JP6941953B2 - 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法 - Google Patents

金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法 Download PDF

Info

Publication number
JP6941953B2
JP6941953B2 JP2017062323A JP2017062323A JP6941953B2 JP 6941953 B2 JP6941953 B2 JP 6941953B2 JP 2017062323 A JP2017062323 A JP 2017062323A JP 2017062323 A JP2017062323 A JP 2017062323A JP 6941953 B2 JP6941953 B2 JP 6941953B2
Authority
JP
Japan
Prior art keywords
metal
resin
composite structure
resin composite
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017062323A
Other languages
English (en)
Other versions
JP2018164989A (ja
Inventor
和樹 木村
和樹 木村
富田 嘉彦
嘉彦 富田
高広 冨永
高広 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2017062323A priority Critical patent/JP6941953B2/ja
Publication of JP2018164989A publication Critical patent/JP2018164989A/ja
Application granted granted Critical
Publication of JP6941953B2 publication Critical patent/JP6941953B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法に関する。
電気・自動車分野を中心に幅広い産業分野において、鉄系金属やアルミニウム系金属等の金属と熱可塑性樹脂とを一体化させる複合化技術の有用性が増している。
従来、このような金属と熱可塑性樹脂との接合には、接着剤を使用することが一般的であった。しかし、接着剤を使用する方法は生産工程数を増加させるばかりではなく、経時変化にともない接着力が低下したり、高温下において接合強度が発現しなかったりすることもあるので、特に自動車等の耐熱性が要求される分野への適用を難しくしていた。また、ねじ止め等の機械的な接合方法も従来から広く行われてきたが、軽量化の点で普及が限定されていた。
金属と熱可塑性樹脂の接合する新しい方法として、表面が粗化された金属部材に熱可塑性樹脂を射出成形する方法が知られている(例えば、特許文献1)。
国際公開第2015/8847号 特開2001−62862号公報 特開2016−74116号公報
射出成形において、一般的に、熱可塑性樹脂は金型キャビティに充填するのに充分な流動性を持つ状態になる温度まで加熱して溶融した後に射出成形される。この際、溶融樹脂の流動性は金型キャビティへの充填の容易さを決めるだけではなく、充填後に溶融樹脂が十分な圧力でもってインサート金属の表面粗化部分に浸透するかどうかも左右するための重要な因子となる。流動性を表す一つの指標として溶融樹脂の粘度が挙げられる。高溶融粘度タイプの熱可塑性樹脂、特に高強度および高耐熱特性の視点から有望な非晶性エンジニアリングプラスチック類を用いる場合は、溶融時の流動性に劣るため射出成形による金属−樹脂接合の際には工夫が必要であった(例えば、特許文献2)。
従来、溶融樹脂の流動性を高めるため、樹脂温度や金型温度を高めることが効果的であるとされてきた。しかし、高い樹脂温度はエネルギー的にも不利であり、また熱による樹脂分解を併発し樹脂本来の物性を損なう場合があった。このような問題点を克服するために様々な方法が提案されているが、その一つが、樹脂の射出時に金型温度の変更を射出成形の1サイクルの中で複数回行うことを特徴としたヒート&クール成形法である。この方法では、樹脂の射出時の金型温度を樹脂のTg(ガラス転移点)以上に維持することをポイントとしている。しかし、この方法では金型に熱媒と冷媒を交互に流して金型表面の加熱および冷却を繰り返す機能が備えられている特殊な金型および温調システムが必要であるという問題点があった(例えば、特許文献3)。
本発明は上記事情に鑑みてなされたものであり、金属/樹脂複合構造体における樹脂部材を構成する熱可塑性樹脂の溶融粘度が高くて溶融時の流動性に劣る場合であっても、安定して高い接合強度を示す金属/樹脂複合構造体を提供するものである。
本発明者らは、金属/樹脂複合構造体における金属部材と樹脂部材との間の接合強度をこれまで以上に高める方法、あるいは溶融粘度が高くて溶融時の流動性に乏しい熱可塑性樹脂を用いた場合であっても高い接合強度を発現する複合構造体を開発すべく鋭意検討した。その結果、金属部材と樹脂部材との間に無機物粒子層を介在させる方法が有効であることを見出し、本発明に到達した。
本発明によれば、以下に示す金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法が提供される。
[1]
金属部材と、
前記金属部材に接合し、かつ、熱可塑性樹脂を含む樹脂組成物により構成された樹脂部材と、
前記金属部材と前記樹脂部材との間に設けられ、かつ、無機物粒子のみからなる無機物粒子層と、
から構成され
前記無機物粒子は、シリカ粒子、酸化スズ粒子、ナノダイヤ粒子、ジルコニア粒子、酸化ニオブ粒子、酸化鉄粒子、アルミナ粒子、カーボンナノファイバーから選択される少なくとも1つであり、
前記金属部材は少なくとも前記樹脂部材との接合部表面に微細凹凸形状を有し、
前記無機物粒子層は前記金属部材の前記微細凹凸形状に追随する形で、前記微細凹凸形状の一部または全部を覆うように形成されており、
前記金属部材と前記樹脂部材とは前記無機物粒子層を介して接合しており、前記微細凹凸形状の凹部には、前記無機物粒子層を介して前記樹脂部材が侵入している金属/樹脂複合構造体。
[2]
上記[1]に記載の金属/樹脂複合構造体において、
上記無機物粒子層はシリカ粒子を含む金属/樹脂複合構造体。
[3]
上記[1]または[2]に記載の金属/樹脂複合構造体において、
上記無機物粒子層の平均厚みが1nm以上400nm以下である金属/樹脂複合構造体。
[4]
上記[1]乃至[3]のいずれか一つに記載の金属/樹脂複合構造体において、
上記無機物粒子の平均粒子径が1nm以上100nm以下である金属/樹脂複合構造体。
[5]
上記[1]乃至[4]のいずれか一つに記載の金属/樹脂複合構造体において、
上記微細凹凸形状の凸部と凹部の高低差の平均値が10nm以上200μm以下である金属/樹脂複合構造体。
[6]
上記[1]乃至[5]のいずれか一つに記載の金属/樹脂複合構造体において、
上記熱可塑性樹脂が非晶性熱可塑性樹脂を含む金属/樹脂複合構造体。
[7]
上記[1]乃至[6]のいずれか一つに記載の金属/樹脂複合構造体において、
