WO2009090915A1 - 導電性材料の製造方法、その方法により得られた導電性材料、その導電性材料を含む電子機器、発光装置、発光装置製造方法 - Google Patents
導電性材料の製造方法、その方法により得られた導電性材料、その導電性材料を含む電子機器、発光装置、発光装置製造方法 Download PDFInfo
- Publication number
- WO2009090915A1 WO2009090915A1 PCT/JP2009/050212 JP2009050212W WO2009090915A1 WO 2009090915 A1 WO2009090915 A1 WO 2009090915A1 JP 2009050212 W JP2009050212 W JP 2009050212W WO 2009090915 A1 WO2009090915 A1 WO 2009090915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive material
- emitting device
- light emitting
- light
- silver
- Prior art date
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 233
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 118
- 238000000034 method Methods 0.000 title claims abstract description 92
- 239000002245 particle Substances 0.000 claims abstract description 227
- 229910052709 silver Inorganic materials 0.000 claims abstract description 171
- 239000004332 silver Substances 0.000 claims abstract description 157
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 151
- 239000000203 mixture Substances 0.000 claims abstract description 116
- 239000012298 atmosphere Substances 0.000 claims abstract description 53
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 37
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 37
- 238000010304 firing Methods 0.000 claims abstract description 26
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000001301 oxygen Substances 0.000 claims abstract description 19
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims description 112
- 239000000463 material Substances 0.000 claims description 52
- 229910052751 metal Inorganic materials 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 45
- 238000010438 heat treatment Methods 0.000 claims description 38
- 239000003960 organic solvent Substances 0.000 claims description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 34
- 229910052737 gold Inorganic materials 0.000 claims description 17
- 239000002243 precursor Substances 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 239000011521 glass Substances 0.000 claims description 15
- 239000010931 gold Substances 0.000 claims description 15
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 125000003545 alkoxy group Chemical group 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 12
- 229910052736 halogen Inorganic materials 0.000 claims description 11
- 150000002367 halogens Chemical class 0.000 claims description 11
- 125000001424 substituent group Chemical group 0.000 claims description 11
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 238000009835 boiling Methods 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 239000010944 silver (metal) Substances 0.000 claims description 8
- 239000004593 Epoxy Substances 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 4
- 238000009429 electrical wiring Methods 0.000 claims description 3
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 abstract description 28
- 230000001070 adhesive effect Effects 0.000 abstract description 27
- 230000008569 process Effects 0.000 abstract description 5
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 90
- 229910001923 silver oxide Inorganic materials 0.000 description 45
- 230000008901 benefit Effects 0.000 description 25
- 239000011888 foil Substances 0.000 description 21
- 239000012299 nitrogen atmosphere Substances 0.000 description 19
- 239000000126 substance Substances 0.000 description 17
- -1 silver oxide Chemical class 0.000 description 14
- 238000000576 coating method Methods 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 13
- 229940100890 silver compound Drugs 0.000 description 13
- 150000003379 silver compounds Chemical class 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 238000002845 discoloration Methods 0.000 description 11
- ANQVKHGDALCPFZ-UHFFFAOYSA-N ethyl 2-[6-(4-methylpiperazin-1-yl)-1h-benzimidazol-2-yl]acetate Chemical compound C1=C2NC(CC(=O)OCC)=NC2=CC=C1N1CCN(C)CC1 ANQVKHGDALCPFZ-UHFFFAOYSA-N 0.000 description 11
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 9
