法
JP2021009934A (ja) * 2019-07-01 2021-01-28 三井化学株式会社 放熱性部品
WO2021153778A1 (ja) 2020-01-31 2021-08-05 三井化学株式会社 導電用部材、導電用部材の製造方法、電力変換装置、モーター、二次電池モジュール及び二次電池パック
WO2021256328A1 (ja) 2020-06-15 2021-12-23 三井化学株式会社 金属樹脂複合体、冷却装置、金属樹脂複合体の製造方法及び安全弁構造
WO2022014598A1 (ja) 2020-07-14 2022-01-20 三井化学株式会社 熱交換装置及び熱交換装置の製造方法
WO2022019339A1 (ja) 2020-07-22 2022-01-27 三井化学株式会社 金属部材、金属樹脂複合体、及び金属部材の製造方法
WO2022118936A1 (ja) 2020-12-02 2022-06-09 三井化学株式会社 温度制御ユニット及び温度制御ユニットの製造方法
WO2023013557A1 (ja) 2021-08-05 2023-02-09 三井化学株式会社 抗菌性金属材料及び抗菌性物品

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026145A4 (en) * 2013-07-23 2017-04-12 JX Nippon Mining & Metals Corporation Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
JP5839251B2 (ja) * 2013-08-06 2016-01-06 Dic株式会社 水性樹脂組成物、それを用いた積層体及び画像表示装置
WO2016199100A1 (en) * 2015-06-10 2016-12-15 Sabic Global Technologies B.V. Plastic-metal junctions and methods of making the same
CN104947109B (zh) * 2015-07-09 2017-07-14 湖南城市学院 一种用于辅助微细超声加工的蚀刻液及其制备方法
CN105128260B (zh) * 2015-09-30 2017-07-21 东莞市科泰汽车检夹具有限公司 一种电子产品金属外壳及其制作方法
WO2017151514A1 (en) 2016-02-29 2017-09-08 The Regents Of The University Of Colorado, A Body Corporate Radiative cooling structures and systems
US10502505B2 (en) 2016-02-29 2019-12-10 The Regents of the Univeristy of Colorado, a body corporate Radiative cooling structures and systems
KR101890406B1 (ko) * 2016-05-12 2018-08-24 한국엔지니어링플라스틱 주식회사 금속 수지 접합체의 제조방법
FR3059151B1 (fr) * 2016-11-21 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Circuit electronique et son procede de fabrication
WO2018168554A1 (ja) 2017-03-16 2018-09-20 株式会社カネカ 熱可塑性樹脂系繊維強化複合材料と金属部材との接着複合体及びその製造方法
JP7348709B2 (ja) * 2017-04-21 2023-09-21 三井化学株式会社 包装体、金属部材の保存または運搬方法、および金属/樹脂複合構造体の製造方法
KR102471455B1 (ko) * 2017-06-14 2022-11-25 디에스엠 아이피 어셋츠 비.브이. 금속 표면 상의 플라스틱 오버몰딩 방법 및 플라스틱-금속 하이브리드 부품
CN107747096B (zh) * 2017-10-27 2019-08-23 东莞市慧泽凌化工科技有限公司 一种不锈钢表面粗化处理的方法
JP6978910B2 (ja) * 2017-11-29 2021-12-08 三菱エンジニアリングプラスチックス株式会社 金属接合用樹脂組成物、金属樹脂複合体およびその製造方法
EP3748037A4 (en) * 2018-02-01 2021-03-10 Mitsubishi Gas Chemical Company, Inc. Aqueous SURFACE TREATMENT SOLUTION, METHOD FOR MANUFACTURING SURFACE-TREATED ALLOY AND COMPOSITE MATERIAL, AND MANUFACTURING METHOD FOR THEREFORE
CN111954597B (zh) * 2018-04-10 2023-03-21 Dic株式会社 复合结构体及其制造方法
KR20190135193A (ko) * 2018-05-28 2019-12-06 삼성전자주식회사 스테인리스 스틸 및 레진의 복합체 및 그 제조 방법
MX2020013819A (es) * 2018-07-19 2021-03-09 Dow Global Technologies Llc Composiciones de recubrimiento resistentes a la intemperie y duraderas.
CN112512794A (zh) * 2018-08-10 2021-03-16 三井化学株式会社 复合结构体及电子设备用壳体
JP7111579B2 (ja) * 2018-10-22 2022-08-02 帝人株式会社 ポリカーボネート樹脂組成物およびそれからなる樹脂金属複合成形体
US20220224001A1 (en) * 2019-04-22 2022-07-14 Mitsui Chemicals, Inc. Electronic device housing, manufacturing method of same, and metal-resin composite
CN110344059A (zh) * 2019-06-19 2019-10-18 深圳市纳明特科技发展有限公司 金属点蚀成孔处理方法
CN112895294A (zh) * 2021-01-14 2021-06-04 重庆会通科技有限公司 一种用于纳米注塑成型的铝合金/玻纤增强聚丙烯复合材料的制备方法
KR20230155433A (ko) 2021-03-17 2023-11-10 도소 가부시키가이샤 금속 부재-폴리아릴렌술파이드 수지 부재 복합체 및 그 제조 방법
WO2023017762A1 (ja) 2021-08-11 2023-02-16 東ソー株式会社 金属部材-ポリアリーレンスルフィド部材複合体及びその製造方法
JP2023059627A (ja) * 2021-10-15 2023-04-27 日本軽金属株式会社 金属部材及び金属樹脂接合体並びにそれらの製造方法
WO2023068186A1 (ja) 2021-10-19 2023-04-27 東ソー株式会社 ポリアリーレンスルフィド組成物及びその製造方法
WO2024062032A1 (en) 2022-09-23 2024-03-28 Chemetall Gmbh Metal-plastic hybrid materials with aluminum and/or alloys thereof as metal component