上記金属部材が鉄系金属、アルミニウム系金属、マグネシウム系金属、銅系金属およびチタン系金属から選ばれる一種または二種以上の金属を含む金属/樹脂複合構造体。
[8]
上記[1]乃至[7]のいずれか一つに記載の金属/樹脂複合構造体を製造するための製造方法であって、
表面に微細凹凸形状を有する金属部材を準備する工程と、
前記金属部材の前記微細凹凸形状に追随する形で、前記微細凹凸形状の一部または全部を覆うように無機物粒子のみからなる無機物粒子層を、無機物粒子分散液を用いて形成する工程であって、前記無機物粒子は、シリカ粒子、酸化スズ粒子、ナノダイヤ粒子、ジルコニア粒子、酸化ニオブ粒子、酸化鉄粒子、アルミナ粒子、カーボンナノファイバーから選択される少なくとも1つである工程と、
前記無機物粒子層を形成した前記金属部材を金型内に配置し、熱可塑性樹脂を含む樹脂組成物を前記金型内に射出することにより、前記無機物粒子層を介して前記金属部材に樹脂部材を接合する工程であって、前記微細凹凸形状の凹部には、前記無機物粒子層を介して前記樹脂部材が侵入している、工程と、
を含む金属/樹脂複合構造体の製造方法。
[9]
上記[8]に記載の金属/樹脂複合構造体の製造方法において、
上記無機物粒子層は無機物粒子分散液を用いて形成する金属/樹脂複合構造体。
本発明によれば、金属/樹脂複合構造体における樹脂部材を構成する熱可塑性樹脂の溶融粘度が高くて溶融時の流動性に劣る場合であっても、安定して高い接合強度を示す金属/樹脂複合構造体を提供することができる。
本発明に係る実施形態の金属/樹脂複合構造体の構造の一例を示した外観図である。 本発明に係る実施形態の金属/樹脂複合構造体の接合部の構造の一例を概念的に示した断面図である。 実施例1で得られた金属/樹脂複合構造体の接合部断面のSEM像(反射電子像)を示す図である。 実施例1で得られた金属/樹脂複合構造体の接合部断面のSEM/EDS画像の二次電子像(元素マッピング像)を示す図である。 実施例1で得られた金属/樹脂複合構造体の接合部断面のSEM/EDS画像における無機物粒子層のEDSスペクトルを示す図である。
以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。文中の数字の間にある「〜」は特に断りがなければ、以上から以下を表す。
<金属/樹脂複合構造体>
本実施形態に係る金属/樹脂複合構造体について説明する。
図1は、本発明に係る実施形態の金属/樹脂複合構造体106の構造の一例を示す外観図である。図2は、本発明に係る実施形態の金属/樹脂複合構造体106の接合部の構造の一例を概念的に示した断面図である。
図1および図2に示すように、金属/樹脂複合構造体106は、金属部材103と、金属部材103に接合し、かつ、熱可塑性樹脂を含む樹脂組成物(P)により構成された樹脂部材105と、金属部材103と樹脂部材105との間に設けられ、かつ、無機物粒子により構成された無機物粒子層107と、を備える。そして、金属部材103は少なくとも樹脂部材105との接合部表面に微細凹凸形状104を有し、無機物粒子層107は金属部材103の微細凹凸形状104の一部または全部を覆うように形成されており、金属部材103と樹脂部材105とは無機物粒子層107を介して接合している。
ここで、無機物粒子層107は、微細凹凸形状104に追随する形で微細凹凸形状104の形成領域の上に形成されている。したがって、無機物粒子層107の表面の三次元形状は、微細凹凸形状104の三次元形状にほぼ一致していることが予想される。
無機物粒子層107は、金属−樹脂接合部断面の元素マッピング分析法によって、その存在を確認することができる。具体的には、イオンミリング法による接合部断面の切り出し、走査型電子顕微鏡(SEM)による反射電子像の獲得およびエネルギー分散型X線分析(EDS)を行うことによって無機物粒子層107を検知することができる。
図3および図4に、このようなSEM/EDS分析によって観察した、実施例1に係る金属/樹脂複合構造体106の接合部周辺の断面図を示す。金属部材103の表面110に形成された微細凹凸形状104に追従するように無機物粒子層107が存在することが確認されている。
本実施形態に係る金属/樹脂複合構造体106は、樹脂部材105を構成する樹脂組成物(P)が、金属部材103の表面110に形成された微細凹凸形状104に侵入して金属と樹脂が接合し、金属―樹脂界面を形成することにより得られる。
金属部材103の樹脂部材105との接合部表面の微細凹凸形状104の中に樹脂組成物(P)が侵入することによって、金属部材103と樹脂部材105との間に物理的な抵抗力(アンカー効果)が効果的に発現し、通常では接合が困難な金属部材103と樹脂組成物(P)からなる樹脂部材105とを強固に接合することが可能になったものと考えられる。
このようにして得られた金属/樹脂複合構造体106は、金属部材103と樹脂部材105の界面への水分や湿気の浸入を防ぐこともできる。つまり、金属/樹脂複合構造体106の付着界面における気密性や水密性を向上させることもできる。
以下、金属/樹脂複合構造体106を構成する各部材について説明する。
(金属部材)
本実施形態に係る金属部材103は、少なくとも樹脂部材105との接合部表面に微細凹凸形状104を有する金属部材である。微細凹凸形状104は、後述する様々な粗化方法によって形成することができる。粗化方法の種類によっては、微細凹凸形状104を含む領域の凹凸形状は、相対的に大きなスケールの第1凹凸形状部と、上記第1凹凸形状部の表面に形成された相対的に小さなスケールの第2凹凸形状部と、により構成される場合がある。本実施形態における微細凹凸形状104は、第1凹凸形状部のみを有する態様、第2凹凸形状部のみを有する態様および第1凹凸形状部と第2凹凸形状部の両方を有する態様を包含する用語として用いられる。
微細凹凸形状104の凹部の深さ、すなわち微細凹凸形状104の凸部と凹部の高低差の平均値は、特に限定されないが、例えば、10nm以上200μm以下とすることができる。上記高低差の平均値は、大きくは金属表面の粗化方法によって決定され、例えば後述する薬液法では10nm以上100μm未満に、レーザー加工では100μm以上200μm以下にすることができる。なお、本実施形態において、上記高低差の平均値とはJIS B601に準拠して測定される十点平均粗さ(Rz)と同義である。
微細凹凸形状104は、例えば、間隔周期が5nm以上500μm以下である凸部が林立した微細凹凸形状であることが好ましい。
ここで、微細凹凸形状の間隔周期は凸部から隣接する凸部までの距離の平均値であり、電子顕微鏡またはレーザー顕微鏡で撮影した写真、あるいは表面粗さ測定装置を用いて求めることができる。
電子顕微鏡またはレーザー顕微鏡により測定される間隔周期は通常500nm未満の間隔周期である。具体的には、以下の手順で間隔周期を測定することができる。まず、金属部材103の接合部表面を撮影する。次いで、得られた写真から、任意の凸部を50個選択し、それらの凸部から隣接する凸部までの距離をそれぞれ測定する。そして、凸部から隣接する凸部までの距離の全てを積算して50で除したものを間隔周期とする。一方、500nmを超える間隔周期は通常、表面粗さ測定装置を用いて求める。
なお、通常、金属部材103の接合部表面だけでなく、金属部材103の表面全体に対し、表面粗化処理が施されているため、金属部材103の接合部表面と同一面で、接合部表面以外の箇所から間隔周期を測定することもできる。
