CN106318264A - BN/Ag二维层状复合材料的导热胶的制备方法 - Google Patents

BN/Ag二维层状复合材料的导热胶的制备方法 Download PDF

Info

Publication number
CN106318264A
CN106318264A CN201610811161.8A CN201610811161A CN106318264A CN 106318264 A CN106318264 A CN 106318264A CN 201610811161 A CN201610811161 A CN 201610811161A CN 106318264 A CN106318264 A CN 106318264A
Authority
CN
China
Prior art keywords
boron nitride
dimensional layer
heat
nano
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610811161.8A
Other languages
English (en)
Other versions
CN106318264B (zh
Inventor
刘建影
付璇
鲍婕
孙双希
黄时荣
袁志超
路秀真
曹立强
孙鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Center for Advanced Packaging Co Ltd
University of Shanghai for Science and Technology
Original Assignee
National Center for Advanced Packaging Co Ltd
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Center for Advanced Packaging Co Ltd, University of Shanghai for Science and Technology filed Critical National Center for Advanced Packaging Co Ltd
Priority to CN201610811161.8A priority Critical patent/CN106318264B/zh
Publication of CN106318264A publication Critical patent/CN106318264A/zh
Application granted granted Critical
Publication of CN106318264B publication Critical patent/CN106318264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种BN/Ag二维层状复合材料的导热胶的制备方法,采用溶剂剥离方法制备二维层状氮化硼薄膜,通过合理的工艺将制备的纳米银离子负载到氮化硼薄膜上,最后将这种复合物填充到导热胶中。负载了银离子的氮化硼薄膜增强了导热胶的导热效率,所以可以把这种特制的导热胶应用于高热流密度的大功率电子器件中。

