WO2020059128A1 - 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および冷却装置 - Google Patents

金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および冷却装置 Download PDF

Info

Publication number
WO2020059128A1
WO2020059128A1 PCT/JP2018/035134 JP2018035134W WO2020059128A1 WO 2020059128 A1 WO2020059128 A1 WO 2020059128A1 JP 2018035134 W JP2018035134 W JP 2018035134W WO 2020059128 A1 WO2020059128 A1 WO 2020059128A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
resin
composite structure
resin composite
particle layer
Prior art date
Application number
PCT/JP2018/035134
Other languages
English (en)
French (fr)
Inventor
和樹 木村
富田 嘉彦
高広 冨永
絢也 島▲崎▼
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to KR1020217007074A priority Critical patent/KR20210042362A/ko
Priority to PCT/JP2018/035134 priority patent/WO2020059128A1/ja
Priority to US17/274,003 priority patent/US20210252756A1/en
Priority to KR1020227044491A priority patent/KR20230004935A/ko
Priority to EP18934252.0A priority patent/EP3854909A4/en
Priority to JP2020547587A priority patent/JP7074868B2/ja
Priority to CN201880097300.2A priority patent/CN112639167A/zh
Publication of WO2020059128A1 publication Critical patent/WO2020059128A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1671Making multilayered or multicoloured articles with an insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/70Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/06Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14008Inserting articles into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • B29K2071/12PPO, i.e. polyphenylene oxide; PPE, i.e. polyphenylene ether
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2709/00Use of inorganic materials not provided for in groups B29K2703/00 - B29K2707/00, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2715/00Condition, form or state of preformed parts, e.g. inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2479/00Furniture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • B32B2509/10Refrigerators or refrigerating equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses or catheter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a metal / resin composite structure, a method of manufacturing the metal / resin composite structure, and a cooling device.
  • Patent Document 1 a method of injection molding a thermoplastic resin on a metal member having a roughened surface is known (for example, Patent Document 1).
  • thermoplastic resin In injection molding, generally, a thermoplastic resin is heated and melted to a temperature at which it has a sufficient fluidity to fill a mold cavity, and then is injection-molded. At this time, the flowability of the molten resin not only determines the ease of filling the mold cavity, but also determines whether the molten resin permeates the roughened part of the insert metal with sufficient pressure after filling. Is an important factor.
  • One index representing the fluidity is the viscosity of the molten resin.
  • thermoplastic resins of high melt viscosity type especially amorphous engineering plastics that are promising from the viewpoint of high strength and high heat resistance, the fluidity at the time of melting is inferior to metal-resin joining by injection molding. Requires a device (for example, Patent Document 2).
  • the present invention has been made in view of the above circumstances, and even if the thermoplastic resin constituting the resin member in the metal / resin composite structure has a high melt viscosity and is inferior in the fluidity at the time of melting, it is stable. And to provide a metal / resin composite structure exhibiting high bonding strength.
  • the present inventors have proposed a method of further increasing the bonding strength between a metal member and a resin member in a metal / resin composite structure, or using a thermoplastic resin having a high melt viscosity and poor fluidity during melting. Even in the case where there is, a intensive study was conducted to develop a composite structure that stably exhibits high bonding strength. As a result, they found that a method of interposing an inorganic particle layer between a metal member and a resin member was effective, and reached the present invention.
  • the following metal / resin composite structure a method for manufacturing the metal / resin composite structure, and a cooling device are provided.
  • Metal members A resin member joined to the metal member, and made of a resin composition containing a thermoplastic resin, An inorganic particle layer provided between the metal member and the resin member, and constituted by inorganic particles, With The metal member has a fine uneven shape at least on the surface of the joint with the resin member, The inorganic particle layer is formed so as to cover a part or all of the fine irregularities of the metal member, A metal / resin composite structure in which the metal member and the resin member are joined via the inorganic particle layer.
  • the above-mentioned inorganic particle layer is a metal / resin composite structure containing silica particles.
  • a metal / resin composite structure wherein the average thickness of the inorganic particle layer is 1 nm or more and 400 nm or less.
  • a metal / resin composite structure wherein the average thickness of the inorganic particle layer is 2 nm or more and 100 nm or less.
  • a metal / resin composite structure in which the average particle diameter of the inorganic particles is 1 nm or more and 100 nm or less.
  • a method for producing a metal / resin composite structure comprising: [10]
  • the above-mentioned inorganic particle layer is a metal / resin composite structure formed using an inorganic particle dispersion.
  • a metal cooling fin that can contact the heating element A frame member made of a resin composition containing a thermoplastic resin, and provided on a part of the cooling fin, A metal refrigerant conduit joined to the frame member, A cooling device comprising: On the outer peripheral surface of the refrigerant conduit, the resin composition constituting the frame member is bonded via an inorganic particle layer, The outer peripheral surface of the refrigerant conduit has a fine uneven shape at least at the surface of the joint with the frame member, The cooling device, wherein the inorganic particle layer is formed so as to cover part or all of the fine irregularities of the refrigerant conduit.
  • the cooling device according to the above [11] wherein the inorganic particle layer contains silica particles.
  • thermoplastic resin which comprises the resin member in a metal / resin composite structure is high and the fluidity
  • melting is inferior, metal / A resin composite structure can be provided.
  • FIG. 3 is a diagram showing an SEM image (backscattered electron image) of a cross section of a joint of the metal / resin composite structure obtained in Example 1.
  • FIG. 3 is a view showing a secondary electron image (element mapping image) of an SEM / EDS image of a cross section of a joint of the metal / resin composite structure obtained in Example 1.
  • Example 3 is a view showing an EDS spectrum of an inorganic particle layer in an SEM / EDS image of a cross section of a joint of the metal / resin composite structure obtained in Example 1. It is a perspective view showing an example of a cooling device of an embodiment concerning the present invention. It is a front view showing an example of a cooling device of an embodiment concerning the present invention. It is an enlarged view of the A section of FIG. It is a figure showing arrangement of a metal cooling fin and a refrigerant conduit which constitute a cooling device of an embodiment concerning the present invention. 10 is a drawing of the arrangement diagram of FIG. 9 as viewed from the z direction. That is, it is an image drawing showing an example of fitting of the refrigerant conduit to the peripheral portion of the cooling fin ((a) is before tight fitting, (b) is after tight fitting).
  • FIG. 1 is an external view showing an example of the structure of a metal / resin composite structure 106 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view conceptually showing an example of the structure of the joint of the metal / resin composite structure 106 according to the embodiment of the present invention.
  • the metal / resin composite structure 106 includes a metal member 103 and a resin member joined to the metal member 103 and formed of a resin composition (P) containing a thermoplastic resin. 105, and an inorganic particle layer 107 provided between the metal member 103 and the resin member 105 and made of inorganic particles.
  • P resin composition
  • the metal member 103 has fine irregularities 104 at least on the surface of the joint with the resin member 105, and the inorganic particle layer 107 is formed so as to cover part or all of the fine irregularities 104 of the metal member 103.
  • the metal member 103 and the resin member 105 are joined via the inorganic particle layer 107.
  • the inorganic particle layer 107 is formed on the formation region of the fine unevenness 104 so as to follow the fine unevenness 104. Therefore, it is expected that the three-dimensional shape of the surface of the inorganic particle layer 107 substantially matches the three-dimensional shape of the fine unevenness 104.
  • the presence of the inorganic particle layer 107 can be confirmed by elemental mapping analysis of the cross section of the metal-resin joint.
  • the inorganic particle layer 107 is detected by cutting out a cross section of the bonding portion by an ion milling method, obtaining a reflected electron image by a scanning electron microscope (SEM), and performing energy dispersive X-ray analysis (EDS). Can be.
  • FIGS. 3 and 4 are cross-sectional views of the vicinity of the joint of the metal / resin composite structure 106 according to the example 1, observed by such SEM / EDS analysis. It has been confirmed that the inorganic particle layer 107 exists so as to follow the fine irregularities 104 formed on the surface 110 of the metal member 103.
  • the resin composition (P) forming the resin member 105 penetrates into the fine irregularities 104 formed on the surface 110 of the metal member 103, and the metal and the resin are mixed. It is obtained by joining and forming a metal-resin interface.
  • the resin composition (P) penetrates into the fine irregularities 104 on the surface of the joint between the metal member 103 and the resin member 105, the physical resistance (anchor) between the metal member 103 and the resin member 105. It is considered that the metal member 103 and the resin member 105 made of the resin composition (P) can be firmly bonded to each other.
  • the thus obtained metal / resin composite structure 106 can also prevent entry of moisture or moisture into the interface between the metal member 103 and the resin member 105. That is, the air-tightness and water-tightness at the adhesion interface of the metal / resin composite structure 106 can be improved.
  • the metal member 103 is a metal member having the fine unevenness 104 at least on the surface of the joint with the resin member 105.
  • the fine unevenness 104 can be formed by various roughening methods described later.
  • the uneven shape of the region including the fine uneven shape 104 may include a relatively large scale first uneven shape portion and a relatively small scale scale formed on the surface of the first uneven shape portion.
  • the fine unevenness 104 in the present embodiment includes an aspect having only the first unevenness, an aspect having only the second unevenness, and an aspect having both the first unevenness and the second unevenness. Used as
  • the depth of the concave portion of the fine unevenness 104 that is, the average value of the height difference between the convex portion and the concave portion of the fine unevenness 104 is not particularly limited, but can be, for example, 10 nm or more and 200 ⁇ m or less.
  • the average value of the height difference is largely determined by a method of roughening the metal surface.
  • the average value can be 10 nm or more and less than 100 ⁇ m by a chemical solution method described later, and can be 100 ⁇ m or more and 200 ⁇ m or less by laser processing.
  • the average value of the height difference is synonymous with the ten-point average roughness (Rzjis) measured according to JIS B0601: 2001.
  • the fine uneven shape 104 is, for example, a fine uneven shape in which convex portions having an interval cycle of 5 nm or more and 500 ⁇ m or less stand.
  • the interval period of the fine unevenness is an average value of the distance from a convex portion to an adjacent convex portion, and can be obtained by using a photograph taken with an electron microscope or a laser microscope, or a surface roughness measuring device.
  • the interval period measured by an electron microscope or a laser microscope is usually an interval period of less than 500 nm. Specifically, the interval period can be measured by the following procedure. First, the surface of the joint of the metal member 103 is photographed.
  • an interval period is obtained by integrating all the distances from the convex portion to the adjacent convex portion and dividing by 50.
  • the interval period exceeding 500 nm is obtained by using a surface roughness measuring device, and has the same meaning as the average length (RSm) of a roughness curve element measured according to JIS B0601: 2001.
  • RSm average length
  • the interval period is preferably 10 nm or more and 300 ⁇ m or less, more preferably 20 nm or more and 200 ⁇ m or less.
  • the resin composition constituting the resin member 105 can sufficiently enter the concave portion having the fine uneven shape, and the bonding strength between the metal member 103 and the resin member 105 is further improved. Can be done.
  • the interval period is equal to or less than the upper limit value, it is possible to suppress the generation of a gap at the joint between the metal member 103 and the resin member 105. As a result, it is possible to suppress the entry of impurities such as moisture from the gap at the interface between the metal member 103 and the resin member 105. Therefore, when the metal / resin composite structure 106 is used under high temperature and high humidity, the strength is reduced. Can be suppressed.
  • the resin composition (P) containing a thermoplastic resin penetrates into the concave portions of the fine unevenness 104 via the inorganic particle layer 107.
  • the resin composition (P) penetrates into the concave portion up to a region having a depth of 1/2 or more of the depth d of the concave portion. That is, it is preferable that the penetration depth D of the resin composition (P) into the concave portion satisfies D ⁇ d / 2.
  • the metal member 103 can be obtained, for example, by processing a metal material (M) and then forming the fine unevenness 104 on the surface.
  • the type of the metal material (M) is not particularly limited, for example, iron-based metals (iron, iron alloys, steel materials, stainless steels, etc.), aluminum-based metals (aluminum, aluminum alloys, etc.), magnesium-based metals (magnesium, magnesium) Alloys), copper-based metals (copper, copper alloys, etc.), titanium-based metals (titanium, titanium alloys), and the like. These metals may be used alone or in combination of two or more. The most suitable metal is selected according to the application.
  • aluminum-based metals such as alloy numbers 1050, 2014, 3003, 5052, 6063, and 7075 specified in JIS @ H4000, or AZ91, AZ80, Magnesium-based metals such as AZ91D and AS21 are used, and in applications where mechanical properties such as automobiles are regarded as important, rolled mild steel represented by SPCC, SPHC, SAPH, SPH, and iron-based metal represented by stainless steel are used. Used.
  • the shape of the metal member 103 is not particularly limited as long as it can be joined to the resin member 105, and may be, for example, a flat plate, a curved plate, a bar, a tube, a block, or the like. Further, a structure composed of these combinations may be used. Further, the shape of the surface of the joint portion to be joined to the resin member 105 is not particularly limited, and examples thereof include a flat surface and a curved surface.
  • the metal member 103 is processed into the above-described predetermined shape by plastic working such as cutting or pressing of a metal material, or blanking processing such as punching, cutting, polishing, and electric discharge machining, the metal member 103 is subjected to a roughening process described later.
  • plastic working such as cutting or pressing of a metal material, or blanking processing such as punching, cutting, polishing, and electric discharge machining
  • the metal member 103 is subjected to a roughening process described later.
  • a roughening process described later.
  • the fine irregularities 104 existing at least on the surface of the joint between the metal member 103 and the resin member 105 can be formed by a known metal surface roughening method.
  • a chemical solution treatment method an anodic oxidation method
  • mechanical cutting methods such as sand blasting, knurling, and laser processing can be used.
  • Examples of the chemical treatment method include a method using an acid-based etching agent (WO 2015/008847, JP-A-2001-348684, WO 2008/81933, etc.), hydrazine hydrate, ammonia, and water-soluble
  • a method of treating with one or more aqueous amine-based solutions selected from amine compounds WO 2009/31632, JP-A-2005-119005, etc.
  • a method of using a copper surface treating agent containing an acid, a benzimidazole compound and water Japanese Patent No. 4242915
  • a method of applying an inorganic acid treatment after providing a metal plating layer WO 2016/171128
  • the inorganic particle layer 107 according to the present embodiment is composed of inorganic particles.
  • the inorganic particles constituting the inorganic particle layer 107 according to this embodiment are not particularly limited, but the average particle diameter of the primary particles is preferably 1 nm or more and 100 nm or less, more preferably 1 nm or more and 70 nm or less, and still more preferably 1 nm or more and 50 nm or less. Even more preferably, the nanoparticles are 1 nm or more and 30 nm or less, particularly preferably more than 1 nm and less than 20 nm, and may have a secondary particle structure in which several to several hundred primary particles are aggregated.
