WO2012126338A1 - 一种锂离子电池硅碳复合负极材料及其制备方法 - Google Patents

一种锂离子电池硅碳复合负极材料及其制备方法 Download PDF

Info

Publication number
WO2012126338A1
WO2012126338A1 PCT/CN2012/072491 CN2012072491W WO2012126338A1 WO 2012126338 A1 WO2012126338 A1 WO 2012126338A1 CN 2012072491 W CN2012072491 W CN 2012072491W WO 2012126338 A1 WO2012126338 A1 WO 2012126338A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
ion battery
lithium
hours
gas
Prior art date
Application number
PCT/CN2012/072491
Other languages
English (en)
French (fr)
Inventor
杨军
高鹏飞
贾海平
王久林
努丽燕娜
Original Assignee
上海交通大学
博世(中国)投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学, 博世(中国)投资有限公司 filed Critical 上海交通大学
Priority to JP2014500238A priority Critical patent/JP5992989B2/ja
Priority to US14/005,791 priority patent/US9663860B2/en
Priority to DE112012001289.5T priority patent/DE112012001289B4/de
Publication of WO2012126338A1 publication Critical patent/WO2012126338A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery electrode material and a preparation method thereof, in particular to a lithium ion battery silicon carbon composite anode material and a preparation method thereof.
  • the carbon material has a small volume effect and high electrical conductivity, and the combination of silicon and carbon can effectively buffer the volume effect of silicon, reduce electrochemical polarization, and improve the stability of charge and discharge cycles.
  • Chinese patent CN200510030785.8 discloses a silicon/carbon/graphite composite anode material for lithium ion batteries, which is prepared by concentrated sulfuric acid carbonization. The material consists of elemental silicon, graphite particles and amorphous carbon. It does not have a porous structure. Its first lithium removal capacity is about 1000 mAh/g, but after 10 charge and discharge cycles, the capacity is reduced by about 20%. it is good.
  • a silicon material with a porous structure is designed, and the internal pores reserve space for volume expansion of silicon, which can reduce the macroscopic volume change of the material during lithium storage, relieve mechanical stress, and thereby improve the electrode. Structural stability.
  • Chinese patent ZL200610028893.6 discloses a silicon-copper carbon composite material having a nanoporous structure prepared by high energy ball milling, having a pore diameter of 2 to 50 nm, a copper content of about 40 wt.%, and a carbon content of about 30 wt%. The material exhibits good charge and discharge cycle stability, but has a low reversible capacity of only about 580 mAh/g.
  • International Patent PCT/KR2008/006420 discloses a silicon nanowire-carbon composite material having a mesoporous structure prepared by an alumina template method, wherein the silicon nanowire has a diameter of 3 to 20 nm and a mesoporous diameter of 2 to 20 nm. The carbon content is 5 to 10 wt.%. The material has a charge and discharge capacity of 2000 mAh/g at 1C rate, and the cycle stability is good, but the process is complicated and it is difficult to achieve industrial production.
  • Angewandte Chemie International Edition Journal No. 52, 2008, pp. 10151-10154 reports a silicon-based material having a three-dimensional macroporous structure.
  • silicon tetrachloride was reduced with sodium naphthalene, and butyl lithium was introduced to prepare a butyl-encapsulated silica gel.
  • silica particles were added as a template, followed by heat treatment and carbonization, and finally, hydrofluoric acid was used to obtain macropores.
  • the macroporous silicon is a single crystal structure having an average particle diameter of 30 ⁇ or more and a pore diameter of 200 nm.
  • the material has a reversible capacity of 2820 mAh/g at 0.2 C rate and good cycle performance.
  • its synthesis process is cumbersome, and it uses more corrosive and high-risk chemical reagents. Its waste will have an impact on the environment, and the preparation cost is high, which is not conducive to industrial large-scale application.
  • a large-pore silicon-silver composite is reported in Advanced Materials magazine, Vol. 22, pp. 1 ⁇ 4, 2010.
  • the elemental silicon with three-dimensional macroporous structure was prepared by magnesium thermal reduction method, and silver nanoparticles were deposited in the macropores by silver mirror reaction, and the silver content was 8 wt.%.
  • the macroporous silicon is a single crystal structure having a particle size of 1 to 5 ⁇ and a pore diameter of about 200 nm. Its first lithium removal capacity is 2917 mAh/ g , and it remains above 2000 mAh/g after 100 cycles. However, the use of silver will greatly increase the production cost of materials, which is not conducive to its industrial application. Summary of the invention
  • the object of the present invention is to provide a lithium-ion battery silicon-carbon composite anode material and a preparation method thereof.
  • the silicon carbon composite negative electrode material provided by the present invention has the characteristics of high capacity, cycle stability, and excellent rate performance.
  • the preparation method of the silicon carbon composite anode material provided by the invention is simple in process, low in cost, and suitable for industrial production.
  • the structural composition of a lithium-ion battery silicon-carbon composite anode material of the present invention is as follows - consisting of a porous silicon substrate and a carbon coating layer, wherein the composition of the carbon coating layer accounts for 2 to 70 wt.%, is amorphous carbon, and has a thickness of 2 ⁇ 30 nm; porous silicon matrix is polycrystalline structure, its particle size is 50 nm ⁇ 20 ⁇ , pore size is 2 ⁇ 150 nm, pore volume is 0.1 ⁇ 1.5 cm 3 /g, and specific surface area is 30 ⁇ 300 m 2 /g.
  • the lithium-ion battery silicon-carbon composite anode material of the invention not only has a porous structure, but also effectively buffers silicon
  • the volume effect that occurs during charging and discharging, and a uniform carbon coating on the surface of the particles improves cycle stability and high current charge and discharge characteristics while maintaining high capacity.
  • the composition of the carbon coating layer is 2 to 70 wt.%, and if it is less than 2 wt.%, the content is too low, which is insufficient to enhance the conductivity and stabilize the structure, and if it is more than 70 wt.%, the content is excessive. High, due to the low capacity of the carbon coating itself, the specific capacity of the entire composite anode material is greatly reduced. In addition, the present invention does not contain precious metals and can greatly reduce the cost.
  • the preparation method of the lithium-ion battery silicon-carbon composite anode material of the present invention is as follows, and the following are expressed by weight:
  • the shielding gas used in the present invention is a mixed gas of argon gas, chlorine gas, helium gas, argon gas and hydrogen gas or a mixed gas of chlorine gas and hydrogen gas, and the volume content of hydrogen gas in the mixed gas is 2 to 20%.
  • the gaseous carbon source used in the present invention is acetylene, methane, ethane, ethylene, propionium or carbon monoxide.
  • the liquid carbon source used in the present invention is benzene, toluene, xylene, ethanol, n-hexane or cyclohexane.
  • the solid carbon source used in the present invention is polyvinyl chloride, polyvinylidene fluoride, polyacrylonitrile, polyethylene glycol, polystyrene, furfural resin, epoxy resin, coal tar pitch, petroleum pitch, sucrose or Glucose, wherein the molecular weight of polychloroacetic acid is 50,000 ⁇ 120,000, the molecular weight of poly(vinylidene fluoride) is 250,000 ⁇ 1000000, the molecular weight of polyacrylonitrile is 30,000 ⁇ 20000, the molecular weight of polyacetal is 20,000 ⁇ 300,000, polyphenylene The molecular weight of cerium is between 50,000 and 200,000, and the molecular weight of furfural resin is between 500 and 10,000. The amount is between 300 and 8000.
  • the solvent used in the present invention is water, ethanol, acetamidine, acetone, tetrahydrofuran, benzene, toluene, xylene, dimethylformamide or N-methylpyrrolidone.
  • the temperature of the porous silicon substrate is 600 to 900 ° C. If the temperature is lower than 600 ° C, the reduction reaction of mesoporous silica is insufficient. If the temperature is higher than 900 V, the obtained product grains are obtained. is too big.
  • the temperature of carbon coating is 600 ⁇ 1100 °C. If the temperature is lower than 600 °C, the carbonization is incomplete or the conductivity of carbon is not high. If the temperature is higher than 1100 'C, SiC impurities are formed.
  • the invention relates to a method for preparing a silicon-carbon composite anode material for a lithium ion battery.
  • a method for preparing a silicon-carbon composite anode material for a lithium ion battery For the preparation method of mesoporous silica, see Science Journal, Vol. 279, No. 5350, pp. 548-552, et al., etc.: 1 to 8 parts of ethylene oxide.
  • /propylene oxide block copolymer is dissolved in 10 ⁇ 50 parts of water, 0 ⁇ 9 parts of 1-butanol and 3 ⁇ 6 parts of 2 mol/L hydrochloric acid, stir well and then add 6 ⁇ 12 parts of positive silicon Ethyl acetate, and then stirred at 10 ⁇ 50 °C for 12 ⁇ 36 hours; then transferred to a hydrothermal reaction kettle, kept at 80 ⁇ 120 °C for 12 ⁇ 36 hours, cooled and centrifuged at 3000 ⁇ 10000 r/min, 80 Dry at ⁇ 120 ° C, and then calcined at 500 ° 800 ° C for 1 to 6 hours in an air atmosphere to obtain mesoporous silica.
  • the silicon-carbon composite anode material of the lithium ion battery comprises a porous silicon substrate and a carbon coating layer, and the porous silicon matrix has a uniformly distributed porous structure, which not only effectively buffers the volume effect of the silicon in the process of inserting and deintercalating lithium, but also has Conducive to the penetration of electrolyte and the transport of lithium ions, the diffusion distance of lithium ions in silicon is reduced, and the large current charge and discharge of silicon-based anodes is realized.
  • the carbon coating layer also functions to enhance conductivity and maintain material structure stability, and the lithium ion battery silicon-carbon composite anode material of the present invention has the advantages of high reversible capacity, good cycle performance, and excellent rate performance.
  • the mesoporous silica is first reduced by magnesium, the porous silicon substrate is obtained by pickling, and a uniform carbon package is coated on the surface of the porous silicon substrate.
  • the coating is used to improve conductivity without the use of precious metals.
  • the method is simple in process and low in cost, and is suitable for large-scale industrial production.
  • a lithium ion battery silicon carbon composite anode material of the present invention is assembled into a lithium ion battery by using a lithium metal sheet as a counter electrode.
  • the lithium ion battery contains an electrolyte composed of a lithium salt and a solvent, and the lithium salt thereof includes an inorganic salt such as lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ) or lithium perchlorate (LiC10 4 ), and double ethylene.
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroborate
  • LiC10 4 lithium perchlorate
  • An organic salt such as lithium borate (LiBOB) or lithium bis(trifluoromethanesulfonate) (LiTFSI), the solvent of which includes acetonitrile carbonate (EC), propyl acrylate (PC), dimethyl carbonate At least one of (DMC) and diethyl carbonate (DEC) has a lithium salt concentration of less than 2 mol/L.
  • LiBOB lithium borate
  • LiTFSI lithium bis(trifluoromethanesulfonate)
  • EC acetonitrile carbonate
  • PC propyl acrylate
  • DMC diethyl carbonate
  • DEC diethyl carbonate
  • the lithium-ion battery silicon-carbon composite anode material of the present invention exhibits reversible capacities of 1556, 1290, 877 and 598 mAh/g, respectively, wherein 0.2C corresponds to current density. It is 300 mA/g. Even with 15C charge and discharge, it showed a capacity of 474 mAh/g.
  • Fig. 1 is a scanning electron micrograph (a) and a transmission electron micrograph ( ) of a porous silicon substrate obtained in Example 1.
  • Fig. 2 is a graph showing the pore size distribution of the porous silicon substrate obtained in Example 1.
  • Fig. 4 is a graph showing the charge and discharge curves of the lithium-ion battery assembled in the lithium ion battery of the lithium ion battery obtained in the first, second, and tenth cycles.
  • Fig. 5 is a graph showing the capacity-cycle number of the first 40 cycles of the lithium ion battery assembled by the lithium ion battery silicon carbon composite anode material obtained in Example 1.
  • Fig. 6 is a graph showing the capacity-cycle number of lithium ion batteries assembled by a lithium ion battery silicon-carbon composite anode material obtained in Example 1 at different magnifications.
  • Figure ⁇ is a transmission electron micrograph of a lithium-ion battery silicon-carbon composite negative electrode material obtained in Example 2.
  • Fig. 8 is a scanning electron micrograph of the porous silicon substrate obtained in Example 3.
  • Fig. 9 is a capacity-cycle number curve of the first 40 cycles of a lithium ion battery assembled with a silicon carbon composite material having no porous structure obtained in Comparative Example 1.
  • Fig. 10 is a capacity-cycle number curve of the first 40 cycles of a lithium ion battery assembled with a porous silicon substrate having no carbon coating layer obtained in Comparative Example 2. detailed description
  • the assembly and test method of the lithium ion battery is as follows - the lithium ion battery silicon carbon composite anode material of the invention and 20 wt.% binder (the styrene butadiene rubber-carboxymethyl cellulose sodium having a solid content of 2 wt%) Emulsion or N-polyvinylidene fluoride at a concentration of 0.02 g/ml
  • the methylpyrrolidone solution was mixed with 20 ⁇ .% of a conductive agent (SuperP conductive carbon black), uniformly stirred, coated on a copper foil, and placed in an oven at 601; to 80 ° C for drying.
  • a punch having a diameter of 12 to 16 mm was punched into a pole piece, placed in a vacuum oven at 601; at 120 ° C for 8 to 12 hours, and then transferred to an argon-filled glove box.
  • the lithium metal plate is used as the counter electrode
  • the ENTEK PE porous film is used as the separator
  • the mixed solution of ethylene carbonate of 1 moH 1 lithium hexafluorophosphate and dimethyl carbonate (1:1 by volume) is used as the electrolyte to assemble the CR2016 button battery.