上記間隔周期は、好ましくは10nm以上300μm以下、より好ましくは20nm以上200μm以下である。
上記間隔周期が上記下限値以上であると、微細凹凸形状の凹部に樹脂部材105を構成する樹脂組成物が十分に進入することができ、金属部材103と樹脂部材105との接合強度をより向上させることができる。また、上記間隔周期が上記上限値以下であると、金属部材103と樹脂部材105との接合部分に隙間が生じるのを抑制できる。その結果、金属部材103と樹脂部材105との界面の隙間から水分等の不純物が浸入することを抑制できるため、金属/樹脂複合構造体106を高温、高湿下で用いた際、強度が低下することを抑制できる。
微細凹凸形状104の凹部には、無機物粒子層107を介して熱可塑性樹脂を含む樹脂組成物(P)が侵入している。本実施形態においては、凹部には、凹部の深さdの1/2以上の深さの領域まで、樹脂組成物(P)が侵入していることが好ましい。すなわち、凹部への樹脂組成物(P)の侵入深さDが、D≧d/2を満たしていることが好ましい。
金属部材103は、例えば、金属材料(M)を加工し、次いで、表面への微細凹凸形状104を形成することによって得ることができる。金属材料(M)の種類は特に制限されないが、例えば、鉄系金属(鉄、鉄合金、鉄鋼材、ステンレス鋼等)、アルミニウム系金属(アルミニウム、アルミニウム合金等)、マグネシウム系金属(マグネシウム、マグネシウム合金等)、銅系金属(銅、銅合金等)、チタン系金属(チタン、チタン合金)等を挙げることができる。これらの金属は単独で使用してもよいし、二種以上を組み合わせて使用してもよい。上記金属は用途に応じて最適の金属が選択される。例えば、ノートパソコン筐体等のように軽量性が重視される用途においては、JIS H4000に規定された合金番号1050、2014、3003、5052、6063、7075等のアルミニウム系金属、あるいはAZ91、AZ80、AZ91D、AS21等のマグネシウム系金属が用いられ、自動車等の機械特性が重要視される用途においては、SPCC、SPHC、SAPH、SPFHに代表される圧延軟鋼、ステンレス鋼に代表される鉄系金属が用いられる。
金属部材103の形状は、樹脂部材105と接合できる形状であれば特に限定されず、例えば、平板状、曲板状、棒状、筒状、塊状等とすることができる。また、これらの組み合わせからなる構造体であってもよい。
また、樹脂部材105と接合する接合部表面の形状は、特に限定されないが、例えば、平面、曲面等が挙げられる。
金属部材103は、金属材料を切断やプレス等による塑性加工や、打ち抜き加工、切削、研磨、放電加工等の除肉加工によって上述した所定の形状に加工された後に、後述する粗化処理がなされたものが好ましい。要するに、種々の加工法により、必要な形状に加工されたものを用いることが好ましい。
金属部材103の少なくとも樹脂部材105との接合部表面に存在する微細凹凸形状104は、公知の金属表面粗化方法によって形成することが可能である。例えば、薬液処理法;陽極酸化法;サンドブラスト、ローレット加工、レーザー加工等の機械的切削法等が挙げられる。薬液処理法としては、例えば、酸系エッチング剤を用いる方法(国際公開第2015/008847号、特開2001-348684号、国際公開第2008/81933号等)、水和ヒドラジン、アンモニア、及び水溶性アミン化合物から選ばれる1種以上のアミン系水溶液で処理する方法(国際公開第2009/31632号、特開2005−119005号等)、酸、ベンズイミダゾール化合物及び水を含む銅表面処理剤を用いる方法(特許4242915号等)、金属めっき層を付与後に無機酸処理する方法(国際公開第2016/171128号)等を例示することができる。
(無機物粒子層)
本実施形態に係る無機物粒子層107は無機物粒子により構成される。
本実施形態に係る無機物粒子層107を構成する無機物粒子は特に限定されないが、一次粒子の平均粒子径が好ましくは1nm以上100nm以下、より好ましくは1nm以上70nm以下、さらに好ましくは1nm以上50nm以下、さらにより好ましくは1nm以上30nm以下、特に好ましくは1nm超え20nm未満のナノ粒子であり、一次粒子が数個〜数百個凝集した二次粒子構造となっていてもよい。
無機物粒子層107を構成する無機物粒子の平均粒子径は、例えば、金属部材103と樹脂部材105の接合部の断面電子顕微鏡(TEMやSEM)によって測定することができる。
無機物粒子の平均粒子径が上記下限値以上であると、金属部材103上の微細凹凸形状104に無機物粒子層107を形成する際に用いられる分散液中の無機物粒子間の凝集による作業性低下を抑制することができる。
また、無機物粒子の平均粒子径が上記上限値以下であると、金属部材103上の微細凹凸形状104の凹部と凸部の平均高低差がnmオーダーと小さな場合においても本実施形態の接合強度向上効果を十分に発現させることができる。
また、無機物粒子の平均粒子径は金属部材103上の微細凹凸形状104の凹部と凸部の平均高低差よりも小さいことが好ましい。
無機物粒子層107は特に限定されないが、例えば、無機物粒子の凝集体(二次粒子)により形成される層である。無機物粒子層107の平均厚み(B)は好ましくは1nm以上400nm以下、より好ましくは1nm以上300nm以下、さらに好ましくは1nm以上250nm以下、特に好ましくは1nm超え200nm未満である。
無機物粒子層107の平均厚み(B)は、例えば、金属/樹脂複合構造体106の任意の3点の接合部の断面をSEM/EDSを用いて観察し、得られた各SEM/EDS画像から測定される厚みを平均した値を採用することができる。
無機物粒子層107の平均厚み(B)が上記範囲内であると、金属/樹脂複合構造体106の接合強度をより一層向上させることができる。
また、無機物粒子層107の平均厚み(B)は金属部材103上の微細凹凸形状104の凹部と凸部の平均高低差よりも薄いことが好ましい。
本実施形態に係る無機物粒子層107を構成する無機物粒子としては特に限定されないが、例えば、シリカ粒子、酸化スズ粒子、ナノダイヤ粒子、ジルコニア粒子、酸化ニオブ粒子、酸化鉄粒子、アルミナ粒子、カーボンナノファイバー等を用いることができる。
これらの中でもシリカ粒子が好ましい。
ここで、無機物粒子層107がシリカ粒子を含む場合、無機物粒子層107の全体を100質量%としたとき、シリカ粒子以外の無機物粒子の含有量は、例えば60質量%以下、好ましくは50質量%以下、より好ましくは30質量%以下である。
(樹脂部材)
以下、本実施形態に係る樹脂部材105について説明する。
樹脂部材105は熱可塑性樹脂(A)を含む樹脂組成物(P)により構成される。樹脂組成物(P)は、樹脂成分として熱可塑性樹脂(A)と、必要に応じて充填材(B)と、含む。さらに、樹脂組成物(P)は必要に応じてその他の配合剤を含む。なお、便宜上、樹脂部材105が熱可塑性樹脂(A)のみからなる場合であっても、樹脂部材105は熱可塑性樹脂組成物(P)により構成されると記載する。