  • the average particle diameter of the inorganic particles constituting the inorganic particle layer 107 can be measured by, for example, a cross-sectional electron microscope (TEM or SEM) at the joint between the metal member 103 and the resin member 105.
  • TEM or SEM cross-sectional electron microscope
  • the average particle diameter of the inorganic particles is equal to or more than the lower limit value, the workability is reduced due to aggregation between the inorganic particles in the dispersion used when forming the inorganic particle layer 107 on the fine irregularities 104 on the metal member 103. Can be suppressed.
  • the average particle diameter of the inorganic particles is equal to or less than the upper limit, even when the average height difference between the concave portions and the convex portions of the fine irregularities 104 on the metal member 103 is as small as nm order, the bonding strength of the present embodiment can be improved. The effect can be sufficiently exhibited. Further, it is preferable that the average particle diameter of the inorganic particles is smaller than the average height difference between the concave portions and the convex portions of the fine irregularities 104 on the metal member 103.
  • the inorganic particle layer 107 is not particularly limited, but is, for example, a layer formed by an aggregate of inorganic particles (secondary particles).
  • the average thickness (B) of the inorganic particle layer 107 is preferably from 1 nm to 400 nm, more preferably from 1 nm to 300 nm, still more preferably from 1 nm to 250 nm, still more preferably from 1 nm to less than 200 nm, particularly preferably from 2 nm to 100 nm. It is.
  • the average thickness (B) of the inorganic particle layer 107 can be determined, for example, by observing a cross section of a joint at any three points of the metal / resin composite structure 106 using an SEM / EDS and obtaining each SEM / EDS image. A value obtained by averaging the measured thicknesses can be adopted. When the average thickness (B) of the inorganic particle layer 107 is within the above range, the bonding strength of the metal / resin composite structure 106 can be further improved. Further, it is preferable that the average thickness (B) of the inorganic particle layer 107 is smaller than the average height difference between the concave portions and the convex portions of the fine irregularities 104 on the metal member 103.
  • the inorganic particles constituting the inorganic particle layer 107 according to the present embodiment are not particularly limited.
  • silica particles, tin oxide particles, nanodiamond particles, zirconia particles, niobium oxide particles, iron oxide particles, alumina particles, carbon nanofibers Etc. can be used.
  • silica particles are preferred.
  • the content of the inorganic particles other than the silica particles is, for example, 60% by mass or less, preferably 50% by mass, when the entire inorganic particle layer 107 is 100% by mass. Or less, more preferably 30% by mass or less, particularly preferably 10% by mass or less.
  • the resin member 105 is made of a resin composition (P) containing a thermoplastic resin (A).
  • the resin composition (P) contains a thermoplastic resin (A) as a resin component and, if necessary, a filler (B). Further, the resin composition (P) contains other compounding agents as necessary. Note that, for convenience, even if the resin member 105 is made of only the thermoplastic resin (A), it is described that the resin member 105 is made of the thermoplastic resin composition (P).
  • thermoplastic resin (A) is not particularly limited. Examples thereof include polyolefin resins, polymethacrylic resins such as polymethyl methacrylate resins, polyacrylic resins such as polymethyl acrylate resins, polystyrene resins, and polyvinyl alcohol-poly. Aromas such as vinyl chloride copolymer resin, polyvinyl acetal resin, polyvinyl butyral resin, polyvinyl formal resin, polymethylpentene resin, maleic anhydride-styrene copolymer resin, polycarbonate resin, polyetheretherketone resin, polyetherketone resin, etc.
  • polyether ketone polyester resin, polyamide resin, polyamide imide resin, polyimide resin, polyether imide resin, styrene elastomer, polyolefin elastomer, polyurethane elastomer Polymer, polyester elastomer, polyamide elastomer, ionomer, aminopolyacrylamide resin, isobutylene maleic anhydride copolymer, acrylonitrile-butadiene-styrene resin (ABS), ACS, AES, AS, ASA, MBS, ethylene-vinyl chloride copolymer, ethylene -Vinyl acetate copolymer, ethylene-vinyl acetate-vinyl chloride graft polymer, ethylene-vinyl alcohol copolymer, chlorinated polyvinyl chloride resin, chlorinated polyethylene resin, chlorinated polypropylene resin, carboxyvinyl polymer, ketone resin, amorphous copolyester
  • the thermoplastic resin (A) preferably contains an amorphous thermoplastic resin.
  • amorphous thermoplastic resin (A 1) blends of the aforementioned non-crystalline thermoplastic resin (A 1) is different from the type of the amorphous thermoplastic resin (A 2) (alloy); amorphous heat
  • the amorphous thermoplastic resin (A 1 or A 2 ) refers to a thermoplastic resin that cannot take a crystalline state or has a very low degree of crystallinity even when crystallized.
  • the amorphous state includes a glass state and a rubber state, and is a thermoplastic resin having a characteristic of showing a hard glass state below the glass transition point (Tg), but showing a soft rubber state above the glass transition point (Tg).
  • Tg glass transition point
  • Tg glass transition point
  • Tg soft rubber state above the glass transition point
  • polystyrene, ABS, polycarbonate resin, modified polyphenylene ether, polyethersulfone, polyetherimide and the like correspond.
  • Such an amorphous thermoplastic resin is a resin that has attracted attention in many industrial fields because it exhibits high strength and high heat resistance.
  • the resin has a fine uneven shape due to its high melt viscosity and low fluidity. It was difficult to sufficiently penetrate, and a special molding method such as heat & cool molding had to be resorted to.
  • the present embodiment even when such a high melt viscosity type resin or resin composition is used, sufficient bonding strength is obtained without using a special molding method such as a heat & cool molding method.
  • the metal / resin composite structure 106 can be obtained. Further, in the method of manufacturing the metal / resin composite structure 106 according to the present embodiment, if a special injection molding method such as heat & cool molding is combined, the joining strength can be further drastically improved.
  • the above-mentioned amorphous thermoplastic resin may be used alone or in an appropriate combination of two or more as described above.
  • the amorphous thermoplastic resin and the crystalline thermoplastic resin may be used in combination. Resins may be used in combination as appropriate.
  • the resin composition (P) contains an amorphous thermoplastic resin
  • the amorphous thermoplastic resin is 10% by weight or more, preferably 20% by weight or more, more preferably 20% by weight, based on the entire resin composition (P). Is preferably 30% by mass or more.
  • modified polyphenylene ether hereinafter sometimes abbreviated as m-PPE
  • m-PPE modified polyphenylene ether
  • m-PPE having excellent dimensional stability, relatively small molding shrinkage, and small water absorption
  • the resin composition is contained.
  • the m-PPE according to this embodiment contains at least one selected from polystyrene, high-impact polystyrene, syndiotactic polystyrene and rubber-reinforced syndiotactic polystyrene in an amount of 500 parts by weight or less, preferably 100 parts by weight of PPE. Preferably, it is added in a range of 200 parts by weight or less.
  • polystyrene high-impact polystyrene
  • syndiotactic polystyrene preferably 100 parts by weight of PPE.
  • it is added in a range of 200 parts by weight or less.
  • poly (2,6-dimethyl-1,4-phenylene ether), 2,6-dimethylphenol and 2,3,6-trimethyl are used from the viewpoints of versatility and availability. Copolymers with phenol and the like are preferably used.
  • the resin composition (P) may further include a filler (B) from the viewpoint of adjusting the difference in linear expansion coefficient between the metal member 103 and the resin member 105 and improving the mechanical strength of the resin member 105.
  • a filler (B) for example, one or more kinds can be selected from the group consisting of glass fibers, carbon fibers, carbon particles, clay, talc, silica, minerals, and cellulose fibers. Of these, one or two or more selected from glass fiber, carbon fiber, talc, and mineral are preferable.
  • the shape of the filler (B) is not particularly limited, and may be any shape such as a fiber shape, a particle shape, and a plate shape.
  • the filler (B) preferably has a filler having a maximum length in the range of 10 nm or more and 600 ⁇ m or less in a fractional ratio of 5 to 100%.
  • the maximum length is more preferably 30 nm or more and 550 ⁇ m or less, and still more preferably 50 nm or more and 500 ⁇ m or less.
  • the fraction of the filler (B) in the range of the maximum length is preferably from 10 to 100%, more preferably from 20 to 100%.
  • the filler (B) can easily move in the thermoplastic resin (A) molten at the time of molding the resin composition (P), and thus will be described later.
  • the metal / resin composite structure 106 it is possible to make the filler (B) exist in the vicinity of the surface of the metal member 103 at a certain ratio. Therefore, as described above, the resin that interacts with the filler (B) enters the inorganic particle layer 107 on the region where the fine unevenness 104 is formed on the surface of the metal member 103, so that a stronger bonding strength can be obtained. Becomes
  • the content is preferably 1 part by mass or more and 100 parts by mass or less based on 100 parts by mass of the thermoplastic resin (A). It is preferably from 5 parts by mass to 90 parts by mass, particularly preferably from 10 parts by mass to 80 parts by mass.
  • the resin composition (P) may contain other compounding agents for the purpose of imparting individual functions.
  • a compounding agent include a heat stabilizer, an antioxidant, a pigment, a weathering agent, a flame retardant, a plasticizer, a dispersant, a lubricant, a release agent, and an antistatic agent.
  • the content is preferably 0.0001 to 5 parts by mass, more preferably 0 to 100 parts by mass, based on 100 parts by mass of the thermoplastic resin (A). 0.001 to 3 parts by mass.
  • the method for preparing the resin composition (P) is not particularly limited, and can be prepared by a generally known method. For example, the following method can be mentioned. First, a thermoplastic resin (A), a filler (B) as needed, and other compounding agents as needed, a Banbury mixer, a single-screw extruder, a twin-screw extruder, a high-speed twin-screw extruder, etc.
  • the resin composition (P) is obtained by mixing or melt-mixing using the mixing device of (1).
  • Step 1 A step of preparing the metal member 103 having the fine unevenness 104 on the surface 110 (Step 2) An inorganic particle layer composed of inorganic particles so as to cover part or all of the fine unevenness 104 of the metal member 103 Step of forming 107 (hereinafter also referred to as inorganic particle layer forming step) (Step 3)
  • the metal member 103 having the inorganic particle layer 107 formed thereon is arranged in a mold, and a resin composition containing a thermoplastic resin is injected into the mold, whereby the metal member 103 is interposed through the inorganic particle layer 107.
  • Step of joining resin member 105 to 103 (hereinafter also referred to as injection molding step)
  • injection molding step Step of joining resin member 105 to 103
  • a specific description will be given. Since the step of preparing the metal member 103 having the fine unevenness 104 on the surface 110 has been described above, the description is omitted here.
  • Step 2 inorganic particle layer forming step>
  • the method for forming the inorganic particle layer 107 on the region where the fine unevenness 104 is formed on the metal member 103 is not particularly limited.
  • the inorganic particle layer 107 is formed by applying an inorganic particle dispersion on the region where the fine unevenness 104 is formed. be able to.
  • the average particle diameter (primary particle) of inorganic particles represented by silica particles, tin oxide particles, nanodiamond particles, zirconia particles, niobium oxide particles, iron oxide particles, alumina particles, carbon nanofibers is preferably 1 nm or more and 100 nm or less, It is more preferably 1 nm or more and 70 nm or less, still more preferably 1 nm or more and 50 nm or less, still more preferably 1 nm or more and 30 nm or less, and particularly preferably more than 1 nm and less than 20 nm. It may have a secondary particle structure.
  • Such inorganic fine particles can be prepared by a solid phase method, a liquid phase method, and a gas phase method, but from the viewpoint of the ability to reduce the particle size, the liquid phase method and the gas phase method (including flame treatment) are preferred. .
  • a liquid phase method using tetramethyl orthosilicate as a raw material is employed.
  • a commercially available product can also be used as the inorganic particles. Examples of such inorganic particles include carbon nanofiber dispersion, CNF 5% by mass ethanol dispersion (MDCNF / ethanol) manufactured by MD Nanotech Co., Ltd., and nanosilica dispersion, 2 to 9 nm single nano silica particles 4 manufactured by Japan Nanocoat Co., Ltd.
  • a mixture of 91 parts by mass of methanol and 5 parts by mass of water (product name: B-4) was mixed with 3 parts by mass of single nano silica particles of 2 to 9 nm manufactured by Japan Nanocoat Co. and 0.1% by mass of tin oxide nanoparticles.
  • 89 parts by mass of methanol and 8 parts by mass of water product name: PM-S
  • a dispersion of fine silica particles having a particle size of 10 to 20 nm manufactured by Nissan Chemical Co., Ltd. in water product name: Snowtex 30
  • 20 parts by mass of about 15 nm nano silica particles (product name: PL-1) manufactured by Fuso Chemical Co., Ltd. and 80 parts by mass of methanol Mixture, New Metals and Chemicals Corporation Ltd.
  • aqueous dispersion as diamond nanoparticle dispersion (product name; Nanoamando, average particle diameter: about 4 nm, solid content of 5 wt%) can be exemplified.
  • the solvent in the dispersion include water, methanol, and ethanol. However, methanol and water are preferred from the viewpoints of the dispersibility of the inorganic particles in the dispersion and the solvent removal efficiency after coating.
  • the method of applying the inorganic particle dispersion to the surface 110 of the metal member 103 is not particularly limited.
  • a method of immersing the metal member 103 in the dispersion or spray coating the surface of the metal member 103 with the dispersion is used.
  • Method and the like are used.
  • spray coating is a method of spraying a surface to be coated with a spray gun to perform coating.
  • the coating can be usually performed at around normal temperature.
  • the method of drying after coating is not particularly limited, either.
  • a known method such as natural drying or forced heating drying can be used.
  • Step 3 Injection molding step>
  • the metal member 103 completed up to the step 2 is inserted into the cavity of the injection mold, and the resin composition (P) is injected into the mold so as to be in contact with the inorganic particle layer 107.
  • This is a step in which the resin member 105 is molded by a method to manufacture the metal / resin composite structure 106. Specifically, first, a metal mold for injection molding is prepared, the metal mold is opened, and the metal member 103 after the completion of the step 2 is installed in a part thereof.
  • the mold is closed, and the resin composition (P) is injected into the mold so that at least a part of the resin composition (P) is in contact with the inorganic particle layer 107 formed on the surface 110 of the metal member 103. And solidify. Thereafter, the metal / resin composite structure 106 can be obtained by opening the mold and releasing the mold.
  • known injection foam molding or known heat & cool molding in which the temperature of a mold is controlled in one cycle of injection molding and heated and cooled may be used in combination.
  • heat & cool molding it is desirable to heat the injection molding die to a temperature of 80 ° C. or more and 300 ° C. or less, and after the injection of the resin composition (P) is completed, cool the injection molding die.
  • the preferred range of the temperature at which the mold is heated varies depending on the thermoplastic resin (A) constituting the resin composition (P).
  • the temperature is preferably from 80 ° C. to 200 ° C. C.
  • a crystalline resin which is a thermoplastic resin having a melting point of 200.degree. C. or higher.
  • Tg glass transition temperature
  • the metal / resin composite structure 106 according to the present embodiment has high productivity and a high degree of freedom in shape control, so that it can be developed for various uses. Furthermore, since the metal / resin composite structure 106 according to the present embodiment exhibits high airtightness and watertightness, it is suitably used for applications corresponding to these characteristics.
  • applications for household goods such as structural parts for vehicles, vehicle-mounted articles, housings for electronic equipment, housings for home appliances, structural parts, mechanical parts, various automotive parts, electronic equipment parts, furniture, kitchenware, etc. , Medical equipment, parts of building materials, and other structural parts and exterior parts.
  • the following parts are designed so that metal supports parts where the strength of resin alone is insufficient.
  • ECU boxes, LIB battery modules electrical components, personal computers, mobile phones, smartphones, digital cameras, tablet PCs, portable music players, portable game machines, chargers, batteries and other electronic information devices, robots Members and the like; in the case of home appliances, refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, televisions, clocks, ventilation fans, projectors, speakers, and the like can be mentioned.
  • Examples of building materials and furniture include glass window frames, handrails, curtain rails, wardrobes, drawers, closets, bookcases, desks, chairs, and the like.