- 239000010419 fine particle Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 238000007639 printing Methods 0.000 description 9
- 238000007650 screen-printing Methods 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- 230000001590 oxidative effect Effects 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 229920002050 silicone resin Polymers 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002923 metal particle Substances 0.000 description 5
- 238000000635 electron micrograph Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 238000005065 mining Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 229910001316 Ag alloy Inorganic materials 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- QPRQEDXDYOZYLA-UHFFFAOYSA-N 2-methylbutan-1-ol Chemical compound CCC(C)CO QPRQEDXDYOZYLA-UHFFFAOYSA-N 0.000 description 2
- IWTBVKIGCDZRPL-UHFFFAOYSA-N 3-methylpentanol Chemical compound CCC(C)CCO IWTBVKIGCDZRPL-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical class [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 2
- 229910000629 Rh alloy Inorganic materials 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 150000007973 cyanuric acids Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 2
- 239000003353 gold alloy Substances 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical class OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- XXQBEVHPUKOQEO-UHFFFAOYSA-N potassium superoxide Chemical compound [K+].[K+].[O-][O-] XXQBEVHPUKOQEO-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- VFWRGKJLLYDFBY-UHFFFAOYSA-N silver;hydrate Chemical compound O.[Ag].[Ag] VFWRGKJLLYDFBY-UHFFFAOYSA-N 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XRMVWAKMXZNZIL-UHFFFAOYSA-N 2,2-dimethyl-1-butanol Chemical compound CCC(C)(C)CO XRMVWAKMXZNZIL-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- WAEVWDZKMBQDEJ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)CO WAEVWDZKMBQDEJ-UHFFFAOYSA-N 0.000 description 1
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical compound OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- TZYRSLHNPKPEFV-UHFFFAOYSA-N 2-ethyl-1-butanol Chemical compound CCC(CC)CO TZYRSLHNPKPEFV-UHFFFAOYSA-N 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- PFNHSEQQEPMLNI-UHFFFAOYSA-N 2-methyl-1-pentanol Chemical compound CCCC(C)CO PFNHSEQQEPMLNI-UHFFFAOYSA-N 0.000 description 1
- WFRBDWRZVBPBDO-UHFFFAOYSA-N 2-methyl-2-pentanol Chemical compound CCCC(C)(C)O WFRBDWRZVBPBDO-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- DUXCSEISVMREAX-UHFFFAOYSA-N 3,3-dimethylbutan-1-ol Chemical compound CC(C)(C)CCO DUXCSEISVMREAX-UHFFFAOYSA-N 0.000 description 1
- JYLNVJYYQQXNEK-UHFFFAOYSA-N 3-amino-2-(4-chlorophenyl)-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(CN)C1=CC=C(Cl)C=C1 JYLNVJYYQQXNEK-UHFFFAOYSA-N 0.000 description 1
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- XWNSFEAWWGGSKJ-UHFFFAOYSA-N 4-acetyl-4-methylheptanedinitrile Chemical compound N#CCCC(C)(C(=O)C)CCC#N XWNSFEAWWGGSKJ-UHFFFAOYSA-N 0.000 description 1
- PCWGTDULNUVNBN-UHFFFAOYSA-N 4-methylpentan-1-ol Chemical compound CC(C)CCCO PCWGTDULNUVNBN-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZKQDCIXGCQPQNV-UHFFFAOYSA-N Calcium hypochlorite Chemical compound [Ca+2].Cl[O-].Cl[O-] ZKQDCIXGCQPQNV-UHFFFAOYSA-N 0.000 description 1
- 239000004343 Calcium peroxide Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- SPAGIJMPHSUYSE-UHFFFAOYSA-N Magnesium peroxide Chemical compound [Mg+2].[O-][O-] SPAGIJMPHSUYSE-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004153 Potassium bromate Substances 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- AZFNGPAYDKGCRB-XCPIVNJJSA-M [(1s,2s)-2-amino-1,2-diphenylethyl]-(4-methylphenyl)sulfonylazanide;chlororuthenium(1+);1-methyl-4-propan-2-ylbenzene Chemical compound [Ru+]Cl.CC(C)C1=CC=C(C)C=C1.C1=CC(C)=CC=C1S(=O)(=O)[N-][C@@H](C=1C=CC=CC=1)[C@@H](N)C1=CC=CC=C1 AZFNGPAYDKGCRB-XCPIVNJJSA-M 0.000 description 1
- NGMTUCFCIUGWAG-UHFFFAOYSA-L [Cu+2].[O-]Cl=O.[O-]Cl=O Chemical compound [Cu+2].[O-]Cl=O.[O-]Cl=O NGMTUCFCIUGWAG-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- KHPLPBHMTCTCHA-UHFFFAOYSA-N ammonium chlorate Chemical compound N.OCl(=O)=O KHPLPBHMTCTCHA-UHFFFAOYSA-N 0.000 description 1
