WO2022019339A1 - 金属部材、金属樹脂複合体、及び金属部材の製造方法 - Google Patents

金属部材、金属樹脂複合体、及び金属部材の製造方法 Download PDF

Info

Publication number
WO2022019339A1
WO2022019339A1 PCT/JP2021/027416 JP2021027416W WO2022019339A1 WO 2022019339 A1 WO2022019339 A1 WO 2022019339A1 JP 2021027416 W JP2021027416 W JP 2021027416W WO 2022019339 A1 WO2022019339 A1 WO 2022019339A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal member
metal
resin
region
less
Prior art date
Application number
PCT/JP2021/027416
Other languages
English (en)
French (fr)
Inventor
絢也 島▲崎▼
大樹 住田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to EP21845901.4A priority Critical patent/EP4186994A1/en
Priority to US17/926,594 priority patent/US20230203670A1/en
Priority to CN202180034207.9A priority patent/CN115516136A/zh
Priority to JP2022538048A priority patent/JP7412565B2/ja
Priority to KR1020227039252A priority patent/KR20220166335A/ko
Publication of WO2022019339A1 publication Critical patent/WO2022019339A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0078Measures or configurations for obtaining anchoring effects in the contact areas between layers
    • B29C37/0082Mechanical anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C45/006Joining parts moulded in separate cavities
    • B29C45/0062Joined by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/70Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/12Light metals
    • C23G1/125Light metals aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/22Light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7393Heating or cooling of the mould alternately heating and cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium

Definitions

  • the present invention relates to a metal member, a metal resin composite, and a method for manufacturing the metal member.
  • metal resin integration technology technology for integrating metal members and resin members (hereinafter referred to as "metal resin integration technology") without using adhesives is becoming active mainly in the electrical and automobile fields.
  • Patent Document 1 discloses a complex.
  • the complex disclosed in Patent Document 1 comprises a metal member and a resin member.
  • the surface of the metal member is covered with the openings of the holes formed by the anodizing method.
  • the hole of the opening has a number average inner diameter of 10 to 80 nm as measured by electron microscope observation.
  • the resin member is fixed to the metal member by injection molding.
  • the resin content composition of the resin member contains 70 to 99% by mass of polyphenylene sulfide and 1 to 30% by mass of the polyolefin-based resin.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2007-50630
  • the resin member may be joined to a part of the roughened surface of the surface of the metal member.
  • the region where the resin member is not joined hereinafter referred to as “exposed region”.
  • the unique metallic luster of the material of the metal member may be lost due to roughening. Therefore, in particular, in the field of industrial design and the like, there is a demand for a technique in which an appearance change due to roughening is suppressed in an exposed region.
  • the present disclosure discloses a metal member and a metal resin composite which can suppress a change in appearance due to roughening and can secure sufficient bonding strength with a resin member without using an adhesive or the like. , And to provide a method for manufacturing a metal member.
  • the means for solving the above problems include the following embodiments. ⁇ 1> It has a region where a dendritic layer is formed on the surface, and has a region. A metal member having an arithmetic average roughness Ra of the region of 20.0 ⁇ m or less. ⁇ 2> It has a region where a dendritic layer is formed on the surface, and has a region. A metal member having an L value of 65 or more in the CIE1976 (L * a * b *) color space of the region. ⁇ 3> The metal member according to ⁇ 1> or ⁇ 2>, wherein the arithmetic average roughness Ra of the region is 0.3 ⁇ m or more.
  • ⁇ 4> The surface of the region is roughened, and in the region, CIE1976 (L * a) is a state in which the surface of the metal member is not roughened and a state in which the surface of the metal member is roughened.
  • * B * ) The metal member according to any one of ⁇ 1> to ⁇ 3>, wherein the absolute value of the difference between the L values in the color space is 6.0 or less.
  • ⁇ 5> In the region, the abundance ratio of the metal oxide on the surface of the metal member measured by X-ray photoelectron spectroscopy (XPS) is 80 with respect to the total of the metal oxide, the metal hydroxide, and water.
  • XPS X-ray photoelectron spectroscopy
  • the metal member contains aluminum and contains aluminum. In the region, the surface of the metal member by a Fourier transform infrared spectroscopic analysis, the absorbance of the absorption peaks observed at 3400 cm -1 and A 1, connecting the absorbance of absorbance and 2500 cm -1 in 3800 cm -1 linear 3.
  • the metal member contains aluminum and contains aluminum.
  • ⁇ 8> The metal member according to any one of ⁇ 1> to ⁇ 7>, wherein the arithmetic average roughness Ra of the region is 5.0 ⁇ m or less.
  • ⁇ 9> The metal member according to any one of ⁇ 1> to ⁇ 8>, wherein the arithmetic average roughness Ra of the region is 2.5 ⁇ m or less.
  • ⁇ 10> The metal member according to any one of ⁇ 1> to ⁇ 9>, wherein the average number density of the main trunks of the dendritic layer is 5 lines / ⁇ m or more and 70 lines / ⁇ m or less.
  • ⁇ 11> The metal member according to any one of ⁇ 1> to ⁇ 10> and A metal-resin composite comprising a resin member bonded to at least a part of the surface of the metal member via the dendritic layer in the region.
  • a dendritic layer forming step of etching at least a part of the surface of the metal member with an oxidizing acidic aqueous solution to form a dendritic layer is included.
  • ⁇ 13> The surface of the region where the dendritic layer is formed on the surface of the metal member is roughened to reduce the arithmetic average roughness Ra of the surface of the region to 20.0 ⁇ m or less, or CIE1976 (CIE1976) on the surface of the region.
  • L * a * b * Includes a roughening step to make the L value in the color space 65 or more.
  • the method for producing a metal member according to ⁇ 12>, wherein the roughening step and the dendritic layer forming step are carried out in this order.
  • ⁇ 14> The method for producing a metal member according to ⁇ 12> or ⁇ 13>, wherein the oxidizing acidic aqueous solution contains cupric oxide.
  • a metal member, a metal resin composite, and a metal capable of suppressing a change in appearance due to roughening and ensuring sufficient bonding strength with the resin member without using an adhesive or the like A method of manufacturing a member is provided.
  • FIG. 6 is a spectrum chart of Fourier transform infrared spectroscopic analysis for measuring the absorbance difference (A 1 ⁇ A 0 ) of Example 1, Reference Example 1, and Reference Example 2. It is an SEM photograph (photographing magnification: 100,000 times) which photographed the cross section of the metal member of Example 13. It is an SEM photograph (photographing magnification: 100,000 times) which photographed the cross section of the metal member of Example 14.
  • FIG. 1 is a cross-sectional view of the metal member 1 according to the first embodiment of the present disclosure. Specifically, FIG. 1 shows a cross section of the dendritic layer 11 in the bonding region R1.
  • the metal member 1 is suitably used as a component of the metal resin composite 100.
  • the metal-resin composite 100 is an integrated product of the metal member 1 and the resin member 2.
  • the resin member 2 is fixed to the metal member 1 without using an adhesive, bolts, rivets, or the like. Details of the metal-resin composite 100 will be described later with reference to FIG.
  • the metal member 1 has a region R1 (hereinafter, referred to as “bonding region R1”) in which the dendritic layer 11 is formed on the surface S1.
  • the arithmetic average roughness Ra of the bonding region R1 is 20.0 ⁇ m or less.
  • the dendritic layer 11 is a layer composed of a plurality of trunks and having nano-order gaps between the trunks.
  • the trunk may have further branched branches.
  • the trunk that stands from the surface S1 of the joining region R1 is referred to as a "main trunk”
  • the branch separated from the main trunk is referred to as a "main branch”
  • the branch separated from the main branch is referred to as a "side branch”. Details of the dendritic layer 11 will be described later with reference to FIG.
  • the metal member 1 has a joining region R1. Therefore, when the resin member 2 is joined to the metal member 1, the melt of the resin member 2 effectively penetrates into the recess of the dendritic layer 11. As a result, a physical resistance force (anchor effect) is effectively exhibited between the metal member 1 and the resin member 2. That is, the dendritic layer 11 can firmly bond the metal member 1 and the resin member 2, which was difficult in the past.
  • the arithmetic average roughness Ra of the bonding region R1 is 20.0 ⁇ m or less, and the appearance change due to the roughening is suppressed. As a result, the appearance change of the metal member 1 due to roughening is suppressed, and sufficient bonding strength with the resin member 2 can be ensured without using an adhesive or the like.
  • the macroscopic shape of the metal member 1 is not particularly limited, and can be appropriately adjusted according to the application of the metal resin composite 100 or the like.
  • Examples of the macroscopic shape of the metal member 1 include a flat plate shape, a disk shape, a curved plate shape, a rod shape, a tubular shape, a lump shape, and the like.
  • the macroscopic shape of the surface S1 of the metal member 1 is not particularly limited, and examples thereof include a planar shape and a curved surface shape.
  • Examples of the material of the metal member 1 include aluminum, magnesium, copper, stainless steel, titanium, iron, bronze, manganese, chromium, tin, zirconia, lead, nickel, and alloys thereof.
  • alloy number specified in JIS H4000 is referred to as "alloy number”.
  • Examples of aluminum and aluminum alloys include pure Al (alloy number: 1000 series), Al—Cu based alloy (alloy number: 2000 series), Al—Mn based alloy (alloy number: 3000 series), and Al—Si based alloy. (Alloy number: 4000 series), Al-Mg series alloy (alloy number: 5000 series), Al-Mg-Si series alloy (alloy number: 6000 series), Al-Zn series alloy (alloy number: 7000 series), etc. Can be mentioned.
  • Examples of pure Al include 1050, 1100, 1200 and the like.
  • Examples of the Al—Cu based alloy include 2011, 2014, 2017, 2024 and the like.
  • Examples of the Al—Mn-based alloy include 3003 and 3004.
  • Examples of the Al—Si alloy include 4032 and the like. Examples of the Al—Mg-based alloy include 5005, 5052, 5083 and the like. Examples of the Al—Mg—Si based alloy include 6061 and 6063. Examples of the Al—Zn based alloy include 7075 and the like.
  • the metal member 1 containing aluminum may be referred to as "aluminum-based metal member 1".
  • the Si content of the metal member 1 is preferably less than 6% by mass with respect to the total amount of the metal member 1.
  • 1050, 1100, 2014, 2024, 3003, 5052, 6063, or 7075 are preferable.
  • FIG. 2 is a cross-sectional view of the metal member 1 according to the first embodiment of the present disclosure. Specifically, FIG. 2 shows a cross section of the dendritic layer 11 and the uneven structure 12 in the bonding region R1.
  • the bonding region R1 may be at least a part of the surface S1 of the metal member 1, and may be appropriately adjusted depending on, for example, the application of the metal resin composite 100. Specifically, the bonding region R1 may be the entire surface of the surface S1 of the metal member 1, or when the surface S1 of the metal member 1 has a plurality of main surfaces, a part of the main surfaces of the plurality of main surfaces is the main surface. It may be the entire surface or a part of the surface.
  • the upper limit of the arithmetic mean roughness (Ra) of the bonding region R1 is 20.0 ⁇ m or less, preferably 10.0 ⁇ m or less, from the viewpoint of suppressing the appearance change due to roughening. It is preferably 8.0 ⁇ m or less, more preferably 6.0 ⁇ m or less, particularly preferably 5.0 ⁇ m or less, and even more preferably 2.5 ⁇ m or less.
  • the lower limit of the arithmetic mean roughness (Ra) of the bonding region R1 is preferably 0.2 ⁇ m or more, more preferably 0.3 ⁇ m or more.
  • the lower limit of the arithmetic mean roughness (Ra) is 0.2 ⁇ m or more, sufficient bonding strength can be obtained when the resin member 2 is bonded to the metal member 1.
  • the fact that the lower limit of the arithmetic mean roughness (Ra) of the joining region R1 is within the above range means that the micro-order uneven structure 12 as shown in FIG. 2 is formed on the surface S1 of the metal member 1 in the joining region R1. Indicates that it has been done.
  • the dendritic layer 11 is formed on the surface S12 of the uneven structure 12.
  • the surface S12 of the uneven structure 12 constitutes at least a part of the surface S1 of the metal member 1.
  • the surface S1 of the metal member 1 in the bonding region R1 is a double rough surface.
  • the double rough surface is composed of a nano-order dendritic layer 11 and a micro-order uneven structure 12.
  • the lower limit of the arithmetic mean roughness (Ra) is within the above range, when the resin member 2 is joined to the joining region R1 of the metal member 1, an uneven structure is formed between the metal member 1 and the resin member 2. Due to 12, the physical resistance (anchor effect) is more effectively developed. Therefore, the joint strength between the metal member 1 and the resin member 2 is further improved.
  • the lower limit of the arithmetic mean roughness (Ra) is within the above range
  • the temperature of the mold is set when the lower limit of the arithmetic mean roughness (Ra) is outside the above range.
  • the metal resin composite 100 can be manufactured even if it is significantly lower than in some cases. As a result, after the metal resin complex 100 is taken out from the mold, the amount of warpage and the amount of deformation of the metal resin complex 100 generated in the process of being cooled to the environmental temperature are suppressed.
  • the method for measuring the arithmetic mean roughness (Ra) is the same as the method described in the examples based on JIS B 0601.
  • the nano-order dendritic layer 11 has little effect on the measurement of arithmetic mean roughness (Ra).
  • the upper limit of the ten-point average roughness (Rzjis) of the bonding region R1 is preferably 50 ⁇ m or less, more preferably 35 ⁇ m or less, still more preferably 25 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
  • the lower limit of the ten-point average roughness (Rzjis) of the bonding region R1 is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the method for measuring the ten-point average roughness (Rzjis) is the same as the method described in the examples based on JIS B 0601.
  • the nano-order dendritic layer 11 has almost no effect on the measurement of the ten-point average roughness (Rzjis).
  • the L value of the bonding region R1 tends to be 70 or more.
  • the upper limit of the ten-point average roughness (Rzjis) is 25 ⁇ m or less, when the metal member 1 is an aluminum-based metal member 1, the L value of the bonding region R1 tends to be 75 or more.
  • the upper limit of the ten-point average roughness (Rzjis) is 15 ⁇ m or less, when the metal member 1 is an aluminum-based metal member 1, the L value of the bonding region R1 tends to be 80 or more. The L value will be described later.
  • the bonding strength indicates the bonding strength between the metal member 1 and the resin member 2 when the resin member 2 made of the same material as that of the first embodiment is bonded to the bonding region R1 of the metal member 1.
  • the upper limit of the average length (RSm) (hereinafter referred to as "average length (RSm)") of the roughness curve element of the bonding region R1 is preferably less than 400 ⁇ m, more preferably 350 ⁇ m or less, still more preferably 330 ⁇ m or less. It is particularly preferably 250 ⁇ m or less, and even more preferably 230 ⁇ m or less.
  • the lower limit of the average length (RSm) is preferably more than 10 ⁇ m, more preferably 50 ⁇ m or more, still more preferably 70 ⁇ m or more.
  • the method for measuring the average length (RSm) is the same as the method described in the examples based on JIS B 0601. The nano-order dendritic layer has little effect on the measurement of average length (RSm).
  • the arithmetic average roughness (Ra), the ten-point average roughness (Rzjis), and the average length (RSm) of the bonding region R1 may be collectively referred to as "surface roughness”.
  • the lower limit of the L value in the CIE1976 (L * a * b * ) color space of the bonding region R1 is preferably 65 or more, more preferably 70 or more, still more preferably 75 or more, and particularly preferably 80. As mentioned above, it is more preferably 85 or more. The higher the lower limit of the L value, the more preferable. The L value indicates the brightness. The higher the L value, the closer to the metallic luster before roughening. Generally, the L value of the flat surface of the metal member 1 is about 90 (hereinafter, referred to as “untreated L value”) when the material of the metal member 1 is the aluminum-based metal member 1.
  • the difference between the L value of the joining region R1 and the unprocessed L value is about 25 at the maximum. Therefore, the surface roughness of the bonding region R1 is less noticeable with respect to the flat surface. Therefore, the higher the L value of the metal member 1, the less likely it is that the appearance change due to the surface roughness will occur.
  • the method for measuring the L value is the same as the method described in the examples. In addition, a slight error may occur in the measured value of the L value measured by the method described in the examples. The slight error of the measured value of the L value is, for example, about ⁇ 4.
  • CIE1976 is a state in which the surface S1 of the metal member 1 is not roughened and the surface S1 of the metal member 1 is roughened in the bonding region R1.
  • the absolute value of the difference between the L values in the (L * a * b * ) color space is preferably 6.0 or less, more preferably 5.0 or less, still more preferably 3.0 or less.
  • the metallic luster in the state where the surface S1 of the metal member 1 is not roughened and the metallic luster in the state where the surface S1 of the metal member 1 is roughened. Is equal to or close to equivalent. That is, it means that there is little change in appearance between the state in which the surface S1 of the metal member 1 is not roughened and the state in which the surface S1 of the metal member 1 is roughened.
  • the state in which the surface S1 of the metal member 1 is not roughened includes a first state and a second state.
  • the first state indicates a state before the dendritic layer 11 and the uneven structure 12 are formed by roughening in the bonding region R1. That is, in the first state, the absolute value of the difference in L values indicates the absolute value of the difference in L values before and after roughening at a predetermined portion of the bonding region R1 of the metal member 1.
  • the second state indicates a region of the surface S1 of the metal member 1 that is not the bonding region R1 when the bonding region R1 is formed on a part of the surface S1 of the metal member 1. That is, in the second state, the absolute value of the difference between the L values indicates the absolute value of the difference between the L value in the joining region R1 and the L value outside the joining region R1.
  • the upper limit of the absorbance difference (A 1 -A 0) is preferably 0.030 or less, more preferably Is 0.020 or less.
  • the lower limit of the absorbance difference (A 1 ⁇ A 0 ) is more preferably 0.005 or more, still more preferably 0.010 or more.
  • FIG. 3 is a spectral chart of Fourier transform infrared spectroscopic analysis for explaining the absorbance difference (A 1 ⁇ A 0).
  • a 1 shows the absorbance of the absorption peak observed at 3400 cm -1.
  • a 0 indicates the absorbance in the linear of 3400 cm -1 which connects the absorbance of absorbance and 2500 cm -1 in 3800 cm -1.
  • (A 1 ⁇ A 0 ) indicates the difference in absorbance between A 1 and A 0 at 3400 cm -1.
  • a Fourier transform infrared spectrophotometer FTIR
  • FTIR Fourier transform infrared spectrophotometer
  • the high-sensitivity reflection method RAS method
  • the broad absorption peak with a peak top at 3400 cm-1 observed by Fourier transform infrared spectroscopy is presumed to be a peak caused by aluminum hydroxide or aluminum hydrated oxide.
  • the absorbance difference (A 1 ⁇ A 0 ) is an index indicating the degree of possession of the hydroxyl group on the surface S1 of the metal member 1.
  • the fact that the absorbance difference (A 1 ⁇ A 0 ) is 0.030 or less indicates that the amount of hydroxyl groups retained in the bonding region R1 is relatively small. That is, the water molecule layer is unlikely to be formed on the surface S1 of the metal member 1 in the bonding region R1. As a result, the metal member 1 is sufficiently bonded for a longer period of time even when the resin member 2 is bonded to the bonding region R1 and the obtained metal resin composite 100 is exposed to a high humidity environment. The strength can be maintained.
  • the lower limit of the abundance ratio of the metal oxide on the surface S1 of the metal member 1 measured by X-ray photoelectron spectroscopy (XPS) is the total of the metal oxide, the metal hydroxide, and water. It is preferably 80 area% or more, more preferably 85 area% or more, and further preferably 90 area% or more. That is, it is preferable that the surface S1 of the bonding region R1 is mainly composed of a metal oxide.
  • the lower limit of the abundance ratio of the metal oxide in the bonding region R1 is within the above range, the water molecule layer is unlikely to be formed by the surface S1 of the metal member 1 in the bonding region R1. The water molecule layer is formed by the absorption of water in the environment.
  • the metal member 1 even when the resin member 2 is bonded to the surface S1 of the bonding region R1 and the obtained metal resin composite 100 is exposed to a high humidity environment, the metal member 1 can be exposed for a longer period of time. Sufficient bonding strength can be maintained.
  • the existing ratio of the metal oxide, of the distribution of the measured binding energy by X-ray photoelectron spectroscopy (XPS), is obtained from O 2- of energy peaks (area%).
  • XPS is measured in a measurement range having a diameter of several mm of the bonding region R1 after removing oil on the surface S1 of the bonding region R1 by argon sputtering or the like.
  • the abundance ratio of the obtained substance indicates the average of this measurement range.
  • the metal member 1 is an aluminum-based metal member 1
  • the metal oxide indicates Al 2 O 3
  • the metal hydroxide indicates Al (OH) 3
  • the energy peak of O 2- is the energy of Al 2 O 3 . Shows a peak.
  • the upper limit of the specific surface area of the bonding region R1 is preferably 1.00 m 2 / g or less, and more preferably 0.50 m 2 / g or less.
  • the lower limit of the specific surface area of the bonding region R1 is preferably 0.01 m 2 / g or more, more preferably 0.05 m 2 / g.
  • the upper limit of the average thickness T11 (see FIG. 1) of the dendritic layer 11 is preferably less than 1000 nm, more preferably 900 nm or less, still more preferably 800 nm or less, and particularly preferably 700 nm or less.
  • the lower limit of the average thickness T11 of the dendritic layer 11 is preferably 20 nm or more, more preferably 30 nm or more, still more preferably 50 nm or more, and particularly preferably 100 nm or more.
  • the method for measuring the average thickness T11 of the dendritic layer 11 is the same as the method described in the examples.
  • the metal member 1 When the average thickness T11 of the dendritic layer 11 is within the above range, when the resin member 2 is bonded to at least a part of the bonding region R1, the metal member 1 has sufficient bonding strength with the resin member 2. Can be maintained for a long period of time. Further, the occurrence of alteration of the surface characteristics of the bonding region R1 can be suppressed. That is, the pot life can be further extended. Therefore, for example, when the metal resin composite 100 is manufactured by insert molding, which is a kind of injection molding, a predetermined number of metal members 1 may be collectively manufactured and used sequentially within the pot life. In other words, every time the metal resin composite 100 is manufactured, the metal member 1 does not have to be manufactured immediately before that.
  • the upper limit of the average number density of the main trunks of the dendritic layer 11 is preferably 70 lines / ⁇ m or less, more preferably 40 lines / ⁇ m or less, still more preferably 35 lines / ⁇ m or less, and particularly preferably 30 lines / ⁇ m or less. ..
  • the lower limit of the average number density of the main trunks of the dendritic layer 11 is preferably 5 lines / ⁇ m or more, more preferably 7 lines / ⁇ m or more, and further preferably 10 lines / ⁇ m or more.
  • the average number density of the main trunks of the dendritic layer 11 is the same as that described in the examples.
  • the metal member 1 is stronger than the resin member 2 when the resin member 2 is bonded to at least a part of the bonding region R1. Bond strength can be developed.
  • FIG. 4 is a perspective view of the metal resin complex 100 according to the first embodiment of the present disclosure.
  • the metal-resin composite 100 includes a metal member 1 and a resin member 2.
  • the resin member 2 is joined to a part of the surface S1 of the metal member 1 (hereinafter, referred to as “joining region R1A”) in the joining region R1 via the dendritic layer 11.
  • the region R1B of the bonding region R1 that is not the bonding region R1A is referred to as “exposed region R1B”.
  • the bonding region R1 has an exposed region R1B, but the present invention is not limited to this, and the bonding region R1 may not have an exposed region R1B.
  • the exposed region R1B of the metal member 1 in the metal resin composite 100 is a part of the bonding region R1. Therefore, the change in appearance in the exposed region R1B is suppressed. As a result, the metal-resin composite 100 has an excellent degree of freedom in design.
  • the resin member 2 is joined to the metal member 1 via the dendritic layer 11 without using an adhesive, bolts, rivets, or the like. Therefore, the metal-resin composite 100 has a smaller number of parts than the conventional one, is lighter in weight, and can cope with a complicated shape.
  • the bonding region R1A of the metal member 1 is substantially the same as the bonding region R1 of the metal member 1 before the resin member 2 is bonded in all points including the surface microstructure (morphology). be. That is, the fine structure of the joint region R1A of the metal member 1 does not change significantly before and after the resin member 2 is joined.
  • Resin member 2 is made of a resin composition.
  • the resin composition comprises at least one of a thermoplastic resin and a thermoplastic resin.
  • thermoplastic resin at least one of the thermoplastic resin and the thermoplastic resin is referred to as "resin".
  • the thermoplastic resin is not particularly limited and can be appropriately adjusted according to the use of the metal resin composite 100 and the like.
  • the thermoplastic resin is not particularly limited.
  • examples of the thermoplastic resin include a polymethacrylic resin such as a polymethacrylic resin, a polyolefin resin and a polymethylmethacrylate resin, a polyacrylic resin such as a methylpolyacrylate resin, a polystyrene resin, and a polyvinyl alcohol-polyvinyl chloride.
  • Copolymer resin polyvinyl acetal resin, polyvinyl butyral resin, polyvinyl formal resin, polymethylpentene resin, maleic anhydride-styrene copolymer resin, polycarbonate resin, polyphenylene ether resin, polyether ether ketone resin, polyether ketone resin, etc.
  • Aromatic polyether ketone polyester resin, polyamide resin, polyamideimide resin, polyimide resin, polyetherimide resin, styrene elastomer, polyolefin elastomer, polyurethane elastomer, polyester elastomer, polyamide elastomer, ionomer, amino Polyacrylamide resin, isobutylene anhydride copolymer, acrylonitrile-tadiene-styrene copolymer (ABS), acrylonitrile-chlorinated polyethylene-styrene copolymer (ACS), acrylonitrile-ethylene propylene rubber-styrene copolymer (AES), Acrylonitrile-styrene copolymer resin (AS), acrylonitrile-styrene-acrylic rubber copolymer resin (ASA), methylmethacrylate-butadiene-styrene copolymer (MBS), ethylene-vinyl chloride cop
  • the thermoplastic resin is made of a polyolefin resin, a polyester resin, a polyamide resin, and a polyarylene resin from the viewpoint that a high bonding strength between the metal member 1 and the resin member 2 can be obtained more stably.
  • One or more thermoplastic resins of choice are preferably used.
  • thermosetting resin examples include epoxy resin, phenol resin, unsaturated polyester resin, thermosetting polyimide resin, bismaleimide triazine resin, benzoxazine resin and the like. These thermosetting resins may be used alone or in combination of two or more.
  • the resin composition preferably contains a filler. Thereby, the difference in the coefficient of linear expansion between the metal member 1 and the resin member 2 can be adjusted, and the mechanical strength of the resin member 2 can be improved.
  • the filler is preferably one or more selected from, for example, glass fiber, carbon fiber, carbon particles, clay, talc, silica, mineral, and cellulose fiber. Among them, the filler is one or more selected from glass fiber, carbon fiber, talc, and mineral.
  • the shape of the filler is not particularly limited, and examples thereof include a fibrous shape, a particle shape, and a plate shape.
  • the upper limit of the content of the filler is preferably 100 parts by mass or less, more preferably 90 parts by mass or less, and particularly preferably 80 parts by mass or less with respect to 100 parts by mass of the resin.
  • the lower limit of the content of the filler is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more with respect to 100 parts by mass of the resin.
  • the resin composition preferably contains a compounding agent.
  • a compounding agent This makes it possible to impart a desired function to the resin member 2.
  • the compounding agent include heat stabilizers, antioxidants, pigments, weather resistant agents, flame retardants, plasticizers, dispersants, lubricants, mold release agents, antistatic agents and the like.
  • the upper limit of the content of the compounding agent is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less with respect to 100 parts by mass of the resin.
  • the lower limit of the content of the compounding agent is preferably 0.0001 part by mass or more, and more preferably 0.001 part by mass or more with respect to 100 parts by mass of the resin.
  • Applications of the metal resin composite 100 include, for example, structural parts for vehicles, vehicle-mounted products, housings for electronic devices, housings for home appliances, building members, structural parts, mechanical parts, various automobile parts, and electronics. Examples include equipment parts, furniture, applications for household appliances such as kitchen utensils, medical equipment, building material parts, other structural parts, exterior parts, and the like.
  • the method for manufacturing the metal member 1 includes a first preparation step and a dendritic layer forming step.
  • the first preparation step and the dendritic layer forming step are carried out in this order.
  • the method for manufacturing the metal member 1 preferably further includes at least one of a pretreatment step, a substitution step, a roughening step, and a posttreatment step in addition to the first preparation step and the dendritic layer forming step.
  • a pretreatment step, a replacement step, a roughening step, and a posttreatment step a first preparation step, a pretreatment step, a replacement step, a roughening step, a posttreatment step, and a dendritic shape.
  • the layer forming step is carried out in this order.
  • the method for manufacturing the metal member 1 further includes a pretreatment step, a replacement step, a roughening step, and a posttreatment step in addition to the first preparation step and the dendritic layer forming step will be described.
  • a metal base material is prepared.
  • Each of the macroscopic shape of the metal base material, the macroscopic shape of the surface of the metal base material, and the material of the metal base material is substantially the same as that of the metal member 1.