  • examples of precision electronic components include a connector, a relay, and a gear.
  • examples of the transport container include a transport container, a suitcase, and a trunk.
  • the combination of the high thermal conductivity of the metal member 103 and the adiabatic property of the resin member 105 may be used as a component used in equipment for optimally designing heat management, for example, used as a cooling device for various heating elements. it can.
  • a cooling jacket of the server unit and a cooling jacket of the LIB battery module can be exemplified.
  • a cooling device will be described with reference to the drawings as an example of an application of the metal / resin composite structure 106 according to the present embodiment.
  • the cooling device 200 includes a metal cooling fin 201 capable of contacting (preferably, face-to-face contact) with a heating element (for example, a battery cell, not shown), and a resin composition including a thermoplastic resin. And a frame member 202 provided on a part of the cooling fin 201 and a metal refrigerant conduit 207 joined to the frame member 202.
  • the cooling fins 201 preferably have a size capable of making face-to-face contact with the heating element, and preferably have a rectangular and flat plate shape.
  • the frame member 202 is preferably formed so as to surround the periphery of the cooling fin 201.
  • the refrigerant conduit 207 is preferably located at the peripheral edge of the cooling fin 201, and for example, penetrates at least one side of the frame member 202, and preferably penetrates at least one side at right angles. 206.
  • the refrigerant inlet 205 and the refrigerant outlet 206 are connected to a cooling manifold element 203 (refrigerant inlet side) and a cooling manifold element 204 (refrigerant outlet side) formed integrally with the frame member 202.
  • each cooling manifold element has a hollow structure penetrating orthogonally from one surface of the frame member to the other surface.
  • banks are formed on the peripheral edges of both sides of the cooling fin 201 so that the frame member 202 has the same thickness d in the front and back directions with respect to the surface of the cooling fin 201.
  • the thickness d of the bank portion is designed to be, for example, equal to or slightly smaller than 1/2 of the thickness of the heating element.
  • the bank portions are closely arranged so that the surfaces of the respective cooling fins 201 are in a parallel relationship, and form, for example, a battery module.
  • a heating element such as a battery cell is disposed in a space formed between one cooling device 200 and an adjacent cooling device 200 so as to be included in both cooling fins 201.
  • connection between the cooling manifold element 203 and the adjacent cooling manifold element 203 and the connection between the cooling manifold element 204 and the adjacent cooling manifold element 204 are also performed, and the cooling manifold for inflow of the refrigerant and the cooling manifold for discharging the refrigerant are provided. Is formed.
  • a cooling fin 201 having an outer diameter substantially equal to the radius of curvature of the curved surface is closely fitted to a cooling fin 201 having at least three sides of a rectangular flat metal plate having curved ends.
  • the frame member 202 is formed integrally with the cooling fin 201 and the refrigerant conduit 207 by injection molding a resin composition containing a thermoplastic resin so as to cover the refrigerant conduit 207 (see FIG. 10A).
  • (B) is an image diagram before tight fitting and after tight fitting.
  • the refrigerant inlet 205 and the refrigerant outlet 206 of the refrigerant conduit 207 are connected, for example, to communicate with the cooling manifold elements 203 and 204, respectively, the refrigerant passing through the cooling manifold element 203 on one side receives the refrigerant inlet 205 and The refrigerant is circulated through the refrigerant conduit 207 while being discharged to the cooling manifold element 204 on the other side through the refrigerant discharge port 206.
  • the curved ends provided on the refrigerant conduit 207 and the cooling fins 201 are closely fitted, so that the cooling heat of the refrigerant conduit 207 is transmitted to the entire cooling fins, thereby exhibiting a cooling function.
  • the example of the shape of the refrigerant conduit 207 shown in FIGS. 6, 7 and 9 is an inverted U shape having two right-angled bent portions, but the shape of the refrigerant conduit 207 according to the present embodiment is any shape.
  • the shape is not limited, and may be, for example, three or more bent shapes. In general, the smaller the number of bent portions, the lower the cost of manufacturing the battery module and the like, and the lower the pressure of the refrigerant can be.
  • the resin composition constituting the frame member 202 is joined to the outer peripheral surface of the refrigerant conduit 207 via the inorganic particle layer, and the outer peripheral surface of the refrigerant conduit 207 has a fine irregular shape at least on the surface of the joint with the frame member 202.
  • the inorganic particle layer is formed so as to cover part or all of the fine irregularities of the refrigerant conduit 207.
  • the refrigerant conduit 207 penetrates one side of the frame member 202, preferably one side where the cooling manifold elements 203 and 204 are formed, preferably orthogonally, to form a refrigerant inlet 205 and a refrigerant outlet 206. Is preferred. Further, it is preferable that the outer peripheral surface of the refrigerant conduit 207 and the frame member 202 are joined at least at a penetrating portion of the frame member 202.
  • the above-described embodiment of the metal / resin composite structure 106 according to the present embodiment is applied without limitation. it can. That is, the inorganic particle layer constituting the cooling device 200 according to the present embodiment includes silica particles in a preferred embodiment.
  • the average thickness of the inorganic particle layer is from 1 nm to 400 nm, preferably from 2 nm to 100 nm. Further, the average particle diameter of the inorganic particles is 1 nm or more and 100 nm or less.
  • the average value of the difference in height between the convex portion and the concave portion of the fine unevenness is 10 nm or more and 200 ⁇ m or less.
  • the thermoplastic resin may include an amorphous thermoplastic resin.
  • the metal refrigerant conduit 207 may include one or more metals selected from iron-based metals, aluminum-based metals, magnesium-based metals, copper-based metals, and titanium-based metals. preferable.
  • the manufacturing method of the cooling device 200 according to the present embodiment includes, for example, a step of preparing a metal conduit having fine irregularities on the surface, and inorganic particles so as to cover part or all of the fine irregularities of the metal conduit.
  • a step of forming an inorganic particle layer constituted by, preferably, a step of forming an inorganic particle layer using an inorganic particle dispersion, and disposing the metal conduit on which the inorganic particle layer is formed in a mold; Bonding a frame member to the metal conduit via the inorganic particle layer by injecting a resin composition containing a resin into the mold.
  • Example 1 (Surface roughening process) An aluminum alloy plate (45 mm ⁇ 18 mm ⁇ 2 mm) having an alloy number of 5052 specified in JIS H4000 was degreased. Next, the obtained aluminum alloy plate was immersed for 80 seconds in an aqueous solution (30 ° C.) in which 8.2% by mass of sulfuric acid, 7.8% by mass of ferric chloride and 0.4% by mass of cupric chloride were dissolved. Was etched by rocking. Next, ultrasonic cleaning (in water for 1 minute) with running water was performed and dried to obtain a surface-treated aluminum alloy plate.
  • the surface roughness of the obtained surface-treated aluminum alloy plate is measured using a surface roughness measuring device “Surfcom 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)” in accordance with JIS B0601: 2001 (corresponding to ISO4287).
  • a surface roughness measuring device “Surfcom 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)” in accordance with JIS B0601: 2001 (corresponding to ISO4287).
  • an average value of the ten-point average roughness (Rzjis) and an average value of the average lengths (RSm) of the roughness curve elements were obtained.
  • the average value of Rzjis was 18 ⁇ m.
  • the average value of the average length (RSm) of the roughness curve elements was 90 ⁇ m.
  • the Rzjis average value and the RSm average value are the average values of six points at different measurement locations.
  • the conditions for measuring the surface roughness are as follows. ⁇ Tip tip
  • silica particle layer forming step The hydrolysis reaction of tetramethylorthosilicate and the treatment with an aqueous solution of tetramethylammonium hydroxide were carried out in accordance with the method described in Example 1 of JP-A-2013-82584, and the silica nanoparticles were treated with water / water.
  • a MeOH (1/9 weight ratio) dispersion was prepared.
  • the average primary particle diameter of the obtained silica nanoparticles was 20 nm.
  • the surface roughened aluminum alloy plate obtained in the above surface roughening step is immersed in a dispersion obtained by diluting the silica nanoparticle dispersion 6 times with methanol at room temperature for 5 minutes, and then dried at 100 ° C. for 20 minutes. As a result, a surface-treated aluminum alloy plate having a silica nanoparticle layer formed so as to cover the fine irregularities was produced.
  • a metal / resin composite structure by injection molding under the conditions of a temperature of 100 ° C., an injection primary pressure of 125 to 135 MPa, and a holding pressure of 110 MPa, and injecting and joining a resin member to a surface-treated aluminum alloy plate having a silica nanoparticle layer formed thereon. I got
  • FIG. 3 shows a cross-sectional SEM image of the obtained metal / resin composite structure. According to this, the average thickness of the silica nanoparticle layer was calculated to be 60 nm.
  • a cross-sectional SEM / EDS image (element mapping image) (FIG. 4) and an EDS spectrum (FIG. 5) of a cross-section of a bonding portion of the structure are shown. Since it is confirmed that silicon atoms and oxygen atoms are unevenly distributed so as to follow the fine irregularities, the silica nanoparticle layer is formed so as to cover the fine irregularities formed on the surface of the aluminum alloy plate I understood.
  • Tensile shear strength of the joint was determined for the metal / resin composite structure obtained in the above injection molding step. Specifically, using a tensile tester “Model 1323 (manufactured by Aiko Engineering Co., Ltd.)”, a special jig was attached to the tensile tester, and at room temperature (23 ° C.), the distance between the chucks was 60 mm and the tensile speed was 10 mm. The bonding strength was measured under the conditions of / min. The joining strength (MPa) was obtained by dividing the breaking load (N) by the area of the joining portion between the aluminum alloy plate and the resin member. The joining strength was 20 MPa. The fracture surface was a mixture of interfacial fracture and base metal fracture.
  • Example 2 Except that heat and cool molding was performed by changing the mold temperature from 100 ° C. to 120 ° C. using a mold capable of heat and cool molding (Y-HeaT device manufactured by Yamashita Electric) as a mold in the injection molding process.
  • a metal / resin composite structure was prepared in the same manner as in Example 1, and the bonding strength was evaluated.
  • the joining strength was 26 MPa.
  • the fracture surface was a mixture of interfacial fracture and base metal fracture.
  • Example 3 Except that the heat and cool molding was performed by changing the mold temperature from 100 ° C. to 140 ° C. using a mold capable of heat and cool molding (Y-HeaT device manufactured by Yamashita Electric) as a mold in the injection molding process.
  • a metal / resin composite structure was prepared in the same manner as in Example 1, and the bonding strength was evaluated.
  • the bonding strength was 32 MPa.
  • the fracture surface was a base material fracture.
  • Example 1 A metal / resin composite structure was prepared in the same manner as in Example 2 except that the silica nanoparticle layer was not formed, and the bonding strength was evaluated. The joining strength was 16 MPa. The fracture surface was a mixture of interfacial fracture and base metal fracture.
  • Example 4 (Surface roughening process) An aluminum alloy plate (45 mm ⁇ 18 mm ⁇ 2 mm) having an alloy number of 5052 specified in JIS H4000 was degreased. Next, the obtained aluminum alloy plate is immersed in a treatment tank 1 filled with an alkaline etching agent (30 ° C.) containing 15% by mass of sodium hydroxide and 3% by mass of zinc oxide (30 ° C.) (for the following description, After that, it was immersed in 30% by mass of nitric acid (30 ° C.) for 1 minute, and the alkali-based etching agent treatment was further repeated once.
  • an alkaline etching agent (30 ° C.) containing 15% by mass of sodium hydroxide and 3% by mass of zinc oxide (30 ° C.)
  • the obtained aluminum alloy plate was treated with an acid-based etching aqueous solution containing 3.9% by mass of ferric chloride, 0.2% by mass of cupric chloride, and 4.1% by mass of sulfuric acid. It was immersed in the filled processing tank 2 at 30 ° C. for 5 minutes and rocked (in the following description, it may be abbreviated as “acid-based etching agent treatment”). Next, ultrasonic cleaning (in water for 1 minute) with running water was performed, followed by drying to obtain a surface-treated aluminum alloy plate.
  • the surface roughness of the obtained surface-treated aluminum alloy plate is measured using a surface roughness measuring device “Surfcom 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)” in accordance with JIS B0601: 2001 (corresponding to ISO4287).
  • the average value of the ten-point average roughness (Rzjis) and the average value of the average length (RSm) of the roughness curve elements were measured.
  • the average value of Rzjis was 19 ⁇ m
  • the average value of RSm was 104 ⁇ m.
  • the Rzjis average value and the RSm average value are the averages of the measured values at six points at different measurement locations.
  • the surface-roughened aluminum alloy plate obtained in the above-described surface-roughening step was coated with a silica binder PM-S manufactured by Japan Nanocoat Co., Ltd. (composition: 89% by mass of methanol, 8% by mass of water, 0.1% by mass of tin oxide). , 2.9% by mass of silicon dioxide) was immersed in a dispersion liquid diluted 6 times with 90% by mass of methanol at room temperature for 5 minutes and then dried at 100 ° C for 20 minutes to cover the fine irregularities. A surface-treated aluminum alloy plate on which a silica nanoparticle layer was formed was produced.
  • a silica binder PM-S manufactured by Japan Nanocoat Co., Ltd. composition: 89% by mass of methanol, 8% by mass of water, 0.1% by mass of tin oxide). , 2.9% by mass of silicon dioxide
  • thermoplastic resin composition a polybutylene terephthalate (PBT) resin (Duranex (registered trademark) 930HL) manufactured by Polyplastics Co., Ltd. was charged into the mold at a cylinder temperature of 270 ° C. and a mold temperature of 100 ° C.
  • Metal / resin composite by injection molding under the conditions of an injection speed of 25 mm / sec, a holding pressure of 80 MPa, and a holding time of 10 seconds, and joining a resin member to a surface-treated aluminum alloy plate having a silica nanoparticle layer formed thereon by injection molding.
  • a structure was obtained.
  • the joining strength of the obtained metal / resin composite structure was 34 MPa.
  • the fracture surface was a mixture of interfacial fracture and base metal fracture.
  • Example 5 In the injection molding process, a polyamide PA66 (trade name: 70G43L TM NC010, glass fiber content: 43% by mass) was used instead of polybutylene terephthalate (PBT) resin manufactured by Polyplastics, and the cylinder temperature was set to 300 ° C. An experiment was performed in the same manner as in Example 4 except that the mold temperature was changed to 160 ° C. As a result, the joining strength was 36 MPa. The fracture surface was interface fracture.
  • PBT polybutylene terephthalate
  • Example 6 In the surface roughening step, the same experiment as in Example 4 was performed except that an alloy plate of alloy number 6063 was used instead of the aluminum alloy plate of alloy number 5052 specified in JIS H4000.
  • the ten-point average roughness (Rzjis) and the average length of the roughness curve elements (RSm) measured for the obtained surface-treated aluminum alloy sheet were 22 ⁇ m and 120 ⁇ m, respectively.
  • the joining strength of the obtained metal / resin composite structure was 35 MPa.
  • the fracture surface was a mixture of interfacial fracture and base metal fracture.
  • Example 7 In the surface roughening step, the same experiment as in Example 4 was performed except that an aluminum alloy plate of alloy number 3003 was used instead of the aluminum alloy plate of alloy number 5052 specified in JIS H4000.
  • the ten-point average roughness (Rzjis) and the average length of the roughness curve elements (RSm) measured for the obtained surface-treated aluminum alloy plate were 25 ⁇ m and 122 ⁇ m, respectively.
  • Rzjis ten-point average roughness
  • RSm average length of the roughness curve elements
  • Example 2 A metal / resin composite structure was prepared in the same manner as in Example 4 except that the silica nanoparticle layer was not formed, and the bonding strength was evaluated. The bonding strength was 28 MPa. The fracture surface was a mixture of interfacial fracture and base metal fracture.
  • Example 3 A metal / resin composite structure was prepared in the same manner as in Example 5 except that the silica nanoparticle layer was not formed, and the bonding strength was evaluated. The joining strength was 26 MPa. The fracture surface was interfacial fracture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本発明の金属/樹脂複合構造体(106)は、金属部材(103)と、金属部材(103)に接合し、かつ、熱可塑性樹脂を含む樹脂組成物により構成された樹脂部材(105)と、金属部材(103)と樹脂部材(105)との間に設けられ、かつ、無機物粒子により構成された無機物粒子層(107)と、を備える。そして、金属部材(103)は少なくとも樹脂部材(105)との接合部表面に微細凹凸形状(104)を有し、無機物粒子層(107)は金属部材(103)の微細凹凸形状(104)の一部または全部を覆うように形成されており、金属部材(103)と樹脂部材(105)とは無機物粒子層(107)を介して接合している。