  • the LAND battery test system (provided by Wuhan Jinnuo Electronics Co., Ltd.) performs constant current charge and discharge performance test.
  • the charge and discharge cutoff voltage is 0.01 ⁇ 1.2 V with respect to Li/Li+, and the charge and discharge rate is 0.05C ⁇ 15C, of which 0.2C corresponds.
  • the current density is 300 mA/g.
  • mesoporous silica Dissolve 4.0 g of ethylene oxide/propylene oxide block copolymer (trade name Pluronic P123) in a mixed solution of 30.0 g of water and 120.0 g of hydrochloric acid (2 mol/L), and mix well. Add 8.4 g of tetraethyl orthosilicate (TEOS), stir at 35 ° C for 24 hours, then transfer to a hydrothermal reaction kettle, incubate at 100 ° C for 24 hours, cool and centrifuge at 4000 r / min, 95 ° C After drying, it was calcined at 550 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
  • TEOS tetraethyl orthosilicate
  • the porous silicon substrate is placed in a high-temperature furnace, heated to 900 ° C under argon gas protection, and then acetylene is loaded with argon (the volume ratio of argon to acetylene is 5:1, and the total flow rate is 300 ml/min). ), after 4 hours of heat preservation, a carbon coating layer is formed on the surface of the porous silicon substrate after acetylene cracking to obtain a silicon-carbon composite anode material of a lithium ion battery.
  • FIG. 1 The morphology and structure of the porous silicon substrate are shown in Fig. 1.
  • the particles are approximately cylindrical, with a length of about 600 nm and a diameter of about 400 nm.
  • the pore size distribution curve is shown in Fig. 2.
  • the pore diameter is about 40 nm
  • the pore volume is 0.56 cm 3 /g
  • the specific surface area is 78.5 m 2 /g.
  • Figure 3 is a transmission electron micrograph of the interface between a porous silicon substrate and a carbon coating.
  • the (111) crystal plane of silicon can be seen with an interplanar spacing of 0.31 nm.
  • the carbon coating is amorphous carbon. It is about 7 nm.
  • the content of the carbon coating layer was 40.0 wt.%. It can be seen from the electron diffraction photograph in Fig. 3 that silicon has a polycrystalline structure, and the smallest diameter polycrystalline diffraction ring in the photo corresponds to silicon. (111) crystal face.
  • the prepared lithium-ion battery silicon-carbon composite anode material was assembled into a lithium ion battery for charge and discharge test.
  • the first three charge and discharge curves are shown in Fig. 4.
  • the capacity-cycle number curve of the first 40 cycles is shown in Fig. 5.
  • the efficiency of the first charge and discharge bin is 72.0%, and the reversible capacity after 1 cycle at 0.2C is 1509 mAh/g, and the capacity retention rate is 90.1%.
  • the charge and discharge tests were carried out at 0.05C, 0.2C, 0.5C, 1C, 4C, 8C and 15C.
  • the reversible capacities were 1583mAh/g, 1556 mAh/g.1370 mAh/g, and 1290 mAh/g. 877 mAh/ g. 598 mAh/g and 474 mAh/g, as shown in Figure 6.
  • the electrochemical performance of the material is superior to that of the conventionally prepared silicon-carbon composite.
  • mesoporous silica Dissolve 3.( ⁇ ?111]:01 1 ⁇ ?123 in a mixed solution of 22.58 water, 3.0 g 1-butanol and 90.0 g hydrochloric acid (2 mol/L), stir well and then add 6.3 gTEOS, stir at 35 °C for 24 hours, then transfer to a hydrothermal reaction kettle, thermostat at 100 °C for 24 hours, cool, centrifuge at 4000r/min, dry at 100 °C, then at 600 ° in air atmosphere C was calcined for 2 hours to obtain mesoporous silica.
  • the porous silicon substrate was a polycrystalline structure having an average particle diameter of 2.4 ⁇ m, an average pore diameter of 35 nm, a pore volume of 0.61 cmVg, and a specific surface area of 73.3 m 2 /g.
  • Fig. 7 is a transmission electron micrograph of a silicon-carbon composite negative electrode material for a lithium ion battery. From Fig. ⁇ (a), it can be seen that the material has a porous structure, and Fig. 7 (b) shows a porous silicon substrate and a carbon coating. At the interface, the (111) crystal plane of silicon can be seen, the interplanar spacing is 0.31 nm, the carbon coating layer is amorphous carbon, and the thickness is about 5 nm. The content of the carbon coating layer was 25.6 wt%.
  • a lithium-ion battery silicon-carbon composite anode material was assembled into a lithium ion battery for charge and discharge test.
  • the first charge and discharge warehouse efficiency was 75.2%, and the reversible capacity after 40 cycles was 1325 mAh/ g . Capacity retention rate. 73.7%.
  • mesoporous silica ?123 was dissolved in a mixed solution of 30. (water, 4.0 g of 1-butanol and 120.0 g of hydrochloric acid (2 mol / L), stirred well, then added 8.4 g of TEOS, and then stirred at 35 ° C for 24 hours, then transferred to The hydrothermal reaction vessel was thermostated at 100 ° C for 24 hours, cooled, centrifuged at 4000 r/min, dried 100, and calcined at 600 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
  • the temperature is raised to 750 ° C, after 7 hours of heat preservation, it is naturally cooled, and then stirred in 30 ml hydrochloric acid (2 mol / L) for 12 hours, centrifuged 4 times at 4000 r / min, at 80 ° C vacuum drying for 12 hours to obtain a porous silicon substrate;
  • the porous silicon substrate is placed in a high-temperature furnace, heated to 900 ° C under argon gas protection, and then acetylene is loaded with argon (the volume ratio of argon to acetylene is 4:1, and the total flow rate is 250 ml / Min), kept for 3 hours, after acetylene cracking, a carbon coating layer is formed on the surface of the porous silicon substrate to obtain a lithium-ion battery silicon-carbon composite anode material.
  • the porous silicon substrate has a polycrystalline structure with an average particle diameter of 2.5 ⁇ , an average pore diameter of 32 nm, a pore volume of 0.64 cm 3 /g, and a specific surface area of 73.0 m 2 /g, and its morphology is shown in Fig. 8.
  • the content of the carbon coating layer in the silicon-carbon composite anode material of the lithium ion battery is 34.6 wt.%, which is amorphous carbon and has a thickness of about 6 nm.
  • a lithium-ion battery silicon-carbon composite anode material was assembled into a lithium-ion battery for charge and discharge test.
  • the efficiency of the first charge and discharge warehouse was 72.2%, and the reversible capacity after 40 cycles was 1570 mAh/ g .
  • the rate is 84.8%.
  • the porous silicon substrate has a polycrystalline structure with an average particle diameter of 700 nm, an average pore diameter of 23 nm, a pore volume of 0.42 cm 3 /g, and a specific surface area of 78.1 m 2 /g.
  • the content of the carbon coating layer in the silicon-carbon composite anode material of the lithium ion battery is 18.3 wt.%, which is amorphous carbon and has a thickness of about 4 nm.
  • the prepared lithium-ion battery silicon-carbon composite anode material was assembled into a lithium ion battery for charge and discharge test.
  • the efficiency of the first charge and discharge warehouse was 76.5 %, and the reversible capacity after 40 cycles was 1825 mAh / g .
  • the rate is 83.6 %.
  • mesoporous silica 3.5 g of Pluronic P123 was dissolved in a mixed solution of 26.3 g of water and 105.0 g of hydrochloric acid (2 mol/L), and after stirring, 7.4 g of TEOS was added, followed by stirring at 35 ° C for 24 hours. Then, the mixture was transferred to a hydrothermal reaction vessel, heated at 100 ° C for 24 hours, cooled, centrifuged at 5000 r/min, dried 80, and calcined at 600 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
  • the porous silicon substrate has a polycrystalline structure with an average particle diameter of 650 nm, an average pore diameter of 24 nm, a pore volume of 0.43 cm 3 /g, and a specific surface area of 77.8 m 2 /g.
  • the content of the carbon coating layer in the silicon-carbon composite anode material of the lithium ion battery is 31.4 wt.%, which is amorphous carbon and has a thickness of about 6 nm.
  • a lithium-ion battery silicon-carbon composite anode material was assembled into a lithium ion battery for charge and discharge test.
  • the first charge and discharge coulombic efficiency was 74.1%, and the first lithium insertion capacity was 1855 mAh/g.
  • the amount is 1374 mAh/g.
  • mesoporous silica 2. ( ⁇ ?123 was dissolved in a mixed solution of 15. (water, 2.0 g of 1-butanol and 60.0 g of hydrochloric acid (2 mol / L), stirred uniformly, then added 4.2 g of TEOS, and then stirred at 35 ° C for 24 hours, then transferred to The hydrothermal reaction vessel was thermostated at 100 ° C for 24 hours, cooled, centrifuged at 6000 r/min, dried 100, and calcined at 550 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
  • the porous silicon substrate has a polycrystalline structure with an average particle diameter of 2.5 ⁇ , an average pore diameter of 34 nm, a pore volume of 0.66 cm 3 /g, and a specific surface area of 72.8 m 2 /g.
  • the content of the carbon coating layer in the silicon-carbon composite anode material of the lithium ion battery is 20.9 wt.%, which is amorphous carbon and has a thickness of about 4 nm.
  • a lithium-ion battery silicon-carbon composite anode material was assembled into a lithium ion battery for charge and discharge test.
  • the first charge and discharge coulombic efficiency was 64.0%
  • the first lithium insertion capacity was 1242 mAh/g
  • the delithiation capacity was 795 mAh. /g.
  • mesoporous silica 3.0 8 ?123 was dissolved in a mixed solution of 22.5 8 water, 3.0 g 1-butanol and 135.0 g hydrochloric acid (2 mol / L), stirred well, then added 9.5 g TEOS, and then stirred at 35 ° C for 24 hours, then transferred to water heat
  • the reactor was thermostated at 100 ° C for 24 hours, cooled, centrifuged at 5000 r/min, dried 80, and calcined at 650 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
  • the porous silicon substrate has a polycrystalline structure with an average particle diameter of 2.6 ⁇ , an average pore diameter of 33 nm, a pore volume of 0.65 cm 3 /g, and a specific surface area of 72.9 m 2 /g.
  • the content of the carbon coating layer in the silicon-carbon composite anode material of the lithium ion battery is 29.3 wt.%, which is amorphous carbon and has a thickness of about 6 nm.
  • a lithium-ion battery silicon-carbon composite anode material was assembled into a lithium-ion battery for charge and discharge test.
  • the efficiency of the first charge and discharge warehouse was 67.2%, the first lithium insertion capacity was 1291 mAh/g, and the lithium removal capacity was 867. mAh/g.
  • mesoporous silica Dissolve 4.0 g of Pluronic P123 in a mixed solution of 30.0 g of water and 120.0 g of hydrochloric acid (2 mol/L), stir well, add 8.4 g of TEOS, and stir at 35 ° C for 24 hours. Then, the mixture was transferred to a hydrothermal reaction vessel, kept at a constant temperature of 100 ° C for 24 hours, cooled, centrifuged at 5000 r/min, dried 80, and calcined at 550 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
  • the porous silicon substrate has a polycrystalline structure with an average particle diameter of 600 nm, an average pore diameter of 24 nm, a pore volume of 0.44 cm 3 /g, and a specific surface area of 77.7 m 2 /g.
  • the content of the carbon coating layer in the silicon-carbon composite anode material of the lithium ion battery is 21.3 wt.%, which is amorphous carbon and has a thickness of about 4 nm.
  • a lithium-ion battery silicon-carbon composite anode material was assembled into a lithium ion battery for charge and discharge test. The first charge and discharge coulombic efficiency was 72.0%, the first lithium insertion capacity was 1263 mAh/g, and the delithiation capacity was 910 mAh. /g. Comparative example 1
  • the mixture of chlorine gas and hydrogen gas (hydrogen volume content 5%) was heated to 900 ° C, and kept for 2 hours to crack the polyvinyl chloride, and after cooling, a silicon-carbon composite material was obtained, and a non-porous structure was obtained.
  • the content of the carbon coating layer is 28.8 wt.%, which is amorphous carbon and has a thickness of about 6 nm.
  • a silicon-carbon composite material prepared was assembled into a lithium ion battery for charge and discharge test, and the capacity-cycle number curve of the first 40 cycles was as shown in FIG. Its first charge-discharge coulombic efficiency is 78.0%, the first reversible capacity is 1194 mAh/g, the reversible capacity after 40 cycles is 186 mAh/g, and the capacity retention rate is only 15.6 %. Comparative example 2
  • mesoporous silica 2. ( ⁇ ?123 was dissolved in a mixed solution of 15. (water, 2.0 g of 1-butanol and 60.0 g of hydrochloric acid (2 mol / L), stirred uniformly, then added 4.2 g of TEOS, and then stirred at 35 ° C for 24 hours, then transferred to The hydrothermal reaction vessel was thermostated at 100 ° C for 24 hours, cooled, centrifuged at 5000 r/min, dried at 90 V, and then calcined at 650 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
  • the porous silicon substrate has a polycrystalline structure with an average particle diameter of 2.5 ⁇ , an average pore diameter of 34 nm, a pore volume of 0.66 cm 3 /g, and a specific surface area of 72.8 m 2 /g. Carbon-free coating.
  • the prepared porous silicon substrate was assembled into a lithium ion battery for charge and discharge test, and the capacity-cycle number curve of the first 40 cycles was as shown in FIG. Its first charge and discharge coulombic efficiency is 81.1%, the first reversible capacity At 2837 mAh/g, the reversible capacity after 40 cycles was 1554 mAh/ g , and the capacity retention was 54.8%. It can be seen from Comparative Example 1 that a lithium ion battery silicon carbon composite material having a porous structure and a carbon coating layer obtained by the present invention has better cycle performance than a silicon carbon composite material having no porous structure, which is beneficial to uniform distribution.
  • the porous structure can effectively buffer the volume effect of silicon in the process of inserting and deintercalating lithium, and improve the stability of the electrode structure. It can be seen from Comparative Example 2 that a lithium ion battery silicon carbon composite material having a porous structure and a carbon coating layer obtained by the present invention has better cycle performance than a porous silicon material having no carbon coating layer, which is beneficial to The carbon coating acts to enhance conductivity and maintain the conductive network of the electrodes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