  • the method of preparing the metal base material is not particularly limited, and examples thereof include a method of processing a metal material.
  • the material of the metal material is substantially the same as the material of the metal member 1.
  • the processing method of the metal material is not particularly limited, and examples thereof include plastic working and thinning. Examples of plastic working include cutting of a metal material, pressing of a metal material, and the like. Examples of the thinning process include punching of a metal material, cutting of a metal material, polishing of a metal material, electric discharge machining of a metal material, and the like.
  • Pretreatment step In the pretreatment step, the film existing on the surface of the metal substrate is removed.
  • the film is composed of oxides, hydroxides and the like.
  • Examples of the method for removing the film include treatment with an alkaline aqueous solution, mechanical polishing, chemical polishing treatment, degreasing treatment, ultrasonic cleaning treatment and the like.
  • Examples of the alkaline aqueous solution include a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution.
  • substitution step a zinc ion-containing alkaline aqueous solution is immersed in a metal substrate. As a result, a zinc-containing film is formed on the surface of the metal substrate.
  • the zinc ion-containing alkaline aqueous solution contains alkali hydroxide (MOH or M (OH) 2 ) and zinc ion (Zn 2+ ).
  • M of alkali hydroxide (MOH or M (OH) 2 ) is an alkali metal or an alkaline earth metal.
  • alkali hydroxide MOH or M (OH) 2
  • alkali hydroxide (MOH) MOH
  • the content of the alkali hydroxide (MOH) is a weight ratio of the alkali hydroxide (MOH) to zinc ions (Zn 2+) (MOH / Zn 2+), is preferably 1 or more to 100 or less.
  • the substitution process may be, for example, the process method disclosed in International Publication No. 2013/47365.
  • the surface of the region where the dendritic layer 11 is formed is roughened on the surface of the metal substrate to form the dendritic layer 11.
  • Arithmetic mean roughness Ra of the surface of the region is set to 20.0 ⁇ m or less.
  • the uneven structure 12 is formed on the surface of the metal substrate.
  • the method for roughening the surface S1 of the metal member 1 is not particularly limited, and examples thereof include chemical liquid treatment and mechanical cutting treatment.
  • Examples of the mechanical polishing treatment include sandblasting, knurling, and laser processing.
  • Examples of the etching treatment include a treatment using an alkaline etching agent, a treatment using an acid etching agent, and the like. These methods can be used alone or in combination as appropriate. Among these, treatment with an acid-based etching agent is preferable.
  • the acid-based etching agent preferably contains at least one of ferric ion and ferric ion, and an acid.
  • the zinc-containing film formed in the replacement step can be eluted on the surface of the metal substrate, and the micron-order uneven structure 12 (see FIG. 2) can be formed.
  • a treatment method using an acid-based etching agent for example, the treatment methods disclosed in International Publication No. 2015/8847, JP-A-2001-348648, International Publication No. 2008/81933 and the like can be adopted.
  • the upper limit of the temperature of the acid-based etching agent is preferably 60 ° C. or lower, more preferably 50 ° C. or lower.
  • the lower limit of the temperature of the acid-based etching agent is preferably room temperature or higher, preferably 30 ° C. or higher.
  • the treatment time of the acid-based etching agent is appropriately adjusted according to the desired arithmetic mean roughness Ra and the like of the bonding region R1.
  • the upper limit of the treatment time of the acid-based etching agent is preferably 600 seconds or less, more preferably 500 seconds or less, still more preferably 150 seconds or less, and particularly preferably 10 seconds or less.
  • the L value of the bonding region R1 tends to be 70 or more. If the treatment time of the acid-based etching agent is 150 seconds, the L value of the bonding region R1 tends to be 80 or more. If the treatment time of the acid-based etching agent is 100 seconds, the L value of the bonding region R1 tends to be 85 or more.
  • Post-treatment step In the post-treatment step, the surface of the metal substrate is cleaned. Examples of the cleaning method include washing with water and ultrasonic cleaning.
  • Dendrite layer forming step In the dendritic layer forming step, at least a part of the surface of the metal base material is etched with an oxidizing acidic aqueous solution. As a result, the dendritic layer 11 is formed on the surface of the metal base material. That is, the metal member 1 is obtained.
  • the oxidizing acidic aqueous solution contains a metal cation having a standard electrode potential E 0 at 25 ° C. of ⁇ 0.2 or more and 0.8 or less, preferably 0 or more and 0.5 or less.
  • the oxidizing acidic aqueous solution preferably does not contain a metal cation having a standard electrode potential E 0 of ⁇ 0.2 or less at 25 ° C.
  • Examples of the metal cation in which the standard electrode potential E 0 at 25 ° C. is more than ⁇ 0.2 and 0.8 or less include Pb 2+ , Sn 2+ , Ag + , Hg 2+ , Cu 2+ and the like.
  • Cu 2+ is preferred from the standpoint of metal rarity, metal salt safety and toxicity.
  • Examples of the compound that generates Cu 2+ include copper hydroxide, cupric oxide, cupric chloride, cupric bromide, copper sulfate, and copper nitrate. Copper oxide is preferably used from the viewpoint of the safety of the inorganic compound, the viewpoint of toxicity, and the viewpoint of the application efficiency of the dendritic layer.
  • Examples of the oxidizing acidic aqueous solution include a first aqueous solution and a second aqueous solution.
  • the first aqueous solution contains nitric acid or a mixture of nitric acid and any of hydrochloric acid, hydrofluoric acid, and sulfuric acid.
  • the second aqueous solution contains peracetic acid or performic acid.
  • the oxidizing acidic aqueous solution preferably contains nitric acid and cupric oxide. Copper oxide is a metal cation generating compound.
  • the upper limit of the nitric acid concentration in the oxidizing acidic aqueous solution is preferably 40% by mass or less, more preferably 38% by mass or less, and further preferably 35% by mass or less.
  • the lower limit of the nitric acid concentration in the oxidizing acidic aqueous solution is preferably 10% by mass or more, more preferably 15% by mass or more, and further preferably 20% by mass or more.
  • the upper limit of the nitric acid concentration is 40% by mass or less, the surface S1 of the metal member 1 can be sufficiently roughened.
  • the lower limit of the nitric acid concentration is 10% by mass or more, the copper ions are sufficiently dissolved in the oxidizing acidic aqueous solution.
  • the upper limit of the copper ion (second copper ion) concentration in the oxidizing acidic aqueous solution is preferably 15% by mass or less, more preferably 12% by mass or less, still more preferably 8% by mass or less.
  • the lower limit of the copper ion (second copper ion) concentration in the oxidizing acidic aqueous solution is preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 2% by mass or more.
  • the surface of the metal substrate can be efficiently roughened.
  • the copper ion (second copper ion) concentration in the oxidizing acidic aqueous solution the average number density of the main trunks of the dendritic layer 11 can be adjusted.
  • the upper limit of the temperature at the time of contact with an oxidizing acidic aqueous solution containing a metal cation is preferably 60 ° C. or lower, more preferably 50 ° C. or lower.
  • the lower limit of the temperature is preferably room temperature or higher, preferably 30 ° C. or higher.
  • the upper limit of the treatment time is preferably 15 minutes or less, more preferably 10 minutes or less.
  • the lower limit of the processing time is preferably 1 minute or more, more preferably 2 minutes or more.
  • the method for manufacturing the metal resin composite 100 includes a second preparation step, a third preparation step, and an injection step. Each of the second preparatory step and the third preparatory step is performed before the injection step.
  • the execution order of each of the second preparation step and the third preparation step is not particularly limited.
  • Examples of the method for preparing the resin composition include a method of mixing the resin, a filler and a compounding agent as needed by a mixing device, and the like.
  • Examples of the mixing device include a Banbury mixer, a single-screw extruder, a twin-screw extruder, a high-speed twin-screw extruder and the like.
  • An injection molding machine is used for injection molding.
  • the injection molding machine includes a mold, an injection device, and a mold clamping device.
  • the mold includes a movable side mold and a fixed side mold.
  • the fixed side mold is fixed to the injection molding machine.
  • the movable side mold is movable with respect to the fixed side mold.
  • the injection device pours a melt of the resin composition (hereinafter referred to as "resin melt”) into a sprue of a mold at a predetermined injection pressure.
  • the mold clamping device tightens the movable side mold at a high pressure so that the movable side mold does not open due to the filling pressure of the resin melt.
  • the movable side mold is opened, the metal member 1 is installed on the fixed side mold, the movable side mold is closed, and the mold is fastened. That is, the metal member 1 is housed in the mold. As a result, a space for the resin member is formed between the metal member 1 and the mold. The space for the resin member indicates a space for forming the resin member 2.
  • the injection molding machine fills the space for the resin member with the resin melt at a high pressure. The resin melt indicates a resin melt.
  • the resin melt in the mold is cooled and solidified. As a result, the resin member 2 bonded to the bonding region R1A via the dendritic layer 11 is formed. That is, the metal resin complex 100 is obtained.
  • injection foam molding and high-speed heat cycle molding may be used in combination with injection molding.
  • high-speed heat cycle molding the mold is rapidly heated and cooled.
  • the injection foam molding method include a first method, a second method, and a third method.
  • a chemical foaming agent is added to the resin composition.
  • nitrogen gas or carbon dioxide gas is directly injected into the cylinder portion of the injection molding machine.
  • nitrogen gas or carbon dioxide gas is injected into the cylinder portion of the injection molding machine in a supercritical state.
  • counter pressure can be used as a mold control method, or a core back can be used depending on the shape of the resin member 2.
  • High-speed heat cycle molding is carried out by connecting a rapid heating / cooling device to a mold.
  • the heating method include steam type, pressurized hot water type, hot water type, hot oil type, electric heater type, electromagnetic induction heating type and the like.
  • the cooling method include a cold water type and a cold oil type.
  • the temperature of the mold can be appropriately adjusted according to the type of the thermoplastic resin.
  • the temperature of the mold is preferably 100 ° C. or higher and 150 ° C. or lower.
  • the temperature of the mold is preferably 140 ° C. or higher and 250 ° C. or lower.
  • the temperature for heating the mold is preferably 100 ° C. or higher and 180 ° C. or lower.
  • Mold temperature indicates the temperature detected by a sensor inserted near the mold cavity.
  • the metal member 1 has a joining region R1.
  • the L value in the CIE1976 (L * a * b *) color space of the region of the bonding region R1 is 65 or more.
  • the metal member 1 has a joining region R1. Therefore, when the resin member 2 is joined to the metal member 1, the melt of the resin member 2 effectively penetrates into the recess of the dendritic layer 11. As a result, a physical resistance force (anchor effect) is effectively exhibited between the metal member 1 and the resin member 2. That is, the dendritic layer 11 can firmly bond the metal member 1 and the resin member 2, which was difficult in the past.
  • the L value of the bonding region R1 is 65 or more, and the surface roughness of the bonding region R1 is inconspicuous with respect to a flat surface. That is, the appearance change due to the roughening is suppressed. As a result, the appearance change of the metal member 1 due to roughening is suppressed, and sufficient bonding strength with the resin member 2 can be ensured without using an adhesive or the like.
  • Each of the macroscopic shape of the metal member 1 according to the second embodiment, the macroscopic shape of the surface S1 and the material is the same as those exemplified in the first embodiment.
  • the joining region R1 according to the second embodiment may be at least a part of the surface S1 of the metal member 1 as in the first embodiment.
  • the lower limit of the L value in the CIE1976 (L * a * b * ) color space of the bonding region R1 is 65 or more, preferably 70 or more, more preferably 75 or more, still more preferably 80 or more, particularly. It is preferably 85 or more. The higher the lower limit of the L value, the more preferable. When the lower limit of the L value is within the above range, the appearance change due to the coarsening is suppressed.
  • the method for measuring the L value is the same as the method described in the examples.
  • the upper limit of the arithmetic mean roughness (Ra) of the bonding region R1 is preferably 20.0 ⁇ m or less, more preferably 10.0 ⁇ m, from the viewpoint of suppressing the appearance change due to the roughening. Below, it is more preferably 8.0 ⁇ m or less, particularly preferably 6.0 ⁇ m or less, further preferably 5.0 ⁇ m or less, and even more preferably 2.5 ⁇ m or less.
  • the lower limit of the arithmetic average roughness (Ra) of the bonding region R1 according to the second embodiment, the ten-point average roughness (Rzjis), the average length (RSm), the absolute value of the difference in L values, and the difference in absorbance (A 1). -A 0 ) and the abundance ratio of the metal oxide are the same as those exemplified in the first embodiment.
  • Each of the average thickness T11 of the dendritic layer 11 and the average number density of the main trunks of the dendritic layer 11 according to the second embodiment are the same as those exemplified in the first embodiment.
  • the roughening step of the method for manufacturing the metal member 1 according to the second embodiment is different from the method for manufacturing the metal member 1 according to the first embodiment.
  • the method for manufacturing the metal member 1 according to the second embodiment further includes a first preparation step, a pretreatment step, a replacement step, a roughening step, a posttreatment step, and a dendritic layer forming step.
  • Each of the first preparation step, pretreatment step, replacement step, posttreatment step, and dendritic layer forming step according to the second embodiment is the same as the step exemplified in the first embodiment.
  • the surface of the region where the dendritic layer 11 is formed is roughened in the surface of the metal substrate, and the L value of the surface of the region where the dendritic layer 11 is formed is 65.
  • the method of roughening the surface S1 of the metal member 1 according to the second embodiment is the same as the method exemplified in the first embodiment.
  • Example 1 Manufacture of metal member A metal member was manufactured as follows.
  • Pretreatment Step The obtained metal substrate is immersed in a first tank filled with a degreasing agent (60 ° C.) having the following components, ultrasonically cleaned for 5 minutes, and then ion exchanged. Washed with water.
  • a degreasing agent 60 ° C.
  • Aluminum cleaner 5% by mass
  • Water 95% by mass
  • the aluminum cleaner is a product name "Aluminum Cleaner NE-6" (manufactured by Meltex Inc.).
  • Post-treatment step After immersing the metal substrate in a fourth tank filled with ion-exchanged water and performing ultrasonic cleaning for 3 minutes, a nitric acid aqueous solution (40 ° C.) having the following components is added. It was immersed in the filled fifth tank for 2 minutes. As a result, mainly the copper deposited on the surface of the metal substrate was peeled off.
  • FIG. 5 is an SEM photograph (photographing magnification: 100,000 times) of a cross section of the bonding region of the metal member of Example 1.
  • reference numeral E1 indicates a dendritic layer.
  • Example 1 as shown in FIG. 5, a dendritic layer formed on the surface of the bonding region of the metal member was confirmed.
  • FIG. 6 is a top view of the metal member 1 for explaining a method for measuring surface roughness.
  • the measurement locations are the 6 straight portions B1 to B6 of the surface S1 of the bonding region R1 of the metal member 1.
  • the 6 straight line portions B1 to B6 are composed of arbitrary 3 straight line portions B1 to B3 and 3 straight line portions B4 to B6 orthogonal to the 3 straight line portions B1 to B3.
  • the straight portion B1 passes through the central portion A of the surface S1 of the bonding region R1 of the metal member 1.
  • the straight portions B1 to B3 are parallel to each other.
  • the straight portion B4 passes through the central portion A of the surface S1 of the bonding region R1 of the metal member 1.
  • the straight line portion B4 and the straight line portion B1 are orthogonal to each other at the central portion A.
  • the straight portions B4 to B6 are parallel to each other.
  • the distances D1 to D4 between the adjacent straight portions were 2 mm or more and 5 mm or less.
  • Example 1 the thickness of the dendritic layer of the metal member was 490 nm.
  • each of the plurality of trunks of the dendritic layer stands from the surface of the bonding region of the metal member.
  • the average number density of the main trunks of the dendritic layer was 28 lines / ⁇ m.
  • Example 1 the specific surface area of the bonding region of the metal member was 0.21 m 2 / g.
  • Reference numeral F3 indicates a spectrum chart of Reference Example 2.
  • Reference Example 2 shows a spectrum chart of a metal member (hereinafter referred to as “known metal member”) produced in the same manner as in Example 1 described in JP-A-2018-144475.
  • the surface of the known metal member is roughened by being immersed in warm water. Therefore, a film containing aluminum hydroxide is formed on the surface of the known metal member.
  • the spectral chart of Reference Example 2 has a broad absorption peak with a peak top at 3400 cm -1 as shown in FIG. If in Reference Example 2, the virtual absorbance at 3400 cm A 1 the absorbance of the absorption peaks observed at -1, 3800 cm -1 absorbance and 2500cm straight 3400 cm -1 which connects the absorbance of -1 was A 0, The absorbance difference (A 1 ⁇ A 0 ) value was more than 0.03. In Example 1, as shown in FIG. 8, the absorbance difference (A 1 ⁇ A 0 ) value was about 0.
  • the metal member was immediately installed in the small dumbbell metal insert mold mounted on the horizontal injection molding machine ("J55AD", manufactured by Japan Steel Works, Ltd.). Next, the resin composition was injection-molded in the mold under the following molding conditions to form the resin member in the joint region of the metal member. As a result, a metal resin composite was obtained.
  • FIG. 7 is an SEM photograph (photographing magnification: 50,000 times) of a cross section of the metal resin composite of Example 1. Specifically, FIG. 7 shows an SEM photograph of a cross section of the metal resin composite in the bonding region of the metal member. As shown in FIG. 7, it was confirmed that the nano-order dendritic layer covered the surface of the metal member so as to follow the micron-order uneven shape. The average thickness of the dendritic layer of the metal resin complex was 500 nm. From these, it was confirmed that in the metal-resin composite, the bonding region of the metal member is substantially the same as the bonding region of the metal member before the resin member is bonded.
  • Examples 2 to 6 the metal member and the metal resin composite were obtained in the same manner as in Example 1 except that the immersion time in the [1.1.4] roughening step was changed to the time shown in Table 1.
  • Got Table 1 shows the presence or absence of a dendritic layer of the obtained metal member, arithmetic average roughness (Ra), ten-point average roughness (Rzjis), average length (Rsm), L value, evaluation results of appearance change evaluation, and the like. Shown in. Table 1 shows the measurement results of the tensile shear strength of the obtained metal-resin composite.
  • Examples 7 to 12 the immersion time in the [1.1.4] roughening step was changed to the time shown in Table 1, and the resin composition in the [1.3.1] second preparation step was polybutylene terephthalate.
  • a metal member and a metal resin composite were obtained in the same manner as in Example 1 except that the resin (PBT) was changed to "Juranex (registered trademark) 930HL” (manufactured by Polyplastic Co., Ltd.).
  • Table 1 shows the presence or absence of a dendritic layer of the obtained metal member, arithmetic average roughness (Ra), ten-point average roughness (Rzjis), average length (Rsm), L value, evaluation results of appearance change evaluation, and the like. Shown in. Table 1 shows the measurement results of the tensile shear strength of the obtained metal-resin composite.
  • Example 1 Roughing step In Example 1, except that the first acid-based etching aqueous solution was changed to the following third acid-based etching aqueous solution and the immersion time was changed to the time shown in Table 1. [1.1.4] The metal substrate was roughened in the same manner as in the roughening step.
  • Metal Resin Composite A metal resin complex was obtained in the same manner as in Example 1 except that the metal member of Comparative Example 1 was used. Table 1 shows the measurement results of the tensile shear strength of the obtained metal-resin composite.
  • Comparative Example 2 In Comparative Example 2, a metal member and a metal resin composite were obtained in the same manner as in Comparative Example 1, except that the immersion time in the [4.1.4] roughening step was changed to the time shown in Table 1. rice field. Table 1 shows the presence or absence of a dendritic layer of the obtained metal member, arithmetic average roughness (Ra), ten-point average roughness (Rzjis), average length (Rsm), L value, evaluation results of appearance change evaluation, and the like. Shown in. Table 1 shows the measurement results of the tensile shear strength of the obtained metal-resin composite.
  • Comparative Example 3 In Comparative Example 3, the third acid-based etching aqueous solution in the [4.1.4] roughening step was changed to the following fourth acid-based etching aqueous solution, and the immersion time in the [4.1.4] roughening step was changed.
  • a metal member and a metal resin composite were obtained in the same manner as in Comparative Example 1, except that the time was changed as shown in Table 1.
  • Table 1 shows the presence or absence of a dendritic layer of the obtained metal member, arithmetic average roughness (Ra), ten-point average roughness (Rzjis), average length (Rsm), L value, evaluation results of appearance change evaluation, and the like. Shown in. Table 1 shows the measurement results of the tensile shear strength of the obtained metal-resin composite.
  • the FT-IR spectrum of the surface of the bonding region of the metal member was measured in the same manner as in Example 1.
  • the absorbance difference (A 1 ⁇ A 0 ) value was about 0.
  • Example 13 In Example 13, a metal member was obtained in the same manner as in Example 1 except that the components of the secondary acid-based etching aqueous solution in the [1.1.6] dendritic layer forming step were changed to the following components. Using the obtained metal member, a metal resin composite is obtained in the same manner as in Example 1.
  • the presence or absence of the dendritic layer of the metal member, the arithmetic mean roughness (Ra), the ten-point average roughness (Rzjis), and the average length (Rsm) are the same as in Example 1, and the arithmetic mean roughness (Ra). Is 5.0 ⁇ m or less.
  • the difference between the L value and the L value is the same as in Example 1, and the L value is 75 or more.
  • the appearance change evaluation is A or B.
  • the tensile shear strength of the metal-resin composite is 23 MPa or more.
  • FIG. 9 is an SEM photograph (photographing magnification: 100,000 times) of a cross section of the metal member of Example 13.
  • reference numeral E2 indicates a dendritic layer.
  • each of the plurality of trunks of the dendritic layer stands from the surface of the bonding region of the metal member.
  • the average number density of the main trunks of the dendritic layer was 8 lines / ⁇ m.
  • Example 14 a metal member was obtained in the same manner as in Example 1 except that the components of the secondary acid-based etching aqueous solution in the [1.1.6] dendritic layer forming step were changed to the following components. Using the obtained metal member, a metal resin composite is obtained in the same manner as in Example 1.
  • the presence or absence of the dendritic layer of the metal member, the arithmetic mean roughness (Ra), the ten-point average roughness (Rzjis), and the average length (Rsm) are the same as in Example 1, and the arithmetic mean roughness (Ra). Is 5.0 ⁇ m or less.
  • the difference between the L value and the L value is the same as in Example 1, and the L value is 75 or more.
  • the appearance change evaluation is A or B.
  • the tensile shear strength of the metal-resin composite is 23 MPa or more.
  • FIG. 10 is an SEM photograph (photographing magnification: 100,000 times) of a cross section of the metal member of Example 14.
  • reference numeral E3 indicates a dendritic layer.
  • each of the plurality of trunks of the dendritic layer stands from the surface of the bonding region of the metal member.
  • the average number density of the main trunks of the dendritic layer was 47 lines / ⁇ m.
  • the "difference in L value” indicates the absolute value of the difference between the L value in the state where the surface S1 of the metal member 1 is not roughened and the L value measured in each embodiment. ..
  • the L value of Example 1 was used as the L value in the state where the surface S1 of the metal member 1 was not roughened.
  • the immersion time in the roughening step is as short as 20 seconds. Therefore, the L value of the bonding region of Example 1 and the L value of the bonding region where the roughening step is not executed can be evaluated to be equivalent.
  • An acceptable rating for appearance change assessment is "A", "B", or "C”.
  • the allowable range of tensile shear strength is "23 MPa or more".
  • PP indicates "short fiber glass reinforced polypropylene V7100” (manufactured by Prime Polymer Co., Ltd.)
  • PBT is a polybutylene terephthalate (PBT) resin "Duranex”. (Registered trademark) 930HL “(manufactured by Polyplastic Co., Ltd.).
  • the metal members of Examples 1 to 12 had a bonding region in which a dendritic layer was formed on the surface, and the arithmetic average roughness Ra of the bonding region was 20.0 ⁇ m or less. Therefore, the evaluation of the appearance change of the bonding region was "A", "B], or” C ", which was within the permissible range. Further, the tensile shear strength was 23 Mpa or more, which was within the allowable range. That is, it was found that the metal members of Examples 1 to 12 can suppress the change in appearance due to roughening and can secure sufficient bonding strength with the resin member without using an adhesive or the like. rice field.
  • the metal members of Examples 1 to 12 had a bonding region in which a dendritic layer was formed on the surface, and the L value of the bonding region was 65 or more. Therefore, the evaluation of the appearance change of the bonding region was "A", "B], or” C ", which was within the permissible range. Further, the tensile shear strength was 23 Mpa or more, which was within the allowable range. That is, it was found that the metal members of Examples 1 to 12 can suppress the change in appearance due to roughening and can secure sufficient bonding strength with the resin member without using an adhesive or the like. rice field.
  • the arithmetic average roughness Ra of the bonding region was 20.0 ⁇ m or less, but the dendritic layer was not formed on the surface of the bonding region.
  • the evaluation of the appearance change of the bonding region was "A” or "C”, which was within the allowable range, but the tensile shear strength was less than 23 MPa, which was out of the allowable range. That is, it was found that the metal members of Comparative Examples 1 to 3 do not have sufficient bonding strength with the resin member unless an adhesive or the like is used.
  • the L value of the bonding region was 65 or more, but the dendritic layer was not formed on the surface of the bonding region.
  • the evaluation of the appearance change of the bonding region was "A” or "C”, which was within the permissible range, but the tensile shear strength was less than 23 MPa, which was not within the permissible range. That is, it was found that the metal members of Comparative Examples 1 to 3 do not have sufficient bonding strength with the resin member unless an adhesive or the like is used.
  • the absorbance difference (A 1 ⁇ A 0 ) value of Example 1 was about 0 as in Reference Example 1. As a result, it was found that a film containing aluminum hydroxide was not formed on the surface of the metal member of Example 1.
  • Example 1 cupric oxide (5.0% by mass as Cu 2+ ) is used as a component of the diacid-based etching aqueous solution, and the average number density of the main trunks of the dendritic layer of the metal member is 28 lines / ⁇ m. Met.
  • cupric oxide (5.0% by mass as Cu 2+ ) is used as a component of the diacid-based etching aqueous solution, and the average number density of the main trunks of the dendritic layer of the metal member is 28 lines / ⁇ m. Met.
  • copper sulfate (0.1% by mass as Cu 2+ ) was used as a component of the second acid-based etching aqueous solution, and the average number density of the main trunks of the dendritic layer of the metal member was 8 lines / ⁇ m. rice field.
  • Example 14 copper sulfate (5.0% by mass as Cu 2+ ) was used as a component of the second acid-based etching aqueous solution, and the average number density of the main trunks of the dendritic layer of the metal member was 47 lines / ⁇ m. rice field. From the comparison between Example 1, Example 13, and Example 14, it was found that the average number density of the main trunks of the dendritic layer of the metal member depends on the concentration of Cu 2+ in the second acid-based etching aqueous solution. .. Specifically, it was found that as the concentration of Cu 2+ in the secondary acid-based etching aqueous solution was reduced, the average number density of the main trunks of the dendritic layer of the metal member decreased.