Description

金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および冷却装置
 本発明は、金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および冷却装置に関する。
 電気・自動車分野を中心に幅広い産業分野において、鉄系金属やアルミニウム系金属等の金属と熱可塑性樹脂とを一体化させる複合化技術の有用性が増している。
 従来、このような金属と熱可塑性樹脂との接合には、接着剤を使用することが一般的であった。しかし、接着剤を使用する方法は生産工程数を増加させるばかりではなく、経時変化にともない接着力が低下したり、高温下において接合強度が発現しなかったりすることもあるので、特に自動車等の耐熱性が要求される分野への適用を難しくしていた。また、ねじ止め等の機械的な接合方法も従来から広く行われてきたが、軽量化の点で普及が限定されていた。
 金属と熱可塑性樹脂の接合する新しい方法として、表面が粗化された金属部材に熱可塑性樹脂を射出成形する方法が知られている(例えば、特許文献1)。
国際公開第2015/8847号 特開2001-62862号公報 特開2016-74116号公報
 射出成形において、一般的に、熱可塑性樹脂は金型キャビティに充填するのに充分な流動性を持つ状態になる温度まで加熱して溶融した後に射出成形される。この際、溶融樹脂の流動性は金型キャビティへの充填の容易さを決めるだけではなく、充填後に溶融樹脂が十分な圧力でもってインサート金属の表面粗化部分に浸透するかどうかも左右するための重要な因子となる。流動性を表す一つの指標として溶融樹脂の粘度が挙げられる。高溶融粘度タイプの熱可塑性樹脂、特に高強度および高耐熱特性の視点から有望な非晶性エンジニアリングプラスチック類を用いる場合は、溶融時の流動性に劣るため射出成形による金属-樹脂接合の際には工夫が必要であった(例えば、特許文献2)。
 従来、溶融樹脂の流動性を高めるため、樹脂温度や金型温度を高めることが効果的であるとされてきた。しかし、高い樹脂温度はエネルギー的にも不利であり、また熱による樹脂分解を併発し樹脂本来の物性を損なう場合があった。このような問題点を克服するために様々な方法が提案されているが、その一つが、樹脂の射出時に金型温度の変更を射出成形の1サイクルの中で複数回行うことを特徴としたヒート&クール成形法である。この方法では、樹脂の射出時の金型温度を樹脂のTg(ガラス転移点)以上に維持することをポイントとしている。しかし、この方法では金型に熱媒と冷媒を交互に流して金型表面の加熱および冷却を繰り返す機能が備えられている特殊な金型および温調システムが必要であった(例えば、特許文献3)。
 本発明は上記事情に鑑みてなされたものであり、金属/樹脂複合構造体における樹脂部材を構成する熱可塑性樹脂の溶融粘度が高くて溶融時の流動性に劣る場合であっても、安定して高い接合強度を示す金属/樹脂複合構造体を提供するものである。
 本発明者らは、金属/樹脂複合構造体における金属部材と樹脂部材との間の接合強度をこれまで以上に高める方法、あるいは溶融粘度が高くて溶融時の流動性に乏しい熱可塑性樹脂を用いた場合であっても高い接合強度を安定的に発現する複合構造体を開発すべく鋭意検討した。その結果、金属部材と樹脂部材との間に無機物粒子層を介在させる方法が有効であることを見出し、本発明に到達した。
 本発明によれば、以下に示す金属/樹脂複合構造体、該金属/樹脂複合構造体の製造方法および冷却装置が提供される。
[1]
 金属部材と、
 上記金属部材に接合し、かつ、熱可塑性樹脂を含む樹脂組成物により構成された樹脂部材と、
 上記金属部材と上記樹脂部材との間に設けられ、かつ、無機物粒子により構成された無機物粒子層と、
を備え、
 上記金属部材は少なくとも上記樹脂部材との接合部表面に微細凹凸形状を有し、
 上記無機物粒子層は上記金属部材の上記微細凹凸形状の一部または全部を覆うように形成されており、
 上記金属部材と上記樹脂部材とは上記無機物粒子層を介して接合している金属/樹脂複合構造体。
[2]
 上記[1]に記載の金属/樹脂複合構造体において、
 上記無機物粒子層はシリカ粒子を含む金属/樹脂複合構造体。
[3]
 上記[1]または[2]に記載の金属/樹脂複合構造体において、
 上記無機物粒子層の平均厚みが1nm以上400nm以下である金属/樹脂複合構造体。
[4]
 上記[1]または[2]に記載の金属/樹脂複合構造体において、
 上記無機物粒子層の平均厚みが2nm以上100nm以下である金属/樹脂複合構造体。
[5]
 上記[1]乃至[4]のいずれか一つに記載の金属/樹脂複合構造体において、
 上記無機物粒子の平均粒子径が1nm以上100nm以下である金属/樹脂複合構造体。
[6]
 上記[1]乃至[5]のいずれか一つに記載の金属/樹脂複合構造体において、
 上記微細凹凸形状の凸部と凹部の高低差の平均値が10nm以上200μm以下である金属/樹脂複合構造体。
[7]
 上記[1]乃至[6]のいずれか一つに記載の金属/樹脂複合構造体において、
 上記熱可塑性樹脂が非晶性熱可塑性樹脂を含む金属/樹脂複合構造体。
[8]
 上記[1]乃至[7]のいずれか一つに記載の金属/樹脂複合構造体において、
 上記金属部材が鉄系金属、アルミニウム系金属、マグネシウム系金属、銅系金属およびチタン系金属から選ばれる一種または二種以上の金属を含む金属/樹脂複合構造体。
[9]
 上記[1]乃至[8]のいずれか一つに記載の金属/樹脂複合構造体を製造するための製造方法であって、
 表面に微細凹凸形状を有する金属部材を準備する工程と、
 上記金属部材の上記微細凹凸形状の一部または全部を覆うように無機物粒子により構成された無機物粒子層を形成する工程と、
 上記無機物粒子層を形成した上記金属部材を金型内に配置し、熱可塑性樹脂を含む樹脂組成物を上記金型内に射出することにより、上記無機物粒子層を介して上記金属部材に樹脂部材を接合する工程と、
を含む金属/樹脂複合構造体の製造方法。
[10]
 上記[9]に記載の金属/樹脂複合構造体の製造方法において、
 上記無機物粒子層は無機物粒子分散液を用いて形成する金属/樹脂複合構造体。
[11]
 発熱体と接触可能である金属製の冷却フィンと、
 熱可塑性樹脂を含む樹脂組成物からなり、かつ、上記冷却フィンの一部に設けられたフレーム部材と、
 上記フレーム部材に接合された金属製の冷媒導管と、
を備える、冷却装置であって、
 上記冷媒導管の外周面に、上記フレーム部材を構成する上記樹脂組成物が無機物粒子層を介して接合しており、
 上記冷媒導管の上記外周面は少なくとも上記フレーム部材との接合部表面に微細凹凸形状を有し、
 上記無機物粒子層は上記冷媒導管の上記微細凹凸形状の一部または全部を覆うように形成されている、冷却装置。
[12]
 上記無機物粒子層はシリカ粒子を含む、上記[11]に記載の冷却装置。
[13]
 上記発熱体が電池セルを含む、上記[11]または[12]に記載の冷却装置。
 本発明によれば、金属/樹脂複合構造体における樹脂部材を構成する熱可塑性樹脂の溶融粘度が高くて溶融時の流動性に劣る場合であっても、安定して高い接合強度を示す金属/樹脂複合構造体を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明に係る実施形態の金属/樹脂複合構造体の構造の一例を示した外観図である。 本発明に係る実施形態の金属/樹脂複合構造体の接合部の構造の一例を概念的に示した断面図である。 実施例1で得られた金属/樹脂複合構造体の接合部断面のSEM像(反射電子像)を示す図である。 実施例1で得られた金属/樹脂複合構造体の接合部断面のSEM/EDS画像の二次電子像(元素マッピング像)を示す図である。 実施例1で得られた金属/樹脂複合構造体の接合部断面のSEM/EDS画像における無機物粒子層のEDSスペクトルを示す図である。 本発明に係る実施形態の冷却装置の一例を示す斜視図である。 本発明に係る実施形態の冷却装置の一例を示す正面図である。 図7のA部の拡大図である。 本発明に係る実施形態の冷却装置を構成する金属製の冷却フィンと冷媒導管の配置を示す図である。 図9の配置図をz方向から見た図面である。すなわち、冷却フィンの周縁部への冷媒導管の嵌合の一例を示すイメージ図面である((a)は密嵌前、(b)は密嵌後)。
 以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。文中の数字の間にある「~」は特に断りがなければ、以上から以下を表す。
<金属/樹脂複合構造体>
 本実施形態に係る金属/樹脂複合構造体について説明する。
 図1は、本発明に係る実施形態の金属/樹脂複合構造体106の構造の一例を示す外観図である。図2は、本発明に係る実施形態の金属/樹脂複合構造体106の接合部の構造の一例を概念的に示した断面図である。
 図1および図2に示すように、金属/樹脂複合構造体106は、金属部材103と、金属部材103に接合し、かつ、熱可塑性樹脂を含む樹脂組成物(P)により構成された樹脂部材105と、金属部材103と樹脂部材105との間に設けられ、かつ、無機物粒子により構成された無機物粒子層107と、を備える。そして、金属部材103は少なくとも樹脂部材105との接合部表面に微細凹凸形状104を有し、無機物粒子層107は金属部材103の微細凹凸形状104の一部または全部を覆うように形成されており、金属部材103と樹脂部材105とは無機物粒子層107を介して接合している。
 ここで、無機物粒子層107は、微細凹凸形状104に追随する形で微細凹凸形状104の形成領域の上に形成されている。したがって、無機物粒子層107の表面の三次元形状は、微細凹凸形状104の三次元形状にほぼ一致していることが予想される。
 無機物粒子層107は、金属-樹脂接合部断面の元素マッピング分析法によって、その存在を確認することができる。具体的には、イオンミリング法による接合部断面の切り出し、走査型電子顕微鏡(SEM)による反射電子像の獲得およびエネルギー分散型X線分析(EDS)を行うことによって無機物粒子層107を検知することができる。
 図3および図4に、このようなSEM/EDS分析によって観察した、実施例1に係る金属/樹脂複合構造体106の接合部周辺の断面図を示す。金属部材103の表面110に形成された微細凹凸形状104に追従するように無機物粒子層107が存在することが確認されている。
 本実施形態に係る金属/樹脂複合構造体106は、樹脂部材105を構成する樹脂組成物(P)が、金属部材103の表面110に形成された微細凹凸形状104に侵入して金属と樹脂が接合し、金属―樹脂界面を形成することにより得られる。
 金属部材103の樹脂部材105との接合部表面の微細凹凸形状104の中に樹脂組成物(P)が侵入することによって、金属部材103と樹脂部材105との間に物理的な抵抗力(アンカー効果)が効果的に発現し、通常では接合が困難な金属部材103と樹脂組成物(P)からなる樹脂部材105とを強固に接合することが可能になったものと考えられる。
 このようにして得られた金属/樹脂複合構造体106は、金属部材103と樹脂部材105の界面への水分や湿気の浸入を防ぐこともできる。つまり、金属/樹脂複合構造体106の付着界面における気密性や水密性を向上させることもできる。
 以下、金属/樹脂複合構造体106を構成する各部材について説明する。
(金属部材)
 本実施形態に係る金属部材103は、少なくとも樹脂部材105との接合部表面に微細凹凸形状104を有する金属部材である。微細凹凸形状104は、後述する様々な粗化方法によって形成することができる。粗化方法の種類によっては、微細凹凸形状104を含む領域の凹凸形状は、相対的に大きなスケールの第1凹凸形状部と、上記第1凹凸形状部の表面に形成された相対的に小さなスケールの第2凹凸形状部と、により構成される場合がある。本実施形態における微細凹凸形状104は、第1凹凸形状部のみを有する態様、第2凹凸形状部のみを有する態様および第1凹凸形状部と第2凹凸形状部の両方を有する態様を包含する用語として用いられる。
 微細凹凸形状104の凹部の深さ、すなわち微細凹凸形状104の凸部と凹部の高低差の平均値は、特に限定されないが、例えば、10nm以上200μm以下とすることができる。上記高低差の平均値は、大きくは金属表面の粗化方法によって決定され、例えば後述する薬液法では10nm以上100μm未満に、レーザー加工では100μm以上200μm以下にすることができる。なお、本実施形態において、上記高低差の平均値とはJIS B0601:2001に準拠して測定される十点平均粗さ(Rzjis)と同義である。
 微細凹凸形状104は、例えば、間隔周期が5nm以上500μm以下である凸部が林立した微細凹凸形状であることが好ましい。
 ここで、微細凹凸形状の間隔周期は凸部から隣接する凸部までの距離の平均値であり、電子顕微鏡またはレーザー顕微鏡で撮影した写真、あるいは表面粗さ測定装置を用いて求めることができる。
 電子顕微鏡またはレーザー顕微鏡により測定される間隔周期は通常500nm未満の間隔周期である。具体的には、以下の手順で間隔周期を測定することができる。まず、金属部材103の接合部表面を撮影する。次いで、得られた写真から、任意の凸部を50個選択し、それらの凸部から隣接する凸部までの距離をそれぞれ測定する。そして、凸部から隣接する凸部までの距離の全てを積算して50で除したものを間隔周期とする。一方、500nmを超える間隔周期は、表面粗さ測定装置を用いて求められ、JIS B0601:2001に準拠して測定される粗さ曲線要素の平均長さ(RSm)と同義である。