一种锂离子电池硅碳复合负极材料及其制备方法 技术领域
本发明涉及一种电池电极材料及其制备方法,特别是一种锂离子电池硅碳复 合负极材料及其制备方法。 背景技术
目前商业化的锂离子电池负极材料主要采用石墨,然而石墨的理论比容 量仅为 372 mAh/g, 无法满足新一代高容量锂离子电池的发展需求。 硅具有 最高的理论储锂容量 (4200 mAh/g)和较低的脱锂电压平台(〜0.4 V), 是最有 潜力取代石墨的新型锂离子电池负极材料之一。然而, 硅在充放电过程中表 现出巨大的体积变化, 易导致材料颗粒的粉化和电极内部导电网络的破坏, 限制了它的商业化应用。 此外, 硅的本征电导率很低, 仅有 6.7xl0—4 S cm— 不利于进行大电流充放电。 而碳类材料嵌脱锂的体积效应小, 电导率高, 将 硅和碳复合起来可以有效缓冲硅的体积效应, 减小电化学极化, 提高充放电 循环稳定性。 中国专利 CN200510030785.8 公开了一种锂离子电池硅 /碳 /石 墨复合负极材料, 通过浓硫酸炭化法制备。 该材料由单质硅、 石墨颗粒和无 定形碳组成, 不具备多孔结构, 其首次脱锂容量在 1000 mAh/g左右, 但经 过 10次充放电循环, 容量即衰减了 20%左右, 稳定性不好。
为了进一步缓冲硅的体积效应, 人们设计了具有多孔结构的硅材料, 其 内部孔隙为硅的体积膨胀预留了空间, 可减少储锂时材料的宏观体积变化, 缓解机械应力, 从而提高电极的结构稳定性。
中国专利 ZL200610028893.6公开了一种具有纳米多孔结构的硅铜碳复 合材料, 由高能球磨法制备, 孔径在 2〜50 nm, 铜含量约为 40 wt.%, 碳含 量约为 30 wt%。该材料表现出良好的充放电循环稳定性, 但可逆容量较低, 仅为 580 mAh/g左右。 国际专利 PCT/KR2008/006420公开了一种具有介孔结构的硅纳米线-碳 复合材料, 通过氧化铝模板法制备, 硅纳米线直径在 3〜20 nm, 介孔直径在 2〜20 nm, 碳含量为 5〜10 wt.%。 该材料在 1C 倍率下充放电容量达 2000 mAh/g, 循环稳定性较好, 但工艺复杂, 难以实现工业化生产。
Angewandte Chemie International Edition 杂志 2008 年第 52 期 10151-10154页报道了一种具有三维大孔结构的硅基材料。 首先用萘钠还原 四氯化硅, 并引入丁基锂制备出丁基封装的硅凝胶, 接着加入二氧化硅颗粒 作为模板, 然后进行热处理炭化, 最后用氢氟酸苛蚀, 得到大孔硅材料。 大 孔硅为单晶结构, 其颗粒平均粒径在 30 μΐΉ以上, 孔径为 200 nm。 该材料在 0.2C倍率的可逆容量为 2820 mAh/g, 循环性能好。 但其合成过程繁琐, 使 用较多强腐蚀性和高危险性化学试剂, 其废料会对环境造成影响, 制备成本 很高, 不利于工业化大规模应用。
Advanced Materials杂志 2010年第 22期 1〜4页报道了一种大孔硅银复 合材料。 先用镁热还原法制备出具有三维大孔结构的单质硅, 再通过银镜反 应在大孔内沉积银纳米颗粒, 银含量为 8 wt.%。 该大孔硅为单晶结构, 其颗 粒粒径在 1〜5 μΐΉ,孔径在 200 nm左右。其首次脱锂容量达 2917 mAh/g, 100 次循环后仍保持在 2000 mAh/g以上。 但是银的使用会大幅增加材料的生产 成本, 不利于其产业化应用。 发明内容
本发明的目的在于提供一种锂离子电池硅碳复合负极材料及其制备方法。本 发明提供的一种硅碳复合负极材料具有容量高、 循环稳定和倍率性能优异的特 点。本发明提供的一种硅碳复合负极材料的制备方法工艺简单, 成本低, 适合工 业化生产。
本发明一种锂离子电池硅碳复合负极材料的结构组成如下- 由多孔硅基体和碳包覆层组成, 其中碳包覆层的组成占 2〜70 wt.%, 为无定 形碳, 厚度在 2〜30 nm; 多孔硅基体为多晶结构, 其颗粒粒径在 50 nm〜20 μιη, 孔径在 2〜150 nm, 孔容在 0.1〜1.5 cm3/g, 比表面积在 30〜300 m2/g。
本发明一种锂离子电池硅碳复合负极材料不仅具有多孔结构,可有效缓冲硅 在充放电过程中发生的体积效应,而且在颗粒表面具有均匀的碳包覆层,在保持 高容量的同时提高其循环稳定性和大电流充放电特性。本发明中碳包覆层的组成 为 2〜70 wt.%, 若小于 2 wt.%则含量过低, 不足以起到增强导电性和稳定结构的 作用, 若大于 70 wt.%则含量过高, 由于碳包覆层本身容量很低, 会在很大程度 上降低整个复合负极材料的比容量。另外,本发明不含贵金属,可大幅降低成本。
本发明一种锂离子电池硅碳复合负极材料的制备方法如下,以下均以重量份 表示:
( 1 ) 制备多孔硅基体:
将 1〜3份的介孔二氧化硅和 2〜4份的镁粉置于高温炉中,在保护气体中升温 至 600〜900°C, 保温 2〜10小时后自然冷却, 再置于 40〜100份 1〜12 mol/L的盐 酸中搅拌 6〜18小时,经 3000〜10000 r/min离心 3〜5次,于 70〜120 °C真空干燥 6〜18 小时, 得到多孔硅基体;
( 2 ) 碳包覆- 将多孔硅基体置于高温炉中, 在保护气体中升温至 600〜誦。 C , 然后由保 护气体载入气态碳源或液态碳源, 保温 1〜12小时, 气态碳源或液态碳源裂解后 在多孔硅基体表面形成碳包覆层, 得到一种锂离子电池硅碳复合负极材料; 或将多孔硅基体和固态碳源分散在溶剂中, 经超声处理和搅拌使其分散均 匀, 然后蒸干溶剂, 转移到高温炉内, 在保护气体中升温至 600〜誦。 C , 保温 1〜12 小时, 固态碳源裂解后在多孔硅基体表面形成碳包覆层, 得到一种锂离子 电池硅碳复合负极材料。
本发明使用的保护气体为氩气、氯气、氦气、氩气与氢气的混合气体或氯气 与氢气的混合气体, 混合气体中氢气的体积含量在 2〜20%。
本发明使用的气态碳源为乙炔、 甲烷、 乙烷, 乙烯、 丙炜或一氧化碳。 本发明使用的液态碳源为苯、 甲苯、 二甲苯、 乙醇、 正己烷或环己烷。 本发明使用的固态碳源为聚氯乙炜、 聚偏氟乙晞、聚丙炜腈、 聚乙唏醇、聚 苯乙唏、 鼢醛树脂、 环氧树脂、 煤焦油沥青、 石油沥青、 蔗糖或葡萄糖, 其中聚 氯乙炜的分子量在 50000〜120000, 聚偏氟乙炜的分子量在 250000〜1000000, 聚 丙炜腈的分子量在 30000〜200000, 聚乙炜醇的分子量在 20000〜300000, 聚苯乙 炜的分子量在 50000〜200000,鼢醛树脂的分子量在 500〜10000,环氧树脂的分子 量在 300〜8000。
本发明使用的溶剂为水、 乙醇、 乙醎、 丙酮、 四氢呋喃、苯、 甲苯、 二甲苯、 二甲基甲酰胺或 N-甲基吡咯烷酮。
本发明中, 制备多孔硅基体的温度在 600〜900 °C, 若温度低于 600°C, 则介 孔二氧化硅的还原反应不充分, 若温度高于 900 V , 则得到的产物晶粒过大。 碳 包覆的温度在 600〜1100 °C, 若温度低于 600°C则碳化不完全或碳的导电率不高, 若温度高于 1100 'C则会形成 SiC杂质。
本发明一种锂离子电池硅碳复合负极材料的制备方法中介孔二氧化硅的制 备方法参见 Science杂志 1998年第 279卷第 5350期 548〜552页等文献: 将 1~8 份环氧乙烷 /环氧丙烷嵌段共聚物溶解在 10〜50份的水、 0〜9份的 1-丁醇与 3〜6 份 2 mol/L的盐酸中,搅拌均匀后加入 6〜12份的正硅酸乙酯, 再在 10〜50°C搅拌 12〜36小时; 然后转移至水热反应釜中, 在 80〜120°C恒温 12〜36小时, 冷却后 经 3000〜10000 r/min离心、 80〜120°C干燥,再在空气气氛中于 500^800 °C煅烧 1〜6 小时, 得到介孔二氧化硅。
本发明一种锂离子电池硅碳复合负极材料由多孔硅基体和碳包覆层组成,多 孔硅基体具有均匀分布的多孔结构,不仅有效缓冲了硅在嵌脱锂过程中的体积效 应,而且有利于电解液的湊透和锂离子的传输,减小了锂离子在硅中的扩散距离, 实现了硅基负极的大电流充放电。碳包覆层也起到增强导电性、维持材料结构稳 定的作用,使本发明一种锂离子电池硅碳复合负极材料具有可逆容量高、循环性 能好、倍率性能优异的优点。本发明一种锂离子电池硅碳复合负极材料的制备方 法中, 先用镁还原介孔二氧化硅, 经酸洗后得到多孔硅基体, 再在多孔硅基体表 面包覆一层均匀的碳包覆层以提高导电性, 无需使用贵金属。 该方法工艺简单、 成本低, 适合大规模工业化生产。
以金属锂片为对电极,将本发明一种锂离子电池硅碳复合负极材料组装成锂 离子电池。锂离子电池中含有以锂盐和溶剂组成的电解液, 其锂盐包括六氟磷酸 锂 (LiPF6)、 四氟硼酸锂 (LiBF4 ) 或高氯酸锂 (LiC104 ) 等无机类盐以及双乙 二酸硼酸锂 (LiBOB)、 二 (三氟甲基磺酸) 亚胺锂 (LiTFSI ) 等有机类盐, 其 溶剂包括碳酸乙炜酯 ( EC )、 碳酸丙炜酯 (PC)、 碳酸二甲酯 (DMC )和碳酸二 乙酯(DEC ) 中的至少一种, 电解液中锂盐浓度小于 2 mol/L。 在 0.2C倍率下进 行恒流充放电测试, 首次库仓效率为 72%, 40 次循环后的可逆容量仍在 1500 mAh/g以上, 容量保持率高达 90%。 在 0.2C、 1 C、 4C、 8C倍率下测试, 本发明 一种锂离子电池硅碳复合负极材料分别表现出 1556、 1290、 877和 598 mAh/g 的可逆容量, 其中 0.2C对应的电流密度为 300 mA/g。 即使采用 15C进行充放 电, 也表现出 474 mAh/g的容量。 附图说明
图 1为实施例 1得到的多孔硅基体的扫描电镜照片 (a)和透射电镜照片 ( )。 图 2为实施例 1得到的多孔硅基体的孔径分布曲线。
图 3为实施例 1得到的一种锂离子电池硅碳复合负极材料的透射电镜照片。 图 4为以实施例 1得到的一种锂离子电池硅碳复合负极材料组装的锂离子电 池第 1、 2、 10次循环的充放电曲线。
图 5为以实施例 1得到的一种锂离子电池硅碳复合负极材料组装的锂离子电 池前 40次循环的容量-循环次数曲线。
图 6为以实施例 1得到的一种锂离子电池硅碳复合负极材料组装的锂离子电 池在不同倍率下的容量-循环次数曲线。
图 Ί为实施例 2得到的一种锂离子电池硅碳复合负极材料的透射电镜照片。 图 8为实施例 3得到的多孔硅基体的扫描电镜照片。
图 9为以对比例 1得到的不具有多孔结构的一种硅碳复合材料组装的锂离子 电池前 40次循环的容量-循环次数曲线。
图 10为以对比例 2得到的不具有碳包覆层的多孔硅基体组装的锂离子电池 前 40次循环的容量-循环次数曲线。 具体实施方式
以下实施例进一步说明本发明, 但本发明不局限于以下实施例。 锂离子电池的组装与测试方法如下- 将本发明一种锂离子电池硅碳复合负极材料与 20 wt.%的粘结剂 (固含量为 2 wt %的丁苯橡胶-羧甲基纤维素钠乳液或浓度为 0.02 g/ml的聚偏氟乙唏的 N- 甲基吡咯烷酮溶液)和 20 ^.%的导电剂(SuperP导电碳黑)混合, 搅拌均匀后 涂覆在铜箔上, 放入烘箱中在 601;〜 80°C烘干。 再用直径 12〜16mm的冲头冲成 极片, 放入真空烘箱中在 601;〜 120°C下干燥 8〜12小时, 然后转移到充满氩气的 手套箱中。 以金属锂片为对电极, ENTEK PE多孔膜为隔膜, 1 moH 1 六氟磷 酸锂的碳酸乙炜酯与碳酸二甲酯 (体积比 1:1)混合溶液为电解液,组装成 CR2016 扣式电池, 在 LAND 电池测试系统 (武汉金诺电子有限公司提供) 上进行恒流 充放电性能测试, 充放电截止电压相对于 Li/Li+为 0.01〜1.2 V, 充放电倍率为 0.05C〜15C, 其中 0.2C对应的电流密度为 300mA/g。 实施例 1
介孔二氧化硅的制备: 将 4.0 g 环氧乙烷 /环氧丙烷嵌段共聚物 (商品名 PluronicP123) 溶解在 30.0 g水和 120.0 g盐酸 (2mol/L) 的混合溶液中, 搅拌 均匀后加入 8.4 g 正硅酸乙酯 (TEOS), 再在 35°C搅拌 24小时, 然后转移至水 热反应釜中, 在 100'C恒温 24小时, 冷却后经 4000 r/min离心, 95°C干燥, 再 在空气气氛中于 550°C煅烧 2小时, 得到介孔二氧化硅。
( 1 ) 将 0.3 g介孔二氧化硅和 0.3 g镁粉置于高温炉中,在氩气与氢气的混合气 体 (氢气体积含量 5%) 中升温至 650°C, 保温 7小时后自然冷却, 再置 于 25 ml盐酸 (2mol/L) 中搅拌 12小时, 经 4000 r/min离心 4次, 于 80 °C真空干燥 12小时, 得到多孔硅基体;
(2) 将多孔硅基体置于高温炉中, 在氩气保护下升温至 900°C, 然后由氩气载 入乙炔(氩气与乙炔的体积比为 5:1,总流量为 300ml/min),保温 4小时, 乙炔裂解后在多孔硅基体表面形成碳包覆层,得到一种锂离子电池硅碳复 合负极材料。
多孔硅基体的形貌和结构如图 1所示,其颗粒近似圆柱状,长度约为 600 nm, 直径约为 400nm, 呈多孔结构。 其孔径分布曲线如图 2所示, 孔径在 40nm左 右,孔容为 0.56cm3/g, 比表面积为 78.5m2/g。 图 3为多孔硅基体与碳包覆层的 界面的透射电子显微照片,从图中可以看到硅的(111)晶面,面间距为 0.31 nm, 碳包覆层为无定形碳, 厚度约为 7nm。 碳包覆层的含量为 40.0wt.%。 由图 3中 的电子衍射照片可知硅为多晶结构, 照片中直径最小的多晶衍射环对应着硅的 (111) 晶面。
将制得的一种锂离子电池硅碳复合负极材料组装成锂离子电池进行充放电 测试, 前 3次充放电曲线如图 4所示, 前 40次循环的容量 -循环次数曲线如图 5 所示。其首次充放电库仓效率为 72.0 %,在 0.2C倍率下进行 40次循环后的可逆 容量为 1509 mAh/g, 容量保持率 90.1 %。 在 0.05C、 0.2C、 0.5C、 1C、 4C、 8C 和 15C倍率下进行充放电测试,可逆容量分别为 1583mAh/g、 1556 mAh/g.1370 mAh/g 、 1290 mAh/g. 877 mAh/g. 598 mAh/g和 474 mAh/g, 如图 6所示。 该 材料的电化学性能优于传统技术制备的硅碳复合材料。 实施例 2