Description

BN/Ag二维层状复合材料的导热胶的制备方法
技术领域
本发明涉及微电子器件封装中导热胶的制备方法,应用于在高热流密度的大功率电子器件中满足散热技术领域。
背景技术
Morre定律指出,芯片集成电路的集成规模每18个月将翻一番,按照这个速度发展,IC的集成度将迅猛增加,此时有效的器件散热变得尤为的重要,因此广泛应用于芯片散热的导热胶导热性能的研发变得流行起来。而填料的特性又变得相当的关键,差的导热性能,大的密度和局限的可靠性都使导热胶填料的运用受到限制。一般而言,传统的导热胶都是使用高分子聚合物作为基体材料,并且往导热胶中填充大量的具有高导热系数的金属粉末(通常都是银颗粒),为的是能够在室温下获得较高的导热率。近几年,人们发现石墨烯具有很高的导热性,甚至当它与高分子材料混合时依然可以保持这个特性。这是因为石墨烯是一种二维层状材料,它具有很高的表面热扩散能力,当有热量作用于表面时,依靠其自身的热扩散能力,可以将热量很快的扩散出去。作为与石墨烯类似的二维层状材料,二维层状氮化硼的导热系数为石英的十倍,也具有较高的导热性能。
发明内容
本发明的目的在于克服现有技术中存在的不足,提供一种BN/Ag二维层状复合材料的导热胶的制备方法,制备出一种新型的导热胶,通过添加自主研发的负载了纳米银颗粒的二维层状氮化硼混合物提高导热胶的导热性能,可以应用于热流密度较高的集成电路芯片表面,解决大功率器件局部高热流热点的散热问题。本发明采用的技术方案是:
BN/Ag二维层状复合材料的导热胶的制备方法,包括下述步骤:
步骤S1,采用液相剥离法制备二维层状氮化硼薄膜;称取一定质量的氮化硼粉末倒入烧杯中,加入有机溶剂异丙醇配成质量体积比为1mg/ml~4mg/ml的溶液,氮化硼粉末与异丙醇的质量体积比为2mg/ml是最优的;超声9~11个小时,取出烧杯静置一到两天,取上清液得到的即为二维层状氮化硼薄膜分散液;在此步骤的工艺过程中,超声的时间一定要控制好,在保证温度15℃~40℃的条件下,10个小时的超声时间是最优的,能获得薄膜直径在300nm左右,厚度在0.6nm左右的二维层状氮化硼薄膜;
步骤S2,通过以硝酸银为基本的反应物得出纳米银颗粒的溶液;此步骤中,将硝酸银乙醇溶液与PVP乙醇溶液相混合得到纳米银颗粒的溶液,硝酸银/PVP摩尔比为0.5~2;其中,硝酸银乙醇溶液的摩尔浓度为0.1mol/L~0.2mol/L;PVP乙醇溶液的摩尔浓度为0.3mol/L。
步骤S3,将纳米银颗粒的溶液加入到二维层状氮化硼薄膜的分散液中,超声加热1.5~3小时得到均匀负载纳米银颗粒的二维层状氮化硼薄膜溶液;在反应后,通过离心、清洗、干燥得到负载纳米银颗粒二维层状氮化硼薄膜。
步骤S4,最后将负载纳米银颗粒二维层状氮化硼薄膜与标准导热胶离心混合得到胶体。
本发明的优点在于:
1)本发明以负载了纳米银颗粒的氮化硼薄膜作为导热胶的填充物,当填充物在导热胶中的百分比达到2.7%时,导热胶的导热效率提高了20%;当百分比例达到7.7%时,导热效率提高了52%;从传热学方面考虑,当填充物的导热率比基底物质大时,其整个混合物的导热率都会增加,氮化硼薄膜的导热率是石英的十倍,当负载了纳米银颗粒后,其导热率还会增加,而且由于纳米银颗粒在薄膜上分布均匀,所以当热量通过一个纳米银颗粒传给氮化硼薄膜时,薄膜会将热量迅速传送到其它的纳米银颗粒,从而使整个二维材料传热效率更高、更快;
2)随着填充物量不断的增大,导热胶会受到粘度方面的影响,由于本发明中以氮化硼为基本物质,氮化硼自身优越的润滑性能大大的降低了导热胶的粘度,从而使相同量的导热胶中可以填充更大量的负银氮化硼薄膜。
附图说明
图1为本发明的导热胶的导热率与BN/Ag填充量关系图。
具体实施方式
下面结合具体附图和实施例对本发明作进一步说明。
BN/Ag二维层状复合材料的导热胶,其中的填充物通过液相剥离的方法从氮化硼粉末中剥离出二维层状的氮化硼薄膜,然后通过以硝酸银为基本的反应物得出纳米银颗粒的溶液,最后通过超声手段将其纳米银颗粒负载到二维层状氮化硼薄膜上形成特殊的金属氮化硼薄膜混合物;将负载纳米银颗粒二维层状氮化硼薄膜与标准导热胶离心混合得到胶体。
该导热胶详细的制备方法包括如下步骤:
实施例一,
步骤S1,采用液相剥离法制备二维层状氮化硼薄膜;
称取400mg氮化硼粉末倒入烧杯中,加入200ml有机溶剂异丙醇配成溶液;在温度20℃的条件下,超声10个小时,取出烧杯静置一到两天,取上清液得到的即为二维层状氮化硼薄膜分散液;
步骤S2,将0.15mol/L的硝酸银乙醇溶液100ml与0.3mol/L的PVP乙醇溶液100ml相混合得到深红色稳定液体,即纳米银颗粒的溶液;
在制备银纳米颗粒时,保护剂和硝酸银的浓度、反应时间对银颗粒的尺寸与形态都有显著的影响。经过多次试验,优化参数,成功制备出颗粒均匀的纳米银颗粒,粒径在10nm左右。根据实验结果和表征手段判断出纳米银颗粒能够负载于氮化硼薄膜上是由于纳米银与B(硼)及N(氮)的键合作用。
步骤S3:将纳米银颗粒的溶液加入到二维层状氮化硼薄膜的分散液中,超声加热2小时得到均匀负载纳米银颗粒的二维层状氮化硼薄膜溶液;在反应后,通过离心、清洗、干燥得到负载纳米银颗粒二维层状氮化硼薄膜。负载纳米银颗粒二维层状氮化硼薄膜直径在300nm左右,厚度在0.6nm左右,肉眼看是一种稳定的固体粉末;
步骤S4,将负载纳米银颗粒二维层状氮化硼薄膜与其它环氧聚合物一起离心混合得导热胶,低温冷藏。测试时100℃固化并切割成标准固体。
实施例二,
步骤S1,采用液相剥离法制备二维层状氮化硼薄膜;
称取200mg氮化硼粉末倒入烧杯中,加入200ml有机溶剂异丙醇配成溶液;在温度15℃的条件下,超声11个小时,取出烧杯静置一到两天,取上清液得到的即为二维层状氮化硼薄膜分散液;
步骤S2,将0.1mol/L的硝酸银乙醇溶液150ml与0.3mol/L的PVP乙醇溶液100ml相混合得到深红色稳定液体,即纳米银颗粒的溶液;
步骤S3:将纳米银颗粒的溶液加入到二维层状氮化硼薄膜的分散液中,超声加热3小时得到均匀负载纳米银颗粒的二维层状氮化硼薄膜溶液;在反应后,通过离心、清洗、干燥得到负载纳米银颗粒二维层状氮化硼薄膜。
步骤S4,将负载纳米银颗粒二维层状氮化硼薄膜与其它环氧聚合物一起离心混合得导热胶,低温冷藏。测试时100℃固化并切割成标准固体。
实施例三,
步骤S1,采用液相剥离法制备二维层状氮化硼薄膜;
称取800mg氮化硼粉末倒入烧杯中,加入200ml有机溶剂异丙醇配成溶液;在温度40℃的条件下,超声9个小时,取出烧杯静置一到两天,取上清液得到的即为二维层状氮化硼薄膜分散液;
步骤S2,将0.2mol/L的硝酸银乙醇溶液300ml与0.3mol/L的PVP乙醇溶液100ml相混合得到深红色稳定液体,即纳米银颗粒的溶液;
步骤S3:将纳米银颗粒的溶液加入到二维层状氮化硼薄膜的分散液中,超声加热1.5小时得到均匀负载纳米银颗粒的二维层状氮化硼薄膜溶液;在反应后,通过离心、清洗、干燥得到负载纳米银颗粒二维层状氮化硼薄膜。
步骤S4,将负载纳米银颗粒二维层状氮化硼薄膜与其它环氧聚合物一起离心混合得导热胶,低温冷藏。测试时100℃固化并切割成标准固体。