 なお、通常、金属部材103の接合部表面だけでなく、金属部材103の表面全体に対し、表面粗化処理が施されているため、金属部材103の接合部表面と同一面で、接合部表面以外の箇所から間隔周期を測定することもできる。
 上記間隔周期は、好ましくは10nm以上300μm以下、より好ましくは20nm以上200μm以下である。
 上記間隔周期が上記下限値以上であると、微細凹凸形状の凹部に樹脂部材105を構成する樹脂組成物が十分に進入することができ、金属部材103と樹脂部材105との接合強度をより向上させることができる。また、上記間隔周期が上記上限値以下であると、金属部材103と樹脂部材105との接合部分に隙間が生じるのを抑制できる。その結果、金属部材103と樹脂部材105との界面の隙間から水分等の不純物が浸入することを抑制できるため、金属/樹脂複合構造体106を高温、高湿下で用いた際、強度が低下することを抑制できる。
 微細凹凸形状104の凹部には、無機物粒子層107を介して熱可塑性樹脂を含む樹脂組成物(P)が侵入している。本実施形態においては、凹部には、凹部の深さdの1/2以上の深さの領域まで、樹脂組成物(P)が侵入していることが好ましい。すなわち、凹部への樹脂組成物(P)の侵入深さDが、D≧d/2を満たしていることが好ましい。
 金属部材103は、例えば、金属材料(M)を加工し、次いで、表面への微細凹凸形状104を形成することによって得ることができる。金属材料(M)の種類は特に制限されないが、例えば、鉄系金属(鉄、鉄合金、鉄鋼材、ステンレス鋼等)、アルミニウム系金属(アルミニウム、アルミニウム合金等)、マグネシウム系金属(マグネシウム、マグネシウム合金等)、銅系金属(銅、銅合金等)、チタン系金属(チタン、チタン合金)等を挙げることができる。これらの金属は単独で使用してもよいし、二種以上を組み合わせて使用してもよい。上記金属は用途に応じて最適の金属が選択される。例えば、ノートパソコン筐体等のように軽量性が重視される用途においては、JIS H4000に規定された合金番号1050、2014、3003、5052、6063、7075等のアルミニウム系金属、あるいはAZ91、AZ80、AZ91D、AS21等のマグネシウム系金属が用いられ、自動車等の機械特性が重要視される用途においては、SPCC、SPHC、SAPH、SPFHに代表される圧延軟鋼、ステンレス鋼に代表される鉄系金属が用いられる。
 金属部材103の形状は、樹脂部材105と接合できる形状であれば特に限定されず、例えば、平板状、曲板状、棒状、筒状、塊状等とすることができる。また、これらの組み合わせからなる構造体であってもよい。
 また、樹脂部材105と接合する接合部表面の形状は、特に限定されないが、例えば、平面、曲面等が挙げられる。
 金属部材103は、金属材料を切断やプレス等による塑性加工や、打ち抜き加工、切削、研磨、放電加工等の除肉加工によって上述した所定の形状に加工された後に、後述する粗化処理がなされたものが好ましい。要するに、種々の加工法により、必要な形状に加工されたものを用いることが好ましい。
 金属部材103の少なくとも樹脂部材105との接合部表面に存在する微細凹凸形状104は、公知の金属表面粗化方法によって形成することが可能である。例えば、薬液処理法;陽極酸化法;サンドブラスト、ローレット加工、レーザー加工等の機械的切削法等が挙げられる。薬液処理法としては、例えば、酸系エッチング剤を用いる方法(国際公開第2015/008847号、特開2001-348684号、国際公開第2008/81933号等)、水和ヒドラジン、アンモニア、及び水溶性アミン化合物から選ばれる1種以上のアミン系水溶液で処理する方法(国際公開第2009/31632号、特開2005-119005号等)、酸、ベンズイミダゾール化合物及び水を含む銅表面処理剤を用いる方法(特許4242915号等)、金属めっき層を付与後に無機酸処理する方法(国際公開第2016/171128号)等を例示することができる。
(無機物粒子層)
 本実施形態に係る無機物粒子層107は無機物粒子により構成される。
 本実施形態に係る無機物粒子層107を構成する無機物粒子は特に限定されないが、一次粒子の平均粒子径が好ましくは1nm以上100nm以下、より好ましくは1nm以上70nm以下、さらに好ましくは1nm以上50nm以下、さらにより好ましくは1nm以上30nm以下、特に好ましくは1nm超え20nm未満のナノ粒子であり、一次粒子が数個~数百個凝集した二次粒子構造となっていてもよい。
 無機物粒子層107を構成する無機物粒子の平均粒子径は、例えば、金属部材103と樹脂部材105の接合部の断面電子顕微鏡(TEMやSEM)によって測定することができる。
 無機物粒子の平均粒子径が上記下限値以上であると、金属部材103上の微細凹凸形状104に無機物粒子層107を形成する際に用いられる分散液中の無機物粒子間の凝集による作業性低下を抑制することができる。
 また、無機物粒子の平均粒子径が上記上限値以下であると、金属部材103上の微細凹凸形状104の凹部と凸部の平均高低差がnmオーダーと小さな場合においても本実施形態の接合強度向上効果を十分に発現させることができる。
 また、無機物粒子の平均粒子径は金属部材103上の微細凹凸形状104の凹部と凸部の平均高低差よりも小さいことが好ましい。
 無機物粒子層107は特に限定されないが、例えば、無機物粒子の凝集体(二次粒子)により形成される層である。無機物粒子層107の平均厚み(B)は好ましくは1nm以上400nm以下、より好ましくは1nm以上300nm以下、さらに好ましくは1nm以上250nm以下、さらにより好ましくは1nm超え200nm未満、特に好ましくは2nm以上100nm以下である。
 無機物粒子層107の平均厚み(B)は、例えば、金属/樹脂複合構造体106の任意の3点の接合部の断面をSEM/EDSを用いて観察し、得られた各SEM/EDS画像から測定される厚みを平均した値を採用することができる。
 無機物粒子層107の平均厚み(B)が上記範囲内であると、金属/樹脂複合構造体106の接合強度をより一層向上させることができる。
 また、無機物粒子層107の平均厚み(B)は金属部材103上の微細凹凸形状104の凹部と凸部の平均高低差よりも薄いことが好ましい。
 本実施形態に係る無機物粒子層107を構成する無機物粒子としては特に限定されないが、例えば、シリカ粒子、酸化スズ粒子、ナノダイヤ粒子、ジルコニア粒子、酸化ニオブ粒子、酸化鉄粒子、アルミナ粒子、カーボンナノファイバー等を用いることができる。
 これらの中でもシリカ粒子が好ましい。
ここで、無機物粒子層107がシリカ粒子を含む場合、無機物粒子層107の全体を100質量%としたとき、シリカ粒子以外の無機物粒子の含有量は、例えば60質量%以下、好ましくは50質量%以下、より好ましくは30質量%以下、特に好ましくは10質量%以下である。
(樹脂部材)
 以下、本実施形態に係る樹脂部材105について説明する。
 樹脂部材105は熱可塑性樹脂(A)を含む樹脂組成物(P)により構成される。樹脂組成物(P)は、樹脂成分として熱可塑性樹脂(A)と、必要に応じて充填材(B)と、含む。さらに、樹脂組成物(P)は必要に応じてその他の配合剤を含む。なお、便宜上、樹脂部材105が熱可塑性樹脂(A)のみからなる場合であっても、樹脂部材105は熱可塑性樹脂組成物(P)により構成されると記載する。
 熱可塑性樹脂(A)としては特に限定されないが、例えば、ポリオレフィン系樹脂、ポリメタクリル酸メチル樹脂等のポリメタクリル系樹脂、ポリアクリル酸メチル樹脂等のポリアクリル系樹脂、ポリスチレン樹脂、ポリビニルアルコール-ポリ塩化ビニル共重合体樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリメチルペンテン樹脂、無水マレイン酸-スチレン共重合体樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂等の芳香族ポリエーテルケトン、ポリエステル系樹脂、ポリアミド系樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、スチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アイオノマー、アミノポリアクリルアミド樹脂、イソブチレン無水マレイン酸コポリマー、アクリロニトリル-ブタジエン-スチレン樹脂(ABS)、ACS、AES、AS、ASA、MBS、エチレン-塩化ビニルコポリマー、エチレン-酢酸ビニルコポリマー、エチレン-酢酸ビニル-塩化ビニルグラフトポリマー、エチレン-ビニルアルコールコポリマー、塩素化ポリ塩化ビニル樹脂、塩素化ポリエチレン樹脂、塩素化ポリプロピレン樹脂、カルボキシビニルポリマー、ケトン樹脂、非晶性コポリエステル樹脂、ノルボルネン樹脂、フッ素プラスチック、ポリテトラフルオロエチレン樹脂、フッ素化エチレンポリプロピレン樹脂、PFA、ポリクロロフルオロエチレン樹脂、エチレンテトラフルオロエチレンコポリマー、ポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリ塩化ビニリデン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリサルホン樹脂、ポリパラメチルスチレン樹脂、ポリアリルアミン樹脂、ポリビニルエーテル樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリメチルペンテン樹脂、オリゴエステルアクリレート、キシレン樹脂、マレイン酸樹脂、ポリヒドロキシブチレート樹脂、ポリスルホン樹脂、ポリ乳酸樹脂、ポリグルタミン酸樹脂、ポリカプロラクトン樹脂、ポリエーテルスルホン樹脂、ポリアクリロニトリル樹脂、スチレン-アクリロニトリル共重合体樹脂等が挙げられる。
 本実施形態においては、熱可塑性樹脂(A)は非晶性熱可塑性樹脂を含むことが好ましい。例えば、非晶性熱可塑性樹脂(A)と上記非晶性熱可塑性樹脂(A)とは異なる種類の非晶性熱可塑性樹脂(A)とのブレンド(アロイ);非晶性熱可塑性樹脂(A)と結晶性熱可塑性樹脂(A)とのブレンド(アロイ);等を用いる場合において、本実施形態に係る効果をより効果的に得ることができる。
 ここで、非晶性熱可塑性樹脂(AまたはA)とは結晶状態をとりえないか、あるいは結晶化しても結晶化度が極めて低い熱可塑性樹脂を指し、さらに詳しくはアモルファスポリマーとも呼ばれ、原子または分子が三次元的に規則正しい空間格子をとらずに、それらが不規則に集合した固体状態(無定形)である。
 無定形状態にはガラス状態とゴム状態があり、ガラス転移点(Tg)以下では硬いガラス状を示すが、Tg以上では軟らかいゴム状を示す特徴をもつ熱可塑性樹脂であり、上述の熱可塑性樹脂群の中では、例えば、ポリスチレン、ABS、ポリカーボネート樹脂、変性ポリフェニレンエーテル、ポリエーテルサルホン、ポリエーテルイミド等が該当する。このような非晶性熱可塑性樹脂は、高強度および高耐熱性を示すことから多くの産業分野で注目されている樹脂である。しかし、金属表面に微細凹凸形状を形成させ樹脂を金属に物理的にアンカー効果で接合するような金属樹脂一体化接合においては、その高い溶融粘度と低流動性のため、樹脂を微細凹凸形状に十分に侵入させることが困難であり、ヒート&クール成形等の特殊な成形法に頼らざるを得なかった。
 本実施形態によれば、このような高溶融粘度型の樹脂または樹脂組成物を用いた場合であってもヒート&クール成形法等の特殊な成形法を用いなくても十分な接合強度を有する金属/樹脂複合構造体106を得ることができる。また、本実施形態に係る金属/樹脂複合構造体106の製造方法において、ヒート&クール成形等の特殊な射出成形法を組み合わせれば、接合強度をさらに飛躍的に向上させることができる。
 樹脂組成物(P)の構成成分として、前述のように上記非晶性熱可塑性樹脂を単独で若しくは2種以上適宜組み合わせて使用してもよいし、非晶性熱可塑性樹脂と結晶性熱可塑性樹脂を適宜組み合わせて使用してもよい。樹脂組成物(P)が非晶性熱可塑性樹脂を含む場合は、樹脂組成物(P)全体に対して当該非晶性熱可塑性樹脂を10重量%以上、好ましくは20質量%以上、より好ましくは30質量%以上含有することが好ましい。
 非晶性熱可塑性樹脂の中では、寸法安定性に優れ、成形収縮が相対的に小さく、吸水率が小さな変性ポリフェニレンエーテル(以下、m-PPEと略記する場合がある)または該m-PPEを含有する樹脂組成物が好ましい。
 本実施形態に係るm-PPEは、PPE100重量部に対してポリスチレン、ハイインパクトポリスチレン、シンジオタクチックポリスチレンおよびゴム補強したシンジオタクチックポリスチレンから選択される少なくとも一種を500重量部以下の範囲、好ましくは200重量部以下の範囲で加えたものであることが好ましい。本実施形態に係るPPEとしては、汎用性と入手容易性等の視点から、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体等が好んで用いられる。
(充填材(B))