介孔二氧化硅的制备: 将 3.(^?111]:011^?123溶解在22.58水、 3.0 g 1-丁醇 和 90.0 g盐酸 (2mol/L) 的混合溶液中, 搅拌均匀后加入 6.3 gTEOS, 再在 35 °C搅拌 24小时, 然后转移至水热反应釜中, 在 100°C恒温 24小时, 冷却后经 4000r/min离心, 100°C干燥, 再在空气气氛中于 600°C煅烧 2小时, 得到介孔二 氧化硅。
(1) 将 0.4g介孔二氧化硅和 0.4g镁粉置于高温炉中, 在氩气中升温至 700°C, 保温 6小时自然冷却, 再置于30!111盐酸(211101 ) 中搅拌 12小时, 经过 4000r/min离心 4次, 于 80°C真空干燥 12小时, 得到多孔硅基体;
(2) 将多孔硅基体置于高温炉中,在氯气保护下升温至 800°C,然后由氯气载入 甲苯 (氯气流量为 800ml/min), 保温 2小时, 甲苯裂解后在多孔硅基体表 面形成碳包覆层, 得到一种锂离子电池硅碳复合负极材料。
多孔硅基体为多晶结构, 其颗粒平均粒径为 2.4μΐΏ, 平均孔径为 35nm, 孔 容为 0.61 cmVg, 比表面积为 73.3m2/g。 图 7为一种锂离子电池硅碳复合负极材 料的透射电子显微照片, 从图 Ί (a) 可以看到材料呈多孔结构, 图 7 (b) 显示 了多孔硅基体与碳包覆层的界面,可以看到硅的(111)晶面,面间距为 0.31 nm, 碳包覆层为无定形碳, 厚度约为 5nm。 碳包覆层的含量为 25.6 wt%。
将制得的一种锂离子电池硅碳复合负极材料组装成锂离子电池进行充放电 测试,其首次充放电库仓效率为 75.2%, 40次循环后的可逆容量为 1325mAh/g, 容量保持率 73.7%。 实施例 3
介孔二氧化硅的制备: 将
Figure imgf000010_0001
?123溶解在30.(^水、 4.0 g 1-丁醇 和 120.0 g盐酸(2 mol/L) 的混合溶液中, 搅拌均匀后加入 8.4 g TEOS, 再在 35 °C搅拌 24小时,然后转移至水热反应釜中,在 100'C恒温 24小时,冷却后经 4000 r/min离心, 100 干燥, 再在空气气氛中于 600°C煅烧 2小时, 得到介孔二氧化 硅。
(1) 将 0.4 g介孔二氧化硅和 0.4 g镁粉置于高温炉中,在氩气与氢气的混合气体
(氢气体积含量 5%)中升温至 750°C,保温 7小时后自然冷却,再置于 30 ml 盐酸(2 mol/L) 中搅拌 12小时, 经过 4000 r/min离心 4次, 于 80°C真空干 燥 12小时, 得到多孔硅基体;
(2) 将多孔硅基体置于高温炉中, 在氩气保护下升温至 900°C, 然后由氩气载入 乙炔(氩气与乙炔的体积比为 4: 1, 总流量为 250 ml/min), 保温 3小时, 乙 炔裂解后在多孔硅基体表面形成碳包覆层,得到一种锂离子电池硅碳复合负 极材料。
多孔硅基体为多晶结构, 其颗粒平均粒径为 2.5 μΐΏ, 平均孔径为 32 nm, 孔 容为 0.64 cm3/g, 比表面积为 73.0 m2/g, 其形貌如图 8所示。 一种锂离子电池硅 碳复合负极材料中碳包覆层的含量为 34.6 wt.%, 为无定形碳, 厚度约为 6 nm。
将制得的一种锂离子电池硅碳复合负极材料组装成锂离子电池进行充放电 测试,其首次充放电库仓效率为 72.2 %, 40次循环后的可逆容量为 1570 mAh/g, 容量保持率 84.8 %。 实施例 4
介孔二氧化硅的制备: 将 2.0 g Pluronic P123溶解在 15.0 g水和 60.0 g盐酸 (2 mol/L)的混合溶液中,搅拌均匀后加入 4.2 g TEOS,再在 35°C搅拌 24小时, 然后转移至水热反应釜中, 在 100'C恒温 24小时, 冷却后经 5000 r/min离心, 90 干燥, 再在空气气氛中于 650°C煅烧 2小时, 得到介孔二氧化硅。
(1) 将 0.35 g介孔二氧化硅和 0.35 g镁粉置于高温炉中,在氩气中升温至 700°C, 保温 6小时后自然冷却, 再置于 30 ml盐酸 (2 mol/L) 中搅拌 12小时, 经 s 过 5000 r/min离心 4次, 于 80°C真空干燥 12小时, 得到多孔硅基体;
(2) 将多孔硅基体置于高温炉中, 在氯气保护下升温至 770°C, 然后由氯气载入 甲苯(氯气流量为 1000 ml/mm), 保温 1小时, 甲苯裂解后在多孔硅基体表 面形成碳包覆层, 得到一种锂离子电池硅碳复合负极材料。
多孔硅基体为多晶结构, 其颗粒平均粒径为 700 nm, 平均孔径为 23 nm, 孔 容为 0.42 cm3/g, 比表面积为 78.1 m2/g。 一种锂离子电池硅碳复合负极材料中碳 包覆层的含量为 18.3 wt.%, 为无定形碳, 厚度约为 4 nm。
将制得的一种锂离子电池硅碳复合负极材料组装成锂离子电池进行充放电 测试,其首次充放电库仓效率为 76.5 %, 40次循环后的可逆容量为 1825 mAh/g, 容量保持率 83.6 %。 实施例 5
介孔二氧化硅的制备:将 3.5 g Pluronic P123溶解在 26.3 g水和 105.0 g盐酸 (2 mol/L)的混合溶液中,搅拌均匀后加入 7.4 g TEOS,再在 35°C搅拌 24小时, 然后转移至水热反应釜中, 在 100'C恒温 24小时, 冷却后经 5000 r/min离心, 80 干燥, 再在空气气氛中于 600°C煅烧 2小时, 得到介孔二氧化硅。
(1) 将 0.3 g介孔二氧化硅和 0.3 g镁粉置于高温炉中, 在氩气与氢气的混合气 体(氢气体积含量 10%) 中升温至 700°C, 保温 7小时后自然冷却, 再置于 25 ml盐酸 (2 mol/L) 中搅拌 12小时, 经过 5000 r/min离心 4次, 于 80°C 真空干燥 12小时, 得到多孔硅基体;
(2) 将 0.2 g多孔硅基体和 0.7 g聚氯乙炜分散在 15 ml四氢呋喃中,经超声处理 和搅拌使其分散均匀, 然后蒸干四氢呋喃, 转移到高温炉中在氩气保护下 升温至 900°C, 保温 2小时, 聚氯乙炜裂解后在多孔硅基体表面形成碳包覆 层, 得到一种锂离子电池硅碳复合负极材料。
多孔硅基体为多晶结构, 其颗粒平均粒径为 650 nm, 平均孔径为 24 nm, 孔 容为 0.43 cm3/g, 比表面积为 77.8 m2/g。 一种锂离子电池硅碳复合负极材料中碳 包覆层的含量为 31.4 wt.%, 为无定形碳, 厚度约为 6 nm。
将制得的一种锂离子电池硅碳复合负极材料组装成锂离子电池进行充放电 测试, 其首次充放电库仑效率为 74.1%, 首次嵌锂容量为 1855 mAh/g, 脱锂容 量为 1374 mAh/g。 实施例 6
介孔二氧化硅的制备: 将2.(^
Figure imgf000012_0001
?123溶解在 15.(^水、 2.0 g 1-丁醇 和 60.0 g盐酸 (2 mol/L) 的混合溶液中, 搅拌均匀后加入 4.2 g TEOS, 再在 35 °C搅拌 24小时,然后转移至水热反应釜中,在 100'C恒温 24小时,冷却后经 6000 r/min离心, 100 干燥, 再在空气气氛中于 550°C煅烧 2小时, 得到介孔二氧化 硅。
(1) 将 0.35 g介孔二氧化硅和 0.35 g镁粉置于高温炉中, 在氩气中升温至 650 V , 保温 7小时后自然冷却, 再置于 30 ml盐酸(2 mol/L)中搅拌 12小时, 经过 6000 r/min离心 4次, 于 80°C真空干燥 12小时, 得到多孔硅基体;
(2) 将 0.2 g多孔硅基体和 0.4 g聚丙唏腈分散在 10 ml二甲基甲酰胺中,经超声 处理和搅拌使其分散均匀, 然后蒸干二甲基甲酰胺, 转移到高温炉中在氯 气保护下升温至 900°C, 保温 2小时, 聚丙炜腈裂解后在多孔硅基体表面形 成碳包覆层, 得到一种锂离子电池硅碳复合负极材料。
多孔硅基体为多晶结构, 其颗粒平均粒径为 2.5 μΐΏ, 平均孔径为 34 nm, 孔 容为 0.66 cm3/g, 比表面积为 72.8 m2/g。 一种锂离子电池硅碳复合负极材料中碳 包覆层的含量为 20.9 wt.%, 为无定形碳, 厚度约为 4 nm。
将制得的一种锂离子电池硅碳复合负极材料组装成锂离子电池进行充放电 测试, 其首次充放电库仑效率为 64.0 %, 首次嵌锂容量为 1242 mAh/g, 脱锂容 量为 795 mAh/g。 实施例 Ί
介孔二氧化硅的制备: 将 3.0 8
Figure imgf000012_0002
?123溶解在22.5 8水、 3.0 g 1-丁醇 和 135.0 g盐酸(2 mol/L) 的混合溶液中, 搅拌均匀后加入 9.5 g TEOS, 再在 35 °C搅拌 24小时,然后转移至水热反应釜中,在 100'C恒温 24小时,冷却后经 5000 r/min离心, 80 干燥, 再在空气气氛中于 650°C煅烧 2小时, 得到介孔二氧化 硅。
(1) 将 0.45 g介孔二氧化硅和 0.45 g镁粉置于高温炉中, 在氩气中升温至 750 °C, 保温 6小时后自然冷却, 再置于 30 ml盐酸(2 mol/L)中搅拌 12小时, 经过 5000 r/min离心 4次, 于 80°C真空干燥 12小时, 得到多孔硅基体; (2) 将 0.3 g多孔硅基体和 0.95 g聚氯乙炜分散在 10 ml四氢呋喃中, 经超声处 理和搅拌使其分散均匀, 然后蒸干四氢呋喃, 转移到高温炉中在氩气保护 下升温至 900°C, 保温 4小时, 聚氯乙炜裂解后在多孔硅基体表面形成碳包 覆层, 得到一种锂离子电池硅碳复合负极材料。
多孔硅基体为多晶结构, 其颗粒平均粒径为 2.6 μΐΏ, 平均孔径为 33 nm, 孔 容为 0.65 cm3/g, 比表面积为 72.9 m2/g。 一种锂离子电池硅碳复合负极材料中碳 包覆层的含量为 29.3 wt.%, 为无定形碳, 厚度约为 6 nm。
将制得的一种锂离子电池硅碳复合负极材料组装成锂离子电池进行充放电 测试, 其首次充放电库仓效率为 67.2%, 首次嵌锂容量为 1291 mAh/g, 脱锂容 量为 867 mAh/g。 实施例 8
介孔二氧化硅的制备:将 4.0 g Pluronic P123溶解在 30.0 g水和 120.0 g盐酸 (2 mol/L)的混合溶液中,搅拌均匀后加入 8.4 g TEOS,再在 35°C搅拌 24小时, 然后转移至水热反应釜中, 在 100'C恒温 24小时, 冷却后经 5000 r/min离心, 80 干燥, 再在空气气氛中于 550°C煅烧 2小时, 得到介孔二氧化硅。
(1) 将 0.35 g介孔二氧化硅和 0.4 g镁粉置于高温炉中, 在氩气与氢气的混合气 体(氢气体积含量 10%) 中升温至 700°C, 保温 7小时后自然冷却, 再置于 30 ml盐酸 (2 mol/L) 中搅拌 12小时, 经过 5000 r/min离心 4次, 于 80°C 真空干燥 12小时, 得到多孔硅基体;
(2) 将 0.25 g多孔硅基体和 0.5 g聚丙炜腈分散在 15 ml二甲基甲酰胺中, 经超 声处理和搅拌使其分散均匀, 然后蒸干二甲基甲酰胺, 转移到高温炉中在 氯气保护下升温至 900°C, 保温 4小时, 聚丙炜腈裂解后在多孔硅基体表面 形成碳包覆层, 得到一种锂离子电池硅碳复合负极材料。
多孔硅基体为多晶结构, 其颗粒平均粒径为 600 nm, 平均孔径为 24 nm, 孔 容为 0.44 cm3/g, 比表面积为 77.7 m2/g。 一种锂离子电池硅碳复合负极材料中碳 包覆层的含量为 21.3 wt.%, 为无定形碳, 厚度约为 4 nm。 将制得的一种锂离子电池硅碳复合负极材料组装成锂离子电池进行充放电 测试, 其首次充放电库仑效率为 72.0 %, 首次嵌锂容量为 1263 mAh/g, 脱锂容 量为 910 mAh/g。 对比例 1
将 0.15 g纳米硅粉 (粒径 50〜150 nm)和 0.45 g聚氯乙炜分散在 10 ml四氢 呋喃中,经超声处理和搅拌使其分散均匀,然后蒸干四氢呋喃,转移到高温炉中, 在氯气与氢气的混合气体 (氢气体积含量 5%) 中升温至 900°C, 保温 2小时, 使聚氯乙唏发生裂解, 冷却后得到一种硅碳复合材料, 无孔结构。其中碳包覆层 的含量为 28.8 wt.%, 为无定形碳, 厚度约为 6 nm。
将制得的一种硅碳复合材料组装成锂离子电池进行充放电测试, 前 40次循 环的容量 -循环次数曲线如图 9所示。 其首次充放电库仑效率为 78.0 %, 首次可 逆容量为 1194 mAh/g, 40次循环后的可逆容量为 186 mAh/g, 容量保持率仅为 15.6 %。 对比例 2
介孔二氧化硅的制备: 将2.(^
Figure imgf000014_0001
?123溶解在 15.(^水、 2.0 g 1-丁醇 和 60.0 g盐酸 (2 mol/L) 的混合溶液中, 搅拌均匀后加入 4.2 g TEOS, 再在 35 °C搅拌 24小时,然后转移至水热反应釜中,在 100'C恒温 24小时,冷却后经 5000 r/min离心、 90 V干燥后, 再在空气气氛中于 650°C煅烧 2小时, 得到介孔二氧 化硅。
(1) 将 0.35 g介孔二氧化硅和 0.35 g镁粉置于高温炉中, 在氩气与氢气的混合 气体 (氢气体积含量 5%) 中升温至 700°C, 保温 6小时后自然冷却, 再置 于 30 ml盐酸(2 mol/L) 中搅拌 12小时, 经过 5000 r/min离心 4次, 于 80 °C真空干燥 12小时, 得到多孔硅基体。
多孔硅基体为多晶结构, 其颗粒平均粒径为 2.5 μΐΏ, 平均孔径为 34 nm, 孔 容为 0.66 cm3/g, 比表面积为 72.8 m2/g。 无碳包覆层。
将制得的多孔硅基体组装成锂离子电池进行充放电测试, 前 40次循环的容 量 -循环次数曲线如图 10所示。 其首次充放电库仑效率为 81.1 %, 首次可逆容量 为 2837 mAh/g, 40次循环后的可逆容量为 1554 mAh/g, 容量保持率为 54.8 %。 由对比例 1可知,本发明得到的具有多孔结构和碳包覆层的一种锂离子电池 硅碳复合材料, 其循环性能优于不具有多孔结构的硅碳复合材料, 这得益于均匀 分布的多孔结构可有效缓冲硅在嵌脱锂过程中的体积效应, 提高电极结构稳定 性。 由对比例 2可知,本发明得到的具有多孔结构和碳包覆层的一种锂离子电池 硅碳复合材料, 其循环性能优于不具有碳包覆层的的多孔硅材料, 这得益于碳包 覆层起到了增强导电性和维持电极导电网络的作用。