- JOSWYUNQBRPBDN-UHFFFAOYSA-P ammonium dichromate Chemical compound [NH4+].[NH4+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O JOSWYUNQBRPBDN-UHFFFAOYSA-P 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- ZRDJERPXCFOFCP-UHFFFAOYSA-N azane;iodic acid Chemical compound [NH4+].[O-]I(=O)=O ZRDJERPXCFOFCP-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- ISFLYIRWQDJPDR-UHFFFAOYSA-L barium chlorate Chemical compound [Ba+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O ISFLYIRWQDJPDR-UHFFFAOYSA-L 0.000 description 1
- ZJRXSAYFZMGQFP-UHFFFAOYSA-N barium peroxide Chemical compound [Ba+2].[O-][O-] ZJRXSAYFZMGQFP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Chemical class [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- YALMXYPQBUJUME-UHFFFAOYSA-L calcium chlorate Chemical compound [Ca+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O YALMXYPQBUJUME-UHFFFAOYSA-L 0.000 description 1
- 235000019402 calcium peroxide Nutrition 0.000 description 1
- LHJQIRIGXXHNLA-UHFFFAOYSA-N calcium peroxide Chemical compound [Ca+2].[O-][O-] LHJQIRIGXXHNLA-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical class OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 229940117975 chromium trioxide Drugs 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N chromium trioxide Inorganic materials O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- UOUJSJZBMCDAEU-UHFFFAOYSA-N chromium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Cr+3].[Cr+3] UOUJSJZBMCDAEU-UHFFFAOYSA-N 0.000 description 1
- GAMDZJFZMJECOS-UHFFFAOYSA-N chromium(6+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+6] GAMDZJFZMJECOS-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- AXZAYXJCENRGIM-UHFFFAOYSA-J dipotassium;tetrabromoplatinum(2-) Chemical compound [K+].[K+].[Br-].[Br-].[Br-].[Br-].[Pt+2] AXZAYXJCENRGIM-UHFFFAOYSA-J 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- QFWPJPIVLCBXFJ-UHFFFAOYSA-N glymidine Chemical compound N1=CC(OCCOC)=CN=C1NS(=O)(=O)C1=CC=CC=C1 QFWPJPIVLCBXFJ-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 description 1
- ZOCHHNOQQHDWHG-UHFFFAOYSA-N hexan-3-ol Chemical compound CCCC(O)CC ZOCHHNOQQHDWHG-UHFFFAOYSA-N 0.000 description 1
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical class Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- ICIWUVCWSCSTAQ-UHFFFAOYSA-M iodate Chemical compound [O-]I(=O)=O ICIWUVCWSCSTAQ-UHFFFAOYSA-M 0.000 description 1
- ICIWUVCWSCSTAQ-UHFFFAOYSA-N iodic acid Chemical class OI(=O)=O ICIWUVCWSCSTAQ-UHFFFAOYSA-N 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910000450 iodine oxide Inorganic materials 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- HPGPEWYJWRWDTP-UHFFFAOYSA-N lithium peroxide Chemical compound [Li+].[Li+].[O-][O-] HPGPEWYJWRWDTP-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229960004995 magnesium peroxide Drugs 0.000 description 1
- RNUHOKZSYYKPPI-UHFFFAOYSA-L magnesium;dibromate Chemical compound [Mg+2].[O-]Br(=O)=O.[O-]Br(=O)=O RNUHOKZSYYKPPI-UHFFFAOYSA-L 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- VHWYCFISAQVCCP-UHFFFAOYSA-N methoxymethanol Chemical compound COCO VHWYCFISAQVCCP-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- AFSVSXMRDKPOEW-UHFFFAOYSA-N oxidoiodine(.) Chemical class I[O] AFSVSXMRDKPOEW-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 125000005385 peroxodisulfate group Chemical group 0.000 description 1
- RAFRTSDUWORDLA-UHFFFAOYSA-N phenyl 3-chloropropanoate Chemical compound ClCCC(=O)OC1=CC=CC=C1 RAFRTSDUWORDLA-UHFFFAOYSA-N 0.000 description 1
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000019396 potassium bromate Nutrition 0.000 description 1
- 229940094037 potassium bromate Drugs 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- JLKDVMWYMMLWTI-UHFFFAOYSA-M potassium iodate Chemical compound [K+].[O-]I(=O)=O JLKDVMWYMMLWTI-UHFFFAOYSA-M 0.000 description 1
- 239000001230 potassium iodate Substances 0.000 description 1
- 229940093930 potassium iodate Drugs 0.000 description 1