熱可塑性樹脂(A)としては特に限定されないが、例えば、ポリオレフィン系樹脂、ポリメタクリル酸メチル樹脂等のポリメタクリル系樹脂、ポリアクリル酸メチル樹脂等のポリアクリル系樹脂、ポリスチレン樹脂、ポリビニルアルコール−ポリ塩化ビニル共重合体樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリメチルペンテン樹脂、無水マレイン酸−スチレン共重合体樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂等の芳香族ポリエーテルケトン、ポリエステル系樹脂、ポリアミド系樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、スチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アイオノマー、アミノポリアクリルアミド樹脂、イソブチレン無水マレイン酸コポリマー、アクリロニトリル−ブタジエン−スチレン樹脂(ABS)、ACS、AES、AS、ASA、MBS、エチレン−塩化ビニルコポリマー、エチレン−酢酸ビニルコポリマー、エチレン−酢酸ビニル−塩化ビニルグラフトポリマー、エチレン−ビニルアルコールコポリマー、塩素化ポリ塩化ビニル樹脂、塩素化ポリエチレン樹脂、塩素化ポリプロピレン樹脂、カルボキシビニルポリマー、ケトン樹脂、非晶性コポリエステル樹脂、ノルボルネン樹脂、フッ素プラスチック、ポリテトラフルオロエチレン樹脂、フッ素化エチレンポリプロピレン樹脂、PFA、ポリクロロフルオロエチレン樹脂、エチレンテトラフルオロエチレンコポリマー、ポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリ塩化ビニリデン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリサルホン樹脂、ポリパラメチルスチレン樹脂、ポリアリルアミン樹脂、ポリビニルエーテル樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリメチルペンテン樹脂、オリゴエステルアクリレート、キシレン樹脂、マレイン酸樹脂、ポリヒドロキシブチレート樹脂、ポリスルホン樹脂、ポリ乳酸樹脂、ポリグルタミン酸樹脂、ポリカプロラクトン樹脂、ポリエーテルスルホン樹脂、ポリアクリロニトリル樹脂、スチレン−アクリロニトリル共重合体樹脂等が挙げられる。
本実施形態においては、熱可塑性樹脂(A)は非晶性熱可塑性樹脂を含むことが好ましい。例えば、非晶性熱可塑性樹脂(A)と上記非晶性熱可塑性樹脂(A)とは異なる種類の非晶性熱可塑性樹脂(A)とのブレンド(アロイ);非晶性熱可塑性樹脂(A)と結晶性熱可塑性樹脂(A)とのブレンド(アロイ);等を用いる場合において、本実施形態に係る効果をより効果的に得ることができる。
ここで、非晶性熱可塑性樹脂(AまたはA)とは結晶状態をとりえないか、あるいは結晶化しても結晶化度が極めて低い熱可塑性樹脂を指し、さらに詳しくはアモルファスポリマーとも呼ばれ、原子または分子が三次元的に規則正しい空間格子をとらずに、それらが不規則に集合した固体状態(無定形)である。
無定形状態にはガラス状態とゴム状態があり、ガラス転移点(Tg)以下では硬いガラス状を示すが、Tg以上では軟らかいゴム状を示す特徴をもつ熱可塑性樹脂であり、上述の熱可塑性樹脂群の中では、例えば、ポリスチレン、ABS、ポリカーボネート樹脂、変性ポリフェニレンエーテル、ポリエーテルサルホン、ポリエーテルイミド等が該当する。このような非晶性熱可塑性樹脂は、高強度および高耐熱性を示すことから多くの産業分野で注目されている樹脂である。しかし、金属表面に微細凹凸形状を形成させ樹脂を金属に物理的にアンカー効果で接合するような金属樹脂一体化接合においては、その高い溶融粘度と低流動性のため、樹脂を微細凹凸形状に十分に侵入させることが困難であり、ヒート&クール成形等の特殊な成形法に頼らざるを得なかった。
本実施形態によれば、このような高溶融粘度型の樹脂または樹脂組成物を用いた場合であってもヒート&クール成形法等の特殊な成形法を用いなくても十分な接合強度を有する金属/樹脂複合構造体106を得ることができる。また、本実施形態に係る金属/樹脂複合構造体106の製造方法において、ヒート&クール成形等の特殊な射出成形法を組み合わせれば、接合強度をさらに飛躍的に向上させることができる。
樹脂組成物(P)の構成成分として、前述のように上記非晶性熱可塑性樹脂を単独で若しくは2種以上適宜組み合わせて使用してもよいし、非晶性熱可塑性樹脂と結晶性熱可塑性樹脂を適宜組み合わせて使用してもよい。樹脂組成物(P)が非晶性熱可塑性樹脂を含む場合は、樹脂組成物(P)全体に対して当該非晶性熱可塑性樹脂を10重量%以上、好ましくは20質量%以上、より好ましくは30質量%以上含有することが好ましい。
非晶性熱可塑性樹脂の中では、寸法安定性に優れ、成形収縮が相対的に小さく、吸水率が小さな変性ポリフェニレンエーテル(以下、m−PPEと略記する場合がある)または該m−PPEを含有する樹脂組成物が好ましい。
本実施形態に係るm−PPEは、PPE100重量部に対してポリスチレン、ハイインパクトポリスチレン、シンジオタクチックポリスチレンおよびゴム補強したシンジオタクチックポリスチレンから選択される少なくとも一種を500重量部以下の範囲、好ましくは200重量部以下の範囲で加えたものであることが好ましい。本実施形態に係るPPEとしては、汎用性と入手容易性等の視点から、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)、2,6−ジメチルフェノールと2,3,6−トリメチルフェノールとの共重合体等が好んで用いられる。
(充填材(B))
樹脂組成物(P)は、金属部材103と樹脂部材105との線膨張係数差の調整や樹脂部材105の機械的強度を向上させる観点から、充填材(B)をさらに含んでもよい。
充填材(B)としては、例えば、ガラス繊維、炭素繊維、炭素粒子、粘土、タルク、シリカ、ミネラル、セルロース繊維からなる群から一種または二種以上を選ぶことができる。これらのうち、好ましくは、ガラス繊維、炭素繊維、タルク、ミネラルから選択される一種または二種以上である。
充填材(B)の形状は特に限定されず、繊維状、粒子状、板状等どのような形状であってもよい。充填材(B)は、最大長さが10nm以上600μm以下の範囲にある充填材を数分率で5〜100%有することが好ましい。当該最大長さは、より好ましくは、30nm以上550μm以下、さらに好ましくは50nm以上500μm以下である。また、該最大長さの範囲にある充填材(B)の数分率は、好ましくは、10〜100%であり、より好ましくは20〜100%である。
充填材(B)の最大長さが上記範囲にあると、樹脂組成物(P)の成形時に溶融した熱可塑性樹脂(A)中を充填材(B)が容易に動くことができるので、後述する金属/樹脂複合構造体106の製造時において、金属部材103の表面付近にも一定程度の割合で充填材(B)を存在させることが可能となる。そのため、上述したように充填材(B)と相互作用をする樹脂が金属部材103表面の微細凹凸形状104形成領域上の無機物粒子層107に入り込むことで、より強固な接合強度を持つことが可能となる。
なお、樹脂組成物(P)が充填材(B)を含む場合、その含有量は、熱可塑性樹脂(A)100質量部に対して、好ましくは1質量部以上100質量部以下であり、より好ましくは5質量部以上90質量部以下であり、特に好ましくは10質量部以上80質量部以下である。
(その他の配合剤)
樹脂組成物(P)には、個々の機能を付与する目的でその他の配合剤を含んでもよい。このような配合剤としては、熱安定剤、酸化防止剤、顔料、耐候剤、難燃剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤等が挙げられる。