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641471A (ja) 1992-06-05 1994-02-15 Sanyo Chem Ind Ltd 水系防錆塗料組成物及びその製造法
JP2002003805A (ja) 2000-06-22 2002-01-09 Toyo Mooton Kk ポリオレフィン系接着剤組成物
JP2002241670A (ja) 2001-02-14 2002-08-28 Nippon Paint Co Ltd 金属表面処理剤、金属表面処理方法および表面処理金属材料
JP2003002950A (ja) 2001-06-20 2003-01-08 Asahi Denka Kogyo Kk 水性樹脂組成物
WO2003064150A1 (fr) 2001-12-28 2003-08-07 Taisei Plas Co., Ltd. Materiau composite en alliage d'aluminium et en resine, procede de production correspondant
JP2003226728A (ja) 2002-02-07 2003-08-12 Asahi Denka Kogyo Kk 水分散型ポリウレタン組成物、その製造方法及びノンクロム処理金属塗料
WO2004055248A1 (ja) 2002-12-16 2004-07-01 Corona International Corporation アルミニウム材と合成樹脂成形体の複合品及びその製造法
JP2004216425A (ja) 2003-01-15 2004-08-05 Taisei Plas Co Ltd アルミニウム合金パイプの連結継手とその製造方法
JP2005119005A (ja) 2003-10-14 2005-05-12 Taisei Plas Co Ltd アルミニウム合金と樹脂の複合体とその製造方法
WO2008047811A1 (en) * 2006-10-16 2008-04-24 Taisei Plas Co., Ltd. Composite of metal with resin and process for producing the same
JP2009006721A (ja) 2002-11-08 2009-01-15 Taisei Plas Co Ltd アルミニウム合金と樹脂の複合体とその製造方法
JP2010137475A (ja) * 2008-12-12 2010-06-24 Furukawa-Sky Aluminum Corp 樹脂密着性に優れた樹脂塗装アルミニウム板
JP2010274600A (ja) * 2009-05-29 2010-12-09 Taisei Plas Co Ltd 金属合金と熱硬化性樹脂の複合体及びその製造方法
WO2013011769A1 (ja) * 2011-07-15 2013-01-24 メック株式会社 アルミニウム-樹脂複合体の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846116A (ja) 1994-07-28 1996-02-16 Mitsubishi Denki Metetsukusu Kk リードフレーム及びその製造方法
JPH0841660A (ja) 1994-07-28 1996-02-13 Mitsubishi Denki Metetsukusu Kk 樹脂被膜銅系金属板及びその製造方法
US8231982B2 (en) * 2006-05-25 2012-07-31 Taisei Plas Co., Ltd. Composite of metal and resin, and method for manufacturing same
US8283043B2 (en) * 2007-12-27 2012-10-09 Taisei Plas Co., Ltd. Composite of steel and resin and method for manufacturing same
JP4903897B2 (ja) * 2008-03-17 2012-03-28 大成プラス株式会社 亜鉛系鍍金鋼板と被着材の接合体及びその製造方法
JPWO2009151099A1 (ja) * 2008-06-12 2011-11-17 日本軽金属株式会社 アルミ・樹脂射出一体成形品及びその製造方法
WO2010016485A1 (ja) * 2008-08-06 2010-02-11 大成プラス株式会社 金属合金とポリアミド樹脂組成物の複合体とその製造方法
JP2012066383A (ja) * 2009-01-19 2012-04-05 Taisei Plas Co Ltd 金属合金を含む接着複合体とその製造方法
JP4816761B2 (ja) * 2009-05-07 2011-11-16 横浜ゴム株式会社 空気入りタイヤの製造方法
JP2011124142A (ja) 2009-12-11 2011-06-23 Nippon Light Metal Co Ltd アルミ・樹脂・銅複合品及びその製造方法並びに密閉型電池向け蓋部材
JP5461310B2 (ja) * 2010-06-02 2014-04-02 東洋ゴム工業株式会社 タイヤモールド、空気入りタイヤの製造方法及び空気入りタイヤ
CN102672878A (zh) * 2011-03-14 2012-09-19 鸿富锦精密工业(深圳)有限公司 不锈钢与树脂的复合体及其制造方法
JP2014040650A (ja) * 2012-08-24 2014-03-06 Yuken Industry Co Ltd 半光沢スズめっき用酸性水系組成物および半光沢スズめっき皮膜を有する部材