- 235000006666 potassium iodate Nutrition 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000010289 potassium nitrite Nutrition 0.000 description 1
- 239000004304 potassium nitrite Substances 0.000 description 1
- 229910001487 potassium perchlorate Inorganic materials 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- VISKNDGJUCDNMS-UHFFFAOYSA-M potassium;chlorite Chemical compound [K+].[O-]Cl=O VISKNDGJUCDNMS-UHFFFAOYSA-M 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- XUXNAKZDHHEHPC-UHFFFAOYSA-M sodium bromate Chemical compound [Na+].[O-]Br(=O)=O XUXNAKZDHHEHPC-UHFFFAOYSA-M 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 229910002007 uranyl nitrate Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
- B23K1/0016—Brazing of electronic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
- B23K35/025—Pastes, creams, slurries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/4913—Assembling to base an electrical component, e.g., capacitor, etc.
- Y10T29/49144—Assembling to base an electrical component, e.g., capacitor, etc. by metal fusion
Definitions
- the present invention relates to a method for manufacturing a conductive material, a conductive material obtained by the method, an electronic device including the conductive material, a light emitting device, and a method for manufacturing the light emitting device.
- a paste-like conductive material containing metal (eg, silver, copper, etc.) particles having a particle size of micron order and an adhesive (eg, epoxy, acrylic, silicone, etc.) is used as a wiring board that does not use etching.
- metal eg, silver, copper, etc.
- an adhesive eg, epoxy, acrylic, silicone, etc.
- a method is known in which a composition is applied on a substrate and heated at 150 ° C. to 180 ° C. (see, for example, Non-Patent Document 1).
- the adhesive is solidified by heating, the interval between the metal particles in the conductive paste is narrowed, and as a result, the metal particles are densely packed and a current flows to manufacture a wiring.
- the electric resistance value obtained practically is as high as about 5 ⁇ 10 ⁇ 5 ⁇ cm, and a lower electric resistance value has been desired.
- a paste-like conductive composition in which fine particles of a silver compound such as silver oxide are dispersed in a reducing organic solvent on a substrate and heating it at around 200 ° C.
- this manufacturing method when the composition is heated at around 200 ° C., the fine particles of a silver compound such as silver oxide in the paste change to silver, and as a result, the silver particles are connected and current flows to produce a wiring. Is done.
- this production method involves a quantitative reduction reaction of fine particles of silver compound such as silver oxide, so that it reacts violently with the reducing organic solvent, and the decomposition gas of the reducing organic solvent, oxygen gas generated by the reduction of the silver compound, etc. Due to the large amount of generation, irregular voids are formed in the electrically conductive composition, resulting in stress concentration points, and the electrically conductive composition is easily destroyed, and there is a problem in handling.
- a method of mixing micron-order silver particles in the composition is also known.
- the principle is that metal connection is made by reducing fine particles of silver compound such as silver oxide, the degree of difference is small. There is only a slight improvement.
- a conductive composition containing silver oxide fine particles and a reducing agent that reduces the same is known (see, for example, Patent Document 2).
- This conductive composition also has a problem in that gas is generated because high reaction heat is generated as described above.
- a particulate silver compound in which an organic compound having 1 to 8 carbon atoms is attached to the particle surface is known (see, for example, Patent Document 3).
- this silver compound is heated, the organic compound on the surface acts as a reducing agent, and as a result, the particulate silver compound can be reduced to silver.
- this particulate silver compound also has a problem in that gas is generated because high reaction heat is generated as described above.
- a conductive paste composed of silver, silver oxide, and an organic compound having a property of reducing silver oxide is known (for example, see Patent Document 4).
- This conductive paste also has a problem that gas is generated because high reaction heat is generated as described above.
- a porous composition having a porosity of 20 to 60% obtained by converting a silver oxide into silver by heat-treating a composition comprising silver (I) Ag 2 O, and having an organic content of 20% by mass.
- a method for producing a conductive material in which a conductive material that is less than or equal to% is further subjected to a plating treatment see, for example, Patent Document 5).
- JP 2003-309352 A Japanese Patent Laid-Open No. 2004-253251 JP 2005-200604 A JP 2005-267900 A JP 2006-24808 A JP 2005-129303 A Yi Li, CP Wong, “Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications”, Materials Science and Engineering, 2006, R 51, pp. 1-35.
- micron-order silver particles are fused at low temperatures.
- the present inventors have found that micron-order silver particles are fused when heated at low temperature under oxidizing conditions such as oxide or oxygen, and have completed the present invention based on this finding.
- the present invention relates to a method for producing a conductive material, wherein the method comprises a silver particle having an average particle size (median diameter) of 0.1 ⁇ m to 15 ⁇ m and a metal oxide, and a first conductive material composition
- the method includes firing an object to obtain a conductive material.
- this manufacturing method is referred to as a first manufacturing method of a conductive material in the present specification.
- the present invention also relates to a method for producing a conductive material, wherein the method comprises a second conductive material composition containing silver particles having an average particle size (median diameter) of 0.1 ⁇ m to 15 ⁇ m. And baking at a temperature in the range of 150 ° C. to 320 ° C. in an ozone or air atmosphere to obtain a conductive material.
- this manufacturing method is referred to as a second manufacturing method of a conductive material.
- the manufacturing method of the present invention has an advantage that a conductive material that generates a low electric resistance value can be manufactured. Moreover, the manufacturing method of this invention has the advantage that the electroconductive material obtained using the cheap and stable composition for electroconductive materials which does not contain an adhesive agent can be manufactured.
- FIG. 1 is an electron micrograph of the conductive composition obtained in Example 2.
- FIG. 2 is an electron micrograph of the conductive composition obtained in Reference Example 8.
- FIG. 3 is a graph showing variations in the stamping method coating amount obtained in Example 34.
- the present inventors calcined a composition containing silver particles having an average particle diameter of 0.1 ⁇ m to 15 ⁇ m in a metal oxide that is an oxidizing agent or oxygen, ozone, or air atmosphere, for example, at a temperature around 150 ° C. Even so, it has been found that silver particles can be fused to obtain a conductive material. On the other hand, in a nitrogen atmosphere, even when a composition containing silver particles having an average particle size of 0.1 ⁇ m to 15 ⁇ m was fired, a conductive material could not be obtained at a low temperature around 150 ° C.
- the present inventors include the present invention, that is, the metal oxide as an oxidant or silver particles having an average particle diameter of 0.1 ⁇ m to 15 ⁇ m in oxygen, ozone or air atmosphere.
- a method for producing a conductive material including the step of firing the composition was completed.
- the conductive material can be produced without a problem of generation of a decomposition gas due to rapid reaction heat.
- the mechanism by which the conductive material is formed is not clear, but can be estimated as follows.
- a composition containing silver particles having an average particle size of 0.1 ⁇ m to 15 ⁇ m is baked in an oxygen, ozone or air atmosphere that is an oxidizing agent, the silver particles and a part of the silver particles are locally oxidized.
- a conductive material is formed through a process in which silver oxide formed by oxidation exchanges oxygen catalytically at a portion in contact with silver particles and repeats a redox reaction.
- the metal oxide already contained comes into contact with the silver particles. It can be inferred that the conductive material is formed through a process in which oxygen is exchanged catalytically and the oxidation-reduction reaction is repeated. Since the conductive material is manufactured by such an estimation mechanism, according to the method for manufacturing the conductive material of the present invention, it is not necessary to use a composition for conductive material containing an adhesive, and it is inexpensive and stable. By using the composition for a conductive material, a conductive material that produces a low electric resistance value can be obtained.