Claims

权利要求书
1. 一种锂离子电池硅碳复合负极材料, 其特征在于结构组成如下- 由多孔硅基体和碳包覆层组成, 其中碳包覆层的组成占 2〜70 wt.%, 为无定 形碳, 厚度在 2〜30 nm; 多孔硅基体为多晶结构, 其颗粒粒径在 50 nm〜20 μιη, 孔径在 2〜150 nm, 孔容在 0.1〜1.5 cm3/g, 比表面积在 30〜300 m2/g。
2. 如权利要求 1所述的一种锂离子电池硅碳复合负极材料的制备方法, 其 特征在于制备方法如下, 以下均以重量份表示-
( 1 ) 制备多孔硅基体:
将 1〜3份的介孔二氧化硅和 2〜4份的镁粉置于高温炉中,在保护气体中升温 至 600〜900°C, 保温 2〜10小时后自然冷却, 再置于 40〜100份 1〜12 mol/L的盐 酸中搅拌 6〜18小时,经 3000〜10000 r/min离心 3〜5次,于 70〜120 °C真空干燥 6〜18 小时, 得到多孔硅基体;
( 2 ) 碳包覆- 将多孔硅基体置于高温炉中, 在保护气体中升温至 600〜誦。 C , 然后由保 护气体载入气态碳源或液态碳源, 保温 1〜12小时, 气态碳源或液态碳源裂解后 在多孔硅基体表面形成碳包覆层, 得到一种锂离子电池硅碳复合负极材料; 或将多孔硅基体和固态碳源分散在溶剂中, 经超声处理和搅拌使其分散均 匀, 然后蒸干溶剂, 转移到高温炉内, 在保护气体中升温至 600〜誦。 C , 保温 1〜12 小时, 固态碳源裂解后在多孔硅基体表面形成碳包覆层, 得到一种锂离子 电池硅碳复合负极材料。
3. 如权利要求 2所述的一种锂离子电池硅碳复合负极材料的制备方法, 其 特征是保护气体为氩气、氯气、氦气、氩气与氢气的混合气体或氯气与氢气的混 合气体, 混合气体中氢气的体积含量在 2〜20%。
4. 如权利要求 2所述的一种锂离子电池硅碳复合负极材料的制备方法, 其 特征是气态碳源为乙炔、 甲烷、 乙烷, 乙烯、 丙炜或一氧化碳。
5. 如权利要求 2所述的一种锂离子电池硅碳复合负极材料的制备方法, 其 特征是液态碳源为苯、 甲苯、 二甲苯、 乙醇、 正己烷或环己烷。
6. 如权利要求 2所述的一种锂离子电池硅碳复合负极材料的制备方法, 其 特征是固态碳源为聚氯乙炜、 聚偏氟乙唏、 聚丙唏腈、 聚乙唏醇、 聚苯乙唏、 醛树脂、 环氧树脂、 煤焦油沥青、 石油沥青、 蔗糖或葡萄糖, 其中聚氯乙唏的分 子量在 50000〜120000, 聚偏氟乙炜的分子量在 250000〜1000000, 聚丙炜腈的分 子量在 30000〜200000, 聚乙炜醇的分子量在 20000〜300000, 聚苯乙炜的分子量 在 50000〜200000, 鼢醛树脂的分子量在 500〜10000, 环氧树脂的分子量在 300-8000
7. 如权利要求 2所述的一种锂离子电池硅碳复合负极材料的制备方法, 其 特征是溶剂为水、 乙醇、 乙醎、 丙酮、 四氢呋喃、 苯、 甲苯、 二甲苯、 二甲基甲 酰胺或 N-甲基吡咯烷酮。
PCT/CN2012/072491 2011-03-18 2012-03-17 一种锂离子电池硅碳复合负极材料及其制备方法 WO2012126338A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014500238A JP5992989B2 (ja) 2011-03-18 2012-03-17 リチウムイオン電池のためのケイ素−炭素複合材料の負極材料およびその製造方法
US14/005,791 US9663860B2 (en) 2011-03-18 2012-03-17 Silicon-carbon composite anode material for lithium ion batteries and a preparation method thereof
DE112012001289.5T DE112012001289B4 (de) 2011-03-18 2012-03-17 Silicium-Kohlenstoff-Verbundanodenmaterial für Lithiumionenbatterien und Herstellungsverfahren dafür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110065254.8 2011-03-18
CN201110065254.8A CN102157731B (zh) 2011-03-18 2011-03-18 一种锂离子电池硅碳复合负极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2012126338A1 true WO2012126338A1 (zh) 2012-09-27

Family

ID=44439023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072491 WO2012126338A1 (zh) 2011-03-18 2012-03-17 一种锂离子电池硅碳复合负极材料及其制备方法

Country Status (5)