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641471A (ja) 1992-06-05 1994-02-15 Sanyo Chem Ind Ltd 水系防錆塗料組成物及びその製造法
JP2002003805A (ja) 2000-06-22 2002-01-09 Toyo Mooton Kk ポリオレフィン系接着剤組成物
JP2002241670A (ja) 2001-02-14 2002-08-28 Nippon Paint Co Ltd 金属表面処理剤、金属表面処理方法および表面処理金属材料
JP2003002950A (ja) 2001-06-20 2003-01-08 Asahi Denka Kogyo Kk 水性樹脂組成物
WO2003064150A1 (fr) 2001-12-28 2003-08-07 Taisei Plas Co., Ltd. Materiau composite en alliage d'aluminium et en resine, procede de production correspondant
JP2003226728A (ja) 2002-02-07 2003-08-12 Asahi Denka Kogyo Kk 水分散型ポリウレタン組成物、その製造方法及びノンクロム処理金属塗料
JP2009006721A (ja) 2002-11-08 2009-01-15 Taisei Plas Co Ltd アルミニウム合金と樹脂の複合体とその製造方法
WO2004055248A1 (ja) 2002-12-16 2004-07-01 Corona International Corporation アルミニウム材と合成樹脂成形体の複合品及びその製造法
JP2004216425A (ja) 2003-01-15 2004-08-05 Taisei Plas Co Ltd アルミニウム合金パイプの連結継手とその製造方法
JP2005119005A (ja) 2003-10-14 2005-05-12 Taisei Plas Co Ltd アルミニウム合金と樹脂の複合体とその製造方法
WO2008047811A1 (en) * 2006-10-16 2008-04-24 Taisei Plas Co., Ltd. Composite of metal with resin and process for producing the same
JP2010137475A (ja) * 2008-12-12 2010-06-24 Furukawa-Sky Aluminum Corp 樹脂密着性に優れた樹脂塗装アルミニウム板
JP2010274600A (ja) * 2009-05-29 2010-12-09 Taisei Plas Co Ltd 金属合金と熱硬化性樹脂の複合体及びその製造方法
WO2013011769A1 (ja) * 2011-07-15 2013-01-24 メック株式会社 アルミニウム-樹脂複合体の製造方法
JP2013052671A (ja) 2011-07-15 2013-03-21 Mec Kk アルミニウム−樹脂複合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2894240A4