- the present invention is a first method for producing a conductive material, which includes silver particles having an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m, and a metal oxide. It is characterized by including baking the composition for 1st electroconductive materials containing to obtain an electroconductive material.
- a conductive material having a low resistivity can be provided.
- the micron-order silver particles that do not particularly require processing can be fused as they are, so that the conductive material can be easily manufactured.
- an electroconductive material can be manufactured using the silver particle which is easy to acquire and cheap.
- the first production method has an advantage that it is not necessary to use an adhesive, unstable silver compound fine particles, or the like as a raw material. Further, according to the first manufacturing method, since only the portions where the silver particles are adjacent to each other are fused by firing, voids are generated, and a flexible film-like conductive material can be formed. There is an advantage that it is possible.
- the present invention is a second method for producing a conductive material, and the method includes a second conductive material containing silver particles having an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m. And baking the composition for a conductive material at a temperature in the range of 150 ° C. to 320 ° C. in an atmosphere of oxygen, ozone, or air to obtain a conductive material.
- a conductive material having a low resistivity can be provided.
- the micron order silver particles that do not particularly require processing can be fused as they are, and therefore, the conductive material can be easily manufactured.
- the emitted-heat amount can be suppressed and an electroconductive material can be obtained.
- an electroconductive material can be manufactured using the silver particle which is easy to acquire and cheap.
- the second production method has an advantage that it is not necessary to use an adhesive, unstable silver compound fine particles, or the like as a raw material. Further, according to the second manufacturing method, since only the portions where the silver particles are adjacent to each other are fused by firing, voids are generated, and a flexible film-like conductive material can be formed. There is an advantage that it is possible.
- the first conductive material composition preferably further contains an organic solvent having a boiling point of 300 ° C. or lower or water.
- the organic solvent or water improves the familiarity between the silver particles and promotes the reaction between the silver particles and the metal oxide.
- the organic solvent preferably contains a lower alcohol or a lower alcohol having one or more substituents selected from the group consisting of lower alkoxy, amino and halogen. This is because the organic solvent as described above has high volatility, so that the residual organic solvent in the obtained conductive material can be reduced after the first conductive material composition is fired.
- the firing is preferably performed in oxygen, ozone, or an air atmosphere.
- the firing is preferably performed at a temperature in the range of 150 ° C. to 320 ° C.
- the metal oxide is preferably one or more selected from the group consisting of AgO, Ag 2 O, and Ag 2 O 3 .
- the content of the metal oxide in the first conductive material composition is preferably 5% by weight to 40% by weight with respect to the silver particles.
- the metal oxide preferably has an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m.
- the present invention is a conductive material obtained by the first or second manufacturing method of the conductive material of the present invention, wherein the silver particles are fused together, and the porosity is 5 volumes. % To 35% by volume.
- the conductive material has an advantage of high bonding strength.
- the conductive material of the present invention preferably has a silver content of 70% by weight or more.
- the conductive material of the present invention preferably has an electric resistance value of 5.0 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or less.
- the electronic device of the present invention is an electronic device including the conductive material obtained by the first manufacturing method or the second manufacturing method of the conductive material of the present invention, wherein the conductive material is an electrical wiring. It is used as a material for component electrodes, die attach bonding materials or fine bumps.
- the light-emitting device of the present invention is a light-emitting device including a conductive material obtained by the first manufacturing method of the conductive material of the present invention, wherein the conductive material includes a wiring board or a lead frame, and a light-emitting device. It is used as a bonding material with an element.
- this light-emitting device is referred to as a first light-emitting device.
- the light-emitting device of the present invention is a light-emitting device including a conductive material obtained by the second method for producing a conductive material of the present invention, wherein the conductive material includes a wiring board or a lead frame, and a light-emitting device. It is used as a bonding material with an element.
- this light-emitting device is referred to as a second light-emitting device.