なお、樹脂組成物(P)がその他配合剤を含む場合、その含有量は、熱可塑性樹脂(A)100質量部に対して、好ましくは0.0001〜5質量部であり、より好ましくは0.001〜3質量部である。
(樹脂組成物(P)の調製方法)
樹脂組成物(P)の調製方法は特に限定されず、一般的に公知の方法により調製することができる。例えば、以下の方法が挙げられる。まず、熱可塑性樹脂(A)、必要に応じて充填材(B)、さらに必要に応じてその他の配合剤とを、バンバリーミキサー、単軸押出機、2軸押出機、高速2軸押出機等の混合装置を用いて、混合または溶融混合することにより、樹脂組成物(P)が得られる。
<金属/樹脂複合構造体の製造方法>
本実施形態に係る金属/樹脂複合構造体106は、例えば、以下の工程1、2および3を順次実施することにより製造することができる。以下、各々の工程について説明する。
(工程1)表面110に微細凹凸形状104を有する金属部材103を準備する工程
(工程2)金属部材103の微細凹凸形状104の一部または全部を覆うように無機物粒子により構成された無機物粒子層107を形成する工程(以下、無機物粒子層形成工程とも呼ぶ。)
(工程3)無機物粒子層107を形成した金属部材103を金型内に配置し、熱可塑性樹脂を含む樹脂組成物を上記金型内に射出することにより、無機物粒子層107を介して金属部材103に樹脂部材105を接合する工程(以下、射出成形工程とも呼ぶ。)
以下、具体的に説明する。なお、表面110に微細凹凸形状104を有する金属部材103を準備する工程は前述したため、ここでは説明を省略する。
<工程2:無機物粒子層形成工程>
金属部材103の微細凹凸形状104の形成領域上に無機物粒子層107を形成する方法は特に限定されないが、例えば、微細凹凸形状104の形成領域上に無機物粒子分散液を塗工することによって形成することができる。シリカ粒子、酸化スズ粒子、ナノダイヤ粒子、ジルコニア粒子、酸化ニオブ粒子、酸化鉄粒子、アルミナ粒子、カーボンナノファイバー等に代表される無機物粒子の平均粒子径(一次粒子)は好ましくは1nm以上100nm以下、より好ましくは1nm以上70nm以下、さらに好ましくは1nm以上50nm以下、さらにより好ましくは1nm以上30nm以下、特に好ましくは1nm超え20nm未満のナノ粒子であり、一次粒子が数個〜数百個凝集した二次粒子構造となっていてもよい。このような無機物微粒子は、固相法、液相法、および気相法によって調製可能であるが、小粒径化能の視点からは液相法、気相法(火炎処理を含む)が好ましい。なお、後述する実施例では、テトラメチルオルソシリケートを原料に用いた液相法を採用している。
分散液中の溶媒としては、水、メタノール、エタノール等を例示できるが、分散液中の無機物粒子の分散性と塗布後の溶媒留去効率の視点からメタノールおよび水が好ましい。
無機物粒子分散液の金属部材103の表面110への塗工方法は特に限定されないが、例えば、分散液中に金属部材103を浸漬する方法や、金属部材103の表面に分散液を噴霧塗工する方法等が挙げられる。噴霧塗工とは具体的には、スプレーガンで被塗装表面に吹きつけ、塗工をおこなう方法である。いずれの塗工法においても、塗工は通常、常温付近にておこなうことができる。その他、バーコーターやスピンコーター等を用いたコーティングをおこなうのも好ましい例である。
塗工後の乾燥方法についても特に限定されないが、例えば、自然乾燥や加熱強制乾燥等の公知の方法を用いることができる。本実施形態では、好ましく用いられる金属部材103の形状を鑑みると、上記乾燥工程も含め加熱する工程を含むことが、金属部材103の微細凹凸形状104に無機物粒子を侵入させる観点から好ましい。
<工程3:射出成形工程>
射出工程は具体的には、工程2まで終了した金属部材103を射出成形金型のキャビティ部にインサートし、樹脂組成物(P)を無機物粒子層107と接するように金型に射出する射出成形法によって樹脂部材105を成形し、金属/樹脂複合構造体106を製造する工程である。
具体的には、まず、射出成形用の金型を用意し、その金型を開いてその一部に工程2を終了した後の金属部材103を設置する。その後、金型を閉じ、樹脂組成物(P)の少なくとも一部が金属部材103の表面110に形成された無機物粒子層107と接するように、上記金型内に樹脂組成物(P)を射出して固化する。その後、金型を開き離型することにより、金属/樹脂複合構造体106を得ることができる。
また、上記射出成形工程においては、公知の射出発泡成形や、金型の温度制御を射出成形の一サイクルの中で行い加熱冷却する公知のヒート&クール成形を併用してもよい。ヒート&クール成形の条件としては、射出成形金型を80℃以上300℃以下の温度に加熱し、樹脂組成物(P)の射出が完了した後、射出成形金型を冷却することが望ましい。金型を加熱する温度は、樹脂組成物(P)を構成する熱可塑性樹脂(A)によって好ましい範囲が異なり、結晶性樹脂で融点が200℃未満の熱可塑性樹脂であれば、80℃以上200℃以下が好ましく、結晶性樹脂で融点が200℃以上の熱可塑性樹脂であれば、120℃以上300℃以下が好ましい。非晶性樹脂を含有する樹脂組成物においては、樹脂のTg(ガラス転移温度)以上の温度で射出完了させた後、20℃以上180℃以下に金型を冷却することが好ましい。
<金属/樹脂複合構造体の用途>
本実施形態に係る金属/樹脂複合構造体106は、生産性が高く、形状制御の自由度も高いので、様々な用途に展開することが可能である。
さらに、本実施形態に係る金属/樹脂複合構造体106は、高い気密性、水密性が発現するので、これらの特性に応じた用途に好適に用いられる。
例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。
より具体的には、樹脂だけでは強度が足りない部分を金属がサポートする様にデザインされた次のような部品である。車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ラジエータ、オイルパン、ステアリングホイール、ECUボックス、LIB電池モジュール、電装部品等が挙げられる。また、建材や家具類として、ガラス窓枠、手すり、カーテンレール、たんす、引き出し、クローゼット、書棚、机、椅子等が挙げられる。また、精密電子部品類として、コネクタ、リレー、ギヤ等が挙げられる。また、輸送容器として、輸送コンテナ、スーツケース、トランク等が挙げられる。
また、金属部材103の高い熱伝導率と、樹脂部材105の断熱的性質とを組み合わせ、ヒートマネージメントを最適に設計する機器に使用される部品用途、例えば、各種家電にも用いることができる。具体的には、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカー等の家電製品類、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、電池等電子情報機器、ロボット用部材等が挙げられる。
以上、本実施形態に係る金属/樹脂複合構造体106の用途について述べたが、これらは本発明の用途の例示であり、上記以外の様々な用途に用いることもできる。
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