Country Link
US (1) US9663860B2 (zh)
JP (1) JP5992989B2 (zh)
CN (1) CN102157731B (zh)
DE (1) DE112012001289B4 (zh)
WO (1) WO2012126338A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515582A (zh) * 2013-10-10 2014-01-15 中国海洋石油总公司 一种锂离子电池硅碳复合负极材料的制法
CN104662715A (zh) * 2013-05-30 2015-05-27 株式会社Lg化学 多孔性硅类负极活性物质及其制备方法、包含它的锂二次电池
US9196896B2 (en) 2012-07-24 2015-11-24 Lg Chem, Ltd. Porous silicon-based electrode active material and secondary battery comprising the same
JP2016502253A (ja) * 2013-09-17 2016-01-21 エルジー・ケム・リミテッド 多孔性シリコン系負極活物質及びこれを含むリチウム二次電池
JP2016515993A (ja) * 2013-03-13 2016-06-02 エネヴェート・コーポレーション 電池電極用のケイ素粒子
US9512523B2 (en) 2012-04-19 2016-12-06 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
US9780357B2 (en) 2012-04-19 2017-10-03 Lg Chem, Ltd. Silicon-based anode active material and secondary battery comprising the same
US9879344B2 (en) 2012-07-26 2018-01-30 Lg Chem, Ltd. Electrode active material for secondary battery
US20180069238A1 (en) * 2013-06-21 2018-03-08 Unist (Ulsan National Institute Of Science And Technology) Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same
CN108043437A (zh) * 2017-11-09 2018-05-18 国家电网公司 一种空心SiC载体型Ir-Ru催化剂的制备方法
US10103378B2 (en) 2010-01-18 2018-10-16 Enevate Corporation Methods of forming composite material films
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US10541412B2 (en) 2015-08-07 2020-01-21 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
CN111804315A (zh) * 2020-07-23 2020-10-23 天津大沽化工股份有限公司 一种非汞催化剂纳米材料的制备方法
CN114171728A (zh) * 2021-11-30 2022-03-11 陕西科技大学 一种三维多孔硅碳复合材料、制备方法及其应用
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157731B (zh) * 2011-03-18 2015-03-04 上海交通大学 一种锂离子电池硅碳复合负极材料及其制备方法
CN102208634B (zh) * 2011-05-06 2014-04-16 北京科技大学 一种多孔硅/碳复合材料及其制备方法
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
CN102324501B (zh) * 2011-09-09 2013-10-16 中国科学院过程工程研究所 一种锂离子电池硅基负极复合材料及其制备方法
CN103000385B (zh) * 2011-09-15 2016-01-13 海洋王照明科技股份有限公司 一种超级混合电容电池及其制造方法
CN102306798B (zh) * 2011-09-30 2014-06-18 南开大学 一种用于锂离子二次电池负极材料及其制备方法
EP2900596B1 (en) * 2011-11-30 2017-09-27 Robert Bosch GmbH Mesoporous silicon/carbon composite for use as lithium ion battery anode material and process of preparing the same
WO2013114095A1 (en) 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material
CN103288088B (zh) * 2012-02-23 2016-02-17 苏州宝时得电动工具有限公司 一种多晶硅的制备方法
GB2499984B (en) 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
JPWO2013146300A1 (ja) * 2012-03-30 2015-12-10 戸田工業株式会社 非水電解質二次電池用負極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
CN103378368B (zh) * 2012-04-17 2016-06-15 万向电动汽车有限公司 一种硅负极锂离子电池及制造方法
KR101396489B1 (ko) 2012-05-08 2014-05-19 세진이노테크(주) 실리콘계 음극 활물질의 제조 방법, 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
GB2502625B (en) * 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
CN102707243A (zh) * 2012-06-18 2012-10-03 江苏理士电池有限公司 极板干荷性能检测方法
EP2693533B1 (en) * 2012-08-03 2018-06-13 LG Chem, Ltd. Electrode active material for secondary battery
JP6306013B2 (ja) 2012-08-21 2018-04-04 クラトス・エル・エル・シー 官能化iva族粒子およびその使用方法
JP6115909B2 (ja) * 2012-10-22 2017-04-19 国立研究開発法人産業技術総合研究所 リチウム二次電池用負極およびその製造方法、並びに該負極を用いたリチウム二次電池および該電池を用いた電気機器
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
CN102969489B (zh) * 2012-12-05 2016-08-17 奇瑞汽车股份有限公司 一种硅碳复合材料及其制备方法、含该材料的锂离子电池
CN102969488B (zh) * 2012-12-05 2015-09-23 奇瑞汽车股份有限公司 一种无定形多孔硅及其制备方法、含该材料的锂离子电池
CN103915609B (zh) * 2012-12-31 2017-10-13 宁波杉杉新材料科技有限公司 硅‑氧化硅‑碳复合材料、锂离子二次电池负极材料、其制备方法和应用
CN103035917B (zh) * 2013-01-09 2014-08-13 北京科技大学 一种锂离子电池二氧化硅/碳复合负极材料的制备方法
WO2014128814A1 (ja) * 2013-02-22 2014-08-28 株式会社豊田自動織機 負極活物質とその製造方法及び蓄電装置
CN103236525B (zh) * 2013-05-06 2015-09-23 奇瑞汽车股份有限公司 一种硅碳复合材料及其制备方法、锂离子电池
CN103280560B (zh) * 2013-05-20 2015-11-11 北京科技大学 一种锂离子电池介孔氧化亚硅碳复合负极材料的制备方法
CN104347857B (zh) * 2013-07-29 2017-07-07 华为技术有限公司 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
CN103531760B (zh) * 2013-10-28 2015-07-08 北京化工大学 一种蛋黄-蛋壳结构多孔硅碳复合微球及其制备方法
CN105849947B (zh) * 2013-12-25 2019-12-13 株式会社丰田自动织机 负极活性物质和其制造方法及蓄电装置
CN103700819B (zh) * 2013-12-30 2016-04-06 合肥国轩高科动力能源有限公司 表面具有梯度变化包覆层的硅复合负极材料的制备方法
JP6132173B2 (ja) 2014-01-31 2017-05-24 株式会社豊田自動織機 非水系二次電池用負極及び非水系二次電池、負極活物質及びその製造方法、ナノシリコンと炭素層とカチオン性ポリマー層とを具備する複合体、ナノシリコンと炭素層よりなる複合体の製造方法
DE102014202156A1 (de) * 2014-02-06 2015-08-06 Wacker Chemie Ag Si/G/C-Komposite für Lithium-Ionen-Batterien
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
CN104979536B (zh) * 2014-04-10 2018-05-29 宁德新能源科技有限公司 锂离子电池及其阳极片、阳极活性材料的制备方法
CN109888232A (zh) * 2014-04-15 2019-06-14 中国科学院宁波材料技术与工程研究所 一种锂离子电池多孔纳米硅-碳复合负极材料及其制备方法
KR101604352B1 (ko) 2014-04-22 2016-03-18 (주)오렌지파워 음극 활물질 및 이를 포함하는 리튬 이차 전지
CN109119603B (zh) 2014-04-29 2022-08-09 华为技术有限公司 复合负极材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
KR101692330B1 (ko) * 2014-06-09 2017-01-03 울산과학기술원 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR102276423B1 (ko) * 2014-06-10 2021-07-12 삼성전자주식회사 복합체, 이를 이용한 전기화학적 활물질 복합체, 이를 포함한 전극, 리튬 전지, 전계 방출 소자, 바이오센서, 반도체 소자 및 열전소자
EP3158599B1 (en) * 2014-06-20 2019-06-05 The Regents Of The University Of California Porous silicon electrode and method
KR101550781B1 (ko) 2014-07-23 2015-09-08 (주)오렌지파워 2 차 전지용 실리콘계 활물질 입자의 제조 방법
CN105470459B (zh) * 2014-08-11 2018-05-15 微宏动力系统(湖州)有限公司 一种硅碳复合负极材料及其制备方法
WO2016053032A1 (ko) * 2014-10-02 2016-04-07 주식회사 엘지화학 리튬 이차전지용 음극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR101766535B1 (ko) * 2014-10-02 2017-08-10 주식회사 엘지화학 리튬 이차전지용 음극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
US9780361B2 (en) * 2014-11-12 2017-10-03 GM Global Technology Operations LLC Methods for forming porous materials
CN105720258B (zh) * 2014-12-03 2019-05-31 上海杉杉科技有限公司 锂离子电池负极材料及其制备方法和应用、锂离子电池
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
JP6434351B2 (ja) * 2015-03-26 2018-12-05 株式会社豊田自動織機 アモルファス含有Si粉末及びその製造方法
CN104817064B (zh) * 2015-05-08 2017-03-08 吉林大学 蛋白石页岩基碳复合材料及制备方法
CN105161695A (zh) * 2015-06-12 2015-12-16 南通彩都新能源科技有限公司 一种锂离子电池负极用球状活性物质粒子及其制备方法、应用
DE102015212202A1 (de) 2015-06-30 2017-01-05 Robert Bosch Gmbh Siliciummonolith-Graphit-Anode für eine Lithium-Zelle
DE102015212182A1 (de) * 2015-06-30 2017-01-05 Robert Bosch Gmbh Anode für eine Batteriezelle, Verfahren zur Herstellung einer Anode und Batteriezelle
WO2017004795A1 (en) * 2015-07-07 2017-01-12 Robert Bosch Gmbh Silicon-based composite with three dimensional binding network for lithium ion batteries
JP6589513B2 (ja) * 2015-09-28 2019-10-16 株式会社豊田自動織機 シリコン材料の製造方法
KR101841327B1 (ko) * 2015-11-17 2018-05-08 한양대학교 산학협력단 전극 재료 및 그 제조 방법
CN105789571B (zh) * 2016-01-26 2018-05-01 北京大学 多孔碳球包裹的硅/二氧化硅纳米复合材料及其制备方法和应用
DE102016203349A1 (de) * 2016-03-01 2017-09-07 Wacker Chemie Ag Herstellung von Si/C-Kompositpartikeln
CN105826528B (zh) * 2016-03-22 2019-01-15 浙江大学 一种多孔硅-铜复合材料及其制备方法和应用
CN105655564B (zh) * 2016-03-30 2019-03-01 深圳市国创新能源研究院 SiOx/C复合负极材料及其制备方法和应用
US10734642B2 (en) 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
CN106099113B (zh) * 2016-06-30 2019-07-02 中南大学 一种核壳结构硅碳复合材料及其制备方法
EP3422445B1 (en) * 2016-08-18 2021-03-17 LG Chem, Ltd. Negative electrode material comprising silicon flakes and preparing method of silicon flakes
CN106328900B (zh) * 2016-10-09 2019-04-30 珠海格力电器股份有限公司 一种钛酸锂和碳双层包覆的硅复合材料、制备方法及应用
CN106450329A (zh) * 2016-10-15 2017-02-22 成都育芽科技有限公司 一种高容量高稳定性的锂电池电极用硅碳复合纳米材料
CN106450221B (zh) * 2016-11-11 2019-01-11 深圳市鑫永丰科技有限公司 一种含铝硅碳复合负极材料及其制备方法
CN106450322A (zh) * 2016-11-22 2017-02-22 东南大学 一种多孔硅电极材料及其制备方法和应用
CN106299322A (zh) * 2016-11-24 2017-01-04 杭州启澄科技有限公司 一种高容量锂离子电池电极用复合纳米材料及其制备方法
CN106848273B (zh) * 2017-01-19 2018-07-24 深圳市沃特玛电池有限公司 一种硅碳复合材料的制备方法
CN106654228A (zh) * 2017-01-20 2017-05-10 中天储能科技有限公司 一种多孔SiOx核壳微球的制备方法
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US10840502B2 (en) 2017-02-24 2020-11-17 Global Graphene Group, Inc. Polymer binder for lithium battery and method of manufacturing
US11978904B2 (en) 2017-02-24 2024-05-07 Honeycomb Battery Company Polymer binder for lithium battery and method of manufacturing
US10985373B2 (en) 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
CN108666566B (zh) 2017-03-31 2021-08-31 华为技术有限公司 一种制备电极材料的方法、电极材料及电池
US11742475B2 (en) * 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10916766B2 (en) 2017-04-10 2021-02-09 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
CN107146888B (zh) * 2017-05-16 2020-06-05 成都城电电力工程设计有限公司 一种聚合物修饰的三维有序介孔硅负极材料及其制备方法
CN106976865A (zh) * 2017-05-25 2017-07-25 上海应用技术大学 一种介孔碳材料及其制备方法
CN107221673A (zh) * 2017-06-16 2017-09-29 安徽科达洁能新材料有限公司 一种锂离子电池硅碳负极材料的制备方法
US10804537B2 (en) 2017-08-14 2020-10-13 Global Graphene Group, Inc. Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
GB201803983D0 (en) 2017-09-13 2018-04-25 Unifrax I Llc Materials
CN107768618A (zh) * 2017-09-25 2018-03-06 北京博雅合众环保科技有限公司 硅碳复合材料的制备方法及其作为锂离子电池负极材料的应用
CN107994217B (zh) * 2017-11-23 2020-05-19 广东工业大学 一种双包覆硅基复合材料的制备方法及锂离子电池
CN108023076B (zh) * 2017-11-30 2020-05-19 武汉科技大学 一种蜂窝状硅碳复合材料、其制备方法和应用
CN108054355B (zh) * 2017-12-05 2020-01-17 桂林电器科学研究院有限公司 泡沫状硅粉及其制备方法、锂离子电池
CN108039485B (zh) * 2017-12-05 2019-03-15 桂林电器科学研究院有限公司 泡沫状硅粉与其制备方法以及应用其的锂离子电池
CN108039484B (zh) * 2017-12-05 2020-12-11 桂林电器科学研究院有限公司 海绵状硅粉及其制备方法以及锂离子电池
CN108002389B (zh) * 2017-12-05 2019-05-07 桂林电器科学研究院有限公司 锌铋合金包覆硅镁颗粒制备泡沫状硅粉的方法及硅粉
CN108011091B (zh) * 2017-12-05 2020-08-14 桂林电器科学研究院有限公司 铟铋合金包覆镁硅铁颗粒制备硅铁粉的方法及硅铁粉
CN108017057B (zh) * 2017-12-05 2019-09-06 桂林电器科学研究院有限公司 锡铟合金包覆硅镁颗粒制备泡沫状硅粉的方法及硅粉
CN108039467B (zh) * 2017-12-05 2020-06-05 桂林电器科学研究院有限公司 海绵状硅粉及其制备方法及应用其的锂离子电池
CN110061198B (zh) * 2018-01-19 2020-12-08 中南大学 一种硅碳复合负极材料及其制备方法和应用
CN108390053B (zh) * 2018-01-23 2020-04-17 中国平煤神马能源化工集团有限责任公司 一种片状硼掺杂多孔硅电极材料及其制备方法
US10601034B2 (en) 2018-02-21 2020-03-24 Global Graphene Group, Inc. Method of producing protected particles of anode active materials for lithium batteries
US10573894B2 (en) 2018-02-21 2020-02-25 Global Graphene Group, Inc. Protected particles of anode active materials for lithium batteries
US11721832B2 (en) 2018-02-23 2023-08-08 Global Graphene Group, Inc. Elastomer composite-encapsulated particles of anode active materials for lithium batteries
WO2019169019A1 (en) * 2018-02-28 2019-09-06 The Regents Of The University Of California Silicon lithium ion electrode materials
US10971722B2 (en) 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10964936B2 (en) 2018-03-02 2021-03-30 Global Graphene Group, Inc. Conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10818926B2 (en) 2018-03-07 2020-10-27 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11005094B2 (en) 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
CN108493412B (zh) * 2018-03-20 2020-08-21 北京工业大学 一种多孔硅碳复合负极材料的制备方法
US10971723B2 (en) 2018-04-16 2021-04-06 Global Graphene Group, Inc. Process for alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US11043694B2 (en) 2018-04-16 2021-06-22 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
CN108735992A (zh) * 2018-05-21 2018-11-02 北京工业大学 一种以硅藻土为原料的分级多孔硅碳复合结构及制备方法
CN108682817A (zh) * 2018-05-21 2018-10-19 北京工业大学 一种用于锂离子电池的多孔硅碳负极材料制备方法
CN108963203A (zh) * 2018-06-11 2018-12-07 浙江衡远新能源科技有限公司 一种碳包覆的多孔硅复合材料的制备方法
US10978698B2 (en) 2018-06-15 2021-04-13 Global Graphene Group, Inc. Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery
US11121398B2 (en) 2018-06-15 2021-09-14 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing cathode material particulates
US10957912B2 (en) 2018-06-18 2021-03-23 Global Graphene Group, Inc. Method of extending cycle-life of a lithium-sulfur battery
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10854927B2 (en) 2018-06-18 2020-12-01 Global Graphene Group, Inc. Method of improving cycle-life of alkali metal-sulfur secondary battery
US10978744B2 (en) 2018-06-18 2021-04-13 Global Graphene Group, Inc. Method of protecting anode of a lithium-sulfur battery
US10777810B2 (en) 2018-06-21 2020-09-15 Global Graphene Group, Inc. Lithium metal secondary battery containing a protected lithium anode
US11276852B2 (en) 2018-06-21 2022-03-15 Global Graphene Group, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
US11239460B2 (en) 2018-08-22 2022-02-01 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11043662B2 (en) 2018-08-22 2021-06-22 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
US10886528B2 (en) 2018-08-24 2021-01-05 Global Graphene Group, Inc. Protected particles of cathode active materials for lithium batteries
US10971724B2 (en) 2018-10-15 2021-04-06 Global Graphene Group, Inc. Method of producing electrochemically stable anode particulates for lithium secondary batteries
US10629899B1 (en) 2018-10-15 2020-04-21 Global Graphene Group, Inc. Production method for electrochemically stable anode particulates for lithium secondary batteries
CN109378461A (zh) * 2018-10-26 2019-02-22 桑顿新能源科技有限公司 一种新型介孔结构硅碳负极材料的制备方法
US10971725B2 (en) 2019-01-24 2021-04-06 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
US11791450B2 (en) 2019-01-24 2023-10-17 Global Graphene Group, Inc. Method of improving cycle life of a rechargeable lithium metal battery
CN110335998A (zh) * 2019-05-29 2019-10-15 中国平煤神马能源化工集团有限责任公司 一种锂离子电池多孔硅碳纳米片复合负极材料及其制备方法
CN110240166B (zh) * 2019-07-04 2021-01-12 北华航天工业学院 一种SiO2@C纳米复合材料及其制备方法
CN110828786B (zh) * 2019-10-09 2021-08-06 兰溪致德新能源材料有限公司 长循环氧化亚硅/碳复合负极材料的制备方法
CN111276684A (zh) * 2020-02-17 2020-06-12 东南大学 一种碳包覆复合材料的制备方法及其应用
CN111755684B (zh) * 2020-07-06 2022-05-24 马鞍山科达普锐能源科技有限公司 一种锂离子电池用硅碳负极材料及其制备方法
CN111785969A (zh) * 2020-07-08 2020-10-16 吴耀帮 多孔纳米Si-SiO2-C@石墨复合锂离子电池负极粉的制备方法以及锂离子电池
CN111785946B (zh) * 2020-07-23 2021-12-03 苏州大学 负极活性材料及其制备及应用
TWI830935B (zh) * 2020-07-24 2024-02-01 芯量科技股份有限公司 多層狀長循環矽碳負極材料之製造方法
CN111933922B (zh) * 2020-08-06 2022-05-24 中科(马鞍山)新材料科创园有限公司 一种具有包覆层的负极极片、其制备方法及用途
KR102402461B1 (ko) * 2020-09-23 2022-05-27 대주전자재료 주식회사 다공성 규소계-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
CN112479177A (zh) * 2020-11-26 2021-03-12 天能帅福得能源股份有限公司 一种有序介孔硅碳复合材料的制备方法
CN112670488A (zh) * 2021-01-27 2021-04-16 郑州轻工业大学 锂离子电池C@Cu@Si复合多孔负极材料的制备方法
CN113003577A (zh) * 2021-02-24 2021-06-22 山东大学 一种孔隙率可控多孔硅的绿色的制备方法及其应用
CN113328096A (zh) * 2021-05-28 2021-08-31 成都大学 一种硅碳复合材料的制备方法、硅基负极材料和锂离子电池
CN114122397B (zh) * 2021-10-12 2023-11-10 湖南金硅科技有限公司 一种碳纳米管连接的双碳层包覆介孔氧化亚硅复合材料及其制备方法和应用
CN114044519B (zh) * 2021-11-11 2023-10-20 上海大学 一种还原剂可控制备多孔硅材料的方法
TWI805123B (zh) * 2021-12-10 2023-06-11 芯量科技股份有限公司 矽碳複合負極材料及其製備方法與應用
CN114242987B (zh) * 2021-12-22 2023-09-26 格龙新材料科技(常州)有限公司 一种三维多孔硅碳复合材料的制备方法
CN114361417B (zh) * 2021-12-30 2023-12-05 宁波亿纬创能锂电池有限公司 一种负极材料及其制备方法和用途
CN114864915B (zh) * 2022-06-23 2023-07-21 格龙新材料科技(常州)有限公司 一种多孔硅/碳纳米管复合材料的制备方法
CN115775883B (zh) * 2023-02-13 2023-06-02 四川富临新能源科技有限公司 磷酸铁锂正极材料的表面改性方法
CN116081627A (zh) * 2023-02-15 2023-05-09 盐城工学院 一种多孔SiOx@C复合材料的原位液相制备方法
CN116014113B (zh) * 2023-03-23 2023-09-19 宁德新能源科技有限公司 负极材料、二次电池和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222039A (zh) * 2006-05-09 2008-07-16 三星Sdi株式会社 包含金属纳米晶体复合物的负极活性物质及其制法以及包含该负极活性物质的阳极和锂电池
CN101527357A (zh) * 2009-04-24 2009-09-09 清华大学 纳米硅无定型碳复合锂离子电池负极材料及其制备方法
CN101609891A (zh) * 2007-07-27 2009-12-23 三星Sdi株式会社 Si/C复合物、负极活性材料、及包含其的锂电池
CN100576610C (zh) * 2006-12-22 2009-12-30 比亚迪股份有限公司 一种含硅复合材料及其制备方法
CN102157731A (zh) * 2011-03-18 2011-08-17 上海交通大学 一种锂离子电池硅碳复合负极材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100379059C (zh) 2005-10-27 2008-04-02 中国科学院上海硅酸盐研究所 一种锂离子电池硅/碳/石墨复合负极材料及其制备方法
KR20080006420A (ko) 2006-07-14 2008-01-16 이기웅 흉터 방지용 탄력 밴드
US20090186267A1 (en) * 2008-01-23 2009-07-23 Tiegs Terry N Porous silicon particulates for lithium batteries
CN101510602B (zh) * 2009-02-19 2010-11-03 上海交通大学 一种锂离子电池用硅复合负极材料的制备方法
JP5100694B2 (ja) 2009-04-01 2012-12-19 三菱電機株式会社 半導体装置
KR20120128125A (ko) * 2009-11-03 2012-11-26 엔비아 시스템즈 인코포레이티드 리튬 이온 전지용 고용량 아노드 물질
JP5809897B2 (ja) * 2010-09-17 2015-11-11 古河電気工業株式会社 多孔質シリコン粒子及びその製造方法、並びにリチウムイオン二次電池用負極及びリチウムイオン二次電池
KR101634843B1 (ko) * 2012-07-26 2016-06-29 주식회사 엘지화학 이차전지용 전극 활물질