Claims (6)

1.一种BN/Ag二维层状复合材料的导热胶的制备方法,其特征在于,包括下述步骤:
步骤S1,采用液相剥离法制备二维层状氮化硼薄膜;
步骤S2,通过以硝酸银为基本的反应物得出纳米银颗粒的溶液;
步骤S3,将纳米银颗粒的溶液加入到二维层状氮化硼薄膜的分散液中,通过超声手段将纳米银颗粒负载到二维层状氮化硼薄膜上形成特殊的金属氮化硼薄膜混合物;
步骤S4,最后将负载纳米银颗粒二维层状氮化硼薄膜与标准导热胶离心混合得到胶体。
2.如权利要求1所述的BN/Ag二维层状复合材料的导热胶的制备方法,其特征在于,
步骤S1具体包括:称取一定质量的氮化硼粉末倒入烧杯中,加入有机溶剂异丙醇配成质量体积比为1mg/ml~4mg/ml的溶液;在保证温度15℃~40℃的条件下,超声9~11个小时,取出烧杯静置一到两天,取上清液得到的即为二维层状氮化硼薄膜分散液。
3.如权利要求2所述的BN/Ag二维层状复合材料的导热胶的制备方法,其特征在于,
步骤S1中,氮化硼粉末和异丙醇的质量体积比为2mg/ml。
4.如权利要求2所述的BN/Ag二维层状复合材料的导热胶的制备方法,其特征在于,
步骤S1中,超声时间为10小时。
5.如权利要求1所述的BN/Ag二维层状复合材料的导热胶的制备方法,其特征在于,
步骤S2具体包括:将硝酸银乙醇溶液与PVP乙醇溶液相混合得到纳米银颗粒的溶液,硝酸银/PVP摩尔比为0.5~2;
其中,硝酸银乙醇溶液的摩尔浓度为0.1mol/L~0.2mol/L;PVP乙醇溶液的摩尔浓度为0.3mol/L。
6.如权利要求1所述的BN/Ag二维层状复合材料的导热胶的制备方法,其特征在于,
步骤S3具体包括:将纳米银颗粒的溶液加入到二维层状氮化硼薄膜的分散液中,超声加热1.5~3小时得到均匀负载纳米银颗粒的二维层状氮化硼薄膜溶液;在反应后,通过离心、清洗、干燥得到负载纳米银颗粒二维层状氮化硼薄膜。
CN201610811161.8A 2016-09-08 2016-09-08 BN/Ag二维层状复合材料的导热胶的制备方法 Active CN106318264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610811161.8A CN106318264B (zh) 2016-09-08 2016-09-08 BN/Ag二维层状复合材料的导热胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610811161.8A CN106318264B (zh) 2016-09-08 2016-09-08 BN/Ag二维层状复合材料的导热胶的制备方法

Publications (2)