以下、実施形態の例を付記する。
[1]
金属部材と、
上記金属部材に接合し、かつ、熱可塑性樹脂を含む樹脂組成物により構成された樹脂部材と、
上記金属部材と上記樹脂部材との間に設けられ、かつ、無機物粒子により構成された無機物粒子層と、
を備え、
上記金属部材は少なくとも上記樹脂部材との接合部表面に微細凹凸形状を有し、
上記無機物粒子層は上記金属部材の上記微細凹凸形状の一部または全部を覆うように形成されており、
上記金属部材と上記樹脂部材とは上記無機物粒子層を介して接合している金属/樹脂複合構造体。
[2]
上記[1]に記載の金属/樹脂複合構造体において、
上記無機物粒子層はシリカ粒子を含む金属/樹脂複合構造体。
[3]
上記[1]または[2]に記載の金属/樹脂複合構造体において、
上記無機物粒子層の平均厚みが1nm以上400nm以下である金属/樹脂複合構造体。
[4]
上記[1]乃至[3]のいずれか一つに記載の金属/樹脂複合構造体において、
上記無機物粒子の平均粒子径が1nm以上100nm以下である金属/樹脂複合構造体。
[5]
上記[1]乃至[4]のいずれか一つに記載の金属/樹脂複合構造体において、
上記微細凹凸形状の凸部と凹部の高低差の平均値が10nm以上200μm以下である金属/樹脂複合構造体。
[6]
上記[1]乃至[5]のいずれか一つに記載の金属/樹脂複合構造体において、
上記熱可塑性樹脂が非晶性熱可塑性樹脂を含む金属/樹脂複合構造体。
[7]
上記[1]乃至[6]のいずれか一つに記載の金属/樹脂複合構造体において、
上記金属部材が鉄系金属、アルミニウム系金属、マグネシウム系金属、銅系金属およびチタン系金属から選ばれる一種または二種以上の金属を含む金属/樹脂複合構造体。
[8]
上記[1]乃至[7]のいずれか一つに記載の金属/樹脂複合構造体を製造するための製造方法であって、
表面に微細凹凸形状を有する金属部材を準備する工程と、
上記金属部材の上記微細凹凸形状の一部または全部を覆うように無機物粒子により構成された無機物粒子層を形成する工程と、
上記無機物粒子層を形成した上記金属部材を金型内に配置し、熱可塑性樹脂を含む樹脂組成物を上記金型内に射出することにより、上記無機物粒子層を介して上記金属部材に樹脂部材を接合する工程と、
を含む金属/樹脂複合構造体の製造方法。
[9]
上記[8]に記載の金属/樹脂複合構造体の製造方法において、
上記無機物粒子層は無機物粒子分散液を用いて形成する金属/樹脂複合構造体。
以下、本実施形態を、実施例・比較例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。
[実施例1]
(表面粗化工程)
JIS H4000に規定された合金番号5052のアルミニウム合金板(45mm×18mm×2mm)を脱脂処理した。次いで、硫酸8.2質量%、塩化第二鉄7.8質量%、塩化第二銅0.4質量%が溶解した水溶液(30℃)中に80秒間浸漬し、揺動させることによってエッチングした。次いで、流水で超音波洗浄(水中、1分間)を行い、乾燥させることにより表面処理済みアルミニウム合金板を得た。
得られた表面処理済みのアルミニウム合金板の表面粗さを、表面粗さ測定装置「サーフコム1400D(東京精密社製)」を使用し、JIS B0601(対応ISO4287)に準拠して測定される表面粗さのうち、十点平均粗さ(Rz)を求めた。その結果、Rzは18μmであった。なお、Rzは測定場所を変えた6点の平均値ある。また、得られた表面処理済みのアルミニウム合金板表面の微細凹凸形状における間隔周期は90μmであった。間隔周期は電子顕微鏡により測定した。
なお、表面粗さ測定条件は以下のとおりである。
・触針先端半径:5μm
・基準長さ:0.8mm
・評価長さ:4mm
・測定速度:0.06mm/sec
(シリカ粒子層形成工程)
特開2013−82584号公報の実施例1に記載された方法に忠実に準拠してテトラメチルオルソシリケートの加水分解反応と、テトラメチルアンモニウムヒドロキサイド水溶液との処理を実施し、シリカナノ粒子の水/MeOH(重量比1/9)分散液を調製した。得られたシリカナノ粒子の平均一次粒子径は20nmであった。
上記の表面粗化工程で得られた表面粗化アルミニウム合金板を、上記シリカナノ粒子分散液をメタノールで6倍希釈した分散液中に室温で5分間浸漬し、その後、100℃で20分間乾燥させることによって、微細凹凸形状を覆うようにシリカナノ粒子層が形成された表面処理済みアルミニウム合金板を作製した。
(射出成形工程)
上記の表面粗化工程およびシリカ粒子層形成工程を経て得られた、シリカナノ粒子層が形成された表面処理済みアルミニウム合金板を、日本製鋼所製の射出成形機J55−ADに装着された小型ダンベル金属インサート金型内に設置した。次いで、その金型内に樹脂組成物(P)として、サビックイノベーティブプラスチックス社製の変性ポリフェニレンエーテル(ノリルCN1134;ガラス繊維20質量%含有)を、シリンダー温度(樹脂温度)280℃、金型温度100℃、射出一次圧125〜135MPa、保圧110MPaの条件にて射出成形し、シリカナノ粒子層が形成された表面処理済みアルミニウム合金板に樹脂部材を射出接合させることによって金属/樹脂複合構造体を得た。
得られた金属/樹脂複合構造体の断面SEM画像を図3に示す。これによれば、シリカナノ粒子層の平均厚み:60nmと算出された。また、同構造体の接合部断面の断面SEM/EDS画像(元素マッピング像)(図4)とEDSスペクトル(図5)を示す。微細凹凸形状に追随するようにケイ素原子と酸素原子が偏在していることが確認されることから、アルミニウム合金板表面に形成された微細凹凸形状を覆うようにシリカナノ粒子層が形成されていることがわかった。
上記射出成形工程で得られた金属/樹脂複合構造体について接合部の引っ張りせん断強度を求めた。具体的には、引っ張り試験機「モデル1323(アイコーエンジニヤリング社製)」を使用し、引張試験機に専用の治具を取り付け、室温(23℃)にて、チャック間距離60mm、引張速度10mm/minの条件にて接合強度の測定をおこなった。破断荷重(N)をアルミニウム合金板と樹脂部材との接合部分の面積で除することにより接合強度(MPa)を得た。接合強度は20(MPa)であった。破壊面は界面破壊と母材破壊が混在するものであった。
[実施例2]
射出成形工程における金型としてヒート&クール成形が可能な金型(山下電気製Y−HeaT装置)を用い、金型温度を100℃から120℃に変更してヒート&クール成形を行った以外は実施例1と同様にして金属/樹脂複合構造体を作製し、接合強度の評価をおこなった。接合強度は26(MPa)であった。破壊面は界面破壊と母材破壊が混在するものであった。
[実施例3]
射出成形工程における金型としてヒート&クール成形が可能な金型(山下電気製Y−HeaT装置)を用い、金型温度を100℃から140℃に変更してヒート&クール成形を行った以外は実施例1と同様にして金属/樹脂複合構造体を作製し、接合強度の評価をおこなった。接合強度は32(MPa)であった。破壊面は母材破壊であった。
[比較例1]
シリカ粒子層を形成しない以外は実施例2と同様にして金属/樹脂複合構造体を作製し、接合強度の評価をおこなった。接合強度は16(MPa)であった。破壊面は界面破壊と母材破壊が混在するものであった。
103 金属部材
104 微細凹凸形状
105 樹脂部材
106 金属/樹脂複合構造体
107 無機物粒子層
110 表面

Claims (9)

  1. 金属部材と、
    前記金属部材に接合し、かつ、熱可塑性樹脂を含む樹脂組成物により構成された樹脂部材と、
    前記金属部材と前記樹脂部材との間に設けられ、かつ、無機物粒子のみからなる無機物粒子層と、
    から構成され
    前記無機物粒子は、シリカ粒子、酸化スズ粒子、ナノダイヤ粒子、ジルコニア粒子、酸化ニオブ粒子、酸化鉄粒子、アルミナ粒子、カーボンナノファイバーから選択される少なくとも1つであり、
    前記金属部材は少なくとも前記樹脂部材との接合部表面に微細凹凸形状を有し、
    前記無機物粒子層は前記金属部材の前記微細凹凸形状に追随する形で、前記微細凹凸形状の一部または全部を覆うように形成されており、
    前記金属部材と前記樹脂部材とは前記無機物粒子層を介して接合しており、前記微細凹凸形状の凹部には、前記無機物粒子層を介して前記樹脂部材が侵入している金属/樹脂複合構造体。
  2. 請求項1に記載の金属/樹脂複合構造体において、
    前記無機物粒子層はシリカ粒子を含む金属/樹脂複合構造体。
  3. 請求項1または2に記載の金属/樹脂複合構造体において、
    前記無機物粒子層の平均厚みが1nm以上400nm以下である金属/樹脂複合構造体。
  4. 請求項1乃至3のいずれか一項に記載の金属/樹脂複合構造体において、
    前記無機物粒子の平均粒子径が1nm以上100nm以下である金属/樹脂複合構造体。
  5. 請求項1乃至4のいずれか一項に記載の金属/樹脂複合構造体において、
    前記微細凹凸形状の凸部と凹部の高低差の平均値が10nm以上200μm以下である金属/樹脂複合構造体。
  6. 請求項1乃至5のいずれか一項に記載の金属/樹脂複合構造体において、
    前記熱可塑性樹脂が非晶性熱可塑性樹脂を含む金属/樹脂複合構造体。
  7. 請求項1乃至6のいずれか一項に記載の金属/樹脂複合構造体において、
    前記金属部材が鉄系金属、アルミニウム系金属、マグネシウム系金属、銅系金属およびチタン系金属から選ばれる一種または二種以上の金属を含む金属/樹脂複合構造体。
  8. 請求項1乃至7のいずれか一項に記載の金属/樹脂複合構造体を製造するための製造方法であって、
    表面に微細凹凸形状を有する金属部材を準備する工程と、
    前記金属部材の前記微細凹凸形状に追随する形で、前記微細凹凸形状の一部または全部を覆うように無機物粒子のみからなる無機物粒子層を、無機物粒子分散液を用いて形成する工程であって、前記無機物粒子は、シリカ粒子、酸化スズ粒子、ナノダイヤ粒子、ジルコニア粒子、酸化ニオブ粒子、酸化鉄粒子、アルミナ粒子、カーボンナノファイバーから選択される少なくとも1つである工程と、
    前記無機物粒子層を形成した前記金属部材を金型内に配置し、熱可塑性樹脂を含む樹脂組成物を前記金型内に射出することにより、前記無機物粒子層を介して前記金属部材に樹脂部材を接合する工程であって、前記微細凹凸形状の凹部には、前記無機物粒子層を介して前記樹脂部材が侵入している、工程と、
    を含む金属/樹脂複合構造体の製造方法。
  9. 請求項8に記載の金属/樹脂複合構造体の製造方法において、
    前記無機物粒子層は無機物粒子分散液を用いて形成する金属/樹脂複合構造体。
JP2017062323A 2017-03-28 2017-03-28 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法 Active JP6941953B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017062323A JP6941953B2 (ja) 2017-03-28 2017-03-28 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017062323A JP6941953B2 (ja) 2017-03-28 2017-03-28 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法