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105835276A (zh) * 2015-01-30 2016-08-10 现代自动车株式会社 金属和塑料复合体的制造方法
JP2016142119A (ja) * 2015-02-05 2016-08-08 三井化学株式会社 ドアチェッカー用アームおよびドアチェッカー
JP2016190412A (ja) * 2015-03-31 2016-11-10 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2016190411A (ja) * 2015-03-31 2016-11-10 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2017019164A (ja) * 2015-07-09 2017-01-26 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2017019165A (ja) * 2015-07-09 2017-01-26 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2017087567A (ja) * 2015-11-10 2017-05-25 三井化学株式会社 樹脂被膜金属材料
JP2017136839A (ja) * 2016-01-29 2017-08-10 三井化学株式会社 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法、ニッケルめっき化鉄鋼部材およびニッケルめっき化鉄鋼部材の製造方法
WO2017209011A1 (ja) 2016-05-31 2017-12-07 三井化学株式会社 金属/樹脂複合構造体、金属部材および金属部材の製造方法
KR20220053036A (ko) 2016-05-31 2022-04-28 미쯔이가가꾸가부시끼가이샤 금속/수지 복합 구조체, 금속 부재 및 금속 부재의 제조 방법
KR20210078578A (ko) 2016-05-31 2021-06-28 미쯔이가가꾸가부시끼가이샤 금속/수지 복합 구조체, 금속 부재 및 금속 부재의 제조 방법
US20190299503A1 (en) * 2016-05-31 2019-10-03 Mitsui Chemicals, Inc. Metal-resin composite structure, metal member, and manufacturing method of metal member
JP7042740B2 (ja) 2016-05-31 2022-03-28 三井化学株式会社 金属/樹脂複合構造体、金属部材および金属部材の製造方法
JPWO2017209011A1 (ja) * 2016-05-31 2019-02-28 三井化学株式会社 金属/樹脂複合構造体、金属部材および金属部材の製造方法
JP2018034351A (ja) * 2016-08-30 2018-03-08 三井化学株式会社 金属/繊維強化樹脂複合構造体および金属/繊維強化樹脂複合構造体の製造方法
JP2018052017A (ja) * 2016-09-30 2018-04-05 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2018140559A (ja) * 2017-02-28 2018-09-13 三井化学株式会社 マグネシウム合金/樹脂複合構造体およびマグネシウム合金/樹脂複合構造体の製造方法
JP2018167418A (ja) * 2017-03-29 2018-11-01 三井化学株式会社 金属/繊維強化プラスチック複合構造体
JP2019018547A (ja) * 2017-07-14 2019-02-07 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP7049792B2 (ja) 2017-07-14 2022-04-07 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
WO2019082983A1 (ja) 2017-10-27 2019-05-02 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
WO2019164008A1 (ja) 2018-02-26 2019-08-29 三井化学株式会社 異材接合体および電子部品収納用筐体
JP7131986B2 (ja) 2018-06-28 2022-09-06 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2020001271A (ja) * 2018-06-28 2020-01-09 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2020001344A (ja) * 2018-06-29 2020-01-09 三井化学株式会社 金属/樹脂複合構造体およびその製造方法
JP7131991B2 (ja) 2018-06-29 2022-09-06 三井化学株式会社 金属/樹脂複合構造体およびその製造方法
KR20210042362A (ko) 2018-09-21 2021-04-19 미쯔이가가꾸가부시끼가이샤 금속/수지 복합 구조체, 금속/수지 복합 구조체의 제조 방법 및 냉각 장치
KR20230004935A (ko) 2018-09-21 2023-01-06 미쯔이가가꾸가부시끼가이샤 금속/수지 복합 구조체, 금속/수지 복합 구조체의 제조 방법 및 냉각 장치
WO2020059128A1 (ja) 2018-09-21 2020-03-26 三井化学株式会社 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および冷却装置
EP4209617A1 (en) 2019-01-29 2023-07-12 Mitsui Chemicals, Inc. Aluminum-based metal-resin composite structure, aluminum-based metal member, method for manufacturing aluminum-based metal member, and method for manufacturing aluminum-based metal-resin composite structure
WO2020158820A1 (ja) 2019-01-29 2020-08-06 三井化学株式会社 アルミニウム系金属樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属樹脂複合構造体の製造方法
WO2020241314A1 (ja) 2019-05-28 2020-12-03 三井化学株式会社 冷却装置及び冷却装置の製造方法
JP2021009934A (ja) * 2019-07-01 2021-01-28 三井化学株式会社 放熱性部品
WO2021153778A1 (ja) 2020-01-31 2021-08-05 三井化学株式会社 導電用部材、導電用部材の製造方法、電力変換装置、モーター、二次電池モジュール及び二次電池パック
WO2021256328A1 (ja) 2020-06-15 2021-12-23 三井化学株式会社 金属樹脂複合体、冷却装置、金属樹脂複合体の製造方法及び安全弁構造
WO2022014598A1 (ja) 2020-07-14 2022-01-20 三井化学株式会社 熱交換装置及び熱交換装置の製造方法
WO2022019339A1 (ja) 2020-07-22 2022-01-27 三井化学株式会社 金属部材、金属樹脂複合体、及び金属部材の製造方法
WO2022118936A1 (ja) 2020-12-02 2022-06-09 三井化学株式会社 温度制御ユニット及び温度制御ユニットの製造方法
WO2023013557A1 (ja) 2021-08-05 2023-02-09 三井化学株式会社 抗菌性金属材料及び抗菌性物品