Abstract

金属部材は、表面に樹枝状層が形成された領域を有する。前記領域の算術平均粗さRaは、20.0μm以下である。

Description

金属部材、金属樹脂複合体、及び金属部材の製造方法
 本発明は、金属部材、金属樹脂複合体、及び金属部材の製造方法に関する。
 電気分野及び自動車分野を中心に、接着剤を使用することなく金属部材と樹脂部材とを一体化させる技術(以下、「金属樹脂一体化技術」という)の開発が活発化している。
 特許文献1は、複合体を開示している。特許文献1に開示の複合体は、金属部材と、樹脂部材とからなる。金属部材の表面は、陽極酸化法で形成された孔の開口部で覆われている。開口部の孔は、電子顕微鏡観察による測定で数平均内径10~80nmである。樹脂部材は、射出成形によって金属部材に固着している。樹脂部材の樹脂分組成は、ポリフェニレンスルフィド70~99質量%及びポリオレフィン系樹脂1~30質量%を含む。
  特許文献1:特開2007-50630号公報
 しかしながら、特許文献1に開示の複合体は、金属部材と、樹脂部材との接合強度が十分でないおそれがあった。
 金属樹脂一体化技術では、樹脂部材は、金属部材の表面のうち粗化された粗化面の一部に接合される場合がある。この場合、金属部材の粗化面のうち、樹脂部材が接合されない領域(以下、「露出領域」という。)は、露出する。金属部材の材質が持つ独特の金属光沢等は、粗化によって失われてしまうおそれがある。そのため、特に、工業デザイン等の分野においては、露出領域において、粗化に起因する外観変化が抑制された技術が求められている。
 本開示は、上記事情に鑑み、粗化に起因する外観変化が抑制され、かつ接着剤等を用いなくても樹脂部材との十分な接合強度を確保することができる金属部材、金属樹脂複合体、及び金属部材の製造方法を提供することを課題とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
 <1> 表面に樹枝状層が形成された領域を有し、
 前記領域の算術平均粗さRaは、20.0μm以下である、金属部材。
 <2> 表面に樹枝状層が形成された領域を有し、
 前記領域のCIE1976(L)色空間におけるL値は、65以上である、金属部材。
 <3> 前記領域の算術平均粗さRaは、0.3μm以上である、前記<1>又は<2>に記載の金属部材。
 <4> 前記領域は表面が粗化されており、前記領域において、前記金属部材の表面が粗化されていない状態と前記金属部材の表面が粗化されている状態とのCIE1976(L)色空間におけるL値の差の絶対値は、6.0以下である、前記<1>~<3>のいずれか1つに記載の金属部材。
 <5> 前記領域において、X線光電子分光法(XPS)で測定された前記金属部材の表面における金属酸化物の存在割合は、金属酸化物、金属水酸化物、及び水の合計に対して80面積%以上である、前記<1>~<4>のいずれか1つに記載の金属部材。
 <6> 前記金属部材は、アルミニウムを含み、
 前記領域において、前記金属部材の表面をフーリエ変換赤外分光分析し、3400cm-1に観測される吸収ピークの吸光度をAとし、3800cm-1の吸光度と2500cm-1の吸光度とを結んだ直線の3400cm-1における吸光度をAとしたときに、吸光度差(A-A)が0.03以下である、前記<1>~<5>のいずれか1つに記載の金属部材。
 <7> 前記金属部材は、アルミニウムを含み、
 前記金属部材のSiの含有量は、前記金属部材の総量に対して、6質量%未満である、前記<1>~<6>のいずれか1つに記載の金属部材。
 <8> 前記領域の算術平均粗さRaは、5.0μm以下である、前記<1>~<7>のいずれか1つに記載の金属部材。
 <9> 前記領域の算術平均粗さRaは、2.5μm以下である、前記<1>~<8>のいずれか1つに記載の金属部材。
 <10> 前記樹枝状層の主幹の平均本数密度は、5本/μm以上70本/μm以下である、前記<1>~<9>のいずれか1つに記載の金属部材。
 <11> 前記<1>~<10>のいずれか1つに記載の金属部材と、
 前記領域において、前記金属部材の表面の少なくとも一部に前記樹枝状層を介して接合された樹脂部材とを備える、金属樹脂複合体。
 <12> 金属部材の表面の少なくとも一部を、酸化性酸性水溶液でエッチングして、樹枝状層を形成する樹枝状層形成工程を含み、
 前記酸化性酸性水溶液は、25℃における標準電極電位Eが-0.2超え0.8以下である金属カチオンを含む、金属部材の製造方法。
 <13> 前記金属部材の表面のうち前記樹枝状層が形成される領域の表面を粗化して、前記領域の表面の算術平均粗さRaを20.0μm以下、又は前記領域の表面のCIE1976(L)色空間におけるL値を65以上にする粗化工程を含み、
 前記粗化工程、及び前記樹枝状層形成工程は、この順で実行される、前記<12>に記載の金属部材の製造方法。
 <14> 前記酸化性酸性水溶液は、酸化第二銅を含む、前記<12>又は<13>に記載の金属部材の製造方法。
 本開示によれば、粗化に起因する外観変化が抑制され、かつ接着剤等を用いなくても樹脂部材との十分な接合強度を確保することができる金属部材、金属樹脂複合体、及び金属部材の製造方法が提供される。
本開示の第1実施形態に係る金属部材の断面図である。 本開示の第1実施形態に係る金属部材の断面図である。 吸光度差(A-A)を説明するためのフーリエ変換赤外分光分析のスペクトルチャートである。 本開示の第1実施形態に係る金属樹脂複合体の斜視図である。 実施例1の金属部材の断面を撮影した走査型電子顕微鏡(SEM)写真(撮影倍率:10万倍)である。 表面粗さの測定方法を説明するための金属部材の上面図である。 実施例1の金属樹脂複合体の断面を撮影したSEM写真(撮影倍率:5万倍)である。 実施例1、参考例1、及び参考例2の吸光度差(A-A)を測定するためのフーリエ変換赤外分光分析のスペクトルチャートである。 実施例13の金属部材の断面を撮影したSEM写真(撮影倍率:10万倍)である。 実施例14の金属部材の断面を撮影したSEM写真(撮影倍率:10万倍)である。
 以下、図面を参照して、本開示に係る金属部材、金属樹脂複合体、及び金属部材の製造方法の実施形態について説明する。図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。
(1)第1実施形態
 図1~図3を参照して、本開示の第1実施形態に係る金属部材1について説明する。図1は、本開示の第1実施形態に係る金属部材1の断面図である。詳しくは、図1は、接合用領域R1における樹枝状層11の断面を示す。
 金属部材1は、金属樹脂複合体100の部品として好適に用いられる。金属樹脂複合体100は、金属部材1と樹脂部材2との一体化物である。樹脂部材2は、接着剤、ボルト、リベットなどを用いずに金属部材1に固定されている。金属樹脂複合体100の詳細については、図4を参照して後述する。
 第1実施形態では、金属部材1は、図1に示すように、表面S1に樹枝状層11が形成された領域R1(以下、「接合用領域R1」という。)を有する。接合用領域R1の算術平均粗さRaは、20.0μm以下である。
 樹枝状層11は、複数の幹からなり、幹の間がナノオーダーの間隙を有する層である。幹は更に分かれた枝を有してもよい。以下、接合用領域R1の表面S1から林立している幹を「主幹」といい、主幹から分かれた枝を「主枝」といい、主枝から分かれた枝を「側枝」という。樹枝状層11の詳細については、図1を参照して後述する。
 第1実施形態では、金属部材1は、接合用領域R1を有する。そのため、樹脂部材2が金属部材1に接合される際、樹脂部材2の溶融物は、樹枝状層11の凹部内に効果的に侵入する。これにより、金属部材1と樹脂部材2との間には、物理的な抵抗力(アンカー効果)が効果的に発現する。つまり、樹枝状層11は、従来では困難であった金属部材1と樹脂部材2とを強固に接合させることができる。接合用領域R1の算術平均粗さRaは、20.0μm以下で、粗化に起因する外観変化は、抑制されている。その結果、金属部材1は、粗化に起因する外観変化が抑制され、かつ接着剤等を用いなくても樹脂部材2との十分な接合強度を確保することができる。
 金属部材1の巨視的な形状は、特に限定されず、金属樹脂複合体100等の用途に応じて適宜調整され得る。金属部材1の巨視的な形状としては、例えば、平板状、円板状、曲板状、棒状、筒状、塊状等が挙げられる。金属部材1の表面S1の巨視的な形状としては、特に限定されず、例えば、平面状、曲面状等が挙げられる。
 金属部材1の材質としては、例えば、アルミニウム、マグネシウム、銅、ステンレス、チタン、鉄、青銅、マンガン、クロム、スズ、ジルコニア、鉛、ニッケル、これらの合金等が挙げられる。金属部材1の材質としては、加工性、及び耐食性等に優れる観点から、アルミニウム又はアルミニウム合金が好ましい。
 以下、JIS H4000で規定の合金番号を「合金番号」という。
 アルミニウム及びアルミニウム合金としては、例えば、純Al(合金番号:1000系)、Al-Cu系合金(合金番号:2000系)、Al-Mn系合金(合金番号:3000系)、Al-Si系合金(合金番号:4000系)、Al-Mg系合金(合金番号:5000系)、Al-Mg-Si系合金(合金番号:6000系)、Al-Zn系合金(合金番号:7000系)等が挙げられる。純Alとしては、例えば、1050、1100、1200等が挙げられる。Al-Cu系合金としては、2011、2014、2017、2024等が挙げられる。Al-Mn系合金としては、3003、3004等が挙げられる。Al-Si系合金としては、4032等が挙げられる。Al-Mg系合金としては、例えば、5005、5052、5083等が挙げられる。Al-Mg-Si系合金としては、例えば、6061、6063等が挙げられる。Al-Zn系合金としては、7075等が挙げられる。
 以下、アルミニウムを含む金属部材1を「アルミニウム系金属部材1」という場合がある。
 アルミニウム系金属部材1は、金属部材1のSiの含有量が、金属部材1の総量に対して、6質量%未満であることが好ましい。アルミニウム系金属部材1としては、1050、1100、2014、2024、3003、5052、6063、又は7075が好ましい。
(1.1)接合用領域R1
 次に、図1~図3を参照して、本開示の第1実施形態に係る接合用領域R1について説明する。図2は、本開示の第1実施形態に係る金属部材1の断面図である。詳しくは、図2は、接合用領域R1における樹枝状層11及び凹凸構造12の断面を示す。
 接合用領域R1は、金属部材1の表面S1の少なくとも一部であればよく、例えば、金属樹脂複合体100の用途等に応じて適宜調整され得る。具体的に、接合用領域R1は、金属部材1の表面S1の全面であってもよいし、金属部材1の表面S1が複数の主面を有する場合、複数の主面のうち一部の主面の全面又は一部であってもよい。
 第1実施形態では、接合用領域R1の算術平均粗さ(Ra)の上限は、粗化に起因する外観変化が抑制する観点から、20.0μm以下であり、好ましくは10.0μm以下、より好ましくは8.0μm以下、さらに好ましくは6.0μm以下、特に好ましくは5.0μm以下、一段と好ましくは2.5μm以下である。
 接合用領域R1の算術平均粗さ(Ra)の下限は、好ましくは0.2μm以上、より好ましくは0.3μm以上である。算術平均粗さ(Ra)の下限が0.2μm以上であると、樹脂部材2が金属部材1に接合される際、十分な接合強度が得られる。
 接合用領域R1の算術平均粗さ(Ra)の下限が上記範囲内であることは、接合用領域R1における金属部材1の表面S1に、図2に示すようなマイクロオーダーの凹凸構造12が形成されていることを示す。樹枝状層11は、凹凸構造12の表面S12に形成されている。凹凸構造12の表面S12は、金属部材1の表面S1の少なくとも一部を構成している。この場合、接合用領域R1における金属部材1の表面S1は、ダブル粗面となる。ダブル粗面は、ナノオーダーの樹枝状層11と、マイクロオーダーの凹凸構造12とからなる。
 算術平均粗さ(Ra)の下限が上記範囲内であれば、樹脂部材2が金属部材1の接合用領域R1に接合される場合、金属部材1と樹脂部材2との間には、凹凸構造12に起因して、物理的な抵抗力(アンカー効果)がより効果的に発現する。そのため、金属部材1と樹脂部材2との接合強度はより向上する。算術平均粗さ(Ra)の下限が上記範囲内であれば、金属樹脂複合体100がインサート成形で製造される際、金型の温度を算術平均粗さ(Ra)の下限が上記範囲外である場合よりも大幅に低くしても、金属樹脂複合体100は製造され得る。この結果、金属樹脂複合体100が金型から取り出された後、環境温度までに冷却される過程で発生する金属樹脂複合体100の反り量及び変形量は、抑制される。
 算術平均粗さ(Ra)の測定方法は、JIS B 0601に準拠した実施例に記載の方法と同様である。ナノオーダーの樹枝状層11は、算術平均粗さ(Ra)の測定にほぼ影響しない。
 接合用領域R1の十点平均粗さ(Rzjis)の上限は、好ましくは50μm以下、より好ましくは35μm以下、更に好ましくは25μm以下、特に好ましくは15μm以下である。接合用領域R1の十点平均粗さ(Rzjis)の下限は、好ましくは2μm以上、より好ましくは5μm以上である。十点平均粗さ(Rzjis)の測定方法は、JIS B 0601に準拠した実施例に記載の方法と同様である。ナノオーダーの樹枝状層11は、十点平均粗さ(Rzjis)の測定にほぼ影響しない。
 十点平均粗さ(Rzjis)の上限が35μm以下であれば、金属部材1がアルミニウム系金属部材1である場合、接合用領域R1のL値は70以上になりやすい。十点平均粗さ(Rzjis)の上限が25μm以下であれば、金属部材1がアルミニウム系金属部材1である場合、接合用領域R1のL値は75以上になりやすい。十点平均粗さ(Rzjis)の上限が15μm以下であれば、金属部材1がアルミニウム系金属部材1である場合、接合用領域R1のL値は80以上になりやすい。L値については、後述する。
 十点平均粗さ(Rzjis)の下限が2μm以上であれば、接合強度は、24MPa以上になりやすい。十点平均粗さ(Rzjis)の下限が5μm以上であれば、接合強度は、25MPa以上になりやすい。接合強度の測定方法は、実施例に記載の方法と同様である。この段落において、接合強度とは、実施例1と同じ材質の樹脂部材2が金属部材1の接合用領域R1に接合された際の金属部材1と樹脂部材2との接合強度を示す。
 接合用領域R1の粗さ曲線要素の平均長さ(RSm)(以下、「平均長さ(RSm)」という。)の上限は、好ましくは400μm未満、より好ましくは350μm以下、更に好ましくは330μm以下、特に好ましくは250μm以下、さらにより好ましくは230μm以下である。平均長さ(RSm)の下限は、好ましくは10μm超、より好ましくは50μm以上、更に好ましくは70μm以上である。平均長さ(RSm)の測定方法は、JIS B 0601に準拠した実施例に記載の方法と同様である。ナノオーダーの樹枝状層は、平均長さ(RSm)の測定にほぼ影響しない。
 以下、接合用領域R1の算術平均粗さ(Ra)、十点平均粗さ(Rzjis)、及び平均長さ(RSm)をまとめて「表面粗さ」という場合がある。
 第1実施形態では、接合用領域R1のCIE1976(L)色空間におけるL値の下限は、好ましくは65以上、より好ましくは70以上、更に好ましくは75以上、特に好ましくは80以上、一段と好ましくは85以上である。L値の下限は、高ければ高いほど好ましい。L値は、明度を示す。L値が高いほど、粗化前の金属光沢に近いことを示す。一般的に、金属部材1の平坦面のL値は、金属部材1の材質がアルミニウム系金属部材1である場合は、90程度(以下、「未処理L値」と記載する。)である。L値の下限が上記範囲内であれば、接合用領域R1のL値と、未処理L値との差は、最大で25程度となる。そのため、接合用領域R1の表面粗さは、平坦面に対して目立ちにくい。そのため、金属部材1のL値が高いほど、表面粗さに起因する外観変化がより生じにくいことを示す。L値の測定方法は、実施例に記載の方法と同様である。なお、実施例に記載の方法で測定されるL値の測定値には微量の誤差が生じ得る。L値の測定値の微量の誤差は、例えば、±4程度である。
 接合用領域R1は表面が粗化されている場合、接合用領域R1において、金属部材1の表面S1が粗化されていない状態と金属部材1の表面S1が粗化されている状態とのCIE1976(L)色空間におけるL値の差の絶対値は、好ましくは6.0以下、より好ましくは5.0以下、更に好ましくは3.0以下である。L値の差の絶対値が上記範囲内であれば、金属部材1の表面S1が粗化されていない状態の金属光沢と、金属部材1の表面S1が粗化されている状態の金属光沢とは、同等もしくは同等に近い。すなわち、金属部材1の表面S1が粗化されていない状態と金属部材1の表面S1が粗化されている状態との間で、外観変化が少ないことを意味する。
 本開示において、金属部材1の表面S1が粗化されていない状態とは、第1状態と、第2状態とを含む。第1状態とは、接合用領域R1において、樹枝状層11及び凹凸構造12が粗化によって形成される前の状態を示す。つまり、第1状態では、L値の差の絶対値は、金属部材1の接合用領域R1の所定部位において、粗化前後によるL値の差の絶対値を示す。第2状態とは、接合用領域R1が金属部材1の表面S1の一部に形成されている場合に、金属部材1の表面S1のうち接合用領域R1ではない領域を示す。つまり、第2状態では、L値の差の絶対値は、接合用領域R1内のL値と、接合用領域R1外のL値との差の絶対値を示す。
 アルミニウム系金属部材1では、接合用領域R1において、金属部材1の表面S1をフーリエ変換赤外分光分析による、吸光度差(A-A)の上限は、好ましくは0.030以下、より好ましくは0.020以下である。吸光度差(A-A)の下限は、より好ましくは0.005以上、さらに好ましくは0.010以上である。
 図3は、吸光度差(A-A)を説明するためのフーリエ変換赤外分光分析のスペクトルチャートである。図3中、Aは、3400cm-1に観測される吸収ピークの吸光度を示す。Aは、3800cm-1の吸光度と2500cm-1の吸光度とを結んだ直線の3400cm-1における吸光度を示す。(A-A)は、3400cm-1におけるAとAとの吸光度差を示す。フーリエ変換赤外分光分析には、フーリエ変換赤外分光光度計(FTIR)が用いられる。フーリエ変換赤外分光光度計(FTIR)の測定においては、高感度反射法(RAS法)を採用し、赤外光の入射角は85°である。
 フーリエ変換赤外分光分析で観測される、3400cm-1にピークトップを持つブロードな吸収ピークは、アルミニウム水酸化物、又はアルミニウム水和酸化物に起因するピークと推定される。吸光度差(A-A)は金属部材1の表面S1の水酸基の保有程度を示す指標である。
 金属部材1の表面S1の水酸基量と接合強度との関係については、未だ不明確な点が多い。本発明者らは、この関係について、以下のように考えている。すなわち、金属部材1の表面S1上により多くの水酸基がある場合、環境中の水分は、金属部材1の表面S1に吸着しやすくなる。そのため、金属部材1の表面S1には、水分子層を形成し易くなる。特に、高湿度環境下では、金属部材1の表面S1は、水分子層がより形成されやすい。その結果、金属部材1と樹脂部材2との間の接合強度は、低下するおそれがあると考えている。
 従って、吸光度差(A-A)が0.030以下であることは、接合用領域R1の水酸基の保有量が比較的少ないことを示す。つまり、水分子層は、接合用領域R1における金属部材1の表面S1に形成されにくい。その結果、金属部材1は、樹脂部材2が接合用領域R1に接合され、得られる金属樹脂複合体100が高湿度環境下に曝された場合であっても、より長期に亘って十分な接合強度を維持することができる。
 接合用領域R1において、X線光電子分光法(XPS)で測定された金属部材1の表面S1における金属酸化物の存在割合の下限は、金属酸化物、金属水酸化物、及び水の合計に対して、好ましくは80面積%以上、より好ましくは85面積%以上、さらに好ましくは90面積%以上である。つまり、接合用領域R1の表面S1は、金属酸化物が主成分であることが好ましい。接合用領域R1における金属酸化物の存在割合の下限が上記範囲内であれば、水分子層は、接合用領域R1における金属部材1の表面S1により形成されにくい。水分子層は、環境中の水分の吸収によって形成される。その結果、金属部材1は、樹脂部材2が接合用領域R1の表面S1に接合され、得られる金属樹脂複合体100が高湿度環境下に曝された場合であっても、より長期に亘って十分な接合強度を維持することができる。
 接合用領域R1において、金属酸化物の存在割合は、X線光電子分光法(XPS)によって測定された結合エネルギーの分布のうち、O2-のエネルギーピーク(面積%)から得られる。XPSは、アルゴンスパッタ処理等によって接合用領域R1の表面S1の油分を除去した後、接合用領域R1の直径数mmの測定範囲で測定される。得られる物質の存在割合は、この測定範囲の平均を示す。金属部材1がアルミニウム系金属部材1である場合、金属酸化物はAlを示し、金属水酸化物はAl(OH)を示し、O2-のエネルギーピークはAlのエネルギーピークを示す。
 接合用領域R1の比表面積の上限は、好ましくは1.00m/g以下、より好ましくは0.50m/g以下である。接合用領域R1の比表面積の下限は、好ましくは0.01m/g以上、より好ましくは0.05m/gである。接合用領域R1の比表面積が上記範囲内であれば、樹脂部材2が金属部材1に接合される際、樹脂部材2の溶融物の金属部材1への樹脂部材2の侵入量はより大きい。その結果、金属部材1は、樹脂部材2との接合強度を向上させることができる。接合用領域R1の比表面積の測定方法は、実施例に記載の方法と同様である。
(1.2)樹枝状層
 次に、図1~図3を参照して、本開示の第1実施形態に係る樹枝状層11について説明する。
 樹枝状層11の平均厚みT11(図1参照)の上限は、好ましくは1000nm未満、より好ましくは900nm以下、さらに好ましくは800nm以下、特に好ましくは700nm以下である。樹枝状層11の平均厚みT11の下限は、好ましくは20nm以上、より好ましくは30nm以上、さらに好ましくは50nm以上、特に好ましくは100nm以上である。樹枝状層11の平均厚みT11の測定方法は、実施例に記載の方法と同様である。
 樹枝状層11の平均厚みT11が上記範囲内であれば、接合用領域R1の少なくとも一部に樹脂部材2が接合された際、金属部材1は、樹脂部材2との十分な接合強度をより長期に亘って維持することができる。更に、接合用領域R1の表面特性の変質の発生は抑制され得る。すなわち、可使時間(ポットライフ)は、より一層延長することができる。そのため、例えば、金属樹脂複合体100を、射出成形の一種であるインサート成形で製造する際、所定数の金属部材1を一括して製造しておき、可使時間内に順次使用すればよい。換言すると、金属樹脂複合体100を製造するたびに、その直前に金属部材1は製造されなくてもよい。
 樹枝状層11の主幹の平均本数密度の上限は、好ましくは70本/μm以下、より好ましくは40本/μm以下、さらに好ましくは35本/μm以下、特に好ましくは30本/μm以下である。樹枝状層11の主幹の平均本数密度の下限は、好ましくは5本/μm以上、より好ましくは7本/μm以上、更に好ましくは10本/μm以上である。樹枝状層11の主幹の平均本数密度は、実施例に記載の方法と同様である。