 樹脂組成物(P)は、金属部材103と樹脂部材105との線膨張係数差の調整や樹脂部材105の機械的強度を向上させる観点から、充填材(B)をさらに含んでもよい。
 充填材(B)としては、例えば、ガラス繊維、炭素繊維、炭素粒子、粘土、タルク、シリカ、ミネラル、セルロース繊維からなる群から一種または二種以上を選ぶことができる。これらのうち、好ましくは、ガラス繊維、炭素繊維、タルク、ミネラルから選択される一種または二種以上である。
 充填材(B)の形状は特に限定されず、繊維状、粒子状、板状等どのような形状であってもよい。充填材(B)は、最大長さが10nm以上600μm以下の範囲にある充填材を数分率で5~100%有することが好ましい。当該最大長さは、より好ましくは、30nm以上550μm以下、さらに好ましくは50nm以上500μm以下である。また、該最大長さの範囲にある充填材(B)の数分率は、好ましくは、10~100%であり、より好ましくは20~100%である。
 充填材(B)の最大長さが上記範囲にあると、樹脂組成物(P)の成形時に溶融した熱可塑性樹脂(A)中を充填材(B)が容易に動くことができるので、後述する金属/樹脂複合構造体106の製造時において、金属部材103の表面付近にも一定程度の割合で充填材(B)を存在させることが可能となる。そのため、上述したように充填材(B)と相互作用をする樹脂が金属部材103表面の微細凹凸形状104形成領域上の無機物粒子層107に入り込むことで、より強固な接合強度を持つことが可能となる。
 なお、樹脂組成物(P)が充填材(B)を含む場合、その含有量は、熱可塑性樹脂(A)100質量部に対して、好ましくは1質量部以上100質量部以下であり、より好ましくは5質量部以上90質量部以下であり、特に好ましくは10質量部以上80質量部以下である。
(その他の配合剤)
 樹脂組成物(P)には、個々の機能を付与する目的でその他の配合剤を含んでもよい。このような配合剤としては、熱安定剤、酸化防止剤、顔料、耐候剤、難燃剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤等が挙げられる。
 なお、樹脂組成物(P)がその他配合剤を含む場合、その含有量は、熱可塑性樹脂(A)100質量部に対して、好ましくは0.0001~5質量部であり、より好ましくは0.001~3質量部である。
(樹脂組成物(P)の調製方法)
 樹脂組成物(P)の調製方法は特に限定されず、一般的に公知の方法により調製することができる。例えば、以下の方法が挙げられる。まず、熱可塑性樹脂(A)、必要に応じて充填材(B)、さらに必要に応じてその他の配合剤とを、バンバリーミキサー、単軸押出機、2軸押出機、高速2軸押出機等の混合装置を用いて、混合または溶融混合することにより、樹脂組成物(P)が得られる。
<金属/樹脂複合構造体の製造方法>
 本実施形態に係る金属/樹脂複合構造体106は、例えば、以下の工程1、2および3を順次実施することにより製造することができる。以下、各々の工程について説明する。
(工程1)表面110に微細凹凸形状104を有する金属部材103を準備する工程
(工程2)金属部材103の微細凹凸形状104の一部または全部を覆うように無機物粒子により構成された無機物粒子層107を形成する工程(以下、無機物粒子層形成工程とも呼ぶ。)
(工程3)無機物粒子層107を形成した金属部材103を金型内に配置し、熱可塑性樹脂を含む樹脂組成物を上記金型内に射出することにより、無機物粒子層107を介して金属部材103に樹脂部材105を接合する工程(以下、射出成形工程とも呼ぶ。)
 以下、具体的に説明する。なお、表面110に微細凹凸形状104を有する金属部材103を準備する工程は前述したため、ここでは説明を省略する。
<工程2:無機物粒子層形成工程>
 金属部材103の微細凹凸形状104の形成領域上に無機物粒子層107を形成する方法は特に限定されないが、例えば、微細凹凸形状104の形成領域上に無機物粒子分散液を塗工することによって形成することができる。シリカ粒子、酸化スズ粒子、ナノダイヤ粒子、ジルコニア粒子、酸化ニオブ粒子、酸化鉄粒子、アルミナ粒子、カーボンナノファイバー等に代表される無機物粒子の平均粒子径(一次粒子)は好ましくは1nm以上100nm以下、より好ましくは1nm以上70nm以下、さらに好ましくは1nm以上50nm以下、さらにより好ましくは1nm以上30nm以下、特に好ましくは1nm超え20nm未満のナノ粒子であり、一次粒子が数個~数百個凝集した二次粒子構造となっていてもよい。このような無機物微粒子は、固相法、液相法、および気相法によって調製可能であるが、小粒径化能の視点からは液相法、気相法(火炎処理を含む)が好ましい。なお、後述する実施例では、テトラメチルオルソシリケートを原料に用いた液相法を採用している。
 無機物粒子として市販品を用いることもできる。このような無機物粒子としては、例えばカーボンナノファイバー分散液としてMDナノテック社製CNF5質量%エタノール分散液(品名;MDCNF/エタノール)、ナノシリカ分散液としてジャパンナノコート社製の2~9nmのシングルナノシリカ粒子4質量部をメタノール91質量部と水5質量部に分散混合したもの(品名;B-4)、ジャパンナノコート社製の2~9nmのシングルナノシリカ粒子3質量部と酸化スズナノ粒子0.1質量%をメタノール89質量部と水8質量部に分散混合したもの(品名;PM-S)、日産化学社製の粒径10~20nmのシリカ微粒子を水に分散させたもの(品名;スノーテックス30)、扶桑化学社製の約15nmのナノシリカ粒子(品名;PL-1)20質量部とメタノール80質量部との混合液、ダイヤモンドナノ粒子分散液としてニューメタルス・アンド・ケミカルズ・コーポレーション社製水分散液(品名;ナノアマンド、平均粒径;約4nm、固形分5質量%)を例示することができる。
 分散液中の溶媒としては、水、メタノール、エタノール等を例示できるが、分散液中の無機物粒子の分散性と塗布後の溶媒留去効率の視点からメタノールおよび水が好ましい。
 無機物粒子分散液の金属部材103の表面110への塗工方法は特に限定されないが、例えば、分散液中に金属部材103を浸漬する方法や、金属部材103の表面に分散液を噴霧塗工する方法等が挙げられる。噴霧塗工とは具体的には、スプレーガンで被塗装表面に吹きつけ、塗工をおこなう方法である。いずれの塗工法においても、塗工は通常、常温付近にておこなうことができる。その他、バーコーターやスピンコーター等を用いたコーティングをおこなうのも好ましい例である。
 塗工後の乾燥方法についても特に限定されないが、例えば、自然乾燥や加熱強制乾燥等の公知の方法を用いることができる。本実施形態では、好ましく用いられる金属部材103の形状を鑑みると、上記乾燥工程も含め加熱する工程を含むことが、金属部材103の微細凹凸形状104に無機物粒子を侵入させる観点から好ましい。
<工程3:射出成形工程>
 射出工程は具体的には、工程2まで終了した金属部材103を射出成形金型のキャビティ部にインサートし、樹脂組成物(P)を無機物粒子層107と接するように金型に射出する射出成形法によって樹脂部材105を成形し、金属/樹脂複合構造体106を製造する工程である。
 具体的には、まず、射出成形用の金型を用意し、その金型を開いてその一部に工程2を終了した後の金属部材103を設置する。その後、金型を閉じ、樹脂組成物(P)の少なくとも一部が金属部材103の表面110に形成された無機物粒子層107と接するように、上記金型内に樹脂組成物(P)を射出して固化する。その後、金型を開き離型することにより、金属/樹脂複合構造体106を得ることができる。
 また、上記射出成形工程においては、公知の射出発泡成形や、金型の温度制御を射出成形の一サイクルの中で行い加熱冷却する公知のヒート&クール成形を併用してもよい。ヒート&クール成形の条件としては、射出成形金型を80℃以上300℃以下の温度に加熱し、樹脂組成物(P)の射出が完了した後、射出成形金型を冷却することが望ましい。金型を加熱する温度は、樹脂組成物(P)を構成する熱可塑性樹脂(A)によって好ましい範囲が異なり、結晶性樹脂で融点が200℃未満の熱可塑性樹脂であれば、80℃以上200℃以下が好ましく、結晶性樹脂で融点が200℃以上の熱可塑性樹脂であれば、120℃以上300℃以下が好ましい。非晶性樹脂を含有する樹脂組成物においては、樹脂のTg(ガラス転移温度)以上の温度で射出完了させた後、20℃以上180℃以下に金型を冷却することが好ましい。
<金属/樹脂複合構造体の用途>
 本実施形態に係る金属/樹脂複合構造体106は、生産性が高く、形状制御の自由度も高いので、様々な用途に展開することが可能である。
 さらに、本実施形態に係る金属/樹脂複合構造体106は、高い気密性、水密性が発現するので、これらの特性に応じた用途に好適に用いられる。
 例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。
 より具体的には、樹脂だけでは強度が足りない部分を金属がサポートする様にデザインされた次のような部品である。例えば、車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ラジエータ、オイルパン、ステアリングホイール;電子機器関係では、ECUボックス、LIB電池モジュール、電装部品、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、電池等電子情報機器、ロボット用部材等;家電関係では、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカー等が挙げられる。また、建材や家具類として、ガラス窓枠、手すり、カーテンレール、たんす、引き出し、クローゼット、書棚、机、椅子等が挙げられる。また、精密電子部品類として、コネクタ、リレー、ギヤ等が挙げられる。また、輸送容器として、輸送コンテナ、スーツケース、トランク等が挙げられる。
 また、金属部材103の高い熱伝導率と、樹脂部材105の断熱的性質とを組み合わせ、ヒートマネージメントを最適に設計する機器に使用される部品用途、例えば、各種発熱体の冷却装置として用いることもできる。具体的には、サーバーユニットの冷却ジャケット、LIB電池モジュールの冷却ジャケットを例示できる。以下、本実施形態に係る金属/樹脂複合構造体106の用途の一例として、冷却装置について図面を用いて説明する。
<冷却装置>
 本実施形態に係る冷却装置の一態様を図6(斜視図)、図7(正面図)および図8(マニホールド要素周辺の拡大図)に示した。
 本実施形態に係る冷却装置200は、発熱体(例えば、電池セル、図示せず)と接触可能(好ましくは対面接触可能)である金属製の冷却フィン201と、熱可塑性樹脂を含む樹脂組成物からなり、かつ、冷却フィン201の一部に設けられたフレーム部材202と、フレーム部材202に接合された金属製の冷媒導管207と、を備える。
 ここで、冷却フィン201は、発熱体と対面接触可能である大きさを有することが好ましく、その形状は矩形かつ平板状であることが好ましい。
 フレーム部材202は、冷却フィン201の周縁部を取り囲むように形成されていることが好ましい。そして、冷媒導管207は、冷却フィン201の周縁部に位置することが好ましく、例えば、フレーム部材202の少なくとも一辺を貫通、好ましくは少なくとも一辺に直交貫通して突出する冷媒流入口205および冷媒排出口206を有する。
 そして冷媒流入口205および冷媒排出口206はフレーム部材202と一体的に形成された冷却マニホールド要素203(冷媒注入口側)および冷却マニホールド要素204(冷媒排出口側)に連結されている。ここで、各々の冷却マニホールド要素は、フレーム部材の一面から他面側の直交貫通する中空構造からなっている。
 例えば、冷却フィン201の面に対して、フレーム部材202は表裏方向に同じ厚みdをなすように冷却フィン201の両面の周縁部に土手部が形成されている。土手部の厚みdは、例えば、発熱体の厚みの1/2に等しいか、1/2に比べてやや狭くなるように設計される。
 複数個の冷却装置200は、各々の冷却フィン201の面が平行関係になるように、土手部同士が密着配列されて、例えば電池モジュールを形成している。例えば、密着配列の際に、一つの冷却装置200と隣接する冷却装置200との間に形成される空間部分に電池セル等の発熱体が両冷却フィン201に包接されるように配置されると同時に、冷却マニホールド要素203と隣接する冷却マニホールド要素203同士の連結、冷却マニホールド要素204と隣接する冷却マニホールド要素204同士の連結も行われ、冷媒流入用の冷却マニホールドおよび冷媒排出用の冷却マニホールドが形成されている。
 例えば矩形平板状の金属板の少なくとも三辺の端部が湾曲した形状を持つ冷却フィン201に、湾曲面の曲率半径に略等しい外径を持つ冷媒導管207を密嵌し、次いで、冷却フィン201および冷媒導管207を覆うように熱可塑性樹脂を含む樹脂組成物を射出成型することによって、フレーム部材202は冷却フィン201および冷媒導管207に一体的に成形される(図10参照。(a)は密嵌前、(b)は密嵌後のイメージ図である)。
