WO2013081061A1 - 窒化ホウ素凝集粒子、該粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路 - Google Patents

窒化ホウ素凝集粒子、該粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路 Download PDF

Info

Publication number
WO2013081061A1
WO2013081061A1 PCT/JP2012/080959 JP2012080959W WO2013081061A1 WO 2013081061 A1 WO2013081061 A1 WO 2013081061A1 JP 2012080959 W JP2012080959 W JP 2012080959W WO 2013081061 A1 WO2013081061 A1 WO 2013081061A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
boron nitride
composition
aggregated
resin
Prior art date
Application number
PCT/JP2012/080959
Other languages
English (en)
French (fr)
Inventor
山崎 正典
麻理 阿部
友英 村瀬
河瀬 康弘
慎 池本
秀紀 桐谷
泰典 松下
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to EP17187695.6A priority Critical patent/EP3269682B1/en
Priority to EP12854030.9A priority patent/EP2786961B1/en
Priority to CN201280058680.1A priority patent/CN103958400B/zh
Priority to CA2857154A priority patent/CA2857154C/en
Priority to KR1020197006262A priority patent/KR102058342B1/ko
Priority to KR1020147014474A priority patent/KR101960996B1/ko
Publication of WO2013081061A1 publication Critical patent/WO2013081061A1/ja
Priority to US14/290,219 priority patent/US9822294B2/en
Priority to US15/667,246 priority patent/US10400151B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/14Compounds containing boron and nitrogen, phosphorus, sulfur, selenium or tellurium
    • C01B35/146Compounds containing boron and nitrogen, e.g. borazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4042Imines; Imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a composition containing boron nitride aggregated particles for three-dimensional integrated circuits, a coating liquid thereof, a laminate for three-dimensional integrated circuits containing the composition, and a three-dimensional integrated circuit using the coating liquid. It relates to a manufacturing method.
  • a three-dimensional integrated circuit has a structure in which semiconductor device chips are connected to each other by electrical signal terminals such as solder bumps between the chips, and at the same time, are bonded by an interlayer filling layer formed by filling an interlayer filler. have.
  • thermosetting resin that constitutes the adhesive component of the composition a highly thermally conductive epoxy resin is used, or such a highly thermally conductive resin and a highly thermally conductive inorganic filler are combined.
  • Patent Document 1 describes a composition in which a spherical boron nitride aggregate is blended as a filler.
  • the composition is also required to have compatibility with 3D stacking processes, thin film formation, and electrical signal terminal bonding between semiconductor device chips. Development is needed.
  • the electrical signal terminals such as solder bumps on the semiconductor device chip side are first activated by flux, and then land (electrical bonding) Joining is performed by filling a liquid resin or an underfill material in which an inorganic filler is added to the liquid resin between the substrates and curing them after bonding to the substrate having the electrode / Land).
  • the flux is required to have an activation processing function such as removal of surface oxide film of metal electric signal terminals such as solder bumps and land, improvement of wettability, and prevention of reoxidation of the metal terminal surface.
  • the conventional interlayer filler composition generally contains a thermosetting resin as an adhesive component, an inorganic filler, and a flux.
  • This composition is usually dispersed or dissolved in an appropriate organic solvent. And applied to a semiconductor substrate as a coating liquid adjusted to an appropriate viscosity.
  • boron nitride is used as the filler.
  • Boron nitride (BN) is an insulating ceramic, such as c-BN with a diamond structure, h-BN (hexagonal boron nitride) with a graphite structure, ⁇ -BN, ⁇ -BN with a turbostratic structure, etc. Crystal forms are known.
  • h-BN having a graphite structure has the same layered structure as graphite, has a feature that it is relatively easy to synthesize, and is excellent in thermal conductivity, solid lubricity, chemical stability, and heat resistance. It is widely used in the field of electrical and electronic materials.
  • h-BN is attracting attention as such a heat conductive filler for heat radiating members, taking advantage of the feature of having high heat conductivity despite being insulating, and has excellent heat radiating properties. It is considered that an interlayer filling layer can be formed.
  • Patent Document 1 a technique using a boron nitride powder has been conventionally known.
  • boron nitride for example, a boron nitride powder having a specific particle size and particle size distribution is known.
  • Patent Document 3 a technique using two types of mixed boron nitrides having different particle characteristics such as surface area, particle size, and tap density (for example, see Patent Document 4) is known.
  • h-BN powder is known as a material having excellent thermal conductivity. After washing the crude hexagonal boron nitride powder with water, it is heated at 1500-1800 ° C. in an inert gas stream. A technique for producing highly crystalline boron nitride is known (see, for example, Patent Document 5). In this technique, the crystallite size (La) of 100 faces of boron nitride crystallites is grown.
  • Patent Document 6 describes that a specific treatment is performed on a crude hexagonal boron nitride powder to obtain a hexagonal boron nitride powder having a large particle size and excellent lubricity.
  • Patent Document 7 also discloses that a 002-plane crystallite is obtained by mixing a crude hexagonal boron nitride powder with a compound containing lanthanum as a main component and heat-treating it in a specific temperature range in a non-oxidizing gas atmosphere. Hexagonal boron nitride powder obtained by growing the size (Lc) is described, and this hexagonal boron nitride powder is described as having excellent dispersibility and high crystallinity.
  • Patent Document 8 discloses that when specific firing is performed after curing a crude hexagonal boron nitride powder in an air atmosphere at 60 ° C. or lower for 1 week or longer, the particle size is large and highly crystalline. It is stated that a product is obtained.
  • Patent Document 9 the crude hexagonal boron nitride powder was cured in an air atmosphere at 60 ° C. or lower for 1 week or longer, and then washed and then subjected to a specific baking treatment, whereby the average particle size grew to 10 ⁇ m or higher. Hexagonal boron nitride powder is described.
  • h-BN has a plate-like particle shape and exhibits high thermal conductivity in the plate surface direction (C-plane direction or (002) plane direction) (usually about 250 W / mK as thermal conductivity). ) In the plate thickness direction (C-axis direction), it exhibits only low thermal conductivity (usually about 2 to 3 W / mK as thermal conductivity).
  • a three-dimensional integrated circuit When a three-dimensional integrated circuit is manufactured by performing a temporary bonding and a main bonding to form a coating film by applying to a film, heating it to B-stage, and further performing temporary bonding and main bonding, in the manufactured three-dimensional integrated circuit, Will be oriented in the film surface direction of the coating film, and the formed interlayer filling layer has a problem that it has only a low thermal conductivity in the thickness direction, although it has excellent thermal conductivity in the layer surface direction.
  • h-BN powders having a shape other than the scale-like shape with little orientation as described above even when filled in a resin have been studied. It was.
  • h-BN powder include h-BN particles granulated by spray drying and the like, and h-BN particles produced by sintering h-BN and pulverizing the sintered body (for example, (See Patent Documents 2 and 10).
  • the size of primary particles of h-BN configured to achieve high thermal conductivity is as large as several microns or more, and they are agglomerated randomly.
  • the thermal conductivity anisotropy is improved, the granulated shape is fragile, and when it is kneaded with the resin, it collapses.
  • the low heat conduction surface of the h-BN particles is in the thickness direction. There was a problem of orientation.
  • the h-BN primary particles constituting the aggregate use large particles of several ⁇ or more.
  • the h-BN particles used as a raw material also have high crystallinity to ensure thermal conductivity as an aggregate, but when such a high crystalline h-BN raw material is used.
  • the pinecone-like aggregate structure disclosed in Patent Document 11 is expected to have high purity and low thermal conductivity anisotropy in that no binder is used, the size of the h-BN particles constituting it is large.
  • the thickness is as large as several ⁇ to several hundred ⁇ , and there is a problem that when it is kneaded with a resin, it collapses and the low heat conductive surface is oriented in the thickness direction of the molded body. Further, there remains a problem that the crystal growth direction of the h-BN primary particles constituting the aggregated particles cannot be controlled.
  • the h-BN primary particles are oriented during hot pressing or pre-forming in the production process of the h-BN sintered body, and the primary particles are oriented.
  • the low thermal conductivity surface of h-BN is oriented in the thickness direction of the molded body, although there is a slight improvement effect.
  • the crystal growth direction of the h-BN primary particles constituting the agglomerated powder (growth in the normal direction so that the primary particles of the BN crystal face the a-axis outward) is large. It has not yet been achieved to obtain boron nitride particles with controlled thermal conductivity and improved thermal conductivity anisotropy and disintegration of the aggregate structure by kneading with a resin.
  • the present invention provides specific boron nitride particles (hereinafter sometimes referred to as BN particles), and boron nitride particles having a specific crystal structure (hereinafter referred to as specific crystal BN particles).
  • An object of the present invention is to provide BN particles having excellent properties, disintegration resistance, and kneadability with a resin.
  • a composition for a three-dimensional integrated circuit capable of forming an interlayer filling layer having excellent thermal conductivity in the thickness direction using the BN particles and a coating solution thereof (sometimes referred to as a composition coating solution). )), And a manufacturing method of a three-dimensional integrated circuit laminate using the coating solution.
  • the present inventors have determined that specific boron nitride and aggregated BN as boron nitride as a filler used in a composition filled between layers of a laminate for a three-dimensional integrated circuit. It has been found that the above problem can be solved by using at least one BN particle selected from the particles.
  • Agglomerated BN particles used in the present invention have a specific specific surface area and total pore volume, and have a very small primary particle of h-BN crystals arranged on the surface or radial (primary particles of h-BN crystals are It is arranged in the normal direction so that the a-axis is directed outward.).
  • the frequency with which the high heat conduction surface (C surface) of the h-BN crystal contacts via the a-axis increases between the surfaces of the particles, resulting in an interlayer formed as a result. It has been found that the thermal conductivity in the thickness direction of the packed layer is greatly improved.
  • the present invention has been achieved based on such knowledge, and the gist thereof is as follows.
  • a method for producing boron nitride aggregated particles comprising a step of granulating using a slurry containing raw material boron nitride powder, The method for producing aggregated boron nitride particles, wherein the volume-based average particle diameter D 50 of the raw material boron nitride powder in the slurry is 1/5 or less of the volume-based average particle diameter D 50 of the granulated particles. . (6) The method for producing aggregated boron nitride particles according to (5), wherein the raw material boron nitride powder has a total oxygen content of 1 wt% or more and 10 wt% or less.
  • a composition comprising a resin (A) having a melt viscosity at 120 ° C. of 100 Pa ⁇ s or less, and a filler (B) comprising the boron nitride aggregated particles according to any one of (1) to (4) above. .
  • Filler (B) comprising boron nitride aggregated particles produced by the method for producing boron nitride aggregated particles according to any one of (5) to (9) above, and a melt viscosity at 120 ° C. of 100 Pa ⁇ s or less
  • a resin (A) A composition comprising a resin (A) having a melt viscosity at 120 ° C. of 100 Pa ⁇ s or less, and a filler (B) comprising the boron nitride aggregated particles according to any one of (1) to (4) above.
  • the resin (A) is a thermosetting resin.
  • the thermosetting resin is an epoxy resin (a).
  • the epoxy resin (a) includes an epoxy resin (a1) having an epoxy equivalent of 100 g / equivalent or more and less than 650 g / equivalent.
  • the epoxy resin (a) is a phenoxy resin having at least one skeleton among a bisphenol A skeleton, a bisphenol F skeleton, and a biphenyl skeleton, according to any one of the above (21) to (23). Composition.
  • a composition coating liquid comprising the composition according to any one of (10) to (24) above and an organic solvent (E).
  • a method for producing a three-dimensional integrated circuit comprising: forming a film of the composition coating liquid according to (25) above on a plurality of semiconductor substrate surfaces, and then press-bonding and laminating these semiconductor substrates. .
  • a three-dimensional structure having a semiconductor substrate laminate in which at least two semiconductor substrates on which semiconductor device layers are formed are laminated, and a layer containing the composition according to any one of (10) to (24). Integrated circuit.
  • the specific crystal BN can be obtained by easily controlling the crystal growth direction of h-BN. Further, the crystal growth direction and particle diameter of h-BN primary particles constituting the aggregated BN particles are easily controlled, and crystals of h-BN primary particles having a specific particle diameter are arranged on the particle surface. Or the aggregated BN particle
  • a coating film formed using the composition coating liquid of the present invention containing such a filler has a uniform coating with excellent film properties. It becomes a film, and this coating film can be B-staged to form a homogeneous B-staged film. Therefore, since this B-staged film can be cured by heating to form a good interlayer filling layer, a high-quality three-dimensional integrated circuit excellent in thermal conductivity can be realized.
  • (A) is a SEM photograph before heat treatment of the aggregated BN particles (BN-A) of Example 1-1 and the aggregated BN particles of Preparation Example 3-1, and (b) the figure is after the heat treatment. It is a SEM photograph of.
  • (A) is a SEM photograph before heat treatment of aggregated BN particles (BN-B) of Example 1-2, and (b) is a SEM photograph after the heat treatment.
  • (A) is an SEM photograph before heat treatment of the aggregated BN particles (BN-C) of Comparative Example 1-1, and (b) is an SEM photograph after the heat treatment.
  • the boron nitride particles (BN particles) according to the present invention may be boron nitride particles having a specific crystal structure (specific crystal BN particles), or boron nitride aggregates obtained by agglomerating boron nitride by granulation. Particles (aggregated BN particles) may be used.
  • the specific crystal BN particles can be used as a raw material for the aggregated BN particles.
  • the raw material for the aggregated BN particles is not limited to the specific crystal BN particles, and specific raw material primary particles described in detail later may be used. Is possible.
  • the BN particles according to the present invention are contained between layers of a three-dimensional integrated circuit, a particularly remarkable effect is exhibited.
  • the specific crystal BN particles of the present invention have a crystallite size (La) of 100 faces of 500 [ ⁇ ] or more.
  • This La is more preferably 550 [ ⁇ ] or more, and particularly preferably 600 [ ⁇ ] or more, from the viewpoint of further increasing the thermal conductivity.
  • La is preferably 2000 [ ⁇ ] or less, and more preferably 1000 [ ⁇ ] or less.
  • La is, for example, h-BN having an La of less than 500 kg in a non-oxidizing gas, usually 1300 to 2300 ° C., preferably 1500 to 2100 ° C., more preferably 1800 to It can be prepared by performing a heat treatment at a temperature of 2000 ° C.
  • a method of performing a heat treatment for a long time under conditions as high as possible within the above temperature range can be employed.
  • the specific crystal BN particles of the present invention have a 002-plane crystallite size (Lc: hexagonal mesh area layer direction) of 450 [ ⁇ ] or more.
  • Lc hexagonal mesh area layer direction
  • This Lc is more preferably 470 [ ⁇ ] or more, and particularly preferably 500 [ ⁇ ] or more, from the viewpoint of further increasing the thermal conductivity.
  • Lc is preferably 2000 [ ⁇ ] or less, and more preferably 1000 [ ⁇ ] or less.
  • this Lc is, for example, a heat treatment of h-BN having an Lc of less than 450% in a non-oxidizing gas at a temperature of usually 1500 to 2300 ° C., preferably 1800 to 2100 ° C.
  • a method in which the raw material h-BN having an oxygen content of less than 1.0% by weight is preferably employed.
  • the relationship between Lc and La satisfies the following relational expression (i). 0.70 ⁇ Lc / La (i)
  • the relational expression (i) indicates the shape anisotropy of the specific crystal BN particles of the present invention.
  • the specific crystal BN particles of the present invention satisfy the above-described relational expression (i)
  • the viscosity of the composition can be prevented from increasing when the specific crystal BN particles are contained in the composition together with the resin.
  • the boron nitride aggregated particles using the specific crystal BN particles of the present invention as a raw material are contained in the composition together with the resin, it is possible to prevent the viscosity of the composition from increasing.
  • Lc and La is more preferably 0.75 ⁇ Lc / La, and particularly preferably 0.78 ⁇ Lc / La.
  • the relationship between Lc and La is preferably Lc / La ⁇ 1.2 from the viewpoint of reducing shape anisotropy.
  • the specific crystal BN particles of the present invention have an oxygen content of 0.30% by weight or less.
  • the oxygen content is more preferably 0.25% by weight or less, and particularly preferably 0.15% by weight or less.
  • the lower limit of the oxygen content is usually 0.01% by weight. Setting the oxygen content of the specific crystal BN particles of the present invention in such a range can be achieved by firing in a non-oxidizing gas atmosphere in the production process of the specific crystal BN particles. In order to reduce the oxygen content, baking in a nitrogen gas atmosphere is particularly preferable.
  • the oxygen content of the specific crystal BN particles of the present invention can be measured by an inert gas melting-infrared absorption method using a HORIBA oxygen / nitrogen analyzer.
  • the specific crystal BN particles of the present invention preferably have an average particle size of 10 ⁇ m or less.
  • the specific crystal BN particles of the present invention preferably have an average particle size of 7 ⁇ m or less, more preferably 5 ⁇ m or less, and particularly preferably 4 ⁇ m or less.
  • the average particle size is preferably 0.1 ⁇ m or more from the viewpoint of obtaining good thermal conductivity and good fluidity.
  • the average particle size of the specific crystal BN particles in the present invention can be measured, for example, by dispersing the particles in a suitable solvent and using a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by Horiba, Ltd. .
  • the average particle size of the specific crystal BN particles can be obtained from the obtained particle size distribution.
  • the average particle diameter referred to here is a volume-based average particle diameter.
  • the average particle size of the specific crystalline BN particles in the interlayer filler composition can be measured by the same apparatus as described above after being dispersed in an appropriate solvent.
  • Examples of the raw material used for obtaining the specific crystal BN particles of the present invention include commercially available hexagonal boron nitride, commercially available ⁇ and ⁇ -boron nitride, boron nitride prepared by a reductive nitriding method of a boron compound and ammonia, and a boron compound.
  • Boron nitride synthesized from nitrogen-containing compounds such as melamine and boron nitride and boron nitride produced from sodium borohydride and ammonium chloride can be used without limitation, but hexagonal boron nitride is particularly preferred.
  • the raw material is hexagonal boron nitride so that the specific crystal BN particles of the present invention have a predetermined crystallite size, and particularly La is 300 [ ⁇ ] or more, more preferably. Further, it is particularly preferable to use a material having Lc of 250 [ ⁇ ] or more and Lc / La of 0.8 to 1.0.
  • the specific crystal BN particles of the present invention can be obtained by firing the above raw materials at a temperature of 1800 to 2300 ° C. in an atmosphere of a non-oxidizing gas.
  • a non-oxidizing gas nitrogen gas, helium gas, argon gas, ammonia gas, carbon monoxide and the like can be used, and nitrogen gas is particularly preferably used.
  • the firing time is about 1 to 20 hours, more preferably 3 to 15 hours, and particularly preferably 5 to 15 hours.
  • the firing temperature and firing time can be determined by appropriately adjusting so that Lc and La of the specific crystal BN particles of the present invention simultaneously increase.
  • the furnace used for firing is particularly preferably a carbon furnace, and the crucible into which hexagonal boron nitride is placed during firing is particularly preferably made of carbon.
  • an additive may be added in the firing so long as the desired crystal growth of hexagonal boron nitride is not inhibited.
  • the specific crystal BN particles are preferably used after being pulverized so as to satisfy the above range of particle diameters.
  • the method for pulverizing the specific crystal BN particles is not particularly limited, and a conventionally known pulverization method such as a method of stirring and mixing with a pulverization medium such as zirconia beads or jet injection can be applied.
  • the specific crystal BN particles may be used alone or in any combination of two or more specific crystal BN particles having different physical properties.
  • the aggregated BN particles according to the present invention may be used in combination.
  • the boron nitride aggregated particles (aggregated BN particles) of the present invention have a specific surface area of 10 m 2 / g or more, a total pore volume of 2.15 cm 3 / g or less, and the surface of the boron nitride aggregated particles is It is composed of boron nitride primary particles having an average particle diameter of 0.05 ⁇ m or more and 1 ⁇ m or less.
  • the aggregated BN particles of the present invention preferably have an average particle size of 10 ⁇ m or less.
  • the average particle size is more preferably 7 ⁇ m or less, further preferably 5 ⁇ m or less, and particularly preferably 4 ⁇ m or less.
  • the average particle diameter is preferably 0.1 ⁇ m or more from the viewpoint of obtaining good thermal conductivity and good fluidity.
  • the average particle size of the agglomerated BN particles of the present invention can be measured, for example, by dispersing it in a suitable solvent and using a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by Horiba.
  • the average particle diameter of the aggregated BN particles can be obtained from the obtained particle size distribution.
  • the average particle diameter referred to here is a volume-based average particle diameter.
  • the average particle diameter of the aggregated BN particles in the composition can be measured by the same apparatus as described above after being dispersed in an appropriate solvent.
  • the aggregated BN particles of the present invention usually have a total pore volume of 2.15 cm 3 / g or less. By reducing the total pore volume, the inside of the aggregated BN particles is dense, so that it is possible to reduce the boundary surface that hinders heat conduction, and to obtain aggregated BN particles with higher thermal conductivity. Can do.
  • Total pore volume of the agglomerated BN particles is usually less than 2.15 cm 3 / g, preferably 0.3 cm 3 / g or more 2.00 cm 3 / g or less, more preferably 0.5 cm 3 / g or more 1 .95 cm 3 / g or less.
  • the specific surface area of the aggregated BN particles is usually 20 m 2 / g or more, preferably 20 m 2 / g to 50 m 2 / g, more preferably 25 m 2 / g to 30 m 2 / g.
  • the total pore volume of the aggregated BN powder can be measured by a mercury intrusion method, and the specific surface area can be measured by a BET one-point method (adsorbed gas: nitrogen). Specifically, the total pore volume and specific surface area of the aggregated BN powder are measured by the method described in the Examples section described later.
  • the aggregated BN particles of the present invention are preferably spherical.
  • “spherical” is granulated by agglomerating raw material BN powder described later in a shape having an aspect ratio (ratio of major axis to minor axis) of 1 or more and 2 or less, preferably 1 or more and 1.5 or less. Is the primary particle, not the primary particle. That is, in the present invention, “spherical” or “spherical” refers to those having an aspect ratio of 1 or more and 2 or less. The aspect ratio is preferably 1 or more and 1.5 or less.
  • the aspect ratio of the granulated aggregated BN particles 200 or more particles are arbitrarily selected from an image taken with a scanning electron microscope (SEM), and the ratio of the major axis to the minor axis is obtained to obtain an average value. Determine by calculating.
  • the particle diameter of the granulated particles obtained by the granulation is such that the range of the maximum particle diameter on a volume basis suitable for the aggregated BN particles of the present invention after heat treatment is 0.1 to 25 ⁇ m.
  • the average particle diameter D 50 based on volume of the granulated particles, for example, can be measured by Nikkiso Co., Ltd. "Microtrac HRA".
  • the aggregated BN particles may be further aggregated immediately after production to satisfy the above particle diameter range. Therefore, the aggregated BN particles are preferably used after being pulverized so as to satisfy the above particle diameter range.
  • the method for pulverizing the aggregated BN particles is not particularly limited, and a conventionally known pulverization method such as a method of stirring and mixing together with a pulverizing medium such as zirconia beads or jet injection can be applied.
  • a conventionally known pulverization method such as a method of stirring and mixing together with a pulverizing medium such as zirconia beads or jet injection can be applied.
  • a pulverizing medium such as zirconia beads or jet injection
  • the aggregated BN particles according to the present invention are used in the composition, one type of aggregated BN particles may be used alone, or two or more types of aggregated BN particles having different physical properties may be used in any combination.
  • the specific crystal BN particles according to the present invention may be used in combination.
  • two or more types of aggregated BN particles having different average particle diameters may be used. That is, agglomerated BN particles having a relatively small average particle diameter, for example, 0.1 to 2 ⁇ m, preferably 0.2 to 1.5 ⁇ m, and a relatively large average particle diameter, for example, 1 to 5 ⁇ m, preferably 1 to 3 ⁇ m.
  • agglomerated BN particles having a relatively small average particle diameter for example, 0.1 to 2 ⁇ m, preferably 0.2 to 1.5 ⁇ m
  • a relatively large average particle diameter for example, 1 to 5 ⁇ m, preferably 1 to 3 ⁇ m.
  • the aggregated BN particles having a small average particle diameter and the aggregated BN particles having a large average particle diameter are preferably used in a weight ratio of 10: 1 to 1:10 in terms of forming a heat conduction path.
  • aggregated BN particles as a filler (B) used in a composition containing the resin (A) described later, in order to increase dispersibility in the resin (A) or coating solution, a surface treatment is appropriately performed. You may go.
  • the method for producing the aggregated BN particles is not limited, but in particular, boron nitride as a raw material (hereinafter sometimes referred to as a raw material BN powder together with a pulverized one) is used in the pulverization step.
  • a raw material BN powder together with a pulverized one
  • the raw material BN powder was once dispersed in a medium to form a slurry of the raw material BN powder (hereinafter sometimes referred to as “BN slurry”), and then subjected to a pulverization treatment, and then obtained.
  • BN slurry a medium to form a slurry of the raw material BN powder
  • the slurry is granulated into spherical particles, and heat treatment is performed to crystallize the aggregated BN granulated particles.
  • boron nitride (raw material BN powder) that is a raw material for producing aggregated BN particles is produced by a reductive nitriding method of commercially available h-BN, commercially available ⁇ and ⁇ -BN, boron compound and ammonia.
  • BN, BN synthesized from a nitrogen-containing compound such as a boron compound and melamine, and BN produced from sodium borohydride and ammonium chloride can be used without limitation, and h-BN is particularly preferably used.
  • the aggregated BN particles of the present invention have a total oxygen content of 1 as the raw material BN powder. It is preferable to use those having a weight percent of 10% to 10%, more preferably a total oxygen content of 3% to 10% by weight, and even more preferably a total oxygen content of 3% to 9% by weight. is there. Since the raw material BN powder having a total oxygen content within the above range has a small primary particle size and many crystals are not yet developed, the crystals are likely to grow by heat treatment.
  • the BN crystal it is preferable to grow the BN crystal by heat-treating the aggregated BN particles in which the raw material BN powder is aggregated by granulation.
  • the primary particles can be grown in the normal direction with the a-axis facing out, i.e. the BN primary particles can be arranged radially on the surface of the aggregated BN particles.
  • the total oxygen content of the raw material BN powder is less than the above lower limit, since the purity and crystallinity of the raw material BN powder itself are good, the crystal growth of the C plane is not sufficient, and the BN primary particles are formed on the surface of the aggregated BN particles. If the above upper limit is exceeded, the oxygen content is still high after heat treatment, and high thermal conductivity cannot be achieved when used as the filler (B) of the composition. It is not preferable.
  • the high heat conduction surface (C surface) of h-BN in the interlayer filling layer is the a-axis. Since it becomes easy to form a heat conduction path due to contact through the layer, it is possible to obtain high heat conductivity also in the thickness direction of the interlayer filling layer.
  • Examples of the method for adjusting the total oxygen content of the raw material BN powder to the above range include a method in which the synthesis temperature at the time of BN synthesis is a low temperature of 1800 ° C. or lower.
  • the synthesis temperature at the time of BN synthesis is a low temperature of 1800 ° C. or lower.
  • commercially available products can be used as a raw material BN powder having a total oxygen content within the above preferred range. Is mentioned.
  • the oxygen content of the raw material BN powder used in the present invention can be measured by an inert gas melting-infrared absorption method using a HORIBA oxygen / nitrogen analyzer.
  • raw material BN powder satisfy
  • the total pore volume is 1.0 cm 3 / g or less
  • the specific surface area is 20 m 2 / g or more
  • the total pore volume is 1.0 cm 3 / g or less, so that the raw material BN powder becomes dense. Therefore, granulation with high sphericity is possible when used as the primary particles constituting the aggregated BN particles.
  • the specific surface area it is preferable for the specific surface area to be 20 m 2 / g or more because the dispersed particle diameter in the BN slurry used for spheronization by granulation can be reduced.
  • the total pore volume of the raw material BN powder is 1.0 cm 3 / g or less, preferably 0.3 cm 3 / g or more and 1.0 cm 3 / g or less, more preferably 0.5 cm 3 / g or more and 1 0.0 cm 3 / g or less.
  • the specific surface area of the material BN powder is 20 m 2 / g or more, preferably 20 m 2 / g or more 500 meters 2 / g or less, more preferably 50 m 2 / g or more 200 meters 2 / g or less.
  • the total pore volume of the raw material BN powder can be measured by a mercury intrusion method, and the specific surface area can be measured by a BET one-point method (adsorbed gas: nitrogen). Specifically, the total pore volume and specific surface area of the raw material BN powder are measured by the methods described in the Examples section described later.
  • La is 300 [ ⁇ ] or more
  • Lc is 250 [ ⁇ ] or more
  • Lc / La so that the aggregated BN particles of the present invention have a predetermined crystallite size. It is particularly preferable to use one having a 0.8 to 1.0.
  • the medium used for the preparation of the BN slurry is not particularly limited, and water and / or various organic solvents can be used. From the viewpoint of ease of spray drying and simplification of the apparatus, water (pure water) is used. It is preferable to use it. If the amount of water used is too large, the load during spray drying increases, and if it is too small, uniform dispersion is difficult. Therefore, the amount of water used is 1 to 20 times, especially 1 to 10 times the weight of the raw material BN powder. It is preferable.
  • surfactant Various surfactants may be added to the BN slurry from the viewpoint of the dispersion stability (inhibition of aggregation) of the BN particles while suppressing an increase in the viscosity of the slurry during the pulverization process described below.
  • an anionic surfactant, a cationic surfactant, a nonionic surfactant or the like can be used. These may be used alone or in combination of two or more. May be used.
  • the surfactant concentration of the BN slurry is used in a ratio of 0.1 wt% to 10 wt%, particularly 0.5 wt% to 5 wt%. It is preferable.
  • concentration of the BN slurry is equal to or higher than the above lower limit, the above effect due to the addition of the surfactant can be sufficiently obtained, and when the concentration is equal to or lower than the above upper limit, the content of the raw material BN powder is high.
  • the surfactant may be added before the following pulverization treatment or may be added after the pulverization treatment.
  • the BN slurry preferably contains a binder in order to effectively granulate the raw material BN powder into aggregated particles.
  • the binder originally acts to firmly bind the raw material BN powder having non-adhesive particles and stabilize the shape of the granulated particles.
  • the binder used in the BN slurry is not particularly limited as long as it can enhance the adhesion between the BN particles.
  • the granulated particles are heat-treated after agglomeration. What has the heat resistance with respect to conditions is preferable.
  • a metal oxide is preferable, and specifically, aluminum oxide, magnesium oxide, yttrium oxide, calcium oxide, silicon oxide, boron oxide, cerium oxide, zirconium oxide, titanium oxide, and the like are preferably used. Among these, aluminum oxide and yttrium oxide are preferable from the viewpoints of thermal conductivity and heat resistance as an oxide, bonding strength for bonding BN particles, and the like.
  • the binder may be a liquid binder such as alumina sol. These binders may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the use amount of the binder is preferably 1% by weight or more and 30% by weight or less, more preferably 1% by weight with respect to the raw material BN powder in the BN slurry. It is 20 wt% or less, more preferably 5 wt% or more and 20 wt% or less.
  • the amount of the binder used is less than the above lower limit, the effect of binding BN to each other becomes small, so that the granulated particles may not be able to maintain the shape after granulation.
  • the upper limit is exceeded, BN in the granulated particles The content of is reduced, which not only affects the crystal growth, but also may reduce the effect of improving the thermal conductivity when used as a thermally conductive filler.
  • the BN slurry may be subjected to a granulation step by spray drying as it is, but prior to granulation, it is preferable to pulverize the BN particles of the raw material BN powder in the slurry to refine the BN particles. By making it finer, agglomeration can be performed smoothly.
  • the BN particles are flat and tend to increase the number of particles that are not granulated in the aggregation process.
  • efficient flocculation can be achieved by making the BN particles finer.
  • a normal pulverization method such as a bead mill, a ball mill, or a pin mill can be used, but a bead mill is preferable from the viewpoint of being able to circulate and pulverize a large amount as a slurry and easily control the pulverized particle diameter.
  • a bead mill is preferable from the viewpoint of being able to circulate and pulverize a large amount as a slurry and easily control the pulverized particle diameter.
  • the viscosity of the BN slurry is increased by making the BN particles into fine particles by pulverization, it is preferable that the BN slurry can be pulverized even at a higher concentration and higher viscosity.
  • the temperature of the BN slurry increases. In order to produce, what is equipped with the cooling system is preferable. Examples of such an apparatus include “OB Mill” manufactured by Freund Turbo and “Star Mill LMZ Series” manufactured by Ashizawa Finetech.
  • the average particle diameter D 50 of the volume-based raw material BN powder in the BN slurry by milling, the average particle diameter D 50 of the volume-based raw material BN powder in the BN slurry, preferably to an average particle diameter D 50 of the volume-based BN granulated particles at the time of granulating the spherical And pulverize to a particle size of 1/5 or less.
  • the average particle diameter D 50 of the volume-based raw material BN powder in the BN slurry 1/5 larger than the average particle diameter D 50 based on volume of the granulated particles, since the BN particles are tabular, spheronized This is not preferable because the number of particles that are not granulated into a spherical shape in the granulation step increases, and the particle strength after granulation becomes weak.
  • the average particle diameter D 50 of the volume-based raw material BN powder in the BN slurry subjected to granulation, volume-based granulated particles obtained by granulating the BN slurry is preferably 1/100 to 1/5, more preferably 1/50 to 1/5.
  • the average particle diameter D 50 of the volume-based raw material BN powder in the BN slurry for example, slurry is dispersed in an appropriate solvent after milling, a laser diffraction / scattering particle size distribution analyzer (Horiba, Ltd., "LA -920 “, Nikkiso Microtrack” FRA “,” HRA “,” MT3300EX “,” UPA-EX150 “, Nikkiso Nanotrack” UPA-EX150 “, etc.).
  • the average particle diameter D 50 of the volume-based raw material BN powder in the BN slurry is specifically measured by the method described in the Examples section below.
  • a spray drying method is preferably used.
  • granulated particles of the desired size are produced based on the concentration of the slurry used as a raw material, the amount of liquid fed per unit time introduced into the apparatus, and the pressure and pressure when the liquid is sprayed. It is possible to obtain spherical granulated particles.
  • a spray drying method granulated particles of the desired size are produced based on the concentration of the slurry used as a raw material, the amount of liquid fed per unit time introduced into the apparatus, and the pressure and pressure when the liquid is sprayed. It is possible to obtain spherical granulated particles.
  • limiting in the spray-drying apparatus used in the case of spheroidization in order to make spherical BN granulated particle
  • the granulated particles of boron nitride obtained by the above granulation are preferably further heat-treated in a non-oxidizing gas atmosphere.
  • the non-oxidizing gas atmosphere is an atmosphere of nitrogen gas, helium gas, argon gas, ammonia gas, hydrogen gas, methane gas, propane gas, carbon monoxide gas, or the like.
  • the crystallization speed of the aggregated BN particles varies depending on the type of the atmospheric gas used here. For example, with argon gas, the crystallization speed is slow, and the heat treatment time is long. In order to perform crystallization in a short time, nitrogen gas or a mixed gas using nitrogen gas and another gas in combination is preferably used.
  • the heat treatment temperature is usually from 1300 to 2100 ° C, preferably from 1300 to 2000 ° C, more preferably from 1400 to 2000 ° C.
  • the heat treatment temperature is less than the lower limit below, crystallization of h-BN becomes insufficient, and an amorphous part where crystallization has not been developed remains, so that the effect of improving the thermal conductivity when the heat conductive filler is used becomes small.
  • the heat treatment temperature exceeds the above upper limit, the added binder component is melted and decomposed to aggregate the aggregated BN particles, and the original shape may not be maintained, or BN may be decomposed.
  • the heat treatment time is usually 1 hour or more and 50 hours or less, more preferably 3 to 40 hours, and particularly preferably 5 to 30 hours. Furthermore, it is preferable to introduce a holding step at 1300 to 1500 ° C. for 3 hours or more, particularly within the heat treatment time. By introducing the holding step in the above temperature range, h-BN is crystallized more efficiently, so that the upper heat treatment temperature tends to be lowered. When the heat treatment time is less than the above lower limit, crystallization is insufficient, and when it exceeds the upper limit, h-BN may be partially decomposed.
  • the heat treatment is preferably performed in a non-oxidizing gas atmosphere, and for this purpose, usually, the furnace is heated while being pulled with a vacuum pump, and after exhausting until the decomposition gas accompanying the heating is reduced, While introducing the non-oxidizing gas, it is preferable to continue heating to a desired temperature to raise the temperature.
  • a desired temperature As a guideline for the temperature at which the vacuum pump is evacuated, the temperature is raised to 200 to 500 ° C., for example, around 400 ° C. in about 30 to 60 minutes, and then the evacuation is continued for about 30 to 60 minutes while maintaining the temperature. It is preferable to perform evacuation until the degree of vacuum is 10 Pa or less, and then introduce a non-oxidizing gas.
  • the temperature is raised to about 1500 ° C. at 50 to 100 ° C./hour while introducing a non-oxidizing gas, and then the temperature is raised from 1500 ° C. to a predetermined heat treatment temperature at 30 to 50 ° C./hour. After heating at this temperature for the above heat treatment time, the temperature is preferably lowered to room temperature at about 5 to 50 ° C./min.
  • the primary particles of the BN crystal are set at about 2000 ° C. for about 5 hours, and in the case of an argon gas atmosphere for about 5 to 15 hours at about 2000 ° C. Can be grown radially with an average of 1 ⁇ m or less.
  • firing furnaces for heat treatment include batch furnaces such as muffle furnaces, tubular furnaces, and atmospheric furnaces, and rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, vertical furnaces, and other continuous furnaces. It is used properly according to the.
  • the aggregated BN particles after the heat treatment are preferably classified in order to reduce the average particle diameter and suppress an increase in viscosity when blended in the composition.
  • This classification is usually performed after the heat treatment of the granulated particles, but may be performed on the granulated particles before the heat treatment and then subjected to the heat treatment.
  • the classification may be either wet or dry, but from the viewpoint of suppressing the decomposition of h-BN, dry classification is preferred. In particular, when the binder has water solubility, dry classification is particularly preferably used.
  • Dry classification includes air classification that classifies according to the difference between centrifugal force and fluid drag, as well as classification using a sieve.
  • wind classification is preferred, swirling air classifier, forced vortex centrifuge It can be carried out using a classifier such as a classifier or a semi-free vortex centrifugal classifier.
  • particles to classify such as a swirling air classifier to classify small particles in the submicron to single micron range, and a semi-free vortex centrifugal classifier to classify relatively larger particles. What is necessary is just to use properly according to the particle diameter of this.
  • a classification operation is preferably performed using a swirling airflow classifier.
  • the raw material BN powder is granulated and subjected to heat treatment to grow h-BN crystals while maintaining its shape, while keeping the specific surface area and total pore volume within a specific range, It becomes possible to dispose boron nitride primary particles having an average particle diameter of 1 ⁇ m or less on the surface, and BN primary particles having an average of 1 ⁇ m or less on the surface of the aggregated particles are radial from the center side to the surface side of the aggregated particles, that is, BN
  • the agglomerated BN particles of the present invention can be prepared in which the primary particles of the crystals are arranged in the normal direction so that the a-axis is directed outward.
  • boron nitride primary particles having an average particle diameter of 1 ⁇ m or less are present on the surface of the aggregated BN particles of the present invention, but “1 ⁇ m or less” of “BN primary particles having an average of 1 ⁇ m or less” means the particles of the BN primary particles. It refers to the length corresponding to the diameter.
  • the crystal size of the BN primary particles is observed at a magnification of about 20,000 times using a scanning electron microscope (SEM), and the maximum particle size of any 100 particles observed on the surface is measured. And it can measure by calculating