 樹枝状層11の主幹の平均本数密度が上記範囲内であれば、接合用領域R1の少なくとも一部に樹脂部材2が接合された際、金属部材1は、樹脂部材2との間でより強い接合強度を発現することができる。
(2)金属樹脂複合体
 次に、図1~図4を参照して、本開示の第1実施形態に係る金属樹脂複合体100について説明する。図4は、本開示の第1実施形態に係る金属樹脂複合体100の斜視図である。
 金属樹脂複合体100は、図4に示すように、金属部材1と、樹脂部材2とを備える。樹脂部材2は、接合用領域R1において、金属部材1の表面S1の一部(以下、「接合領域R1A」という。)に樹枝状層11を介して接合されている。
 以下、金属樹脂複合体100において、接合用領域R1のうち接合領域R1Aではない領域R1Bを「露出領域R1B」という。
 なお、第1実施形態では、接合用領域R1は、露出領域R1Bを有するが、本発明はこれに限定されず、接合用領域R1は、露出領域R1Bを有していなくてもよい。
 金属樹脂複合体100における金属部材1の露出領域R1Bは、接合用領域R1の一部である。そのため、露出領域R1Bにおける外観変化は抑制されている。これにより、金属樹脂複合体100は、デザインの自由度に優れる。金属樹脂複合体100において、接着剤、ボルト、リベットなどを用いずに、樹脂部材2は、樹枝状層11を介して金属部材1に接合されている。そのため、金属樹脂複合体100は、従来よりも部品点数が少なく、より軽量で、複雑な形状にも対応できる。
 金属樹脂複合体100において、金属部材1の接合領域R1Aは、表面微細組織(モルホロジー)を含む全ての点において、樹脂部材2が接合される前の金属部材1の接合用領域R1と実質同一である。すなわち、金属部材1の接合領域R1Aの微細組織は、樹脂部材2が接合される前後で大きく変化しない。
(2.1)樹脂部材
 樹脂部材2は樹脂組成物からなる。樹脂組成物は、熱可塑性樹脂及び熱可塑性樹脂の少なくとも一方を含む。
 以下、熱可塑性樹脂及び熱可塑性樹脂の少なくとも一方を「樹脂」という。
 熱可塑性樹脂は、特に限定されず、金属樹脂複合体100の用途等に応じて、適宜調整され得る。熱可塑性樹脂は、特に限定されない。熱可塑性樹脂としては、例えば、ポリメタクリル系樹脂、ポリオレフィン系樹脂、ポリメタクリル酸メチル樹脂等のポリメタクリル系樹脂、ポリアクリル酸メチル樹脂等のポリアクリル系樹脂、ポリスチレン樹脂、ポリビニルアルコール-ポリ塩化ビニル共重合体樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリメチルペンテン樹脂、無水マレイン酸-スチレン共重合体樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂等の芳香族ポリエーテルケトン、ポリエステル系樹脂、ポリアミド系樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、スチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アイオノマー、アミノポリアクリルアミド樹脂、イソブチレン無水マレイン酸コポリマー、アクリロニトリル-タジエン-スチレン共重合体(ABS)、アクリロニトリル-塩素化ポリエチレン-スチレン共重合体(ACS)、アクリロニトリル-エチレンプロピレンゴム-スチレン共重合体(AES)、アクリロニトリルスチレン共重合樹脂(AS)、アクリロニトリル-スチレン-アクリルゴム共重合樹脂(ASA)、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS)、エチレン-塩化ビニルコポリマー、エチレン-酢酸ビニルコポリマー、エチレン-酢酸ビニル-塩化ビニルグラフトポリマー、エチレン-ビニルアルコールコポリマー、塩素化ポリ塩化ビニル樹脂、塩素化ポリエチレン樹脂、塩素化ポリプロピレン樹脂、カルボキシビニルポリマー、ケトン樹脂、非晶性コポリエステル樹脂、ノルボルネン樹脂、フッ素プラスチック、ポリテトラフルオロエチレン樹脂、フッ素化エチレンポリプロピレン樹脂、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロフルオロエチレン樹脂、エチレンテトラフルオロエチレンコポリマー、ポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリ塩化ビニリデン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリサルホン樹脂、ポリパラメチルスチレン樹脂、ポリアリルアミン樹脂、ポリビニルエーテル樹脂、ポリフェニレンオキシド樹脂やポリフェニレンスルフィド(PPS)樹脂等のポリアリーレン系樹脂、ポリメチルペンテン樹脂、オリゴエステルアクリレート、キシレン樹脂、マレイン酸樹脂、ポリヒドロキシブチレート樹脂、ポリスルホン樹脂、ポリ乳酸樹脂、ポリグルタミン酸樹脂、ポリカプロラクトン樹脂、ポリエーテルスルホン樹脂、ポリアクリロニトリル樹脂、スチレン-アクリロニトリル共重合体樹脂等が挙げられる。これらの熱可塑性樹脂は一種単独で使用してもよいし、二種以上組み合わせて使用してもよい。
 熱可塑性樹脂としては、金属部材1と樹脂部材2との高い接合強度をより一層安定的に得ることができるという観点から、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、及びポリアリーレン系樹脂から選択される一種または二種以上の熱可塑性樹脂が好適に用いられる。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、熱硬化性ポリイミド樹脂、ビスマレイミドトリアジン樹脂、ベンゾオキサジン樹脂等が挙げられる。これらの熱硬化性樹脂は一種単独で使用してもよいし、二種以上組み合わせて使用してもよい。
 樹脂組成物は、充填材を含有することが好ましい。これにより、金属部材1と樹脂部材2との線膨張係数差の調整することができるとともに、樹脂部材2の機械的強度を向上させることができる。
 充填材は、例えば、ガラス繊維、炭素繊維、炭素粒子、粘土、タルク、シリカ、ミネラル、及びセルロース繊維からなる選択される1種または2種以上であることが好ましい。中でも、充填剤は、ガラス繊維、炭素繊維、タルク、及びミネラルから選択される1種または2種以上である。充填剤の形状は、特に限定されず、繊維状、粒子状、板状等が挙げられる。
 樹脂組成物が充填材を含む場合、充填材の含有量の上限は、樹脂100質量部に対して、好ましくは100質量部以下、より好ましくは90質量部以下、特に好ましくは80質量部以下である。充填材の含有量の下限は、樹脂100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、特に好ましくは10質量部以上である。
 樹脂組成物は、配合剤を含有することが好ましい。これにより、樹脂部材2に所望の機能を付与することができる。配合剤としては、例えば、熱安定剤、酸化防止剤、顔料、耐候剤、難燃剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤等が挙げられる。
 樹脂組成物が配合剤を含有する場合、配合剤の含有量の上限は、樹脂100質量部に対して、好ましくは5質量部以下、より好ましくは3質量部以下である。配合剤の含有量の下限は、樹脂100質量部に対して、好ましくは0.0001質量部以上、より好ましくは0.001質量部以上である。
(2.2)金属樹脂複合体の用途
 金属樹脂複合体100は、上述したように、露出領域R1Bの外観変化が抑制され、金属部材1と樹脂部材2との接合強度は十分であるので、様々な用途に展開され得る。
 金属樹脂複合体100の用途としては、例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、建築部材、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品、外装用部品等が挙げられる。
(3)金属部材の製造方法
 次に、本開示の第1実施形態に係る金属部材1の製造方法について説明する。
 金属部材1の製造方法は、第1準備工程と、樹枝状層形成工程とを含む。第1準備工程及び樹枝状層形成工程は、この順で実行される。
 金属部材1の製造方法は、第1準備工程及び樹枝状層形成工程の他に、前処理工程、置換工程、粗化工程、及び後処理工程の少なくとも1つを更に含むことが好ましい。金属部材1の製造方法が前処理工程、置換工程、粗化工程、及び後処理工程を更に含む場合、第1準備工程、前処理工程、置換工程、粗化工程、後処理工程、及び樹枝状層形成工程は、この順で実行される。
 以下、金属部材1の製造方法が、第1準備工程及び樹枝状層形成工程の他に、前処理工程、置換工程、粗化工程、及び後処理工程を更に含む場合について、説明する。
(3.1)第1準備工程
 第1準備工程では、金属基材を準備する。金属基材の巨視的な形状、金属基材の表面の巨視的な形状、金属基材の材質の各々は、金属部材1と略同一である。
 金属基材を準備する方法は、特に限定されず、例えば、金属素材を加工する方法等が挙げられる。金属素材の材質は、金属部材1の材質と略同一である。金属素材の加工方法は、特に限定されず、例えば、塑性加工、除肉加工などが挙げられる。塑性加工としては、例えば、金属素材の切断、金属素材のプレス等が挙げられる。除肉加工としては、例えば、金属素材の打ち抜き加工、金属素材の切削、金属素材の研磨、金属素材の放電加工等が挙げられる。
(3.2)前処理工程
 前処理工程では、金属基材の表面に存在する被膜を除去する。被膜は、酸化物、水酸化物等からなる。被膜を除去する方法としては、例えば、アルカリ性水溶液による処理、機械研磨、化学研磨処理、脱脂処理、超音波洗浄処理等が挙げられる。アルカリ性水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液等が挙げられる。
(3.3)置換工程
 置換工程では、金属基材に亜鉛イオン含有アルカリ水溶液を浸漬させる。これにより、金属基材の表面には、亜鉛含有被膜が形成される。
 亜鉛イオン含有アルカリ水溶液は、水酸化アルカリ(MOH又はM(OH))及び亜鉛イオン(Zn2+)を含有する。水酸化アルカリ(MOH又はM(OH))のMは、アルカリ金属、又はアルカリ土類金属である。
 以下、水酸化アルカリ(MOH又はM(OH))を、単に「水酸化アルカリ(MOH)」と記載する。
 水酸化アルカリ(MOH)の含有量は、亜鉛イオン(Zn2+)に対する水酸化アルカリ(MOH)の重量比(MOH/Zn2+)で、好ましくは1以上100以下である。置換処理は、例えば、国際公開第2013/47365号に開示された処理方法であってもよい。
(3.4)粗化工程
 第1実施形態において、粗化工程では、金属基材の表面のうち樹枝状層11が形成される領域の表面を粗化して、樹枝状層11が形成される領域の表面の算術平均粗さRaを20.0μm以下にする。樹枝状層11が形成される領域の表面を粗化して、算術平均粗さRaを0.3μm以上とすれば、金属基材の表面に凹凸構造12(図2参照)が形成される。これにより、樹脂部材2が金属部材1に接合される際、金属部材1と樹脂部材2との接合強度は、向上する。
 金属部材1の表面S1を粗化する方法は、特に限定されず、例えば、薬液処理、機械的切削処理等が挙げられる。機械研磨処理としては、例えば、サンドブラスト処理、ローレット加工、レーザー加工等が挙げられる。エッチング処理としては、例えば、アルカリ系エッチング剤を用いる処理、酸系エッチング剤を用いる処理等が挙げられる。これらの方法は単独で、または適宜組み合わせて用いることができる。これらの中でも、酸系エッチング剤による処理が好ましい。
 酸系エッチング剤は、第二鉄イオンと第二銅イオンの少なくとも一方と、酸を含むことが好ましい。これにより、金属基材の表面に置換工程で形成された亜鉛含有被膜を溶離させると共に、ミクロンオーダーの凹凸構造12(図2参照)を形成させることができる。酸系エッチング剤を用いる処理方法としては、例えば国際公開第2015/8847号、特開2001-348684号公報、国際公開第2008/81933号等に開示された処理方法を採用することができる。
 酸系エッチング剤の温度の上限は、好ましくは60℃以下、より好ましくは50℃以下である。酸系エッチング剤の温度の下限は、好ましくは常温以上、好ましくは30℃以上である。
 酸系エッチング剤の処理時間は、接合用領域R1の所望の算術平均粗さRa等に応じて、適宜調整される。酸系エッチング剤の処理時間を調整することにより、金属基材の表面に形成する表面粗さを調整することができる。酸系エッチング剤の処理時間の上限は、好ましくは600秒以内、より好ましくは500秒以内、さらに好ましくは150秒以内、特に好ましくは10秒以内である。
 酸系エッチング剤の処理時間が500秒であれば、接合用領域R1のL値は70以上になりやすい。酸系エッチング剤の処理時間が150秒であれば、接合用領域R1のL値は80以上になりやすい。酸系エッチング剤の処理時間が100秒であれば、接合用領域R1のL値は85以上になりやすい。
(3.5)後処理工程
 後処理工程では、金属基材の表面を洗浄する。洗浄方法としては、例えば、水洗、超音波洗浄等が挙げられる。
(3.6)樹枝状層形成工程
 樹枝状層形成工程では、金属基材の表面の少なくとも一部を、酸化性酸性水溶液でエッチングする。これにより、金属基材の表面に樹枝状層11が形成される。つまり、金属部材1が得られる。
 酸化性酸性水溶液は、25℃における標準電極電位Eが-0.2超え0.8以下、好ましくは0超え0.5以下の金属カチオンを含む。酸化性酸性水溶液は、25℃における標準電極電位Eが-0.2以下の金属カチオンを含まないことが好ましい。
 25℃における標準電極電位Eが-0.2超え0.8以下である金属カチオンとしては、Pb2+、Sn2+、Ag、Hg2+、Cu2+等が挙げられる。金属の希少性の視点、金属塩の安全性及び毒性の視点からCu2+が好ましい。Cu2+を発生させる化合物としては、水酸化銅、酸化第二銅、塩化第二銅、臭化第二銅、硫酸銅、硝酸銅等が挙げられる。無機化合物の安全性、毒性の視点、樹枝状層の付与効率の視点からは酸化第二銅が好ましく用いられる。
 酸化性酸性水溶液としては、例えば、第1水溶液、第2水溶液等が挙げられる。第1水溶液は、硝酸又は硝酸と、塩酸、弗酸、及び硫酸のいずれかを混合した酸を含む。第2水溶液は、過酢酸、又は過ギ酸を含む。酸化性酸性水溶液は、硝酸、及び酸化第二銅を含むことが好ましい。酸化第二銅は、金属カチオン発生化合物である。
 酸化性酸性水溶液中の硝酸濃度の上限は、好ましくは40質量%以下、より好ましくは38質量%以下、さらに好ましくは35質量%以下である。酸化性酸性水溶液中の硝酸濃度の下限は、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上である。硝酸濃度の上限が40質量%以下であれば、金属部材1の表面S1は十分に粗化され得る。硝酸濃度の下限が10質量%以上であれば、銅イオンは酸化性酸性水溶液中に十分に溶解する。
 酸化性酸性水溶液中の銅イオン(第二銅イオン)濃度の上限は、好ましくは15質量%以下、より好ましくは12質量%以下、さらに好ましくは8質量%以下である。酸化性酸性水溶液中の銅イオン(第二銅イオン)濃度の下限は、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは2質量%以上である。銅イオン濃度が15質量%以下であれば、酸化第二銅が酸化性酸性水溶液中に十分に溶解し、金属部材1の表面S1上に赤い銅残渣が発生しにくい。銅イオン濃度が1質量%以上であれば、金属基材の表面を効率良く粗化することができる。
 酸化性酸性水溶液中の銅イオン(第二銅イオン)濃度を調整することで、樹枝状層11の主幹の平均本数密度を調整することができる。
 金属カチオンを含む酸化性酸性水溶液と接触する際の温度の上限は、好ましくは60℃以下、より好ましくは50℃以下である。温度の下限は、好ましくは常温以上、好ましくは30℃以上である。金属カチオンを含む酸化性酸性水溶液と接触する際の温度が上記範囲内であれば、発熱反応を制御しつつ経済的なスピードで超粗化処理を完結させることができる。処理時間の上限は、好ましくは15分以内、より好ましくは10分以内である。処理時間の下限は、好ましくは1分以上、より好ましくは2分以上である。
(4)金属樹脂複合体の製造方法
 次に、本開示の第1実施形態に係る金属樹脂複合体100の製造方法について説明する。
 金属樹脂複合体100の製造方法は、第2準備工程、第3準備工程、及び射出工程を含む。第2準備工程及び第3準備工程の各々は、射出工程の前に実行される。第2準備工程及び第3準備工程の各々の実行順は、特に限定されない。
(4.1)第2準備工程
 第2準備工程では、樹脂組成物を準備する。
 樹脂組成物を準備する方法としては、樹脂、必要に応じて充填材及び配合剤を混合装置により混合する方法等が挙げられる。混合装置としては、例えば、バンバリーミキサー、単軸押出機、二軸押出機、高速二軸押出機等が挙げられる。
(4.2)第3準備工程
 第3準備工程では、金属部材1を準備する。金属部材1を準備する方法は、金属部材1の製造方法で説明した方法と同様である。
(4.3)射出工程
 射出工程では、射出成形によって、金属部材1の接合用領域R1の接合領域R1Aに樹脂部材2を形成する。これにより、樹脂部材2は、樹枝状層11を介して金属部材1に接合される。つまり、金属樹脂複合体100が得られる。
 射出成形には、射出成形機が用いられる。射出成形機は、金型と、射出装置と、型締装置とを備える。金型は、可動側金型と、固定側金型とを備える。固定側金型は射出成形機に固定されている。可動側金型は、固定側金型に対して可動可能である。射出装置は、樹脂組成物の溶融物(以下、「樹脂溶融物」という。)を、所定の射出圧力で、金型のスプルーに流し込む。型締装置は、樹脂溶融物の充填圧力で可動側金型が開かないように、可動側金型を高圧で締め付ける。
 まず、可動側金型を開いて、金属部材1を固定側金型上に設置し、可動側金型を閉じて、型締を行う。つまり、金属部材1は、金型内に収容される。これにより、金属部材1と金型との間に樹脂部材用空間が形成される。樹脂部材用空間は、樹脂部材2を形成する空間を示す。
 次いで、射出成形機は、樹脂部材用空間内に、樹脂溶融物を高圧で充填する。樹脂溶融物は、樹脂溶融物を示す。次いで、金型内の樹脂溶融物を冷却固化させる。これにより、樹枝状層11を介して接合領域R1Aに接合された樹脂部材2が形成される。つまり、金属樹脂複合体100が得られる。
 射出工程では、射出成形にあわせて、射出発泡成形、及び高速ヒートサイクル成形(RHCM,ヒート&クール成形)の少なくとも一方を併用してもよい。高速ヒートサイクル成形では、金型を急速に加熱冷却する。射出発泡成形の方法として、第1方法、第2方法、第3方法等が挙げられる。第1方法では、化学発泡剤を樹脂組成物に添加する。第2方法では、射出成形機のシリンダー部に直接、窒素ガスや炭酸ガスを注入する。第3方法では、窒素ガス又は炭酸ガスを超臨界状態で射出成形機のシリンダー部に注入する。これらのいずれの方法でも、金型の制御方法として、カウンタープレッシャーを使用したり、樹脂部材2の形状によってはコアバックを利用することができる。
 高速ヒートサイクル成形は、急速加熱冷却装置を金型に接続することにより、実施される。加熱方法として、蒸気式、加圧熱水式、熱水式、熱油式、電気ヒータ式、電磁誘導加熱式等が挙げられる。冷却方法としては、冷水式、冷油式等が挙げられる。
 高速ヒートサイクル成形法の条件としては、例えば、金型を100℃以上250℃以下の温度に加熱し、樹脂溶融物の射出が完了した後、金型を冷却することが望ましい。金型の温度は、熱可塑性樹脂の種類に応じて適宜調整され得る。熱可塑性樹脂が結晶性樹脂で融点が200℃未満である場合、金型の温度は、100℃以上150℃以下であることが好ましい。熱可塑性樹脂が結晶性樹脂で融点が200℃以上であれば、金型の温度は、140℃以上250℃以下であることが好ましい。熱可塑性樹脂が非晶性樹脂である場合、金型を加熱する温度は、100℃以上180℃以下であることが好ましい。金型の温度は、金型のキャビティ付近に挿入されたセンサによって検知される温度を示す
(5)第2実施形態
 本開示の第2実施形態に係る金属部材1について説明する。
 第2実施形態では、金属部材1は、接合用領域R1を有する。接合用領域R1の領域のCIE1976(L*a*b*)色空間におけるL値は、65以上である。
 第2実施形態では、金属部材1は、接合用領域R1を有する。そのため、樹脂部材2が金属部材1に接合される際、樹脂部材2の溶融物は、樹枝状層11の凹部内に効果的に侵入する。これにより、金属部材1と樹脂部材2との間には、物理的な抵抗力(アンカー効果)が効果的に発現する。つまり、樹枝状層11は、従来では困難であった金属部材1と樹脂部材2とを強固に接合させることができる。接合用領域R1のL値は、65以上で、接合用領域R1の表面粗さは、平坦面に対して目立ちにくい。つまり、粗化に起因する外観変化は、抑制されている。その結果、金属部材1は、粗化に起因する外観変化が抑制され、かつ接着剤等を用いなくても樹脂部材2との十分な接合強度を確保することができる。
 第2実施形態に係る金属部材1の巨視的な形状、表面S1の巨視的な形状、及び材質の各々は、第1実施形態で例示したものと同様である。
(5.1)接合用領域R1
 次に、本開示の第2実施形態に係る接合用領域R1について説明する。
 第2実施形態に係る接合用領域R1は、第1実施形態と同様に、金属部材1の表面S1の少なくとも一部であればよい。
 第2実施形態では、接合用領域R1のCIE1976(L)色空間におけるL値の下限は、65以上、好ましくは70以上、より好ましくは75以上、更に好ましくは80以上、特に好ましくは85以上である。L値の下限は、高ければ高いほど好ましい。L値の下限が上記範囲内であれば、粗化に起因する外観変化は、抑制されている。L値の測定方法は、実施例に記載の方法と同様である。
 第2実施形態では、接合用領域R1の算術平均粗さ(Ra)の上限は、粗化に起因する外観変化が抑制する観点から、好ましくは20.0μm以下であり、より好ましくは10.0μm以下、さらに好ましくは8.0μm以下、特に好ましくは6.0μm以下、一段と好ましくは5.0μm以下、より一層好ましくは2.5μm以下である。
 第2実施形態に係る接合用領域R1の算術平均粗さ(Ra)の下限、十点平均粗さ(Rzjis)、平均長さ(RSm)、L値の差の絶対値、吸光度差(A-A)、及び金属酸化物の存在割合の各々は、第1実施形態で例示したものと同様である。
(5.2)樹枝状層
 次に、本開示の第2実施形態に係る樹枝状層11について説明する。
 第2実施形態に係る樹枝状層11の平均厚みT11、及び樹枝状層11の主幹の平均本数密度の各々は、第1実施形態で例示したものと同様である。
(6)金属部材の製造方法
 次に、本開示の第2実施形態に係る金属部材1の製造方法について説明する。
 第2実施形態に係る金属部材1の製造方法は、粗化工程が、第1実施形態に係る金属部材1の製造方法と異なる。