Publications (2)

Publication Number Publication Date
JP2018164989A JP2018164989A (ja) 2018-10-25
JP6941953B2 true JP6941953B2 (ja) 2021-09-29

Family

ID=63922508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017062323A Active JP6941953B2 (ja) 2017-03-28 2017-03-28 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法

Country Status (1)

Country Link
JP (1) JP6941953B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3793828B1 (de) * 2019-08-08 2022-07-20 Preh GmbH Kunststoffverbundblende sowie zugehöriges herstellungsverfahren

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078434A (ja) * 2007-09-26 2009-04-16 Toyoda Gosei Co Ltd 金属−樹脂複合成形品及びその製造方法
JP2011174133A (ja) * 2010-02-24 2011-09-08 Nisshin Steel Co Ltd 粗面化ステンレス鋼板の製造方法、ならびにステンレス鋼板と熱可塑性樹脂組成物の成形体とが接合された複合体およびその製造方法

Also Published As

Publication number Publication date
JP2018164989A (ja) 2018-10-25

Similar Documents

Publication Publication Date Title
JP7074868B2 (ja) 冷却装置
JP5714193B1 (ja) 金属/樹脂複合構造体および金属部材
JP6469403B2 (ja) 金属/樹脂複合構造体の製造方法
JP7049792B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP7042740B2 (ja) 金属/樹脂複合構造体、金属部材および金属部材の製造方法
WO2020158820A1 (ja) アルミニウム系金属樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属樹脂複合構造体の製造方法
JP2018144475A (ja) アルミニウム系金属/樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属/樹脂複合構造体の製造方法
JP6867814B2 (ja) 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法、ニッケルめっき化鉄鋼部材およびニッケルめっき化鉄鋼部材の製造方法
JP6482417B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6941953B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP7088655B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6937634B2 (ja) 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および耐リーク性部品
JP6810538B2 (ja) 表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法
EP3287547B1 (en) Method for producing metal/resin composite structure and method for producing surface-roughened steel member
JP6422751B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6882855B2 (ja) 表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210907

R150 Certificate of patent or registration of utility model

Ref document number: 6941953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150