  • the agglomerated BN particles of the present invention have the effect of excellent thermal conductivity isotropic properties, kneading properties with resins, and collapse resistance due to such specific crystal growth.
  • the aggregated BN particles of the present invention have the greatest feature that the surface is covered with fine BN primary crystals having an average of 1 ⁇ m or less, and the specific surface area and the total pore volume are in a specific range. Further, fine BN primary crystals having an average of 1 ⁇ m or less are arranged in a radial direction, that is, in a normal direction so that primary particles of the BN crystal face the a-axis outward.
  • the aggregated BN particles produced using h-BN powder having a total oxygen content of less than 1% by weight as the raw material and the aggregated BN particles of the present invention have completely different crystal structures on the surface of the aggregated BN, and h-BN crystal growth The direction will be completely different.
  • the crystal growth direction of h-BN is radial from the center with respect to the sphere, that is, the primary particles of the BN crystal grow in the normal direction so that the a-axis is directed outward.
  • the thermal conductivity in the thickness direction of the formed interlayer filling layer can be dramatically improved when compared with the same filling amount.
  • the high heat conduction surface (C surface or 002 surface) of the fine h-BN primary particles on the sphere surface is effective in the interlayer filling layer through contact between the a axes. It is assumed that it is easy to form a heat conduction path. Such crystal growth is obtained by recrystallization from a state in which the raw material h-BN powder itself has a relatively high total oxygen content and low crystallinity, and the total oxygen content is low.
  • the aggregated BN particles of the present invention use a metal oxide as a binder and can have a relatively small pore volume and a relatively high bulk density as a granulated product, the kneadability with a resin And high filling is possible, and further, collapse during kneading with the resin is prevented.
  • the heat conduction path derived from the growth direction of the BN crystals Due to the formation, it is possible to obtain a significantly high effect of improving thermal conductivity even though the particles are fine particles. Furthermore, in the interlayer filling layer formed using the aggregated BN particles of the present invention, the thermal conductivity anisotropy, which has been a problem in the past, is greatly improved.
  • the crystal structure of the aggregated BN particles can be confirmed by powder X-ray diffraction measurement, and the growth direction of the BN primary particles on the surface of the aggregated BN particles is confirmed by a scanning electron microscope (SEM). be able to.
  • the average particle diameter of the aggregated BN is determined by using a laser diffraction / scattering particle size distribution measuring device or the like for a sample in which the aggregated BN particles are dispersed in a pure water medium containing sodium hexametaphosphate as a dispersion stabilizer. Can be measured.
  • the aggregated BN particles of the present invention preferably have a volume-based maximum particle size in the range of 0.1 to 25 ⁇ m, particularly 2 to 10 ⁇ m, especially 4 to 10 ⁇ m.
  • a filler (B) of the composition when used as a filler (B) of the composition, an interlayer filling layer having no surface roughness can be formed. Further, it is possible to form a thin interlayer filling layer, which can be suitably used for thin film coating, and the thermal conductivity in the thickness direction can be increased.
  • the aggregated BN has a maximum particle size smaller than the lower limit, the effect of improving thermal conductivity as a thermally conductive filler is reduced.
  • the volume-based average particle diameter D 50 of the aggregated BN particles of the present invention is not particularly limited, but is 1 to 20 ⁇ m, particularly 1 to 10 ⁇ m for the same reason as the value of the volume-based maximum particle diameter. It is preferable.
  • the aggregated BN particles as the filler (B) preferably have an average particle size D 50 of 0.1 to 5 ⁇ m and a maximum particle size of 10 ⁇ m or less, more preferably an average particle size D 50 of 0.3. 4.5 ⁇ m and the maximum particle size is 9.5 ⁇ m or less, more preferably the average particle size D 50 is 0.5 to 4 ⁇ m and the maximum particle size is 9 ⁇ m or less.
  • the distance between chips has been reduced to a distance of about 10 to 50 ⁇ m to improve performance such as higher speed and higher capacity.
  • the maximum particle size of the filler to be blended is preferably about 1/2 to 1/3 or less of the thickness of the interlayer filling layer.
  • the filler (B) When the maximum particle diameter of the filler (B) exceeds 10 ⁇ m, the filler (B) protrudes from the surface of the interlayer filling layer after being cured, and the surface shape of the interlayer filling layer tends to deteriorate. On the other hand, if the particle size of the filler (B) is too small, the number of necessary heat conduction paths increases, and the probability of connection from the top to the bottom in the thickness direction between the chips decreases, and the resin (A ), The thermal conductivity in the thickness direction of the interlayer filling layer becomes insufficient. Moreover, when the particle size of a filler (B) is too small, a filler (B) will aggregate easily and the dispersibility in a composition or a coating liquid will worsen. The average particle diameter D 50 of the filler (B), by the above-described range, excessive agglomeration of filler grains can be suppressed, it is possible to obtain an interlayer filling layer having sufficient thermal conductivity in the thickness direction.
  • the maximum particle diameter and average particle diameter D 50 of the volume-based aggregate BN particles of the present invention is specifically measured by the method described in the Examples section below.
  • Total pore volume In the aggregated BN particles of the present invention, the total pore volume is an important factor in the use as a heat conductive filler (B) of the composition for the interlayer packed bed.
  • the total pore volume of the aggregated BN particles of the present invention is usually 2.15 cm 3 / g or less.
  • the lower limit of the total pore volume of the aggregated BN particles is not particularly limited, but is usually 0.1 cm 3 / g.
  • the total pore volume of the aggregated BN can be measured by a mercury intrusion method, and specifically, measured by the method described in the Examples section described later.
  • the bulk density is also an important factor in the use as a filler (B) of the composition for the interlayer filling layer.
  • the bulk density of the agglomerated BN is preferably large in order to minimize the uptake of the resin, and is usually 0.3 g / cm 3 or more. Preferably, it is 0.35 g / cm 3 or more, more preferably 0.4 g / cm 3 or more.
  • the upper limit of the bulk density of the aggregated BN particles is not particularly limited, but it is usually 0.95 g / cm 3 or less.
  • the bulk density of the aggregated BN can be determined by using an ordinary apparatus or method for measuring the bulk density of the powder, and specifically, the bulk density of the aggregated BN is measured by the method described in the section of Examples described later.
  • the above-mentioned aggregated BN particles may be used alone, or two or more aggregated BN particles having different physical properties may be used in any combination.
  • the average particle diameter D 50 may use two or more agglomerated BN particles differing. That is, agglomerated BN particles having a relatively small average particle diameter D 50 , for example, 0.1 to 2 ⁇ m, preferably 0.2 to 1.5 ⁇ m, and a relatively large average particle diameter D 50 , for example, 1 to 5 ⁇ m, preferably by using both the aggregation BN particles of 1 ⁇ 3 [mu] m, by connecting the heat conduction path of large aggregates BN particles of the average particle diameter D 50 at a small agglomerated BN particles mean particle diameter D 50, the same average particle size highly filled becomes possible as compared with the case of using only one of D 50, it is possible to obtain a higher thermal conductivity.
  • a small aggregate BN particles mean particle diameter D 50 and large aggregates BN particles having an average particle diameter D 50 is in a weight ratio of 10: 1 to 1: be used by the 10 ratio, over the formation of the heat conduction path Is preferable.
  • the aggregated BN particles as the filler (B) may be appropriately subjected to a surface treatment in order to improve dispersibility in the resin (A) or the coating liquid.
  • the composition for a three-dimensional integrated circuit of the present invention comprises a resin (A) having a melt viscosity of 100 Pa ⁇ s or less at 120 ° C. and the BN particles according to the present invention.
  • Resin (A) As a three-dimensional integrated circuit to which the composition of the present invention can be suitably applied, it has a semiconductor substrate laminate in which at least two semiconductor substrates on which semiconductor device layers are formed are laminated, and between the semiconductor substrates, It has a layer comprising the composition of the present invention. Usually, in order to electrically bond semiconductor substrates to each other, a layer containing the composition of the present invention is formed between the semiconductor substrates and temporarily bonded, and then the main bonding is performed. When carrying out the main joining, in order to melt the resin by heating and connect the electrical joining terminals, it is essential that the resin (A) has a melt viscosity at 120 ° C. of 100 Pa ⁇ s or less.
  • the viscosity is preferably 20 Pa ⁇ s or less. That is, when the melt viscosity of the resin (A) is 100 Pa ⁇ s or less at 120 ° C., the resin is melted before the solder bump is melted to greatly reduce the viscosity. Further, by temporarily bonding the filler film formed on the semiconductor substrate at 200 ° C. or higher, the solder bumps can be melted to achieve electrical connection with the land terminals.
  • the method for measuring the melt viscosity in the present invention is not limited to a specific method, but the melt viscosity (parallel plate dynamic viscosity) is measured using a viscoelasticity measuring device Physica MCR301 manufactured by Anton Paar Japan. be able to.
  • the solvent is distilled off from the resin to be measured to obtain a solid, and then the solid is press-molded to form a plate sample having a thickness of about 1 mm.
  • This sample can be placed between a parallel plate dish and a parallel plate ( ⁇ 25 mm), and parallel plate dynamic viscosity measurement can be performed.
  • 20% sinusoidal distortion is applied to the sample, the angular frequency of the distortion is 10 rad / sec, and the viscosity is measured from 40 to 200 ° C. in the process of raising the temperature at a rate of 3 ° C. per minute. Is preferably used.
  • the resin (A) has a melt viscosity at 50 ° C. of 2000 Pa ⁇ s or more in order to align with the substrate to be bonded before temporary bonding.
  • the melt viscosity is more preferably 1000 Pa ⁇ s or more. That is, since the melt viscosity of the resin (A) at 50 ° C. is 2000 Pa ⁇ s or more, the tack property at room temperature after the B-stage is reduced, and the alignment at the time of stacking the substrates is performed, so that three-dimensional Temporary bonding between the laminated substrates of the integrated circuits is facilitated.
  • the thermal conductivity of the resin (A) in the composition of the present invention is 0.2 W / mK or more. Particularly, it is particularly preferably 0.22 W / mK or more.
  • the thermal conductivity of the resin (A) is determined when the resin (A) and the organic solvent among the components constituting the composition of the present invention and the curing agent (C) is further included in the coating solution. Is a value obtained by the following method for a cured film formed according to a normal curing method using only the curing agent (C).
  • thermal diffusivity "Eye Phase Mobile 1u” manufactured by Eye Phase
  • Specific gravity METTLER TOLEDO “Balance XS-204” (using solid specific gravity measurement kit)
  • Specific heat “DSC320 / 6200” manufactured by Seiko Instruments Inc.
  • any of a curable resin and a thermoplastic resin can be used without limitation.
  • Any curable resin may be used as long as it is crosslinkable, such as thermosetting, photocurable, and electron beam curable.
  • a thermosetting resin is preferable in terms of heat resistance, water absorption, dimensional stability, and the like. Used.
  • thermosetting resins examples include polyimide resins, polyaminobismaleimide (polybismaleimide) resins, bismaleimide / triazine resins, polyamideimide resins, polyetherimide resins, and other polyimide resins; polybenzoxazole resins; polyethers Resins; benzocyclobutene resins; silicone resins; epoxy resins such as phenolic epoxy resins and alcoholic epoxy resins.
  • precursors such as a corresponding monomer, dimer, oligomer, etc. which become the raw material of these resins may be used.
  • an epoxy resin a polyether resin, a benzocyclobutene resin, and a silicone resin are preferable because of high heat conductivity and good solubility in an organic solvent, and an epoxy resin is particularly preferable.
  • These resins may be used alone or in combination of two or more in any combination and ratio.
  • the resin used in the composition of the present invention may be a thermoplastic resin.
  • the thermoplastic resin include polyolefin resins such as polyethylene resin, polypropylene resin, and ethylene-vinyl acetate copolymer resin, polyester resins such as polyethylene terephthalate resin, polybutylene terephthalate resin, and liquid crystal polyester resin, polyvinyl chloride resin, and phenoxy.
  • examples include resins, acrylic resins, polycarbonate resins, polyphenylene sulfide resins, polyphenylene ether resins, polyamide resins, polyamideimide resins, polyimide resins, polyetheramideimide resins, polyetheramide resins, and polyetherimide resins.
  • copolymers such as those block copolymers and a graft copolymer, are also contained. These may be used alone or in combination of two or more.
  • the resin may be a rubber component.
  • the rubber component include natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, ethylene-propylene copolymer rubber, and ethylene-propylene rubber.
  • examples thereof include diene copolymer rubber, butadiene-acrylonitrile copolymer rubber, isobutylene-isoprene copolymer rubber, chloroprene rubber, silicon rubber, fluorine rubber, chloro-sulfonated polyethylene, and polyurethane rubber. These may be used alone or in combination of two or more.
  • epoxy resin (a) an epoxy resin suitable for the resin (A) (hereinafter sometimes referred to as “epoxy resin (a)”) will be described.
  • the epoxy resin (a) may be only an epoxy resin having one type of structural unit, but a plurality of epoxy resins having different structural units may be combined as long as the melt viscosity condition is satisfied.
  • the phenoxy resin generally refers to a resin obtained by reacting an epihalohydrin and a divalent phenol compound, or a resin obtained by reacting a divalent epoxy compound and a divalent phenol compound.
  • an epoxy resin having two or more epoxy groups in the molecule (hereinafter sometimes referred to as “epoxy resin (a1)”) is preferable, and the epoxy resin (a1)
  • the epoxy equivalent is preferably 100 g / equivalent or more and less than 650 g / equivalent, more preferably 125 g / equivalent or more and 600 g / equivalent or less. If the epoxy equivalent is less than 100, the heat resistance tends to be inferior, and if it is greater than 650, the melting point of the epoxy resin tends to be high, and the workability tends to decrease.
  • Examples of the epoxy resin (a1) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, phenol aralkyl type epoxy resin, biphenyl type epoxy resin, and triphenyl.
  • Various epoxy resins such as methane type epoxy resin, dicyclopentadiene type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, polyfunctional phenol type epoxy resin and the like can be mentioned.
  • the weight average molecular weight of the epoxy resin (a1) is preferably 100 to 5000, more preferably 200 to 2000, from the viewpoint of controlling the melt viscosity. When the weight average molecular weight is lower than 100, the heat resistance tends to be inferior. When the weight average molecular weight is higher than 5000, the melting point of the epoxy resin tends to increase, and the workability tends to decrease.
  • the epoxy resin (a) may include a plurality of epoxy resins having different structural units.
  • a phenoxy resin hereinafter may be referred to as “epoxy resin (a2)” which is an epoxy resin having an epoxy equivalent of 650 g / equivalent or more and 30000 g / equivalent or less. Preferably there is.
  • the epoxy resin (a2) is preferably a phenoxy resin having at least one skeleton selected from the group consisting of naphthalene skeleton, fluorene skeleton, biphenyl skeleton, anthracene skeleton, pyrene skeleton, xanthene skeleton, adamantane skeleton and dicyclopentadiene skeleton. .
  • a phenoxy resin having a fluorene skeleton and / or a biphenyl skeleton is particularly preferable because heat resistance is further improved.
  • a phenoxy resin which is a high molecular weight epoxy resin having a weight average molecular weight of 10,000 or more is particularly preferable.
  • the weight average molecular weight is a value in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the epoxy resin (a1) and the epoxy resin (a2) one kind may be used alone, or two kinds or more may be used in arbitrary combination and ratio.
  • the epoxy resin (a) may contain an epoxy resin other than the epoxy resin (a1) and the epoxy resin (a2) (hereinafter referred to as “other epoxy resin”) as long as the purpose is not impaired.
  • the content of the other epoxy resin is usually 50% by weight or less, preferably 30% by weight or less, based on the total of the epoxy resin (a1) and the epoxy resin (a2).
  • the ratio of the epoxy resin (a1) in the total epoxy resin (a) including the epoxy resin (a1) and the epoxy resin (a2) is preferably 5 to 95% by weight, with the total as 100% by weight. More preferably, it is 10 to 90% by weight, and still more preferably 20 to 80% by weight.
  • Epoxy resin (a1) and all epoxy resin (a2) including epoxy resin (a2) means that when epoxy resin (a) is only epoxy resin (a1) and epoxy resin (a2), It means the total of the epoxy resin (a1) and the epoxy resin (a2), and when it contains other epoxy resins, it means the total of the epoxy resin (a1), the epoxy resin (a2) and the other epoxy resins.
  • the ratio of the epoxy resin (a1) in the epoxy resin (a) is not less than the above lower limit, the fluidity improvement effect by blending the epoxy resin (a1) can be sufficiently obtained, and the desired fluidity can be obtained. In addition, high thermal conductivity can be obtained.
  • the proportion of the epoxy resin (a) in the epoxy resin (a2) is not more than the above upper limit and the epoxy resin (a2) is particularly 10% by weight or more, the blending effect of the epoxy resin (a2) is exhibited, and the curability, The physical properties of the cured film will be sufficient.
  • the epoxy resin (a) used in the present invention preferably contains an epoxy resin (a1) having an epoxy equivalent of 100 g / equivalent to less than 650 g / equivalent, and further an epoxy equivalent of 650 g / equivalent to 30000 g / equivalent. It is preferable that a certain epoxy resin (a2) is included.
  • the epoxy resin (a1) is effective for imparting fluidity to the composition, and the polyfunctional phenol type epoxy resin is a preferred component for imparting curability and crosslinkability, and the epoxy resin (a2) is: Preferred for improving film properties.
  • the epoxy resin (a2) is: Preferred for improving film properties.
  • an epoxy resin having a bisphenol A / bisphenol F structure in order to reduce the viscosity of the composition, to enable high filling of the filler (B), and to increase the thermal conductivity, it is preferable to use an epoxy resin having a bisphenol A / bisphenol F structure.
  • an epoxy resin having a biphenyl structure having a mesogen is preferable.
  • the composition for a three-dimensional integrated circuit of the present invention comprises at least one selected from boron nitride particles, boron nitride aggregated particles, and boron nitride aggregated particles produced by a specific method according to the present invention, as a filler (B). It is contained as
  • the maximum particle size of the filler to be blended is preferably about 1/3 or less of the thickness of the interlayer filling layer.
  • the particle size of the filler (B) is too small, the number of necessary heat conduction paths increases, and the probability of connection from the top to the bottom in the thickness direction between the chips decreases, and the resin (A ), The thermal conductivity in the thickness direction of the interlayer filling layer becomes insufficient.
  • a filler (B) will aggregate easily and the dispersibility in a composition or a coating liquid will worsen.
  • the average particle diameter of the aggregated BN particles used as the filler (B) within the above range, an excessive aggregation between the fillers is suppressed, and an interlayer packed layer having good thermal conductivity can be obtained. it can.
  • the filler (B) used in the present invention is a boron nitride aggregated particle having a specific surface area of 10 m 2 / g or more, and its surface is composed of boron nitride primary particles having an average particle diameter of 0.05 ⁇ m or more and 1 ⁇ m or less.
  • Boron nitride agglomerated particles Boron nitride agglomerated particles, boron nitride agglomerated particles produced using specific raw materials and production methods, 002-plane crystallite diameter (Lc) of 450 [ ⁇ ] or more, and 100-plane crystallite diameter (La) Boron nitride particles having a crystallite diameter (Lc) and the crystallite diameter (La) satisfying the following formula (i) and having an oxygen content of 0.30% by weight or less are 500 [ ⁇ ] or more. . 0.70 ⁇ Lc / La (i)
  • the composition of the present invention can impart high thermal conductivity also in the thickness direction of the formed interlayer filling layer, By promoting the heat conduction between the semiconductor substrates and lowering the temperature of the semiconductor device substrate to prevent heat storage, the semiconductor device can be stably operated.
  • the composition of the present invention contains one or more fillers other than the filler (B) (hereinafter referred to as “other filler (B ′)”) as long as the effects of the present invention are not impaired. You may contain.
  • a heat conductive filler other than the BN particles according to the present invention can be used.
  • thermally conductive filler as an inorganic material having a thermal conductivity of 2 W / mK or more, alumina (Al 2 O 3 : thermal conductivity 30 W / mK), aluminum nitride (AlN: thermal conductivity 260 W / mK) Boron nitride other than BN particles according to the present invention (BN: thermal conductivity 3 W / mK (thickness direction), 275 W / mK (in-plane direction)), silicon nitride (Si 3 N 4 : thermal conductivity 23 W / mK) Etc.
  • Al 2 O 3 thermal conductivity 30 W / mK
  • AlN thermal conductivity 260 W / mK
  • Boron nitride other than BN particles according to the present invention BN: thermal conductivity 3 W / mK (thickness direction), 275 W / mK (in-plane direction)
  • Si 3 N 4 thermal conductivity 23 W / mK
  • the filler (B ′) preferably has both stability against high-temperature exposure to oxygen and water and low dielectric properties from the viewpoint of the reliability of the bonded device.
  • the inorganic materials as the filler (B ′), Al 2 O 3 having high chemical stability and BN other than the BN particles according to the present invention are preferable, and in particular, the dielectric constant is lower and other than the BN particles according to the present invention. Boron nitride is preferred.
  • fillers (B ′) may be added for the purpose of adjusting viscosity rather than improving thermal conductivity.
  • silica SiO 2 : thermal A conductivity of 1.4 W / mK
  • the average particle size and maximum particle size of the other filler (B ′) need to be in the same range as the filler (B).
  • the filler (B) is contained in an amount of 40 to 400 parts by weight, particularly 45 to 350 parts by weight, especially 50 to 300 parts by weight, based on 100 parts by weight of the resin (A). It is preferable that By setting it as such content, in the composition of this invention, sufficient heat conductivity is acquired and the viscosity of the grade which can form a uniform coating film can be maintained. If the content of the filler (B) is less than the above lower limit, sufficient thermal conductivity may not be obtained in the formed interlayer filling layer, and if it exceeds the upper limit, the viscosity of the composition or the coating liquid is high. Therefore, there may be a problem that a uniform coating film cannot be formed.
  • the total amount of the filler and the filler (B) is 50% by weight or less, particularly 40 parts by weight. In the following, it is preferably 5 to 40% by weight, for example.
  • the composition of this invention may contain the hardening
  • curing agent (C) used by this invention shows the substance which contributes to the crosslinking reaction between the crosslinking groups of resin (A), such as an epoxy group of an epoxy resin.
  • resin (A) such as an epoxy group of an epoxy resin.
  • a curing agent for epoxy resin and a curing accelerator are used together as necessary. What is necessary is just to select a hardening accelerator suitably according to the kind of resin and hardening agent to be used.
  • examples of the curing accelerator for the acid anhydride curing agent include boron trifluoride monoethylamine, 2-ethyl-4-methylimidazole, 1-isobutyl-2-methylimidazole, and 2-phenyl-4-methylimidazole. Can be mentioned. These may be used alone or in combination of two or more. These curing accelerators are usually used in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • thermosetting resin there is no restriction
  • the thermosetting resin is an epoxy resin, any one generally known as an epoxy resin curing agent can be used.
  • phenolic curing agents for example, phenolic curing agents, aliphatic amines, polyether amines, alicyclic amines, aromatic amines and other amine curing agents, acid anhydride curing agents, amide curing agents, tertiary amines, imidazoles and the like Derivatives, organic phosphines, phosphonium salts, tetraphenylboron salts, organic acid dihydrazides, boron halide amine complexes, polymercaptan curing agents, isocyanate curing agents, blocked isocyanate curing agents, and the like.
  • phenolic curing agents include bisphenol A, bisphenol F, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, 1,3-bis (4-hydroxyphenoxy) benzene, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, phenol novolak, bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-cresol No Volac, xylenol novolak, poly-p-hydroxystyrene, hydroquinone, re
  • amine curing agent examples include aliphatic amines such as ethylenediamine, 1,3-diaminopropane, 1,4-diaminopropane, hexamethylenediamine, 2,5-dimethylhexamethylenediamine, trimethylhexamethylenediamine, Examples include diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethylethylenediamine, tetra (hydroxyethyl) ethylenediamine, and the like.
  • polyether amines examples include triethylene glycol diamine, tetraethylene glycol diamine, diethylene glycol bis (propylamine), polyoxypropylene diamine, polyoxypropylene triamines, and the like.
  • Cycloaliphatic amines include isophorone diamine, metacene diamine, N-aminoethylpiperazine, bis (4-amino-3-methyldicyclohexyl) methane, bis (aminomethyl) cyclohexane, 3,9-bis (3-amino). (Propyl) -2,4,8,10-tetraoxaspiro (5,5) undecane, norbornenediamine and the like.
  • Aromatic amines include tetrachloro-p-xylenediamine, m-xylenediamine, p-xylenediamine, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 2,4-diaminoanisole, 2,4 -Toluenediamine, 2,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diamino-1,2-diphenylethane, 2,4-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, m-aminophenol, m-aminobenzylamine, benzyldimethylamine, 2-dimethylaminomethyl) phenol, triethanolamine, methylbenzylamine, ⁇ - (m-aminophenyl) ethylamine,
  • acid anhydride curing agents include dodecenyl succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydride, poly (ethyloctadecanedioic acid) anhydride, poly (phenylhexadecanedioic acid) Anhydride, Methyltetrahydrophthalic anhydride, Methylhexahydrophthalic anhydride, Hexahydrophthalic anhydride, Methylhymic anhydride, Tetrahydrophthalic anhydride, Trialkyltetrahydrophthalic anhydride, Methylcyclohexene dicarboxylic anhydride, Methylcyclohexene tetracarboxylic Acid anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol
  • amide type curing agent examples include dicyandiamide and polyamide resin.
  • tertiary amines include 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, and the like. .
  • imidazole and its derivatives examples include 1-cyanoethyl-2-phenylimidazole, 2-phenylimidazole, 2-ethyl-4 (5) -methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazo Lithium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methyl Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-d
  • organic phosphines include tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine and the like
  • phosphonium salts include tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / ethyltriphenylborate, Examples include tetrabutylphosphonium / tetrabutylborate, and examples of tetraphenylboron salts include 2-ethyl-4-methylimidazole / tetraphenylborate and N-methylmorpholine / tetraphenylborate.
  • curing agents (C) may be used individually by 1 type, and 2 or more types may be mixed and used for them in arbitrary combinations and ratios.
  • curing agents imidazole or its derivatives and dicyandiamine compounds are preferably used.
  • organic carboxylic acid whose decomposition product organic carboxylic acid has the curing action of epoxy resin is used as the later-described flux (D)
  • the organic carboxylic acid ester is used as the curing agent (C). It may be used.
  • the content of the curing agent (C) in the composition of the present invention is preferably 0.1 to 60 parts by weight, more preferably 0.5 to 40 parts by weight with respect to 100 parts by weight of the resin (A). preferable.
  • the equivalent ratio of the epoxy group in the epoxy resin to the functional group in the curing agent is 0.8. It is preferably used so as to be in the range of ⁇ 1.5. Outside this range, unreacted epoxy groups and functional groups of the curing agent may remain, and desired physical properties may not be obtained.
  • Curing agents are amide-based curing agents, tertiary amines, imidazoles and their derivatives, organic phosphines, phosphonium salts, tetraphenylboron salts, organic acid dihydrazides, boron halide amine complexes, polymercaptan-based curing agents, isocyanate-based curing agents.
  • a curing agent a blocked isocyanate curing agent, etc., it is preferably used in the range of 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, with respect to 100 parts by weight of the epoxy resin.
  • a dicyandiamine compound it is preferably used in the range of 0.1 to 10 parts by weight, more preferably 0.5 to 6 parts by weight, based on 100 parts by weight of the epoxy resin (A1).
  • the composition of the present invention may contain a flux (D).
  • the flux (D) means that the metal electric signal terminals such as solder bumps and the surface oxide film of the land are dissolved and removed at the time of solder joining of the metal terminals, and the wet spreading property on the land surface of the solder bumps is improved.
  • it refers to a compound having a flux function such as prevention of reoxidation of the metal terminal surface of the solder bump. More specifically, it refers to the one that gives good results in the evaluation of solder ball melting property in Reference Example 2-1 in the Examples.
  • the flux (D) is preferably a resin (A) component such as an epoxy resin (A1) that is highly soluble in monomers, oligomers and polymers, and organic solvents, and can form a uniform composition by mixing.
  • the flux (D) acts as a curing agent on the resin (A) component such as the epoxy resin (A1), the resin is cured at a temperature before B-stage formation or solder bump bonding. In order to inhibit the bonding between the solder bumps and the land and the land, those having no action as such a curing agent are preferable.
  • Examples of the flux (D) used in the present invention include monocarboxylic acids such as lactic acid, acetic acid, propionic acid, butyric acid, oleic acid, stearic acid, benzoic acid, abietic acid, and rosin; oxalic acid, malonic acid, succinic acid, glutaric acid, Dicarboxylic acids such as adipic acid, malic acid, tartaric acid, isophthalic acid, pyromellitic acid, maleic acid, fumaric acid, itaconic acid; citric acid, 1,2,4-trimellitic acid, tris (2-carboxyethyl) isocyanurate Tricarboxylic acids such as pyromellitic acid and butanetetracarboxylic acid; and organic carboxylic acid esters which are hemiacetal esters converted by reacting organic carboxylic acids with alkyl vinyl ethers; glutamic acid hydrochlorides and aniline hydrochlorides , Hydrazine
  • organic carboxylic acid derivatives such as polyhydric alcohol, organic carboxylic acid, and carboxylic acid ester, are preferable from the solubility to resin (A), such as an epoxy resin (A1), and various organic solvents.
  • resin (A) such as an epoxy resin (A1)
  • organic carboxylic acid is particularly preferable because it has less foamability when heated with respect to the resin (A) such as the epoxy resin (A1).
  • organic carboxylic acids having two or more carboxyl groups are particularly preferable because of reactivity as a flux.
  • the organic carboxylic acid ester can be obtained by reacting an organic carboxylic acid and an alkyl vinyl ether according to the following formula (1) at normal temperature, normal pressure, or if necessary, heated.
  • reaction of Formula (1) is also an equilibrium reaction, in order to raise the ratio of the organic carboxylic acid converted into organic carboxylic acid ester, the alkyl vinyl ether is added in an equal amount or more with respect to the carboxyl group in the organic carboxylic acid. It is preferable to make it react.
  • R 1 represents the remaining molecular chain excluding one carboxyl group in the carboxylic acid.
  • R 2 represents an alkyl group having 1 to 6 carbon atoms.
  • the organic carboxylic acid ester is decomposed by heating in the composition or the coating solution to produce an organic carboxylic acid and vinyl ether.
  • the organic carboxylic acid produced by the decomposition exhibits a surface activation action (flux action) on the solder balls.
  • organic carboxylic acids generated by decomposition may exhibit a curing action on the resin (A) such as an epoxy resin. This is because in the carboxyl group, hydrogen ions released by the dissociation may exhibit a curing action on the epoxy resin.
  • an organic carboxylic acid ester obtained by protecting an organic carboxylic acid with an alkyl vinyl ether is preferably used.
  • the decomposition temperature of the organic carboxylic acid ester as the flux (D) is preferably 130 ° C. or higher, more preferably 140 ° C. or higher, more preferably, in order to avoid or suppress decomposition at the time of temporary bonding. 160 ° C or higher, most preferably 180 ° C or higher.
  • the upper limit of the decomposition temperature is 220 ° C.
  • the organic carboxylic acid used as the raw material for the organic carboxylic acid ester includes monocarboxylic acids such as lactic acid, acetic acid, propionic acid, butyric acid, oleic acid, stearic acid, benzoic acid, abietic acid, and rosin; Dicarboxylic acids such as glutaric acid, adipic acid, malic acid, tartaric acid, isophthalic acid, pyromellitic acid, maleic acid, fumaric acid, itaconic acid; citric acid, 1,2,4-trimellitic acid, tris (2-carboxyethyl) ) Tricarboxylic acids such as isocyanurate; tetracarboxylic acids such as pyromellitic acid and butanetetracarboxylic acid can be used.
  • organic carboxylic acids having two or more carboxyl groups are preferable in terms of reactivity as flux.
  • R 2 in the above formula (1) is preferably an alkyl group having 1 to 6 carbon atoms, among which R 2 is a methyl group, an ethyl group, a propyl group.
  • Group is preferably a butyl group.
  • the alkyl groups the lower the electron donating property, the higher the temperature dissociation property, and therefore the alkyl group is preferably secondary or primary.
  • organic carboxylic acid esters commercially available products such as Santacid G (dialkyl vinyl ether block bifunctional polymer carboxylic acid), Santacid H (monoalkyl vinyl ether block bifunctional low molecular weight carboxylic acid) manufactured by NOF Corporation, Santacid I (mono) Alkyl vinyl ether block bifunctional carboxylic acid) and the like can be preferably used.
  • the content of the flux (D) is usually 0.1 to 10 parts by weight, preferably 0.5 to 8 parts by weight, per 100 parts by weight of the resin (A). is there. If the content of the flux (D) is less than the lower limit, there is a risk of poor solder connection due to a decrease in oxide film removability, and if it exceeds the upper limit, there is a risk of poor connection due to an increase in the viscosity of the coating solution.
  • the composition of the present invention may contain various additives (other additives) for the purpose of further improving the functionality within a range not impairing the effects of the present invention.
  • additives include, for example, functional resins obtained by adding functionality to the above resins, such as liquid crystalline epoxy resins, nitride particles such as aluminum nitride, silicon nitride, and fibrous boron nitride, alumina, and fibrous alumina Insulating metal oxides such as zinc oxide, magnesium oxide, beryllium oxide and titanium oxide, insulating carbon components such as diamond and fullerene, resin curing agents, resin curing accelerators, viscosity modifiers, and dispersion stabilizers.
  • additives as additive components for improving the adhesion between the substrate and the matrix resin and the inorganic filler, coupling agents such as silane coupling agents and titanate coupling agents, storage Examples thereof include an ultraviolet ray inhibitor, an antioxidant, a plasticizer, a flame retardant, a colorant, a dispersant, a fluidity improver, and an adhesion improver with a substrate for improving stability.
  • thermoplastic oligomers can also be added to the composition of the present invention from the viewpoint of improving fluidity during molding and improving adhesion to the substrate.
  • a surfactant an emulsifier, a low elasticity agent, a diluent, an antifoaming agent, an ion trapping agent, and the like that improve the dispersibility of each component in the composition or the coating solution can also be added. Any of these may be used alone or in a combination of two or more in any combination and ratio.
  • the composition of the present invention includes surface treatment agents such as inorganic fillers such as aluminum hydroxide and magnesium hydroxide, and silane coupling agents that improve the interfacial adhesive strength between the inorganic filler and the matrix resin, as long as the effects are not impaired. Further, a reducing agent or the like may be added.
  • the said inorganic filler when maintaining the moldability in a composite material composition, it is preferable that it is 90 weight% or less by total content with the aggregated BN particle
  • additives are not particularly limited, and are used in the usual compounding amount of the resin composition to the extent that necessary functionality is obtained.
  • a coupling agent is preferably included from the viewpoint of improving the adhesion between the resin component and the filler (B).
  • the silane coupling agent epoxy silane such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane; Aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -ureidopropyltri Aminosilanes such as ethoxysilane; mercaptosilanes such as 3-mercaptopropyltrimeth
  • titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tri (N-aminoethyl / aminoethyl) titanate, diisopropyl bis (dioctyl phosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis ( Ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate It is done.
  • a coupling agent may be used individually by 1 type, and may mix and use 2 or more types by arbitrary combinations and a ratio.
  • the amount of coupling agent added is preferably about 0.1 to 2.0% by weight, more preferably 0.5 to 1.5% by weight, based on the composition. If the amount of the coupling agent is small, the effect of improving the adhesion between the matrix resin and the inorganic filler due to the incorporation of the coupling agent cannot be sufficiently obtained, and if it is too much, the coupling agent is obtained from the cured film obtained. There is a problem that bleeds out.
  • Thermoplastic oligomers include C5 and C9 petroleum resins, styrene resins, indene resins, indene / styrene copolymer resins, indene / styrene / phenol copolymer resins, indene / coumarone copolymer resins, indene / benzothiophene. Examples thereof include copolymer resins.
  • the amount added is usually in the range of 2 to 30 parts by weight, preferably 5 to 15 parts by weight with respect to 100 parts by weight of the resin (A).
  • any of conventionally known anionic surfactants, nonionic surfactants, and cationic surfactants can be used.
  • fluorine surfactants in which some or all of the C—H bonds are C—F bonds among these surfactants can also be preferably used.
  • the addition amount of the surfactant is preferably about 0.001 to 5% by weight, more preferably 0.005 to 3% by weight, based on the composition. If the addition amount of the surfactant is less than the above lower limit, the predetermined film thickness uniformity may not be obtained, and if it exceeds the upper limit, phase separation from the thermosetting resin component may be caused.
  • the composition of the present invention increases the dispersibility of the filler (B) in the composition or the coating liquid, and uniformly disperses the filler (B), thereby allowing the coating liquid to be coated and the coating film to be formed.
  • a dispersant (F) having an amine value (mg-KOH / g) of 10 or more and 300 or less is not particularly limited as long as it can achieve the object of the present invention. Since it is excellent in the improvement effect and the improvement effect of the coating film properties, those having a tertiary amino group as the functional group are preferred.
  • the amine value of the dispersant (F) is less than 10 mg-KOH / g, the dispersibility of the filler (B) is not sufficient, and if it exceeds 300 mg-KOH / g, the filler may agglomerate. Even in this case, the object of the present invention cannot be achieved.
  • the amine value of the dispersant (F) is preferably 20 to 200 mg-KOH / g, more preferably 30 to 100 mg-KOH / g.
  • the “amine value” is a value obtained by neutralizing and titrating a basic group with an acid, and expressing it in mg of KOH corresponding to the acid value.
  • Urethane dispersants include polyisocyanate compounds, compounds having one or two hydroxyl groups in the same molecule and a number average molecular weight of 300 to 10,000, and compounds having active hydrogen and tertiary amino groups in the same molecule.
  • a dispersion resin obtained by reacting with is preferable.
  • polyisocyanate compounds examples include paraphenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, naphthalene-1,5-diisocyanate, and tolidine diisocyanate.
  • Aromatic diisocyanate aliphatic diisocyanate
  • aliphatic diisocyanate such as hexamethylene diisocyanate, lysine methyl ester diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, dimer acid diisocyanate; isophorone diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), ⁇ , ⁇ Alicyclic diisocyanates such as '-diisocyanate dimethylcyclohexane; xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetra Aliphatic diisocyanates having an aromatic ring such as tilxylylene diisocyanate; lysine ester triisocyanate, 1,6,11-undecane triisocyanate, 1,8-diisocyanate-4-isocyanate methyloctane, 1,3,6-hexamethylene
  • the polyisocyanate is preferably a trimer of an organic diisocyanate, and most preferably a trimer of tolylene diisocyanate or a trimer of isophorone diisocyanate. These may be used alone or in combination of two or more.
  • the polyisocyanate may be converted into an isocyanate group using an appropriate trimerization catalyst such as tertiary amines, phosphines, alkoxides, metal oxides, carboxylates and the like.
  • trimerization catalyst such as tertiary amines, phosphines, alkoxides, metal oxides, carboxylates and the like.
  • polyether glycol As compounds having a number average molecular weight of 300 to 10,000 having one or two hydroxyl groups in the same molecule, polyether glycol, polyester glycol, polycarbonate glycol, glycols of polyolefin glycol, and one terminal hydroxyl group of these compounds is carbon. Examples thereof include a compound alkoxylated with an alkyl group of 1 to 25 and a mixture of two or more thereof.
  • Polyether glycols include polyether diols, polyether ester diols, and mixtures of two or more of these.
  • polyether diols are those obtained by homopolymerizing or copolymerizing alkylene oxides, such as polyethylene glycol, polypropylene glycol, polyethylene-propylene glycol, polyoxytetramethylene glycol, polyoxyhexamethylene glycol, polyoxyoctamethylene glycol, and the like. The mixture of 2 or more types of those is mentioned.
  • Polyether ester diols include those obtained by reacting a mixture of ether group-containing diols or other glycols with dicarboxylic acids or their anhydrides, or by reacting polyester glycols with alkylene oxides, such as poly ( And polyoxytetramethylene) adipate.
  • the polyether glycol is polyethylene glycol, polypropylene glycol, polyoxytetramethylene glycol or a compound in which one terminal hydroxyl group of these compounds is alkoxylated with an alkyl group having 1 to 25 carbon atoms.
  • Polyester glycols include dicarboxylic acids (succinic acid, glutaric acid, adipic acid, sebacic acid, fumaric acid, maleic acid, phthalic acid, etc.) or their anhydrides and glycols (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol).
  • adipates such as polyethylene adipate, polybutylene adipate, polyhexamethylene adipate, polyethylene / propylene adipate; polylactone diol or polylactone obtained by using the diol or monohydric alcohol having 1 to 25 carbon atoms as an initiator
  • Monools such as polycaprolactone glycol, polymethylvalerolactone; and mixtures of two or more thereof.
  • the polyester glycol is polycaprolactone glycol or polycaprolactone starting with an alcohol having 1 to 25 carbon atoms. More specifically, it is a compound obtained by ring-opening addition polymerization of ⁇ -caprolactone to monool.
  • polycarbonate glycol examples include poly (1,6-hexylene) carbonate and poly (3-methyl-1,5-pentylene) carbonate.
  • polyolefin glycol examples include polybutadiene glycol, hydrogenated polybutadiene glycol, and hydrogenated polyisoprene glycol.