 第2実施形態に係る金属部材1の製造方法は、第1準備工程、前処理工程、置換工程、粗化工程、後処理工程、及び樹枝状層形成工程、を更に含む。
 第2実施形態に係る第1準備工程、前処理工程、置換工程、後処理工程、及び樹枝状層形成工程の各々は、第1実施形態で例示した工程と同様である。
 第2実施形態において、粗化工程では、金属基材の表面のうち樹枝状層11が形成される領域の表面を粗化して、樹枝状層11が形成される領域の表面のL値を65以上にする。
 第2実施形態に係る金属部材1の表面S1を粗化する方法は、第1実施形態で例示した方法と同様である。
 以下、本発明に係る実施形態を、実施例を参照して詳細に説明する。なお、本発明は、これらの実施例の記載に何ら限定されるものではない。
[1]実施例1
[1.1]金属部材の製造
 下記のようにして、金属部材を製造した。
[1.1.1]第1準備工程
 金属素材として、アルミニウム合金板(厚み:2.0mm、合金番号:5052)を準備した。金属素材を切断し、直方体状の金属基材(長さ:45mm、幅:18mm)を得た。
[1.1.2]前処理工程
 得られた金属基材を、下記成分の脱脂剤(60℃)が充填された第1槽に浸漬して超音波洗浄を5分間行った後、イオン交換水で水洗した。
<脱脂剤の成分>
・アルミニウムクリーナー: 5質量%
・水          :95質量%
 アルミニウムクリーナーは、製品名「アルミニウムクリーナー NE-6」(メルテックス株式会社製)である。
[1.1.3]置換工程
 次いで、金属基材を下記成分のアルカリ系エッチング剤(30℃)が充填された第2槽に2分間浸漬させた後、イオン交換水で水洗した。
<アルカリ系エッチング剤の成分>
・水酸化ナトリウム:19.0質量%
・酸化亜鉛    : 3.2質量%
・水       :77.8質量%
[1.1.4]粗化工程
 次いで、金属基材の表面の全面を下記成分の第1酸系エッチング水溶液(30℃)が充填された第3槽に20秒間浸漬し、搖動させた。次いで、金属基材をイオン交換水で水洗した。
<第1酸系エッチング水溶液の成分>
・塩化第二鉄: 3.9質量%
・塩化第二銅: 0.2質量%
・硫酸   : 4.1質量%
・水    :91.8質量%
[1.1.5]後処理工程
 次いで、金属基材をイオン交換水が充填された第4槽に浸漬して超音波洗浄を3分間行った後、下記成分の硝酸水溶液(40℃)が充填された第5槽に2分間浸漬させた。これにより、主として、金属基材の表面に析出した銅は、剥離した。
<硝酸水溶液の成分>
・硝酸:30質量%
・水 :70質量%
[1.1.6]樹枝状層形成工程
 次いで、金属基材の表面の全面を、下記成分の第2酸系エッチング水溶液(40℃)が充填された第3槽に5分間浸漬し、搖動させた。Cu2+の標準電極電位Eは、+0.337(Vvs. SHE)であった。次いで、金属基材をイオン交換水で水洗し、80℃で15分間乾燥して、金属部材を得た。
<第2酸系エッチング水溶液の成分>
・酸化第二銅: 6.3質量%(Cu2+として5.0質量%)
・硝酸   :30.0質量%
・水    :63.7質量%
[1.2]金属部材の測定等
 得られた金属部材の接合用領域について、下記の測定方法等により樹枝状層の有無等の測定等を行った。樹枝状層の存在の有無、算術平均粗さ(Ra)、十点平均粗さ(Rzjis)、平均長さ(RSm)、L値、及び外観変化の評価の測定結果等を表1に示す。
[1.2.1]樹枝状層の存在の有無の確認方法
 金属部材の断面構造を走査型電子顕微鏡(SEM)で観察し、樹枝状層の存在の有無を確認した。
 図5は、実施例1の金属部材の接合用領域の断面を撮影したSEM写真(撮影倍率:10万倍)である。図5中、符号E1は、樹枝状層を示す。実施例1では、図5に示すように、金属部材の接合用領域の表面に形成された樹枝状層を確認した。
[1.2.2]表面粗さの測定方法
 下記の測定条件で、異なる6点の測定場所の表面粗さを測定し、6つの測定値の平均値を接合用領域の算術平均粗さ(Ra)、十点平均粗さ(Rzjis)、平均長さ(Rsm)とした。
 図6は、表面粗さの測定方法を説明するための金属部材1の上面図である。測定場所は、図6に示すように、金属部材1の接合用領域R1の表面S1の6直線部B1~B6である。6直線部B1~B6は、任意の3直線部B1~B3と、この3直線部B1~B3と直交する3直線部B4~B6とからなる。詳しくは、直線部B1は、金属部材1の接合用領域R1の表面S1の中心部Aを通る。直線部B1~B3は、互いに平行である。直線部B4は、金属部材1の接合用領域R1の表面S1の中心部Aを通る。直線部B4と、直線部B1とは、中心部Aにおいて直交する。直線部B4~B6は、互いに平行である。隣接する直線部の間隔D1~D4は、2mm以上5mm以下であった。
<表面粗さの測定条件>
・測定装置  :表面粗さ測定装置「サーフコム1400D(東京精密社製)」
・方式    :触針式
・触針先端半径:5μm
・基準長さ  :0.8mm
・評価長さ  :4mm
・測定速度  :0.06mm/秒
[1.2.3]接合用領域のL値の測定方法
 日本電色工業(株)製分光式色差計「SE2000」を用いて、金属部材の接合用領域の表面のL値を測定した。
[1.2.4]接合用領域の外観変化の評価
 金属部材の接合用領域の外観を目視で観察した。接合用領域の外観に基づいて、下記基準で、接合用領域の外観変化を評価した。外観評価の許容可能な評価は、評価基準A、B又はCである。
<評価基準>
A:粗化に起因する外観変化(光沢の変化)は、全く見られなかった。
B:粗化に起因する外観変化(光沢の変化)は、若干見られたが、許容できる範囲であった。
C:粗化に起因する外観変化(光沢の変化)は、見られたが、許容できる範囲であった。
D:粗化に起因する外観変化(光沢の変化)は、目立っていた。
[1.2.5]樹枝状層の平均厚みの測定方法
 金属部材の断面構造をSEM写真で観察し、樹枝状層の平均厚みを算出した。金属部材上の任意の10点について、SEM写真を撮影した。次いで、各SEM写真につき任意の2スポットについて1μm長さにおける平均厚みを計測した。他の9点についても同様な計測を行った。得られた合計20点の測定値の平均値を、樹枝状層の平均厚みとした。
 実施例1では、金属部材の樹枝状層の厚みは、490nmであった。
[1.2.6]樹枝状層の主幹の平均本数密度の測定方法
 金属部材の表面のSEM写真から一定のエリアを選択し、金属部材の表面から林立する「主幹の数」をカウントした。カウントした「主幹の数」を金属部材の表面の単位長さ当たりに換算して、樹枝状層の主幹の平均本数密度を測定した。一つのSEM写真測定において合計で10ヶ所測定した平均値を、樹枝状層の主幹の平均本数密度とした。
 図5に示すように、樹枝状層の複数の主幹の各々は、金属部材の接合用領域の表面から林立している。実施例1では、樹枝状層の主幹の平均本数密度は、28本/μmであった。
[1.2.7]接合用領域の比表面積の測定方法
 金属部材を真空加熱脱気(100℃)した後、「BELSORP-max」(マイクロトラックベル株式会社製)を使用し、液体窒素温度下(77K)における窒素ガス吸着法にて吸着等温線を測定し、BET法によって接合用領域の比表面積を求めた。
 実施例1では、金属部材の接合用領域の比表面積は、0.21m/gであった。
[1.2.8]接合用領域の吸光度差(A-A)の測定
 金属部材の接合用領域の表面のFT-IRスペクトルを株式会社島津製作所製のフーリエ変換赤外分光光度計(FTIR)と高感度反射測定装置「RAS-8000」を組み合わせた装置を用いて、赤外光の入射角を85°の条件で測定した。測定したフーリエ変換赤外分光分析のスペクトルチャートを図8に示す。図8中、符号F1は、実施例1のスペクトルチャートを示す。符号F2は、後述する参考例1のスペクトルチャートを示す。符号F3は、参考例2のスペクトルチャートを示す。詳しくは、参考例2は、特開2018-144475号公報の明細書に記載の実施例1と同様にして作製した金属部材(以下、「公知金属部材」という。)のスペクトルチャートを示す。公知金属部材の表面は、温水に浸漬されることで粗化処理が施されている。そのため、公知金属部材の表面には、アルミニウム水酸化物を含む被膜が形成されている。
 参考例2のスペクトルチャートは、図8に示すように、3400cm-1にピークトップを持つブロードな吸収ピークを有する。参考例2では、3400cm-1に観測される吸収ピークの吸光度をA、3800cm-1の吸光度と2500cm-1の吸光度とを結んだ直線の3400cm-1における仮想吸光度をAとした場合、吸光度差(A-A)値は、0.03超であった。
 実施例1では、図8に示すように、吸光度差(A-A)値は約0であった。
[1.3]金属樹脂複合体の製造
 下記のようにして、金属部材複合体を製造した。
[1.3.1]第2準備工程
 樹脂組成物として、「短繊維ガラス強化ポリプロピレン V7100」(株式会社プライムポリマー製、成分:ポリプロピレン80質量%とガラス繊維20質量%、ポリプロピレンの物性:MFR(230℃、2.16kg荷重):18g/10分)を準備した。
[1.3.2]第3準備工程
 金属部材として、上述した[1.1.6]樹枝状層形成工程における乾燥させた直後の金属部材を用いた。
[1.3.3]射出成形工程
 金属部材を、横型射出成形機(「J55AD」、日本製鋼所製)に装着された小型ダンベル金属インサート金型内に直ちに設置した。次いで、その金型内に樹脂組成物を、下記の成形条件にて射出成形して金属部材の接合領域に樹脂部材を形成した。これにより、金属樹脂複合体を得た。
<成形条件>
・シリンダー温度:230℃
・金型の温度  :80℃
・一次射出圧  :93MPa
・保圧     :80MPa
・射出速度   :25mm/秒
[1.4]金属樹脂複合体の各種測定
 得られた金属樹脂複合体について、下記の測定方法等により引張せん断強度等の測定等を行った。引張せん断強度の測定結果を表1に示す。引張せん断強度の許容範囲は、23Mpa以上である。
[1.4.1]引張せん断強度の測定
 金属樹脂複合体について、引っ張り試験機「モデル1323(アイコーエンジニヤリング社製)」を使用し、引張試験機に専用の治具を取り付け、下記測定条件にて、x方向(図4参照)に引っ張って測定をおこなった。破断荷重(N)を接合領域の面積で除することにより接合強度(MPa)を得た。接合領域R1Aにおいて、第1長さLa(図4参照)を5mmとし、第2長さLb(図4参照)を10mmとした。
<引張せん断強度の測定条件>
・温度     :室温(23℃)
・チャック間距離:60mm
・引張速度   :10mm/分
 実施例1では、引張せん断強度は26.05(MPa)であった。標準偏差σは0.2MPaであった(N=5)。破壊面の形態は母材破壊のみが認められた。
[1.4.2]接合領域の断面の観察等
 金属部材の接合領域における金属樹脂複合体の断面構造をSEM写真で観察した。更に、上述した[1.2.2]樹枝状層の平均厚みの測定方法と同様にして、金属樹脂複合体の樹枝状層の平均厚みを測定した。
 図7は、実施例1の金属樹脂複合体の断面を撮影したSEM写真(撮影倍率:5万倍)である。詳しくは、図7は、金属部材の接合用領域における金属樹脂複合体の断面のSEM写真を示す。図7に示すように、ナノオーダーの樹枝状層は、ミクロンオーダーの凹凸形状に追随するように、金属部材の表面を覆っていることを確認した。金属樹脂複合体の樹枝状層の平均厚みは、500nmであった。これらから、金属樹脂複合体において、金属部材の接合領域は、樹脂部材が接合される前の金属部材の接合用領域と実質同一であることが確認できた。
[2]実施例2~6
 実施例2~6では、[1.1.4]粗化工程における浸漬時間を表1に示す時間に変更した点の他は、実施例1と同様にして、金属部材、及び金属樹脂複合体を得た。得られた金属部材の樹枝状層の有無、算術平均粗さ(Ra)、十点平均粗さ(Rzjis)、平均長さ(Rsm)、L値、及び外観変化評価の評価結果等を表1に示す。更に得られた金属樹脂複合体の引張せん断強度の測定結果を表1に示す。
[3]実施例7~12
 実施例7~12では、[1.1.4]粗化工程における浸漬時間を表1に示す時間に変更した点、[1.3.1]第2準備工程における樹脂組成物をポリブチレンテレフタレート(PBT)樹脂「ジュラネックス(登録商標)930HL」(ポリプラスチック株式会社製)に変更した点の他は、実施例1と同様にして、金属部材、及び金属樹脂複合体を得た。得られた金属部材の樹枝状層の有無、算術平均粗さ(Ra)、十点平均粗さ(Rzjis)、平均長さ(Rsm)、L値、及び外観変化評価の評価結果等を表1に示す。更に得られた金属樹脂複合体の引張せん断強度の測定結果を表1に示す。
[4]比較例1
[4.1]金属部材の製造
 下記のようにして、金属部材を製造した。
[4.1.1]第1準備工程
 実施例1の[1.1.1]第1準備工程と同様にして、金属基材を得た。
[4.1.2]前処理工程
 実施例1の[1.1.2]前処理工程と同様にして、金属基材の表面に存在する被膜を除去した。
[4.1.3]置換工程
 実施例1の[1.1.3]置換工程を実行しなかった。
[4.1.4]粗化工程
 第1酸系エッチング水溶液を下記の第3酸系エッチング水溶液に変更した点、浸漬時間を表1に示す時間に変更した点の他は、実施例1の[1.1.4]粗化工程と同様にして、金属基材を粗化した。
<第3酸系エッチング水溶液の成分>
・塩化第二鉄: 3.9質量%
・硫酸   : 4.1質量%
・水    :92.0質量%
[4.1.5]後処理工程
 実施例1の[1.1.5]後処理工程と同様にして、金属基材の表面を洗浄した。これにより、金属部材を得た。
[4.1.6]樹枝状層形成工程
 実施例1の[4.1.6]樹枝状層形成工程を実行しなかった。
[4.2]金属部材の測定等
 得られた金属部材の接合用領域について、下記の測定方法等により測定等を行った。得られた金属部材の樹枝状層の有無、算術平均粗さ(Ra)、十点平均粗さ(Rzjis)、平均長さ(Rsm)、L値、及び外観変化評価の評価結果等を表1に示す。
[4.3]金属樹脂複合体
 比較例1の金属部材を用いた他は、実施例1と同様にして、金属樹脂複合体を得た。得られた金属樹脂複合体の引張せん断強度の測定結果を表1に示す。
[5]比較例2
 比較例2では、[4.1.4]粗化工程における浸漬時間を表1に示す時間に変更した点の他は、比較例1と同様にして、金属部材、及び金属樹脂複合体を得た。得られた金属部材の樹枝状層の有無、算術平均粗さ(Ra)、十点平均粗さ(Rzjis)、平均長さ(Rsm)、L値、及び外観変化評価の評価結果等を表1に示す。更に得られた金属樹脂複合体の引張せん断強度の測定結果を表1に示す。
[6]比較例3
 比較例3では、[4.1.4]粗化工程における第3酸系エッチング水溶液を下記の第4酸系エッチング水溶液に変更した点、[4.1.4]粗化工程における浸漬時間を表1に示す時間に変更した点の他は、比較例1と同様にして、金属部材、及び金属樹脂複合体を得た。得られた金属部材の樹枝状層の有無、算術平均粗さ(Ra)、十点平均粗さ(Rzjis)、平均長さ(Rsm)、L値、及び外観変化評価の評価結果等を表1に示す。更に得られた金属樹脂複合体の引張せん断強度の測定結果を表1に示す。
<第4酸系エッチング水溶液>
・塩化第二鉄: 3.9質量%
・水    :96.1質量%
[7]参考例1
 参考例1では、実施例1の[1.1.1]第1準備工程、及び[1.1.2]前処理工程のみを行い、金属部材を得た。得られた金属部材の樹枝状層の有無、算術平均粗さ(Ra)、十点平均粗さ(Rzjis)、及び平均長さ(Rsm)の評価結果等を表1に示す。
 金属部材の接合用領域の表面のFT-IRスペクトルを実施例1と同様にして、測定した。
 参考例1では、図8に示すように、吸光度差(A-A)値は約0であった。
[8]実施例13
 実施例13では、[1.1.6]樹枝状層形成工程における第2酸系エッチング水溶液の成分を下記の成分に変更した他は、実施例1と同様にして、金属部材を得た。得られた金属部材を用いて実施例1と同様にして、金属樹脂複合体を得る。
<第2酸系エッチング水溶液の成分>
・硫酸銅 : 0.26質量%(Cu2+として0.1質量%)
・硝酸  : 30.0質量%
・水   : 69.7質量%
 金属部材の樹枝状層の有無、算術平均粗さ(Ra)、十点平均粗さ(Rzjis)、及び平均長さ(Rsm)は、実施例1と同様であり、算術平均粗さ(Ra)は5.0μm以下である。L値、及びL値の差は、実施例1と同様であり、L値は75以上である。外観変化評価は、A又はBである。金属樹脂複合体の引張せん断強度は、23MPa以上である。
 金属部材の樹枝状層の主幹の平均本数密度を、実施例1と同様にして、測定した。図9は、実施例13の金属部材の断面を撮影したSEM写真(撮影倍率:10万倍)である。図9中、符号E2は、樹枝状層を示す。
 図9に示すように、樹枝状層の複数の主幹の各々は、金属部材の接合用領域の表面から林立している。実施例13では、樹枝状層の主幹の平均本数密度は、8本/μmであった。
 [9]実施例14
 実施例14では、[1.1.6]樹枝状層形成工程における第2酸系エッチング水溶液の成分を下記の成分に変更した他は、実施例1と同様にして、金属部材を得た。得られた金属部材を用いて実施例1と同様にして、金属樹脂複合体を得る。
<第2酸系エッチング水溶液の成分>
・硫酸銅 : 12.55質量%(Cu2+として5.0質量%)
・硝酸  : 30.0質量%
・水   : 57.5質量%
 金属部材の樹枝状層の有無、算術平均粗さ(Ra)、十点平均粗さ(Rzjis)、及び平均長さ(Rsm)は、実施例1と同様であり、算術平均粗さ(Ra)は5.0μm以下である。L値、及びL値の差は、実施例1と同様であり、L値は75以上である。外観変化評価は、A又はBである。金属樹脂複合体の引張せん断強度は、23MPa以上である。
 金属部材の樹枝状層の主幹の平均本数密度を、実施例1と同様にして、測定した。図10は、実施例14の金属部材の断面を撮影したSEM写真(撮影倍率:10万倍)である。図10中、符号E3は、樹枝状層を示す。
 図10に示すように、樹枝状層の複数の主幹の各々は、金属部材の接合用領域の表面から林立している。実施例14では、樹枝状層の主幹の平均本数密度は、47本/μmであった。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中、「L値の差」とは、金属部材1の表面S1が粗化されていない状態のL値と、各実施例で測定されたL値との差の絶対値を示す。実施例1~12、及び比較例1~3において、金属部材1の表面S1が粗化されていない状態のL値として、実施例1のL値を用いた。実施例2では、粗化工程における浸漬時間が20秒と短い。そのため、実施例1の接合用領域のL値と、粗化工程が実行されていない接合用領域のL値とは、同等と評価できるためである。
 外観変化評価の許容可能な評価は、「A」、「B」、又は「C」である。引張せん断強度の許容可能な範囲は、「23MPa以上」である。
 表1中、粗化工程の酸性エッチング液の項目において、「-」は、粗化工程が実行されなかったことを示す。表1中、樹枝状層形成工程の項目において、「-」は、樹枝状層形成工程が実行されなかったことを示す。表1中、樹枝状層の有無の項目において、「〇」は、接合用領域における金属部材の表面に樹枝状層が形成されていることを示し、「×」は、接合用領域における金属部材の表面に樹枝状層が形成されていないことを示す。表1中、樹脂部材の材質の項目において、「PP」は、「短繊維ガラス強化ポリプロピレン V7100」(株式会社プライムポリマー製)を示し、「PBT」は、ポリブチレンテレフタレート(PBT)樹脂「ジュラネックス(登録商標)930HL」(ポリプラスチック株式会社製)を示す。
 表1中、参考例1のL値、L値の差、及び外観変化評価の各々の項目において、「-」は、金属部材の表面に残された油脂による乱反射により、L値が正しく反映されないため、L値が測定できなかったことを示す。
 表1中、参考例1の引張せん断強度の項目において、「-」は、引張せん断強度の測定を行わなかったことを示す。
 実施例1~実施例12の金属部材は、表面に樹枝状層が形成された接合用領域を有し、接合用領域の算術平均粗さRaは、20.0μm以下であった。そのため、接合用領域の外観変化の評価は、「A」、「B]、又は「C」であり、許容範囲内であった。さらに、引張せん断強度は23Mpa以上であり、許容範囲内であった。つまり、実施例1~実施例12の金属部材は、粗化に起因する外観変化が抑制され、かつ接着剤等を用いなくても樹脂部材との十分な接合強度を確保することができることがわかった。
 実施例1~実施例12の金属部材は、表面に樹枝状層が形成された接合用領域を有し、接合用領域のL値は、65以上であった。そのため、接合用領域の外観変化の評価は、「A」、「B]、又は「C」であり、許容範囲内であった。さらに、引張せん断強度は23Mpa以上であり、許容範囲内であった。つまり、実施例1~実施例12の金属部材は、粗化に起因する外観変化が抑制され、かつ接着剤等を用いなくても樹脂部材との十分な接合強度を確保することができることがわかった。
 比較例1~3の金属部材は、接合用領域の算術平均粗さRaは、20.0μm以下であったが、接合用領域の表面に樹枝状層が形成されていなかった。接合用領域の外観変化の評価は、「A」又は「C」であり、許容範囲内であったが、引張せん断強度は23Mpa未満であり、許容範囲外であった。つまり、比較例1~3の金属部材は、接着剤等を用いないと樹脂部材との接合強度が十分ではないことがわかった。
 比較例1~3の金属部材は、接合用領域のL値は、65以上であったが、接合用領域の表面に樹枝状層が形成されていなかった。詳しくは、接合用領域の外観変化の評価は、「A」又は「C」であり、許容範囲内であったが、引張せん断強度は23Mpa未満であり、許容範囲内ではなかった。つまり、比較例1~3の金属部材は、接着剤等を用いないと樹脂部材との接合強度が十分ではないことがわかった。
 実施例1の金属部材では、図8に示すように、実施例1の吸光度差(A-A)値は、参考例1と同様に約0であった。これにより、実施例1の金属部材の表面には、アルミニウム水酸化物を含む皮膜が形成されていないことがわかった。
 実施例1では、第2酸系エッチング水溶液の成分として酸化第二銅(Cu2+として5.0質量%)が用いられ、金属部材の樹枝状層の主幹の平均本数密度は、28本/μmであった。実施例13では、第2酸系エッチング水溶液の成分として硫酸銅(Cu2+として0.1質量%)が用いられ、金属部材の樹枝状層の主幹の平均本数密度は、8本/μmであった。実施例14では、第2酸系エッチング水溶液の成分として硫酸銅(Cu2+として5.0質量%)が用いられ、金属部材の樹枝状層の主幹の平均本数密度は、47本/μmであった。
 実施例1と、実施例13と、実施例14との対比から、金属部材の樹枝状層の主幹の平均本数密度は、第2酸系エッチング水溶液のCu2+の濃度に依存することがわかった。詳しくは、第2酸系エッチング水溶液のCu2+の濃度を薄くするに従い、金属部材の樹枝状層の主幹の平均本数密度が低くなることがわかった。
 2020年7月22日に出願された日本国特許出願2020-125708の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (14)