Also Published As

Publication number Publication date
EP2894240A4 (en) 2016-10-19
JP2016027189A (ja) 2016-02-18
US20150224742A1 (en) 2015-08-13
TWI648152B (zh) 2019-01-21
US9987824B2 (en) 2018-06-05
CN106903839B (zh) 2019-01-04
CN104583458B (zh) 2017-04-05
CN104583458A (zh) 2015-04-29
KR20150018906A (ko) 2015-02-24
EP2894240B1 (en) 2018-04-18
KR101548108B1 (ko) 2015-08-27
JP6368667B2 (ja) 2018-08-01
MX2015002673A (es) 2015-05-27
MX366519B (es) 2019-07-11
BR112015004532A8 (pt) 2019-08-27
CN106903839A (zh) 2017-06-30
JPWO2015008847A1 (ja) 2017-03-02
BR112015004532A2 (pt) 2017-07-04
IN2015DN00995A (ja) 2015-06-12
TW201511939A (zh) 2015-04-01
EP2894240A1 (en) 2015-07-15
BR112015004532B1 (pt) 2021-12-28
JP5714193B1 (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
JP6368667B2 (ja) 金属/樹脂複合構造体、金属部材および金属部材の使用方法
JP7042740B2 (ja) 金属/樹脂複合構造体、金属部材および金属部材の製造方法
JP6469403B2 (ja) 金属/樹脂複合構造体の製造方法
WO2015037718A1 (ja) 金属/樹脂複合構造体
JP6899639B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2019018547A (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6867814B2 (ja) 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法、ニッケルめっき化鉄鋼部材およびニッケルめっき化鉄鋼部材の製造方法
JP2023024979A (ja) アルミニウム系金属樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属樹脂複合構造体の製造方法
JP6810538B2 (ja) 表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法
TWI681863B (zh) 金屬/樹脂複合構造體之製造方法及表面粗化鐵鋼構件之製造方法
JP6543462B2 (ja) 摺動部品
JP6422751B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6882855B2 (ja) 表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法
JP6803155B2 (ja) 表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014555029

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157003123

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423982

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/002673

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826820

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015004532

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112015004532

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150227