Publication Number Publication Date
CN106318264A true CN106318264A (zh) 2017-01-11
CN106318264B CN106318264B (zh) 2018-11-23

Family

ID=57786655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610811161.8A Active CN106318264B (zh) 2016-09-08 2016-09-08 BN/Ag二维层状复合材料的导热胶的制备方法

Country Status (1)

Country Link
CN (1) CN106318264B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880297A (zh) * 2019-03-06 2019-06-14 吉林大学 一种导热绝缘环氧树脂复合材料及其制备方法
CN113054129A (zh) * 2019-12-28 2021-06-29 Tcl集团股份有限公司 复合材料及其制备方法、导电电极和发光二极管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103111245A (zh) * 2013-03-20 2013-05-22 福州大学 一种负载纳米银粒子的多层石墨相氮化硼胶体的制备方法
WO2013081061A1 (ja) * 2011-11-29 2013-06-06 三菱化学株式会社 窒化ホウ素凝集粒子、該粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路
WO2016122006A1 (en) * 2015-01-26 2016-08-04 Duksan Hi-Metal Co., Ltd. Core-shell nanowire, method for synthesizing the core-shell nanowire, and transparent electrode and organic light emitting diode including the core-shell nanowire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081061A1 (ja) * 2011-11-29 2013-06-06 三菱化学株式会社 窒化ホウ素凝集粒子、該粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路
CN103111245A (zh) * 2013-03-20 2013-05-22 福州大学 一种负载纳米银粒子的多层石墨相氮化硼胶体的制备方法
WO2016122006A1 (en) * 2015-01-26 2016-08-04 Duksan Hi-Metal Co., Ltd. Core-shell nanowire, method for synthesizing the core-shell nanowire, and transparent electrode and organic light emitting diode including the core-shell nanowire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880297A (zh) * 2019-03-06 2019-06-14 吉林大学 一种导热绝缘环氧树脂复合材料及其制备方法
CN113054129A (zh) * 2019-12-28 2021-06-29 Tcl集团股份有限公司 复合材料及其制备方法、导电电极和发光二极管

Also Published As

Publication number Publication date
CN106318264B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN102290117B (zh) 一种低温烧结纳米银浆及其制备方法
Chu et al. Smart Passivation Materials with a Liquid Metal Microcapsule as Self‐Healing Conductors for Sustainable and Flexible Perovskite Solar Cells
Bark et al. Deformable high loading liquid metal nanoparticles composites for thermal energy management
TWI686249B (zh) 片材及複合片材
Qiao et al. Research on electrical conductive adhesives filled with mixed filler
US7253523B2 (en) Reworkable thermal interface material
JP5899303B2 (ja) 高輝度led用高性能ダイ取付接着剤(daa)ナノ材料
CN105860939B (zh) 高导热石墨烯薄膜的制备方法及基于该薄膜的散热方法
CN109205594B (zh) 一种石墨烯导电微球的制备方法及其应用
CN101475787B (zh) 一种各向同性高性能导热胶粘剂及其制备方法
US20130127069A1 (en) Matrices for rapid alignment of graphitic structures for stacked chip cooling applications
CN104668551A (zh) 一种用作热界面材料的双峰分布纳米银膏及其制备方法
WO2017111945A1 (en) Adhesive polymer thermal interface material with sintered fillers for thermal conductivity in micro-electronic packaging
JP2013206765A (ja) ダイボンド用導電性ペースト及び該導電性ペーストによるダイボンド方法
JP6467689B2 (ja) 中空構造電子部品
CN109897611A (zh) 高热容液态金属导热材料及其制备方法、相变复合材料
CN106318264A (zh) BN/Ag二维层状复合材料的导热胶的制备方法
CN109979639A (zh) 一种纳米芯片封装用混合型导电银浆
CN113337125A (zh) 一种聚二甲基硅氧烷基液态金属桥连球形氮化硼导热复合材料及其制备方法与应用
Goh et al. Synthesis and cure kinetics of isotropic conductive adhesives comprising sub-micrometer sized nickel particles
CN105086659A (zh) 高导热纳米碳铜箔的制备方法
CN108053916B (zh) 一种无压烧结导电银浆及其制备方法
CN109659281A (zh) 一种高导热电子封装复合材料及其制备方法
CN103819591B (zh) 铜纳米线/聚丙烯酸酯复合材料及其制备方法
US9406651B2 (en) Chip stack with oleic acid-aligned nanotubes in thermal interface material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant