WO2011090733A2 - Production of high strength titanium - Google Patents
Production of high strength titanium Download PDFInfo
- Publication number
- WO2011090733A2 WO2011090733A2 PCT/US2010/062284 US2010062284W WO2011090733A2 WO 2011090733 A2 WO2011090733 A2 WO 2011090733A2 US 2010062284 W US2010062284 W US 2010062284W WO 2011090733 A2 WO2011090733 A2 WO 2011090733A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium alloy
- temperature
- beta
- alloy
- ksi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
Definitions
- the present disclosure is directed to methods for producing titanium alloys having high strength and high toughness.
- the methods according to the present disclosure do not require the multi-step heat treatments used in certain existing titanium alloy production methods.
- Titanium alloys typically exhibit a high strength-to-weight ratio, are corrosion resistant, and are resistant to creep at moderately high temperatures. For these reasons, titanium alloys are used in aerospace and aeronautic applications including, for example, critical structural parts such as landing gear members and engine frames. Titanium alloys also are used in jet engines for parts such as rotors, compressor blades, hydraulic system parts, and nacelles.
- titanium undergoes an allotropic phase transformation at about 882°C. Below this temperature, titanium adopts a hexagonally close-packed crystal structure, referred to as the a phase. Above this temperature, titanium has a body centered cubic structure, referred to as the ⁇ phase. The temperature at which the transformation from the a phase to the ⁇ phase takes place is referred to as the beta transus temperature ( ⁇ ).
- the beta transus temperature is affected by interstitial and substitutional elements and, therefore, is dependent upon impurities and, more importantly, alloying elements.
- alloying elements are generally classified as a stabilizing elements or ⁇ stabilizing elements. Addition of a stabilizing elements ("a stabilizers") to titanium increases the beta transus temperature.
- Aluminum for example, is a substitutional element for titanium and is an a stabilizer.
- Interstitial alloying elements for titanium that are a stabilizers include, for example, oxygen, nitrogen, and carbon.
- ⁇ stabilizing elements can be either ⁇ isomorphous elements or ⁇ eutectoid elements, depending on the resulting phase diagrams.
- ⁇ isomorphous alloying elements for titanium are vanadium, molybdenum, and niobium.
- ⁇ eutectoid alloying elements are chromium and iron. Additionally, other elements, such as, for example, silicon, zirconium, and hafnium, are neutral in the sense that these elements have little effect on the beta transus temperature of titanium and titanium alloys.
- FIG. 1 A depicts a schematic phase diagram showing the effect of adding an a stabilizer to titanium.
- the beta phase field 12 lies above the beta transus temperature line 10 and is an area of the phase diagram where only ⁇ phase is present in the titanium alloy.
- an alpha-beta phase field 14 lies below the beta transus temperature line 10 and represents an area on the phase diagram where both a phase and ⁇ phase ( ⁇ + ⁇ ) are present in the titanium alloy.
- the alpha phase field 16 below the alpha-beta phase field 16, where only a phase is present in the titanium alloy.
- FIG. 1 B depicts a schematic phase diagram showing the effect of adding an isomorphous ⁇ stabilizer to titanium. Higher concentrations of ⁇ stabilizers reduce the beta transus temperature, as is indicated by the negative slope of the beta transus temperature line 10. Above the beta transus temperature line 10 is the beta phase field 12. An alpha-beta phase field 14 and an alpha phase field 16 also are present in the schematic phase diagram of titanium with isomorphous ⁇ stabilizer in FIG. 1 B.
- FIG. 1 C depicts a schematic phase diagram showing the effect of adding a eutectoid ⁇ stabilizer to titanium.
- the phase diagram exhibits a beta phase field 12, a beta transus temperature line 10, an alpha-beta phase field 14, and an alpha phase field 16.
- Titanium alloys are generally classified according to their chemical composition and their microstructure at room temperature.
- Commercially pure (CP) titanium and titanium alloys that contain only a stabilizers such as aluminum are considered alpha alloys. These are predominantly single phase alloys consisting essentially of a phase.
- CP titanium and other alpha alloys after being annealed below the beta transus temperature, generally contain about 2-5 percent by volume of ⁇ phase, which is typically stabilized by iron impurities in the alpha titanium alloy. The small volume of ⁇ phase is useful in the alloy for controlling the recrystallized a phase grain size.
- Near-alpha titanium alloys have a small amount of ⁇ phase, usually less than 0 percent by volume, which results in increased room temperature tensile strength and increased creep resistance at use temperatures above 400°C, compared with the alpha alloys.
- An exemplary near-alpha titanium alloy may contain about 1 weight percent molybdenum.
- Alpha/beta ( ⁇ + ⁇ ) titanium alloys such as Ti-6AI-4V (Ti 6-4) alloy and Ti-6AI-2Sn-4Zr-2Mo (Ti 6-2-4-2) alloy, contain both alpha and beta phase and are widely used in the aerospace and aeronautics industries.
- the microstructure and properties of alpha/beta alloys can be varied through heat treatments and
- thermomechanical processing
- Stable beta titanium alloys, metastable beta titanium alloys, and near beta titanium alloys contain substantially more ⁇ stabilizing elements than alpha/beta alloys.
- Near-beta titanium alloys such as, for example, Ti-10V-2Fe-3AI alloy, contain amounts of ⁇ stabilizing elements sufficient to maintain an all- ⁇ phase structure when water quenched, but not when air quenched.
- Metastable beta titanium alloys such as, for example, Ti-15Mo alloy, contain higher levels of ⁇ stabilizers and retain an all- ⁇ phase structure upon air cooling, but can be aged to precipitate a phase for strengthening.
- Stable beta titanium alloys, such as, for example, Ti-30Mo alloy retain an all- ⁇ phase microstructure upon cooling, but cannot be aged to precipitate a phase.
- the titanium alloy also may be heat treated at a third temperature above the beta transus temperature, or heat treating a titanium alloy at a first temperature above the beta transus temperature followed by controlled cooling at a rate of no more than 5°F (2.8°C) per minute to a second temperature below the beta transus temperature.
- the titanium alloy also may be heat treated at a third
- FIG. 2 A temperature-versus-time schematic plot of a typical prior art method for producing tough, high strength titanium alloys is shown in FIG. 2.
- the method generally includes an elevated temperature deformation step conducted below the beta transus temperature, and a heat treatment step including heating above the beta transus temperature followed by controlled cooling.
- the prior art thermomechanical processing steps used to produce titanium alloys having both high strength and high toughness are expensive, and currently only a limited number of manufacturers have the capability to conduct these steps. Accordingly, it would be advantageous to provide an improved process for increasing strength and/or toughness of titanium alloys.
- a non-limiting embodiment of a method for increasing the strength and toughness of a titanium alloy includes plastically deforming a titanium alloy at a temperature in the alpha-beta phase field of the titanium alloy to an equivalent plastic deformation of at least a 25% reduction in area. After plastically deforming the titanium alloy at a temperature in the alpha-beta phase field, the titanium alloy is not heated to a temperature at or above a beta transus temperature of the titanium alloy.
- the titanium alloy is heat treated at a heat treatment temperature less than or equal to the beta transus temperature minus 20°F for a heat treatment time sufficient to produce a heat treated alloy having a fracture toughness (K
- the titanium alloy may be heat treated after plastic deformation at a temperature in the alpha-beta phase field of the titanium alloy to an equivalent plastic deformation of at least a 25% reduction in area at a heat treatment temperature less than or equal to the beta transus temperature minus 20°F for a heat treatment time sufficient to produce a heat treated alloy having a fracture toughness (K
- C fracture toughness
- a non-limiting method for thermomechanically treating a titanium alloy includes working a titanium alloy in a working temperature range of 200°F (1 1 1°C) above the beta transus temperature of the titanium alloy to 400°F (222°C) below the beta transus temperature.
- a working temperature range of 200°F (1 1 1°C) above the beta transus temperature of the titanium alloy to 400°F (222°C) below the beta transus temperature.
- an equivalent plastic deformation of at least 25% reduction in area may occur in an alpha-beta phase field of the titanium alloy, and the titanium alloy is not heated above the beta transus
- the alloy after working the titanium alloy, the alloy may be heat treated in a heat treatment temperature range between 1500°F (816°C) and 900°F (482°C) for a heat treatment time of between 0.5 and 24 hours.
- the titanium alloy may be heat treated in a heat treatment temperature range between 1500°F (816°C) and 900°F (482°C) for a heat treatment time sufficient to produce a heat treated alloy having a fracture toughness (K
- C fracture toughness
- a non-limiting embodiment of a method for processing titanium alloys comprises working a titanium alloy in an alpha-beta phase field of the titanium alloy to provide an equivalent plastic deformation of at least a 25% reduction in area of the titanium alloy.
- the titanium alloy is capable of retaining beta-phase at room temperature.
- the titanium alloy after working the titanium alloy, the titanium alloy may be heat treated at a heat treatment temperature no greater than the beta transus temperature minus 20°F for a heat treatment time sufficient to provide the titanium alloy with an average ultimate tensile strength of at least 150 ksi and a K !c fracture toughness of at least 70 ksi-in /2 .
- the heat treatment time is in the range of 0.5 hours to 24 hours.
- Yet a further aspect of the present disclosure is directed to a titanium alloy that has been processed according to a method encompassed by the present disclosure.
- One non-limiting embodiment is directed to a Ti-5AI-5V-5Mo-3Cr alloy that has been processed by a method according to the present disclosure including steps of plastically deforming and heat treating the titanium alloy, and wherein the heat treated alloy has a fracture toughness (K
- Ti-5AI-5V-5Mo-3Cr alloy which also is known as Ti-5553 alloy or Ti 5-5-5-3 alloy, includes nominally 5 weight percent aluminum, 5 weight percent vanadium, 5 weight percent molybdenum, 3 weight percent chromium, and balance titanium and incidental impurities.
- the titanium alloy is plastically deformed at a temperature in the alpha-beta phase field of the titanium alloy to an equivalent plastic deformation of at least a 25% reduction in area. After plastically deforming the titanium alloy at a temperature in the alpha-beta phase field, the titanium alloy is not heated to a temperature at or above a beta transus temperature of the titanium alloy.
- the titanium alloy is heat treated at a heat treatment temperature less than or equal to the beta transus temperature minus 20°F (1 1 .1 °C) for a heat treatment time sufficient to produce a heat treated alloy having a fracture toughness (K
- C fracture toughness
- YS yield strength
- Yet another aspect according to the present disclosure is directed to an article adapted for use in at least one of an aeronautic application and an aerospace application and comprising a Ti-5AI-5V-5Mo-3Cr alloy that has been processed by a method including plastically deforming and heat treating the titanium alloy in a manner sufficient so that a fracture toughness (K
- the titanium alloy may be plastically deformed at a temperature in the alpha-beta phase field of the titanium alloy to an equivalent plastic deformation of at least a 25% reduction in area.
- the titanium alloy After plastically deforming the titanium alloy at a temperature in the alpha-beta phase field, the titanium alloy is not heated to a temperature at or above a beta transus temperature of the titanium alloy.
- the titanium alloy may be heat treated at a heat treatment temperature less than or equal to (i.e., no greater than) the beta transus temperature minus 20°F (1 1 .1 °C) for a heat treatment time sufficient to produce a heat treated alloy having a fracture toughness (K ic ) that is related to the yield strength (YS) of the heat treated alloy according to the equation K
- FIG. 1 A is an example of a phase diagram for titanium alloyed with an alpha stabilizing element
- FIG. 1 B is an example of a phase diagram for titanium alloyed with an isomorphous beta stabilizing element
- FIG. 1 C is an example of a phase diagram for titanium alloyed with a eutectoid beta stabilizing element
- FIG. 2 is a schematic representation of a prior art thermomechanical processing scheme for producing tough, high-strength titanium alloys
- FIG. 3 is a time-temperature diagram of a non-limiting embodiment of a method according to the present disclosure comprising substantially all alpha-beta phase plastic deformation
- FIG. 4 is a time-temperature diagram of another non-limiting embodiment
- FIG. 5 is a graph of K
- FIG. 6 is a graph of K
- FIG. 7 A is a micrograph of a Ti 5-5-5-3 alloy in the longitudinal direction after rolling and heat treating at 1250°F (677°C) for 4 hours;
- FIG. 7B is a micrograph of a Ti 5-5-5-3 alloy in the transverse direction after rolling and heat treating at 1250°F (677°C) for 4 hours.
- Certain non-limiting embodiments according to the present disclosure are directed to thermomechanical methods for producing tough and high strength titanium alloys and that do not require the use of complicated, multi-step heat
- thermomechanical methods disclosed herein include only a high temperature
- thermomechanical processing within the present disclosure can be conducted at any facility that is reasonably well equipped to perform titanium thermomechanical heat treatment.
- the embodiments contrast with conventional heat treatment practices for imparting high toughness and high strength to titanium alloys, practices commonly requiring sophisticated equipment for closely controlling alloy cooling rates.
- one non-limiting method 20 for increasing the strength and toughness of a titanium alloy comprises plastically deforming 22 a titanium alloy at a temperature in the alpha-beta phase field of the titanium alloy to an equivalent plastic deformation of at least a 25% reduction in area.
- the equivalent 25% plastic deformation in the alpha-beta phase field involves a final plastic deformation temperature 24 in the alpha-beta phase field.
- final plastic deformation temperature is defined herein as the temperature of the titanium alloy at the conclusion of plastically deforming the titanium alloy and prior to aging the titanium alloy.
- the titanium alloy is not heated above the beta transus temperature (T p ) of the titanium alloy during the method 20.
- T p beta transus temperature
- the titanium alloy is heat treated 26 at a temperature below the beta transus temperature for a time sufficient to impart high strength and high fracture toughness to the titanium alloy.
- the heat treatment 26 may be conducted at a temperature at least 20°F below the beta transus temperature. In another non-limiting embodiment, the heat treatment 26 may be conducted at a temperature at least 50°F below the beta transus temperature.
- the temperature of the heat treatment 26 may be below the final plastic deformation temperature 24. In other non-limiting embodiments, not shown in FIG. 3, in order to further increase the fracture toughness of the titanium alloy, the temperature of the heat treatment may be above the final plastic deformation temperature, but less than the beta transus temperature. It will be understood that although FIG. 3 shows a constant temperature for the plastic deformation 22 and the heat treatment 26, in other non-limiting embodiments of a method according to the present disclosure the temperature of the plastic deformation 22 and/or the heat treatment 26 may vary. For example, a natural decrease in temperature of the titanium alloy workpiece occurs during plastic deformation is within the scope of embodiments disclosed herein. The schematic temperature - time plot of FIG.
- FIG. 3 illustrates that certain embodiments of methods of heat treating titanium alloys to impart high strength and high toughness disclosed herein contrast with conventional heat treatment practices for imparting high strength and high toughness to titanium alloys.
- conventional heat treatment practices typically require multi-step heat treatments and sophisticated equipment for closely controlling alloy cooling rates, and are therefore expensive and cannot be practiced at all heat treatment facilities.
- the specific titanium alloy composition determines the combination of heat-treatment time(s) and heat treatment temperature(s) that will impart the desired mechanical properties using methods according to the present disclosure. Further, the heat treatment times and temperatures can be adjusted to obtain a specific desired balance of strength and fracture toughness for a particular alloy composition. In certain non-limiting embodiments disclosed herein, for example, by adjusting the heat treatment times and temperatures used to process a Ti-5AI-5V-5Mo-3Cr (Ti 5-5-5-3) alloy by a method according to the present disclosure, ultimate tensile strengths of 140 ksi to 180 ksi combined with fracture toughness levels of 60 ksi-in 1/2 K
- plastic deformation is used herein to mean the inelastic distortion of a material under applied stress or stresses that strains the material beyond its elastic limit.
- reduction in area is used herein to mean the difference between the cross-sectional area of a titanium alloy form prior to plastic deformation and the cross-sectional area of the titanium alloy form after plastic deformation, wherein the cross-section is taken at an equivalent location.
- the titanium alloy form used in assessing reduction in area may be, but is not limited to, any of a billet, a bar, a plate, a rod, a coil, a sheet, a rolled shape, and an extruded shape.
- An example of a reduction in area calculation for plastically deforming a 5 inch diameter round titanium alloy billet by rolling the billet to a 2.5 inch round titanium alloy bar follows.
- the cross-sectional area of a 5 inch diameter round billet is ⁇ (pi) times the square of the radius, or approximately (3.1415) x (2.5 inch) 2 , or 19.625 in 2 .
- the cross-sectional area of a 2.5 inch round bar is approximately (3.1415) x (1 .25) 2 , or 4.91 in 2 .
- the ratio of the cross-section area of the starting billet to the bar after rolling is 4.91/ 19.625, or 25%.
- the reduction in area is 100% - 25%, for a 75% reduction in area.
- Equivalent plastic deformation is used herein to mean the inelastic distortion of a material under applied stresses that strain the material beyond its elastic limit. Equivalent plastic deformation may involve stresses that would result in the specified reduction in area obtained with uniaxial deformation, but occurs such that the dimensions of the alloy form after deformation are not substantially different than the dimensions of the alloy form prior to deformation.
- multi-axis forging may be used to subject an upset forged titanium alloy billet to substantial plastic deformation, introducing dislocations into the alloy, but without substantially changing the final dimensions of the billet.
- the equivalent plastic deformation is at least 25%, the actual reduction in area may by 5% or less.
- the actual reduction in area may by 1 % or less.
- Multi-axis forging is a technique known to a person having ordinary skill in the art and, therefore, is not further described herein.
- a titanium alloy may be plastically deformed to an equivalent plastic deformation of greater than a 25% reduction in area and up to a 99% reduction in area.
- the equivalent plastic deformation is greater than a 25% reduction in area
- at least an equivalent plastic deformation of a 25% reduction in area in the alpha-beta phase field occurs at the end of the plastic deformation, and the titanium alloy is not heated above the beta transus temperature (T R ) of the titanium alloy after the plastic deformation.
- plastically deforming the titanium alloy comprises plastically deforming the titanium alloy so that all of the equivalent plastic deformation occurs in the alpha-beta phase field.
- FIG. 3 depicts a constant plastic deformation temperature in the alpha-beta phase field, it also is within the scope of embodiments herein that the equivalent plastic deformation of at least a 25% percent reduction in area in the alpha-beta phase field occurs at varying temperatures.
- the titanium alloy may be worked in the alpha-beta phase field while the temperature of the alloy gradually decreases. It is also within the scope of
- plastically deforming the titanium alloy in the alpha-beta phase region comprises plastically deforming the alloy in a plastic deformation temperature range of just below the beta transus temperature, or about 18°F (10°C) below the beta transus temperature to 400°F (222°C) below the beta transus temperature.
- plastically deforming the titanium alloy in the alpha-beta phase region comprises plastically deforming the alloy in a plastic deformation temperature range of 400°F (222°C) below the beta transus temperature to 20°F (1 1 .1 °C) below the beta transus temperature.
- plastically deforming the titanium alloy in the alpha-beta phase region comprises plastically deforming the alloy in a plastic deformation temperature range of 50°F (27.8°C) below the beta transus temperature to 400°F (222°C) below the beta transus temperature.
- another non-limiting method 30 includes a feature referred to herein as "through beta transus” processing.
- plastic deformation also referred to herein as “working” begins with the temperature of the titanium alloy at or above the beta transus temperature (T p ) of the titanium alloy.
- plastic deformation 32 includes plastically deforming the titanium alloy from a temperature 34 that is at or above the beta transus temperature to a final plastic deformation temperature 24 that is in the alpha-beta phase field of the titanium alloy.
- T p beta transus temperature
- plastic deformation 32 includes plastically deforming the titanium alloy from a temperature 34 that is at or above the beta transus temperature to a final plastic deformation temperature 24 that is in the alpha-beta phase field of the titanium alloy.
- FIG. 4 illustrates that non-limiting embodiments of methods of heat treating titanium alloys to impart high strength and high toughness disclosed herein contrast with conventional heat treatment practices for imparting high strength and high toughness to titanium alloys.
- conventional heat treatment practices typically require multi-step heat treatments and sophisticated equipment for closely controlling alloy cooling rates, and are therefore expensive and cannot be practiced at all heat treatment facilities.
- plastically deforming the titanium alloy in a through beta transus process comprises plastically deforming the titanium alloy in a temperature range of 200°F (1 1 1 °C) above the beta transus temperature of the titanium alloy to 400°F
- this temperature range is effective as long as (i) a plastic deformation equivalent to at least a 25% reduction in area occurs in the alpha-beta phase field and (ii) the titanium alloy is not heated to a temperature at or above the beta transus temperature after the plastic deformation in the alpha-beta phase field.
- the titanium alloy can be plastically deformed by techniques including, but not limited to, forging, rotary forging, drop forging, multi-axis forging, bar rolling, plate rolling, and extruding, or by combinations of two or more of these techniques.
- Plastic deformation can be accomplished by any suitable mill processing technique known now or hereinafter to a person having ordinary skill in the art, as long as the processing technique used is capable of plastically deforming the titanium alloy workpiece in the alpha-beta phase region to at least an equivalent of a 25% reduction in area.
- the plastic deformation of the titanium alloy to at least an equivalent of a 25% reduction in area occurring in the alpha-beta phase region does not substantially change the final dimensions of the titanium alloy. This may be achieved by a technique such as, for example, multi-axis forging. In other words, multi-axis forging.
- the plastic deformation comprises an actual reduction in area of a cross- section of the titanium alloy upon completion of the plastic deformation.
- a person skilled in the art realizes that the reduction in area of a titanium alloy resulting from plastic deformation at least equivalent to a reduction in area of 25% could result, for example, in actually changing the referenced cross-sectional area of the titanium alloy, i.e., an actual reduction in area, anywhere from as little as 0% or 1 %, and up to 25%.
- a non-limiting embodiment of a method according to the present disclosure comprises cooling the titanium alloy to room temperature after plastically deforming the titanium alloy and before heat treating the titanium alloy. Cooling can be achieved by furnace cooling, air cooling, water cooling, or any other suitable cooling technique known now or hereafter to a person having ordinary skill in the art.
- An aspect of this disclosure is such that after hot working the titanium alloy according to embodiments disclosed herein, the titanium alloy is not heated to or above the beta transus temperature. Therefore, the step of heat treating does not occur at or above the beta transus temperature of the alloy.
- heat treating comprises heating the titanium alloy at a temperature ("heat treatment temperature") in the range of 900°F (482°C) to 1500°F (816°C) for a time ("heat treatment time") in the range of 0.5 hours to 24 hours.
- the heat treatment temperature may be above the final plastic deformation temperature, but less than the beta transus temperature of the alloy.
- the heat treatment temperature (T h ) is less than or equal to the beta transus temperature minus 20°F (1 1 .1 °C), i.e., T h ⁇ ( ⁇ - 20°F).
- the heat treatment temperature (T h ) is less than or equal to the beta transus temperature minus 50°F (27.8°C), i.e., T h ⁇ (Tp - 20°F).
- a heat treatment temperature may be in a range from at least 900°F (482°C) to the beta transus temperature minus 20°F (1 1 .1°C), or in a range from at least 900°F (482°C) to the beta transus temperature minus 50°F (27.8°C). It is understood that heat treatment times may be longer than 24 hours, for example, when the thickness of the part requires long heating times.
- Another non-limiting embodiment of a method according to the present disclosure comprises direct aging after plastically deforming the titanium alloy, wherein the titanium alloy is cooled or heated directly to the heat treatment temperature after plastically deforming the titanium alloy in the alpha-beta phase field. It is believed that in certain non-limiting embodiments of the present method in which the titanium alloy is cooled directly to the heat treatment temperature after plastic deformation, the rate of cooling will not significantly negatively affect the strength and toughness properties achieved by the heat treatment step.
- the titanium alloy in non-limiting embodiments of the present method in which the titanium alloy is heat treated at a heat treatment temperature above the final plastic deformation temperature, but below the beta transus temperature, the titanium alloy may be directly heated to the heat treatment temperature after plastically deforming the titanium alloy in the alpha-beta phase field.
- thermomechanical method include applying the process to a titanium alloy that is capable of retaining ⁇ phase at room temperature.
- titanium alloys that may be advantageously processed by various embodiments of methods according to the present disclosure include beta titanium alloys, metastable beta titanium alloys, near- beta titanium alloys, alpha-beta titanium alloys, and near-alpha titanium alloys. It is contemplated that the methods disclosed herein may also increase the strength and toughness of alpha titanium alloys because, as discussed above, even CP titanium grades include small concentrations of ⁇ phase at room temperature.
- the methods may be used to process titanium alloys that are capable of retaining ⁇ phase at room temperature, and that are capable of retaining or precipitating a phase after aging.
- These alloys include, but are not limited to, the general categories of beta titanium alloys, alpha-beta titanium alloys, and alpha alloys comprising small volume percentages of ⁇ phase.
- Non-limiting examples of titanium alloys that may be processed using embodiments of methods according to the present disclosure include: alpha/beta titanium alloys, such as, for example, Ti-6AI-4V alloy (UNS Numbers R56400 and R54601 ) and Ti-6AI-2Sn-4Zr-2Mo alloy (UNS Numbers R54620 and R54621 ); near-beta titanium alloys, such as, for example, Ti-10V-2Fe-3AI alloy (UNS R54610)); and metastable beta titanium alloys, such as, for example, Ti-15Mo alloy (UNS R58150) and Ti-5AI-5V-5Mo-3Cr alloy (UNS unassigned).
- alpha/beta titanium alloys such as, for example, Ti-6AI-4V alloy (UNS Numbers R56400 and R54601 ) and Ti-6AI-2Sn-4Zr-2Mo alloy (UNS Numbers R54620 and R54621
- near-beta titanium alloys such as, for example, Ti-10V
- the titanium alloy may have an ultimate tensile strength in the range of 138 ksi to 179 ksi.
- the ultimate tensile strength properties discussed herein may be measured according to the specification of ASTM E8 - 04, "Standard Test Methods for Tension Testing of Metallic Materials".
- the titanium alloy may have an K
- C fracture toughness values discussed herein may be measured according to the specification ASTM E399 - 08, "Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K lc of Metallic Materials".
- ASTM E399 - 08 Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K lc of Metallic Materials.
- the titanium alloy may have a yield strength in the range of 134 ksi to 170 ksi.
- the titanium alloy may have a percent elongation in the range of 4.4% to 20.5%.
- advantageous ranges of strength and fracture toughness for titanium alloys that can be achieved by practicing embodiments of methods according to the present disclosure include, but are not limited to, ultimate tensile strengths from 140 ksi to 180 ksi with fracture toughness ranging from about 40 ksi-in /2 K
- advantageous ranges of strength and fracture toughness include ultimate tensile strengths of 160 ksi to 180 ksi with fracture toughness ranging from 40 ksi-in 1 2 K
- Other advantageous ranges of strength and fracture toughness that can be achieved by practicing certain embodiments of methods according to the present disclosure include, but are not limited to: ultimate tensile strengths of 135 ksi to180 ksi with fracture toughness ranging from 55 ksi-in 1 2 K
- the alloy after heat treating the titanium alloy, the alloy has an average ultimate tensile strength of at least 166 ksi, an average yield strength of at least 148 ksi, a percent elongation of at least 6%, and a Ki c fracture toughness of at least 65 ksi-in 1/2 .
- Other non-limiting embodiments of methods according to the present disclosure provide a heat-treated titanium alloy having an ultimate tensile strength of at least 150 ksi and a Kic fracture toughness of at least 70 ksi-in 1/2 .
- Still other non-limiting embodiments of methods according to the present disclosure provide a heat-treated titanium alloy having an ultimate tensile strength of at least 135 ksi and a fracture toughness of at least 55 ksi-in 1/2 .
- thermomechanically treating a titanium alloy comprises working (i.e., plastically deforming) a titanium alloy in a temperature range of 200°F (1 1 1 °C) above a beta transus temperature of the titanium alloy to 400°F (222°C) below the beta transus temperature.
- working i.e., plastically deforming
- a titanium alloy in a temperature range of 200°F (1 1 1 °C) above a beta transus temperature of the titanium alloy to 400°F (222°C) below the beta transus temperature.
- an equivalent plastic deformation of at least a 25% reduction in area occurs in an alpha-beta phase field of the titanium alloy.
- the titanium alloy is not heated above the beta transus temperature.
- the titanium alloy may be heat treated at a heat treatment temperature ranging between 900°F (482°C) and 1500°F (816°C) for a heat treatment time ranging between 0.5 and 24 hours.
- working the titanium alloy provides an equivalent plastic deformation of greater than a 25% reduction in area and up to a 99% reduction in area, wherein an equivalent plastic deformation of at least 25% occurs in the alpha-beta phase region of the titanium alloy of the working step and the titanium alloy is not heated above the beta transus temperature after the plastic deformation.
- a non-limiting embodiment comprises working the titanium alloy in the alpha-beta phase field.
- working comprises working the titanium alloy at a temperature at or above the beta transus temperature to a final working temperature in the alpha-beta field, wherein the working comprises an equivalent plastic deformation of a 25% reduction in area in the alpha-beta phase field of the titanium alloy and the titanium alloy is not heated above the beta transus temperature after the plastic deformation.
- an alloy has mechanical properties that are "useful” for a particular application if toughness and strength of the alloy are at least as high as or are within a range that is required for the application. Mechanical properties for the following alloys that are useful for certain aerospace and aeronautical application were collected:
- Ti-10V-2Fe-3-AI Ti 10-2-3; UNS R54610
- Ti-5AI-5V-5Mo-3Cr Ti 5-5-5-3; UNS unassigned
- Ti-6AI-2Sn-4Zr-2Mo alloy Ti 6-2-4-2; UNS Numbers R54620 and
- embodiments of the method according to the present disclosure result in titanium alloys having yield strength and fracture toughness that are at least comparable to the same alloys if processed using relatively costly and procedurally complex prior art thermomechanical techniques.
- Ti-5AI-5V-5Mo-3Cr Ti 5-5-5-3Cr (Ti 5-5-5-3) alloy, from ATI Allvac, Monroe, North Carolina, was rolled to 2.5 inch bar at a starting temperature of about 1450°F (787.8°C), in the alpha-beta phase field.
- the beta transus temperature of the Ti 5-5-5-3 alloy was about 1530°F (832°C).
- the Ti 5-5-5-3 alloy had a mean ingot chemistry of 5.02 weight percent aluminum, 4.87 weight percent vanadium, 0.41 weight percent iron, 4.90 weight percent molybdenum, 2.85 weight percent chromium, 0.12 weight percent oxygen, 0.09 weight percent zirconium, 0.03 weight percent silicon, remainder titanium and incidental impurities.
- the final working temperature was 1480°F (804.4°C), also in the alpha-beta phase field and no less than 400°F (222°C) below the beta transus temperature of the alloy.
- the alloy was air cooled to room temperature. Samples of the cooled alloy were heat treated at several heat treatment temperatures for various heat treatment times. Mechanical properties of the heat treated alloy samples were measured in the
- Typical targets for properties of Ti 5-5-5-3 alloy used in aerospace applications include an average ultimate tensile strength of at least 150 ksi and a minimum fracture toughness K
- FIG. 7A is an optical micrograph (100x) in the longitudinal direction
- FIG. 7B is an optical micrograph (100x) in the transverse direction of a representative prepared specimen.
- the microstructure produced after rolling and heat treating at 1250°F (677°C) for 4 hours is a fine a phase dispersed in a ⁇ phase matrix.
- a bar of Ti-15Mo alloy obtained from ATI Allvac was plastically deformed to a 75% reduction at a starting temperature of 1400°F (760.0°C), which is in the alpha-beta phase field.
- the beta transus temperature of the Ti-15Mo alloy was about 1475°F (801 .7°C).
- the final working temperature of the alloy was about 1200°F (648.9°C), which is no less than 400°F (222°C) below the alloy's beta transus
- the Ti-15Mo bar was aged at 900°F (482.2°C) for 16 hours. After aging, the Ti-15Mo bar had ultimate tensile strengths ranging from 178-188 ksi, yield strengths ranging from 170-175 ksi, and K
- a 5 inch round billet of Ti-5AI-5V-5Mo-3Cr (Ti 5-5-5-3) alloy is rolled to 2.5 inch bar at a starting temperature of about 1650°F (889°C), in the beta phase field.
- the beta transus temperature of the Ti 5-5-5-3 alloy is about 1530°F (832°C).
- the final working temperature is 1330°F (721 °C), which is in the alpha-beta phase field and no less than 400°F (222°C) below the beta transus temperature of the alloy.
- the reduction in diameter of the alloy corresponds to a 75% reduction in area.
- the plastic deformation temperature cools during plastic deformation and passes through the beta transus temperature.
- At least a 25% reduction of area occurs in the alpha-beta phase field as the alloy cools during plastic deformation. After the at least 25% reduction in the alpha-beta phase field the alloy is not heated above the beta transus temperature. After rolling, the alloy was air cooled to room temperature. The alloys are aged at 1300°F (704°C) for 2 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
- Materials For Medical Uses (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Powder Metallurgy (AREA)
Priority Applications (16)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MX2012007178A MX353903B (es) | 2010-01-22 | 2010-12-29 | Produccion de titanio de alta resistencia. |
| EP10803547.8A EP2526215B1 (en) | 2010-01-22 | 2010-12-29 | Production of high strength titanium alloys |
| PL10803547T PL2526215T3 (pl) | 2010-01-22 | 2010-12-29 | Wytwarzanie stopów tytanu o dużej wytrzymałości |
| KR1020127015595A KR101827017B1 (ko) | 2010-01-22 | 2010-12-29 | 고강도 티타늄 합금의 제조 |
| JP2012550002A JP5850859B2 (ja) | 2010-01-22 | 2010-12-29 | 高強度チタンの生産 |
| UAA201210024A UA109892C2 (uk) | 2010-01-22 | 2010-12-29 | Спосіб термомеханічної обробки титанового сплаву (варіанти) |
| AU2010343097A AU2010343097B2 (en) | 2010-01-22 | 2010-12-29 | Production of high strength titanium alloys |
| BR112012016546-1A BR112012016546B1 (pt) | 2010-01-22 | 2010-12-29 | Métodos para aumentar a resistência e a tenacidade de uma liga de titânio, tratar termomecanicamente ligas de titânio e processar ligas de titânio |
| RU2012136150/02A RU2566113C2 (ru) | 2010-01-22 | 2010-12-29 | Получение высокопрочного титана |
| CN2010800607739A CN102712967A (zh) | 2010-01-22 | 2010-12-29 | 高强度钛合金的制造 |
| NZ600696A NZ600696A (en) | 2010-01-22 | 2010-12-29 | Production of high strength titanium alloys |
| ES10803547T ES2718104T3 (es) | 2010-01-22 | 2010-12-29 | Fabricación de aleaciones de titanio de alta resistencia |
| CA2784509A CA2784509C (en) | 2010-01-22 | 2010-12-29 | Production of high strength titanium |
| IL220372A IL220372A (en) | 2010-01-22 | 2012-06-13 | Manufacture of high strength titanium alloys |
| IN5891DEN2012 IN2012DN05891A (enExample) | 2010-01-22 | 2012-07-03 | |
| ZA2012/05335A ZA201205335B (en) | 2010-01-22 | 2012-07-17 | Production of high strength titanium alloys |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/691,952 | 2010-01-22 | ||
| US12/691,952 US10053758B2 (en) | 2010-01-22 | 2010-01-22 | Production of high strength titanium |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2011090733A2 true WO2011090733A2 (en) | 2011-07-28 |
| WO2011090733A3 WO2011090733A3 (en) | 2011-10-27 |
Family
ID=43795016
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2010/062284 Ceased WO2011090733A2 (en) | 2010-01-22 | 2010-12-29 | Production of high strength titanium |
Country Status (21)
| Country | Link |
|---|---|
| US (1) | US10053758B2 (enExample) |
| EP (1) | EP2526215B1 (enExample) |
| JP (1) | JP5850859B2 (enExample) |
| KR (1) | KR101827017B1 (enExample) |
| CN (2) | CN102712967A (enExample) |
| AU (1) | AU2010343097B2 (enExample) |
| BR (1) | BR112012016546B1 (enExample) |
| CA (1) | CA2784509C (enExample) |
| ES (1) | ES2718104T3 (enExample) |
| IL (1) | IL220372A (enExample) |
| IN (1) | IN2012DN05891A (enExample) |
| MX (1) | MX353903B (enExample) |
| NZ (2) | NZ700770A (enExample) |
| PE (1) | PE20130060A1 (enExample) |
| PL (1) | PL2526215T3 (enExample) |
| RU (1) | RU2566113C2 (enExample) |
| TR (1) | TR201906623T4 (enExample) |
| TW (1) | TWI506149B (enExample) |
| UA (1) | UA109892C2 (enExample) |
| WO (1) | WO2011090733A2 (enExample) |
| ZA (1) | ZA201205335B (enExample) |
Families Citing this family (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040221929A1 (en) | 2003-05-09 | 2004-11-11 | Hebda John J. | Processing of titanium-aluminum-vanadium alloys and products made thereby |
| US7837812B2 (en) | 2004-05-21 | 2010-11-23 | Ati Properties, Inc. | Metastable beta-titanium alloys and methods of processing the same by direct aging |
| US9255316B2 (en) | 2010-07-19 | 2016-02-09 | Ati Properties, Inc. | Processing of α+β titanium alloys |
| US8499605B2 (en) | 2010-07-28 | 2013-08-06 | Ati Properties, Inc. | Hot stretch straightening of high strength α/β processed titanium |
| US9206497B2 (en) | 2010-09-15 | 2015-12-08 | Ati Properties, Inc. | Methods for processing titanium alloys |
| US8613818B2 (en) | 2010-09-15 | 2013-12-24 | Ati Properties, Inc. | Processing routes for titanium and titanium alloys |
| US10513755B2 (en) | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
| JP5748267B2 (ja) * | 2011-04-22 | 2015-07-15 | 株式会社神戸製鋼所 | チタン合金ビレットおよびチタン合金ビレットの製造方法並びにチタン合金鍛造材の製造方法 |
| US8652400B2 (en) | 2011-06-01 | 2014-02-18 | Ati Properties, Inc. | Thermo-mechanical processing of nickel-base alloys |
| RU2469122C1 (ru) * | 2011-10-21 | 2012-12-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Способ термомеханической обработки заготовок из двухфазных титановых сплавов |
| US10119178B2 (en) * | 2012-01-12 | 2018-11-06 | Titanium Metals Corporation | Titanium alloy with improved properties |
| JP5477519B1 (ja) * | 2012-08-15 | 2014-04-23 | 新日鐵住金株式会社 | 強度および靭性に優れた省資源型チタン合金部材およびその製造方法 |
| US9050647B2 (en) | 2013-03-15 | 2015-06-09 | Ati Properties, Inc. | Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys |
| CN102978437A (zh) * | 2012-11-23 | 2013-03-20 | 西部金属材料股份有限公司 | 一种α+β两相钛合金及其加工方法 |
| US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
| US9192981B2 (en) | 2013-03-11 | 2015-11-24 | Ati Properties, Inc. | Thermomechanical processing of high strength non-magnetic corrosion resistant material |
| US9777361B2 (en) | 2013-03-15 | 2017-10-03 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
| US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
| US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
| WO2016172601A1 (en) * | 2015-04-24 | 2016-10-27 | Biomet Manufacturing, Llc | Bone fixation systems, devices, and methods |
| US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
| JP6871938B2 (ja) * | 2016-04-22 | 2021-05-19 | アーコニック インコーポレイテッドArconic Inc. | 押し出されたチタン製品を仕上げる改良された方法 |
| KR20180117203A (ko) * | 2016-04-25 | 2018-10-26 | 아르코닉 인코포레이티드 | 티타늄, 알루미늄, 바나듐, 및 철로 이루어진 bcc 재료, 및 이로 제조된 제품 |
| CN105803261B (zh) * | 2016-05-09 | 2018-01-02 | 东莞双瑞钛业有限公司 | 高尔夫球头用的高韧性铸造钛合金材料 |
| CN106363021B (zh) * | 2016-08-30 | 2018-08-10 | 西部超导材料科技股份有限公司 | 一种1500MPa级钛合金棒材的轧制方法 |
| CN107699830B (zh) * | 2017-08-15 | 2019-04-12 | 昆明理工大学 | 一种同时提高工业纯钛强度和塑性的方法 |
| US12325899B2 (en) * | 2017-10-06 | 2025-06-10 | Monash University | Heat treatable titanium alloy |
| PL4118251T3 (pl) * | 2020-03-11 | 2024-08-19 | Bae Systems Plc | Sposób formowania wyrobu z prekursora ze stopu ti |
| EP3878997A1 (en) * | 2020-03-11 | 2021-09-15 | BAE SYSTEMS plc | Method of forming precursor into a ti alloy article |
| CN112191843A (zh) * | 2020-08-26 | 2021-01-08 | 东莞材料基因高等理工研究院 | 一种激光选区熔化制备Ti-1Al-8V-5Fe合金材料的方法 |
| CN112662912A (zh) * | 2020-10-28 | 2021-04-16 | 西安交通大学 | 一种Ti-V-Mo-Zr-Cr-Al系高强亚稳β钛合金及其制备方法 |
| CN113555072B (zh) * | 2021-06-10 | 2024-06-28 | 中国科学院金属研究所 | 一种模拟钛合金α片层分叉生长过程的相场动力学方法 |
| KR20240056276A (ko) * | 2022-10-21 | 2024-04-30 | 국립순천대학교산학협력단 | 타이타늄 합금 및 이의 제조방법 |
| US12344918B2 (en) | 2023-07-12 | 2025-07-01 | Ati Properties Llc | Titanium alloys |
| CN118064702B (zh) * | 2024-02-17 | 2024-08-23 | 宝鸡市创信金属材料有限公司 | 一种可热塑性形变Ti6242S高温钛合金线材的加工方法 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040250932A1 (en) | 2003-06-10 | 2004-12-16 | Briggs Robert D. | Tough, high-strength titanium alloys; methods of heat treating titanium alloys |
Family Cites Families (370)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2974076A (en) | 1954-06-10 | 1961-03-07 | Crucible Steel Co America | Mixed phase, alpha-beta titanium alloys and method for making same |
| GB847103A (en) | 1956-08-20 | 1960-09-07 | Copperweld Steel Co | A method of making a bimetallic billet |
| US3025905A (en) * | 1957-02-07 | 1962-03-20 | North American Aviation Inc | Method for precision forming |
| US3015292A (en) * | 1957-05-13 | 1962-01-02 | Northrop Corp | Heated draw die |
| US2932886A (en) * | 1957-05-28 | 1960-04-19 | Lukens Steel Co | Production of clad steel plates by the 2-ply method |
| US2857269A (en) | 1957-07-11 | 1958-10-21 | Crucible Steel Co America | Titanium base alloy and method of processing same |
| US2893864A (en) | 1958-02-04 | 1959-07-07 | Harris Geoffrey Thomas | Titanium base alloys |
| US3060564A (en) | 1958-07-14 | 1962-10-30 | North American Aviation Inc | Titanium forming method and means |
| US3082083A (en) | 1960-12-02 | 1963-03-19 | Armco Steel Corp | Alloy of stainless steel and articles |
| US3117471A (en) | 1962-07-17 | 1964-01-14 | Kenneth L O'connell | Method and means for making twist drills |
| US3313138A (en) * | 1964-03-24 | 1967-04-11 | Crucible Steel Co America | Method of forging titanium alloy billets |
| US3379522A (en) * | 1966-06-20 | 1968-04-23 | Titanium Metals Corp | Dispersoid titanium and titaniumbase alloys |
| US3436277A (en) * | 1966-07-08 | 1969-04-01 | Reactive Metals Inc | Method of processing metastable beta titanium alloy |
| GB1170997A (en) | 1966-07-14 | 1969-11-19 | Standard Pressed Steel Co | Alloy Articles. |
| US3489617A (en) * | 1967-04-11 | 1970-01-13 | Titanium Metals Corp | Method for refining the beta grain size of alpha and alpha-beta titanium base alloys |
| US3469975A (en) | 1967-05-03 | 1969-09-30 | Reactive Metals Inc | Method of handling crevice-corrosion inducing halide solutions |
| US3605477A (en) | 1968-02-02 | 1971-09-20 | Arne H Carlson | Precision forming of titanium alloys and the like by use of induction heating |
| US4094708A (en) * | 1968-02-16 | 1978-06-13 | Imperial Metal Industries (Kynoch) Limited | Titanium-base alloys |
| US3615378A (en) | 1968-10-02 | 1971-10-26 | Reactive Metals Inc | Metastable beta titanium-base alloy |
| US3584487A (en) * | 1969-01-16 | 1971-06-15 | Arne H Carlson | Precision forming of titanium alloys and the like by use of induction heating |
| US3635068A (en) * | 1969-05-07 | 1972-01-18 | Iit Res Inst | Hot forming of titanium and titanium alloys |
| US3649259A (en) | 1969-06-02 | 1972-03-14 | Wyman Gordon Co | Titanium alloy |
| GB1501622A (en) | 1972-02-16 | 1978-02-22 | Int Harvester Co | Metal shaping processes |
| US3676225A (en) | 1970-06-25 | 1972-07-11 | United Aircraft Corp | Thermomechanical processing of intermediate service temperature nickel-base superalloys |
| US3686041A (en) * | 1971-02-17 | 1972-08-22 | Gen Electric | Method of producing titanium alloys having an ultrafine grain size and product produced thereby |
| DE2148519A1 (de) * | 1971-09-29 | 1973-04-05 | Ottensener Eisenwerk Gmbh | Verfahren und vorrichtung zum erwaermen und boerdeln von ronden |
| DE2204343C3 (de) | 1972-01-31 | 1975-04-17 | Ottensener Eisenwerk Gmbh, 2000 Hamburg | Vorrichtung zur Randzonenerwärmung einer um die zentrische Normalachse umlaufenden Ronde |
| US3802877A (en) | 1972-04-18 | 1974-04-09 | Titanium Metals Corp | High strength titanium alloys |
| JPS5025418A (enExample) * | 1973-03-02 | 1975-03-18 | ||
| FR2237435A5 (enExample) | 1973-07-10 | 1975-02-07 | Aerospatiale | |
| JPS5339183B2 (enExample) | 1974-07-22 | 1978-10-19 | ||
| SU534518A1 (ru) | 1974-10-03 | 1976-11-05 | Предприятие П/Я В-2652 | Способ термомеханической обработки сплавов на основе титана |
| US4098623A (en) * | 1975-08-01 | 1978-07-04 | Hitachi, Ltd. | Method for heat treatment of titanium alloy |
| FR2341384A1 (fr) * | 1976-02-23 | 1977-09-16 | Little Inc A | Lubrifiant et procede de formage a chaud des metaux |
| US4053330A (en) | 1976-04-19 | 1977-10-11 | United Technologies Corporation | Method for improving fatigue properties of titanium alloy articles |
| US4138141A (en) | 1977-02-23 | 1979-02-06 | General Signal Corporation | Force absorbing device and force transmission device |
| US4120187A (en) | 1977-05-24 | 1978-10-17 | General Dynamics Corporation | Forming curved segments from metal plates |
| SU631234A1 (ru) | 1977-06-01 | 1978-11-05 | Karpushin Viktor N | Способ правки листов из высокопрочных сплавов |
| US4163380A (en) * | 1977-10-11 | 1979-08-07 | Lockheed Corporation | Forming of preconsolidated metal matrix composites |
| US4197643A (en) * | 1978-03-14 | 1980-04-15 | University Of Connecticut | Orthodontic appliance of titanium alloy |
| US4309226A (en) * | 1978-10-10 | 1982-01-05 | Chen Charlie C | Process for preparation of near-alpha titanium alloys |
| US4229216A (en) | 1979-02-22 | 1980-10-21 | Rockwell International Corporation | Titanium base alloy |
| JPS6039744B2 (ja) | 1979-02-23 | 1985-09-07 | 三菱マテリアル株式会社 | 時効硬化型チタン合金部材の矯正時効処理方法 |
| JPS5762846A (en) | 1980-09-29 | 1982-04-16 | Akio Nakano | Die casting and working method |
| JPS5762820A (en) | 1980-09-29 | 1982-04-16 | Akio Nakano | Method of secondary operation for metallic product |
| CA1194346A (en) | 1981-04-17 | 1985-10-01 | Edward F. Clatworthy | Corrosion resistant high strength nickel-base alloy |
| US4639281A (en) * | 1982-02-19 | 1987-01-27 | Mcdonnell Douglas Corporation | Advanced titanium composite |
| JPS58167724A (ja) | 1982-03-26 | 1983-10-04 | Kobe Steel Ltd | 石油掘削スタビライザ−用素材の製造方法 |
| JPS58210158A (ja) | 1982-05-31 | 1983-12-07 | Sumitomo Metal Ind Ltd | 耐食性の優れた油井管用高強度合金 |
| SU1088397A1 (ru) | 1982-06-01 | 1991-02-15 | Предприятие П/Я А-1186 | Способ термоправки издели из титановых сплавов |
| DE3382433D1 (de) | 1982-11-10 | 1991-11-21 | Mitsubishi Heavy Ind Ltd | Nickel-chromlegierung. |
| US4473125A (en) | 1982-11-17 | 1984-09-25 | Fansteel Inc. | Insert for drill bits and drill stabilizers |
| FR2545104B1 (fr) | 1983-04-26 | 1987-08-28 | Nacam | Procede de recuit localise par chauffage par indication d'un flan de tole et poste de traitement thermique pour sa mise en oeuvre |
| RU1131234C (ru) | 1983-06-09 | 1994-10-30 | ВНИИ авиационных материалов | Сплав на основе титана |
| US4510788A (en) | 1983-06-21 | 1985-04-16 | Trw Inc. | Method of forging a workpiece |
| SU1135798A1 (ru) | 1983-07-27 | 1985-01-23 | Московский Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Институт Стали И Сплавов | Способ обработки заготовок из титановых сплавов |
| JPS6046358A (ja) | 1983-08-22 | 1985-03-13 | Sumitomo Metal Ind Ltd | α+β型チタン合金の製造方法 |
| US4543132A (en) | 1983-10-31 | 1985-09-24 | United Technologies Corporation | Processing for titanium alloys |
| JPS60100655A (ja) | 1983-11-04 | 1985-06-04 | Mitsubishi Metal Corp | 耐応力腐食割れ性のすぐれた高Cr含有Νi基合金部材の製造法 |
| US4554028A (en) | 1983-12-13 | 1985-11-19 | Carpenter Technology Corporation | Large warm worked, alloy article |
| FR2557145B1 (fr) | 1983-12-21 | 1986-05-23 | Snecma | Procede de traitements thermomecaniques pour superalliages en vue d'obtenir des structures a hautes caracteristiques mecaniques |
| US4482398A (en) | 1984-01-27 | 1984-11-13 | The United States Of America As Represented By The Secretary Of The Air Force | Method for refining microstructures of cast titanium articles |
| DE3405805A1 (de) * | 1984-02-17 | 1985-08-22 | Siemens AG, 1000 Berlin und 8000 München | Schutzrohranordnung fuer glasfaser |
| JPS6160871A (ja) | 1984-08-30 | 1986-03-28 | Mitsubishi Heavy Ind Ltd | チタン合金の製造法 |
| US4631092A (en) | 1984-10-18 | 1986-12-23 | The Garrett Corporation | Method for heat treating cast titanium articles to improve their mechanical properties |
| GB8429892D0 (en) * | 1984-11-27 | 1985-01-03 | Sonat Subsea Services Uk Ltd | Cleaning pipes |
| US4690716A (en) | 1985-02-13 | 1987-09-01 | Westinghouse Electric Corp. | Process for forming seamless tubing of zirconium or titanium alloys from welded precursors |
| JPS61217562A (ja) | 1985-03-22 | 1986-09-27 | Nippon Steel Corp | チタン熱延板の製造方法 |
| AT381658B (de) * | 1985-06-25 | 1986-11-10 | Ver Edelstahlwerke Ag | Verfahren zur herstellung von amagnetischen bohrstrangteilen |
| JPH0686638B2 (ja) | 1985-06-27 | 1994-11-02 | 三菱マテリアル株式会社 | 加工性の優れた高強度Ti合金材及びその製造方法 |
| US4668290A (en) * | 1985-08-13 | 1987-05-26 | Pfizer Hospital Products Group Inc. | Dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization |
| US4714468A (en) | 1985-08-13 | 1987-12-22 | Pfizer Hospital Products Group Inc. | Prosthesis formed from dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization |
| JPS62109956A (ja) | 1985-11-08 | 1987-05-21 | Sumitomo Metal Ind Ltd | チタン合金の製造方法 |
| JPS62127074A (ja) | 1985-11-28 | 1987-06-09 | 三菱マテリアル株式会社 | TiまたはTi合金製ゴルフシヤフト素材の製造法 |
| JPS62149859A (ja) | 1985-12-24 | 1987-07-03 | Nippon Mining Co Ltd | β型チタン合金線材の製造方法 |
| JPS62227597A (ja) | 1986-03-28 | 1987-10-06 | Sumitomo Metal Ind Ltd | 固相接合用2相系ステンレス鋼薄帯 |
| US4769087A (en) | 1986-06-02 | 1988-09-06 | United Technologies Corporation | Nickel base superalloy articles and method for making |
| DE3622433A1 (de) * | 1986-07-03 | 1988-01-21 | Deutsche Forsch Luft Raumfahrt | Verfahren zur verbesserung der statischen und dynamischen mechanischen eigenschaften von ((alpha)+ss)-titanlegierungen |
| JPS6349302A (ja) | 1986-08-18 | 1988-03-02 | Kawasaki Steel Corp | 形鋼の製造方法 |
| US4799975A (en) * | 1986-10-07 | 1989-01-24 | Nippon Kokan Kabushiki Kaisha | Method for producing beta type titanium alloy materials having excellent strength and elongation |
| JPS63188426A (ja) | 1987-01-29 | 1988-08-04 | Sekisui Chem Co Ltd | 板状材料の連続成形方法 |
| FR2614040B1 (fr) | 1987-04-16 | 1989-06-30 | Cezus Co Europ Zirconium | Procede de fabrication d'une piece en alliage de titane et piece obtenue |
| CH672450A5 (enExample) | 1987-05-13 | 1989-11-30 | Bbc Brown Boveri & Cie | |
| JPH0694057B2 (ja) | 1987-12-12 | 1994-11-24 | 新日本製鐵株式會社 | 耐海水性に優れたオーステナイト系ステンレス鋼の製造方法 |
| JPH01272750A (ja) | 1988-04-26 | 1989-10-31 | Nippon Steel Corp | α+β型Ti合金展伸材の製造方法 |
| JPH01279736A (ja) | 1988-05-02 | 1989-11-10 | Nippon Mining Co Ltd | β型チタン合金材の熱処理方法 |
| US4808249A (en) * | 1988-05-06 | 1989-02-28 | The United States Of America As Represented By The Secretary Of The Air Force | Method for making an integral titanium alloy article having at least two distinct microstructural regions |
| US4851055A (en) * | 1988-05-06 | 1989-07-25 | The United States Of America As Represented By The Secretary Of The Air Force | Method of making titanium alloy articles having distinct microstructural regions corresponding to high creep and fatigue resistance |
| US4888973A (en) | 1988-09-06 | 1989-12-26 | Murdock, Inc. | Heater for superplastic forming of metals |
| US4857269A (en) * | 1988-09-09 | 1989-08-15 | Pfizer Hospital Products Group Inc. | High strength, low modulus, ductile, biopcompatible titanium alloy |
| CA2004548C (en) * | 1988-12-05 | 1996-12-31 | Kenji Aihara | Metallic material having ultra-fine grain structure and method for its manufacture |
| US4957567A (en) | 1988-12-13 | 1990-09-18 | General Electric Company | Fatigue crack growth resistant nickel-base article and alloy and method for making |
| US5173134A (en) | 1988-12-14 | 1992-12-22 | Aluminum Company Of America | Processing alpha-beta titanium alloys by beta as well as alpha plus beta forging |
| US4975125A (en) | 1988-12-14 | 1990-12-04 | Aluminum Company Of America | Titanium alpha-beta alloy fabricated material and process for preparation |
| JPH02205661A (ja) | 1989-02-06 | 1990-08-15 | Sumitomo Metal Ind Ltd | β型チタン合金製スプリングの製造方法 |
| US4980127A (en) | 1989-05-01 | 1990-12-25 | Titanium Metals Corporation Of America (Timet) | Oxidation resistant titanium-base alloy |
| US4943412A (en) * | 1989-05-01 | 1990-07-24 | Timet | High strength alpha-beta titanium-base alloy |
| US5366598A (en) | 1989-06-30 | 1994-11-22 | Eltech Systems Corporation | Method of using a metal substrate of improved surface morphology |
| US5256369A (en) | 1989-07-10 | 1993-10-26 | Nkk Corporation | Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof |
| US5074907A (en) | 1989-08-16 | 1991-12-24 | General Electric Company | Method for developing enhanced texture in titanium alloys, and articles made thereby |
| JP2536673B2 (ja) | 1989-08-29 | 1996-09-18 | 日本鋼管株式会社 | 冷間加工用チタン合金材の熱処理方法 |
| US5041262A (en) * | 1989-10-06 | 1991-08-20 | General Electric Company | Method of modifying multicomponent titanium alloys and alloy produced |
| JPH03134124A (ja) | 1989-10-19 | 1991-06-07 | Agency Of Ind Science & Technol | 耐エロージョン性に優れたチタン合金及びその製造方法 |
| US5026520A (en) * | 1989-10-23 | 1991-06-25 | Cooper Industries, Inc. | Fine grain titanium forgings and a method for their production |
| US5169597A (en) | 1989-12-21 | 1992-12-08 | Davidson James A | Biocompatible low modulus titanium alloy for medical implants |
| KR920004946B1 (ko) | 1989-12-30 | 1992-06-22 | 포항종합제철 주식회사 | 산세성이 우수한 오스테나이트 스테인레스강의 제조방법 |
| JPH03264618A (ja) | 1990-03-14 | 1991-11-25 | Nippon Steel Corp | オーステナイト系ステンレス鋼の結晶粒制御圧延法 |
| US5244517A (en) | 1990-03-20 | 1993-09-14 | Daido Tokushuko Kabushiki Kaisha | Manufacturing titanium alloy component by beta forming |
| US5032189A (en) * | 1990-03-26 | 1991-07-16 | The United States Of America As Represented By The Secretary Of The Air Force | Method for refining the microstructure of beta processed ingot metallurgy titanium alloy articles |
| US5094812A (en) | 1990-04-12 | 1992-03-10 | Carpenter Technology Corporation | Austenitic, non-magnetic, stainless steel alloy |
| JPH0436445A (ja) * | 1990-05-31 | 1992-02-06 | Sumitomo Metal Ind Ltd | 耐食性チタン合金継目無管の製造方法 |
| JP2841766B2 (ja) * | 1990-07-13 | 1998-12-24 | 住友金属工業株式会社 | 耐食性チタン合金溶接管の製造方法 |
| JP2968822B2 (ja) | 1990-07-17 | 1999-11-02 | 株式会社神戸製鋼所 | 高強度・高延性β型Ti合金材の製法 |
| JPH04103737A (ja) | 1990-08-22 | 1992-04-06 | Sumitomo Metal Ind Ltd | 高強度高靭性チタン合金およびその製造方法 |
| DE69107758T2 (de) | 1990-10-01 | 1995-10-12 | Sumitomo Metal Ind | Verfahren zur Verbesserung der Zerspanbarkeit von Titan und Titanlegierungen, und Titanlegierungen mit guter Zerspanbarkeit. |
| JPH04143236A (ja) | 1990-10-03 | 1992-05-18 | Nkk Corp | 冷間加工性に優れた高強度α型チタン合金 |
| JPH04168227A (ja) | 1990-11-01 | 1992-06-16 | Kawasaki Steel Corp | オーステナイト系ステンレス鋼板又は鋼帯の製造方法 |
| DE69128692T2 (de) * | 1990-11-09 | 1998-06-18 | Toyoda Chuo Kenkyusho Kk | Titanlegierung aus Sinterpulver und Verfahren zu deren Herstellung |
| RU2003417C1 (ru) | 1990-12-14 | 1993-11-30 | Всероссийский институт легких сплавов | Способ получени кованых полуфабрикатов из литых сплавов системы TI - AL |
| FR2676460B1 (fr) | 1991-05-14 | 1993-07-23 | Cezus Co Europ Zirconium | Procede de fabrication d'une piece en alliage de titane comprenant un corroyage a chaud modifie et piece obtenue. |
| US5219521A (en) * | 1991-07-29 | 1993-06-15 | Titanium Metals Corporation | Alpha-beta titanium-base alloy and method for processing thereof |
| US5374323A (en) | 1991-08-26 | 1994-12-20 | Aluminum Company Of America | Nickel base alloy forged parts |
| US5360496A (en) | 1991-08-26 | 1994-11-01 | Aluminum Company Of America | Nickel base alloy forged parts |
| DE4228528A1 (de) | 1991-08-29 | 1993-03-04 | Okuma Machinery Works Ltd | Verfahren und vorrichtung zur metallblechverarbeitung |
| JP2606023B2 (ja) | 1991-09-02 | 1997-04-30 | 日本鋼管株式会社 | 高強度高靭性α+β型チタン合金の製造方法 |
| CN1028375C (zh) | 1991-09-06 | 1995-05-10 | 中国科学院金属研究所 | 一种钛镍合金箔及板材的制取工艺 |
| GB9121147D0 (en) | 1991-10-04 | 1991-11-13 | Ici Plc | Method for producing clad metal plate |
| JPH05117791A (ja) | 1991-10-28 | 1993-05-14 | Sumitomo Metal Ind Ltd | 高強度高靱性で冷間加工可能なチタン合金 |
| US5162159A (en) | 1991-11-14 | 1992-11-10 | The Standard Oil Company | Metal alloy coated reinforcements for use in metal matrix composites |
| US5201967A (en) | 1991-12-11 | 1993-04-13 | Rmi Titanium Company | Method for improving aging response and uniformity in beta-titanium alloys |
| JP3532565B2 (ja) * | 1991-12-31 | 2004-05-31 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | 再剥離型低溶融粘度アクリル系感圧接着剤 |
| JPH05195175A (ja) | 1992-01-16 | 1993-08-03 | Sumitomo Electric Ind Ltd | 高疲労強度βチタン合金ばねの製造方法 |
| US5226981A (en) * | 1992-01-28 | 1993-07-13 | Sandvik Special Metals, Corp. | Method of manufacturing corrosion resistant tubing from welded stock of titanium or titanium base alloy |
| JP2669261B2 (ja) | 1992-04-23 | 1997-10-27 | 三菱電機株式会社 | フォーミングレールの製造装置 |
| US5399212A (en) | 1992-04-23 | 1995-03-21 | Aluminum Company Of America | High strength titanium-aluminum alloy having improved fatigue crack growth resistance |
| US5277718A (en) * | 1992-06-18 | 1994-01-11 | General Electric Company | Titanium article having improved response to ultrasonic inspection, and method therefor |
| WO1994002656A1 (fr) | 1992-07-16 | 1994-02-03 | Nippon Steel Corporation | Barre d'alliage de titane convenant pour fabriquer une soupape de moteur |
| JP3839493B2 (ja) | 1992-11-09 | 2006-11-01 | 日本発条株式会社 | Ti−Al系金属間化合物からなる部材の製造方法 |
| US5310522A (en) | 1992-12-07 | 1994-05-10 | Carondelet Foundry Company | Heat and corrosion resistant iron-nickel-chromium alloy |
| FR2711674B1 (fr) * | 1993-10-21 | 1996-01-12 | Creusot Loire | Acier inoxydable austénitique à hautes caractéristiques ayant une grande stabilité structurale et utilisations. |
| US5358686A (en) | 1993-02-17 | 1994-10-25 | Parris Warren M | Titanium alloy containing Al, V, Mo, Fe, and oxygen for plate applications |
| US5332545A (en) * | 1993-03-30 | 1994-07-26 | Rmi Titanium Company | Method of making low cost Ti-6A1-4V ballistic alloy |
| FR2712307B1 (fr) | 1993-11-10 | 1996-09-27 | United Technologies Corp | Articles en super-alliage à haute résistance mécanique et à la fissuration et leur procédé de fabrication. |
| JP3083225B2 (ja) * | 1993-12-01 | 2000-09-04 | オリエント時計株式会社 | チタン合金製装飾品の製造方法、および時計外装部品 |
| JPH07179962A (ja) | 1993-12-24 | 1995-07-18 | Nkk Corp | 連続繊維強化チタン基複合材料及びその製造方法 |
| JP2988246B2 (ja) * | 1994-03-23 | 1999-12-13 | 日本鋼管株式会社 | (α+β)型チタン合金超塑性成形部材の製造方法 |
| JP2877013B2 (ja) | 1994-05-25 | 1999-03-31 | 株式会社神戸製鋼所 | 耐摩耗性に優れた表面処理金属部材およびその製法 |
| US5442847A (en) * | 1994-05-31 | 1995-08-22 | Rockwell International Corporation | Method for thermomechanical processing of ingot metallurgy near gamma titanium aluminides to refine grain size and optimize mechanical properties |
| JPH0859559A (ja) | 1994-08-23 | 1996-03-05 | Mitsubishi Chem Corp | ジアルキルカーボネートの製造方法 |
| JPH0890074A (ja) * | 1994-09-20 | 1996-04-09 | Nippon Steel Corp | チタンおよびチタン合金線材の矯直方法 |
| US5472526A (en) | 1994-09-30 | 1995-12-05 | General Electric Company | Method for heat treating Ti/Al-base alloys |
| AU705336B2 (en) | 1994-10-14 | 1999-05-20 | Osteonics Corp. | Low modulus, biocompatible titanium base alloys for medical devices |
| US5698050A (en) | 1994-11-15 | 1997-12-16 | Rockwell International Corporation | Method for processing-microstructure-property optimization of α-β beta titanium alloys to obtain simultaneous improvements in mechanical properties and fracture resistance |
| US5759484A (en) * | 1994-11-29 | 1998-06-02 | Director General Of The Technical Research And Developent Institute, Japan Defense Agency | High strength and high ductility titanium alloy |
| JP3319195B2 (ja) | 1994-12-05 | 2002-08-26 | 日本鋼管株式会社 | α+β型チタン合金の高靱化方法 |
| US5547523A (en) | 1995-01-03 | 1996-08-20 | General Electric Company | Retained strain forging of ni-base superalloys |
| US6059904A (en) | 1995-04-27 | 2000-05-09 | General Electric Company | Isothermal and high retained strain forging of Ni-base superalloys |
| JPH08300044A (ja) | 1995-04-27 | 1996-11-19 | Nippon Steel Corp | 棒線材連続矯正装置 |
| US5600989A (en) * | 1995-06-14 | 1997-02-11 | Segal; Vladimir | Method of and apparatus for processing tungsten heavy alloys for kinetic energy penetrators |
| US6127044A (en) | 1995-09-13 | 2000-10-03 | Kabushiki Kaisha Toshiba | Method for producing titanium alloy turbine blades and titanium alloy turbine blades |
| JP3445991B2 (ja) | 1995-11-14 | 2003-09-16 | Jfeスチール株式会社 | 面内異方性の小さいα+β型チタン合金材の製造方法 |
| US5649280A (en) * | 1996-01-02 | 1997-07-15 | General Electric Company | Method for controlling grain size in Ni-base superalloys |
| JP3873313B2 (ja) | 1996-01-09 | 2007-01-24 | 住友金属工業株式会社 | 高強度チタン合金の製造方法 |
| US5656403A (en) | 1996-01-30 | 1997-08-12 | United Microelectronics Corporation | Method and template for focus control in lithography process |
| US5759305A (en) | 1996-02-07 | 1998-06-02 | General Electric Company | Grain size control in nickel base superalloys |
| JPH09215786A (ja) | 1996-02-15 | 1997-08-19 | Mitsubishi Materials Corp | ゴルフクラブヘッドおよびその製造方法 |
| US5861070A (en) * | 1996-02-27 | 1999-01-19 | Oregon Metallurgical Corporation | Titanium-aluminum-vanadium alloys and products made using such alloys |
| JP3838445B2 (ja) | 1996-03-15 | 2006-10-25 | 本田技研工業株式会社 | チタン合金製ブレーキローター及びその製造方法 |
| CN1083015C (zh) | 1996-03-29 | 2002-04-17 | 株式会社神户制钢所 | 高强度钛合金及其制品以及该制品的制造方法 |
| JPH1088293A (ja) | 1996-04-16 | 1998-04-07 | Nippon Steel Corp | 粗悪燃料および廃棄物を燃焼する環境において耐食性を有する合金、該合金を用いた鋼管およびその製造方法 |
| DE19743802C2 (de) | 1996-10-07 | 2000-09-14 | Benteler Werke Ag | Verfahren zur Herstellung eines metallischen Formbauteils |
| RU2134308C1 (ru) | 1996-10-18 | 1999-08-10 | Институт проблем сверхпластичности металлов РАН | Способ обработки титановых сплавов |
| JPH10128459A (ja) | 1996-10-21 | 1998-05-19 | Daido Steel Co Ltd | リングの後方スピニング加工方法 |
| IT1286276B1 (it) | 1996-10-24 | 1998-07-08 | Univ Bologna | Metodo per la rimozione totale o parziale di pesticidi e/o fitofarmaci da liquidi alimentari e non mediante l'uso di derivati della |
| WO1998022629A2 (en) | 1996-11-22 | 1998-05-28 | Dongjian Li | A new class of beta titanium-based alloys with high strength and good ductility |
| US6044685A (en) | 1997-08-29 | 2000-04-04 | Wyman Gordon | Closed-die forging process and rotationally incremental forging press |
| US5897830A (en) * | 1996-12-06 | 1999-04-27 | Dynamet Technology | P/M titanium composite casting |
| US5795413A (en) | 1996-12-24 | 1998-08-18 | General Electric Company | Dual-property alpha-beta titanium alloy forgings |
| JP3959766B2 (ja) | 1996-12-27 | 2007-08-15 | 大同特殊鋼株式会社 | 耐熱性にすぐれたTi合金の処理方法 |
| FR2760469B1 (fr) | 1997-03-05 | 1999-10-22 | Onera (Off Nat Aerospatiale) | Aluminium de titane utilisable a temperature elevee |
| US5954724A (en) * | 1997-03-27 | 1999-09-21 | Davidson; James A. | Titanium molybdenum hafnium alloys for medical implants and devices |
| US5980655A (en) | 1997-04-10 | 1999-11-09 | Oremet-Wah Chang | Titanium-aluminum-vanadium alloys and products made therefrom |
| JPH10306335A (ja) | 1997-04-30 | 1998-11-17 | Nkk Corp | (α+β)型チタン合金棒線材およびその製造方法 |
| US6071360A (en) * | 1997-06-09 | 2000-06-06 | The Boeing Company | Controlled strain rate forming of thick titanium plate |
| JPH11223221A (ja) * | 1997-07-01 | 1999-08-17 | Nippon Seiko Kk | 転がり軸受 |
| US6569270B2 (en) * | 1997-07-11 | 2003-05-27 | Honeywell International Inc. | Process for producing a metal article |
| NO312446B1 (no) | 1997-09-24 | 2002-05-13 | Mitsubishi Heavy Ind Ltd | Automatisk plateböyingssystem med bruk av höyfrekvent induksjonsoppvarming |
| US20050047952A1 (en) | 1997-11-05 | 2005-03-03 | Allvac Ltd. | Non-magnetic corrosion resistant high strength steels |
| FR2772790B1 (fr) | 1997-12-18 | 2000-02-04 | Snecma | ALLIAGES INTERMETALLIQUES A BASE DE TITANE DU TYPE Ti2AlNb A HAUTE LIMITE D'ELASTICITE ET FORTE RESISTANCE AU FLUAGE |
| EP0970764B1 (en) | 1998-01-29 | 2009-03-18 | Amino Corporation | Apparatus for dieless forming plate materials |
| JP2002505382A (ja) * | 1998-03-05 | 2002-02-19 | メムリー・コーポレイション | 擬弾性ベータチタン合金およびその使用 |
| KR19990074014A (ko) * | 1998-03-05 | 1999-10-05 | 신종계 | 선체 외판의 곡면가공 자동화 장치 |
| JPH11309521A (ja) | 1998-04-24 | 1999-11-09 | Nippon Steel Corp | ステンレス製筒形部材のバルジ成形方法 |
| US6032508A (en) | 1998-04-24 | 2000-03-07 | Msp Industries Corporation | Apparatus and method for near net warm forging of complex parts from axi-symmetrical workpieces |
| JPH11319958A (ja) | 1998-05-19 | 1999-11-24 | Mitsubishi Heavy Ind Ltd | 曲がりクラッド管およびその製造方法 |
| US6228189B1 (en) * | 1998-05-26 | 2001-05-08 | Kabushiki Kaisha Kobe Seiko Sho | α+β type titanium alloy, a titanium alloy strip, coil-rolling process of titanium alloy, and process for producing a cold-rolled titanium alloy strip |
| US20010041148A1 (en) * | 1998-05-26 | 2001-11-15 | Kabushiki Kaisha Kobe Seiko Sho | Alpha + beta type titanium alloy, process for producing titanium alloy, process for coil rolling, and process for producing cold-rolled coil of titanium alloy |
| FR2779155B1 (fr) | 1998-05-28 | 2004-10-29 | Kobe Steel Ltd | Alliage de titane et sa preparation |
| JP3452798B2 (ja) | 1998-05-28 | 2003-09-29 | 株式会社神戸製鋼所 | 高強度β型Ti合金 |
| JP3417844B2 (ja) | 1998-05-28 | 2003-06-16 | 株式会社神戸製鋼所 | 加工性に優れた高強度Ti合金の製法 |
| US6632304B2 (en) * | 1998-05-28 | 2003-10-14 | Kabushiki Kaisha Kobe Seiko Sho | Titanium alloy and production thereof |
| JP2000153372A (ja) | 1998-11-19 | 2000-06-06 | Nkk Corp | 施工性に優れた銅または銅合金クラッド鋼板の製造方法 |
| US6334912B1 (en) | 1998-12-31 | 2002-01-01 | General Electric Company | Thermomechanical method for producing superalloys with increased strength and thermal stability |
| US6409852B1 (en) * | 1999-01-07 | 2002-06-25 | Jiin-Huey Chern | Biocompatible low modulus titanium alloy for medical implant |
| US6143241A (en) | 1999-02-09 | 2000-11-07 | Chrysalis Technologies, Incorporated | Method of manufacturing metallic products such as sheet by cold working and flash annealing |
| US6187045B1 (en) | 1999-02-10 | 2001-02-13 | Thomas K. Fehring | Enhanced biocompatible implants and alloys |
| JP3681095B2 (ja) | 1999-02-16 | 2005-08-10 | 株式会社クボタ | 内面突起付き熱交換用曲げ管 |
| JP3268639B2 (ja) * | 1999-04-09 | 2002-03-25 | 独立行政法人産業技術総合研究所 | 強加工装置、強加工法並びに被強加工金属系材料 |
| RU2150528C1 (ru) | 1999-04-20 | 2000-06-10 | ОАО Верхнесалдинское металлургическое производственное объединение | Сплав на основе титана |
| US6558273B2 (en) * | 1999-06-08 | 2003-05-06 | K. K. Endo Seisakusho | Method for manufacturing a golf club |
| JP2001071037A (ja) | 1999-09-03 | 2001-03-21 | Matsushita Electric Ind Co Ltd | マグネシウム合金のプレス加工方法およびプレス加工装置 |
| JP4562830B2 (ja) | 1999-09-10 | 2010-10-13 | トクセン工業株式会社 | βチタン合金細線の製造方法 |
| US6402859B1 (en) * | 1999-09-10 | 2002-06-11 | Terumo Corporation | β-titanium alloy wire, method for its production and medical instruments made by said β-titanium alloy wire |
| US7024897B2 (en) | 1999-09-24 | 2006-04-11 | Hot Metal Gas Forming Intellectual Property, Inc. | Method of forming a tubular blank into a structural component and die therefor |
| RU2172359C1 (ru) | 1999-11-25 | 2001-08-20 | Государственное предприятие Всероссийский научно-исследовательский институт авиационных материалов | Сплав на основе титана и изделие, выполненное из него |
| US6387197B1 (en) * | 2000-01-11 | 2002-05-14 | General Electric Company | Titanium processing methods for ultrasonic noise reduction |
| RU2156828C1 (ru) | 2000-02-29 | 2000-09-27 | Воробьев Игорь Андреевич | СПОСОБ ИЗГОТОВЛЕНИЯ СТЕРЖНЕВЫХ ДЕТАЛЕЙ С ГОЛОВКАМИ ИЗ ДВУХФАЗНЫХ (α+β) ТИТАНОВЫХ СПЛАВОВ |
| US6332935B1 (en) | 2000-03-24 | 2001-12-25 | General Electric Company | Processing of titanium-alloy billet for improved ultrasonic inspectability |
| US6399215B1 (en) * | 2000-03-28 | 2002-06-04 | The Regents Of The University Of California | Ultrafine-grained titanium for medical implants |
| JP2001343472A (ja) | 2000-03-31 | 2001-12-14 | Seiko Epson Corp | 時計用外装部品の製造方法、時計用外装部品及び時計 |
| JP3753608B2 (ja) | 2000-04-17 | 2006-03-08 | 株式会社日立製作所 | 逐次成形方法とその装置 |
| US6532786B1 (en) | 2000-04-19 | 2003-03-18 | D-J Engineering, Inc. | Numerically controlled forming method |
| US6197129B1 (en) * | 2000-05-04 | 2001-03-06 | The United States Of America As Represented By The United States Department Of Energy | Method for producing ultrafine-grained materials using repetitive corrugation and straightening |
| JP2001348635A (ja) * | 2000-06-05 | 2001-12-18 | Nikkin Material:Kk | 冷間加工性と加工硬化に優れたチタン合金 |
| US6484387B1 (en) * | 2000-06-07 | 2002-11-26 | L. H. Carbide Corporation | Progressive stamping die assembly having transversely movable die station and method of manufacturing a stack of laminae therewith |
| AT408889B (de) * | 2000-06-30 | 2002-03-25 | Schoeller Bleckmann Oilfield T | Korrosionsbeständiger werkstoff |
| RU2169782C1 (ru) | 2000-07-19 | 2001-06-27 | ОАО Верхнесалдинское металлургическое производственное объединение | Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплава |
| RU2169204C1 (ru) * | 2000-07-19 | 2001-06-20 | ОАО Верхнесалдинское металлургическое производственное объединение | Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплава |
| UA40862A (uk) | 2000-08-15 | 2001-08-15 | Інститут Металофізики Національної Академії Наук України | Спосіб термо-механічної обробки високоміцних бета-титанових сплавів |
| US6877349B2 (en) | 2000-08-17 | 2005-04-12 | Industrial Origami, Llc | Method for precision bending of sheet of materials, slit sheets fabrication process |
| JP2002069591A (ja) | 2000-09-01 | 2002-03-08 | Nkk Corp | 高耐食ステンレス鋼 |
| UA38805A (uk) | 2000-10-16 | 2001-05-15 | Інститут Металофізики Національної Академії Наук України | Сплав на основі титану |
| US6946039B1 (en) * | 2000-11-02 | 2005-09-20 | Honeywell International Inc. | Physical vapor deposition targets, and methods of fabricating metallic materials |
| JP2002146497A (ja) | 2000-11-08 | 2002-05-22 | Daido Steel Co Ltd | Ni基合金の製造方法 |
| US6384388B1 (en) * | 2000-11-17 | 2002-05-07 | Meritor Suspension Systems Company | Method of enhancing the bending process of a stabilizer bar |
| JP3742558B2 (ja) * | 2000-12-19 | 2006-02-08 | 新日本製鐵株式会社 | 高延性で板面内材質異方性の小さい一方向圧延チタン板およびその製造方法 |
| EP1382695A4 (en) | 2001-02-28 | 2004-08-11 | Jfe Steel Corp | TIT ALLOY BAR AND METHOD FOR PRODUCING IT |
| CN1639366A (zh) | 2001-03-26 | 2005-07-13 | 株式会社丰田中央研究所 | 高强度钛合金及其制备方法 |
| US6539765B2 (en) * | 2001-03-28 | 2003-04-01 | Gary Gates | Rotary forging and quenching apparatus and method |
| US6536110B2 (en) * | 2001-04-17 | 2003-03-25 | United Technologies Corporation | Integrally bladed rotor airfoil fabrication and repair techniques |
| US6576068B2 (en) | 2001-04-24 | 2003-06-10 | Ati Properties, Inc. | Method of producing stainless steels having improved corrosion resistance |
| RU2203974C2 (ru) | 2001-05-07 | 2003-05-10 | ОАО Верхнесалдинское металлургическое производственное объединение | Сплав на основе титана |
| DE10128199B4 (de) | 2001-06-11 | 2007-07-12 | Benteler Automobiltechnik Gmbh | Vorrichtung zur Umformung von Metallblechen |
| RU2197555C1 (ru) | 2001-07-11 | 2003-01-27 | Общество с ограниченной ответственностью Научно-производственное предприятие "Велес" | СПОСОБ ИЗГОТОВЛЕНИЯ СТЕРЖНЕВЫХ ДЕТАЛЕЙ С ГОЛОВКАМИ ИЗ (α+β) ТИТАНОВЫХ СПЛАВОВ |
| JP3934372B2 (ja) | 2001-08-15 | 2007-06-20 | 株式会社神戸製鋼所 | 高強度および低ヤング率のβ型Ti合金並びにその製造方法 |
| JP2003074566A (ja) | 2001-08-31 | 2003-03-12 | Nsk Ltd | 転動装置 |
| CN1159472C (zh) | 2001-09-04 | 2004-07-28 | 北京航空材料研究院 | 钛合金准β锻造工艺 |
| US6663501B2 (en) | 2001-12-07 | 2003-12-16 | Charlie C. Chen | Macro-fiber process for manufacturing a face for a metal wood golf club |
| CN1602369A (zh) | 2001-12-14 | 2005-03-30 | Ati资产公司 | 制造β-钛合金的方法 |
| JP3777130B2 (ja) | 2002-02-19 | 2006-05-24 | 本田技研工業株式会社 | 逐次成形装置 |
| FR2836640B1 (fr) | 2002-03-01 | 2004-09-10 | Snecma Moteurs | Produits minces en alliages de titane beta ou quasi beta fabrication par forgeage |
| JP2003285126A (ja) | 2002-03-25 | 2003-10-07 | Toyota Motor Corp | 温間塑性加工方法 |
| RU2217260C1 (ru) | 2002-04-04 | 2003-11-27 | ОАО Верхнесалдинское металлургическое производственное объединение | СПОСОБ ИЗГОТОВЛЕНИЯ ПРОМЕЖУТОЧНОЙ ЗАГОТОВКИ ИЗ α- И (α+β)-ТИТАНОВЫХ СПЛАВОВ |
| US6786985B2 (en) | 2002-05-09 | 2004-09-07 | Titanium Metals Corp. | Alpha-beta Ti-Ai-V-Mo-Fe alloy |
| JP2003334633A (ja) | 2002-05-16 | 2003-11-25 | Daido Steel Co Ltd | 段付き軸形状品の製造方法 |
| US7410610B2 (en) | 2002-06-14 | 2008-08-12 | General Electric Company | Method for producing a titanium metallic composition having titanium boride particles dispersed therein |
| US6918974B2 (en) | 2002-08-26 | 2005-07-19 | General Electric Company | Processing of alpha-beta titanium alloy workpieces for good ultrasonic inspectability |
| JP4257581B2 (ja) | 2002-09-20 | 2009-04-22 | 株式会社豊田中央研究所 | チタン合金およびその製造方法 |
| KR101014639B1 (ko) | 2002-09-30 | 2011-02-16 | 유겐가이샤 리나시메타리 | 금속 가공 방법 및 그 금속 가공 방법을 이용한 금속체와그 금속 가공 방법을 이용한 금속 함유 세라믹체 |
| US6932877B2 (en) | 2002-10-31 | 2005-08-23 | General Electric Company | Quasi-isothermal forging of a nickel-base superalloy |
| FI115830B (fi) | 2002-11-01 | 2005-07-29 | Metso Powdermet Oy | Menetelmä monimateriaalikomponenttien valmistamiseksi sekä monimateriaalikomponentti |
| US7008491B2 (en) | 2002-11-12 | 2006-03-07 | General Electric Company | Method for fabricating an article of an alpha-beta titanium alloy by forging |
| AU2003295609A1 (en) | 2002-11-15 | 2004-06-15 | University Of Utah | Integral titanium boride coatings on titanium surfaces and associated methods |
| US20040099350A1 (en) * | 2002-11-21 | 2004-05-27 | Mantione John V. | Titanium alloys, methods of forming the same, and articles formed therefrom |
| US20050145310A1 (en) * | 2003-12-24 | 2005-07-07 | General Electric Company | Method for producing homogeneous fine grain titanium materials suitable for ultrasonic inspection |
| US7010950B2 (en) | 2003-01-17 | 2006-03-14 | Visteon Global Technologies, Inc. | Suspension component having localized material strengthening |
| DE10303458A1 (de) | 2003-01-29 | 2004-08-19 | Amino Corp., Fujinomiya | Verfahren und Vorrichtung zum Formen dünner Metallbleche |
| RU2234998C1 (ru) | 2003-01-30 | 2004-08-27 | Антонов Александр Игоревич | Способ изготовления полой цилиндрической длинномерной заготовки (варианты) |
| EP1605073B1 (en) | 2003-03-20 | 2011-09-14 | Sumitomo Metal Industries, Ltd. | Use of an austenitic stainless steel |
| JP4209233B2 (ja) | 2003-03-28 | 2009-01-14 | 株式会社日立製作所 | 逐次成形加工装置 |
| JP3838216B2 (ja) | 2003-04-25 | 2006-10-25 | 住友金属工業株式会社 | オーステナイト系ステンレス鋼 |
| US20040221929A1 (en) | 2003-05-09 | 2004-11-11 | Hebda John J. | Processing of titanium-aluminum-vanadium alloys and products made thereby |
| US7073559B2 (en) | 2003-07-02 | 2006-07-11 | Ati Properties, Inc. | Method for producing metal fibers |
| JP4041774B2 (ja) | 2003-06-05 | 2008-01-30 | 住友金属工業株式会社 | β型チタン合金材の製造方法 |
| AT412727B (de) | 2003-12-03 | 2005-06-27 | Boehler Edelstahl | Korrosionsbeständige, austenitische stahllegierung |
| US8128764B2 (en) | 2003-12-11 | 2012-03-06 | Miracle Daniel B | Titanium alloy microstructural refinement method and high temperature, high strain rate superplastic forming of titanium alloys |
| US7038426B2 (en) * | 2003-12-16 | 2006-05-02 | The Boeing Company | Method for prolonging the life of lithium ion batteries |
| CA2556128A1 (en) | 2004-02-12 | 2005-08-25 | Sumitomo Metal Industries, Ltd. | Metal tube for use in a carburizing gas atmosphere |
| JP2005281855A (ja) | 2004-03-04 | 2005-10-13 | Daido Steel Co Ltd | 耐熱オーステナイト系ステンレス鋼及びその製造方法 |
| US7837812B2 (en) * | 2004-05-21 | 2010-11-23 | Ati Properties, Inc. | Metastable beta-titanium alloys and methods of processing the same by direct aging |
| US7449075B2 (en) | 2004-06-28 | 2008-11-11 | General Electric Company | Method for producing a beta-processed alpha-beta titanium-alloy article |
| RU2269584C1 (ru) | 2004-07-30 | 2006-02-10 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Сплав на основе титана |
| US20060045789A1 (en) | 2004-09-02 | 2006-03-02 | Coastcast Corporation | High strength low cost titanium and method for making same |
| US7096596B2 (en) | 2004-09-21 | 2006-08-29 | Alltrade Tools Llc | Tape measure device |
| US7601232B2 (en) | 2004-10-01 | 2009-10-13 | Dynamic Flowform Corp. | α-β titanium alloy tubes and methods of flowforming the same |
| US7360387B2 (en) | 2005-01-31 | 2008-04-22 | Showa Denko K.K. | Upsetting method and upsetting apparatus |
| US20060243356A1 (en) | 2005-02-02 | 2006-11-02 | Yuusuke Oikawa | Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof |
| TWI276689B (en) | 2005-02-18 | 2007-03-21 | Nippon Steel Corp | Induction heating device for a metal plate |
| JP5208354B2 (ja) | 2005-04-11 | 2013-06-12 | 新日鐵住金株式会社 | オーステナイト系ステンレス鋼 |
| RU2288967C1 (ru) | 2005-04-15 | 2006-12-10 | Закрытое акционерное общество ПКФ "Проммет-спецсталь" | Коррозионно-стойкий сплав и изделие, выполненное из него |
| WO2006110962A2 (en) * | 2005-04-22 | 2006-10-26 | K.U.Leuven Research And Development | Asymmetric incremental sheet forming system |
| RU2283889C1 (ru) * | 2005-05-16 | 2006-09-20 | ОАО "Корпорация ВСМПО-АВИСМА" | Сплав на основе титана |
| JP4787548B2 (ja) | 2005-06-07 | 2011-10-05 | 株式会社アミノ | 薄板の成形方法および装置 |
| DE102005027259B4 (de) * | 2005-06-13 | 2012-09-27 | Daimler Ag | Verfahren zur Herstellung von metallischen Bauteilen durch Halbwarm-Umformung |
| KR100677465B1 (ko) | 2005-08-10 | 2007-02-07 | 이영화 | 판 굽힘용 장형 유도 가열기 |
| US7531054B2 (en) | 2005-08-24 | 2009-05-12 | Ati Properties, Inc. | Nickel alloy and method including direct aging |
| US8337750B2 (en) | 2005-09-13 | 2012-12-25 | Ati Properties, Inc. | Titanium alloys including increased oxygen content and exhibiting improved mechanical properties |
| US7669452B2 (en) | 2005-11-04 | 2010-03-02 | Cyril Bath Company | Titanium stretch forming apparatus and method |
| US8286695B2 (en) | 2005-12-21 | 2012-10-16 | Exxonmobil Research & Engineering Company | Insert and method for reducing fouling in a process stream |
| US7611592B2 (en) | 2006-02-23 | 2009-11-03 | Ati Properties, Inc. | Methods of beta processing titanium alloys |
| JP5050199B2 (ja) | 2006-03-30 | 2012-10-17 | 国立大学法人電気通信大学 | マグネシウム合金材料製造方法及び装置並びにマグネシウム合金材料 |
| WO2007114439A1 (ja) | 2006-04-03 | 2007-10-11 | National University Corporation The University Of Electro-Communications | 超微細粒組織を有する材料およびその製造方法 |
| KR100740715B1 (ko) | 2006-06-02 | 2007-07-18 | 경상대학교산학협력단 | 집전체-전극 일체형 Ti-Ni계 합금-Ni황화물 소자 |
| US7879286B2 (en) | 2006-06-07 | 2011-02-01 | Miracle Daniel B | Method of producing high strength, high stiffness and high ductility titanium alloys |
| JP5187713B2 (ja) | 2006-06-09 | 2013-04-24 | 国立大学法人電気通信大学 | 金属材料の微細化加工方法 |
| JP2009541587A (ja) | 2006-06-23 | 2009-11-26 | ジョルゲンセン フォージ コーポレーション | オーステナイト系常磁性耐食性材料 |
| WO2008017257A1 (en) | 2006-08-02 | 2008-02-14 | Hangzhou Huitong Driving Chain Co., Ltd. | A bended link plate and the method to making thereof |
| US20080103543A1 (en) | 2006-10-31 | 2008-05-01 | Medtronic, Inc. | Implantable medical device with titanium alloy housing |
| JP2008200730A (ja) | 2007-02-21 | 2008-09-04 | Daido Steel Co Ltd | Ni基耐熱合金の製造方法 |
| CN101294264A (zh) | 2007-04-24 | 2008-10-29 | 宝山钢铁股份有限公司 | 一种转子叶片用α+β型钛合金棒材制造工艺 |
| US20080300552A1 (en) | 2007-06-01 | 2008-12-04 | Cichocki Frank R | Thermal forming of refractory alloy surgical needles |
| CN100567534C (zh) | 2007-06-19 | 2009-12-09 | 中国科学院金属研究所 | 一种高热强性、高热稳定性的高温钛合金的热加工和热处理方法 |
| US20090000706A1 (en) | 2007-06-28 | 2009-01-01 | General Electric Company | Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys |
| DE102007039998B4 (de) | 2007-08-23 | 2014-05-22 | Benteler Defense Gmbh & Co. Kg | Panzerung für ein Fahrzeug |
| RU2364660C1 (ru) | 2007-11-26 | 2009-08-20 | Владимир Валентинович Латыш | Способ получения ультрамелкозернистых заготовок из титановых сплавов |
| JP2009138218A (ja) | 2007-12-05 | 2009-06-25 | Nissan Motor Co Ltd | チタン合金部材及びチタン合金部材の製造方法 |
| CN100547105C (zh) | 2007-12-10 | 2009-10-07 | 巨龙钢管有限公司 | 一种x80钢弯管及其弯制工艺 |
| WO2009082498A1 (en) | 2007-12-20 | 2009-07-02 | Ati Properties, Inc. | Austenitic stainless steel low in nickel containing stabilizing elements |
| KR100977801B1 (ko) | 2007-12-26 | 2010-08-25 | 주식회사 포스코 | 강도 및 연성이 우수한 저탄성 티타늄 합금 및 그 제조방법 |
| US8075714B2 (en) * | 2008-01-22 | 2011-12-13 | Caterpillar Inc. | Localized induction heating for residual stress optimization |
| RU2368695C1 (ru) | 2008-01-30 | 2009-09-27 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Способ получения изделия из высоколегированного жаропрочного никелевого сплава |
| DE102008014559A1 (de) | 2008-03-15 | 2009-09-17 | Elringklinger Ag | Verfahren zum bereichsweisen Umformen einer aus einem Federstahlblech hergestellten Blechlage einer Flachdichtung sowie Einrichtung zur Durchführung dieses Verfahrens |
| ES2758825T3 (es) | 2008-05-22 | 2020-05-06 | Nippon Steel Corp | Tubo de gran resistencia, basado en una aleación de Ni, para ser usado en plantas de energía nuclear y su proceso de producción |
| JP2009299110A (ja) | 2008-06-11 | 2009-12-24 | Kobe Steel Ltd | 断続切削性に優れた高強度α−β型チタン合金 |
| JP5299610B2 (ja) | 2008-06-12 | 2013-09-25 | 大同特殊鋼株式会社 | Ni−Cr−Fe三元系合金材の製造方法 |
| RU2392348C2 (ru) | 2008-08-20 | 2010-06-20 | Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") | Коррозионно-стойкая высокопрочная немагнитная сталь и способ ее термодеформационной обработки |
| JP5315888B2 (ja) | 2008-09-22 | 2013-10-16 | Jfeスチール株式会社 | α−β型チタン合金およびその溶製方法 |
| CN101684530A (zh) | 2008-09-28 | 2010-03-31 | 杭正奎 | 超耐高温镍铬合金及其制造方法 |
| RU2378410C1 (ru) | 2008-10-01 | 2010-01-10 | Открытое акционерное общество "Корпорация ВСПМО-АВИСМА" | Способ изготовления плит из двухфазных титановых сплавов |
| US8408039B2 (en) | 2008-10-07 | 2013-04-02 | Northwestern University | Microforming method and apparatus |
| RU2383654C1 (ru) | 2008-10-22 | 2010-03-10 | Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Наноструктурный технически чистый титан для биомедицины и способ получения прутка из него |
| EP2390018B1 (en) | 2009-01-21 | 2016-11-16 | Nippon Steel & Sumitomo Metal Corporation | Curved metallic material and process for producing same |
| RU2393936C1 (ru) | 2009-03-25 | 2010-07-10 | Владимир Алексеевич Шундалов | Способ получения ультрамелкозернистых заготовок из металлов и сплавов |
| US8578748B2 (en) | 2009-04-08 | 2013-11-12 | The Boeing Company | Reducing force needed to form a shape from a sheet metal |
| JP5534551B2 (ja) * | 2009-05-07 | 2014-07-02 | 住友電気工業株式会社 | リアクトル |
| US8316687B2 (en) | 2009-08-12 | 2012-11-27 | The Boeing Company | Method for making a tool used to manufacture composite parts |
| CN101637789B (zh) | 2009-08-18 | 2011-06-08 | 西安航天博诚新材料有限公司 | 一种电阻热张力矫直装置及矫直方法 |
| JP2011121118A (ja) | 2009-11-11 | 2011-06-23 | Univ Of Electro-Communications | 難加工性金属材料を多軸鍛造処理する方法、それを実施する装置、および金属材料 |
| WO2011062231A1 (ja) | 2009-11-19 | 2011-05-26 | 独立行政法人物質・材料研究機構 | 耐熱超合金 |
| RU2425164C1 (ru) | 2010-01-20 | 2011-07-27 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Вторичный титановый сплав и способ его изготовления |
| DE102010009185A1 (de) | 2010-02-24 | 2011-11-17 | Benteler Automobiltechnik Gmbh | Profilbauteil |
| CA2799232C (en) | 2010-05-17 | 2018-11-27 | Magna International Inc. | Method and apparatus for roller hemming sheet materials having low ductility by localized laser heating |
| CA2706215C (en) | 2010-05-31 | 2017-07-04 | Corrosion Service Company Limited | Method and apparatus for providing electrochemical corrosion protection |
| US9255316B2 (en) | 2010-07-19 | 2016-02-09 | Ati Properties, Inc. | Processing of α+β titanium alloys |
| US8499605B2 (en) | 2010-07-28 | 2013-08-06 | Ati Properties, Inc. | Hot stretch straightening of high strength α/β processed titanium |
| US8613818B2 (en) | 2010-09-15 | 2013-12-24 | Ati Properties, Inc. | Processing routes for titanium and titanium alloys |
| US9206497B2 (en) * | 2010-09-15 | 2015-12-08 | Ati Properties, Inc. | Methods for processing titanium alloys |
| US20120067100A1 (en) * | 2010-09-20 | 2012-03-22 | Ati Properties, Inc. | Elevated Temperature Forming Methods for Metallic Materials |
| US20120076686A1 (en) * | 2010-09-23 | 2012-03-29 | Ati Properties, Inc. | High strength alpha/beta titanium alloy |
| US20120076611A1 (en) * | 2010-09-23 | 2012-03-29 | Ati Properties, Inc. | High Strength Alpha/Beta Titanium Alloy Fasteners and Fastener Stock |
| US10513755B2 (en) * | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
| RU2441089C1 (ru) | 2010-12-30 | 2012-01-27 | Юрий Васильевич Кузнецов | КОРРОЗИОННО-СТОЙКИЙ СПЛАВ НА ОСНОВЕ Fe-Cr-Ni, ИЗДЕЛИЕ ИЗ НЕГО И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЯ |
| JP2012140690A (ja) | 2011-01-06 | 2012-07-26 | Sanyo Special Steel Co Ltd | 靭性、耐食性に優れた二相系ステンレス鋼の製造方法 |
| US9574250B2 (en) | 2011-04-25 | 2017-02-21 | Hitachi Metals, Ltd. | Fabrication method for stepped forged material |
| EP2702181B1 (en) | 2011-04-29 | 2015-08-12 | Aktiebolaget SKF | Alloy for a Bearing Component |
| US8679269B2 (en) | 2011-05-05 | 2014-03-25 | General Electric Company | Method of controlling grain size in forged precipitation-strengthened alloys and components formed thereby |
| CN102212716B (zh) | 2011-05-06 | 2013-03-27 | 中国航空工业集团公司北京航空材料研究院 | 一种低成本的α+β型钛合金 |
| US8652400B2 (en) | 2011-06-01 | 2014-02-18 | Ati Properties, Inc. | Thermo-mechanical processing of nickel-base alloys |
| US9034247B2 (en) | 2011-06-09 | 2015-05-19 | General Electric Company | Alumina-forming cobalt-nickel base alloy and method of making an article therefrom |
| CN103732770B (zh) | 2011-06-17 | 2016-05-04 | 钛金属公司 | 用于制造α-β TI-AL-V-MO-FE合金板的方法 |
| US20130133793A1 (en) | 2011-11-30 | 2013-05-30 | Ati Properties, Inc. | Nickel-base alloy heat treatments, nickel-base alloys, and articles including nickel-base alloys |
| US9347121B2 (en) | 2011-12-20 | 2016-05-24 | Ati Properties, Inc. | High strength, corrosion resistant austenitic alloys |
| US9050647B2 (en) | 2013-03-15 | 2015-06-09 | Ati Properties, Inc. | Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys |
| US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
| US9192981B2 (en) | 2013-03-11 | 2015-11-24 | Ati Properties, Inc. | Thermomechanical processing of high strength non-magnetic corrosion resistant material |
| US9777361B2 (en) | 2013-03-15 | 2017-10-03 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
| JP6171762B2 (ja) | 2013-09-10 | 2017-08-02 | 大同特殊鋼株式会社 | Ni基耐熱合金の鍛造加工方法 |
| US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
| US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
| US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
-
2010
- 2010-01-22 US US12/691,952 patent/US10053758B2/en active Active
- 2010-12-29 CN CN2010800607739A patent/CN102712967A/zh active Pending
- 2010-12-29 JP JP2012550002A patent/JP5850859B2/ja active Active
- 2010-12-29 ES ES10803547T patent/ES2718104T3/es active Active
- 2010-12-29 BR BR112012016546-1A patent/BR112012016546B1/pt active IP Right Grant
- 2010-12-29 NZ NZ700770A patent/NZ700770A/en unknown
- 2010-12-29 PE PE2012001025A patent/PE20130060A1/es active IP Right Grant
- 2010-12-29 AU AU2010343097A patent/AU2010343097B2/en active Active
- 2010-12-29 EP EP10803547.8A patent/EP2526215B1/en active Active
- 2010-12-29 CN CN201610832682.1A patent/CN106367634A/zh active Pending
- 2010-12-29 UA UAA201210024A patent/UA109892C2/ru unknown
- 2010-12-29 NZ NZ600696A patent/NZ600696A/en unknown
- 2010-12-29 WO PCT/US2010/062284 patent/WO2011090733A2/en not_active Ceased
- 2010-12-29 KR KR1020127015595A patent/KR101827017B1/ko active Active
- 2010-12-29 CA CA2784509A patent/CA2784509C/en active Active
- 2010-12-29 PL PL10803547T patent/PL2526215T3/pl unknown
- 2010-12-29 MX MX2012007178A patent/MX353903B/es active IP Right Grant
- 2010-12-29 RU RU2012136150/02A patent/RU2566113C2/ru active
-
2011
- 2011-01-12 TW TW100101115A patent/TWI506149B/zh active
- 2011-12-29 TR TR2019/06623T patent/TR201906623T4/tr unknown
-
2012
- 2012-06-13 IL IL220372A patent/IL220372A/en active IP Right Grant
- 2012-07-03 IN IN5891DEN2012 patent/IN2012DN05891A/en unknown
- 2012-07-17 ZA ZA2012/05335A patent/ZA201205335B/en unknown
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040250932A1 (en) | 2003-06-10 | 2004-12-16 | Briggs Robert D. | Tough, high-strength titanium alloys; methods of heat treating titanium alloys |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10053758B2 (en) | Production of high strength titanium | |
| JP6104164B2 (ja) | 高強度および延性アルファ/ベータチタン合金 | |
| EP1076104A1 (en) | Titanium alloy having enhanced notch toughness and method of producing same | |
| CN106103757B (zh) | 高强度α/β钛合金 | |
| CN103210101A (zh) | 含纳米晶体的钛合金及其制造方法 | |
| JP6696202B2 (ja) | α+β型チタン合金部材およびその製造方法 | |
| JP2023092454A (ja) | チタン合金、チタン合金棒、チタン合金板及びエンジンバルブ | |
| US12442064B2 (en) | Method of forming precursor into a Ti alloy article | |
| JP2018053313A (ja) | α+β型チタン合金棒およびその製造方法 | |
| EP3878997A1 (en) | Method of forming precursor into a ti alloy article | |
| RU2478130C1 (ru) | Бета-титановый сплав и способ его термомеханической обработки | |
| HK1173755B (en) | Production of high strength titanium alloys | |
| HK1173755A (en) | Production of high strength titanium alloys | |
| Boyer et al. | Effect of Heat Treatment on Mechanical Properties of Titanium Alloys | |
| Yao | Quenching of Titanium and Control of Residual Stresses | |
| HK1079826A1 (en) | Titanium-based alloy | |
| CN120330531A (zh) | 一种Ti-Al-Mo-V-Fe系低温超塑性钛合金、钛合金板材及其制备方法 | |
| JP2014080669A (ja) | β型チタン合金およびその熱機械的処理方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201080060773.9 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10803547 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2784509 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 220372 Country of ref document: IL |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010343097 Country of ref document: AU |
|
| ENP | Entry into the national phase |
Ref document number: 20127015595 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/007178 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012550002 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 5891/DELNP/2012 Country of ref document: IN |
|
| ENP | Entry into the national phase |
Ref document number: 2010343097 Country of ref document: AU Date of ref document: 20101229 Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 001025-2012 Country of ref document: PE |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010803547 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: A201210024 Country of ref document: UA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012136150 Country of ref document: RU |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012016546 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 112012016546 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120704 |