  • the number average molecular weight of the compound having one or two hydroxyl groups in the same molecule is 300 to 10,000, preferably 500 to 6,000, and more preferably 1,000 to 4,000.
  • the active hydrogen that is, a hydrogen atom directly bonded to an oxygen atom, a nitrogen atom or a sulfur atom includes a hydrogen atom in a functional group such as a hydroxyl group, an amino group, and a thiol group. Of these, the hydrogen atom of the amino group is preferred.
  • the tertiary amino group is not particularly limited.
  • the tertiary amino group includes an amino group having an alkyl group having 1 to 4 carbon atoms, or a heterocyclic structure, more specifically, an imidazole ring or a triazole ring.
  • Examples of such compounds having an active hydrogen and a tertiary amino group in the same molecule include N, N-dimethyl-1,3-propanediamine, N, N-diethyl-1,3-propanediamine, N , N-dipropyl-1,3-propanediamine, N, N-dibutyl-1,3-propanediamine, N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-dipropylethylenediamine, N, N -Dibutylethylenediamine, N, N-dimethyl-1,4-butanediamine, N, N-diethyl-1,4-butanediamine, N, N-dipropyl-1,4-butanediamine, N, N-dibutyl-1 , 4-butanediamine and the like.
  • the tertiary amino group is a nitrogen-containing heterocycle, such as pyrazole ring, imidazole ring, triazole ring, tetrazole ring, indole ring, carbazole ring, indazole ring, benzimidazole ring, benzotriazole ring, benzoxazole ring, benzo Examples thereof include N-containing hetero 5-membered rings such as thiazole ring and benzothiadiazole ring, nitrogen-containing hetero 6-membered rings such as pyridine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, acridine ring and isoquinoline ring.
  • these nitrogen-containing heterocycles are an imidazole ring or a triazole ring.
  • these compounds having an imidazole ring and a primary amino group include 1- (3-aminopropyl) imidazole, histidine, 2-aminoimidazole, 1- (2-aminoethyl) imidazole and the like. .
  • specific examples of the compound having a triazole ring and an amino group include 3-amino-1,2,4-triazole, 5- (2-amino-5-chlorophenyl) -3-phenyl-1H-1 2,4-triazole, 4-amino-4H-1,2,4-triazole-3,5-diol, 3-amino-5-phenyl-1H-1,3,4-triazole, 5-amino-1 , 4-diphenyl-1,2,3-triazole, 3-amino-1-benzyl-1H-2,4-triazole and the like.
  • N, N-dimethyl-1,3-propanediamine, N, N-diethyl-1,3-propanediamine, 1- (3-aminopropyl) imidazole, and 3-amino-1,2,4-triazole preferable.
  • a preferable blending ratio of the urethane-based dispersant raw material is 10 to 200 parts by weight of a compound having a number average molecular weight of 300 to 10,000 having one or two hydroxyl groups in the same molecule with respect to 100 parts by weight of the polyisocyanate compound.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by GPC (gel permeation chromatography) of such a urethane-based dispersant is usually 1,000 to 200,000, preferably 2,000 to 100,000. More preferably, it is in the range of 3,000 to 50,000. If the molecular weight is less than 1,000, the dispersibility and dispersion stability are inferior, and if it exceeds 200,000, the solubility is lowered, the dispersibility is inferior and the control of the reaction becomes difficult.
  • Such a urethane-based dispersant is produced according to a known method in the production of polyurethane resins.
  • the solvent for production usually, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, isophorone; esters such as ethyl acetate, butyl acetate, cellosolve acetate; benzene, toluene, xylene, hexane Hydrocarbons such as diacetone alcohol, some alcohols such as isopropanol, sec-butanol and tert-butanol; chlorides such as methylene chloride and chloroform; ethers such as tetrahydrofuran and diethyl ether; dimethylformamide, N- One kind or two or more kinds of aprotic polar solvents such as methyl pyrrolidone and dimethyl sulfoxide are used
  • a normal urethanization reaction catalyst is used.
  • the catalyst include tin-based compounds such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctoate, and stannous octoate; iron-based compounds such as iron acetylacetonate and ferric chloride; 3 such as triethylamine and triethylenediamine. Secondary amines; and the like.
  • the introduction amount of the compound having active hydrogen and tertiary amino group in the same molecule is preferably controlled in the range of 10 to 300 mg-KOH / g in terms of amine value after the reaction. More preferably, it is in the range of 20 to 200 mg-KOH / g.
  • the amine value is lower than the above range, the dispersing ability tends to be lowered, and when it exceeds the above range, the developability tends to be lowered.
  • an isocyanate group remains in the dispersion resin obtained by the above reaction, it is preferable to further protect the isocyanate group with an alcohol or an amino compound because the stability with time of the product becomes high.
  • an AB block copolymer and / or a BAB block comprising an A block having a quaternary ammonium base in the side chain and a B block having no quaternary ammonium base A copolymer is preferred.
  • .Y - has a quaternary ammonium base represented by represents) a counter anion.
  • the quaternary ammonium base may be directly bonded to the main chain, but may be bonded to the main chain via a divalent linking group.
  • the cyclic structure formed by combining two or more of R 1 , R 2 and R 3 with each other is, for example, a 5- to 7-membered nitrogen-containing heterocyclic monocycle or A condensed ring formed by condensing two of these may be mentioned.
  • the nitrogen-containing heterocycle preferably has no aromaticity, more preferably a saturated ring. Specific examples include the following.
  • These cyclic structures may further have a substituent.
  • R 1 R 2 R 3 in -N + R 1 R 2 R 3 and more preferably each independently an optionally substituted alkyl group having 1 to 3 carbon atoms, a substituent It is a phenyl group which may have, or a benzyl group which may have a substituent.
  • a block containing a partial structure represented by the following general formula (I) is particularly preferable.
  • R 1 , R 2 and R 3 each independently represents a hydrogen atom or an optionally substituted cyclic or chain hydrocarbon group, and 2 of R 1 , R 2 and R 3
  • Two or more may be bonded to each other to form a cyclic structure
  • R 4 represents a hydrogen atom or a methyl group
  • X represents a divalent linking group
  • Y ⁇ represents a counter anion.
  • examples of the divalent linking group X include an alkylene group having 1 to 10 carbon atoms, an arylene group, a —CONH—R 7 — group, a —COO—R 8 — group (provided that R 7 and R 8 are each independently a direct bond, an alkylene group having 1 to 10 carbon atoms, or an ether group having 1 to 10 carbon atoms (—R′—O—R ′′ —: R ′ and R ′′ are each Independently an alkylene group))), etc., and a —COO—R 8 — group is preferred.
  • the partial structure containing a specific quaternary ammonium base may be contained in two or more types in one A block.
  • the partial structure containing two or more quaternary ammonium bases may be contained in the A block in any form of random copolymerization or block copolymerization.
  • the partial structure which does not contain this quaternary ammonium base may be contained in the A block, and examples of the partial structure include a partial structure derived from a (meth) acrylic acid ester monomer described later. It is done.
  • the content of such a partial structure not containing a quaternary ammonium base in the A block is preferably 0 to 50% by weight, more preferably 0 to 20% by weight. Is most preferably not included in the A block.
  • the B block constituting the block copolymer of acrylic dispersant for example, styrene monomers such as styrene and ⁇ -methylstyrene; methyl (meth) acrylate, ethyl (meth) acrylate, (meth) Propyl acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, glycidyl (meth) acrylate, benzyl (meth) acrylate, hydroxyethyl (meth) (Meth) acrylate monomers such as acrylate, glycidyl ethyl acrylate, N, N-dimethylaminoethyl (meth) acrylate; (meth) acrylate monomers such as (meth) acrylic chloride; (meth) Acryl
  • the B block is preferably a partial structure derived from a (meth) acrylate monomer represented by the following general formula (II).
  • R 5 represents a hydrogen atom or a methyl group.
  • R 6 represents a cyclic or chain alkyl group which may have a substituent, an allyl group which may have a substituent, or a substituent. Represents an aralkyl group which may have
  • the partial structure derived from the (meth) acrylic acid ester monomer may be contained in two or more types in one B block.
  • the B block may further contain a partial structure other than these.
  • each partial structure is contained in either mode of random copolymerization or block copolymerization in the B block. May be.
  • the B block contains a partial structure other than the partial structure derived from the (meth) acrylate monomer
  • the content in the B block of the partial structure other than the (meth) acrylate monomer is preferably Is from 0 to 50% by weight, more preferably from 0 to 20% by weight.
  • it is most preferable that a partial structure other than the (meth) acrylic acid ester monomer is not contained in the B block.
  • the acrylic dispersant used in the present invention is preferably an AB block or BAB block copolymer type polymer compound composed of such an A block and a B block.
  • the polymer is prepared, for example, by the living polymerization method shown below.
  • the living polymerization method includes an anion living polymerization method, a cation living polymerization method, and a radical living polymerization method.
  • the anion living polymerization method has a polymerization active species as an anion, and is represented by the following scheme, for example.
  • Ar 1 is a phenyl group which may have a substituent
  • M is an alkali metal.
  • s and t represent integers.
  • the polymerization active species is a radical, and is represented by the following scheme, for example.
  • Ar 1 and Ar 2 are an optionally substituted phenyl group
  • M is an alkali metal
  • p and q represent an integer
  • R a and R b are alkyl groups
  • Me represents a methyl group.
  • the acrylic dispersant used in the present invention is an AB block copolymer or a BAB block copolymer
  • the A block / B block ratio constituting the copolymer is: It is preferably 1/99 to 80/20, and particularly preferably 5/95 to 60/40 (weight ratio). Outside this range, it may not be possible to combine good heat resistance and dispersibility.
  • the amount of the quaternary ammonium base in 1 g of the AB block copolymer and the BAB block copolymer according to the present invention is usually preferably 0.1 to 10 mmol, and preferably 2 to 8 mmol. It is more preferable that Outside this range, it may not be possible to combine good heat resistance and dispersibility.
  • Such a block copolymer usually contains an amino group produced in the production process, but its amine value is 5 to 500 mg-KOH / g, preferably 10 to 300 mg-KOH. / G or so.
  • the amine value is a value expressed in mg of KOH corresponding to the acid value after neutralizing titration of the basic amino group with an acid as described above.
  • the acid value of the block copolymer is generally preferably lower, and is usually 300 mg-KOH / g or less, although it depends on the presence and type of acidic groups that form the acid value.
  • the molecular weight is preferably in the range of 1,000 to 100,000, more preferably in the range of 5000 to 50,000 in terms of polystyrene-equivalent weight average molecular weight (Mw) measured by GPC.
  • Mw polystyrene-equivalent weight average molecular weight
  • dispersant (F) having an amine value (mg-KOH / g) of 10 or more and 300 or less a commercially available urethane and / or acrylic dispersant having the same structure as described above is applied. You can also These dispersants (F) having an amine value (mg-KOH / g) of 10 or more and 300 or less may be used alone or in combination of two or more in any combination and ratio. Good.
  • the content of the dispersant (F) having an amine value (mg-KOH / g) of 10 or more and 300 or less is 0.05% by weight or more and 10% by weight based on the total solid content of the composition.
  • amine value mg-KOH / g
  • the content of the dispersant (F) having an amine value (mg-KOH / g) of 10 or more and 300 or less is 0.05% by weight or more and 10% by weight based on the total solid content of the composition.
  • the content of the dispersant (F) having an amine value (mg-KOH / g) of 10 or more and 300 or less is less than the above lower limit, the effect of improving the coating properties and coating properties is not sufficient, and the upper limit is exceeded. May cause layer separation and aggregation of filler.
  • composition coating solution The content of the aggregated BN particles of the present invention contained in the composition of the present invention is usually preferably 20 wt% or more and 90 wt% or less, more preferably 20 wt% or more and 80 wt% or less, still more preferably, 30% by weight or more and 70% by weight or less.
  • content of the aggregated BN particles in the composition is less than the above lower limit, the viscosity as the composition is low and the moldability is good, but the effect of imparting thermal conductivity is small.
  • the content of the aggregated BN particles in the composition exceeds the above upper limit, the viscosity of the composition tends to be high and molding tends to be difficult.
  • composition coating liquid of the present invention further contains an organic solvent (E) in the above-described composition of the present invention. That is, the composition of the present invention does not contain an organic solvent, and the composition coating liquid of the present invention is obtained by adding an organic solvent to the composition of the present invention.
  • Organic solvent (E) As the organic solvent (E) of the composition coating liquid of the present invention, the solid content of the composition coating liquid (which is a component other than the organic solvent (E) of the composition coating liquid and corresponds to the composition of the present invention) There is no particular limitation as long as it can be uniformly dissolved or dispersed.
  • the organic solvent (E) preferably contains an organic solvent (Ea) having a boiling point of 60 ° C. or higher and lower than 120 ° C., and more preferably contains an organic solvent (Eb) having a boiling point of 120 ° C. or higher. .
  • organic solvent (E) examples include alcohol solvents, aromatic solvents, amide solvents, alkane solvents, ethylene glycol ethers and ether / ester solvents, propylene glycol ethers and ether / ester solvents exemplified below.
  • a solvent having a suitable boiling point can be selected from ketone solvents and ester solvents.
  • Alcohol solvent Methanol (boiling point 64.7 ° C), ethanol (boiling point 78.4 ° C), butanol (boiling point 117 ° C), iso-propyl alcohol (boiling point 82.4 ° C), n-propyl alcohol (boiling point 97.15 ° C), tert -Butanol (boiling point 82.4 ° C.), 1,4-butanediol (boiling point 230 ° C.), 2-ethylhexanol (boiling point 183 to 185 ° C.), hexafluoroisopropanol and the like.
  • alkane solvent n-hexane (boiling point 69 ° C.), iso-hexane (boiling point 68 to 70 ° C.), cyclohexane (boiling point 80.74 ° C.), methylcyclohexane (boiling point 101 ° C.), n-heptane (boiling point 98 ° C.), iso-octane ( Boiling point 99 ° C.), n-decane (boiling point 174.2 ° C.) and the like.
  • Ethylene glycol ether and ether / ester solvents Ethylene glycol monomethyl ether (boiling point 124 ° C), ethylene glycol ethyl ether (boiling point 135 ° C), ethylene glycol n-butyl ether (boiling point 171 ° C), ethylene glycol monoiso-butyl ether (boiling point 160 ° C), ethylene glycol hexyl ether (boiling point 208) ° C), ethylene glycol phenyl ether (boiling point 242 ° C), ethylene glycol monopropyl ether (boiling point 149.5 ° C), ethylene glycol monoiso-propyl ether (boiling point 141 ° C), diethylene glycol monomethyl ether (boiling point 194 ° C), diethylene glycol dimethyl ether (Boiling point 162 ° C), diethylene glycol monoethyl ether
  • Propylene glycol ether and ether / ester solvents Propylene glycol methyl ether (boiling point 120 ° C), dipropylene glycol methyl ether (boiling point 190 ° C), tripropylene glycol methyl ether (boiling point 242 ° C), propylene glycol n-propyl ether (boiling point 150 ° C), dipropylene glycol n-propyl Ether (boiling point 212 ° C.), tripropylene glycol n-propyl ether (boiling point 274 ° C.), propylene glycol n-butyl ether (boiling point 170 ° C.), propylene glycol-iso-butyl ether (boiling point 157 ° C.), dipropylene glycol n-butyl ether ( Boiling point 229 ° C), tripropylene glycol n-butyl ether (boil
  • ⁇ Organic solvent (Ea)> In the composition coating liquid of the present invention, by using an organic solvent (Ea) having a boiling point of less than 120 ° C., the evaporation efficiency of the organic solvent in the B-stage process can be increased. However, if the boiling point of the organic solvent (Ea) is excessively low, a problem of evaporation roughening occurs. Therefore, the boiling point of the organic solvent (Ea) is preferably 60 ° C. or higher, and particularly 65 to 115 ° C. preferable.
  • an organic solvent (Ea) a solvent having a boiling point of less than 120 ° C. among the above-mentioned various organic solvents may be selectively used.
  • the boiling point is in the above-mentioned preferred range and the homogeneous mixing with the organic solvent (Ea) and the solubility of the resin are good, propyl alcohol, isopropyl alcohol, tert-butanol, methyl ethyl ketone, methyl propyl Ketone, methyl isobutyl ketone, propyl acetate, and isobutyl acetate are preferred.
  • An organic solvent (Ea) may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • an organic solvent (Eb) having a boiling point of 120 ° C. or higher may be used in combination with the organic solvent (Ea) having a boiling point of less than 120 ° C.
  • an organic solvent (Eb) having a boiling point of 120 ° C. or higher By using an organic solvent (Eb) having a boiling point of 120 ° C. or higher, evaporation roughness due to rapid evaporation of the organic solvent during B-stage formation can be prevented, and a more uniform B-stage film can be formed. . That is, since the heating temperature in the heat treatment for B-stage formation is usually 50 to 150 ° C., preferably 70 to 120 ° C., if the organic solvent has a boiling point of 120 ° C.
  • the boiling point of (Eb) is preferably less than 180 ° C., particularly preferably 130 ° C. or more and less than 180 ° C., particularly preferably 140 to 170 ° C.
  • organic solvent (Eb) among the various organic solvents described above, those having a boiling point of 120 ° C. or higher may be selectively used. In particular, since the boiling point is in the above-mentioned preferable range, the solubility of the resin is good, and the stability of the mixed solution is also good, as the organic solvent (Eb), propylene glycol methyl ether, methyl n- It is preferable to use amyl ketone, cyclohexanone, PGMEA, or ethyl lactate.
  • An organic solvent (Eb) may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the organic solvent (E) is a component other than the organic solvent (a component other than the organic solvent (E) of the composition coating liquid and corresponds to the composition of the present invention).
  • the mixing ratio is not particularly limited, but is preferably 20% by weight or more and 70% by weight or less, and particularly preferably 30% by weight or more and 60% by weight or less with respect to the other components.
  • the solid concentration in the coating solution is preferably 10 to 80% by weight, particularly 20 to 70% by weight.
  • the mixing ratio of the organic solvent (E) is lower than the above lower limit, the viscosity of the coating solution may increase, and a good coating film may not be obtained. If the upper limit is exceeded, a predetermined film thickness cannot be obtained. May come up with problems.
  • the total mixing ratio of these is preferably within the above range.
  • the organic solvent (Ea) and the organic solvent (Eb) are expressed in terms of% by weight.
  • (Eb) 95 to 50: 5 to 50, and particularly preferably 90 to 60:10 to 40 (the total amount of the organic solvent (Ea) and the organic solvent (Eb) is 100% by weight).
  • composition and composition coating solution The preparation method of the composition of the present invention and the composition coating liquid is not particularly limited, and a conventionally known method can be used, and the composition and the composition coating composition can be produced by mixing the components. .
  • a paint shaker for the purpose of improving the uniformity of the composition and the composition coating liquid, defoaming, etc., a paint shaker, a bead mill, a planetary mixer, a stirring-type disperser, a revolving stirring mixer, a three-roll, a kneader, It is preferable to mix using a general kneading apparatus such as a single-screw or twin-screw kneader.
  • a general kneading apparatus such as a single-screw or twin-screw kneader.
  • each compounding component is arbitrary as long as there is no particular problem such as reaction or precipitation, and any two components or three or more components among the components of the composition and the composition coating liquid are mixed in advance. Thereafter, the remaining components may be mixed or all at once.
  • the molded body of the present invention is formed by molding the composition of the present invention.
  • a molding method of the molded body a method generally used for molding a resin composition can be used.
  • the composition of the present invention has plasticity and fluidity, it can be molded by curing the composition in a desired shape, for example, filled in a mold.
  • an injection molding method, an injection compression molding method, an extrusion molding method, and a compression molding method can be used as a manufacturing method of such a molded body.
  • thermosetting resin compositions such as an epoxy resin and a silicone resin
  • molding of a molded object ie, hardening
  • the composition of this invention is a thermoplastic resin composition
  • molding of a molded object can be performed on the conditions beyond the melting temperature of a thermoplastic resin, and predetermined
  • the molded article of the present invention can also be obtained by cutting out the composition of the present invention into a desired shape from a solid material obtained by molding and curing.
  • composition of the present invention a film of the composition coating liquid of the present invention is formed between a plurality of semiconductor substrates, and then these semiconductor substrates are pressure bonded and laminated to produce a three-dimensional integrated circuit. be able to.
  • composition coating liquid of the present invention between a plurality of semiconductor substrates using the composition coating liquid of the present invention to form a film, the semiconductor substrates are then pressure bonded and laminated.
  • a three-dimensional integrated circuit can be manufactured.
  • a coating process in which the composition coating liquid of the present invention is applied to the surface of a semiconductor substrate to form a coating film, and the semiconductor substrate on which the coating film is formed is laminated with another semiconductor substrate.
  • a step of heating the coating film into a B stage (hereinafter referred to as a “B stage forming step”) between the coating step and the bonding step.
  • a coating film of the composition coating liquid of the present invention is formed on the surface of a semiconductor substrate. That is, using the composition coating liquid of the present invention, a coating film is formed by a dipping method, a spin coating method, a spray coating method, a blade method, or any other method.
  • a coating film having a predetermined film thickness can be uniformly formed on a semiconductor substrate by using a coating apparatus such as a spin coater, slit coater, die coater, or blade coater for coating the composition coating liquid of the present invention. Possible and preferred.
  • the coating film formed by applying the coating liquid of the present invention is usually 50 to 150 ° C., preferably 70 to 120 ° C. for 10 to 120 minutes for removing solvents and low molecular components.
  • About B heat treatment is performed to form a B-stage film.
  • the heating temperature for this B-stage formation is too low or the heating time is too short, the organic solvent in the coating film cannot be sufficiently removed, and the organic solvent remains in the resulting B-stage formation film.
  • the organic solvent evaporates by the high-temperature treatment in the next bonding step, and the evaporation trace of the residual solvent becomes a void, so that an interlayer filling layer having high thermal conductivity, high insulation, predetermined physical strength, etc. cannot be formed.
  • the heating temperature for B-stage formation is too high or the heating time is too long, curing of the resin proceeds and a good B-stage film cannot be obtained.
  • the heating condition for the B-stage film varies depending on the film thickness of the formed B-stage film, the boiling point of the organic solvent in the coating solution, and the type of the thermosetting resin used. Is from 1 to 50 ⁇ m, preferably from 70 to 110 ° C., preferably from 80 to 100 ° C. for about 30 to 120 minutes, and when the B-stage film thickness is from 50 to 200 ⁇ m, it is from 80 to 120 ° C., preferably from 90 to It is preferable to set the temperature at 110 ° C. for about 60 to 120 minutes. At this time, the heat treatment may be performed at a constant temperature, but the heat treatment may be performed under a reduced pressure condition in order to smoothly remove volatile components such as an organic solvent in the coating solution.
  • heat treatment may be performed at 50 to 70 ° C., for example, 60 ° C., then at 70 to 90 ° C., for example, 80 ° C., and further at 90 to 150 ° C., for example, 120 ° C. for about 5 to 30 minutes. it can.
  • the composition or composition coating liquid of the present invention since the composition or composition coating liquid of the present invention has sufficient elongation suitable for film formation, it may be formed by forming a film and placing the film on a semiconductor substrate.
  • the composition or composition coating liquid of the present invention can form a homogeneous film by preventing deterioration of film quality due to evaporation evaporation during film formation.
  • ⁇ Joint process> Next, after the formed B-stage film is heated to exhibit tackiness, temporary bonding is performed with the semiconductor substrate to be bonded.
  • the temperature of the temporary bonding depends on the resin (A) used, but it is preferably about 80 to 150 ° C., particularly 90 to 140 ° C. for about 1 to 120 seconds.
  • the temporary bonding may be repeated for the number of layers of the substrate, or the substrates on which the B-staged film is formed are stacked and then heated and temporarily combined. You may join.
  • the main bonding is performed by pressing the temporarily bonded semiconductor substrate at a temperature of 200 ° C. or higher, preferably 220 ° C. or higher for about 10 to 60 seconds, thereby reducing the melt viscosity of the resin (A) in the B-staged film. This is done by accelerating the connection of the electrical terminals between the semiconductor substrates and at the same time activating the flux (D) in the B-staged film to advance the solder joint between the semiconductor substrates.
  • the upper limit of the heating temperature for the main bonding is a temperature at which the resin (A) to be used is not decomposed or deteriorated, and is appropriately determined depending on the type and grade of the resin, but is usually 300 ° C.
  • the heat bonding is preferably performed by applying a load of 10 gf / cm 2 to 10 kgf / cm 2 between the substrates, if necessary, and a load of 100 gf / cm 2 to 5 kgf / cm 2 is applied. It is more preferable to carry out.
  • the composition of the present invention is formed by applying the composition of the present invention onto a semiconductor substrate by potting, and this is heated by a hot plate or a hot air oven.
  • a three-dimensional integrated circuit can be manufactured by performing B-stage formation and bonding in the same manner as described above except that the solvent is distilled off by the heat treatment.
  • composition ingredients The components of the composition used in the examples are as follows. ⁇ Resin (A) ⁇ ⁇ Epoxy resin (a1)> Epoxy resin (a1-1): Mitsubishi Chemical Corporation product name “YL6800” (Epoxy equivalent 180g / equivalent) Epoxy resin (a1-2): Product name “YX4000” manufactured by Mitsubishi Chemical Corporation (Epoxy equivalent 186 g / equivalent) Epoxy resin (a1-3): Product name “1001” manufactured by Mitsubishi Chemical Corporation (Epoxy equivalent 475 g / equivalent) ⁇ Epoxy resin (a2)> Epoxy resin (a2-1): Phenoxy resin produced in Production Example 1 below Weight average molecular weight: 26,000 Epoxy equivalent: 4,600 g / equivalent 30 wt% methyl ethyl ketone / cyclohexanone solution Epoxy resin (a2-2): Product name “1006” manufactured by Mitsubishi Chemical Corporation (Epoxy equivalent 1000g / equivalent) ⁇ Epoxy resin (a3)> Epoxy resin (a3-1)
  • Filler (B) Boron nitride particles produced in Preparation Example 2-2 below
  • Filler (B-2) BN manufactured by Nisshin Rifratech Co., Ltd. “R-BN” (Thermal conductivity 3 W / mK (thickness direction), 275 W / mK (in-plane direction))
  • Filler (B-3) Silica manufactured by Tatsumori Co., Ltd.
  • Product name “PLV-4” [Curing agent (C)] 2-Phenyl-4,5-dihydroxymethylimidazole manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • volume-based average particle diameter D 50 is simply referred to as “D 50 ”.
  • product catalog value was employ
  • ⁇ Total pore volume of raw material h-BN powder> After using h-BN powder for 10 minutes under reduced pressure (50 ⁇ mHg or less) using Micromeritex's “Autopore IV9520 type”, the mercury intrusion and withdrawal curves were measured, and the pore size was 10 nm to 500 ⁇ m. The pore volume was determined.
  • ⁇ Specific surface area of raw material h-BN powder> After pre-treating the h-BN powder with a nitrogen gas flow at 250 ° C. for 15 minutes, the specific surface area of the h-BN powder was determined by the BET one-point method (adsorbed gas: nitrogen) using “Macsorb HM MODEL-1201” manufactured by Mountec. It was measured.
  • ⁇ D 50 of the granulated particles The granulated particles were added to 30 ml of a 0.2 wt% sodium hexametaphosphate aqueous solution so that the transmittance was 90% or more, and 0.1 g of a 10 wt% aqueous solution of a nonionic surfactant “Triton X100” manufactured by Aldrich was also added. After the addition, 150 W ultrasonic waves were irradiated for 1 minute to prepare a dispersion for particle size distribution measurement. This dispersion was measured using “Microtrac HRA” manufactured by Nikkiso Co., Ltd.
  • ⁇ Heat treatment aggregation BN particles after classification D 50 and a maximum particle diameter> Aggregated BN particles after classification are added to 30 ml of 0.2% by weight aqueous solution of sodium hexametaphosphate so that the transmittance is 90% or more, and further, a 10% by weight aqueous solution of nonionic surfactant “Triton X100” manufactured by Aldrich is added. After adding 0.1 g, a 150 W ultrasonic wave was irradiated for 1 minute to prepare a dispersion for particle size distribution measurement.
  • D 50 of this dispersion was measured using a laser diffraction / scattering type particle size distribution measuring device “Microtrack MT3300EX” manufactured by Nikkiso Co., Ltd.
  • the particle size of the largest particle was taken as the maximum particle size.
  • ⁇ Total pore volume of aggregated BN particles after heat treatment and classification> Each aggregated BN particle was subjected to reduced pressure treatment under reduced pressure (50 ⁇ mHg or less) for 10 minutes using a “meritomer type Autopore IV 9520” manufactured by Micromeritex Co., Ltd., and then a mercury intrusion / exit curve was measured to obtain a pore size of 10 nm to 500 ⁇ m. The total pore volume was determined.
  • ⁇ Method for measuring viscosity of composition The viscosity of the composition was measured under the following conditions using a dynamic viscoelasticity measuring device ARES manufactured by TA Instruments.
  • the viscosity indicates the absolute value of the complex viscosity.
  • ⁇ (G ′′ / ⁇ ) 2 + (G ′ / ⁇ ) 2 ⁇ 1/2
  • ⁇ * is the complex viscosity (unit Pa ⁇ s)
  • G ′′ is the loss modulus (unit Pa)
  • G ′ the storage modulus (unit Pa)
  • is the angular frequency (unit rad / s). .
  • Thermal diffusivity A sample was cut out and formed into a disk-shaped specimen having a diameter of 12 mm and a thickness of about 0.5 mm, and then a fully automatic laser flash method thermal constant measuring device “TC-7000” manufactured by ULVAC-RIKO. Using, the thermal diffusivity in the thickness direction was measured.
  • Specific gravity Measured using a balance “XS204” (using “Solid Specific Gravity Measurement Kit”) manufactured by METTLER TOLEDO.
  • Specific heat Using a differential scanning calorimeter “DSC7” manufactured by PerkinElmer, the specific heat at 25 ° C. was determined using DSC7 software under a temperature rising condition of 10 ° C./min.
  • composition film > About a composition film
  • Thermal diffusivity A sample was cut out and formed into a disk-shaped specimen having a diameter of 10 mm and a thickness of about 0.5 mm, and then heat in the thickness direction using “Eye Phase Mobile 1u” manufactured by Eye Phase. The diffusivity was measured.
  • Specific gravity Measured using “Balance XS-204” (using a solid specific gravity measurement kit) manufactured by METTLER TOLEDO.
  • Specific heat “DSC320 / 6200” manufactured by Seiko Instruments Inc. was used, and the specific heat at 25 ° C. was determined using the DSC7 software under a temperature rising condition of 10 ° C./min.
  • ⁇ Measurement of oxygen content of boron nitride particles The oxygen content of the boron nitride particles was measured by quantitative analysis using an inert gas melting-infrared absorption method. As an analyzer, an oxygen / nitrogen analyzer (EMGA-620W) manufactured by HORIBA was used. ⁇ Measuring method of melt viscosity> The melt viscosity (parallel plate dynamic viscosity) was measured using a viscoelasticity measuring device Physica MCR301 manufactured by Anton Paar Japan. First, the solvent was distilled off from the epoxy resin to be measured to obtain a solid, and then the solid was press-molded to obtain a plate sample having a thickness of about 1 mm.
  • EMGA-620W oxygen / nitrogen analyzer
  • This sample was placed between a parallel plate dish and a parallel plate ( ⁇ 25 mm), and the parallel plate dynamic viscosity was measured. Measurement conditions were that 20% sinusoidal distortion was applied to the sample, the angular frequency of the distortion was 10 rad / sec, and the viscosity was measured from 40 ° C. to 200 ° C. in the process of raising the temperature at a rate of 3 ° C. per minute. .
  • Example 1-1, Example 1-2, and Comparative Example 1-1 (Preparation and grinding of BN slurry) ⁇ BN slurry A> BN slurry A was prepared at the following blending ratio.
  • h-BN powder (“ABN” manufactured by Nissin Reflatec Co., Ltd., total oxygen content 4% by weight): 500 g
  • Pure water 4250 g
  • Binder (Nissan Chemical "Alumina sol 520", solid content concentration 20 wt%): 250 g
  • Surfactant an anionic surfactant “Demol NL” manufactured by Kao Corporation): 50 g.
  • the obtained BN slurry was thoroughly mixed, put into an “OB mill” manufactured by Freund Turbo, and circulated and pulverized for 160 minutes at a rotor rotational speed of 2000 rpm and a circulating liquid feed rate of 0.5 L / min.
  • OB mill manufactured by Freund Turbo
  • 0.5 mm ⁇ zirconia beads were used.
  • Table 1 shows the total oxygen content, total pore volume, and specific surface area of the raw material h-BN powder used in the preparation of the BN slurry A, and D 50 of the dispersed particles of h-BN in the obtained BN slurry A. As shown in -A.
  • ⁇ BN slurry B> Slurry B was prepared with the following blending ratio.
  • Binder Nasan Chemical "Alumina sol 520", solid content concentration 20 wt%): 250 g
  • Surfactant anionic surfactant “Demol NL” manufactured by Kao Corporation
  • the obtained BN slurry was thoroughly mixed, put into an “OB mill” manufactured by Freund Turbo, and circulated and ground for 120 minutes at a rotor rotational speed of 2000 rpm and a circulating liquid feed rate of 0.5 L / min.
  • the D 50 of the dispersed particles of h-BN in the obtained slurry B is as shown in Table 1-A.
  • BN slurry C was prepared at the following blending ratio.
  • Binder (Nissan Chemical "Alumina sol 520", solid content concentration 20 wt%): 250 g
  • Surfactant anionic surfactant “Demol NL” manufactured by Kao Corporation): 50 g.
  • the obtained BN slurry was thoroughly mixed, put into an “OB mill” manufactured by Freund Turbo, and circulated and ground for 160 minutes at a rotor rotational speed of 2800 rpm and a circulating liquid feed rate of 0.5 L / min.
  • the BN slurries A to C were spheroidized by using a spray dryer “MDL-050M” manufactured by Fujisaki Electric Co., Ltd., setting granulation conditions with a granulation particle diameter D 50 as a target of 10 ⁇ m, and spray drying each. All of the slurries were sprayed at a liquid feed rate of 30 ml / min (15 ml / min ⁇ 2), a pneumatic pressure of 0.7 MPa, and an air flow rate of 92 L / min (46 L / min ⁇ 2). The drying temperature after nozzle injection was 200 ° C. Set to. D 50 of the granulated particles obtained from each slurry was as shown in Table 1-A.
  • Each BN granulated particle after the spheroidization was heat-treated at 2000 ° C. for 5 hours under a nitrogen gas flow using an atmosphere furnace.
  • the temperature increase and temperature decrease during the heat treatment were performed as follows. It was raised in 20 minutes while evacuating from room temperature to 400 ° C., and kept at 400 ° C. for 30 minutes while evacuated. The degree of vacuum was 10 ⁇ 1 to 10 ⁇ 2 Pa. Then, 2.0 L / min of nitrogen gas was introduced and the pressure was restored. While nitrogen gas was introduced as it was, the temperature was increased to 1500 ° C. at 100 ° C./hour, and further increased to 1500 to 2000 ° C. at 50 ° C./hour. Raised. After reaching 2000 ° C., it was held for 5 hours. Then, it cooled to room temperature at 7 degree-C / min.
  • BN-A the aggregated BN particles obtained from the BN slurry A
  • BN-B the aggregated BN particles obtained from the BN slurry B
  • BN-C the aggregate obtained from the BN slurry C.
  • the BN particles are described as “BN-C”.
  • BN-A is the aggregated BN particle of Example 1-1
  • BN-B is the aggregated BN particle of Example 1-2
  • BN-C corresponds to the aggregated BN particle of Comparative Example 1-1.
  • the measurement results of D 50 , maximum particle diameter, total pore volume and bulk density of each aggregated BN particle are shown in Table 1-B.
  • h-BN is radial on the surface of aggregated BN particles, that is, primary particles of BN crystals. It has been found that crystals grow in the normal direction so that the a-axis is directed outward, and fine BN primary particles having an average of 1 ⁇ m or less are formed.
  • BN-C made from h-BN powder with a total oxygen content of less than 1% by weight has a crystal growth direction in the circumferential direction, that is, the C-plane of h-BN faces outward. I understood.
  • FIG. 1 shows SEM photographs before and after heat treatment of BN-A, FIG. 2 BN-B, and FIG. 3 BN-C. The above results are summarized in Table 1-1A and Table 1-1B.
  • compositions (Examples 1-3, 1-4, and Comparative Examples). 1-2).
  • PT110 manufactured by Momentive, which is a commercially available plate-like BN, or “PTX25” manufactured by Momentive, which is a commercially available aggregated BN particle, was used in the same manner as described above.
  • the composition shown in Table 2 was prepared, the same treatment as above was performed, and the thermal conductivity was measured.
  • YL6121H epoxy equivalent of 171 g / equivalent, 1: 1 mixture
  • Boron nitride particles as filler (B-1) were produced as follows. 200 g of R-BN (hexagonal boron nitride having a crystallite size of 002 plane and a crystal plane size of 100 plane of 339 mm in X-ray diffraction) manufactured by Nisshin Rifratech Co., Ltd. was placed in a carbon crucible and used in a carbon furnace And calcined at 2100 ° C. for 15 hours in a nitrogen gas atmosphere. The average particle diameter of the obtained boron nitride particles was 3.5 ⁇ m. Table 2-1 shows the evaluation results of physical properties of R-BN (filler (B-2)) manufactured by Nissin Rifratech before firing and boron nitride particles (filler (B-1)) obtained by firing. It was.
  • R-BN hexagonal boron nitride having a crystallite size of 002 plane and a crystal plane size of 100 plane of 339
  • epoxy resin (A1) 2.50 g of epoxy resin (a1-1), 1.43 g of epoxy resin (a1-3) (70 wt% cyclohexane solution), 3.33 g of epoxy resin (a2-1) (30 wt%) 5.81 g of organic solvent (Eb) was added to 0.63 g (80 wt% cyclohexanone solution) of methyl
  • This coating solution was applied to a release-treated glass substrate, heated under reduced pressure at 120 ° C. for 30 minutes, and the solvent was distilled off to form a coating film.
  • a glass substrate subjected to further mold release treatment is placed on this film and sandwiched, and then pressed (pressure 1 MPa) at 150 ° C. for 1 hour, and then at 200 ° C. for 1 hour to form and cure to a film thickness of 500 ⁇ m.
  • a composition film was obtained. When the thermal conductivity of the obtained film was measured, it was 1.4 W / (m ⁇ K).
  • Example 2-1 A composition film was obtained in the same manner as in Example 2-1, except that the filler (B-2) was used as the filler.
  • the thermal conductivity was measured in the same manner as in Example 2-1, the thermal conductivity was 0.9 W / (m ⁇ K).
  • Example 2-2 A composition film was obtained in the same manner as in Example 2-1, except that the filler (B-3) was used as the filler.
  • the thermal conductivity of this film was 0.4 W / (m ⁇ K).
  • composition coating solution Using this composition coating solution, a composition film having a thickness of 50 ⁇ m was formed in the same manner as in Example 2-1, and the thermal conductivity was measured in the same manner as in Example 2-1. 2 W / (m ⁇ K). Further, 25 ⁇ L of this composition coating solution was applied to a silicon solder bump substrate (CC80ModelI) manufactured by WALTS, and then heated on a hot plate at 60 ° C. for 15 minutes, at 80 ° C. for 15 minutes, and at 120 ° C. for 30 minutes. The solvent was distilled off. Furthermore, it heated at 150 degreeC on the hotplate for 10 minutes, and was set as the B-stage film.
  • CC80ModelI silicon solder bump substrate manufactured by WALTS
  • the solder bump substrate and the organic interposer (CC80ModelI) manufactured by WALTS are heated to 250 ° C. by using a flip chip bonder (FC3000S) manufactured by Toray Engineering Co., Ltd.
  • FC3000S flip chip bonder manufactured by Toray Engineering Co., Ltd.
  • the laminate was formed by curing at 0 ° C. for 2 hours.
  • the electrical resistance of a daisy chain inside the laminate was measured with a digital multimeter (2400, manufactured by Keithley), it was 10 ⁇ or less.
  • Example 2-3 A composition film was obtained in the same manner as in Example 2-2 except that the filler (B-2) was used as the filler.
  • the thermal conductivity was measured in the same manner as in Example 2-1, the thermal conductivity was 0.9 W / (m ⁇ K).
  • Example 2-3 As epoxy resin (A1), 2.50 g of epoxy resin (a3-1), 6.25 g of epoxy resin (a1-2) and 3.75 g of epoxy resin (a2-2) were added to 12.5 g of organic solvent (Eb). The mixture was dissolved with stirring. To this was added 0.25 g of dispersant (F), 0.25 g of flux (D) and 11.75 g of solvent (E1), and further 12.5 g of filler (B-1) and zirconia balls having a diameter of 0.5 mm ( 100 g of YTZ-0.5) was added, and the mixture was stirred for 10 minutes at 2000 rpm using a self-revolving stirrer.
  • dispersant (F) 0.25 g of flux (D) and 11.75 g of solvent (E1)
  • B-1) and zirconia balls having a diameter of 0.5 mm 100 g of YTZ-0.5
  • the melt viscosity at 120 ° C. of the epoxy resin (A1) used in Example 2-3 was less than 2 Pa ⁇ s.
  • composition coating solution was used to form a B-stage in the same manner as in Example 2-2. Further, a laminate was formed, and the electrical resistance of the daisy chain inside the laminate was measured. Met.
  • Preparation Example 3-1 The phenoxy resin solution as the epoxy resin (a2-1) in Preparation Example 3-1 was prepared in the same manner as Preparation Example 2-1.
  • epoxy resin (A1) 1.00 g of epoxy resin (a3-1), 2.50 g of epoxy resin (a1-2) and 1.50 g of epoxy resin (a2-2) were stirred into 5.00 g of organic solvent (Eb). And dissolved. To this, 0.05 g of dispersant (F), 0.10 g of flux (D) and 2.44 g of organic solvent (Eb) were added, and 2.14 g of filler (B-1) was further added, and zirconia balls having a diameter of 2 mm were further added. 24.0 g of (YTZ-2) was added, and the mixture was stirred for 10 minutes at 2000 rpm using a self-revolving stirrer.
  • Example 3-3 After completion of the stirring, 0.10 g of the curing agent (C) was added, and further stirred for 6 minutes with a self-revolving stirrer to obtain a paste (composition coating liquid).
  • the melt viscosity at 120 ° C. of the epoxy resin (A1) used in Example 3-3 was less than 2 Pa ⁇ s.
  • this coating solution was used to form a B-stage in the same manner as in Example 3-1, a laminate was formed, and the electrical resistance of the daisy chain inside the laminate was measured to be 20 ⁇ or less.
  • composition coating solution The melt viscosity at 120 ° C. of the epoxy resin (A1) used in Comparative Example 3-1 was less than 2 Pa ⁇ s.
  • a film of a composition having a thickness of 50 ⁇ m was formed in the same manner as in Example 3-2, and when the thermal conductivity of the film was measured, the thermal conductivity was 0.4 W / (m ⁇ K )Met.
  • composition coating solution A paste (composition coating solution) was prepared in the same manner as in Comparative Example 3-1, except that the filler (B-2) was used as the filler. Using this composition coating solution, a film of a composition having a thickness of 50 ⁇ m was formed in the same manner as in Example 3-2, and when the thermal conductivity of the film was measured, the thermal conductivity was 0.9 W / (m ⁇ K).
  • composition coating solution The melt viscosity at 120 ° C. of the epoxy resin (A1) used in Comparative Example 3-4 was less than 2 Pa ⁇ s.
  • a composition film having a thickness of 50 ⁇ m was formed using the composition coating solution in the same manner as in Example 3-2.
  • the thermal conductivity of the film was measured in the same manner as in Example 3-2, the thermal conductivity was 0.9 W / (m ⁇ K).
  • a high-quality interlayer filling layer having high thermal conductivity can be formed simultaneously with the bonding of solder bumps between the semiconductor device substrates and the land,
  • a semiconductor substrate laminate having an interlayer filling layer is useful as a laminate for a three-dimensional integrated circuit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、熱伝導の等方性、耐崩壊性、樹脂との混練性に優れた窒化ホウ素凝集粒子を用いて、厚み方向の熱伝導性にも優れた層間充填層を形成できる三次元集積回路用組成物の提供を目的・課題とする。 そして、本発明の三次元集積回路用組成物は、比表面積が10m2/g 以上かつ球状の窒化ホウ素凝集粒子で、該窒化ホウ素凝集粒子の表面が平均粒子径0.05μm 以上1μm 以下の窒化ホウ素一次粒子から構成される窒化ホウ素凝集粒子と、120℃における溶融粘度が100Pa・s 以下である樹脂とを含有する。

Description

窒化ホウ素凝集粒子、該粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路
 本発明は、三次元集積回路用の、窒化ホウ素凝集粒子を含有する組成物及びその塗布液、並びに該組成物を含む三次元集積回路用積層体及び前記塗布液を用いた三次元集積回路の製造方法に関する。
 近年、半導体デバイスの更なる高速化・高容量化などの性能向上のために、トランジスタや配線の微細化に加えて、半導体デバイスチップを2層以上積み重ねて三次元(3D)積層化した三次元集積回路の研究開発が進められている。
 三次元集積回路は、半導体デバイスチップ同士が、そのチップ間においてはんだバンプ等の電気信号端子等で接続されていると同時に、層間充填材を充填して形成された層間充填層により接着された構造を有している。
 具体的には、ウェハー上に、組成物(層間充填層形成用の組成物)の塗布液を塗布して薄膜を形成した後に、加熱してBステージ化(Cure for B-Stage)を行い、次いでダイシングによりチップを切り出し、このチップを複数枚積層し、加圧加熱による仮接合を繰り返し、最終的に加圧加熱条件下で本接合(半田接合)を行うプロセスが提案されている(例えば、非特許文献1参照)。
 このような三次元集積回路デバイスの実用化に向けて、種々の課題が指摘されているが、その内の一つにトランジスタや配線等のデバイスから発する熱の放熱問題がある。この問題は、一般的に、半導体デバイスチップの積層の際に用いられる組成物の熱伝導率が、金属やセラミックなどに比べて非常に低いことに起因し、積層デバイスチップ内での蓄熱によるパフォーマンスの低下が懸念されている。
 この課題を解決する一つの手法として、層間充填層形成用の組成物の高熱伝導化が挙げられる。具体的には、組成物の接着成分を構成する熱硬化性樹脂として、高熱伝導性のエポキシ樹脂を使用したり、このような高熱伝導性樹脂と高熱伝導性無機フィラーとを複合化したりすることで、組成物を高熱伝導化することが行われている。
 例えば、特許文献1には、球状の窒化ホウ素凝集体をフィラーとして配合した組成物が記載されている。
 また、組成物には、熱伝導性の向上に加えて、3D積層プロセスへの適合性や薄膜化、更には半導体デバイスチップ間における電気信号端子の接合性なども求められており、更なる技術開発が必要とされている。
 即ち、従来の半導体デバイスチップのインターポーザ(Interposer)等への搭載プロセスにおいては、初めに半導体デバイスチップ側のはんだバンプ等の電気信号端子をフラックス(Flux)により活性化処理し、次いでランド(電気接合電極/Land)を有する基板に接合した後、基板間に液状樹脂又は液状樹脂に無機フィラーを添加したアンダーフィル材を充填して硬化させることにより接合が行われている。
 ここで、フラックスには、はんだバンプ等の金属電気信号端子及びランドの表面酸化膜除去や濡れ広がり性の向上、更には金属端子表面の再酸化防止などの活性化処理機能が求められている。
 一方、半導体デバイスチップの3D積層プロセスにおいては、初めにフラックスを用いたはんだバンプ等の電気信号端子の活性化処理を行うと、端子表面に熱伝導性の低いフラックス層が形成され、組成物による積層基板間の熱伝導性の阻害や、フラックス成分の残留による接合端子の腐食劣化等の要因となることが懸念されている。
 このため、高い熱伝導性を有する組成物へ直接混合可能であり、且つ金属端子への腐食性の低いフラックスが求められている。
 このようなフラックスとしては、従来、電気信号端子の金属酸化膜溶解能に優れたハロゲンを含む無機金属塩の他に、有機酸や有機酸塩、有機ハロゲン化合物やアミン類、ロジンやその構成成分の単独又は複数の組合せが用いられている(例えば、非特許文献2参照)。
 このように、従来の層間充填材組成物は、一般に、接着成分としての熱硬化性樹脂と、無機フィラーとフラックスとを含むものであるが、この組成物は、通常適当な有機溶媒に分散ないし溶解させて適度な粘度に調整された塗布液として半導体基板に塗布される。
 近年、特に電気・電子分野では集積回路の高密度化に伴う発熱が大きな問題となっており、いかに熱を放熱するかが緊急の課題となっている。
 従来の組成物において、フィラーとしては窒化ホウ素(BN)が用いられている。
 窒化ホウ素(BN)は、絶縁性のセラミックであり、ダイヤモンド構造を持つc-BN、黒鉛構造をもつh-BN(六方晶窒化ホウ素)、乱層構造を持つα-BN、β-BNなど様々な結晶型が知られている。
 なかでも、黒鉛構造をもつh-BNは、黒鉛と同じ層状構造を有し、合成が比較的容易でかつ熱伝導性、固体潤滑性、化学的安定性、耐熱性に優れるという特徴を備えており、電気・電子材料分野で多く利用されている。
 また、h-BNは、絶縁性であるにもかかわらず、高い熱伝導性を有するという特徴を活かして、このような放熱部材用熱伝導性フィラーとして注目を集めており、放熱性に優れた層間充填層を形成し得ると考えられる。
 前述の特許文献1以外にも、従来から窒化ホウ素粉体を用いる技術が知られており、そのような窒化ホウ素として、例えば、特定の粒径、粒度分布を有する窒化ホウ素粉体が知られている(例えば、特許文献3参照)。また、これとは別に表面積、粒度、タップ密度等の粒子特性の異なる二種の混合窒化ホウ素を用いる技術(例えば、特許文献4参照)が知られている。
 また、h-BN粉体は、熱伝導性に優れた材料として知られており、粗六方晶窒化ホウ素粉体を水洗後、不活性ガス気流中で1500~1800℃で加熱処理することで、高結晶性窒化ホウ素を作製する技術が知られている(例えば、特許文献5参照)。この技術では、窒化ホウ素の結晶子の100面の結晶子サイズ(La)を成長させている。
 また、特許文献6では、粗製六方晶窒化ホウ素粉末に、特定の処理を施すことで、粒子径が大きく、潤滑性に優れる六方晶窒化ホウ素粉末を得られることが記載されている。
 また、特許文献7には、同じく粗製六方晶窒化ホウ素粉末にランタンを主成分とする化合物を混合し、非酸化性ガス雰囲気下で特定の温度範囲で加熱処理することで、002面の結晶子サイズ(Lc)を成長させて得られる六方晶窒化ホウ素粉末が記載され、この六方晶窒化ホウ素粉末は、分散性に優れ、高結晶性を有することが記載されている。
 また、六方晶窒化ホウ素に関しては、特許文献8に、粗製六方晶窒化ホウ素粉末を大気雰囲気中60℃以下で1週間以上養生させた後に特定の焼成を行うと粒径が大きくかつ高結晶性のものが得られる旨が記載されている。
 特許文献9には、粗製六方晶窒化ホウ素粉末について大気雰囲気中60℃以下で1週間以上養生させた後に、洗浄してから特定の焼成処理を行うことで、平均粒径が10μm以上に成長した六方晶窒化ホウ素粉末が記載されている。
 しかしながら、h-BNは、板状の粒子形状であり、その板面方向(C面方向あるいは(002)面方向)には高い熱伝導性を示すものの(通常、熱伝導率として250W/mK程度)、板厚方向(C軸方向)には低い熱伝導性(通常、熱伝導率として2~3W/mK程度)しか示さないため、これを樹脂に配合して組成物の塗布液として基板表面に塗布して塗膜を形成し、これを加熱してBステージ化し、更に仮接合及び本接合を行って三次元集積回路を製造すると、製造された三次元集積回路において、板状のBN粒子が塗膜の膜面方向に配向することとなり、形成された層間充填層は、層面方向には熱伝導率に優れるものの、厚み方向には低い熱伝導率しか示さないという課題があった。
 従来、このようなBN粒子の熱伝導性の異方性を改良するために、樹脂に充填しても上記のような配向が少ない、鱗片状以外の形状を有するh-BN粉末が検討されてきた。このようなh-BN粉末としては、噴霧乾燥などにより造粒されたh-BN粒子、h-BNを焼結し焼結体を粉砕して製造されたh-BN粒子などがある(例えば、特許文献2、10参照)。
 一方、別の凝集粒子として、ホウ酸とメラミンの混合物から製造したh-BN粒子が配向せずに凝集した松ぼっくり状のBN粒子も提案されている(例えば、特許文献11参照)。
日本特表2008-510878号公報 日本特開2006-257392号公報 日本特開2008-189818号公報 日本特表2010-505729号公報 日本特開昭61-7260号公報 日本特開平9-263402号公報 日本特開平9-295801号公報 日本特開2010-37123号公報 日本特開2010-42963号公報 日本特表2008-510878号公報 日本特開平9-202663号公報
エレクトロニクス実装学会講演大会講演論文集、61,23,2009) はんだ付けの基礎と応用(工業調査会)
 従来のh-BN造粒粒子は、高熱伝導性を達成するために構成するh-BN一次粒子の大きさが数ミクロン以上と大きく、また、ランダムに凝集しているため、造粒粒子としては熱伝導異方性が改善されているものの、造粒形状が壊れやすく、樹脂と混練すると崩壊してしまって、結局、成形体を作製した場合、h-BN粒子の低熱伝導面が厚み方向に配向してしまうという課題があった。また、従来技術に開示されているような球状凝集体では、凝集体を構成するh-BN一次粒子は数μ以上の大きな粒子を用いている。これは、原料となるh-BN粒子も結晶性の高いものを用いることで凝集体としての熱伝導性を確保するためであるが、このように高い結晶性のh-BN原料を用いた場合、h-BN一次粒子の大きさに制約を受けて、25μm以下の凝集BN粒子を作製することは困難であった。さらに、熱処理を施し、結晶化を促進したとしても、原料であるh-BN自体の結晶性が高いために、もはや更なる結晶成長は見込めず、結晶の成長方向の制御もできなかった。
 特許文献11などで開示される松ぼっくり状の凝集構造は、結合剤を使用していない点で純度が高く、熱伝導異方性も小さいことが期待されるものの、構成するh-BN粒子の大きさは数μから数百μと大きく、樹脂と混練すると崩壊してしまって低熱伝導面が成形体の厚み方向に配向してしまうという課題があった。また、凝集粒子を構成するh-BN一次粒子の結晶成長方向を制御できないという課題が依然として残されていた。
 一方、h-BNの焼結体を粉砕して製造された粉末は、h-BN焼結体の製造過程におけるホットプレスや予備成形時にh-BN一次粒子が配向し、一次粒子が配向した状態で集合した粒子の割合が多くなるため、多少の改善効果はあるものの、やはり、成形体の厚み方向にh-BNの低熱伝導面が配向してしまうという課題があった。
 以上のことから、h-BNの凝集粉末では、凝集粉末を構成するh-BN一次粒子の結晶成長方向(BN結晶の一次粒子がa軸を外に向けるように法線方向へ成長)と大きさを制御し、熱伝導率異方性および樹脂との混練による凝集構造の崩壊性を改良した窒化ホウ素粒子を得ることは、未だ達成されていなかった。
 本発明は、特定の窒化ホウ素の粒子(以下、BN粒子と記すことがある。)を提供するものであって、特定の結晶構造を有する窒化ホウ素の粒子(以下、特定結晶BN粒子と記すことがある。)、表面に特定の平均粒子径を有する窒化ホウ素一次粒子を有する窒化ホウ素凝集粒子(以下、凝集BN粒子と記すことがある。)を提供するものであって、熱伝導の等方性、耐崩壊性、樹脂との混練性に優れたBN粒子を提供することを目的とする。また、このBN粒子を用いて、厚み方向の熱伝導性にも優れた層間充填層を形成することができる三次元集積回路用の組成物とその塗布液(組成物塗布液と称することもある。)、該塗布液を用いた三次元集積回路用積層体及び三次元集積回路の製造方法を提供することを目的とする。
 本発明者らは、更に上記課題を解決すべく鋭意検討を行った結果、三次元集積回路用積層体の層間に充填する組成物に用いるフィラーとしての窒化ホウ素として、特定結晶BN粒子および凝集BN粒子から選ばれる、少なくとも1つのBN粒子を用いることにより、上記課題を解決することができることを見出した。
 本発明で用いる凝集BN粒子は、特定の比表面積および全細孔容積を有し、表面にごく小さなh-BN結晶の一次粒子が配置されているか、または放射状(h-BN結晶の一次粒子がa軸を外に向けるように法線方向へ配置されていることをいう。)に配置されているものである。組成物のフィラーとしてこのような凝集BN粒子を用いると、粒子同士の表面でh-BN結晶の高熱伝導面(C面)がa軸を介して接触する頻度が増し、結果として形成される層間充填層の厚み方向の熱伝導性が大きく改善されることを見出した。
 本発明は、このような知見に基いて達成されたものであり、以下を要旨とする。
(1)窒化ホウ素凝集粒子であって、比表面積が10m/g以上、全細孔容積が2.15cm/g以下、且つ、該窒化ホウ素凝集粒子の表面が、平均粒子径0.05μm以上1μm以下の窒化ホウ素一次粒子から構成される、窒化ホウ素凝集粒子。
(2)球状の窒化ホウ素凝集粒子であって、該窒化ホウ素凝集粒子表面において、平均粒子径が1μm以下の窒化ホウ素一次粒子が放射状に配置されている窒化ホウ素凝集粒子。
(3)体積基準の最大粒子径が0.1μm以上25μm以下の範囲である上記(1)又は(2)に記載の窒化ホウ素凝集粒子。
(4)バルク密度が0.3g/cm以上である上記(1)ないし(4)のいずれかに記載の窒化ホウ素凝集粒子。
(5)原料窒化ホウ素粉末を含有するスラリーを用いて造粒する工程を有する窒化ホウ素凝集粒子の製造方法であって、
前記スラリー中の原料窒化ホウ素粉末の体積基準の平均粒子径D50が、造粒された造粒粒子の体積基準の平均粒子径D50の1/5以下である、窒化ホウ素凝集粒子の製造方法。
(6)前記原料窒化ホウ素粉末の全酸素含有量が、1重量%以上10重量%以下である、上記(5)に記載の窒化ホウ素凝集粒子の製造方法。
(7)前記原料窒化ホウ素粉末が下記条件<1>及び/又は<2>を満たす、上記(5)又は(6)に記載の窒化ホウ素凝集粒子の製造方法。
 <1>全細孔容積が1.0cm/g以下
 <2>比表面積が20m/g以上
(8)前記原料窒化ホウ素粉末を含有するスラリーをスプレードライ法により球形に造粒した後、得られた造粒粒子を非酸化性ガス雰囲気下で加熱処理する、上記(5)ないし(7)のいずれかに記載の窒化ホウ素凝集粒子の製造方法。
(9)前記原料窒化ホウ素粉末を含有するスラリーが、金属酸化物を原料窒化ホウ素粉末に対して1重量%以上30重量%以下の範囲で含有する、上記(5)ないし(8)のいずれかに記載の窒化ホウ素凝集粒子の製造方法。
(10)120℃における溶融粘度が100Pa・s以下である樹脂(A)と、上記(1)ないし(4)のいずれかに記載の窒化ホウ素凝集粒子よりなるフィラー(B)とを含む組成物。
(11)前記フィラー(B)を樹脂(A)100重量部当たり、40重量部以上400重量部以下含有する、上記(10)に記載の組成物。
(12)上記(5)ないし(9)のいずれかに記載の窒化ホウ素凝集粒子の製造方法によって製造された窒化ホウ素凝集粒子よりなるフィラー(B)と、120℃における溶融粘度が100Pa・s以下である樹脂(A)とを含む組成物。
(13)前記フィラー(B)の体積平均粒子径が10μm以下である、上記(12)に記載の組成物。
(14)前記フィラー(B)を樹脂(A)100重量部当たり、40重量部以上400重量部以下含有する、上記(12)又は(13)に記載の組成物。
(15)120℃における溶融粘度が100Pa・s以下である樹脂(A)と、002面の結晶子径(Lc)が450[Å]以上であり、100面の結晶子径(La)が500[Å]以上であり、前記結晶子径(Lc)と前記結晶子径(La)が下記式(i)を満たし、酸素含有量が0.30重量%以下である窒化ホウ素よりなるフィラー(B)とを含有する組成物。
  0.70≦Lc/La     …(i)
(16)前記フィラー(B)の体積平均粒子径が10μm以下である、上記(15)に記載の組成物。
(17)前記フィラー(B)を樹脂(A)100重量部当たり、40重量部以上400重量部以下含有する、上記(15)又は(16)に記載の組成物。
(18)更に硬化剤(C)を含有する、上記(10)ないし(17)のいずれかに記載の組成物。
(19)更にフラックス(D)を含有する、上記(10)ないし(18)のいずれかに記載の組成物。
(20)前記樹脂(A)が熱硬化性樹脂である、上記(10)ないし(19)のいずれかに記載の組成物。
(21)前記熱硬化性樹脂がエポキシ樹脂(a)である、上記(20)に記載の組成物。
(22)前記エポキシ樹脂(a)が、エポキシ当量が100g/当量以上650g/当量未満であるエポキシ樹脂(a1)を含む、上記(21)に記載の組成物。
(23)前記エポキシ樹脂(a)が、エポキシ当量が650g/当量以上30000g/当量以下であるエポキシ樹脂(a2)を含む、上記(21)又は(22)に記載の組成物。
(24)前記エポキシ樹脂(a)が、ビスフェノールA骨格、ビスフェノールF骨格又はビフェニル骨格のうち、少なくとも1つ以上の骨格を有するフェノキシ樹脂である、上記(21)ないし(23)のいずれかに記載の組成物。
(25)上記(10)ないし(24)のいずれかに記載の組成物と、有機溶媒(E)を含有してなる、組成物塗布液。
(26)複数の半導体基板表面に、上記(25)に記載の組成物塗布液を成膜した後、これらの半導体基板を加圧接合して積層する工程を含む、三次元集積回路の製造方法。
(27)半導体デバイス層が形成された半導体基板を少なくとも2層以上積層した半導体基板積層体と、上記(10)ないし(24)のいずれかに記載の組成物を含む層とを有する、三次元集積回路。
 本発明によれば、h-BNの結晶成長方向を容易に制御して特定結晶BNを得ることができる。また、凝集BN粒子を構成するh-BN一次粒子の結晶の成長方向と粒子径を容易に制御して、粒子表面において、特定の粒子径のh-BN一次粒子の結晶が配置されているか、または放射状に配置されている、所望の粒子径の等方的な熱伝導性を示す凝集BN粒子を製造することができる。
 さらに、本発明の三次元集積回路用の、BN粒子を含有する組成物及び塗布液によれば、厚み方向の熱伝導性も良好な層間充填層を形成することができる。また、フィラーとして用いるBN粒子は、樹脂との混練性にも優れるため、このようなフィラーを含む本発明の組成物塗布液を用いて形成された塗膜は、膜性状に優れた均質な塗膜となり、この塗膜をBステージ化して均質なBステージ化膜を形成することができる。
 従って、このBステージ化膜を加熱硬化させて、良好な層間充填層を形成することができるため、高品質の、熱伝導性に優れた三次元集積回路を実現することができる。
(a)図は、実施例1-1の凝集BN粒子(BN-A)及びの調製例3-1の凝集BN粒子の加熱処理前のSEM写真であり、(b)図は同加熱処理後のSEM写真である。 (a)図は、実施例1-2の凝集BN粒子(BN-B)の加熱処理前のSEM写真であり、(b)図は同加熱処理後のSEM写真である。 (a)図は、比較例1-1の凝集BN粒子(BN-C)の加熱処理前のSEM写真であり、(b)図は同加熱処理後のSEM写真である。
 以下、本発明を詳しく説明するが、本発明は説明に限定して解釈されるものではなく、その要旨の範囲内で実施することが可能である。
〔窒化ホウ素の粒子(BN粒子)〕
 本発明に係る窒化ホウ素の粒子(BN粒子)としては、特定の結晶構造を有する窒化ホウ素の粒子(特定結晶BN粒子)であってもよいし、造粒により窒化ホウ素を凝集させた窒化ホウ素凝集粒子(凝集BN粒子)であっても構わない。特定結晶BN粒子は、凝集BN粒子の原料として用いることも可能であるが、凝集BN粒子の原料としては特定結晶BN粒子に限定されず、追って詳細に説明する特定の原料一次粒子を用いることも可能である。本発明に係るBN粒子は、三次元集積回路の層間に含有させた場合に、特に顕著な効果を発現する。
<特定結晶BN粒子>
 本発明でいう結晶子のサイズは、002面及び100面それぞれの結晶子径であり、002面の結晶子径(Lc)は、X線回折の2θ=26.5°のピークの半価幅を測定し、下記(ii)式によって求めることができる。100面の結晶子径(La)についても同様に、X線回折の2θ=41.5°のピークの半価幅を測定し、下記式(ii)によって求められる。
 L(Å)=(0.9λ・180)/(β・cosθ・π)    …(ii)
  λ:1.54056Å
  β:ピーク半価幅
 本発明の特定結晶BN粒子は、100面の結晶子サイズ(La)が500[Å]以上である。このLaが500[Å]以上であることで、結晶子界面が十分に少なくなり、高い熱電導性を得られる。このLaは、熱伝導性をさらに高める観点から、550[Å]以上であることがより好ましく、600[Å]以上であることが特に好ましい。
 一方、工業的な生産性の観点から、このLaは2000[Å]以下であることが好ましく、1000[Å]以下であることがより好ましい。
 このLaは、本発明の特定結晶BN粒子の製造時において、例えばLaが500Å未満のh-BNを非酸化性ガス中、通常1300~2300℃、好ましくは1500~2100℃、より好ましくは1800~2000℃の温度で熱処理を行うことによって調製することができ、Laを大きくするには、前記温度範囲のできるだけ高温の条件で、長時間熱処理する方法を取ることができる。
 本発明の特定結晶BN粒子は、002面の結晶子サイズ(Lc:六角網面積層方向)が450[Å]以上である。このLcが450[Å]以上であることで、結晶子界面が十分に少なくなり、高い熱電導性を得られる。このLcは、熱伝導性をさらに高める観点から、470[Å]以上であることがより好ましく、500[Å]以上であることが特に好ましい。
 一方、工業的な生産性の観点から、このLcは2000[Å]以下であることが好ましく、1000[Å]以下であることがより好ましい。
 このLcは、本発明の凝集BN粒子の製造時において、例えばLcが450Å未満のh-BNを非酸化性ガス中、通常1500~2300℃、好ましくは1800~2100℃の温度で熱処理を行うことによって調製することができ、Lcを大きくするには、前記原料のh-BNの酸素含有量が1.0重量%未満のものを使用する方法を好ましく採用することができる。
 本発明の凝集BN粒子は、上記LcとLaの関係が、以下の関係式(i)を満たす。
  0.70≦Lc/La     …(i)
 上記関係式(i)は、本発明の特定結晶BN粒子の形状異方性を示すものであり、Lc/Laが1に近いほど、形状異方性が小さいことを示す。
 本発明の特定結晶BN粒子が、上記の関係式(i)を満たすことで、これを樹脂と共に組成物に含有させたときに、当該組成物の粘度が上がることを防ぐことができる。また、本発明の特定結晶BN粒子を原料として用いた窒化ホウ素凝集粒子を樹脂と共に組成物に含有させたときにも、当該組成物の粘度が上がることを防ぐことができる。
 LcとLaの関係は、0.75≦Lc/Laであることがより好ましく、0.78≦Lc/Laであることが特に好ましい。一方、LcとLaの関係は、Lc/La≦1.2であることが、形状異方性を小さくする観点から好ましい。
 本発明の特定結晶BN粒子は、その酸素含有量が0.30重量%以下である。特定結晶BN粒子の酸素含有量が0.30重量%以下であることで、これを樹脂とともに組成物に含有させたとき、当該組成物の熱伝導率が好ましいものになる。この酸素含有量は0.25重量%以下であることがより好ましく、0.15重量%以下であることが特に好ましい。一方、この酸素含有量の下限値は、通常、0.01重量%である。
 本発明の特定結晶BN粒子の酸素含有量をこのような範囲にすることは、特定結晶BN粒子の製造工程において、非酸化性ガス雰囲気下で焼成することで達成できる。酸素含有量を減少させるために、窒素ガス雰囲気下で焼成することが特に好ましい。
 なお、本発明の特定結晶BN粒子の酸素含有量は、不活性ガス融解-赤外線吸収法によりHORIBA製酸素・窒素分析計を用いて測定することができる。
 本発明の特定結晶BN粒子は、平均粒径が10μm以下であることが好ましい。また、本発明の特定結晶BN粒子は、平均粒径が7μm以下であることがより好ましく、平均粒径が5μm以下であることがさらに好ましく、4μm以下であることが特に好ましい。一方、平均粒径は、0.1μm以上であることが、良好な熱伝導性及び良好な流動性を得る観点から好ましい。
 本発明における特定結晶BN粒子の平均粒径は、例えば、これを適当な溶剤に分散させ、堀場製作所社製のレーザ回折/散乱式粒度分布測定装置LA-920にて測定することが可能である。得られた粒度分布から特定結晶BN粒子の平均粒径を求めることができる。ここで言う平均粒径は、体積基準の平均粒径である。層間充填材組成物中の特定結晶BN粒子の平均粒径についても同様に、これを適当な溶剤に分散させ、上記と同様の装置で測定することが可能である。
(特定結晶BN粒子の製造方法)
 本発明の特定結晶BN粒子を得るために用いられる原料としては、市販の六方晶窒化ホウ素、市販のαおよびβ-窒化ホウ素、ホウ素化合物とアンモニアの還元窒化法により作製された窒化ホウ素、ホウ素化合物とメラミンなどの含窒素化合物から合成される窒化ホウ素、ホウ水素ナトリウムと塩化アンモニウムから作製される窒化ホウ素など何れも制限なく使用できるが、特に六方晶窒化ホウ素が好ましく用いられる。
 これらの原料の中でも、本発明の特定結晶BN粒子が所定の結晶子サイズを有するように、原料としては、六方晶窒化ホウ素であって、特にLaが300[Å]以上であり、より好ましくはまた、Lcが250[Å]以上であり、Lc/Laが0.8~1.0のものを用いることが特に好ましい。
 本発明の特定結晶BN粒子は、上記の原料を非酸化性ガスの雰囲気下、1800~2300℃の温度で焼成することで得ることができる。
 非酸化性ガスとしては、窒素ガス、ヘリウムガス、アルゴンガス、アンモニアガス、一酸化炭素等を用いることができ、特に窒素ガスが好適に用いられる。
 焼成時間は、1~20時間程度、より好ましくは3~15時間、特に好ましくは5~15時間である。
 焼成温度や焼成時間は、本発明の特定結晶BN粒子のLc及びLaが同時に大きくなるように適宜調整して決めることができる。
 また、焼成に用いる炉はカーボン炉であることが特に好ましく、焼成の際に六方晶窒化ホウ素を入れる坩堝は、カーボン製であることが特に好ましい。
 また、焼成の際には六方晶窒化ホウ素の所望の結晶成長を阻害しない範囲で、添加剤を加えて行ってもよい。
 なお、特定結晶BN粒子は、製造直後では、得られた粒子が更に凝集して、上記粒子径の範囲を満たさない場合がある。そのため、特定結晶BN粒子は、上記粒子径の範囲を満たすように粉砕して用いることが好ましい。
 特定結晶BN粒子の粉砕の方法は特に限定されず、ジルコニアビーズ等の粉砕用メディアと共に攪拌混合する方法や、ジェット噴射等の従来公知の粉砕方法を適用できる。
 本発明に係る特定結晶BN粒子を組成物に含有させて用いる場合においては、特定結晶BN粒子は1種を単独で用いてもよく、物性の異なる特定結晶BN粒子の2種以上を任意に組み合わせて用いてもよいし、更には本発明に係る凝集BN粒子を併用しても構わない。
<凝集BN粒子>
 本発明の窒化ホウ素凝集粒子(凝集BN粒子)は、比表面積が10m/g以上、全細孔容積が2.15cm/g以下であって、且つ、該窒化ホウ素凝集粒子の表面が、平均粒子径0.05μm以上1μm以下の窒化ホウ素一次粒子から構成されるものである。
 本発明の凝集BN粒子は、平均粒子径が10μm以下であることが好ましい。平均粒子径は7μm以下であることがより好ましく、5μm以下であることがさらに好ましく、4μm以下であることが特に好ましい。一方、平均粒子径は、0.1μm以上であることが、良好な熱伝導性及び良好な流動性を得る観点から好ましい。
 本発明の凝集BN粒子の平均粒子径は、例えば、これを適当な溶剤に分散させ、堀場製作所社製レーザ回折/散乱式粒度分布測定装置LA-920にて測定することが可能である。得られた粒度分布から凝集BN粒子の平均粒径を求めることができる。
 ここで言う平均粒子径は、体積基準の平均粒径である。組成物中の凝集BN粒子の平均粒子径についても同様に、これを適当な溶剤に分散させ、上記と同様の装置で測定することが可能である。
 本発明の凝集BN粒子は、通常、全細孔容積が2.15cm/g以下である。全細孔容積を小さくすることにより、凝集BN粒子内が密になっているために、熱伝導を阻害する境界面を少なくすることが可能となり、より熱伝導性の高い凝集BN粒子を得ることができる。
 凝集BN粒子の全細孔容積は、通常2.15cm/g以下であるが、好ましくは0.3cm/g以上2.00cm/g以下、より好ましくは0.5cm/g以上1.95cm/g以下である。また、通常、凝集BN粒子の比表面積は20m/g以上であるが、好ましくは20m/g以上50m/g以下、より好ましくは25m/g以上30m/g以下である。
 なお、凝集BN粉末の全細孔容積は、水銀圧入法で測定することができ、比表面積は、BET1点法(吸着ガス:窒素)で測定することができる。
 凝集BN粉末の全細孔容積及び比表面積は、具体的には後述の実施例の項に記載される方法で測定される。
 本発明の凝集BN粒子は、球状であることが好ましい。本発明において「球状」とは、アスペクト比(長径と短径の比)が1以上2以下、好ましくは1以上1.5以下である形状に、後述の原料BN粉末を凝集させて造粒された粒子のことをいい、一次粒子のことではない。即ち、本発明において「球状」ないし「球形」とはアスペクト比が1以上2以下のものを示す。なお、このアスペクト比は、好ましくは1以上1.5以下である。造粒された凝集BN粒子のアスペクト比は、走査型電子顕微鏡(SEM)で撮影された画像から200個以上の粒子を任意に選択し、それぞれの長径と短径の比を求めて平均値を算出することにより決定する。
 なお、造粒により得られた造粒粒子の粒子径は、加熱処理後に本発明の凝集BN粒子として、好適な体積基準の最大粒子径の範囲を0.1~25μmとするために、体積基準の平均粒子径D50で2~20μm、特に5~10μmであることが好ましい。ここで、造粒粒子の体積基準の平均粒子径D50は、例えば、日機装社製「マイクロトラックHRA」で測定することができる。
 なお、凝集BN粒子は、製造直後では、得られた粒子が更に凝集して、上記粒子径の範囲を満たさない場合がある。そのため、凝集BN粒子は、上記粒子径の範囲を満たすように粉砕して用いることが好ましい。
 凝集BN粒子の粉砕の方法は特に限定されず、ジルコニアビーズ等の粉砕用メディアと共に攪拌混合する方法や、ジェット噴射等の従来公知の粉砕方法を適用できる。
 本発明に係る凝集BN粒子を組成物に含有させて用いる場合においては、凝集BN粒子は1種を単独で用いてもよく、物性の異なる凝集BN粒子の2種以上を任意に組み合わせて用いてもよいし、更には本発明に係る特定結晶BN粒子を併用しても構わない。
 例えば、平均粒子径が異なる2種以上の凝集BN粒子を使用してもよい。即ち、平均粒子径が比較的小さい、例えば0.1~2μm、好ましくは0.2~1.5μmの凝集BN粒子と、平均粒子径が比較的大きい、例えば1~5μm、好ましくは1~3μmの凝集BN粒子とを併用することにより、平均粒子径の大きい凝集BN粒子同士の熱伝導パスを、平均粒子径の小さい凝集BN粒子で繋ぐことにより、同一の平均粒子径のもののみを用いた場合に比べて、高充填が可能となり、より高い熱伝導性を得ることができる。
 この場合、平均粒子径の小さい凝集BN粒子と平均粒子径の大きい凝集BN粒子とは重量比で10:1~1:10の割合で用いることが、熱伝導パスの形成の上で好ましい。
 また、後述の樹脂(A)を含む組成物に用いるフィラー(B)として、凝集BN粒子を使用する際には、樹脂(A)や塗布液中での分散性を高めるため、適宜表面処理を行ってもよい。
<凝集BN粒子の製造方法>
 本発明において、凝集BN粒子を製造する方法としては、制限はないが、特に、原料となる窒化ホウ素(以下、これを粉砕したものとともに原料BN粉末と記することがある。)を粉砕工程で粉砕した後、造粒工程で凝集させることにより造粒し、更に加熱処理する加熱工程を経ることが好ましい。より具体的には、原料BN粉末を一旦媒体中に分散させて原料BN粉末のスラリー(以下、「BNスラリー」と記することがある。)とした後、粉砕処理を施し、その後得られたスラリーを用いて球形の粒子に造粒し、造粒した凝集BN造粒粒子の結晶化を行うために加熱処理を施すことが好ましい。
(原料BN粉末)
 本発明で、凝集BN粒子を製造する際の原料となる窒化ホウ素(原料BN粉末)としては、市販のh-BN、市販のαおよびβ-BN、ホウ素化合物とアンモニアの還元窒化法により作製されたBN、ホウ素化合物とメラミンなどの含窒素化合物から合成されたBN、ホウ水素ナトリウムと塩化アンモニウムから作製されるBNなど何れも制限なく使用できるが、特にh-BNが好ましく用いられる。
 h-BN結晶成長の観点からは、原料となるh-BN等の原料BN粉末中に酸素がある程度存在することが好ましく、本発明の凝集BN粒子では、原料BN粉末として全酸素含有量が1重量%以上10重量%以下であるものを用いることが好ましく、より好ましくは全酸素含有量が3重量%以上10重量%以下、さらに好ましくは全酸素含有量が3重量%以上9重量%以下である。
 全酸素含有量が上記範囲内である原料BN粉末は、一次粒子径が小さく、結晶が未発達のものが多いため、加熱処理により結晶が成長し易い。本発明では造粒により原料BN粉末が凝集した凝集BN粒子を加熱処理することでBN結晶を成長させることが好ましいが、上記全酸素含有量の範囲の原料BN粉末を用いることで、BN結晶の一次粒子がa軸を外に向けるように法線方向へ成長させる、すなわちBN一次粒子を凝集BN粒子表面において放射状に配置することができる。
 原料BN粉末の全酸素含有量が上記下限未満の場合、原料BN粉末自体の純度、結晶性が良いために、C面の結晶成長が十分になされず、凝集BN粒子表面において、BN一次粒子を放射状に配置することができず、逆に上記上限を超えると、加熱処理後も酸素含有量が高い状態となって、組成物のフィラー(B)として用いた際に高熱伝導化が図れなくなるため好ましくない。
 しかして、このような凝集BN粒子を組成物の熱伝導性フィラー(B)として用いて層間充填層を形成した場合、層間充填層中でh-BNの高熱伝導面(C面)がa軸を介して接触することによる熱伝導パスが形成されやすくなるために、層間充填層の厚み方向においても高い熱伝導性を得ることが可能となる。
 原料BN粉末の全酸素含有量を上記範囲に調製する方法としては、BN合成時の合成温度を1800℃以下の低温で行う方法などが挙げられる。
 また、全酸素含有量が上記好適範囲の原料BN粉末としては市販品を用いることもでき、例えば、日新リフラテック社製のh-BN「ABN」やMARUKA社製のh-BN「AP170S」などが挙げられる。
 なお、本発明に用いる原料BN粉末の酸素含有量は、不活性ガス融解-赤外線吸収法によりHORIBA製酸素・窒素分析計を用いて測定することができる。
 また、原料BN粉末は、下記(1)及び/又は(2)を満たすことが好ましい。
 (1)全細孔容積が1.0cm/g以下
 (2)比表面積が20m/g以上
 全細孔容積が1.0cm/g以下であることにより、原料BN粉末が密になっているために凝集BN粒子を構成する一次粒子として用いた場合に、球形度の高い造粒が可能となる。また、比表面積が20m/g以上であることにより、造粒による球形化の際に用いるBNスラリー中の分散粒子径を小さくすることができるため好ましい。
 通常、原料BN粉末の全細孔容積は1.0cm/g以下であるが、好ましくは0.3cm/g以上1.0cm/g以下、より好ましくは0.5cm/g以上1.0cm/g以下である。また、通常、原料BN粉末の比表面積は20m/g以上であるが、好ましくは20m/g以上500m/g以下、より好ましくは50m/g以上200m/g以下である。
 なお、原料BN粉末の全細孔容積は、水銀圧入法で測定することができ、比表面積は、BET1点法(吸着ガス:窒素)で測定することができる。
 原料BN粉末の全細孔容積及び比表面積は、具体的には後述の実施例の項に記載される方法で測定される。
 また、上記の原料BN粉末でも、本発明の凝集BN粒子が所定の結晶子サイズを有するように、特にLaが300[Å]以上であり、Lcが250[Å]以上であり、Lc/Laが0.8~1.0のものを用いることが特に好ましい。
(BNスラリーの調製)
 BNスラリーの調製に用いる媒体としては特に制限はなく、水及び/又は各種の有機溶媒を用いることができるが、噴霧乾燥の容易さ、装置の簡素化などの観点から、水(純水)を用いることが好ましい。
 水の使用量は、多過ぎると噴霧乾燥時の負荷が増大し、少な過ぎると均一分散が困難であることから、原料BN粉末に対して1~20重量倍、特に1~10重量倍とすることが好ましい。
(界面活性剤)
 BNスラリーには、後述の粉砕処理時のスラリーの粘度上昇を抑制すると共に、BN粒子の分散安定性(凝集抑制)の観点から、種々の界面活性剤を添加してもよい。
 界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、非イオン性界面活性剤等を用いることができ、これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 BNスラリーに界面活性剤を添加して用いる場合、BNスラリーの界面活性剤濃度は0.1重量%以上10重量%以下、特に0.5重量%以上5重量%以下の割合となるように用いることが好ましい。BNスラリーの濃度が上記下限以上であることにより、界面活性剤を添加したことによる上記効果を十分に得ることができ、また、上記上限以下であることにより、原料BN粉末の含有量の高いBNスラリーを調製した後、造粒し、さらに加熱処理を施した際の残存炭素の影響を小さくすることができる。
 なお、界面活性剤は、以下の粉砕処理の前に添加してもよく、粉砕処理後に添加してもよい。
(バインダー)
 BNスラリーは、原料BN粉末を効果的に凝集粒子に造粒するために、バインダーを含むことが好ましい。バインダーは、元来、粒子同士が接着性のない原料BN粉末を強固に結びつけ、造粒粒子の形状を安定化するために作用する。
 BNスラリーに用いるバインダーとしては、BN粒子同士の接着性を高めることができるものであればよいが、本発明においては、造粒粒子は凝集化後に加熱処理されるため、この加熱処理工程における高温条件に対する耐熱性を有するものが好ましい。
 このようなバインダーとしては金属酸化物が好ましく、具体的には酸化アルミニウム、酸化マグネシウム、酸化イットリウム、酸化カルシウム、酸化珪素、酸化ホウ素、酸化セリウム、酸化ジルコニウム、酸化チタンなどが好ましく用いられる。これらの中でも、酸化物としての熱伝導性と耐熱性、BN粒子同士を結合する結合力などの観点から、酸化アルミニウム、酸化イットリウムが好適である。なお、バインダーはアルミナゾルのような液状バインダーを用いてもよい。
 これらのバインダーは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 バインダーの使用量(液状バインダーの場合は、固形分としての使用量)は、BNスラリー中の原料BN粉末に対して、好ましくは1重量%以上30重量%以下であり、より好ましくは1重量%以上20重量%以下、更に好ましくは5重量%以上20重量%以下である。バインダーの使用量が上記下限未満の場合、BN同士を結着させる効果が小さくなるため造粒粒子が造粒後の形状を保てなくなるおそれがあり、上記上限を超えると造粒粒子中のBNの含有量が少なくなり、結晶成長に影響するばかりか熱伝導性のフィラーとして用いた場合に熱伝導率改善効果が小さくなるおそれがある。
(粉砕処理)
 BNスラリーは、そのまま噴霧乾燥による造粒工程に供してもよいが、造粒に先立ち、スラリー中の原料BN粉末のBN粒子を粉砕処理して微細化することが好ましく、BN粒子を粉砕して微細化することにより、凝集化を円滑に行うことができるようになる。
 即ち、原料BN粉末の粒子径にもよるが、原料BN粉末をそのまま媒体中に分散させた場合、BN粒子は平板状であるために、凝集化の工程で造粒されない粒子が多くなる傾向にあるが、BN粒子の微細化で、効率的な凝集化を行える。
 粉砕には、ビーズミル、ボールミル、ピンミルなど通常の粉砕方法を用いることができるが、スラリーとして大量に循環粉砕可能で粉砕粒子径を制御しやすいという観点からビーズミルが好適である。また、粉砕によりBN粒子が微粒子化することで、BNスラリーの粘度が上昇するため、より高濃度、高粘度でも粉砕が可能なものがよく、加えて、粉砕が進むにつれてBNスラリーの温度上昇も生じるため、冷却システムが備えられているものが好ましい。このような装置としては、例えばフロイントターボ社製「OBミル」、アシザワ・ファインテック社製「スターミルLMZシリーズ」などが挙げられる。
 本発明では、粉砕により、BNスラリー中の原料BN粉末の体積基準の平均粒子径D50を、好ましくは、球形に造粒した際のBN造粒粒子の体積基準の平均粒子径D50に対して1/5以下の粒子径となるように粉砕する。BNスラリー中の原料BN粉末の体積基準の平均粒子径D50が、造粒粒子の体積基準の平均粒子径D50の1/5より大きいと、BN粒子は平板状であることから、球形化の造粒工程で球形に造粒されない粒子が多くなるため好ましくなく、また造粒した後の粒子強度も弱くなるため好ましくない。粉砕効果と粉砕の負荷とを考慮した場合、造粒に供するBNスラリー中の原料BN粉末の体積基準の平均粒子径D50は、このBNスラリーを造粒して得られる造粒粒子の体積基準の平均粒子径D50の1/100~1/5であることが好ましく、特に1/50~1/5であることが好ましい。
 なお、BNスラリー中の原料BN粉末の体積基準の平均粒子径D50は、例えば、粉砕後のスラリーを適当な溶剤に分散させ、レーザ回折/散乱式粒度分布測定装置(堀場製作所社製「LA-920」、日機装社製マイクロトラック「FRA」、「HRA」、「MT3300EX」、「UPA-EX150」、日機装社製ナノトラック「UPA-EX150」など)にて測定することが可能である。
 BNスラリー中の原料BN粉末の体積基準の平均粒子径D50は、具体的には後述の実施例の項に記載される方法で測定される。
(造粒(凝集化))
 BNスラリーから凝集BN粒子である造粒粒子を得るには、スプレードライ法が好適に用いられる。スプレードライ法では、原料となるスラリーの濃度、装置に導入する単位時間当たりの送液量と送液したスラリーを噴霧する際の圧空圧力及び圧空量により、所望の大きさの造粒粒子を製造することが可能であって、球状の造粒粒子を得ることも可能である。球状化に際して使用するスプレードライ装置に制限はないが、より微小な大きさの球状BN造粒粒子とするためには、四流体ノズルによるものが最適である。このような装置としては、藤崎電機社製「MDL-050M」などが挙げられる。
(加熱処理)
 上記の造粒により得られた窒化ホウ素の造粒粒子は、更に非酸化性ガス雰囲気下に加熱処理されるのが好ましい。
 ここで、非酸化性ガス雰囲気とは、窒素ガス、ヘリウムガス、アルゴンガス、アンモニアガス、水素ガス、メタンガス、プロパンガス、一酸化炭素ガスなどの雰囲気のことである。ここで用いる雰囲気ガスの種類により凝集BN粒子の結晶化速度が異なるものとなり、例えばアルゴンガスでは、結晶化の速度が遅くなり、加熱処理時間が長時間に及ぶ。結晶化を短時間で行うためには特に窒素ガス、もしくは窒素ガスと他のガスを併用した混合ガスが好適に用いられる。この加熱処理の条件を適切に選択することも、本発明の凝集BN粒子の比表面積や全細孔容積を特定の範囲としながら、表面に平均粒子径1μm以下の窒化ホウ素一次粒子をと配置し、しかも放射状に配置させる上で、重要である。
 加熱処理温度は通常1300~2100℃であるが、好ましくは1300~2000℃、更に好ましくは1400~2000℃である。加熱処理温度が下記下限未満では、h-BNの結晶化が不十分となり、結晶化が未発達のアモルファス部分が残り、熱伝導性フィラーとした場合の熱伝導率改善効果が小さくなる。加熱処理温度が、上記上限を超えると、添加したバインダー成分が溶融・分解して凝集BN粒子同士が凝集し、本来の形状を保てなくなったり、BNの分解などが生じてしまうおそれがある。
 加熱処理時間は、通常1時間以上50時間以下であり、より好ましくは3~40時間、特に好ましくは5~30時間である。更に、上記加熱処理時間内に、特に1300~1500℃で3時間以上の保持工程を導入することが好ましい。前記温度範囲で保持工程を導入することにより、より効率的にh-BNの結晶化が行われるため、上限の加熱処理温度を低下できる傾向にある。加熱処理時間が上記下限未満の場合、結晶化が不十分となり、上記上限を超えるとh-BNが一部分解するおそれがある。
 加熱処理は、非酸化性ガス雰囲気下で行うことが好ましく、このためには、通常、炉内を真空ポンプで引きながら加熱し、加熱に伴う分解ガスなどが少なくなるまで排気を行った後、非酸化性ガスを導入しながら、続けて所望の温度まで加熱して昇温することが好ましい。真空ポンプで排気を行う温度の目安としては、200~500℃、例えば、400℃付近まで30~60分程度で加熱昇温した後、その温度を保持しながら30~60分程度排気を続け、真空度が10Pa以下となるまで真空引きを行い、その後、非酸化性ガスを導入することが好ましい。非酸化性ガスの流量は、炉の大きさにもよるが、通常2L(リットル)/分以上であれば問題ない。その後、非酸化性ガスを導入しながら1500℃程度まで50~100℃/時で昇温し、その後1500℃から所定の加熱処理温度まで30~50℃/時で昇温する。この温度で上記加熱処理時間中、加熱した後、5~50℃/分程度で室温まで降温することが好ましい。
 例えば、窒素ガス雰囲気下で加熱処理を行う場合は、2000℃前後で5時間程度、アルゴンガス雰囲気の場合は、2000℃前後で5~15時間程度の条件とすることで、BN結晶の一次粒子を平均1μm以下とし、放射状に成長させることができる。
 加熱処理を施す焼成炉は、マッフル炉、管状炉、雰囲気炉などのバッチ式炉やロータリーキルン、スクリューコンベヤ炉、トンネル炉、ベルト炉、プッシャー炉、竪型連続炉などの連続炉が挙げられ、目的に応じて使い分けられる。
(分級)
 上記加熱処理後の凝集BN粒子は、平均粒子径を小さくし、しかも組成物に配合したときの粘度上昇を抑制するために、好ましくは分級処理する。この分級は、通常、造粒粒子の加熱処理後に行われるが、加熱処理前の造粒粒子について行い、その後加熱処理に供してもよい。
 分級は湿式、乾式のいずれでも良いが、h-BNの分解を抑制するという観点からは、乾式の分級が好ましい。特に、バインダーが水溶性を有する場合には、特に乾式分級が好ましく用いられる。
 乾式の分級には、篩による分級のほか、遠心力と流体抗力の差によって分級する風力分級などがあるが、分級精度の観点からは、風力分級が好ましく、旋回気流式分級機、強制渦遠心式分級機、半自由渦遠心式分級機などの分級機を用いて行うことができる。これらの中で、サブミクロンからシングルミクロン領域の小さな微粒子を分級するには旋回気流式分級機を、それ以上の比較的大きな粒子を分級するには半自由渦遠心式分級機など、分級する粒子の粒子径に応じて適宜使い分ければよい。
 本発明では、好ましくは、体積基準の最大粒子径が0.1μm以上25μm以下の凝集BN粒子を得るために、旋回気流式分級機を用いて分級操作を行うことが好ましい。
<凝集BN粒子>
 上述のようにして、原料BN粉末を造粒し、加熱処理をすることによって、その形状を保持したままh-BNの結晶を成長させ、比表面積や全細孔容積を特定の範囲としながら、表面に平均粒子径1μm以下の窒化ホウ素一次粒子を配置することが可能となり、しかも凝集粒子表面に平均1μm以下のBN一次粒子が、凝集粒子の中心側から表面側へ向けて放射状、即ち、BN結晶の一次粒子がa軸を外に向けるように法線方向に配置されている本発明の凝集BN粒子を調製することができる。
 なお、本発明の凝集BN粒子表面には、平均粒子径1μm以下の窒化ホウ素一次粒子が存在するが、「平均1μm以下のBN一次粒子」の「1μm以下」とは、当該BN一次粒子の粒子径に相当する長さを指す。このBN一次粒子の結晶の大きさは、走査型電子顕微鏡(SEM)を用いて、2万倍程度の倍率で観察して、表面に観察される任意の100個の粒子の最大粒子サイズを計測して、平均値を求めることで測定することができる。
 本発明の凝集BN粒子において、結晶がどのように成長しているかは、高熱伝導性フィラーとしての用途において重要な要件である。
 本発明の凝集BN粒子では、このような特異的な結晶成長により、熱伝導性の等方性、樹脂との混練性、耐崩壊性に優れるという効果を奏する。
 本発明の凝集BN粒子は、表面が平均1μm以下の微細なBN一次結晶で覆われていることが最大の特徴であって、更に比表面積および全細孔容積が特定の範囲である。また、平均1μm以下の微細なBN一次結晶が、放射状、即ち、BN結晶の一次粒子がa軸を外に向けるように法線方向に配置されている。
 その調製方法の一手段として、全酸素含有量1重量%以上10重量%以下のh-BN粉末を原料に用い、更に、加熱処理の条件を前述のように制御することが重要である。
 すなわち、全酸素含有量が1重量%未満のh-BN粉末を原料として作製された凝集BN粒子と本発明の凝集BN粒子では、凝集BN表面の結晶構造が全く異なり、h-BNの結晶成長方向が全く異なるものとなる。
 具体的には、本発明の凝集BN粒子では、h-BNの結晶成長方向は球に対して中心から放射状、即ち、BN結晶の一次粒子がa軸を外に向けるように法線方向へ成長しているのに対して、全酸素含有量が1重量%未満の原料h-BNを用いた場合は、円周方向に結晶成長(h-BNのC面を外に向けるように成長)しており、この結果、比表面積が小さく、全細孔容積も大きいものであった。
 さらに、本発明の凝集BNをフィラー(B)として組成物に配合した場合、同一の充填量で比較すると、形成される層間充填層の厚み方向の熱伝導率が劇的に改善できる。これは、本発明のh-BNでは、球表面の微細なh-BN一次粒子の高熱伝導面(C面または002面)がa軸同士での接触を介して、層間充填層中で有効な熱伝導パスを形成しやすいことによると推察している。このような結晶成長は、原料h-BN粉末自体の全酸素含有量が比較的高く、結晶性の低い状態から再結晶化させることによって得られたものであり、全酸素含有量が低く、結晶性の良いh-BN原料を用いた場合には、放射状のh-BN結晶成長はほとんど起こらない。
 また、全酸素含有量が高く、結晶性の低い原料を用いることで、粉砕時の微粒子化をスムーズに行うとともに、造粒による球形度の向上が達成され、熱処理後の分級工程において、効率良く体積基準の最大粒子径0.1μm以上25μm以下の範囲に分級することも容易となる。
 また、本発明の凝集BN粒子は、金属酸化物をバインダーとして用い、造粒物としては比較的小さな細孔容量と比較的高いバルク密度を有するものとすることができるため、樹脂との混練性に優れ、高充填が可能で、更には、樹脂との混練時の崩壊も防止される。
 上述のように、凝集BN粒子中のBN結晶を球状粒子の中心側から放射状に成長させた、本発明の凝集BN粒子を組成物に用いた場合、BN結晶の成長方向に由来する熱伝導パスの形成により、微粒子であるにもかかわらず、著しく高い熱伝導性の改善効果を得ることができる。
 さらに、本発明の凝集BN粒子を用いて形成された層間充填層では、従来から課題となっていた熱伝導性の異方性も大幅に改善される。
(凝集BN粒子の結晶構造、その表面及び平均粒子径)
 本発明において、凝集BN粒子の結晶構造は、粉末X線回折測定により確認することができ、凝集BN粒子の表面のBN一次粒子の結晶の成長方向は、走査型電子顕微鏡(SEM)により確認することができる。
 また、凝集BNの平均粒子径は、分散安定剤としてヘキサメタリン酸ナトリウムを含有する純水媒体中に凝集BN粒子を分散させた試料に対して、レーザ回折/散乱式粒度分布測定装置などを用いて測定することができる。
(体積基準の最大粒子径)
 本発明の凝集BN粒子は、体積基準の最大粒子径が、0.1~25μm、特に2~10μm、とりわけ4~10μmの範囲にあることが好ましい。凝集BN粒子の最大粒子径が、上記上限以下であることにより、組成物のフィラー(B)として用いた場合、表面荒れのない層間充填層を形成することができる。また、薄い層間充填層の形成も可能となり、薄膜塗布に好適に用いることができ、その厚み方向の熱伝導性を高めることができる。最大粒子径が上記下限より小さい凝集BNでは、熱伝導性フィラーとしての熱伝導性向上効果が小さくなる。
 なお、本発明の凝集BN粒子の体積基準の平均粒子径D50については特に制限はないが、上記体積基準の最大粒子径の値と同様な理由から、1~20μm、特に1~10μmであることが好ましい。
 特にフィラー(B)としての凝集BN粒子は、平均粒子径D50が0.1~5μm、かつ、最大粒子径が10μm以下であることが好ましく、より好ましくは平均粒子径D50が0.3~4.5μm、かつ、最大粒子径が9.5μm以下であり、更に好ましくは平均粒子径D50が0.5~4μm、かつ、最大粒子径が9μm以下である。 
 一般的には、三次元集積回路は、更なる高速化・高容量化などの性能向上のために、各チップ間の距離がチップ間距離10~50μm程度にまで小さくなっているが、チップ間の層間充填層において、配合されるフィラーの最大粒径は、層間充填層の厚みの1/2から1/3以下程度にすることが好ましい。
 フィラー(B)の最大粒子径が10μmを超えると、硬化した後の層間充填層の表面にフィラー(B)が突出して、層間充填層の表面形状が悪化する傾向となる。
 一方で、フィラー(B)の粒径が小さ過ぎると、必要な熱伝導パス数が増加して、チップ間の厚み方向に上から下まで繋がる確率が小さくなり、熱伝導性の高い樹脂(A)と組み合わせても、層間充填層の厚み方向への熱伝導率が不十分となる。
 また、フィラー(B)の粒径が小さ過ぎると、フィラー(B)が凝集しやすくなり、組成物或いは塗布液中での分散性が悪くなる。フィラー(B)の平均粒子径D50を、上記範囲とすることにより、フィラー同士の過度の凝集が抑制され、厚み方向へ充分な熱伝導率を有する層間充填層を得ることができる。
 なお、本発明の凝集BN粒子の体積基準の最大粒子径及び平均粒子径D50は、具体的には後述の実施例の項に記載される方法で測定される。
(全細孔容積)
 本発明の凝集BN粒子において、全細孔容積は層間充填層用の組成物の熱伝導性フィラー(B)としての用途において重要な因子である。
 本発明の凝集BN粒子の全細孔容積は、通常2.15cm/g以下である。凝集BN粒子の全細孔容積が2.15cm/gよりも大きいと、組成物中のフィラー(B)として用いた場合に、細孔に樹脂が取り込まれ、見かけの粘度が上昇して、組成物の成形加工或いは塗布液の塗工が困難となる。
 凝集BN粒子の全細孔容積の下限値は特に制限はないが、通常0.1cm/gである。
 なお、凝集BNの全細孔容積は、水銀圧入法で測定することができ、具体的には後述の実施例の項に記載される方法で測定される。
(バルク密度)
 本発明の凝集BN粒子においては、バルク密度も層間充填層用の組成物のフィラー(B)としての用途において重要な因子である。
 本発明の凝集BN粒子をフィラー(B)として用いる場合には、樹脂の取り込みを最小限とするために凝集BNのバルク密度は大きい方が良く、通常0.3g/cm以上であることが好ましく、より好ましくは0.35g/cm以上、更に好ましくは0.4g/cm以上である。
 凝集BN粒子のバルク密度が0.3g/cm未満の場合、粉末の取り扱い性が著しく悪化するため好ましくない。凝集BN粒子のバルク密度の上限については特に制限はないが、通常0.95g/cm以下である。
 なお、凝集BNのバルク密度は、粉体のバルク密度を測定する通常の装置や方法を用いて求めることができ、具体的には後述の実施例の項に記載される方法で測定される。
 なお、上記の凝集BN粒子は1種を単独で用いてもよく、物性の異なる凝集BN粒子の2種以上を任意に組み合わせて用いてもよい。
 例えば、平均粒子径D50が異なる2種以上の凝集BN粒子を使用してもよい。即ち、平均粒子径D50が比較的小さい、例えば0.1~2μm、好ましくは0.2~1.5μmの凝集BN粒子と、平均粒子径D50が比較的大きい、例えば1~5μm、好ましくは1~3μmの凝集BN粒子とを併用することにより、平均粒子径D50の大きい凝集BN粒子同士の熱伝導パスを平均粒子径D50の小さい凝集BN粒子で繋ぐことにより、同一平均粒子径D50のもののみを用いた場合に比べて高充填が可能となり、より高い熱伝導性を得ることができる。
 この場合、平均粒子径D50の小さい凝集BN粒子と平均粒子径D50の大きい凝集BN粒子とは重量比で10:1~1:10の割合で用いることが、熱伝導パスの形成の上で好ましい。
 また、フィラー(B)としての凝集BN粒子は、樹脂(A)や塗布液中での分散性を高めるため、適宜表面処理を行ってもよい。
〔三次元集積回路用の組成物〕
 本発明の三次元集積回路用の組成物は、120℃における溶融粘度が100Pa・s以下である樹脂(A)と、本発明に係るBN粒子とを含有してなるものである。
 以下、各成分について説明する。
 [樹脂(A)]
 本発明の組成物を好適に適用することのできる三次元集積回路としては、半導体デバイス層が形成された半導体基板を少なくとも2層以上積層した半導体基板積層体を有し、該半導体基板間に、本発明の組成物を含む層を有する。通常、半導体基板同士を電気的に接合するために、本発明の組成物を含有する層を半導体基板の間に形成して仮接合した後に、本接合を実施する。本接合を実施する際には、加熱により樹脂を溶融させて電気接合端子を接続させるために、樹脂(A)は、120℃における溶融粘度が100Pa・s以下であることを必須とし、この溶融粘度は20Pa・s以下であることが好ましい。即ち、樹脂(A)の溶融粘度が120℃において100Pa・s以下であることにより、はんだバンプが融解する前に樹脂を溶融させて粘度を大きく低減させることにより、加熱プレスによるはんだバンプとランド端子の仮接合を可能とし、更に半導体基板上に形成された充填材膜を200℃以上で加圧接着することにより、はんだバンプを融解させてランド端子との電気接続を実現することができる。本発明における溶融粘度の測定方法は、特定の方法に制限されるものではないが、アントンパール・ジャパン社製の粘弾性測定装置Physica MCR301を用いて溶融粘度(パラレルプレート動的粘度)を測定することができる。
 具体的には例えば、測定対象である樹脂から溶媒を留去して固形物を得、その後、この固形物に対してプレス成型を行い、厚さ約1mmの板状サンプルを成形する。このサンプルを、パラレルプレートディッシュとパラレルプレート(φ25mm)の間に載置しパラレルプレート動的粘度測定を行うことができる。測定条件としては、上記サンプルに正弦波歪みを20%与え、その歪みの角周波数は10rad/secとし、1分間に3℃の割合で昇温させる過程での粘度を40~200℃まで測定することが、好ましく用いられる。
 なお、この際、後述の硬化剤(C)を添加することにより、Bステージ化や、はんだバンプの接合温度では硬化せず、はんだバンプの接合後に短時間の流動性を有した後にゲル化して、その後に完全硬化することにより、安定な層間充填層を形成することができ、好ましい。
 また、半導体基板上に組成物の薄膜を形成後、仮接合前に接合対象の基板と位置合わせを行うために、樹脂(A)は、50℃における溶融粘度が2000Pa・s以上であることが好ましく、この溶融粘度は1000Pa・s以上であることがより好ましい。即ち、樹脂(A)の50℃における溶融粘度が2000Pa・s以上であることにより、Bステージ化後の室温におけるタック性を低減し、基板の積み重ね時の位置合わせを実施することにより、三次元集積回路の積層基板同士の仮接合が容易になる。
 また、層間充填材としてフィラー(B)との複合化で高い熱伝導性を得るために、本発明の組成物中の樹脂(A)の熱伝導率は0.2W/mK以上であることが好ましく、特に0.22W/mK以上であることが好ましい。
 なお、本発明において、樹脂(A)の熱伝導率は、本発明の組成物を構成する成分のうち、樹脂(A)と有機溶媒と、更に塗布液中に硬化剤(C)を含む場合には硬化剤(C)のみを用いて、通常の硬化方法に従って硬化膜を形成し、この硬化膜について、以下の方法で求めた値である。
<樹脂の熱伝導率の測定方法>
 樹脂の硬化膜について、以下の装置を用いて、熱拡散率、比重、及び比熱を測定し、この3つの測定値を乗じることで熱伝導率を求める。
 (1)熱拡散率:アイフェイズ社製 「アイフェイズ・モバイル 1u」
 (2)比重:メトラー・トレド社製 「天秤 XS-204」(固体比重測定キット使用)
 (3)比熱:セイコーインスツル社製 「DSC320/6200」
 本発明において、組成物のマトリックスとなる樹脂(A)としては、硬化性樹脂、熱可塑性樹脂のいずれも制限なく用いることが出来る。硬化性樹脂としては、熱硬化性、光硬化性、電子線硬化性などの架橋可能なものであればよいが、耐熱性、吸水性、寸法安定性などの点で、熱硬化性樹脂が好ましく用いられる。
 熱硬化性樹脂としては、例えば、ポリイミド樹脂、ポリアミノビスマレイミド(ポリビスマレイミド)樹脂、ビスマレイミド・トリアジン樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂等のポリイミド系樹脂;ポリベンゾオキサゾール系樹脂;ポリエーテル樹脂;ベンゾシクロブテン樹脂;シリコーン系樹脂;フェノール系エポキシ樹脂、アルコール系エポキシ樹脂等のエポキシ系樹脂等が挙げられる。また、これらの樹脂の原料となる対応するモノマー、ダイマー、オリゴマー等の前駆体でもよい。
 中でも、高熱伝導性で、有機溶媒への溶解性も良好であることから、エポキシ樹脂やポリエーテル樹脂、ベンゾシクロブテン樹脂、シリコーン樹脂が好ましく、特にエポキシ樹脂が好ましい。
 これらの樹脂は1種を単独で用いてもよく、2種以上を任意の組合せ及び比率で併用してもよい。
 また、本発明の組成物に用いる樹脂は、熱可塑性樹脂であってもよい。熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体樹脂等のポリオレフィン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、液晶ポリエステル樹脂等のポリエステル樹脂、ポリ塩化ビニル樹脂、フェノキシ樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルアミドイミド樹脂、ポリエーテルアミド樹脂及びポリエーテルイミド樹脂などが挙げられる。また、それらのブロック共重合体、グラフト共重合体等の共重合体も含まれる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 また、樹脂は、ゴム成分であってもよく、ゴム成分としては、例えば、天然ゴム、ポリイソプレンゴム、スチレン-ブタジエン共重合体ゴム、ポリブタジエンゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエン共重合体ゴム、ブタジエン-アクリロニトリル共重合体ゴム、イソブチレン-イソプレン共重合体ゴム、クロロプレンゴム、シリコンゴム、フッソゴム、クロロ・スルホン化ポリエチレン、ポリウレタンゴムなどが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
<エポキシ樹脂>
 以下、樹脂(A)として好適なエポキシ樹脂(以下、「エポキシ樹脂(a)」と称す場合がある。)について説明する。
 エポキシ樹脂(a)は1種類の構造単位を有するエポキシ樹脂のみであってもよいが、上記溶融粘度条件を満たすならば、構造単位の異なる複数のエポキシ樹脂を組み合わせてもよい。
 塗膜性ないしは成膜性や接着性と併せて、接合時のボイドを低減して高熱伝導性の硬化膜を得るとともに、接合時に膜の流動性を得るために、エポキシ樹脂(a)として少なくとも後述するフェノキシ樹脂を含むことが好ましい。フェノキシ樹脂とは、通常エピハロヒドリンと2価フェノール化合物とを反応させて得られる樹脂、又は2価のエポキシ化合物と2価のフェノール化合物とを反応させて得られる樹脂を指す。
 本発明においては、これらのうち、分子内に2個以上のエポキシ基を有するエポキシ樹脂(以下、「エポキシ樹脂(a1)」と称す場合がある。)であることが好ましく、エポキシ樹脂(a1)は、溶融粘度制御の観点から、そのエポキシ当量が100g/当量以上650g/当量未満であることが好ましく、より好ましくは125g/当量以上600g/当量以下である。エポキシ当量が100より小さいものでは、耐熱性が劣る傾向にあり、650より大きいと、エポキシ樹脂の融点が高くなり、作業性が低下する傾向がある。
 エポキシ樹脂(a1)は、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、多官能フェノール型エポキシ樹脂等の、各種エポキシ樹脂が挙げられる。 
 エポキシ樹脂(a1)は、溶融粘度制御の観点から、その重量平均分子量が、好ましくは100~5000であり、より好ましくは200~2000である。重量平均分子量が100より低いものでは、耐熱性が劣る傾向にあり、5000より高いと、エポキシ樹脂の融点が高くなり、作業性が低下する傾向がある。
 上述のようにエポキシ樹脂(a)は、構造単位の異なる複数のエポキシ樹脂を含むものであってもよい。上記エポキシ樹脂(a1)以外のエポキシ樹脂としては、特にエポキシ当量が650g/当量以上30000g/当量以下であるエポキシ樹脂であるフェノキシ樹脂(以下「エポキシ樹脂(a2)」と称す場合がある。)であることが好ましい。
 エポキシ樹脂(a2)としては、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びジシクロペンタジエン骨格からなる群から選択された少なくとも1つの骨格を有するフェノキシ樹脂が好ましい。中でも、耐熱性がより一層高められることから、フルオレン骨格及び/又はビフェニル骨格を有するフェノキシ樹脂が特に好ましい。
 本発明においては、これらのうち、特に重量平均分子量10000以上の高分子量エポキシ樹脂であるフェノキシ樹脂が好ましい。
 ここで、重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC、Gel Permeation Chromatography)で測定したポリスチレン換算の値である。
 エポキシ樹脂(a1)、及びエポキシ樹脂(a2)は、それぞれ、1種を単独で用いてもよく、2種以上を任意の組合せ及び比率で併用してもよい。
 また、エポキシ樹脂(a)は、その目的を損なわない範囲において、エポキシ樹脂(a1)とエポキシ樹脂(a2)以外のエポキシ樹脂(以下、「他のエポキシ樹脂」)を含んでいてもよい。他のエポキシ樹脂の含有量は、エポキシ樹脂(a1)とエポキシ樹脂(a2)の合計に対して、通常50重量%以下、好ましくは30重量%以下である。
 本発明において、エポキシ樹脂(a1)とエポキシ樹脂(a2)を含む全エポキシ樹脂(a)中のエポキシ樹脂(a1)の割合は、その合計を100重量%として、好ましくは5~95重量%、より好ましくは10~90重量%、更に好ましくは20~80重量%である。なお、「エポキシ樹脂(a1)とエポキシ樹脂(a2)を含む全エポキシ樹脂(a)」とは、エポキシ樹脂(a)が、エポキシ樹脂(a1)及びエポキシ樹脂(a2)のみの場合には、エポキシ樹脂(a1)とエポキシ樹脂(a2)の合計を意味し、さらに他のエポキシ樹脂を含む場合には、エポキシ樹脂(a1)、エポキシ樹脂(a2)及び他のエポキシ樹脂の合計を意味する。
 エポキシ樹脂(a)中のエポキシ樹脂(a1)の割合が上記下限以上であることにより、エポキシ樹脂(a1)を配合することによる流動性の向上効果を十分に得ることができ、所望の流動性及び高熱伝導性を得ることができる。エポキシ樹脂(a2)中のエポキシ樹脂(a)の割合が上記上限以下でエポキシ樹脂(a2)が特に10重量%以上であることにより、エポキシ樹脂(a2)の配合効果が発揮され、硬化性、硬化膜の物性が十分なものとなる。
 また、本発明で用いるエポキシ樹脂(a)はエポキシ当量が、100g/当量以上650g/当量未満であるエポキシ樹脂(a1)を含むことが好ましく、更にエポキシ当量が650g/当量以上30000g/当量以下であるエポキシ樹脂(a2)を含むことが好ましい。
 上記のエポキシ樹脂(a1)は組成物に流動性を付与するために有効で、また多官能フェノール型エポキシ樹脂は硬化性や架橋性を持たすために好ましい成分であり、エポキシ樹脂(a2)は、膜物性の改善のために好ましい。
 また、組成物の低粘度化して、フィラー(B)の高充填を可能とし、熱伝導性を高めるために、ビスフェノールA/ビスフェノールF構造を有するエポキシ樹脂を用いることが好ましく、分子の自己配列による高次構造を制御して組成物の高熱伝導化を図るためには、メソゲンを有するビフェニル構造のエポキシ樹脂が好ましい。
[フィラー]
 本発明の三次元集積回路用の組成物は、本発明に係る窒化ホウ素粒子、窒化ホウ素凝集粒子、および特定の方法で製造された窒化ホウ素凝集粒子から選ばれる少なくとも1つを、フィラー(B)として含有するものである。
 近年、三次元集積回路は、更なる高速化・高容量化などの性能向上のために各チップ間の距離がチップ間距離10~50μm程度にまで小さくなっているが、チップ間の層間充填層において、配合されるフィラーの最大粒子径は、層間充填層の厚みの1/3以下程度にすることが好ましい。
 フィラー(B)の最大粒子径が10μmを超えると、硬化した後の層間充填層の表面にフィラー(B)が突出して、層間充填層の表面形状が悪化する傾向にある。
 一方で、フィラー(B)の粒径が小さ過ぎると、必要な熱伝導パス数が増加して、チップ間の厚み方向に上から下まで繋がる確率が小さくなり、熱伝導性の高い樹脂(A)と組み合わせても、層間充填層の厚み方向への熱伝導率が不十分になる。
 また、フィラー(B)の粒子径が小さ過ぎると、フィラー(B)が凝集しやすくなり、組成物或いは塗布液中での分散性が悪くなる。
 本発明において、フィラー(B)として用いる凝集BN粒子の平均粒子径を、上記範囲とすることにより、フィラー同士の過度の凝集が抑制され、良好な熱伝導率を有する層間充填層を得ることができる。
{フィラー(B)}
 本発明で用いるフィラー(B)としては、比表面積が10m/g以上の窒化ホウ素凝集粒子であって、その表面が、平均粒子径0.05μm以上1μm以下の窒化ホウ素一次粒子から構成される窒化ホウ素凝集粒子、特定の原料や製造方法を用いて製造された窒化ホウ素凝集粒子、002面の結晶子径(Lc)が450[Å]以上であり、100面の結晶子径(La)が500[Å]以上であり、前記結晶子径(Lc)と前記結晶子径(La)が下記式(i)を満たし、酸素含有量が0.30重量%以下である窒化ホウ素粒子があげられる。

 0.70≦Lc/La     …(i)
 本発明の組成物は、熱伝導率の等方性に優れたフィラー(B)を含有することにより、形成される層間充填層の厚み方向にも高い熱伝導性を付与することが可能となり、半導体基板間の熱伝導を促進させて半導体デバイス基板の温度を低下させて蓄熱を防止することにより、半導体デバイスを安定的に動作させることが可能となる。
{その他のフィラー(B')}
 さらに、本発明の組成物は、本発明の効果を損なわない範囲で、フィラー(B)以外のフィラー(以下、「その他のフィラー(B')」と称す。)の1種又は2種以上を含有してもよい。例えば、本発明に係るBN粒子以外の熱伝導性フィラーを用いることもできる。
 そのような熱伝導性フィラーとしては、熱伝導率が2W/mK以上の無機材料として、アルミナ(Al:熱伝導率30W/mK)、窒化アルミニウム(AlN:熱伝導率260W/mK)、本発明に係るBN粒子以外の窒化ホウ素(BN:熱伝導率3W/mK(厚み方向)、275W/mK(面内方向))、窒化ケイ素(Si:熱伝導率23W/mK)などが挙げられる。
 また、フィラー(B')としては、高熱伝導率以外に、更に酸素や水への高温暴露に対する安定性と低誘電性をも併せ持つことが、接着したデバイスの信頼性の点で好ましい。上記無機材料の中でもフィラー(B')としては、化学安定性が高いAl、本発明に係るBN粒子以外のBNが好ましく、特に誘電率がより低い、本発明に係るBN粒子以外の窒化ホウ素が好ましい。
 また、その他のフィラー(B')を熱伝導性向上ではなく粘度調節を目的として添加することもでき、その場合には、熱伝導率がそれほど高くない、汎用フィラーであるシリカ(SiO:熱伝導率1.4W/mK)を使用することができる。
 ただし、その他のフィラー(B')の平均粒径及び最大粒径は、フィラー(B)と同様の範囲であることが必要である。
{含有量}
 本発明において、フィラー(B)の含有量は、樹脂(A)100重量部に対してフィラー(B)が40重量部以上400重量部以下、特に45~350重量部、とりわけ50~300重量部とすることが好ましい。このような含有量とすることにより、本発明の組成物においては、充分な熱伝導性が得られ、かつ、均一な塗膜が形成できる程度の粘度を保つことができる。
 フィラー(B)の含有量が、上記下限未満では、形成される層間充填層に十分な熱伝導性が得られない場合があり、また、上記上限を超えると組成物又は塗布液の粘度が高くなり、均一な塗膜を形成できないなどの問題が出てくる可能性がある。
 なお、上記のその他のフィラー(B')を併用する場合は、フィラー(B)とその他のフィラー(B')との合計の含有量が、上記下限以下とすることが好ましく、フィラー(B)を用いることによる熱伝導性の向上効果を十分に得るために、その他のフィラー(B')は、フィラー(B)との合計である全フィラーに対して、50重量%以下、特に40重量部以下、例えば5~40重量%とすることが好ましい。
[硬化剤(C)]
 本発明の組成物は必要に応じて硬化剤(C)を含有していてもよい。
 本発明で用いる硬化剤(C)とは、エポキシ樹脂のエポキシ基等などの、樹脂(A)の架橋基間の架橋反応に寄与する物質を示す。
 エポキシ樹脂においては、必要に応じて、エポキシ樹脂用の硬化剤、硬化促進剤が共に用いられる。
 硬化促進剤は、用いられる樹脂や硬化剤の種類に応じて適宜選べばよい。例えば前記酸無水系硬化剤用の硬化促進剤としては、例えば三フッ化ホウ素モノエチルアミン、2-エチル-4-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾールが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらの硬化促進剤は、通常、エポキシ樹脂100重量部に対して0.1~5重量部の範囲で用いられる。
 硬化剤(C)としては、特に制限はなく、用いる熱硬化性樹脂の種類に応じて選択使用される。熱硬化性樹脂がエポキシ樹脂の場合、一般的にエポキシ樹脂硬化剤として知られているものはすべて使用できる。例えば、フェノール系硬化剤、脂肪族アミン、ポリエーテルアミン、脂環式アミン、芳香族アミンなどのアミン系硬化剤、酸無水物系硬化剤、アミド系硬化剤、第3級アミン、イミダゾール及びその誘導体、有機ホスフィン類、ホスホニウム塩、テトラフェニルボロン塩、有機酸ジヒドラジド、ハロゲン化ホウ素アミン錯体、ポリメルカプタン系硬化剤、イソシアネート系硬化剤、ブロックイソシアネート系硬化剤等が挙げられる。
 フェノール系硬化剤の具体例としては、ビスフェノールA、ビスフェノールF、4,4'-ジヒドロキシジフェニルメタン、4,4'-ジヒドロキシジフェニルエーテル、1,4-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシジフェニルケトン、4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシビフェニル、2,2'-ジヒドロキシビフェニル、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、フェノールノボラック、ビスフェノールAノボラック、o-クレゾールノボラック、m-クレゾールノボラック、p-クレゾールノボラック、キシレノールノボラック、ポリ-p-ヒドロキシスチレン、ハイドロキノン、レゾルシン、カテコール、t-ブチルカテコール、t-ブチルハイドロキノン、フルオログリシノール、ピロガロール、t-ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4-ベンゼントリオール、2,3,4-トリヒドロキシベンゾフェノン、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,4-ジヒドロキシナフタレン、2,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,8-ジヒドロキシナフタレン、上記ジヒドロキシナフタレンのアリル化物又はポリアリル化物、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック、アリル化ピロガロール等が例示される。
 アミン系硬化剤の具体例として、脂肪族アミン類としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノプロパン、ヘキサメチレンジアミン、2,5-ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N-ヒドロキシエチルエチレンジアミン、テトラ(ヒドロキシエチル)エチレンジアミン等が例示される。ポリエーテルアミン類としては、トリエチレングリコールジアミン、テトラエチレングリコールジアミン、ジエチレングリコールビス(プロピルアミン)、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン類等が例示される。脂環式アミン類としては、イソホロンジアミン、メタセンジアミン、N-アミノエチルピペラジン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキサン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、ノルボルネンジアミン等が例示される。芳香族アミン類としては、テトラクロロ-p-キシレンジアミン、m-キシレンジアミン、p-キシレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノアニソール、2,4-トルエンジアミン、2,4-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノ-1,2-ジフェニルエタン、2,4-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルスルホン、m-アミノフェノール、m-アミノベンジルアミン、ベンジルジメチルアミン、2-ジメチルアミノメチル)フェノール、トリエタノールアミン、メチルベンジルアミン、α-(m-アミノフェニル)エチルアミン、α-(p-アミノフェニル)エチルアミン、ジアミノジエチルジメチルジフェニルメタン、α,α'-ビス(4-アミノフェニル)-p-ジイソプロピルベンゼン等が例示される。
 酸無水物系硬化剤の具体例としては、ドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリ(エチルオクタデカン二酸)無水物、ポリ(フェニルヘキサデカン二酸)無水物、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルハイミック酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、メチルシクロヘキセンテトラカルボン酸無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビストリメリテート二無水物、無水ヘット酸、無水ナジック酸、無水メチルナジック酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキサン-1,2-ジカルボン酸無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1-メチル-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物等が例示される。
 アミド系硬化剤としては、ジシアンジアミド、ポリアミド樹脂等が例示される。
 第3級アミンとしては、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等が例示される。
 イミダゾール及びその誘導体としては、1-シアノエチル-2-フェニルイミダゾール、2-フェニルイミダゾール、2-エチル-4(5)-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2'-メチルイミダゾリル-(1')]-エチル-s-トリアジン、2,4-ジアミノ-6-[2'-エチル-4'-メチルイミダゾリル-(1')]-エチル-s-トリアジン、2,4-ジアミノ-6-[2'-メチルイミダゾリル-(1')]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、及びエポキシ樹脂と上記イミダゾール類との付加体等が例示される。
 有機ホスフィン類としては、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等が例示され、ホスホニウム塩としては、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレート等が例示され、テトラフェニルボロン塩としては、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等が例示される。
 これらの硬化剤(C)は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 上記硬化剤の中でも、イミダゾール又はその誘導体やジシアンジアミン化合物が好適に用いられる。
 なお、後述のフラックス(D)として、その分解生成物の有機カルボン酸がエポキシ樹脂の硬化作用を有す有機カルボン酸エステルを使用した場合には、該有機カルボン酸エステルを硬化剤(C)として用いてもよい。
 本発明の組成物中の硬化剤(C)の含有量は、樹脂(A)100重量部に対して、0.1~60重量部とすることが好ましく、0.5~40重量部がより好ましい。
 特に、硬化剤(C)がフェノール系硬化剤、アミン系硬化剤、酸無水物系硬化剤の場合は、エポキシ樹脂中のエポキシ基と硬化剤中の官能基との当量比で、0.8~1.5の範囲となるように用いることが好ましい。この範囲外であると未反応のエポキシ基や硬化剤の官能基が残留し、所望の物性が得られないことがある。
 また、硬化剤がアミド系硬化剤、第3級アミン、イミダゾール及びその誘導体、有機ホスフィン類、ホスホニウム塩、テトラフェニルボロン塩、有機酸ジヒドラジド、ハロゲン化ホウ素アミン錯体、ポリメルカプタン系硬化剤、イソシアネート系硬化剤、ブロックイソシアネート系硬化剤等の場合は、エポキシ樹脂100重量部に対して、0.1~20重量部の範囲で用いることが好ましく、0.5~10重量部がより好ましい。
 また、ジシアンジアミン化合物の場合は、エポキシ樹脂(A1)100重量部に対して、0.1~10重量部の範囲で用いることが好ましく、0.5~6重量部がより好ましい。
[フラックス(D)]
 本発明の組成物は、フラックス(D)を含有していてもよい。
 フラックス(D)とは、具体的には、金属端子のはんだ接合時において、はんだバンプ等の金属電気信号端子及びランドの表面酸化膜の溶解除去や、はんだバンプのランド表面における濡れ広がり性の向上、更には、はんだバンプの金属端子表面の再酸化防止などのフラックス機能を有する化合物を言う。
 より具体的には、実施例中の参考例2-1における、はんだボール融解性の評価において、良好な結果が得られるものを指す。
 フラックス(D)は、エポキシ樹脂(A1)等の樹脂(A)成分のモノマー、オリゴマー及びポリマーや、有機溶媒に対する溶解性が高く、混合により均一な組成物を形成し得るものが好ましい。また、フラックス(D)が、エポキシ樹脂(A1)等の樹脂(A)成分に対して硬化剤としての作用を呈すると、Bステージ化やはんだバンプ接合前の温度において、樹脂の硬化を引き起こして、はんだバンプ等とランドの接合を阻害するため、このような硬化剤としての作用のないものが好ましい。
 本発明で用いるフラックス(D)としては、乳酸、酢酸、プロピオン酸、酪酸、オレイン酸、ステアリン酸、安息香酸、アビエチン酸、ロジンなどのモノカルボン酸;蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、リンゴ酸、酒石酸、イソフタル酸、ピロメリット酸、マレイン酸、フマル酸、イタコン酸などのジカルボン酸;クエン酸、1,2,4-トリメリット酸、トリス(2-カルボキシエチル)イソシアヌレートなどのトリカルボン酸;ピロメリット酸やブタンテトラカルボン酸などのテトラカルボン酸;及び有機カルボン酸をアルキルビニルエーテル類と反応させて変換したヘミアセタールエステルである有機カルボン酸エステル;グルタミン酸塩酸塩、アニリン塩酸塩、ヒドラジン塩酸塩、臭化セチルピリジン、フェニルヒドラジン塩酸塩、テトラクロルナフタレン、メチルヒドラジン塩酸塩、メチルアミン塩酸塩、エチルアミン塩酸塩、ジエチルアミン塩酸塩、ブチルアミン塩酸塩などの有機ハロゲン化合物;尿素、ジエチレントリアミンヒドラジンなどのアミン類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ヘキサエチレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、2,3,4-トリヒドロキシベンゾフェノン、トリエタノールアミン、エリスリトール、ペンタエリスリトール、ビス(2-ヒドロキシメチル)イミノトリス-(ヒドロキシメチル)メタン、リビトールなどの多価アルコール類;塩酸、フッ酸、燐酸、ホウフッ化水素酸などの無機酸;フッ化カリウム、フッ化ナトリウム、フッ化アンモニウム、フッ化銅、フッ化ニッケル、フッ化亜鉛などのフッ化物;塩化カリウム、塩化ナトリウム、塩化第一銅、塩化ニッケル、塩化アンモニウム、塩化亜鉛、塩化第一錫などの塩化物;臭化カリウム、臭化ナトリウム、臭化アンモニウム、臭化錫、臭化亜鉛などの臭化物などが挙げられる。これらの化合物は、そのまま用いても、また有機ポリマーや無機化合物等による被覆剤を用いてマイクロカプセル化したものを用いても良い。これらの化合物は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 なかでも、エポキシ樹脂(A1)等の樹脂(A)や各種有機溶媒への溶解性から、多価アルコール類、有機カルボン酸及びカルボン酸エステル等の有機カルボン酸誘導体が好ましい。また、エポキシ樹脂(A1)等の樹脂(A)に対して加温時の発泡性が少ないことから、特に有機カルボン酸が好ましい。この中でもフラックスとしての反応性から、二個以上のカルボキシル基を有する有機カルボン酸類が特に好ましい。
 有機カルボン酸エステルは、下記式(1)に従って有機カルボン酸とアルキルビニルエーテル類を、常温、常圧又は必要に応じて加温、反応させることにより得ることができる。
なお、式(1)の反応は平衡反応でもあるので、有機カルボン酸エステルに転化する有機カルボン酸の割合を高めるには、アルキルビニルエーテル類を有機カルボン酸中のカルボキシル基に対して等量以上添加して反応させることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 (式(1)中、Rはカルボン酸中の1つのカルボキシル基を除いた残りの分子鎖を示す。Rは炭素数1~6のアルキル基を示す。)
 有機カルボン酸エステルは、組成物又は塗布液中において加熱により分解し、有機カルボン酸及びビニルエーテルを生成する。分解により生じる有機カルボン酸は、はんだボールに対する表面活性化作用(フラックス作用)を示す。
 また、分解により生じる有機カルボン酸の中には、エポキシ樹脂等の樹脂(A)に対する硬化作用を呈する可能性がある。これは、カルボキシル基においては、その解離により放出される水素イオンが、エポキシ樹脂に対して硬化作用を呈する可能性があるためである。このカルボキシル基の解離による水素イオンの発生を抑制するために、有機カルボン酸をアルキルビニルエーテルにて保護した有機カルボン酸エステルが好ましく用いられる。
 また、有機カルボン酸エステルを使用した場合においても、その分解温度が低すぎると、製造時における加圧、加熱による仮接合時に、エポキシ樹脂等の樹脂(A)が硬化してしまうおそれがある。
 そのため、フラックス(D)としての有機カルボン酸エステルの分解温度は、仮接合時での分解を回避又は抑制するために、130℃以上であることが好ましく、より好ましくは140℃以上、更に好ましくは160℃以上、最も好ましくは180℃以上である。なお、分解温度の上限は、220℃である。
 有機カルボン酸エステルの原料となる有機カルボン酸としては、乳酸、酢酸、プロピオン酸、酪酸、オレイン酸、ステアリン酸、安息香酸、アビエチン酸、ロジンなどのモノカルボン酸;蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、リンゴ酸、酒石酸、イソフタル酸、ピロメリット酸、マレイン酸、フマル酸、イタコン酸などのジカルボン酸;クエン酸、1,2,4-トリメリット酸、トリス(2-カルボキシエチル)イソシアヌレートなどのトリカルボン酸;ピロメリット酸やブタンテトラカルボン酸などのテトラカルボン酸等を用いることができる。この中でもフラックスとしての反応性から、二個以上のカルボキシル基を有する有機カルボン酸類が好ましい。
 また、有機カルボン酸エステルの原料となるアルキルビニルエーテル類として、上記式(1)におけるRは、好ましくは炭素数1~6のアルキル基であり、中でも、Rがメチル基、エチル基、プロピル基、ブチル基であることが好ましい。これらアルキル基の中でも、電子供与性の低いアルキル基ほど高温解離性を示すことから、アルキル基としては2級及び1級であることが好ましい。
 有機カルボン酸エステルとしては、市販品として、日油社製のサンタシッドG(ジアルキルビニルエーテルブロック2官能ポリマー型カルボン酸)、サンタシッドH(モノアルキルビニルエーテルブロック2官能低分子量型カルボン酸)、サンタシッドI(モノアルキルビニルエーテルブロック2官能カルボン酸)などを好ましく用いることができる。
 本発明の組成物において、フラックス(D)の含有量は、樹脂(A)100重量部当たり、通常0.1重量部以上10重量部以下、好ましくは0.5重量部以上8重量部以下である。フラックス(D)の含有量が上記下限未満では、酸化膜除去性低下によるはんだ接続不良のおそれがあり、また上記上限を超えると塗布液の粘度上昇による接続不良のおそれがでてくる。
[その他の添加剤]
 本発明の組成物には、機能性の更なる向上を目的として、本発明の効果を損なわない範囲において、各種の添加剤(その他の添加剤)を含んでいてもよい。
 その他の添加剤としては、例えば、液晶性エポキシ樹脂等の、前記の樹脂に機能性を付与した機能性樹脂、窒化アルミニウム、窒化ケイ素、繊維状窒化ホウ素等の窒化物粒子、アルミナ、繊維状アルミナ、酸化亜鉛、酸化マグネシウム、酸化ベリリウム、酸化チタン等の絶縁性金属酸化物、ダイヤモンド、フラーレン等の絶縁性炭素成分、樹脂硬化剤、樹脂硬化促進剤、粘度調整剤、分散安定剤が挙げられる。
 さらに、その他の添加剤としては、基材との接着性やマトリックス樹脂と無機フィラーとの接着性を向上させるための添加成分として、シランカップリング剤やチタネートカップリング剤等のカップリング剤、保存安定性向上のための紫外線防止剤、酸化防止剤、可塑剤、難燃剤、着色剤、分散剤、流動性改良剤、基材との密着性向上剤等が挙げられる。
 また、本発明の組成物には、成形時の流動性改良及び基材との密着性向上の観点より、熱可塑性のオリゴマー類を添加することもできる。
 その他、組成物或いは塗布液中での各成分の分散性を向上させる、界面活性剤や、乳化剤、低弾性化剤、希釈剤、消泡剤、イオントラップ剤等を添加することもできる。
 これらは、いずれも1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 また、本発明の組成物には、その効果を損なわない限り、水酸化アルミニウム、水酸化マグネシウムなどの無機フィラー、無機フィラーとマトリックス樹脂の界面接着強度を改善するシランカップリング剤などの表面処理剤、還元剤などを添加しても良い。
 なお、上記無機フィラーについては、複合材組成物中の成形加工性を維持する上で、組成物中の本発明の凝集BN粒子との合計の含有量で90重量%以下であることが好ましい。
 その他の添加剤の配合量には特に制限はなく、必要な機能性が得られる程度に、通常の樹脂組成物の配合量で用いられる。
 上記添加剤の中でも、樹脂成分とフィラー(B)との密着性を向上させる観点からは、カップリング剤を含むことが好ましい。
 ここで、シランカップリング剤としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン;γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等のアミノシラン;3-メルカプトプロピルトリメトキシシラン等のメルカプトシラン;p-スチリルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等のビニルシラン;さらに、エポキシ系、アミノ系、ビニル系の高分子タイプのシラン等が挙げられる。
 一方、チタネートカップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N-アミノエチル・アミノエチル)チタネート、ジイソプロピルビス(ジオクチルホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。
 カップリング剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 カップリング剤の添加量は、組成物に対して0.1~2.0重量%程度とすることが好ましく、0.5~1.5重量%がより好ましい。カップリング剤の配合量が少ないと、カップリング剤を配合したことによるマトリックス樹脂と無機フィラーとの密着性の向上効果を十分に得ることができず、多過ぎると得られる硬化膜からカップリング剤がブリードアウトする問題がある。
 熱可塑性のオリゴマー類としては、C5系及びC9系の石油樹脂、スチレン樹脂、インデン樹脂、インデン・スチレン共重合樹脂、インデン・スチレン・フェノール共重合樹脂、インデン・クマロン共重合樹脂、インデン・ベンゾチオフェン共重合樹脂等が例示される。その添加量としては、通常、樹脂(A)100重量部に対して、2~30重量部、好ましくは、5~15重量部の範囲である。
 界面活性剤としては、従来公知のアニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤のいずれも使用できる。
 例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレンアルキルエステル類、ソルビタンアルキルエステル類、モノグリセリドアルキルエステル類、アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキル硫酸塩類、アルキルスルホン酸塩類、スルホコハク酸エステル塩類、アルキルベタイン類、アミノ酸類などが挙げられる。
 また、これら界面活性剤においてC-H結合の一部又は全てがC-F結合となったフッ素界面活性剤も好ましく用いることができる。
 これらの界面活性剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 界面活性剤の添加量としては、組成物に対して0.001~5重量%程度とすることが好ましく、0.005~3重量%がより好ましい。界面活性剤の添加量が上記下限未満では、所定の膜厚均一性が得られない場合があり、また上記上限を超えると熱硬化性樹脂成分との相分離等を引き起こす場合があり好ましくない。
 また、本発明の組成物は、組成物又は塗布液中のフィラー(B)の分散性を高め、フィラー(B)を均一に分散させることで、塗布液の塗布性、形成される塗膜の膜性状、表面平滑性を改善するために、分散剤として、アミン価(mg-KOH/g)が10以上300以下の分散剤(F)を用いることが好ましい。
 アミン価(mg-KOH/g)が10以上300以下の分散剤(F)としては、本発明の目的を達成することができるものであればよく、特に制限はないが、塗布液の塗布性の向上効果、塗膜性状の改善効果に優れることから、官能基として3級アミノ基を有するものが好ましい。
 分散剤(F)のアミン価が10mg-KOH/gより小さいと、フィラー(B)の分散性が十分ではなく、300mg-KOH/gより大きいとフィラーの凝集等を引き起こす場合があり、いずれの場合も本発明の目的を達成し得ない。
 分散剤(F)のアミン価は20~200mg-KOH/g、特に30~100mg-KOH/gであることが好ましい。
 なお、ここで「アミン価」とは、塩基性基を酸により中和滴定し、酸価に対応させてKOHのmg数で表した値である。
 このような分散剤の一例として、例えば、アクリル系分散剤及び/又はウレタン系分散剤が挙げられる。
 ウレタン系分散剤としては、ポリイソシアネート化合物と、同一分子内に水酸基を1個又は2個有する数平均分子量300~10,000の化合物と、同一分子内に活性水素と3級アミノ基を有する化合物とを反応させることによって得られる分散樹脂等が好ましい。
 上記のポリイソシアネート化合物の例としては、パラフェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、ナフタレン-1,5-ジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート;ヘキサメチレンジイソシアネート、リジンメチルエステルジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート等の脂肪族ジイソシアネート;イソホロンジイソシアネート、4,4′-メチレンビス(シクロヘキシルイソシアネート)、ω,ω′-ジイソシネートジメチルシクロヘキサン等の脂環族ジイソシアネート;キシリレンジイソシアネート、α,α,α′,α′-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート;リジンエステルトリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、トリス(イソシアネートフェニルメタン)、トリス(イソシアネートフェニル)チオホスフェート等のトリイソシアネート;及びこれらの3量体、水付加物、並びにこれらのポリオール付加物等が挙げられる。ポリイソシアネートとしては、好ましいくは有機ジイソシアネートの三量体で、最も好ましいのはトリレンジイソシアネートの三量体又はイソホロンジイソシアネートの三量体である。これらは1種を単独で用いても良く、2種以上を混合して用いても良い。
 イソシアネートの三量体の製造方法としては、前記ポリイソシアネート類を適当な三量化触媒、例えば第3級アミン類、ホスフィン類、アルコキシド類、金属酸化物、カルボン酸塩類等を用いてイソシアネート基の部分的な三量化を行い、触媒毒の添加により三量化を停止させた後、未反応のポリイソシアネートを溶剤抽出し、薄膜蒸留により除去して、目的のイソシアヌレート基含有ポリイソシアネートを得る方法が挙げられる。
 同一分子内に水酸基を1個又は2個有する数平均分子量300~10,000の化合物としては、ポリエーテルグリコール、ポリエステルグリコール、ポリカーボネートグリコール、ポリオレフィングリコールのグリコール類、これらの化合物の片末端水酸基が炭素数1~25のアルキル基でアルコキシ化された化合物、及びこれら2種類以上の混合物が挙げられる。
 ポリエーテルグリコールとしては、ポリエーテルジオール、ポリエーテルエステルジオール、及びこれら2種類以上の混合物が挙げられる。
 ポリエーテルジオールとしては、アルキレンオキシドを単独又は共重合させて得られるもの、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレン-プロピレングリコール、ポリオキシテトラメチレングリコール、ポリオキシヘキサメチレングリコール、ポリオキシオクタメチレングリコール及びそれらの2種以上の混合物が挙げられる。
 ポリエーテルエステルジオールとしては、エーテル基含有ジオールもしくは他のグリコールとの混合物をジカルボン酸又はそれらの無水物と反応させるか、又はポリエステルグリコールにアルキレンオキシドを反応させることによって得られるもの、例えば、ポリ(ポリオキシテトラメチレン)アジペート等が挙げられる。
 ポリエーテルグリコールとして最も好ましいのは、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシテトラメチレングリコール又はこれらの化合物の片末端水酸基が炭素数1~25のアルキル基でアルコキシ化された化合物である。
 ポリエステルグリコールとしては、ジカルボン酸(コハク酸、グルタル酸、アジピン酸、セバシン酸、フマル酸、マレイン酸、フタル酸等)又はそれらの無水物と、グリコール(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、2-メチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,8-オクタメチレングリコール、2-メチル-1,8-オクタメチレングリコール、1,9-ノナンジオール等の脂肪族グリコール;ビスヒドロキシメチルシクロヘキサン等の脂環族グリコール;キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール;N-メチルジエタノールアミン等のN-アルキルジアルカノールアミン等)とを重縮合させて得られるものが挙げられる。例えば、ポリエチレンアジペート、ポリブチレンアジペート、ポリヘキサメチレンアジペート、ポリエチレン/プロピレンアジペート等のアジペート類;前記ジオール類又は炭素数1~25の1価アルコールを開始剤として用いて得られるポリラクトンジオール又はポリラクトンモノオール、例えば、ポリカプロラクトングリコール、ポリメチルバレロラクトン;及びこれらの2種以上の混合物が挙げられる。ポリエステルグリコールとして最も好ましいのは、ポリカプロラクトングリコール、又は炭素数1~25のアルコールを開始剤としたポリカプロラクトンである。より具体的には、モノオールにε-カプロラクトンを開環付加重合して得られる化合物である。
 ポリカーボネートグリコールとしては、ポリ(1,6-ヘキシレン)カーボネート、ポリ(3-メチル-1,5-ペンチレン)カーボネート等が挙げられる。
 ポリオレフィングリコールとしては、ポリブタジエングリコール、水素添加型ポリブタジエングリコール、水素添加型ポリイソプレングリコール等が挙げられる。
 同一分子内に水酸基を1個又は2個有する化合物の数平均分子量は、300~10,000、好ましくは500~6,000、更に好ましくは1,000~4,000である。
 本発明に用いられる同一分子内に活性水素と3級アミノ基を有する化合物において。活性水素、即ち、酸素原子、窒素原子又はイオウ原子に直接結合している水素原子とは、水酸基、アミノ基、チオール基等の官能基中の水素原子が挙げられ、中でもアミノ基、特に1級のアミノ基の水素原子が好ましい。3級アミノ基は特に限定されない。また、3級アミノ基としては、炭素数1~4のアルキル基を有するアミノ基、又はヘテロ環構造、より具体的には、イミダゾール環又はトリアゾール環が挙げられる。
 このような同一分子内に活性水素と3級アミノ基を有する化合物を例示するならば、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N-ジプロピル-1,3-プロパンジアミン、N,N-ジブチル-1,3-プロパンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジプロピルエチレンジアミン、N,N-ジブチルエチレンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N-ジプロピル-1,4-ブタンジアミン、N,N-ジブチル-1,4-ブタンジアミン等が挙げられる。
 また、3級アミノ基が含窒素ヘテロ環であるものとして、ピラゾール環、イミダゾール環、トリアゾール環、テトラゾール環、インドール環、カルバゾール環、インダゾール環、ベンズイミダゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾチアジアゾール環等のN含有ヘテロ5員環、ピリジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、アクリジン環、イソキノリン環等の含窒素ヘテロ6員環が挙げられる。これらの含窒素ヘテロ環として好ましいものはイミダゾール環又はトリアゾール環である。
 これらのイミダゾール環と一級アミノ基を有する化合物を具体的に例示するならば、1-(3-アミノプロピル)イミダゾール、ヒスチジン、2-アミノイミダゾール、1-(2-アミノエチル)イミダゾール等が挙げられる。また、トリアゾール環とアミノ基を有する化合物を具体的に例示するならば、3-アミノ-1,2,4-トリアゾール、5-(2-アミノ-5-クロロフェニル)-3-フェニル-1H-1,2,4-トリアゾール、4-アミノ-4H-1,2,4-トリアゾール-3,5-ジオール、3-アミノ-5-フェニル-1H-1,3,4-トリアゾール、5-アミノ-1,4-ジフェニル-1,2,3-トリアゾール、3-アミノ-1-ベンジル-1H-2,4-トリアゾール等が挙げられる。中でも、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、1-(3-アミノプロピル)イミダゾール、3-アミノ-1,2,4-トリアゾールが好ましい。
 上記ウレタン系分散剤原料の好ましい配合比率は、ポリイソシアネート化合物100重量部に対し、同一分子内に水酸基を1個又は2個有する数平均分子量300~10,000の化合物が10~200重量部、好ましくは20~190重量部、更に好ましくは30~180重量部、同一分子内に活性水素と3級アミノ基を有する化合物が0.2~25重量部、好ましくは0.3~24重量部である。
 このようなウレタン系分散剤のGPC(ゲルパ-ミエ-ションクロマトグラフィ)で測定したポリスチレン換算の重量平均分子量(Mw)は、通常1,000~200,000、好ましくは2,000~100,000、より好ましくは3,000~50,000の範囲である。この分子量が1,000未満では、分散性及び分散安定性が劣り、200,000を超えると溶解性が低下し、分散性が劣ると同時に反応の制御が困難となる。
 このようなウレタン系分散剤の製造は、ポリウレタン樹脂製造における公知の方法に従って行われる。製造する際の溶媒としては、通常、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、イソホロン等のケトン類;酢酸エチル、酢酸ブチル、酢酸セロソルブ等のエステル類;ベンゼン、トルエン、キシレン、ヘキサン等の炭化水素類;ダイアセトンアルコール、イソプロパノール、第二ブタノール、第三ブタノール等の一部のアルコール類;塩化メチレン、クロロホルム等の塩化物;テトラヒドロフラン、ジエチルエーテル等のエーテル類;ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキサイド等の非プロトン性極性溶媒等の1種又は2種以上が用いられる。
 上記製造に際して、通常のウレタン化反応触媒が用いられる。この触媒としては、例えば、ジブチルチンジラウレート、ジオクチルチンジラウレート、ジブチルチンジオクトエート、スタナスオクトエート等の錫系;鉄アセチルアセトナート、塩化第二鉄等の鉄系;トリエチルアミン、トリエチレンジアミン等の3級アミン系;等が挙げられる。
 同一分子内に活性水素と3級アミノ基を有する化合物の導入量は、反応後のアミン価で10~300mg-KOH/gの範囲に制御するのが好ましい。より好ましくは20~200mg-KOH/gの範囲である。アミン価が上記範囲より低いと、分散能力が低下する傾向があり、また、上記範囲を超えると現像性が低下しやすくなる。
 なお、以上の反応で得られた分散樹脂にイソシアネート基が残存する場合には、更に、アルコールやアミノ化合物でイソシアネート基を保護すると、生成物の経時安定性が高くなるので好ましい。
 アクリル系分散剤としては、側鎖に4級アンモニウム塩基を有するAブロックと、4級アンモニウム塩基を有さないBブロックとからなる、A-Bブロック共重合体及び/又はB-A-Bブロック共重合体が好ましい。
 アクリル系分散剤のブロック共重合体を構成するAブロックは、4級アンモニウム塩基、好ましくは-N+123・Y-(但し、R1、R2及びR3は、各々独立に、水素原子、又は置換されていても良い環状若しくは鎖状の炭化水素基を表し、R1、R2及びR3のうち2つ以上は、互いに結合して環状構造を形成していてもよい。Y-は対アニオンを表す。)で表される4級アンモニウム塩基を有する。この4級アンモニウム塩基は、直接主鎖に結合していても良いが、2価の連結基を介して主鎖に結合していても良い。
 -N+123において、R1、R2及びR3のうち2つ以上が互いに結合して形成する環状構造としては、例えば5~7員環の含窒素複素環単環又はこれらが2個縮合してなる縮合環が挙げられる。該含窒素複素環は芳香性を有さないものが好ましく、飽和環であればより好ましい。具体的には、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000002
 これらの環状構造は、さらに置換基を有していても良い。
 -N+123におけるR1、R2及びR3として、より好ましいのは、各々独立に、置換基を有していても良い炭素数1~3のアルキル基、置換基を有していても良いフェニル基、又は置換基を有していても良いベンジル基である。
 Aブロックは、特に下記一般式(I)で表される部分構造を含有するものが好ましい。
Figure JPOXMLDOC01-appb-C000003
 (式中、R1、R2及びR3は、各々独立に、水素原子、又は置換されていても良い環状若しくは鎖状の炭化水素基を表し、R1、R2及びR3のうち2つ以上は、互いに結合して環状構造を形成していてもよい。R4は水素原子又はメチル基を表す。Xは2価の連結基を表し、Y-は対アニオンを表す。)
 上記一般式(I)において、2価の連結基Xとしては、例えば、炭素数1~10のアルキレン基、アリーレン基、-CONH-R7-基、-COO-R8-基(但し、R7及びR8は、各々独立に、直接結合、炭素数1~10のアルキレン基、又は炭素数1~10のエーテル基(-R'-O-R”-:R'及びR”は、各々独立にアルキレン基である。)である。)等が挙げられ、好ましくは-COO-R8-基である。
 特定の4級アンモニウム塩基を含有する部分構造は、1つのAブロック中に2種以上含有されていても良い。その場合、2種以上の4級アンモニウム塩基を含有する部分構造は、該Aブロック中において、ランダム共重合又はブロック共重合のいずれの態様で含有されていても良い。また、該4級アンモニウム塩基を含有しない部分構造が、Aブロック中に含まれていてもよく、該部分構造の例としては、後述の(メタ)アクリル酸エステル系モノマー由来の部分構造等が挙げられる。かかる4級アンモニウム塩基を含まない部分構造の、Aブロック中の含有量は、好ましくは0~50重量%、より好ましくは0~20重量%であるが、かかる4級アンモニウム塩基を含有しない部分構造は、Aブロック中に含まれないことが最も好ましい。
 一方、アクリル系分散剤のブロック共重合体を構成するBブロックとしては、例えば、 スチレン、α-メチルスチレンなどのスチレン系モノマー;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、エチルアクリル酸グリシジル、N,N-ジメチルアミノエチル(メタ)アクリレートなどの(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸クロライドなどの(メタ)アクリル酸塩系モノマー;(メタ)アクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルアミノエチルアクリルアミドなどの(メタ)アクリルアミド系モノマー;酢酸ビニル;アクリロニトリル;アリルグリシジルエーテル、クロトン酸グリシジルエーテル;N-メタクリロイルモルホリン、などのコモノマーを共重合させたポリマー構造が挙げられる。
 Bブロックは、特に下記一般式(II)で表される、(メタ)アクリル酸エステル系モノマー由来の部分構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 (式中、R5は水素原子又はメチル基を表す。R6は置換基を有していても良い環状又は鎖状のアルキル基、置換基を有していても良いアリル基、又は置換基を有していても良いアラルキル基を表す。)
 上記(メタ)アクリル酸エステル系モノマー由来の部分構造は、1つのBブロック中に2種以上含有されていても良い。もちろん該Bブロックは、更にこれら以外の部分構造を含有していても良い。2種以上のモノマー由来の部分構造が、4級アンモニウム塩基を含有しないBブロック中に存在する場合、各部分構造は該Bブロック中においてランダム共重合又はブロック共重合のいずれの態様で含有されていても良い。Bブロック中に上記(メタ)アクリル酸エステル系モノマー由来の部分構造以外の部分構成を含有する場合、当該(メタ)アクリル酸エステル系モノマー以外の部分構造の、Bブロック中の含有量は、好ましくは0~50重量%、より好ましくは0~20重量%であるが、かかる(メタ)アクリル酸エステル系モノマー以外の部分構造はBブロック中に含まれないことが最も好ましい。
 本発明で用いるアクリル系分散剤は、好ましくはこのようなAブロックとBブロックとからなる、A-Bブロック又はB-A-Bブロック共重合型高分子化合物であるが、このようなブロック共重合体は、例えば以下に示すリビング重合法にて調製される。
 リビング重合法には、アニオンリビング重合法、カチオンリビング重合法、ラジカルリビング重合法があり、このうち、アニオンリビング重合法は、重合活性種がアニオンであり、例えば下記スキームで表される。
Figure JPOXMLDOC01-appb-C000005
 上記式中、一般的には、Arは置換基を有していてもよいフェニル基であり、Mはアルカリ金属である。sおよびtは整数を表す。
 ラジカルリビング重合法は、重合活性種がラジカルであり、例えば下記スキームで示される。
Figure JPOXMLDOC01-appb-C000006
 上記式中、一般的には、ArおよびArは置換基を有していてもよいフェニル基であり、Mはアルカリ金属であり、pおよびqは整数を表す。
 また、一般的には、RおよびRはアルキル基であり、Meはメチル基を表す。
 このようなアクリル系分散剤を合成するに際しては、日本特開平9-62002号公報や、P.Lutz, P.Masson et al, Polym. Bull. 12, 79 (1984), B.C.Anderson, G.D.Andrews et al, Macromolecules, 14, 1601(1981), K.Hatada, K.Ute,et al, Polym. J. 17, 977(1985), 18, 1037(1986), 右手浩一、畑田耕一、高分子加工、36, 366(1987),東村敏延、沢本光男、高分子論文集、46, 189(1989), M.Kuroki, T.Aida, J. Am. Chem. Sic, 109, 4737(1987)、相田卓三、井上祥平、有機合成化学、43, 300(1985), D.Y.Sogoh, W.R.Hertler et al, Macromolecules, 20, 1473(1987)などに記載の公知の方法を採用することができる。
 本発明で用いるアクリル系分散剤がA-Bブロック共重合体であっても、B-A-Bブロック共重合体であっても、その共重合体を構成するAブロック/Bブロック比は、1/99~80/20であり、特に5/95~60/40(重量比)であることが好ましい。この範囲外では、良好な耐熱性と分散性を兼備することができない場合がある。
 また、本発明に係るA-Bブロック共重合体、及びB-A-Bブロック共重合体1g中の4級アンモニウム塩基の量は、通常0.1~10mmolであることが好ましく、2~8mmolであることがより好ましい。この範囲外では、良好な耐熱性と分散性を兼備することができない場合がある。
 なお、このようなブロック共重合体中には、通常、製造過程で生じたアミノ基が含有される場合があるが、そのアミン価は5~500mg-KOH/g、好ましくは10~300mg-KOH/g程度である。なお、アミン価は、前述の如く、塩基性アミノ基を酸により中和滴定し、酸価に対応させてKOHのmg数で表した値である。
 また、このブロック共重合体の酸価は、該酸価の元となる酸性基の有無及び種類にもよるが、一般に低い方が好ましく、通常300mg-KOH/g以下である。
 その分子量は、GPCで測定したポリスチレン換算の重量平均分子量(Mw)で1,000~100,000の範囲が好ましく、5000~50,000の範囲がより好ましい。ブロック共重合体の重量平均分子量が1,000未満であると、分散安定性が低下し、100,000を超えると、現像性、解像性が低下する傾向にある。
 本発明において、アミン価(mg-KOH/g)が10以上300以下の分散剤(F)としては、上述のものと同様の構造を有する市販のウレタン系及び/又はアクリル系分散剤を適用することもできる。
 これらのアミン価(mg-KOH/g)が10以上300以下の分散剤(F)は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 本発明の組成物において、アミン価(mg-KOH/g)が10以上300以下の分散剤(F)の含有量は、組成物の全固形分に対して0.05重量%以上10重量%以下、特に0.25重量%以上5重量%以下で、フィラー(B)を含む組成物中のフィラーの合計量100重量部に対して0.1重量部以上20重量部以下、特に0.5重量部以上10重量部以下用いることが好ましい。アミン価(mg-KOH/g)が10以上300以下の分散剤(F)の含有量が、上記下限未満では、塗布性、塗膜性状の改善向上効果が十分でなく、また上記上限を超えるとフィラーの層分離や凝集を引き起こすことがある。
〔組成物塗布液〕
 本発明の組成物に含まれる本発明の凝集BN粒子の含有量は、通常20重量%以上90重量%以下であることが好ましく、より好ましくは20重量%以上80重量%以下、更に好ましくは、30重量%以上70重量%以下である。組成物中の凝集BN粒子の含有量が、上記下限値未満の場合、組成物としての粘度は低く、成形加工性は良好であるものの熱伝導性の付与効果が小さい。組成物中の凝集BN粒子の含有量が上記上限値を超えると、組成物の粘度が高くなり、成形が困難になる傾向がある。
 また、本発明の組成物塗布液は、上述の本発明の組成物に、更に有機溶媒(E)を含有するものである。即ち、本発明の組成物は有機溶媒を含まず、本発明の組成物に有機溶媒を添加したものが、本発明の組成物塗布液である。
[有機溶媒(E)]
 本発明の組成物塗布液の有機溶媒(E)としては、組成物塗布液の固形分(組成物塗布液の有機溶媒(E)以外の成分であって、本発明の組成物に相当する)を均一に溶解若しくは分散させることができるものであればよく、特に制限はない。有機溶媒(E)としては、沸点が60℃以上120℃未満の有機溶媒(Ea)とを含有することが好ましく、より好ましくは沸点が120℃以上の有機溶媒(Eb)を含有することが好ましい。
 有機溶媒(E)としては、例えば、以下に例示するアルコール系溶媒、芳香族系溶媒、アミド系溶媒、アルカン系溶媒、エチレングリコールエーテル及びエーテル・エステル系溶媒、プロピレングリコールエーテル及びエーテル・エステル系溶媒、ケトン系溶媒、エステル系溶媒の中から、好適な沸点のものを選択して用いることができる。
(アルコール系溶媒)
 メタノール(沸点64.7℃)、エタノール(沸点78.4℃)、ブタノール(沸点117℃)、iso-プロピルアルコール(沸点82.4℃)、n-プロピルアルコール(沸点97.15℃)、tert-ブタノール(沸点82.4℃)、1,4-ブタンジオール(沸点230℃)2-エチルヘキサノール(沸点183~185℃)、ヘキサフルオロイソプロパノール等。
(芳香族系溶媒)
 トルエン(沸点110.6℃)、キシレン(沸点144℃)、モノクロルベンゼン、ジクロルベンゼン、トリクロルベンゼン、フェノール等。
(アミド系溶媒)
 N,N-ジメチルホルムアミド(沸点153℃)、N,N-ジメチルアセトアミド(沸点165℃)等
(アルカン系溶媒)
 n-ヘキサン(沸点69℃)、iso-ヘキサン(沸点68~70℃)、シクロヘキサン(沸点80.74℃)、メチルシクロヘキサン(沸点101℃)、n-ヘプタン(沸点98℃)、iso-オクタン(沸点99℃)、n-デカン(沸点174.2℃)等。
(エチレングリコールエーテル及びエーテル・エステル系溶媒)
 エチレングリコールモノメチルエーテル(沸点124℃)、エチレングリコールエチルエーテル(沸点135℃)、エチレングリコールn-ブチルエーテル(沸点171℃)、エチレングリコールモノiso-ブチルエーテル(沸点160℃)、エチレングリコールヘキシルエーテル(沸点208℃)、エチレングリコールフェニルエーテル(沸点242℃)、エチレングリコールモノプロピルエーテル(沸点149.5℃)、エチレングリコールモノiso-プロピルエーテル(沸点141℃)、ジエチレングリコールモノメチルエーテル(沸点194℃)、ジエチレングリコールジメチルエーテル(沸点162℃)、ジエチレングリコールモノエチルエーテル(沸点202℃)、ジエチレングリコールジエチルエーテル(沸点189℃)、ジエチレングリコールn-ブチルエーテル(沸点231℃)、ジエチレングリコールモノiso-ブチルエーテル(沸点220℃)、ジエチレングリコールジブチルエーテル(沸点256℃)、ジエチレングリコールヘキシルエーテル(沸点259℃)、トリエチレングリコールモノメチルエーテル(沸点249℃)、トリエチレングリコールモノエチルエーテル(沸点256℃)、トリエチレングリコールモノブチルエーテル(沸点271℃)、ポリエチレングリコールモノメチルエーテル(沸点295℃)等。
(プロピレングリコールエーテル及びエーテル・エステル系溶媒)
 プロピレングリコールメチルエーテル(沸点120℃)、ジプロピレングリコールメチルエーテル(沸点190℃)、トリプロピレングリコールメチルエーテル(沸点242℃)、プロピレングリコールn-プロピルエーテル(沸点150℃)、ジプロピレングリコールn-プロピルエーテル(沸点212℃)、トリプロピレングリコールn-プロピルエーテル(沸点274℃)、プロピレングリコールn-ブチルエーテル(沸点170℃)、プロピレングリコール-iso-ブチルエーテル(沸点157℃)、ジプロピレングリコールn-ブチルエーテル(沸点229℃)、トリプロピレングリコールn-ブチルエーテル(沸点274℃)、プロピレングリコールフェニルエーテル(沸点243℃)、ジプロピレングリコールジメチルエーテル(沸点175℃)、プロピレングリコールフェニルエーテル(沸点243℃)等。
(ケトン系溶媒)
 アセトン(沸点56℃)、メチルエチルケトン(以下「MEK」と略記する。)(沸点80℃)、メチルプロピルケトン(沸点102℃)、メチルn-ブチルケトン(沸点128℃)、メチルiso-ブチルケトン(沸点118℃)、メチルiso-アミルケトン(沸点145℃)、メチルn-アミルケトン(沸点152℃)、エチルブチルケトン(沸点149℃)、エチルsec-アミルケトン(沸点159℃)、アセチルアセトン(沸点140℃)、ジアセトンアルコール(沸点166℃)、ジiso-ブチルケトン(沸点169℃)、シクロヘキサノン(以下「CHN」と略記する。)(沸点157℃)、シクロヘキシルシクロヘキサノン(沸点261℃)等。
(エステル系溶媒)
 メチルアセテート(沸点57℃)、エチルアセテート(沸点77℃)、プロピルアセテート(沸点102℃)、iso-プロピルアセテート(沸点88℃)、ブチルアセテート(沸点126℃)、iso-ブチルアセテート(沸点117℃)、sec-ブチルアセテート(沸点112℃)、アミルアセテート(沸点146℃)、メチルアミルアセテート(沸点146℃)、2-エチルヘキシルアセテート(沸点199℃)、エチレングリコールエーテルメチルアセテート(沸点145℃)、エチレングリコールエーテルメチルアセテート(沸点145℃)、エチレングリコールエーテルエチルアセテート(沸点156℃)、エチレングリコールエーテルn-ブチルアセテート(沸点188℃)、ジエチレングリコールエーテルエチルアセテート(沸点217℃)、ジエチレングリコールエーテルn-ブチルアセテート(沸点245℃)、エチレングリコールジアセテート(沸点191℃)、iso-ブチル-iso-ブチレート(沸点147℃)、エチルラクテート(沸点154℃)、ブチルラクテート(沸点188℃)、3-メチル-3-メトキシブチルアセテート(沸点188℃)、乳酸エチル(沸点155℃)、プロピレングリコールモノメチルエーテルアセテート(以下「PGMEA」と略記する。)(沸点146℃)、プロピレングリコールジアセテート(沸点190℃)、プロピレンモノメチルエーテルメチルアセテート(沸点188℃)等。
 有機溶媒(E)は、エポキシ樹脂等の樹脂100重量部に対して、0~10,000重量部、好ましくは0~1,000重量部の範囲で用いられる。
<有機溶媒(Ea)>
 本発明の組成物塗布液においては、沸点が120℃未満の有機溶媒(Ea)を用いることにより、Bステージ化工程での有機溶媒の蒸発効率を高めることができる。ただし、この有機溶媒(Ea)の沸点が過度に低いと、蒸発荒れの問題が生じるため、有機溶媒(Ea)の沸点は60℃以上であることが好ましく、特に65~115℃であることが好ましい。
 このような有機溶媒(Ea)としては、上記の各種の有機溶媒のうち、沸点が120℃未満のものを選択使用すればよい。特に、沸点が上記の好適範囲であり、また、有機溶媒(Ea)との均一混合性や、樹脂の溶解性が良好であることから、プロピルアルコール、イソプロピルアルコール、tert-ブタノール、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、プロピルアセテート、イソブチルアセテートが好ましい。
 有機溶媒(Ea)は、1種を単独で用いてもよく、2種以上を任意の組合せ及び比率で併用してもよい。
<有機溶媒(Eb)>
 本発明の組成物塗布液には、上記の沸点が120℃未満の有機溶媒(Ea)と共に、沸点が120℃以上の有機溶媒(Eb)を併用してもよい。沸点が120℃以上の有機溶媒(Eb)を用いることにより、Bステージ化時の有機溶媒の急激な蒸発による蒸発荒れを防止して、より均質なBステージ化膜を形成することが可能となる。
 即ち、Bステージ化のための加熱処理における加熱温度は、通常50~150℃、好ましくは70~120℃であるため、この温度条件に対して、沸点120℃以上の有機溶媒であれば、蒸発荒れを起こすことのない適度な速度で蒸発除去される。ただし、この有機溶媒(Eb)の沸点が過度に高いと、Bステージ化における加熱処理時に、効率的にかつ高度に塗膜中の有機溶媒を蒸発除去することが困難であることから、有機溶媒(Eb)の沸点は、180℃未満であることが好ましく、特に130℃以上180℃未満、とりわけ140~170℃であることが好ましい。
 有機溶媒(Eb)としては、上記の各種の有機溶媒のうち、沸点が120℃以上のものを選択使用すればよい。特に、沸点が上記の好適範囲であり、また、樹脂の溶解性が良好であり、混合液の安定性も良好であることから、有機溶媒(Eb)としては、プロピレングリコールメチルエーテル、メチルn-アミルケトン、シクロヘキサノン、PGMEA、乳酸エチルを用いることが好ましい。
 有機溶媒(Eb)は、1種を単独で用いてもよく、2種以上を任意の組合せ及び比率で併用してもよい。
<含有量>
 本発明の組成物塗布液において、有機溶媒(E)の有機溶媒以外の他の成分(組成物塗布液の有機溶媒(E)以外の成分であって、本発明の組成物に相当する)に対する混合割合は、特に制限はないが、好ましくは、他の成分に対して20重量%以上70重量%以下、特に好ましくは30重量%以上60重量%以下である。
 また、塗布液中の固形分濃度としては、10~80重量%、特に20~70重量%とすることが好ましい。
 上記のような混合割合とすることにより、任意の塗布法によって良好な塗膜を形成することが可能な、適当な粘度で、取り扱い性に優れた塗布液とすることができる。
 有機溶媒(E)の混合割合が、上記下限では塗布液の粘度が上昇し、良好な塗膜が得られない場合があり、又、上記上限を超えると、所定の膜厚が得られない等の問題が出てくる可能性がある。
 有機溶媒(E)として、有機溶媒(Ea)と有機溶媒(Eb)を併用する場合、これらの合計の混合割合が、上記範囲内であることが好ましい。また、有機溶媒(Ea)と有機溶媒(Eb)との併用による相乗効果を得るために、有機溶媒(Ea)と有機溶媒(Eb)とは、重量%として、有機溶媒(Ea):有機溶媒(Eb)=95~50:5~50、特に90~60:10~40の割合(有機溶媒(Ea)と有機溶媒(Eb)との合計で100重量%とする。)で用いることが好ましい。
〔組成物及び組成物塗布液の調製方法〕
 本発明の組成物及び組成物塗布液の調製方法は、特に限定されず、従来公知の方法を用いることができ、組成物及び組成物塗布液の構成成分を混合することで製造することができる。なお、その際、組成物や組成物塗布液の均一性の向上、脱泡等を目的として、ペイントシェーカーやビーズミル、プラネタリミキサ、攪拌型分散機、自公転攪拌混合機、三本ロール、ニーダー、単軸又は二軸混練機等の一般的な混練装置などを用いて混合することが好ましい。
 各配合成分の混合順序も、反応や沈殿物が発生するなど特段の問題がない限り任意であり、組成物及び組成物塗布液の構成成分のうち、何れか2成分又は3成分以上を予め混合し、その後に残りの成分を混合してもよいし、一度に全部を混合してもよい。
[成形体の製造方法]
 本発明の成形体は、本発明の組成物を成形してなるものである。成形体の成形方法は、樹脂組成物の成形に一般に用いられる方法を用いることができる。
 例えば、本発明の組成物が可塑性や流動性を有する場合、該組成物を所望の形状で、例えば型へ充てんした状態で硬化させることによって成形することができる。このような成形体の製造法としては、射出成形法、射出圧縮成形法、押出成形法、及び圧縮成形法を用いることができる。
 また、本発明の組成物がエポキシ樹脂やシリコーン樹脂等の熱硬化性樹脂組成物である場合、成形体の成形、すなわち硬化は、それぞれの組成に応じた硬化温度条件で行うことができる。
 また、本発明の組成物が熱可塑性樹脂組成物である場合、成形体の成形は、熱可塑性樹脂の溶融温度以上の温度及び所定の成形速度や圧力の条件で行うことができる。
 また、本発明の成形体は、本発明の組成物を成形硬化した固形状の材料から所望の形状に削り出すことによっても得ることができる。
〔三次元集積回路の製造方法〕
 以下に、本発明の三次元集積回路の製造方法について説明する。
 本発明の組成物を用いて、複数の半導体基板間に、本発明の組成物塗布液を成膜後、これらの半導体基板を加圧接合して積層することにより、三次元集積回路を製造することができる。
 また、本発明の組成物塗布液を用いて、複数の半導体基板間に、本発明の組成物塗布液を塗布して成膜した後、これらの半導体基板を加圧接合して積層することにより、三次元集積回路を製造することができる。この場合、より具体的には、半導体基板表面に、本発明の組成物塗布液を塗布して塗膜を形成する塗布工程と、塗膜が形成された半導体基板を、他の半導体基板と積層して加圧する接合工程とを含み、塗布工程と接合工程の間に、前記塗膜を加熱してBステージ化する工程(以下「Bステージ化工程」と称す。)を有してもよい。
 以下、本発明の組成物塗布液を用いる、本発明の三次元集積回路の製造方法を具体的に説明する。
 <塗布工程>
 まず半導体基板の表面に、本発明の組成物塗布液の塗膜を形成する。
 即ち、本発明の組成物塗布液を用いて、ディップ法、スピンコート法、スプレーコート法、ブレード法、その他の任意の方法で塗膜を形成する。
 本発明の組成物塗布液の塗布には、スピンコーター、スリットコーター、ダイコーター、ブレードコーターなどの塗布装置を用いることにより、半導体基板上に所定の膜厚の塗膜を均一に形成することが可能であり、好ましい。
<Bステージ化工程>
 本発明の塗布液を塗布することにより形成された塗膜を、溶媒や低分子成分の除去のために、通常50~150℃、好ましくは70~120℃の任意の温度で、10~120分程度の加熱処理を行ってBステージ化膜を形成する。
 このBステージ化の加熱温度が低過ぎたり、加熱時間が短過ぎたりすると、塗膜中の有機溶媒を十分に除去し得ず、得られるBステージ化膜中に有機溶媒が残留し、残留した有機溶媒が次の接合工程における高温処理で蒸発し、残留溶媒の蒸発跡がボイドとなって、高熱伝導性、高絶縁性、所定の物理的強度等を有する層間充填層を形成し得ない。逆に、Bステージ化の加熱温度が高過ぎたり、加熱時間が長過ぎたりすると、樹脂の硬化が進行し、良好なBステージ化膜とすることができない。従って、Bステージ化の加熱条件は、形成されるBステージ化膜の膜厚や塗布液中の有機溶媒の沸点、用いた熱硬化性樹脂の種類によっても異なるが、Bステージ化膜の膜厚が1~50μmの場合には、70~110℃、好ましくは80~100℃で30~120分程度、Bステージ化膜の膜厚が50~200μmであれば80~120℃、好ましくは90~110℃で60~120分程度とすることが好ましい。
 この際、一定の温度において加熱処理を行ってもよいが、塗布液中の有機溶媒等の揮発成分の除去を円滑に進めるために、減圧条件下にて加熱処理を行ってもよい。また、樹脂(A)の硬化が進行しない範囲で、段階的な昇温による加熱処理を行っても良い。例えば、初めに50~70℃、例えば60℃で、次に70~90℃、例えば80℃で、更に90~150℃、例えば120℃で各5~30分程度の加熱処理を実施することができる。
 また、本発明の組成物又は組成物塗布液は、フィルム成形に適した十分な伸び性を有するため、フィルム成形し、該フィルムを半導体基板上に設置することで成膜してもよい。本発明の組成物又は組成物塗布液は、フィルム成形時の蒸発荒れによる膜質の低下を防止して、均質なフィルムを成形することができる。
<接合工程>
 次に、形成されたBステージ化膜を加熱してタック性を発現させた後に、接合対象の半導体基板と仮接合を行う。仮接合の温度としては、用いた樹脂(A)にもよるが、80~150℃、中でも90~140℃の温度で1秒~120秒程度行うことが好ましい。
 半導体基板の接合が複数層の場合には、前記仮接合を基板の層数分繰り返しても良いし、Bステージ化膜を形成した基板を、複数層重ね合わせた後に、加熱してまとめて仮接合しても良い。仮接合の際には、必要に応じて、積層基板間に1gf/cm~5kgf/cm、好ましくは10gf/cm~3kgf/cmの加重をかけて実施することが好適である。
 仮接合の後には、半導体基板の本接合を行う。
 本接合は、仮接合させた半導体基板を200℃以上、好ましくは220℃以上の温度で10~60秒程度加圧することにより、Bステージ化膜中の樹脂(A)の溶融粘度を低下させて、半導体基板間の電気端子の接続を促進すると同時に、Bステージ化膜中のフラックス(D)を活性化させて、半導体基板間のはんだ接合を進めることにより行なわれる。なお、本接合の加熱温度の上限は、使用する樹脂(A)が分解、変質しない温度であり、樹脂の種類、グレードにより適宜決定されるが、通常300℃以下で行われる。
 また、加熱接着の際には、必要に応じて、基板間に10gf/cm~10kgf/cmの加重をかけて実施することが好ましく、100gf/cm~5kgf/cmの加重をかけて実施することがより好ましい。
 本発明の組成物を用いて三次元集積回路を製造する場合には、本発明の組成物をポッティングにより、半導体基板上に塗布することにより成膜し、これをホットプレートによる加熱又は温風オーブンによる加熱処理により、溶媒留去する以外は、上記と同様にBステージ化及び接合を行って、三次元集積回路を製造することができる。
 以下、本発明について、実施例を用いてさらに詳細に説明するが、本発明はその趣旨を逸脱しない限り、以下の実施例に限定して解釈されるものではない。
[配合成分]
 実施例において用いた組成物の配合成分は、次の通りである。
{樹脂(A)}
<エポキシ樹脂(a1)>
 エポキシ樹脂(a1-1):三菱化学社製 品名「YL6800」
              (エポキシ当量180g/当量)
 エポキシ樹脂(a1-2):三菱化学社製 品名「YX4000」
              (エポキシ当量186g/当量)
 エポキシ樹脂(a1-3):三菱化学社製 品名「1001」
              (エポキシ当量475g/当量)
<エポキシ樹脂(a2)>
 エポキシ樹脂(a2-1):下記製造例1で製造したフェノキシ樹脂
              重量平均分子量:26,000
              エポキシ当量:4,600g/当量
              30重量%メチルエチルケトン/シクロヘキサノン溶液
 エポキシ樹脂(a2-2):三菱化社製 品名「1006」
              (エポキシ当量1000g/当量)
<エポキシ樹脂(a3)>
 エポキシ樹脂(a3-1):三菱化学社製 品名「1032H60」
              (エポキシ当量169g/当量)
[フィラー(B)]
  フィラー(B-1):下記調製例2-2で製造した窒化ホウ素粒子
  フィラー(B-2):日新リフラテック社製BN 品名「R-BN」
          (熱伝導率3W/mK(厚み方向)、275W/mK(面内方向))
  フィラー(B-3):龍森社製シリカ 品名「PLV-4」
[硬化剤(C)]
  四国化成工業社製 2-フェニル-4,5-ジヒドロキシメチルイミダゾール
             品名「2PHZ-PW」
[フラックス(D)]
  和光純薬工業社製 アジピン酸 試薬特級
[有機溶媒(E)]
  有機溶媒(Ea):和光純薬工業社製 メチルエチルケトン(MEK)
           (沸点80℃) 試薬特級
  有機溶媒(Eb):和光純薬工業社製 シクロヘキサノン(CHN)
           (沸点155℃) 試薬特級
{物性の測定方法}
 各種の物性の測定方法等は以下の通りである。なお、以下において、「体積基準の平均粒子径D50」は単に「D50」と記載する。
 また、原料BN粉末の全酸素含有量は、商品カタログ値を採用した。
<原料h-BN粉末の全細孔容積>
 マイクロメリテックス社製「オートポアIV9520型」を用いて、h-BN粉末を減圧下(50μmHg以下)で10分間減圧処理をした後、水銀圧入退出曲線を測定して、ポアサイズ10nm~500μmの全細孔容積を求めた。
<原料h-BN粉末の比表面積>
 h-BN粉末に250℃で15分間の窒素ガスフローの前処理を行った後、マウンテック社製「マックソーブHM MODEL-1201」を用い、BET1点法(吸着ガス:窒素)にて、比表面積を測定した。
<BNスラリー中のh-BN粒子のD50
 BNスラリーをヘキサメタリン酸ナトリウム0.2重量%水溶液30mlに、透過率が90%以上となるように添加し、さらにアルドリッチ社製ノニオン系界面活性剤「TritonX100」の10重量%水溶液を0.1g加えた後、150Wの超音波を1分間照射して、粒子径分布測定用の分散液を調製した。この分散液について日機装社製「ナノトラックUPA-EX150」を用いて測定した。
<造粒粒子のD50
 造粒粒子をヘキサメタリン酸ナトリウム0.2重量%水溶液30mlに、透過率が90%以上となるように添加し、さらにアルドリッチ社製ノニオン系界面活性剤「TritonX100」の10重量%水溶液を0.1g加えた後、150Wの超音波を1分間照射して、粒子径分布測定用の分散液を調製した。この分散液について日機装社製「マイクロトラックHRA」を用いて測定した。
<加熱処理、分級後の凝集BN粒子のD50及び最大粒子径>
 分級後の凝集BN粒子をヘキサメタリン酸ナトリウム0.2重量%水溶液30mlに、透過率が90%以上となるように添加し、さらにアルドリッチ社製ノニオン系界面活性剤「TritonX100」の10重量%水溶液を0.1g加えた後、150Wの超音波を1分間照射して、粒子径分布測定用の分散液を調製した。この分散液について日機装社製レーザ回折/散乱式粒度分布測定装置「マイクロトラックMT3300EX」を用いてD50を測定した。また、測定された体積基準の粒子径分布において、最も大きな粒子の粒子径を最大粒子径とした。
<加熱処理、分級後の凝集BN粒子の全細孔容積>
 マイクロメリテックス社製「オートポアIV 9520型」を用いて、各凝集BN粒子を減圧下(50μmHg以下)で、10分間減圧処理をした後、水銀圧入退出曲線を測定して、ポアサイズ10nm~500μmの全細孔容積を求めた。
<加熱処理、分級後の凝集BN粒子のバルク密度>
 マイクロメリテックス社製「オートポアIV9520型」を用い、予め容積を測定した専用セルに秤量した凝集BN粒子試料を入れ、セルごとの重量を測定し、このセルを、減圧下(50μmHg以下)、室温で10分間脱気処理した。次いで、処理したセルに水銀を導入し、水銀導入後のセルを秤量し、導入された水銀の重量から水銀の容量を算出し、予め求めたセルの容量からこの水銀量を差し引いて粉体試料の体積を算出し、この体積で凝集BN粒子試料の重量を除することによって求めた。
<組成物の粘度の測定方法>
  ティー・エー・インスツルメント社製 動的粘弾性測定装置ARESを用いて、組成物の粘度を次の条件で測定した。ここで粘度は、複素粘性率の絶対値を指す。
  温度:25℃
  角周波数:1rad/s
  ひずみ:9.5%
  |η*|={(G”/ω)2+(G'/ω)21/2
  ここで、η*は複素粘性率(単位Pa・s)、G”は損失弾性率(単位Pa)、G'は貯蔵弾性率(単位Pa)、ωは角周波数(単位rad/s)を表す。
<硬化物の厚み方向の熱伝導率>
 硬化物サンプルについて、以下の装置で熱拡散率、比重、及び比熱を測定し、この3つの測定値を乗じることにより求めた。
(1)熱拡散率:サンプルを切り出して、直径12mm、厚み約0.5mmの円盤状の検体に成形した後、アルバック理工社製の全自動レーザーフラッシュ法熱定数測定装置「TC-7000」を用いて、厚み方向の熱拡散率を測定した。
(2)比重:メトラー・トレド社製の天秤「XS204」(「固体比重測定キット」使用)を用いて測定した。
(3)比熱:パーキンエルマー社製の示差走査熱量計「DSC7」を用い、10℃/分の昇温条件の下、25℃における比熱をDSC7のソフトウエアを用いて求めた。
<組成物膜の熱伝導率>
 組成物膜について、以下の装置を用いて、熱拡散率、比重、及び比熱を測定し、この3つの測定値を乗じることで、熱伝導率を求めた。
 (1)熱拡散率:サンプルを切り出して、直径10mm、厚み約0.5mmの円盤状の検体に成形した後、アイフェイズ社製の「アイフェイズ・モバイル 1u」を用いて、厚み方向の熱拡散率を測定した。
 (2)比重:メトラー・トレド社製「天秤 XS-204」(固体比重測定キット使用)を用いて測定した。
 (3)比熱:セイコーインスツル社製の「DSC320/6200」を用い、10℃/分の昇温条件の下、25℃における比熱をDSC7のソフトウエアを用いて求めた。
<X線回析による窒化ホウ素粒子の結晶子サイズの測定>
 窒化ホウ素粒子の002面の結晶子径(Lc)は、X線回折の2θ=26.5°のピークの半価幅を測定し、上記(2)式によって求めた。同様に、100面の結晶子径(La)についても、X線回折の2θ=41.5°のピークの半価幅を測定し、上記式(ii)によって求めた。X線回折装置としてはPANalytical社製PW1700を用いた。
<窒化ホウ素粒子の酸素含有量の測定>
 不活性ガス融解-赤外線吸収法による定量分析により、窒化ホウ素粒子の酸素含有量を測定した。分析装置としてHORIBA社製の酸素・窒素分析装置(EMGA-620W)を用いた。
<溶融粘度の測定方法>
 アントンパール・ジャパン社製 粘弾性測定装置Physica MCR301を用いて溶融粘度(パラレルプレート動的粘度)を測定した。
 まず、測定対象であるエポキシ樹脂から溶媒を留去して固形物を得、その後、この固形物に対してプレス成型を行い、厚さ約1mmの板状サンプルを得た。このサンプルを、パラレルプレートディッシュとパラレルプレート(φ25mm)の間に載置しパラレルプレート動的粘度測定を行った。測定条件は、上記サンプルに正弦波歪みを20%与え、その歪みの角周波数は10rad/secとし、1分間に3℃の割合で昇温させる過程での粘度を40℃~200℃まで測定した。
[実施例1-1、実施例1-2及び比較例1-1]
(BNスラリーの調製及び粉砕)
<BNスラリーA>
 以下の配合割合でBNスラリーAを調製した。
(BNスラリーAの配合)
  h-BN粉末(日新リフラテック社製「ABN」、全酸素含有量4重量%):500g、
  純水:4250g、
  バインダー(日産化学社製「アルミナゾル520」、固形分濃度20重量%):250g、
  界面活性剤(花王社製アニオン系界面活性剤「デモールNL」):50g。
 得られたBNスラリーをよく混合し、フロイントターボ社製の「OBミル」に投入し、ローター回転数2000rpm、循環送液量0.5L/minで160分間循環粉砕を行った。粉砕には0.5mmφのジルコニア製ビーズを使用した。
 BNスラリーAの調製に用いた原料h-BN粉末の全酸素含有量、全細孔容積、及び比表面積と、得られたBNスラリーA中のh-BNの分散粒子のD50は、表1-Aに示す通りである。
<BNスラリーB>
 以下の配合割合でスラリーBを調製した。
(BNスラリーB配合)
  h-BN粉末(MARUKA社製「AP170S」、全酸素含有量7.5重量%):500g、
  純水:4250g、
  バインダー(日産化学社製「アルミナゾル520」、固形分濃度20重量%):250g、
  界面活性剤(花王社製のアニオン系界面活性剤「デモールNL」):50g。
 得られたBNスラリーをよく混合し、フロイントターボ社製の「OBミル」に投入し、ローター回転数2000rpm、循環送液量0.5L/minで120分間循環粉砕を行った。粉砕には1.0mmφのジルコニア製ビーズを使用した。
 BNスラリーBの調製に用いた原料h-BN粉末の全酸素含有量、全細孔容積、及び比表面積と、
得られたスラリーB中のh-BNの分散粒子のD50は、表1-Aに示す通りである。
<BNスラリーC>
 以下の配合割合でBNスラリーCを調製した。
(BNスラリーC配合)
  h-BN粉末(日新リフラテック社製「RBN」、全酸素含有量0.4重量%):500g、
  純水:4250g、
  バインダー(日産化学社製「アルミナゾル520」、固形分濃度20重量%):250g、
  界面活性剤(花王社製のアニオン系界面活性剤「デモールNL」):50g。
 得られたBNスラリーをよく混合し、フロイントターボ社製の「OBミル」に投入し、ローター回転数2800rpm、循環送液量0.5L/minで160分間循環粉砕を行った。粉砕には0.3mmφのジルコニアビーズを使用した。
 BNスラリーCの調製に用いた原料h-BN粉末の全酸素含有量、全細孔容積、及び比表面積と、
得られたスラリーC中のh-BNの分散粒子のD50は、表1-Aに示す通りである。
[球状化]
 BNスラリーA~Cを、藤崎電機社製のスプレードライヤー「MDL-050M」を用い、造粒粒子径D50として10μmを目標に造粒条件を設定し、それぞれ噴霧乾燥することにより球状化した。何れのスラリーも送液量30ml/min(15ml/min×2)、圧空圧力0.7MPa、空気流量92L/min(46L/min×2)にて噴霧し、ノズル噴射後の乾燥温度は200℃に設定した。
 各スラリーから得られた造粒粒子のD50は、表1-Aに示す通りであった。
[加熱処理]
 上記球状化後の各BN造粒粒子を、雰囲気炉を用いて2000℃で5時間、窒素ガス流通下に加熱処理した。
 加熱処理時の昇温及び降温は、以下のように行った。
 室温から400℃まで真空引きをしながら20分で上げ、真空引きをしたまま400℃で30分保持した。真空度は、10-1~10-2Paとした。その後、2.0L/分の窒素ガスを導入して復圧し、そのまま窒素ガスを導入しながら、1500℃まで100℃/時で温度を上げ、更に1500~2000℃まで50℃/時で温度を上げた。2000℃到達後、5時間保持した。その後、7℃/分で室温まで冷却した。
[分級]
 上記加熱処理後の各BN造粒粒子を、日清エンジニアリング社製の旋回気流式分級機「エアロファインクラシファイアー(AC-20)」を用いて分級した。
 以下、BNスラリーAより得られた凝集BN粒子を「BN-A」と記載し、BNスラリーBより得られた凝集BN粒子を「BN-B」と記載し、BNスラリーCより得られた凝集BN粒子を「BN-C」と記載する。
 なお、BN-Aは実施例1-1の凝集BN粒子であり、BN-Bは実施例1-2の凝集BN粒子であり、BN-Cは比較例1-1の凝集BN粒子に該当する。
 各凝集BN粒子のD50、最大粒子径、全細孔容積及びバルク密度の測定結果を表1-Bに示す。
[凝集BN粒子の結晶性及び形態観察]
 原料h-BN粉末による結晶成長方向の違いを確認するために、全酸素含有量が4重量%のh-BN粉末を使用して作製したBN-A、全酸素含有量が7.5重量%のh-BN粉末を使用して作製したBN-B、及び全酸素含有量が0.4重量%のh-BN粉末を使用して作製したBN-Cについて、加熱処理前後での結晶性の確認(XRD)、及びSEMによる形態変化の観察を行った。
 その結果、全酸素含有量が1重量%以上のh-BN粉末を原料としたBN-A、及びBN-Bでは、凝集BN粒子の表面でh-BNが放射状、即ち、BN結晶の一次粒子がa軸を外に向けるように法線方向に結晶成長し、かつ、平均1μm以下の微細なBN一次粒子の結晶が形成されていることがわかった。
 一方、全酸素含有量が1重量%未満であるh-BN粉末を原料としたBN-Cは、結晶成長方向が円周方向、即ち、h-BNのC面を外に向けるようになることがわかった。
 図1にBN-A、図2にBN-B、及び図3にBN-Cの加熱処理前後のSEM写真をそれぞれ示す。
 また、上記の結果を表1-1Aおよび表1-1Bにまとめて示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
[実施例1-3、1-4、比較例1-2、1-3及び1-4]
(組成物の調製及び評価)
<組成物の調製>
 BN-A、BN-B、及びBN-Cを用い、それぞれ表2に示す割合で配合した。
エポキシ樹脂としては、三菱化学社製のエポキシ樹脂「1750」と、三菱化学社製のエポキシ樹脂「YED216」とを、「1750」:「YED216」=90:10(重量比)で混合したエポキシ樹脂組成物を用いた。
 前記エポキシ樹脂組成物と、BN-A、BN-B、またはBN-Cとを表1-2に示す割合で、自公転攪拌機(シンキー社製、ARV-310))を用いて混合した。
得られた混合物を、ギャップ間隔20μmに調整した3本ロール(小平製作所社製)に5回通して混練することにより、組成物を得た(実施例1-3,1-4、及び比較例1-2)。
 得られた組成物2.5gに、硬化剤として2-エチルメチルイミダゾールを、エポキシ樹脂100重量部に対して2重量部添加して、上記の自公転攪拌機を用いて均一に攪拌混合し、得られた硬化剤入りの組成物を、ガラス板に離型PETを敷き、シリコーンゴムで500μmにギャップを調整した型内に挟み込み、100℃で1時間、次いで150℃で4時間加熱硬化させて、表1-2に示す厚みの熱伝導率評価用の硬化物サンプル(3cm×4cm×表2に示す厚み)を得た。次いで、この硬化物サンプルについて、厚み方向の熱伝導率を測定した。
 比較例1-3、及び1-4としては、市販の板状BNであるモメンティブ社製の「PT110」又は市販の凝集BN粒子であるモメンティブ社製の「PTX25」を用い、それぞれ上記と同様に、表2に示す配合で組成物を調製し、上記と同様の処理を行って、熱伝導率の測定を行った。
 「PT110」については、粉砕によりD50=11.0μmに調整して用いた。このものは、粒子径分布として最大粒子径が100μmと大きい粒子も存在していた。
 「PTX25」については、日清エンジニアリング社製の「エアロファインクラシファイアー(AC-20)」を用いて分級し、D50=7.9μm(最大粒子径25μm以下)に調整して用いた。「PTX25」の分級前は球状であったが、分級後に測定したSEM観察の結果、球形が壊れて、一次粒子の板状粒子となった。凝集BN粒子を構成するh-BN一次粒子が大きいために(10μm以上)、十分な強度がなく、本発明と同様の大きさの凝集BN粒子を得ることは出来なかった。
 上記の結果を、用いた凝集BN粒子の物性等と共に表1-2にまとめて示す。
Figure JPOXMLDOC01-appb-T000009
 表1-2より、本発明の凝集BN粒子を用いることにより、従来品に比べて少ない配合量で、厚み方向に高い熱伝導率を達成することができることが分かった。
<調製例2-1>
 前記エポキシ樹脂(a2-1)としてのフェノキシ樹脂溶液は、次のようにして調製した。
 YL6121H(エポキシ当量171g/当量、4,4'-ビフェノール型エポキシ樹脂と3,3',5,5'-テトラメチル-4,4'-ビフェノール型エポキシ樹脂の1:1混合物(三菱化学社製)215重量部、3,3'-ジメチル-4,4'-ビフェノール(OH当量107g/当量、本州化学社製)127重量部、27重量%テトラメチルアンモニウムヒドロキシド水溶液0.32重量部、及び反応用溶媒としてシクロヘキサノン228重量部を攪拌機付き耐圧反応容器に入れ、窒素ガス雰囲気下、180℃で5時間反応を行った。その後、希釈用溶剤としてシクロヘキサノン171重量部及びメチルエチルケトン399重量部を加えて固形分濃度を調整した。反応生成物から定法により溶剤を除去して、30重量%の樹脂溶液を得た。
<調製例2-2>
 フィラー(B-1)としての窒化ホウ素粒子は次のようにして製造した。
 日新リフラテック社製のR-BN(X線回折における002面の結晶子サイズが299Åと100面の結晶子サイズが339Åである六方晶窒化ホウ素)200gをカーボン製坩堝に入れ、カーボン炉を用いて2100℃で15時間、窒素ガス雰囲気下で焼成した。得られた窒化ホウ素粒子の平均粒子径は3.5μmであった。
 焼成前の日新リフラテック社製のR-BN(フィラー(B-2))と、焼成により得られた窒化ホウ素粒子(フィラー(B-1))の物性の評価結果を表2-1に示した。
Figure JPOXMLDOC01-appb-T000010
<参考例2-1>
 表2-2に示すフラックスと有機溶媒(メチルエチルケトンとシクロヘキサノンを配合重量比(35:65)で混合したもの)を表2-2に記載のフラックス濃度にて配合した後、攪拌混合して、フラックス溶液を得た。
 このフラックス溶液を10mm×10mmの銅基板上に50μL滴下した後、このフラックス液滴中に、はんだボール(Sn3.0Ag0.5Cu、直径300μm)を添加した。この基板をホットプレート上にて、120℃で1分間加熱して溶媒を留去した。
 次に、この基板を250℃のホットプレート上において、250℃で10秒間加熱を行い、銅基板に対するはんだボールの融解性の良(○)否(×)を評価した。結果を表2-2に示す。
 表2-2より明らかなように、フラックスとして有機カルボン酸及び有機カルボン酸エステルを用いると、ハンダボールが所定の温度において融解して、銅基板と良好な接合を形成した。一方、アミノ酸類は溶媒に対する溶解性が低く、またイミダゾール類はフラックスとしての作用が低く、はんだボールと銅基板が接合出来なかった。
Figure JPOXMLDOC01-appb-T000011
<実施例2-1>
 エポキシ樹脂(A1)として、エポキシ樹脂(a1-1)2.50g、エポキシ樹脂(a1-3)1.43g(70重量%シクロヘキサン溶液)、エポキシ樹脂(a2-1)3.33g(30重量%メチルエチルケトン/シクロヘキサノン=5/5溶液)、及びエポキシ樹脂(a3-1)0.63g(80重量%シクロヘキサノン溶液)に、有機溶媒(Eb)5.81gを加えて、自公転撹拌機(シンキー社製、ARV-310)を用いて撹拌混合を行った。これにフィラー(B-1)5.00gを加えて、更に直径2mmのジルコニアボール(YTZ-2)を24.0g添加し、自公転攪拌機を用いて2000rpmで33分間攪拌した。攪拌終了後、濾過によりビーズを取り除き、硬化剤(C)を0.20g、及びフラックス(D)を0.10g加え、更に自公転攪拌機にて6分間攪拌し、ペースト(組成物塗布液)を得た。
 なお、この実施例2-1で用いたエポキシ樹脂(A1)の120℃における溶融粘度は2.1Pa・sであった。
 この塗布液を離型処理したガラス基板に塗布して、減圧下にて120℃で30分加熱し、溶媒を留去して塗膜を形成した。この膜上にさらに離型処理したガラス基板を載せて、挟んだ後に、150℃で1時間、続いて200℃で1時間、プレス(圧力1MPa)することにより、成形・硬化させて膜厚500μmの組成物膜を得た。
 得られた膜の熱伝導率を測定したところ1.4W/(m・K)であった。
<比較例2-1>
 フィラーとしてフィラー(B-2)を用いた以外は実施例2-1と同様にして組成物膜を得た。実施例2-1と同様に熱伝導率を測定したところ、熱伝導率は0.9W/(m・K)であった。
<比較例2-2>
 フィラーとしてフィラー(B-3)を用いた以外は実施例2-1と同様にして組成物膜を得た。実施例2-1と同様に熱伝導率を測定したところ、この膜の熱伝導率は0.4W/(m・K)であった。
<実施例2-2>
 エポキシ樹脂(A1)として、エポキシ樹脂(a1-1)2.50gとエポキシ樹脂(a1-3)0.71g(70重量%シクロヘキサン溶液)、エポキシ樹脂(a2-1)3.33g(30重量%メチルエチルケトン/シクロヘキサノン=5/5溶液)、及びエポキシ樹脂(a3-1)1.25g(80重量%シクロヘキサノン溶液)に、分散剤(F)0.10g及び有機溶媒(Eb)5.90gを加えて自公転撹拌機を用いて撹拌混合を行った。これにフィラー(B-1)5.00gを加えて、更に直径2mmのジルコニアボール(YTZ-2)を24.0g添加し、自公転攪拌機を用いて2000rpmで33分間攪拌した。攪拌終了後、濾過によりビーズを取り除き、硬化剤(C)を0.20g、及びフラックス(D)を0.10g加え、更に自公転攪拌機にて6分間攪拌し、ペースト(組成物塗布液)を得た。
 なお、この実施例2-2で用いたエポキシ樹脂(A1)の120℃における溶融粘度は2.1Pa・sであった。
 この組成物塗布液を用いて実施例2-1と同様にして膜厚50μmの組成物膜を形成し、実施例2-1と同様に熱伝導率を測定したところ、熱伝導率は1.2W/(m・K)であった。
 また、この組成物塗布液をWALTS社製のシリコン製はんだバンプ基板(CC80ModelI)に25μL塗布した後、ホットプレート上にて60℃で15分、80℃で15分及び120℃で30分間加熱して、溶媒を留去した。さらにホットプレート上にて150℃で10分間加熱を行って、Bステージ化膜とした。
 上記のはんだバンプ基板及びWALTS社製の有機インターポーザ(CC80ModelI)を、東レエンジニアリング社製のフリップチップボンダ(FC3000S)を用いて、250℃まで昇温させて加熱圧着接合し、その後冷却して、165℃で2時間硬化させて、積層体を形成した。積層体内部のデイジーチェイン(Daisy Chain)の電気抵抗をデジタルマルチメーター(Keithley社製 2400)により測定したところ、10Ω以下であった。
<比較例2-3>
 フィラーとしてフィラー(B-2)を用いた以外は実施例2-2と同様にして組成物膜を得た。実施例2-1と同様に熱伝導率を測定したところ、熱伝導率は0.9W/(m・K)であった。
<実施例2-3>
 エポキシ樹脂(A1)として、エポキシ樹脂(a3-1)2.50g、エポキシ樹脂(a1-2)6.25g及びエポキシ樹脂(a2-2)3.75gを、有機溶媒(Eb)12.5gに撹拌溶解させた。これに分散剤(F)0.25g、フラックス(D)0.25g及び溶媒(E1)11.75gを添加して、更にフィラー(B-1)12.5g及び直径0.5mmのジルコニアボール(YTZ-0.5)を100g添加し、自公転攪拌機を用いて2000rpmで10分間攪拌した。攪拌終了後、濾過によりビーズを取り除き、硬化剤(C)を0.25g加え、更に自公転攪拌機にて6分間攪拌し、ペースト(組成物塗布液)を得た。
 なお、この実施例2-3で用いたエポキシ樹脂(A1)の120℃における溶融粘度は2Pa・s未満であった。
 また、この組成物塗布液を用いて実施例2-2と同様にしてBステージ化を行い、さらに、積層体を形成して、積層体内部のデイジーチェインの電気抵抗を測定したところ、20Ω以下であった。
[調製例3-1]
 調製例3-1におけるエポキシ樹脂(a2-1)としてのフェノキシ樹脂溶液は、調製例2-1と同様に調製した。
[調製例3-2]
 フィラー(B-1)としての凝集BN粒子は、[実施例1-1]の凝集BN粒子である[BN-A]と同様に調製し、評価した。得られた凝集BN粒子の結晶性及び評価結果は、実施例1-1のBN-Aと同じであった。
 なお、得られた凝集BN粒子のD50は4.1μm、最大粒子径は9.3μm、全細孔容積は2.00cm/g、バルク密度は0.36g/cmであった。
[実施例3-1]
 エポキシ樹脂(A1)として、上記エポキシ樹脂(a1-1)3.50gとエポキシ樹脂(a1-3)1.00g(70重量%シクロヘキサン溶液)、エポキシ樹脂(a2-1)4.67g(30重量%メチルエチルケトン/シクロヘキサノン=5/5溶液)、及びエポキシ樹脂(a3-1)1.75g(80重量%シクロヘキサノン溶液)に、分散剤(F)0.60g及び有機溶媒(Eb)5.05gを加えて、自公転攪拌機を用いて攪拌混合を行った。これにフィラー(B-1)3.01gを加え、更に直径2mmのジルコニアボール(YTZ-2)を24.0g添加し、自公転攪拌機を用いて2000rpmで10分間攪拌した。攪拌終了後、濾過によりビーズを取り除き、硬化剤(C)を0.28g、及びフラックス(D)を0.14g加え、更に自公転攪拌機にて6分間攪拌し、ペースト(組成物塗布液)を得た。
 なお、この実施例3-1で用いたエポキシ樹脂(A1)の120℃における溶融粘度は2.1Pa・sであった。
 この組成物塗布液を、WALTS社製のシリコン製はんだバンプ基板(CC80ModelI)に25μL塗布した後、ホットプレート上にて60℃で15分、80℃で15分及び120℃で30分間加熱して、溶媒を留去した。さらにホットプレート上にて150℃で10分間加熱を行ってBステージ化膜とした。
 このはんだバンプ基板及びWALTS社製の有機インターポーザ(CC80ModelI)を、東レエンジニアリング社製フリップチップボンダ(FC3000S)を用いて250℃まで昇温させて加熱圧着接合し、その後冷却して、165℃で2時間硬化させて、積層体を形成した。積層体内部のデイジーチェインの電気抵抗をデジタルマルチメーターにより測定したところ、10Ω以下であった。
[実施例3-2]
 エポキシ樹脂(A1)として、上記エポキシ樹脂(a1-1)2.50gとエポキシ樹脂(a1-3)0.71g(70重量%シクロヘキサン溶液)、エポキシ樹脂(a2-1)3.33g(30重量%メチルエチルケトン/シクロヘキサノン=5/5溶液)、エポキシ樹脂(a3-1)1.25g(80重量%シクロヘキサノン溶液)に、分散剤(F)0.10g及び溶媒(Eb)5.90gを加えて自公転攪拌機を用いて攪拌混合を行った。これにフィラー(B-1)5.00gを加えて、更に直径2mmのジルコニアボール(YTZ-2)を24.0g添加し、自公転攪拌機を用いて2000rpmで10分間攪拌した。攪拌終了後、硬化剤(C)を0.20g、及びフラックス(D)を0.10g加え、更に自公転攪拌機にて6分間攪拌し、ペースト(組成物塗布液)を得た。 なお、この実施例3-2で用いたエポキシ樹脂(A1)の120℃における溶融粘度は2.1Pa・sであった。
 この塗布液を離型処理したガラス基板に塗布して、減圧下にて120℃で30分加熱し、溶媒を留去して塗膜を形成した。この膜上にさらに離型処理したガラス基板を載せて、挟んだ後に、150℃で1時間、続いて200℃で1時間、プレス(圧力1MPa)することにより、成形・硬化させて膜厚500μmの組成物膜を得た。
 得られた膜の熱伝導率を測定したところ1.4W/(m・K)であった。
[実施例3-3]
 エポキシ樹脂(A1)としてエポキシ樹脂(a3-1)1.00g、エポキシ樹脂(a1-2)2.50g及びエポキシ樹脂(a2-2)1.50gを、有機溶媒(Eb)5.00gに攪拌して溶解させた。これに分散剤(F)0.05g、フラックス(D)0.10g及び有機溶媒(Eb)2.44gを添加し、更にフィラー(B-1)2.14gを加え、更に直径2mmのジルコニアボール(YTZ-2)を24.0g添加し、自公転攪拌機を用いて2000rpmで10分間攪拌した。攪拌終了後、硬化剤(C)を0.10g加え、更に自公転攪拌機にて6分間攪拌し、ペースト(組成物塗布液)を得た。
 なお、この実施例3-3で用いたエポキシ樹脂(A1)の120℃における溶融粘度は2Pa・s未満であった。
 また、この塗布液を用いて実施例3-1と同様にしてBステージ化を行い、積層体を形成して積層体内部のデイジーチェインの電気抵抗を測定したところ、20Ω以下であった。
[比較例3-1]
 エポキシ樹脂(A1)としてエポキシ樹脂(a3-1)2.50g、エポキシ樹脂(a1-2)6.25g及びエポキシ樹脂(a2-2)3.75gを、有機溶媒(Eb)12.5gに攪拌して溶解させた。これに分散剤(F)0.25g、フラックス(D)0.25g及び有機溶媒(Eb)11.75gを添加し、更にフィラー(B-3)の12.5g及び直径0.5mmのジルコニアボール(YTZ-0.5)を100g添加して、自公転攪拌機を用いて2000rpmで10分間攪拌した。攪拌終了後、濾過によりビーズを取り除き、さらに硬化剤(C)を0.25g加え、自公転攪拌機にて6分間攪拌し、ペースト(組成物塗布液)を得た。
 なお、この比較例3-1で用いたエポキシ樹脂(A1)の120℃における溶融粘度は2Pa・s未満であった。
 この塗布液を用いて、実施例3-2と同様にして膜厚50μmの組成物の膜を形成し、膜の熱伝導率を測定したところ、熱伝導率は0.4W/(m・K)であった。
[比較例3-2]
 フィラーとしてフィラー(B-2)を用いた以外は比較例3-1と同様にしてペースト(組成物塗布液)を調製した。この組成物塗布液を用いて、実施例3-2と同様にして膜厚50μmの組成物の膜を形成し、膜の熱伝導率を測定したところ、熱伝導率は0.9W/(m・K)であった。
[比較例3-3]
 フィラーとしてフィラー(B-2)を用い、直径2mmのジルコニアボール(YTZ-2)を25g添加して、自公転攪拌機で2000rpmにて33分間攪拌した。その後、濾過によりビーズを取り除き、さらに硬化剤(C)を0.20g、及びフラックス(D)を0.10g加えて、自公転攪拌機にて6分間攪拌したこと以外は、実施例3-2と同様にペースト(組成物塗布液)を得た。
 次いで、この組成物塗布液を用いて、実施例3-2と同様にして膜厚50μmの組成物の膜を形成した。実施例3-2と同様に、膜の熱伝導率を測定したところ、熱伝導率は0.9W/(m・K)であった。
[比較例3-4]
 エポキシ樹脂(A1)としてエポキシ樹脂(a3-1)2.50g、エポキシ樹脂(a1-2)6.25g及びエポキシ樹脂(a2-2)3.75gを、有機溶媒(Eb)12.5gに攪拌して溶解させた。これに分散剤(F)0.25g、フラックス(D)0.25g及び有機溶媒(Eb)11.75gを添加し、更にフィラー(B-2)12.5g及び直径0.5mmのジルコニアボール(YTZ-0.5)を100g添加して、自公転攪拌機を用いて2000rpmで10分間攪拌した。攪拌終了後、濾過によりビーズを取り除き、硬化剤(C)を0.25g加え、更に自公転攪拌機にて6分間攪拌し、ペースト(組成物塗布液)を得た。
 なお、この比較例3-4で用いたエポキシ樹脂(A1)の120℃における溶融粘度は2Pa・s未満であった。
 次いで、組成物塗布液を用いて、実施例3-2と同様にして膜厚50μmの組成物の膜を形成した。実施例3-2と同様に、膜の熱伝導率を測定したところ、熱伝導率は0.9W/(m・K)であった。
 本発明の組成物及び組成物塗布液を用いることにより、半導体デバイス基板間のはんだバンプ等とランドの接合と同時に、熱伝導性の高い、高品質の層間充填層を形成することができ、該層間充填層を有する半導体基板積層体は、三次元集積回路用積層体として有用である。
 なお、2011年11月29日に出願された日本特許出願2011-260238号、2012年4月27日に出願された日本特許出願2012-103216号、及び2012年4月27日に出願された日本特許出願2012-103217号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (27)