 冷媒導管207の冷媒流入口205および冷媒排出口206は、例えばそれぞれ冷却マニホールド要素203および204に連通するように連結されているため、一側の冷却マニホールド要素203を通る冷媒は冷媒流入口205および冷媒排出口206を経て、他側の冷却マニホールド要素204に排出される過程で冷媒導管207を循環する。上記したように冷媒導管207と冷却フィン201に設けられた湾曲状端部は密嵌しているので冷媒導管207の冷熱が冷却フィン全体に伝わり冷却機能を発現している。
 図6、図7および図9に示した冷媒導管207の形状例は、二ヶ所に直角状折り曲げ部を持つ逆U字形であるが、本実施形態に係る冷媒導管207の形状は何らこの形状に限定されるものではなく、例えば三ヶ所以上の折り曲げ形状であっても良い。通常、折り曲げ箇所は少なければ少ないほど電池モジュール等の作製のコストダウンが可能となり、また冷媒の圧力低下を抑制できる結果、冷却効率が向上できるので好ましい。
 冷媒導管207の外周面に、フレーム部材202を構成する樹脂組成物が無機物粒子層を介して接合しており、冷媒導管207の外周面は少なくともフレーム部材202との接合部表面に微細凹凸形状を有し、無機物粒子層は冷媒導管207の微細凹凸形状の一部または全部を覆うように形成されている。
 ここで、冷媒導管207は、フレーム部材202の一辺、好ましくは冷却マニホールド要素203と204が形成された一辺を貫通、好ましくは直交貫通して、冷媒注入口205および冷媒排出口206を形成していることが好ましい。
 また、冷媒導管207の外周面とフレーム部材202とは、少なくともフレーム部材202の貫通部において接合されていることが好ましい。
 そして本実施形態に係る冷却装置200を構成する冷媒導管207とフレーム部材202との複合体の構成については、前述した本実施形態に係る金属/樹脂複合構造体106の実施態様がそのまま制限なく適用できる。
 すなわち、本実施形態に係る冷却装置200を構成する無機物粒子層は好ましい形態においてはシリカ粒子を含む。
 上記無機物粒子層の平均厚みが1nm以上400nm以下であり、好ましくは2nm以上100nm以下である。
 さらに上記無機物粒子の平均粒子径が1nm以上100nm以下である。
 また、上記微細凹凸形状の凸部と凹部の高低差の平均値が10nm以上200μm以下である。
 本実施形態に係る冷却装置200において、上記熱可塑性樹脂が非晶性熱可塑性樹脂を含んでいてもよい。
 本実施形態に係る冷却装置200において、金属製の冷媒導管207が鉄系金属、アルミニウム系金属、マグネシウム系金属、銅系金属およびチタン系金属から選ばれる一種または二種以上の金属を含むことが好ましい。
 さらに本実施形態に係る冷却装置200の製造方法は、例えば、表面に微細凹凸形状を有する金属導管を準備する工程と、上記金属導管の上記微細凹凸形状の一部または全部を覆うように無機物粒子により構成された無機物粒子層を形成する工程、好ましくは無機物粒子分散液を用いて無機物粒子層を形成する工程と、上記無機物粒子層を形成した上記金属導管を金型内に配置し、熱可塑性樹脂を含む樹脂組成物を上記金型内に射出することにより、上記無機物粒子層を介して上記金属導管にフレーム部材を接合する工程と、を含む。
 以上、本実施形態に係る金属/樹脂複合構造体106の用途について述べたが、これらは本発明の用途の例示であり、上記以外の様々な用途に用いることもできる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、本実施形態を、実施例・比較例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。
[実施例1]
(表面粗化工程)
 JIS H4000に規定された合金番号5052のアルミニウム合金板(45mm×18mm×2mm)を脱脂処理した。次いで、得られたアルミニウム合金板を、硫酸8.2質量%、塩化第二鉄7.8質量%、塩化第二銅0.4質量%が溶解した水溶液(30℃)中に80秒間浸漬し、揺動させることによってエッチングした。次いで、流水で超音波洗浄(水中、1分間)を行い、乾燥させることにより表面処理済みアルミニウム合金板を得た。
 得られた表面処理済みのアルミニウム合金板の表面粗さを、表面粗さ測定装置「サーフコム1400D(東京精密社製)」を使用し、JIS B0601:2001(対応ISO4287)に準拠して測定される表面粗さのうち、十点平均粗さ(Rzjis)の平均値および粗さ曲線要素の平均長さ(RSm)の平均値をそれぞれ求めた。その結果、Rzjisの平均値は18μmであった。粗さ曲線要素の平均長さ(RSm)の平均値は90μmであった。なお、Rzjis平均値およびRSm平均値は測定場所を変えた6点の平均値ある。
 なお、表面粗さ測定条件は以下のとおりである。
 ・触針先端半径:5μm
 ・基準長さ:0.8mm
 ・評価長さ:4mm
 ・測定速度:0.06mm/sec
(シリカ粒子層形成工程)
 特開2013-82584号公報の実施例1に記載された方法に忠実に準拠してテトラメチルオルソシリケートの加水分解反応と、テトラメチルアンモニウムヒドロキサイド水溶液との処理を実施し、シリカナノ粒子の水/MeOH(重量比1/9)分散液を調製した。得られたシリカナノ粒子の平均一次粒子径は20nmであった。
 上記の表面粗化工程で得られた表面粗化アルミニウム合金板を、上記シリカナノ粒子分散液をメタノールで6倍希釈した分散液中に室温で5分間浸漬し、その後、100℃で20分間乾燥させることによって、微細凹凸形状を覆うようにシリカナノ粒子層が形成された表面処理済みアルミニウム合金板を作製した。
(射出成形工程)
 上記の表面粗化工程およびシリカ粒子層形成工程を経て得られた、シリカナノ粒子層が形成された表面処理済みアルミニウム合金板を、日本製鋼所製の射出成形機J55-ADに装着された小型ダンベル金属インサート金型内に設置した。次いで、その金型内に樹脂組成物(P)として、サビックイノベーティブプラスチックス社製の変性ポリフェニレンエーテル(ノリルCN1134;ガラス繊維20質量%含有)を、シリンダー温度(樹脂温度)280℃、金型温度100℃、射出一次圧125~135MPa、保圧110MPaの条件にて射出成形し、シリカナノ粒子層が形成された表面処理済みアルミニウム合金板に樹脂部材を射出接合させることによって金属/樹脂複合構造体を得た。
 得られた金属/樹脂複合構造体の断面SEM画像を図3に示す。これによれば、シリカナノ粒子層の平均厚み:60nmと算出された。また、同構造体の接合部断面の断面SEM/EDS画像(元素マッピング像)(図4)とEDSスペクトル(図5)を示す。微細凹凸形状に追随するようにケイ素原子と酸素原子が偏在していることが確認されることから、アルミニウム合金板表面に形成された微細凹凸形状を覆うようにシリカナノ粒子層が形成されていることがわかった。
 上記射出成形工程で得られた金属/樹脂複合構造体について接合部の引っ張りせん断強度を求めた。具体的には、引っ張り試験機「モデル1323(アイコーエンジニヤリング社製)」を使用し、引張試験機に専用の治具を取り付け、室温(23℃)にて、チャック間距離60mm、引張速度10mm/minの条件にて接合強度の測定をおこなった。破断荷重(N)をアルミニウム合金板と樹脂部材との接合部分の面積で除することにより接合強度(MPa)を得た。接合強度は20MPaであった。破壊面は界面破壊と母材破壊が混在するものであった。
[実施例2]
 射出成形工程における金型としてヒート&クール成形が可能な金型(山下電気製Y-HeaT装置)を用い、金型温度を100℃から120℃に変更してヒート&クール成形を行った以外は実施例1と同様にして金属/樹脂複合構造体を作製し、接合強度の評価をおこなった。接合強度は26MPaであった。破壊面は界面破壊と母材破壊が混在するものであった。
[実施例3]
 射出成形工程における金型としてヒート&クール成形が可能な金型(山下電気製Y-HeaT装置)を用い、金型温度を100℃から140℃に変更してヒート&クール成形を行った以外は実施例1と同様にして金属/樹脂複合構造体を作製し、接合強度の評価をおこなった。接合強度は32MPaであった。破壊面は母材破壊であった。
[比較例1]
 シリカナノ粒子層を形成しない以外は実施例2と同様にして金属/樹脂複合構造体を作製し、接合強度の評価をおこなった。接合強度は16MPaであった。破壊面は界面破壊と母材破壊が混在するものであった。
[実施例4]
(表面粗化工程)
 JIS H4000に規定された合金番号5052のアルミニウム合金板(45mm×18mm×2mm)を脱脂処理した。次いで、得られたアルミニウム合金板を、水酸化ナトリウムを15質量%と酸化亜鉛を3質量%含有するアルカリ系エッチング剤(30℃)が充填された処理槽1に3分間浸漬(以下の説明では「アルカリ系エッチング剤処理」と略称する場合がある)後、30質量%の硝酸(30℃)にて、1分間浸漬し、アルカリ系エッチング剤処理をさらに1回繰り返し実施した。次いで、得られたアルミニウム合金板を、塩化第二鉄を3.9質量%と、塩化第二銅を0.2質量%と、硫酸を4.1質量%とを含有する酸系エッチング水溶液が充填された処理槽2に、30℃下で5分間浸漬し搖動させた(以下の説明では「酸系エッチング剤処理」と略称する場合がある)。次いで、流水で超音波洗浄(水中、1分間)を行い、その後乾燥させることによって表面処理済みのアルミニウム合金板を得た。
 得られた表面処理済みのアルミニウム合金板の表面粗さを、表面粗さ測定装置「サーフコム1400D(東京精密社製)」を使用し、JIS B0601:2001(対応ISO4287)に準拠して測定される表面粗さのうち、十点平均粗さ(Rzjis)の平均値および粗さ曲線要素の平均長さ(RSm)の平均値をそれぞれ測定した。その結果、Rzjis平均値は19μm、RSmの平均値は104μmであった。なお、Rzjis平均値およびRSm平均値は、測定場所を変えた6点の測定値の平均である。
(シリカ粒子層形成工程)
 上記の表面粗化工程で得られた表面粗化アルミニウム合金板を、(株)ジャパンナノコート社製シリカバインダーPM-S(組成:メタノール89質量%、水8質量%、酸化スズ0.1質量%、二酸化ケイ素2.9質量%)を90質量%含水メタノールで6倍希釈した分散液中に室温で5分間浸漬し、その後、100℃で20分間乾燥させることによって、微細凹凸形状を覆うようにシリカナノ粒子層が形成された表面処理済みアルミニウム合金板を作製した。
(射出成形工程)
 上記方法で得られた表面処理済みアルミニウム合金板を、日本製鋼所社製のJ85AD110Hに小型ダンベル金属インサート金型を装着し、金型内に表面処理済み合金板を設置した。次いで、その金型内に熱可塑性樹脂組成物(P)として、ポリプラスチックス社製ポリブチレンテレフタレート(PBT)樹脂(ジュラネックス(登録商標)930HL)を、シリンダー温度270℃、金型温度100℃、射出速度25mm/sec、保圧80MPa、保圧時間10秒の条件にて射出成形し、シリカナノ粒子層が形成された表面処理済みアルミニウム合金板に樹脂部材を射出接合させることによって金属/樹脂複合構造体を得た。この金属/樹脂複合構造体について実施例1と同様にして断面SEM観察を行いシリカナノ粒子層の平均厚みを測定した結果、70nmであった。
 得られた金属/樹脂複合構造体の接合強度は34MPaであった。破壊面は界面破壊と母材破壊が混在するものであった。
[実施例5]
 射出成型工程において、ポリプラスチックス社製ポリブチレンテレフタレート(PBT)樹脂の代わりにDuPont社製ポリアミドPA66(商品名:70G43LTM NC010、ガラス繊維含有量:43質量%)を用い、シリンダー温度を300℃、金型温度を160℃にそれぞれ変更した以外は実施例4と同様に実験を行った。その結果、接合強度は36MPaであった。また破壊面は界面破壊であった。
[実施例6]
 表面粗化工程において、JIS H4000に規定された合金番号5052のアルミニウム合金板の代わりに合金番号6063の合金板を用いた以外は実施例4と同様な実験を行った。得られた表面処理済みのアルミニウム合金板について測定した十点平均粗さ(Rzjis)および粗さ曲線要素の平均長さ(RSm)は各々22μmおよび120μmであった。得られた金属/樹脂複合構造体の接合強度は、35MPaであった。破壊面は界面破壊と母材破壊が混在するものであった。
[実施例7]
 表面粗化工程において、JIS H4000に規定された合金番号5052のアルミニウム合金板の代わりに合金番号3003のアルミニウム合金板を用いた以外は実施例4と同様な実験を行った。得られた表面処理済みのアルミニウム合金板について測定した十点平均粗さ(Rzjis)および粗さ曲線要素の平均長さ(RSm)は各々25μmおよび122μmであった。得られた金属/樹脂複合構造体について実施例4と同様にして断面SEM観察を行いシリカナノ粒子層の平均厚みを測定した結果、60nmであった。また、この金属/樹脂複合構造体の接合強度は、36MPaであった。破壊面は界面破壊と母材破壊が混在するものであった。
[比較例2]
 シリカナノ粒子層を形成しない以外は実施例4と同様にして金属/樹脂複合構造体を作製し、接合強度の評価をおこなった。接合強度は28MPaであった。破壊面は界面破壊と母材破壊が混在するものであった。
[比較例3]
 シリカナノ粒子層を形成しない以外は実施例5と同様にして金属/樹脂複合構造体を作製し、接合強度の評価をおこなった。接合強度は26MPaであった。破壊面は界面破壊であった。