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222039A (zh) * 2006-05-09 2008-07-16 三星Sdi株式会社 包含金属纳米晶体复合物的负极活性物质及其制法以及包含该负极活性物质的阳极和锂电池
CN100576610C (zh) * 2006-12-22 2009-12-30 比亚迪股份有限公司 一种含硅复合材料及其制备方法
CN101609891A (zh) * 2007-07-27 2009-12-23 三星Sdi株式会社 Si/C复合物、负极活性材料、及包含其的锂电池
CN101527357A (zh) * 2009-04-24 2009-09-09 清华大学 纳米硅无定型碳复合锂离子电池负极材料及其制备方法
CN102157731A (zh) * 2011-03-18 2011-08-17 上海交通大学 一种锂离子电池硅碳复合负极材料及其制备方法

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US11196037B2 (en) 2010-01-18 2021-12-07 Enevate Corporation Silicon particles for battery electrodes
US11183712B2 (en) 2010-01-18 2021-11-23 Enevate Corporation Electrolyte compositions for batteries
US11728476B2 (en) 2010-01-18 2023-08-15 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11955623B2 (en) 2010-01-18 2024-04-09 Enevate Corporation Silicon particles for battery electrodes
US10622620B2 (en) 2010-01-18 2020-04-14 Enevate Corporation Methods of forming composite material films
US10103378B2 (en) 2010-01-18 2018-10-16 Enevate Corporation Methods of forming composite material films
US9512523B2 (en) 2012-04-19 2016-12-06 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
US9831500B2 (en) 2012-04-19 2017-11-28 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
US9780357B2 (en) 2012-04-19 2017-10-03 Lg Chem, Ltd. Silicon-based anode active material and secondary battery comprising the same
US9196896B2 (en) 2012-07-24 2015-11-24 Lg Chem, Ltd. Porous silicon-based electrode active material and secondary battery comprising the same
US9879344B2 (en) 2012-07-26 2018-01-30 Lg Chem, Ltd. Electrode active material for secondary battery
JP2016515993A (ja) * 2013-03-13 2016-06-02 エネヴェート・コーポレーション 電池電極用のケイ素粒子
CN104662715A (zh) * 2013-05-30 2015-05-27 株式会社Lg化学 多孔性硅类负极活性物质及其制备方法、包含它的锂二次电池
US9843034B2 (en) 2013-05-30 2017-12-12 Lg Chem, Ltd. Porous silicon-based anode active material, method of preparing the same, and lithium secondary battery including the anode active material
JP2015524993A (ja) * 2013-05-30 2015-08-27 エルジー・ケム・リミテッド 多孔性シリコン系負極活物質、この製造方法、及びこれを含むリチウム二次電池
US10862116B2 (en) * 2013-06-21 2020-12-08 Unist (Ulsan National Institute Of Science And Technology) Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same
US20180069238A1 (en) * 2013-06-21 2018-03-08 Unist (Ulsan National Institute Of Science And Technology) Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same
JP2016502253A (ja) * 2013-09-17 2016-01-21 エルジー・ケム・リミテッド 多孔性シリコン系負極活物質及びこれを含むリチウム二次電池
CN103515582A (zh) * 2013-10-10 2014-01-15 中国海洋石油总公司 一种锂离子电池硅碳复合负极材料的制法
US10541412B2 (en) 2015-08-07 2020-01-21 Enevate Corporation Surface modification of silicon particles for electrochemical storage
CN108043437B (zh) * 2017-11-09 2023-09-22 国家电网公司 一种空心SiC载体型Ir-Ru催化剂的制备方法
CN108043437A (zh) * 2017-11-09 2018-05-18 国家电网公司 一种空心SiC载体型Ir-Ru催化剂的制备方法
US11309536B2 (en) 2017-12-07 2022-04-19 Enevate Corporation Silicon particles for battery electrodes
US11539041B2 (en) 2017-12-07 2022-12-27 Enevate Corporation Silicon particles for battery electrodes
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
US11777077B2 (en) 2017-12-07 2023-10-03 Enevate Corporation Silicon particles for battery electrodes
CN111804315B (zh) * 2020-07-23 2023-02-10 天津大沽化工股份有限公司 一种非汞催化剂纳米材料的制备方法
CN111804315A (zh) * 2020-07-23 2020-10-23 天津大沽化工股份有限公司 一种非汞催化剂纳米材料的制备方法
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same
CN114171728A (zh) * 2021-11-30 2022-03-11 陕西科技大学 一种三维多孔硅碳复合材料、制备方法及其应用

Also Published As

Publication number Publication date
JP2014513385A (ja) 2014-05-29
US9663860B2 (en) 2017-05-30
DE112012001289B4 (de) 2024-01-25
DE112012001289T5 (de) 2013-12-12
US20140147751A1 (en) 2014-05-29
CN102157731A (zh) 2011-08-17
JP5992989B2 (ja) 2016-09-14
CN102157731B (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5992989B2 (ja) リチウムイオン電池のためのケイ素−炭素複合材料の負極材料およびその製造方法
CN108428876B (zh) 一种高性能硅/碳纳米复合负极材料及其制备方法
CN106848199B (zh) 一种锂离子电池纳米硅/多孔碳复合负极材料及其制备方法和应用
CN109167031B (zh) 一种纳米硅碳复合材料及其制备方法和应用
CN103311522B (zh) 一种硅/碳复合微球负极材料及其制备方法和用途
CN106099113B (zh) 一种核壳结构硅碳复合材料及其制备方法
US20230268494A1 (en) Silicon-based anode material and preparation method therefor, and secondary battery
CN107994217B (zh) 一种双包覆硅基复合材料的制备方法及锂离子电池
CN113078318A (zh) 一种三维多孔硅碳复合材料、其制备方法及其应用
CN111048770B (zh) 一种三元掺杂的硅基复合材料及其制备方法和应用
CN108682820B (zh) 一种硅碳复合负极材料和负极片及其制备方法以及锂离子电池
CN103165874A (zh) 一种锂离子电池多孔硅负极材料及其制备方法和用途
WO2022122023A1 (zh) 具有核壳结构的硅基颗粒及其制备方法、负极材料、极片和电池
CN113764642A (zh) 一种含锂硅氧化物复合负极材料及其制备方法和锂离子电池
CN109167032A (zh) 一种纳米硅基复合材料及其制备方法和应用
CN112635727A (zh) 具有核壳结构的硅氧颗粒及其制备方法、负极材料、电池
CN109286014A (zh) 一种表面改性的硅碳复合材料及其制备方法和应用
CN111342014A (zh) 一种锂离子电池硅碳负极材料及其制备方法
CN113851627A (zh) 一种多孔硅碳负极材料及其制备方法
CN113903891B (zh) 一种含准金属态锂的无定形碳基复合负极材料的制备方法和应用
CN111370656B (zh) 一种硅碳复合材料及其制备方法和应用
CN110550635A (zh) 一种新型的碳包覆硅氧负极材料的制备方法
WO2023044866A1 (zh) 硅碳负极材料、负极极片、二次电池、电池模块、电池包和用电装置
EP4379865A1 (en) Two-element lithium supplementing additive, preparation method therefor, and use thereof
CN114314594B (zh) 一种用作锂离子电池负极材料的纳米片状硅碳复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500238

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120012895

Country of ref document: DE

Ref document number: 112012001289

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14005791

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULR 112(1) EPC (EPO FORM 1205A DATED 15-01-2014 )

122 Ep: pct application non-entry in european phase

Ref document number: 12760480

Country of ref document: EP

Kind code of ref document: A1