  1.  表面に樹枝状層が形成された領域を有し、
     前記領域の算術平均粗さRaは、20.0μm以下である、金属部材。
  2.  表面に樹枝状層が形成された領域を有し、
     前記領域のCIE1976(L)色空間におけるL値は、65以上である、金属部材。
  3.  前記領域の算術平均粗さRaは、0.3μm以上である、請求項1又は請求項2に記載の金属部材。
  4.  前記領域は表面が粗化されており、前記領域において、前記金属部材の表面が粗化されていない状態と前記金属部材の表面が粗化されている状態とのCIE1976(L)色空間におけるL値の差の絶対値は、6.0以下である、請求項1~請求項3のいずれか1項に記載の金属部材。
  5.  前記領域において、X線光電子分光法(XPS)で測定された前記金属部材の表面における金属酸化物の存在割合は、金属酸化物、金属水酸化物、及び水の合計に対して80面積%以上である、請求項1~請求項4のいずれか1項に記載の金属部材。
  6.  前記金属部材は、アルミニウムを含み、
     前記領域において、前記金属部材の表面をフーリエ変換赤外分光分析し、3400cm-1に観測される吸収ピークの吸光度をAとし、3800cm-1の吸光度と2500cm-1の吸光度とを結んだ直線の3400cm-1における吸光度をAとしたときに、吸光度差(A-A)が0.03以下である、請求項1~請求項5のいずれか1項に記載の金属部材。
  7.  前記金属部材は、アルミニウムを含み、
     前記金属部材のSiの含有量は、前記金属部材の総量に対して、6質量%未満である、請求項1~請求項6のいずれか1項に記載の金属部材。
  8.  前記領域の算術平均粗さRaは、5.0μm以下である、請求項1~請求項7のいずれか1項に記載の金属部材。
  9.  前記領域の算術平均粗さRaは、2.5μm以下である、請求項1~請求項8のいずれか1項に記載の金属部材。
  10.  前記樹枝状層の主幹の平均本数密度は、5本/μm以上70本/μm以下である、請求項1~請求項9のいずれか1項に記載の金属部材。
  11.  請求項1~請求項10のいずれか1項に記載の金属部材と、
     前記領域において、前記金属部材の表面の少なくとも一部に前記樹枝状層を介して接合された樹脂部材とを備える、金属樹脂複合体。
  12.  金属部材の表面の少なくとも一部を、酸化性酸性水溶液でエッチングして、樹枝状層を形成する樹枝状層形成工程を含み、
     前記酸化性酸性水溶液は、25℃における標準電極電位Eが-0.2超え0.8以下である金属カチオンを含む、金属部材の製造方法。
  13.  前記金属部材の表面のうち前記樹枝状層が形成される領域の表面を粗化して、前記領域の表面の算術平均粗さRaを20.0μm以下、又は前記領域の表面のCIE1976(L)色空間におけるL値を65以上にする粗化工程を含み、
     前記粗化工程、及び前記樹枝状層形成工程は、この順で実行される、請求項12に記載の金属部材の製造方法。
  14.  前記酸化性酸性水溶液は、酸化第二銅を含む、請求項12又は請求項13に記載の金属部材の製造方法。
PCT/JP2021/027416 2020-07-22 2021-07-21 金属部材、金属樹脂複合体、及び金属部材の製造方法 WO2022019339A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21845901.4A EP4186994A1 (en) 2020-07-22 2021-07-21 Metal member, metal-resin composite, and method for producing metal member
US17/926,594 US20230203670A1 (en) 2020-07-22 2021-07-21 Metal member, metal-resin composite, and method for manufacturing metal member
CN202180034207.9A CN115516136A (zh) 2020-07-22 2021-07-21 金属构件、金属树脂复合体、及金属构件的制造方法
JP2022538048A JP7412565B2 (ja) 2020-07-22 2021-07-21 金属部材、金属樹脂複合体、及び金属部材の製造方法
KR1020227039252A KR20220166335A (ko) 2020-07-22 2021-07-21 금속 부재, 금속 수지 복합체 및 금속 부재의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-125708 2020-07-22
JP2020125708 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022019339A1 true WO2022019339A1 (ja) 2022-01-27

Family

ID=79729161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027416 WO2022019339A1 (ja) 2020-07-22 2021-07-21 金属部材、金属樹脂複合体、及び金属部材の製造方法

Country Status (6)

Country Link
US (1) US20230203670A1 (ja)
EP (1) EP4186994A1 (ja)
JP (1) JP7412565B2 (ja)
KR (1) KR20220166335A (ja)
CN (1) CN115516136A (ja)
WO (1) WO2022019339A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074659A1 (ja) * 2021-10-28 2023-05-04 中央可鍛工業株式会社 樹脂に接合する接合継手、接合継手の製造方法、及び、金属と樹脂の接合構造
WO2024034544A1 (ja) * 2022-08-10 2024-02-15 三井化学株式会社 構造体及び構造体の製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348684A (ja) 2000-06-06 2001-12-18 Mec Kk アルミニウムまたはアルミニウム合金の表面粗化剤およびそれを用いる表面粗化法
JP2007050630A (ja) 2005-08-19 2007-03-01 Tosoh Corp 複合体およびその製造方法
WO2008081933A1 (ja) 2006-12-28 2008-07-10 Taisei Plas Co., Ltd. 金属と樹脂の複合体とその製造方法
WO2009031632A1 (ja) * 2007-09-05 2009-03-12 Taisei Plas Co., Ltd. 金属樹脂複合体の製造方法
WO2013047365A1 (ja) 2011-09-26 2013-04-04 日本軽金属株式会社 アルミ樹脂接合体及びその製造方法
WO2014061520A1 (ja) * 2012-10-17 2014-04-24 住友ベークライト株式会社 金属樹脂複合体および金属樹脂複合体の製造方法
JP2014136366A (ja) * 2013-01-17 2014-07-28 National Univ Corp Shizuoka Univ アルミ・樹脂接合体の製造方法及びアルミ・樹脂接合体
WO2015008847A1 (ja) 2013-07-18 2015-01-22 三井化学株式会社 金属/樹脂複合構造体および金属部材
JP2018144475A (ja) 2017-03-03 2018-09-20 三井化学株式会社 アルミニウム系金属/樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属/樹脂複合構造体の製造方法
JP2019018547A (ja) * 2017-07-14 2019-02-07 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
WO2020158820A1 (ja) * 2019-01-29 2020-08-06 三井化学株式会社 アルミニウム系金属樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属樹脂複合構造体の製造方法
JP2020125708A (ja) 2019-02-04 2020-08-20 フタバ産業株式会社 キャニスタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050067378A1 (en) * 2003-09-30 2005-03-31 Harry Fuerhaupter Method for micro-roughening treatment of copper and mixed-metal circuitry
WO2015087722A1 (ja) 2013-12-13 2015-06-18 住友ベークライト株式会社 金属樹脂複合体
CN109195791A (zh) * 2016-05-31 2019-01-11 三井化学株式会社 金属/树脂复合结构体、金属构件及金属构件的制造方法
JP7088655B2 (ja) 2017-10-19 2022-06-21 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348684A (ja) 2000-06-06 2001-12-18 Mec Kk アルミニウムまたはアルミニウム合金の表面粗化剤およびそれを用いる表面粗化法
JP2007050630A (ja) 2005-08-19 2007-03-01 Tosoh Corp 複合体およびその製造方法
WO2008081933A1 (ja) 2006-12-28 2008-07-10 Taisei Plas Co., Ltd. 金属と樹脂の複合体とその製造方法
WO2009031632A1 (ja) * 2007-09-05 2009-03-12 Taisei Plas Co., Ltd. 金属樹脂複合体の製造方法
WO2013047365A1 (ja) 2011-09-26 2013-04-04 日本軽金属株式会社 アルミ樹脂接合体及びその製造方法
WO2014061520A1 (ja) * 2012-10-17 2014-04-24 住友ベークライト株式会社 金属樹脂複合体および金属樹脂複合体の製造方法
JP2014136366A (ja) * 2013-01-17 2014-07-28 National Univ Corp Shizuoka Univ アルミ・樹脂接合体の製造方法及びアルミ・樹脂接合体
WO2015008847A1 (ja) 2013-07-18 2015-01-22 三井化学株式会社 金属/樹脂複合構造体および金属部材
JP2018144475A (ja) 2017-03-03 2018-09-20 三井化学株式会社 アルミニウム系金属/樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属/樹脂複合構造体の製造方法
JP2019018547A (ja) * 2017-07-14 2019-02-07 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
WO2020158820A1 (ja) * 2019-01-29 2020-08-06 三井化学株式会社 アルミニウム系金属樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属樹脂複合構造体の製造方法
JP2020125708A (ja) 2019-02-04 2020-08-20 フタバ産業株式会社 キャニスタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074659A1 (ja) * 2021-10-28 2023-05-04 中央可鍛工業株式会社 樹脂に接合する接合継手、接合継手の製造方法、及び、金属と樹脂の接合構造
JP7414787B2 (ja) 2021-10-28 2024-01-16 中央可鍛工業株式会社 樹脂に接合する接合継手及び接合継手の製造方法
WO2024034544A1 (ja) * 2022-08-10 2024-02-15 三井化学株式会社 構造体及び構造体の製造方法

Also Published As

Publication number Publication date
EP4186994A1 (en) 2023-05-31
CN115516136A (zh) 2022-12-23
JPWO2022019339A1 (ja) 2022-01-27
KR20220166335A (ko) 2022-12-16
US20230203670A1 (en) 2023-06-29
JP7412565B2 (ja) 2024-01-12

Similar Documents

Publication Publication Date Title
WO2022019339A1 (ja) 金属部材、金属樹脂複合体、及び金属部材の製造方法
US20210308916A1 (en) Metal-resin composite structure, metal member, and manufacturing method of metal member
KR101548108B1 (ko) 금속/수지 복합 구조체 및 금속 부재
JP7049792B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6469403B2 (ja) 金属/樹脂複合構造体の製造方法
WO2020059128A1 (ja) 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および冷却装置
WO2020158820A1 (ja) アルミニウム系金属樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属樹脂複合構造体の製造方法
CN106029366A (zh) 移动电子零件
JP6867814B2 (ja) 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法、ニッケルめっき化鉄鋼部材およびニッケルめっき化鉄鋼部材の製造方法
JP6612512B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2018052017A (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
EP3287547B1 (en) Method for producing metal/resin composite structure and method for producing surface-roughened steel member
JP6810538B2 (ja) 表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法
JP7088655B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6937634B2 (ja) 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および耐リーク性部品
JP2016117228A (ja) 金属/樹脂複合構造体、摺動部品および金属/樹脂複合構造体の製造方法
JP6882855B2 (ja) 表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538048

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227039252

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021845901

Country of ref document: EP

Effective date: 20230222