Claims (13)

  1.  金属部材と、
     前記金属部材に接合し、かつ、熱可塑性樹脂を含む樹脂組成物により構成された樹脂部材と、
     前記金属部材と前記樹脂部材との間に設けられ、かつ、無機物粒子により構成された無機物粒子層と、
    を備え、
     前記金属部材は少なくとも前記樹脂部材との接合部表面に微細凹凸形状を有し、
     前記無機物粒子層は前記金属部材の前記微細凹凸形状の一部または全部を覆うように形成されており、
     前記金属部材と前記樹脂部材とは前記無機物粒子層を介して接合している金属/樹脂複合構造体。
  2.  請求項1に記載の金属/樹脂複合構造体において、
     前記無機物粒子層はシリカ粒子を含む金属/樹脂複合構造体。
  3.  請求項1または2に記載の金属/樹脂複合構造体において、
     前記無機物粒子層の平均厚みが1nm以上400nm以下である金属/樹脂複合構造体。
  4.  請求項1または2に記載の金属/樹脂複合構造体において、
     前記無機物粒子層の平均厚みが2nm以上100nm以下である金属/樹脂複合構造体。
  5.  請求項1乃至4のいずれか一項に記載の金属/樹脂複合構造体において、
     前記無機物粒子の平均粒子径が1nm以上100nm以下である金属/樹脂複合構造体。
  6.  請求項1乃至5のいずれか一項に記載の金属/樹脂複合構造体において、
     前記微細凹凸形状の凸部と凹部の高低差の平均値が10nm以上200μm以下である金属/樹脂複合構造体。
  7.  請求項1乃至6のいずれか一項に記載の金属/樹脂複合構造体において、
     前記熱可塑性樹脂が非晶性熱可塑性樹脂を含む金属/樹脂複合構造体。
  8.  請求項1乃至7のいずれか一項に記載の金属/樹脂複合構造体において、
     前記金属部材が鉄系金属、アルミニウム系金属、マグネシウム系金属、銅系金属およびチタン系金属から選ばれる一種または二種以上の金属を含む金属/樹脂複合構造体。
  9.  請求項1乃至8のいずれか一項に記載の金属/樹脂複合構造体を製造するための製造方法であって、
     表面に微細凹凸形状を有する金属部材を準備する工程と、
     前記金属部材の前記微細凹凸形状の一部または全部を覆うように無機物粒子により構成された無機物粒子層を形成する工程と、
     前記無機物粒子層を形成した前記金属部材を金型内に配置し、熱可塑性樹脂を含む樹脂組成物を前記金型内に射出することにより、前記無機物粒子層を介して前記金属部材に樹脂部材を接合する工程と、
    を含む金属/樹脂複合構造体の製造方法。
  10.  請求項9に記載の金属/樹脂複合構造体の製造方法において、
     前記無機物粒子層は無機物粒子分散液を用いて形成する金属/樹脂複合構造体。
  11.  発熱体と接触可能である金属製の冷却フィンと、
     熱可塑性樹脂を含む樹脂組成物からなり、かつ、前記冷却フィンの一部に設けられたフレーム部材と、
     前記フレーム部材に接合された金属製の冷媒導管と、
    を備える、冷却装置であって、
     前記冷媒導管の外周面に、前記フレーム部材を構成する前記樹脂組成物が無機物粒子層を介して接合しており、
     前記冷媒導管の前記外周面は少なくとも前記フレーム部材との接合部表面に微細凹凸形状を有し、
     前記無機物粒子層は前記冷媒導管の前記微細凹凸形状の一部または全部を覆うように形成されている、冷却装置。
  12.  前記無機物粒子層はシリカ粒子を含む請求項11に記載の冷却装置。
  13.  前記発熱体が電池セルを含む、請求項11または12に記載の冷却装置。
PCT/JP2018/035134 2018-09-21 2018-09-21 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および冷却装置 WO2020059128A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020217007074A KR20210042362A (ko) 2018-09-21 2018-09-21 금속/수지 복합 구조체, 금속/수지 복합 구조체의 제조 방법 및 냉각 장치
PCT/JP2018/035134 WO2020059128A1 (ja) 2018-09-21 2018-09-21 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および冷却装置
US17/274,003 US20210252756A1 (en) 2018-09-21 2018-09-21 Metal/resin composite structure, method for manufacturing metal/resin composite structure, and cooling device
KR1020227044491A KR20230004935A (ko) 2018-09-21 2018-09-21 금속/수지 복합 구조체, 금속/수지 복합 구조체의 제조 방법 및 냉각 장치
EP18934252.0A EP3854909A4 (en) 2018-09-21 2018-09-21 METAL/RESIN COMPOSITE STRUCTURE, METAL/RESIN COMPOSITE STRUCTURE MANUFACTURING METHOD, AND COOLING DEVICE
JP2020547587A JP7074868B2 (ja) 2018-09-21 2018-09-21 冷却装置
CN201880097300.2A CN112639167A (zh) 2018-09-21 2018-09-21 金属/树脂复合结构体、金属/树脂复合结构体的制造方法及冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035134 WO2020059128A1 (ja) 2018-09-21 2018-09-21 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および冷却装置

Publications (1)

Publication Number Publication Date
WO2020059128A1 true WO2020059128A1 (ja) 2020-03-26

Family

ID=69886746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035134 WO2020059128A1 (ja) 2018-09-21 2018-09-21 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および冷却装置

Country Status (6)

Country Link
US (1) US20210252756A1 (ja)
EP (1) EP3854909A4 (ja)
JP (1) JP7074868B2 (ja)
KR (2) KR20230004935A (ja)
CN (1) CN112639167A (ja)
WO (1) WO2020059128A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022052637A (ja) * 2020-09-23 2022-04-04 東海興業株式会社 インサート射出成形品の製造方法、インサート射出成形品の中間体、及びインサート射出成形品
JP7085081B1 (ja) * 2021-04-02 2022-06-15 ポリプラスチックス株式会社 複合部材およびその製造方法
WO2022208981A1 (ja) * 2021-04-02 2022-10-06 ポリプラスチックス株式会社 複合部材およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114248395B (zh) * 2021-12-01 2023-05-09 成都飞机工业(集团)有限责任公司 一种铝制件的表面防护处理方法
WO2024062032A1 (en) 2022-09-23 2024-03-28 Chemetall Gmbh Metal-plastic hybrid materials with aluminum and/or alloys thereof as metal component

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062862A (ja) 1999-08-27 2001-03-13 Asahi Chem Ind Co Ltd 非晶性熱可塑性樹脂の射出成形法
JP2001348684A (ja) 2000-06-06 2001-12-18 Mec Kk アルミニウムまたはアルミニウム合金の表面粗化剤およびそれを用いる表面粗化法
JP2005119005A (ja) 2003-10-14 2005-05-12 Taisei Plas Co Ltd アルミニウム合金と樹脂の複合体とその製造方法
WO2008081933A1 (ja) 2006-12-28 2008-07-10 Taisei Plas Co., Ltd. 金属と樹脂の複合体とその製造方法
WO2009031632A1 (ja) 2007-09-05 2009-03-12 Taisei Plas Co., Ltd. 金属樹脂複合体の製造方法
JP4242915B2 (ja) 2007-06-14 2009-03-25 メック株式会社 銅表面処理剤及び表面処理方法
JP2009078434A (ja) * 2007-09-26 2009-04-16 Toyoda Gosei Co Ltd 金属−樹脂複合成形品及びその製造方法
JP2011174133A (ja) * 2010-02-24 2011-09-08 Nisshin Steel Co Ltd 粗面化ステンレス鋼板の製造方法、ならびにステンレス鋼板と熱可塑性樹脂組成物の成形体とが接合された複合体およびその製造方法
JP2012066383A (ja) * 2009-01-19 2012-04-05 Taisei Plas Co Ltd 金属合金を含む接着複合体とその製造方法
JP2013082584A (ja) 2011-10-11 2013-05-09 Fuso Chemical Co Ltd 高純度単分散シリカ粒子及びその製造方法
JP2014159126A (ja) * 2013-02-20 2014-09-04 Nisshin Steel Co Ltd 複合体およびその製造方法
WO2015008847A1 (ja) 2013-07-18 2015-01-22 三井化学株式会社 金属/樹脂複合構造体および金属部材
JP2016074116A (ja) 2014-10-03 2016-05-12 三井化学株式会社 金属/樹脂複合構造体の製造方法
WO2016171128A1 (ja) 2015-04-21 2016-10-27 三井化学株式会社 金属/樹脂複合構造体の製造方法および表面粗化鉄鋼部材の製造方法
JP2017532720A (ja) * 2014-09-15 2017-11-02 エルジー・ケム・リミテッド 冷媒流路の折り曲げが最小化された冷却構造を含む電池モジュール

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965347B2 (ja) * 2007-06-18 2012-07-04 大成プラス株式会社 管状複合体とその製造方法
WO2009084648A1 (ja) * 2007-12-27 2009-07-09 Taisei Plas Co., Ltd. 鋼材と樹脂の複合体とその製造方法
JP5302315B2 (ja) * 2008-08-06 2013-10-02 大成プラス株式会社 金属合金とポリアミド樹脂組成物の複合体とその製造方法
JP5554483B2 (ja) * 2008-09-11 2014-07-23 大成プラス株式会社 金属と樹脂の複合体及びその製造方法
JP5108904B2 (ja) * 2010-02-01 2012-12-26 大成プラス株式会社 金属とポリアミド樹脂組成物の複合体及びその製造方法
JP5733999B2 (ja) * 2011-01-31 2015-06-10 大成プラス株式会社 金属樹脂複合体の製造方法
CN103286995B (zh) * 2012-02-24 2015-06-24 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及其制备的铝合金树脂复合体
WO2014024877A1 (ja) * 2012-08-07 2014-02-13 日本軽金属株式会社 アルミ樹脂接合体及びその製造方法
JP5834345B2 (ja) * 2012-12-14 2015-12-16 株式会社新技術研究所 アルミニウム合金物品、アルミニウム合金部材およびその製造方法
KR101380916B1 (ko) * 2013-07-16 2014-04-02 (주)일광폴리머 금속 합금과 세라믹 수지 복합체 및 그 제조방법
JP2017048456A (ja) * 2015-09-02 2017-03-09 株式会社神戸製鋼所 アルミニウム合金材、接合体、自動車用部材、アルミニウム合金材の製造方法及び接合体の製造方法
DE102015217232A1 (de) * 2015-09-09 2017-03-09 Robert Bosch Gmbh Verfahren zum Ausbilden eines Bauteileverbunds
CN109195791A (zh) * 2016-05-31 2019-01-11 三井化学株式会社 金属/树脂复合结构体、金属构件及金属构件的制造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062862A (ja) 1999-08-27 2001-03-13 Asahi Chem Ind Co Ltd 非晶性熱可塑性樹脂の射出成形法
JP2001348684A (ja) 2000-06-06 2001-12-18 Mec Kk アルミニウムまたはアルミニウム合金の表面粗化剤およびそれを用いる表面粗化法
JP2005119005A (ja) 2003-10-14 2005-05-12 Taisei Plas Co Ltd アルミニウム合金と樹脂の複合体とその製造方法
WO2008081933A1 (ja) 2006-12-28 2008-07-10 Taisei Plas Co., Ltd. 金属と樹脂の複合体とその製造方法
JP4242915B2 (ja) 2007-06-14 2009-03-25 メック株式会社 銅表面処理剤及び表面処理方法
WO2009031632A1 (ja) 2007-09-05 2009-03-12 Taisei Plas Co., Ltd. 金属樹脂複合体の製造方法
JP2009078434A (ja) * 2007-09-26 2009-04-16 Toyoda Gosei Co Ltd 金属−樹脂複合成形品及びその製造方法
JP2012066383A (ja) * 2009-01-19 2012-04-05 Taisei Plas Co Ltd 金属合金を含む接着複合体とその製造方法
JP2011174133A (ja) * 2010-02-24 2011-09-08 Nisshin Steel Co Ltd 粗面化ステンレス鋼板の製造方法、ならびにステンレス鋼板と熱可塑性樹脂組成物の成形体とが接合された複合体およびその製造方法
JP2013082584A (ja) 2011-10-11 2013-05-09 Fuso Chemical Co Ltd 高純度単分散シリカ粒子及びその製造方法
JP2014159126A (ja) * 2013-02-20 2014-09-04 Nisshin Steel Co Ltd 複合体およびその製造方法
WO2015008847A1 (ja) 2013-07-18 2015-01-22 三井化学株式会社 金属/樹脂複合構造体および金属部材
JP2017532720A (ja) * 2014-09-15 2017-11-02 エルジー・ケム・リミテッド 冷媒流路の折り曲げが最小化された冷却構造を含む電池モジュール
JP2016074116A (ja) 2014-10-03 2016-05-12 三井化学株式会社 金属/樹脂複合構造体の製造方法
WO2016171128A1 (ja) 2015-04-21 2016-10-27 三井化学株式会社 金属/樹脂複合構造体の製造方法および表面粗化鉄鋼部材の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022052637A (ja) * 2020-09-23 2022-04-04 東海興業株式会社 インサート射出成形品の製造方法、インサート射出成形品の中間体、及びインサート射出成形品
JP7421456B2 (ja) 2020-09-23 2024-01-24 東海興業株式会社 インサート射出成形品の製造方法、インサート射出成形品の中間体、及びインサート射出成形品
JP7085081B1 (ja) * 2021-04-02 2022-06-15 ポリプラスチックス株式会社 複合部材およびその製造方法
WO2022208981A1 (ja) * 2021-04-02 2022-10-06 ポリプラスチックス株式会社 複合部材およびその製造方法

Also Published As

Publication number Publication date
KR20210042362A (ko) 2021-04-19
CN112639167A (zh) 2021-04-09
EP3854909A4 (en) 2022-05-04
JP7074868B2 (ja) 2022-05-24
US20210252756A1 (en) 2021-08-19
KR20230004935A (ko) 2023-01-06
JPWO2020059128A1 (ja) 2021-08-30
EP3854909A1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2020059128A1 (ja) 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および冷却装置
KR101548108B1 (ko) 금속/수지 복합 구조체 및 금속 부재
US20210308916A1 (en) Metal-resin composite structure, metal member, and manufacturing method of metal member
JP7049792B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6469403B2 (ja) 金属/樹脂複合構造体の製造方法
JP6937634B2 (ja) 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および耐リーク性部品
WO2020158820A1 (ja) アルミニウム系金属樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属樹脂複合構造体の製造方法
JP2018144475A (ja) アルミニウム系金属/樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属/樹脂複合構造体の製造方法
JP6867814B2 (ja) 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法、ニッケルめっき化鉄鋼部材およびニッケルめっき化鉄鋼部材の製造方法
JP6482417B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP7088655B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6941953B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6810538B2 (ja) 表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法
JP2020157489A (ja) 金属樹脂複合構造体の製造方法および金属樹脂複合構造体
JP6422751B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6882855B2 (ja) 表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547587

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217007074

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2101001585

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018934252

Country of ref document: EP

Effective date: 20210421