  1.  窒化ホウ素凝集粒子であって、比表面積が10m/g以上、全細孔容積が2.15cm/g以下、且つ、該窒化ホウ素凝集粒子の表面が、平均粒子径0.05μm以上1μm以下の窒化ホウ素一次粒子から構成される、窒化ホウ素凝集粒子。
  2.  球状の窒化ホウ素凝集粒子であって、該窒化ホウ素凝集粒子表面において、平均粒子径が1μm以下の窒化ホウ素一次粒子が放射状に配置されている窒化ホウ素凝集粒子。
  3.  体積基準の最大粒子径が0.1μm以上25μm以下の範囲である請求項1又は2に記載の窒化ホウ素凝集粒子。
  4.  バルク密度が0.3g/cm以上である請求項1ないし3のいずれか1項に記載の窒化ホウ素凝集粒子。
  5.  原料窒化ホウ素粉末を含有するスラリーを用いて造粒する工程を有する窒化ホウ素凝集粒子の製造方法であって、
     前記スラリー中の原料窒化ホウ素粉末の体積基準の平均粒子径D50が、造粒された造粒粒子の体積基準の平均粒子径D50の1/5以下である、窒化ホウ素凝集粒子の製造方法。
  6.  前記原料窒化ホウ素粉末の全酸素含有量が、1重量%以上10重量%以下である、請求項5に記載の窒化ホウ素凝集粒子の製造方法。
  7.  前記原料窒化ホウ素粉末が下記条件(1)及び/又は(2)を満たす、請求項5又は6に記載の窒化ホウ素凝集粒子の製造方法。
     (1)全細孔容積が1.0cm/g以下
     (2)比表面積が20m/g以上
  8.  前記原料窒化ホウ素粉末を含有するスラリーをスプレードライ法により球形に造粒した後、得られた造粒粒子を非酸化性ガス雰囲気下で加熱処理する、請求項5ないし7のいずれか1項に記載の窒化ホウ素凝集粒子の製造方法。
  9.  前記原料窒化ホウ素粉末を含有するスラリーが、金属酸化物を原料窒化ホウ素粉末に対して1重量%以上30重量%以下の範囲で含有する、請求項5ないし8のいずれか1項に記載の窒化ホウ素凝集粒子の製造方法。
  10.  120℃における溶融粘度が100Pa・s以下である樹脂(A)と、請求項1ないし4のいずれか1項に記載の窒化ホウ素凝集粒子よりなるフィラー(B)とを含む組成物。
  11.  前記フィラー(B)を樹脂(A)100重量部当たり、40重量部以上400重量部以下含有する、請求項10に記載の組成物。
  12.  請求項5ないし9のいずれか1項に記載の窒化ホウ素凝集粒子の製造方法によって製造された窒化ホウ素凝集粒子よりなるフィラー(B)と、120℃における溶融粘度が100Pa・s以下である樹脂(A)とを含む組成物。
  13.  前記フィラー(B)の体積平均粒子径が10μm以下である、請求項12に記載の組成物。
  14.  前記フィラー(B)を樹脂(A)100重量部当たり、40重量部以上400重量部以下含有する、請求項12又は13に記載の組成物。
  15.  120℃における溶融粘度が100Pa・s以下である樹脂(A)と、002面の結晶子径(Lc)が450[Å]以上であり、100面の結晶子径(La)が500[Å]以上であり、前記結晶子径(Lc)と前記結晶子径(La)が下記式(i)を満たし、酸素含有量が0.30重量%以下である窒化ホウ素よりなるフィラー(B)とを含有する組成物。
      0.70≦Lc/La     …(i)
  16.  前記フィラー(B)の体積平均粒子径が10μm以下である、請求項15に記載の組成物。
  17.  前記フィラー(B)を樹脂(A)100重量部当たり、40重量部以上400重量部以下含有する、請求項15又は16に記載の組成物。
  18.  更に硬化剤(C)を含有する、請求項10ないし17のいずれか1項に記載の組成物。
  19.  更にフラックス(D)を含有する、請求項10ないし18のいずれか1項に記載の組成物。
  20.  前記樹脂(A)が熱硬化性樹脂である、請求項10ないし19のいずれか1項に記載の組成物。
  21.  前記熱硬化性樹脂がエポキシ樹脂(a)である、請求項20に記載の組成物。
  22.  前記エポキシ樹脂(a)が、エポキシ当量が100g/当量以上650g/当量未満であるエポキシ樹脂(a1)を含む、請求項21に記載の組成物。
  23.  前記エポキシ樹脂(a)が、エポキシ当量が650g/当量以上30000g/当量以下であるエポキシ樹脂(a2)を含む、請求項21又は22に記載の組成物。
  24.  前記エポキシ樹脂(a)が、ビスフェノールA骨格、ビスフェノールF骨格又はビフェニル骨格のうち、少なくとも1つ以上の骨格を有するフェノキシ樹脂である、請求項21ないし23のいずれか1項に記載の組成物。
  25.  請求項10ないし24のいずれか1項に記載の組成物と、有機溶媒(E)を含有してなる、組成物塗布液。
  26.  複数の半導体基板表面に、請求項25に記載の組成物塗布液を成膜した後、これらの半導体基板を加圧接合して積層する工程を含む、三次元集積回路の製造方法。
  27.  半導体デバイス層が形成された半導体基板を少なくとも2層以上積層した半導体基板積層体と、請求項10ないし24のいずれか1項に記載の組成物を含む層とを有する、三次元集積回路。
PCT/JP2012/080959 2011-11-29 2012-11-29 窒化ホウ素凝集粒子、該粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路 WO2013081061A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP17187695.6A EP3269682B1 (en) 2011-11-29 2012-11-29 Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
EP12854030.9A EP2786961B1 (en) 2011-11-29 2012-11-29 Aggregated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
CN201280058680.1A CN103958400B (zh) 2011-11-29 2012-11-29 氮化硼凝聚粒子、含有该粒子的组合物、及具有包含该组合物的层的三维集成电路
CA2857154A CA2857154C (en) 2011-11-29 2012-11-29 Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
KR1020197006262A KR102058342B1 (ko) 2011-11-29 2012-11-29 질화붕소 응집 입자, 그 입자를 함유하는 조성물, 및 그 조성물로 이루어지는 층을 갖는 삼차원 집적 회로
KR1020147014474A KR101960996B1 (ko) 2011-11-29 2012-11-29 질화붕소 응집 입자, 그 입자를 함유하는 조성물, 및 그 조성물로 이루어지는 층을 갖는 삼차원 집적 회로
US14/290,219 US9822294B2 (en) 2011-11-29 2014-05-29 Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
US15/667,246 US10400151B2 (en) 2011-11-29 2017-08-02 Agglomerated boron nitride particles, composition containing said particles, and three- dimensional integrated circuit having layer comprising said composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-260238 2011-11-29
JP2011260238 2011-11-29
JP2012-103217 2012-04-27
JP2012103216 2012-04-27
JP2012103217 2012-04-27
JP2012-103216 2012-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/290,219 Continuation US9822294B2 (en) 2011-11-29 2014-05-29 Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition

Publications (1)

Publication Number Publication Date
WO2013081061A1 true WO2013081061A1 (ja) 2013-06-06

Family

ID=48535509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080959 WO2013081061A1 (ja) 2011-11-29 2012-11-29 窒化ホウ素凝集粒子、該粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路

Country Status (9)

Country Link
US (2) US9822294B2 (ja)
EP (2) EP3269682B1 (ja)
JP (2) JP5915509B2 (ja)
KR (2) KR102058342B1 (ja)
CN (3) CN105947997B (ja)
CA (1) CA2857154C (ja)
MY (2) MY170639A (ja)
TW (4) TWI572555B (ja)
WO (1) WO2013081061A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036361A (ja) * 2013-08-16 2015-02-23 Dic株式会社 変性窒化ホウ素、その製造方法及び組成物
JP2015081339A (ja) * 2013-10-24 2015-04-27 日東シンコー株式会社 絶縁シート用樹脂組成物および絶縁シート、ならびに半導体モジュール
JP2015195292A (ja) * 2014-03-31 2015-11-05 三菱化学株式会社 放熱シートおよび放熱シート製造方法、放熱シート用スラリー、並びにパワーデバイス装置
JP2016011358A (ja) * 2014-06-27 2016-01-21 三菱化学株式会社 樹脂組成物、樹脂組成物からなる放熱シート、及び放熱シートを含むパワーデバイス装置
US20160060112A1 (en) * 2013-03-07 2016-03-03 Denki Kagaku Kogyo Kabushiki Kaisha Boron-nitride powder and resin composition containing same
US20160222195A1 (en) * 2015-01-29 2016-08-04 Lg Innotek Co., Ltd. Inorganic filler, resin composition comprising the same and heat radiation substrate using the same
CN105899613A (zh) * 2014-01-08 2016-08-24 捷恩智株式会社 热传导性片用树脂组合物、热传导性片、树脂覆膜金属、电子装置
CN106318264A (zh) * 2016-09-08 2017-01-11 华进半导体封装先导技术研发中心有限公司 BN/Ag二维层状复合材料的导热胶的制备方法
WO2018038179A1 (ja) * 2016-08-24 2018-03-01 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
US20180208820A1 (en) * 2015-07-21 2018-07-26 Sumitomo Bakelite Co., Ltd. Thermal conductive resin composition, thermal conductive sheet, and semiconductor device
EP3211018A4 (en) * 2014-08-27 2018-08-01 JNC Corporation Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
DE202019102120U1 (de) 2018-05-09 2019-06-12 Ambu A/S Y-Verbinder für einen Doppellumenendotrachialtubus
US10351728B2 (en) 2013-06-14 2019-07-16 Mitsubishi Electric Corporation Thermosetting resin composition, method of producing thermal conductive sheet, and power module
WO2019189746A1 (ja) 2018-03-30 2019-10-03 三菱ケミカル株式会社 放熱シート、放熱部材及び半導体デバイス
WO2020080214A1 (ja) 2018-10-19 2020-04-23 三菱瓦斯化学株式会社 熱硬化性樹脂組成物、プリプレグ、樹脂シート、金属箔張積層板及びプリント配線板

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5340202B2 (ja) * 2010-02-23 2013-11-13 三菱電機株式会社 熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール
CN105947997B (zh) * 2011-11-29 2018-12-21 三菱化学株式会社 氮化硼凝聚粒子、含有该粒子的组合物、及具有包含该组合物的层的三维集成电路
JP6274014B2 (ja) * 2013-05-27 2018-02-07 三菱ケミカル株式会社 窒化ホウ素凝集粒子、凝集bn粒子含有樹脂組成物及び放熱シート
JP6794613B2 (ja) * 2014-02-05 2020-12-02 三菱ケミカル株式会社 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体
KR102258544B1 (ko) * 2014-02-12 2021-05-28 덴카 주식회사 구상 질화붕소 미립자 및 그 제조 방법
JP6692758B2 (ja) 2014-02-24 2020-05-13 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング 熱伝導性プリアプライアンダーフィル組成物およびその使用
JP2015189609A (ja) * 2014-03-27 2015-11-02 三菱化学株式会社 窒化ホウ素シートの製造方法
JP6379579B2 (ja) * 2014-03-27 2018-08-29 三菱ケミカル株式会社 窒化ホウ素シート
JP6500339B2 (ja) * 2014-03-31 2019-04-17 三菱ケミカル株式会社 放熱シートおよび放熱シート用塗布液、並びにパワーデバイス装置
JP6814046B2 (ja) * 2014-06-19 2021-01-13 エルジー イノテック カンパニー リミテッド 無機充填材、これを含むエポキシ樹脂組成物、そしてこれを利用した絶縁層を含む発光素子
JP6330517B2 (ja) * 2014-06-30 2018-05-30 Tdk株式会社 圧粉磁心用前駆体、圧粉磁心、および電子部品
JP6413478B2 (ja) * 2014-08-21 2018-10-31 住友ベークライト株式会社 造粒粉、放熱用樹脂組成物、放熱シート、半導体装置、および放熱部材
JP2016060680A (ja) * 2014-09-19 2016-04-25 信越化学工業株式会社 窒化ホウ素凝集体および熱伝導性組成物
CN105566852A (zh) * 2014-11-05 2016-05-11 住友电木株式会社 热传导性片用树脂组合物、带有基材的树脂层、热传导性片和半导体装置
KR102335771B1 (ko) * 2014-12-01 2021-12-06 삼성전자주식회사 열전도 필름을 가진 반도체 패키지
JP6538337B2 (ja) * 2014-12-08 2019-07-03 昭和電工株式会社 樹脂組成物及びその製造方法
EP3277453B1 (en) * 2015-04-01 2024-01-17 Alpha Assembly Solutions Inc. Engineered polymer-based electronic materials
JP6601049B2 (ja) * 2015-08-12 2019-11-06 三菱ケミカル株式会社 蛍光体
JP6786778B2 (ja) * 2015-08-12 2020-11-18 三菱ケミカル株式会社 放熱樹脂シート及び該放熱樹脂シートを含むデバイス
JP2017036190A (ja) * 2015-08-12 2017-02-16 三菱化学株式会社 窒化ホウ素凝集粒子組成物、bn凝集粒子含有樹脂組成物及びそれらの成形体、並びに窒化ホウ素凝集粒子の製造方法、
CN105062007B (zh) * 2015-08-31 2017-09-26 中国科学院深圳先进技术研究院 高导热聚合物复合材料及其制备方法和应用
EP3181609A1 (en) * 2015-12-18 2017-06-21 General Electric Technology GmbH A support for end windings of an electric machine
JP2017128662A (ja) * 2016-01-20 2017-07-27 積水化学工業株式会社 複合フィラー及び熱硬化性材料
JP2017128476A (ja) * 2016-01-20 2017-07-27 積水化学工業株式会社 複合フィラー及び熱硬化性材料
JP2017178694A (ja) * 2016-03-30 2017-10-05 国立研究開発法人産業技術総合研究所 窒化ホウ素ナノシートの製造方法
JP7005523B2 (ja) 2016-05-27 2022-01-21 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド 窒化ホウ素凝集体を製造するためのプロセス
CN107602916A (zh) * 2016-07-12 2018-01-19 罗杰斯公司 各向同性氮化硼、其制备方法及由其制成的制品
CN107603186A (zh) * 2016-07-12 2018-01-19 罗杰斯公司 各向同性氮化硼、其制备方法及由其制成的制品
JP2018026320A (ja) * 2016-08-01 2018-02-15 三菱マテリアル株式会社 絶縁膜
WO2018025538A1 (ja) * 2016-08-01 2018-02-08 三菱マテリアル株式会社 絶縁膜
JP6746443B2 (ja) * 2016-09-13 2020-08-26 株式会社トクヤマ 六方晶窒化ホウ素粉末
US10752503B2 (en) * 2016-10-21 2020-08-25 Denka Company Limited Spherical boron nitride fine powder, method for manufacturing same and thermally conductive resin composition using same
JP6729898B2 (ja) * 2016-12-28 2020-07-29 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
EP3575368A4 (en) * 2017-01-30 2020-07-22 Sekisui Chemical Co., Ltd. RESIN AND LAMINATE MATERIAL
US11827766B2 (en) 2017-01-30 2023-11-28 Sekisui Chemical Co., Ltd. Resin material and laminate
TW201829354A (zh) * 2017-02-10 2018-08-16 美商聖高拜陶器塑膠公司 三氧化二硼含量可控的氮化硼
JP7063705B2 (ja) * 2017-04-28 2022-05-09 積水化学工業株式会社 窒化ホウ素粒子の凝集体及び熱硬化性材料
JP6876800B2 (ja) 2017-07-14 2021-05-26 富士フイルム株式会社 表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス
CN107424964A (zh) * 2017-07-27 2017-12-01 武汉市三选科技有限公司 底部填充组成物及使用其之底部填充方法与电子组装组件
KR102415733B1 (ko) 2017-09-21 2022-07-04 엘지이노텍 주식회사 회로기판
JP6698953B2 (ja) * 2017-10-13 2020-05-27 デンカ株式会社 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
EP3722368B1 (en) * 2017-12-05 2021-10-13 Denka Company Limited Nitride ceramic resin composite body
JP7069485B2 (ja) * 2017-12-27 2022-05-18 昭和電工株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
MY197946A (en) 2018-01-16 2023-07-25 Senju Metal Industry Co Flux and solder paste
JP7101513B2 (ja) * 2018-03-28 2022-07-15 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
JP2018145090A (ja) * 2018-03-28 2018-09-20 住友ベークライト株式会社 造粒粉、放熱用樹脂組成物、放熱シート、半導体装置、および放熱部材
JP7257384B2 (ja) * 2018-03-30 2023-04-13 株式会社トクヤマ 有機無機複合粒子からなる粉末
CA3115812C (en) * 2018-10-12 2023-08-01 Ppg Industries Ohio, Inc. Compositions containing thermally conductive fillers
CN109651761B (zh) * 2018-12-14 2021-04-23 中国科学院深圳先进技术研究院 一种热界面材料及其制备方法
JPWO2020175377A1 (ja) * 2019-02-27 2021-12-23 三菱ケミカル株式会社 窒化ホウ素凝集粉末、放熱シート及び半導体デバイス
JP2020176201A (ja) * 2019-04-18 2020-10-29 信越化学工業株式会社 熱伝導性樹脂組成物及び熱伝導性樹脂硬化物
CN110776607B (zh) * 2019-10-12 2022-07-15 青岛大学 一种活性共聚物高凝原油驱油剂的制备方法
WO2021079912A1 (ja) * 2019-10-23 2021-04-29 デンカ株式会社 窒化ホウ素粉末及びその製造方法、炭窒化ホウ素粉末、並びに、複合材及び放熱部材
WO2021091308A1 (ko) * 2019-11-06 2021-05-14 주식회사 아모그린텍 방열 시트, 이의 제조방법 및 이를 포함하는 전자기기
CN114466818A (zh) * 2019-11-19 2022-05-10 电化株式会社 六方氮化硼粉末
KR102332416B1 (ko) * 2019-11-29 2021-11-30 주식회사 피톡 열전도도가 향상된 고방열 신축 유연필름
JP7431577B2 (ja) * 2019-12-25 2024-02-15 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
TWI788634B (zh) * 2020-02-27 2023-01-01 台光電子材料股份有限公司 樹脂組合物及該樹脂組合物製成的物品
US20230141794A1 (en) * 2020-03-11 2023-05-11 Sumitomo Metal Mining Co., Ltd. Thermally conductive paste
JPWO2021206038A1 (ja) * 2020-04-08 2021-10-14
KR20230051670A (ko) * 2020-08-20 2023-04-18 덴카 주식회사 질화 붕소 입자, 질화 붕소 분말, 수지 조성물, 및 수지 조성물의 제조 방법
CN112097510A (zh) * 2020-09-28 2020-12-18 华鼎国联四川电池材料有限公司 一种实验室用旋转碾压式烧结装置
CN112225186B (zh) * 2020-10-21 2023-07-21 江西联锴科技有限公司 一种球形氮化硼的制备方法
CN112745550B (zh) * 2020-12-18 2022-03-11 北京科技大学 一种中子屏蔽的聚合物复合材料、制备方法、线材及应用
US11605607B2 (en) * 2021-03-19 2023-03-14 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and methods of manufacture
WO2022210686A1 (ja) 2021-03-29 2022-10-06 三菱ケミカル株式会社 樹脂組成物、シート硬化物、複合成形体及び半導体デバイス
JPWO2023032723A1 (ja) * 2021-09-02 2023-03-09
CN113929865A (zh) * 2021-11-22 2022-01-14 山东一诺威聚氨酯股份有限公司 高导热低磨耗tpu材料及其制备方法
JP7438443B1 (ja) 2023-10-12 2024-02-26 古河電子株式会社 窒化ホウ素凝集粒子、シート部材および窒化ホウ素凝集粒子の製造方法
JP7438442B1 (ja) 2023-10-12 2024-02-26 古河電子株式会社 窒化ホウ素凝集粒子、シート部材および窒化ホウ素凝集粒子の製造方法
CN117304773B (zh) * 2023-11-30 2024-02-20 成都虹润制漆有限公司 一种低表面处理石墨烯防腐涂料及其制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260405A (ja) * 1984-06-07 1985-12-23 Kawasaki Steel Corp 六方晶窒化硼素粉末およびその製造方法
JPS617260A (ja) 1984-06-22 1986-01-13 Sanyo Chem Ind Ltd 2−オキサゾリジノン化合物の製造法
JPH02296706A (ja) * 1989-05-02 1990-12-07 Rhone Poulenc Chim 非晶質或いは乱層状で、特に球状形を有する窒化硼素及びその製造方法
JPH03115109A (ja) * 1989-09-28 1991-05-16 Mitsui Toatsu Chem Inc 窒化硼素粉末
JPH0962002A (ja) 1995-08-21 1997-03-07 Fuji Photo Film Co Ltd 感放射線性組成物
JPH09202663A (ja) 1996-01-24 1997-08-05 Denki Kagaku Kogyo Kk ほう酸メラミン粒子とその製造方法及び用途、並びに六方晶窒化ほう素粉末の製造方法
JPH09263402A (ja) 1996-03-29 1997-10-07 Mitsui Toatsu Chem Inc 六方晶窒化ホウ素粉末の製造方法
JPH09295801A (ja) 1996-04-26 1997-11-18 Mitsui Toatsu Chem Inc 六方晶窒化ホウ素粉末の製造方法
JPH11263670A (ja) * 1998-03-16 1999-09-28 Shin Etsu Chem Co Ltd 高純度窒化ホウ素成形体の製造方法
JP2006257392A (ja) 2005-03-14 2006-09-28 General Electric Co <Ge> 改良窒化ホウ素組成物及び該組成物を配合したポリマー系組成物
JP2008510878A (ja) 2004-08-23 2008-04-10 ゼネラル・エレクトリック・カンパニイ 熱伝導性組成物およびその作製方法
JP2008189818A (ja) 2007-02-05 2008-08-21 Nitto Denko Corp 熱伝導性樹脂組成物および熱伝導性シートとその製造方法
JP2010037123A (ja) 2008-08-04 2010-02-18 Kaneka Corp 六方晶窒化ホウ素の製造方法
JP2010042963A (ja) 2008-08-18 2010-02-25 Kaneka Corp 六方晶窒化ホウ素の製造方法
JP2010505729A (ja) 2006-10-07 2010-02-25 モーメンティブ・パフォーマンス・マテリアルズ・インク 混合窒化ホウ素組成物およびその製造方法
JP2011006586A (ja) * 2009-06-26 2011-01-13 Mitsubishi Electric Corp 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784839A (en) * 1986-04-03 1988-11-15 Atochem Method of making metal carbide and nitride powders
JPH06219714A (ja) * 1993-01-29 1994-08-09 Shin Etsu Chem Co Ltd 窒化ホウ素の水系スラリー
US5898009A (en) * 1996-03-19 1999-04-27 Advanced Ceramics Corporation High density agglomerated boron nitride particles
WO1998005590A1 (fr) * 1996-08-06 1998-02-12 Otsuka Kagaku Kabushiki Kaisha Nitrure de bore et son procede de preparation
JPH1160216A (ja) * 1997-08-04 1999-03-02 Shin Etsu Chem Co Ltd 熱伝導性窒化ホウ素フィラー及び絶縁放熱シート
DE69807040T2 (de) * 1998-02-16 2003-05-08 Advanced Ceramics Corp Verfahren zur Bildung von Bornitrid hoher Dichte und agglomerierte Bornitridteilchen hoher Dichte
JP2000109541A (ja) * 1998-10-06 2000-04-18 Nippon Poritekku Kk 感光性熱硬化性樹脂組成物
US6645612B2 (en) 2001-08-07 2003-11-11 Saint-Gobain Ceramics & Plastics, Inc. High solids hBN slurry, hBN paste, spherical hBN powder, and methods of making and using them
JP2003113313A (ja) * 2001-09-21 2003-04-18 Three M Innovative Properties Co 熱伝導性組成物
AU2002355051A1 (en) * 2001-11-30 2003-06-10 Ajinomoto Co., Inc. Method of laminating circuit board and method of forming insulation layer, multilayer printed wiring board and production method therefor and adhesion film for multilayer printed wiring board
JP2005036016A (ja) * 2002-10-18 2005-02-10 Advanced Ceramics Corp 球形形態の窒化ホウ素粒子の低粘性充填剤組成物及びその製造方法
JP3971995B2 (ja) * 2002-12-25 2007-09-05 日本電気株式会社 電子部品装置
JP2004244265A (ja) * 2003-02-13 2004-09-02 Hitachi Metals Ltd 窒化ほう素粉末の製造方法、および窒化ほう素粉末
US7494635B2 (en) * 2003-08-21 2009-02-24 Saint-Gobain Ceramics & Plastics, Inc. Boron nitride agglomerated powder
JP4152920B2 (ja) * 2004-06-02 2008-09-17 電気化学工業株式会社 窒化ホウ素粉末及びその用途
KR100655218B1 (ko) * 2005-07-01 2006-12-08 삼성전자주식회사 다각기둥 형상의 접지 블록을 갖는 3차원 반도체 모듈
CN101028228A (zh) * 2006-03-01 2007-09-05 通用电气公司 含有亚微粒氮化硼颗粒的化妆品组合物
WO2009035439A1 (en) * 2007-09-14 2009-03-19 Henkel Ag & Co, Kgaa Thermally conductive composition
JP5184543B2 (ja) 2007-09-26 2013-04-17 三菱電機株式会社 熱伝導性シート及びパワーモジュール
WO2009139153A1 (ja) * 2008-05-16 2009-11-19 住友ベークライト株式会社 半導体部品の製造方法および半導体部品
JP2010132592A (ja) * 2008-12-03 2010-06-17 Kao Corp 粉末化粧料
CN101580626B (zh) * 2009-01-24 2012-02-08 南亚塑胶工业股份有限公司 一种高导热无卤难燃树脂组合物及其预浸渍体及涂层物
CN102574684B (zh) * 2009-10-09 2015-04-29 水岛合金铁株式会社 六方氮化硼粉末及其制备方法
DE102010050900A1 (de) 2010-11-10 2012-05-10 Esk Ceramics Gmbh & Co. Kg Bornitrid-Agglomerate, Verfahren zu deren Herstellung und deren Verwendung
CN105947997B (zh) * 2011-11-29 2018-12-21 三菱化学株式会社 氮化硼凝聚粒子、含有该粒子的组合物、及具有包含该组合物的层的三维集成电路

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260405A (ja) * 1984-06-07 1985-12-23 Kawasaki Steel Corp 六方晶窒化硼素粉末およびその製造方法
JPS617260A (ja) 1984-06-22 1986-01-13 Sanyo Chem Ind Ltd 2−オキサゾリジノン化合物の製造法
JPH02296706A (ja) * 1989-05-02 1990-12-07 Rhone Poulenc Chim 非晶質或いは乱層状で、特に球状形を有する窒化硼素及びその製造方法
JPH03115109A (ja) * 1989-09-28 1991-05-16 Mitsui Toatsu Chem Inc 窒化硼素粉末
JPH0962002A (ja) 1995-08-21 1997-03-07 Fuji Photo Film Co Ltd 感放射線性組成物
JPH09202663A (ja) 1996-01-24 1997-08-05 Denki Kagaku Kogyo Kk ほう酸メラミン粒子とその製造方法及び用途、並びに六方晶窒化ほう素粉末の製造方法
JPH09263402A (ja) 1996-03-29 1997-10-07 Mitsui Toatsu Chem Inc 六方晶窒化ホウ素粉末の製造方法
JPH09295801A (ja) 1996-04-26 1997-11-18 Mitsui Toatsu Chem Inc 六方晶窒化ホウ素粉末の製造方法
JPH11263670A (ja) * 1998-03-16 1999-09-28 Shin Etsu Chem Co Ltd 高純度窒化ホウ素成形体の製造方法
JP2008510878A (ja) 2004-08-23 2008-04-10 ゼネラル・エレクトリック・カンパニイ 熱伝導性組成物およびその作製方法
JP2006257392A (ja) 2005-03-14 2006-09-28 General Electric Co <Ge> 改良窒化ホウ素組成物及び該組成物を配合したポリマー系組成物
JP2010505729A (ja) 2006-10-07 2010-02-25 モーメンティブ・パフォーマンス・マテリアルズ・インク 混合窒化ホウ素組成物およびその製造方法
JP2008189818A (ja) 2007-02-05 2008-08-21 Nitto Denko Corp 熱伝導性樹脂組成物および熱伝導性シートとその製造方法
JP2010037123A (ja) 2008-08-04 2010-02-18 Kaneka Corp 六方晶窒化ホウ素の製造方法
JP2010042963A (ja) 2008-08-18 2010-02-25 Kaneka Corp 六方晶窒化ホウ素の製造方法
JP2011006586A (ja) * 2009-06-26 2011-01-13 Mitsubishi Electric Corp 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Science and Application of Soldering", KOGYO CHOSAKAI PUBLISHING CO., LTD.
B.C.ANDERSON; G.D.ANDREWS ET AL., MACROMOLECULES, vol. 14, 1981, pages 1601
D.Y.SOGOH; W.R.HERTLER, MACROMOLECULES, vol. 20, 1987, pages 1473
K.HATADA; K.UTE, POLYM. J., vol. 17, 1985, pages 977
KOICHI UTE; KOICHI HATADA, POLYMER APPLICATION, vol. 36, 1987, pages 366
M.KUROKI; T.AIDA, J. AM. CHEM. SIC, vol. 109, 1987, pages 4737
P.LUTZ; P.MASSON ET AL., POLYM. BULL., vol. 12, 1984, pages 79
POLYM. J., vol. 18, 1986, pages 1037
PROCEEDINGS OF THE JAPAN INSTITUTE OF ELECTRONICS PACKAGING, ANNUAL MEETING, vol. 61, 2009, pages 23
TAKUZO AIDA; SHOHEI INOUE, JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY, JAPAN, vol. 43, 1985, pages 300
TOSHINOBU HIGASHIMURA; MITSUO SAWAMOTO, KOBUNSHI RONBUNSHU, vol. 46, 1989, pages 189

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656868B2 (en) * 2013-03-07 2017-05-23 Denka Company Limited Boron-nitride powder and resin composition containing same
US20160060112A1 (en) * 2013-03-07 2016-03-03 Denki Kagaku Kogyo Kabushiki Kaisha Boron-nitride powder and resin composition containing same
US10351728B2 (en) 2013-06-14 2019-07-16 Mitsubishi Electric Corporation Thermosetting resin composition, method of producing thermal conductive sheet, and power module
JP2015036361A (ja) * 2013-08-16 2015-02-23 Dic株式会社 変性窒化ホウ素、その製造方法及び組成物
JP2015081339A (ja) * 2013-10-24 2015-04-27 日東シンコー株式会社 絶縁シート用樹脂組成物および絶縁シート、ならびに半導体モジュール
CN105899613A (zh) * 2014-01-08 2016-08-24 捷恩智株式会社 热传导性片用树脂组合物、热传导性片、树脂覆膜金属、电子装置
JP2015195292A (ja) * 2014-03-31 2015-11-05 三菱化学株式会社 放熱シートおよび放熱シート製造方法、放熱シート用スラリー、並びにパワーデバイス装置
JP2016011358A (ja) * 2014-06-27 2016-01-21 三菱化学株式会社 樹脂組成物、樹脂組成物からなる放熱シート、及び放熱シートを含むパワーデバイス装置
US10202530B2 (en) 2014-08-27 2019-02-12 Jnc Corporation Composition for heat-dissipation members, heat-dissipation member, electronic device, and method of producing heat dissipating member
EP3211018A4 (en) * 2014-08-27 2018-08-01 JNC Corporation Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
US20160222195A1 (en) * 2015-01-29 2016-08-04 Lg Innotek Co., Ltd. Inorganic filler, resin composition comprising the same and heat radiation substrate using the same
US9505914B2 (en) * 2015-01-29 2016-11-29 Lg Innotek Co., Ltd. Inorganic filler, resin composition comprising the same and heat radiation substrate using the same
US9670340B2 (en) 2015-01-29 2017-06-06 Lg Innotek Co., Ltd. Inorganic filler, resin composition comprising the same and heat radiation substrate using the same
US9902841B2 (en) 2015-01-29 2018-02-27 Lg Innotek Co., Ltd. Inorganic filler, resin composition comprising the same and heat radiation substrate using the same
US20180208820A1 (en) * 2015-07-21 2018-07-26 Sumitomo Bakelite Co., Ltd. Thermal conductive resin composition, thermal conductive sheet, and semiconductor device
TWI715799B (zh) * 2016-08-24 2021-01-11 日商三菱瓦斯化學股份有限公司 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷電路板
WO2018038179A1 (ja) * 2016-08-24 2018-03-01 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
KR20190038689A (ko) * 2016-08-24 2019-04-08 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
JP6319533B1 (ja) * 2016-08-24 2018-05-09 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
KR102208589B1 (ko) 2016-08-24 2021-01-27 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
US10689496B2 (en) 2016-08-24 2020-06-23 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed circuit board
CN106318264A (zh) * 2016-09-08 2017-01-11 华进半导体封装先导技术研发中心有限公司 BN/Ag二维层状复合材料的导热胶的制备方法
WO2019189746A1 (ja) 2018-03-30 2019-10-03 三菱ケミカル株式会社 放熱シート、放熱部材及び半導体デバイス
DE202019102120U1 (de) 2018-05-09 2019-06-12 Ambu A/S Y-Verbinder für einen Doppellumenendotrachialtubus
WO2020080214A1 (ja) 2018-10-19 2020-04-23 三菱瓦斯化学株式会社 熱硬化性樹脂組成物、プリプレグ、樹脂シート、金属箔張積層板及びプリント配線板
KR20210081329A (ko) 2018-10-19 2021-07-01 미츠비시 가스 가가쿠 가부시키가이샤 열경화성 수지 조성물, 프리프레그, 수지 시트, 금속박 피복 적층판 및 프린트 배선판
JPWO2020080214A1 (ja) * 2018-10-19 2021-09-02 三菱瓦斯化学株式会社 熱硬化性樹脂組成物、プリプレグ、樹脂シート、金属箔張積層板及びプリント配線板
US11760871B2 (en) 2018-10-19 2023-09-19 Mitsubishi Gas Chemical Company, Inc. Thermosetting resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
CN106044727B (zh) 2018-09-25
JP2015006985A (ja) 2015-01-15
TW201643109A (zh) 2016-12-16
TWI572555B (zh) 2017-03-01
CA2857154A1 (en) 2013-06-06
KR102058342B1 (ko) 2019-12-24
EP3269682A1 (en) 2018-01-17
JP5679083B2 (ja) 2015-03-04
CN105947997B (zh) 2018-12-21
TW201331124A (zh) 2013-08-01
EP2786961A1 (en) 2014-10-08
US10400151B2 (en) 2019-09-03
TW201643110A (zh) 2016-12-16
KR20190026954A (ko) 2019-03-13
JP5915509B2 (ja) 2016-05-11
JP2013241321A (ja) 2013-12-05
MY170639A (en) 2019-08-21
CN105947997A (zh) 2016-09-21
TW201643108A (zh) 2016-12-16
EP3269682B1 (en) 2020-01-01
EP2786961A4 (en) 2015-10-07
EP2786961B1 (en) 2017-09-13
US9822294B2 (en) 2017-11-21
MY170458A (en) 2019-08-02
TWI643811B (zh) 2018-12-11
CA2857154C (en) 2019-09-24
US20140349105A1 (en) 2014-11-27
US20170335160A1 (en) 2017-11-23
CN106044727A (zh) 2016-10-26
KR101960996B1 (ko) 2019-03-21
KR20140103106A (ko) 2014-08-25
CN103958400A (zh) 2014-07-30
CN103958400B (zh) 2016-06-29
TWI616398B (zh) 2018-03-01
TWI547436B (zh) 2016-09-01

Similar Documents

Publication Publication Date Title
JP5679083B2 (ja) 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路
JP6274014B2 (ja) 窒化ホウ素凝集粒子、凝集bn粒子含有樹脂組成物及び放熱シート
US10125289B2 (en) Composition for interlayer filler of layered semiconductor device, layered semiconductor device, and process for producing layered semiconductor device
JP6331575B2 (ja) 積層型半導体装置の層間充填材用の組成物、積層型半導体装置、および積層型半導体装置の製造方法
JP6379579B2 (ja) 窒化ホウ素シート
JP2013145840A (ja) 三次元集積回路の層間充填層形成用塗布液、及び三次元集積回路の製造方法
JP5970859B2 (ja) 三次元集積回路用の層間充填材組成物、塗布液及び三次元集積回路の製造方法
JP5970875B2 (ja) 三次元集積回路用の層間充填材組成物、塗布液及び三次元集積回路の製造方法
JP2017101140A (ja) 樹脂組成物および該樹脂組成物からなる層を有する半導体装置
JP2014175462A (ja) 三次元集積回路の製造方法
JP2015189609A (ja) 窒化ホウ素シートの製造方法
JP2013145841A (ja) 三次元集積回路の層間充填層形成用塗布液、及び三次元集積回路の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2857154

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20147014474

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012854030

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012854030

Country of ref document: EP