- the light emitting device of the present invention is a conductive material obtained by heating a conductive paste containing silver particles having an average particle size (median diameter) of 0.1 ⁇ m to 15 ⁇ m and alcohol at 150 ° C. to 300 ° C.
- the conductive material is used as a bonding material between a wiring board or a lead frame and a light emitting element.
- this light-emitting device is referred to as a third light-emitting device.
- the alcohol is preferably a lower alcohol or a lower alcohol having one or more substituents selected from the group consisting of lower alkoxy, amino and halogen.
- the wiring board includes aluminum oxide, aluminum nitride, zirconium oxide, zirconium nitride, titanium oxide, titanium nitride, or a mixture thereof. It is preferable to include at least one selected from the group consisting of a ceramic substrate, a metal substrate containing Cu, Fe, Ni, Cr, Al, Ag, Au, Ti or an alloy thereof, a glass epoxy substrate, and a BT resin substrate.
- the lead frame is a metal member containing Cu, Fe, Ni, Cr, Al, Ag, Au, Ti, or an alloy thereof. Is preferably included.
- the wiring board or the lead frame is further covered with Ag, Au, Pt, Sn, Cu, Rh, or an alloy thereof. It is preferable.
- the first method for producing a light-emitting device of the present invention includes a first conductive material composition comprising silver particles having an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m and a metal oxide. Applying to the wiring substrate or the lead frame, arranging the light emitting element on the first conductive material composition to obtain a light emitting device precursor, and firing the light emitting device precursor. And obtaining a light emitting device.
- the method for producing the second light emitting device of the present invention includes the second conductive material composition containing silver particles having an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m, the wiring substrate or the A step of applying to the lead frame; a step of arranging the light emitting element on the second conductive material composition to obtain a light emitting device precursor; and a step of applying the light emitting device precursor to an oxygen, ozone or air atmosphere. And a step of baking at a temperature of 320 ° C. to 320 ° C. to obtain a light emitting device.
- the third light emitting device manufacturing method of the present invention includes a conductive paste containing silver particles having an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m and alcohol, and the wiring board or the lead. Applying to a frame; arranging the light emitting element on the conductive paste to obtain a light emitting device precursor; and firing the light emitting device precursor at 150 ° C. to 300 ° C. to obtain a light emitting device. Including.
- the silver particles in the present invention may have one average particle diameter (median diameter) or a mixture of two or more kinds.
- the average particle diameter (median diameter) is 0.1 ⁇ m to 15 ⁇ m, preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.3 ⁇ m to 5 ⁇ m.
- the average particle diameter (median diameter) is, for example, a combination of 0.1 ⁇ m to 15 ⁇ m and 0.1 ⁇ m to 15 ⁇ m, preferably 0.1 ⁇ m to 15 ⁇ m.
- the content of those having an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m is, for example, 70% by weight or more, preferably 80% by weight or more. Is 90% by weight or more. Thereby, an electrical resistance value can be made small.
- the average particle diameter (median diameter) of silver particles in the present invention can be measured by a laser method.
- the average particle diameter (median diameter) means a value at which the cumulative deposition frequency obtained from the particle size distribution is 50%.
- the silver particles in the present invention has a specific surface area of 0.5m 2 / g ⁇ 3m 2 / g, preferably 0.6m 2 /g ⁇ 2.5m 2 / g, more preferably 0.6m 2 / g to 2m 2 / g.
- the specific surface area of the silver particles that are the main raw material of the composition for conductive material of the present invention can be measured by the BET method.
- the form of the silver particles in the present invention is not limited, and examples thereof include a spherical shape, a flat shape, and a polyhedron.
- the form of the silver particles is preferably uniform with respect to silver particles having an average particle diameter (median diameter) within a predetermined range.
- the form of the silver particles having an average particle diameter (median diameter) may be the same or different.
- the average particle diameter (median diameter) is 0.3 ⁇ m.
- the silver particles having a spherical shape and the average particle diameter (median diameter) of 3 ⁇ m may be flat.
- Examples of the metal oxide in the first conductive material composition of the present invention include silver oxide (eg, AgO, Ag 2 O, Ag 2 O 3 and the like), chlorites (eg, potassium chlorite, Sodium chlorite, copper chlorite, etc.), chlorates, chlorates (eg, potassium chlorate, barium chlorate, calcium chlorate, sodium chlorate, ammonium chlorate, etc.), perchlorates (eg, , Potassium perchlorate, sodium perchlorate, ammonium perchlorate, etc.), bromates (eg, potassium bromate, sodium bromate, magnesium bromate), iodates (eg, potassium iodate, iodate) Sodium, ammonium iodate, etc.), inorganic peroxides (eg, potassium peroxide, sodium peroxide, calcium peroxide, magnesium peroxide) Cium, barium peroxide, lithium peroxide, etc.), nitrates (eg, potassium nitrate, sodium nitrate,
- the metal oxide in the first conductive material composition of the present invention is preferably at least one selected from the group consisting of AgO, Ag 2 O and Ag 2 O 3 . This is because these metal oxides promote the oxidation reaction of the silver particles, and as a result, metal bonding can be performed at a relatively low temperature. Moreover, these metal oxides are preferable because they are thermally decomposed by firing and then become silver.
- the metal oxide is more preferably AgO.
- AgO has a strong oxidizing power, so that the amount of metal oxide added can be suppressed. As a result, the electrical resistance value of the obtained conductive material becomes lower, and the mechanical strength of the conductive material is improved.
- the metal oxide may have one average particle diameter (median diameter) or a mixture of two or more kinds.
- the metal oxide preferably has an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m. This is because the metal oxide having the average particle diameter is excellent in workability and can be manufactured at low cost.
- the average particle diameter (median diameter) is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.3 ⁇ m to 5 ⁇ m.
- the average particle diameter (median diameter) is, for example, a combination of 0.1 ⁇ m to 15 ⁇ m and 0.1 ⁇ m to 15 ⁇ m, preferably 0.1 ⁇ m to A combination of 15 ⁇ m and 0.1 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 15 ⁇ m and 0.3 ⁇ m to 5 ⁇ m.
- the content of those having an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m is, for example, 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more.
- the first conductive material composition preferably further contains an organic solvent having a boiling point of 300 ° C. or lower or water. This is because, in the first method for producing a conductive material of the present invention, the organic solvent or water improves the familiarity between the silver particles and promotes the reaction between the silver particles and the metal oxide.
- the second conductive material composition may further include an organic solvent having a boiling point of 300 ° C. or lower or water. This is because the organic solvent or water improves the compatibility between the silver particles and promotes the reaction between the silver particles and the metal oxide.
- the organic solvent preferably contains a lower alcohol or a lower alcohol having one or more substituents selected from the group consisting of lower alkoxy, amino and halogen. This is because the organic solvent as described above has high volatility, so that the residual organic solvent in the obtained conductive material can be reduced after the first conductive material composition is fired.
- the organic solvent may contain a lower alcohol or a lower alcohol having one or more substituents selected from the group consisting of lower alkoxy, amino and halogen. . This is because the organic solvent as described above has high volatility, so that the residual organic solvent in the obtained conductive material can be reduced after the first conductive material composition is fired.
- Examples of the lower alcohol include those containing an alkyl group having 1 to 6 carbon atoms and 1 to 3, preferably 1 to 2 hydroxyl groups.
- Examples of the lower alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n-pentyl group, i-pentyl group, sec-pentyl group, t-pentyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1 -Linear or branched such as ethylbutyl group, 2-ethylbutyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, and 1-e
- Examples of the lower alcohol having an alkyl group having 1 to 6 carbon atoms and 1 to 3 hydroxyl groups include methanol, ethanol, ethylene glycol, n-propanol, i-propanol, triethylene glycol, n-butanol, i -Butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, sec-pentanol, t-pentanol, 2-methylbutanol, n-hexanol, 1-methylpentanol, 2-methylpen Tanol, 3-methylpentanol, 4-methylpentanol, 1-ethylbutanol, 2-ethylbutanol, 1,1-dimethylbutanol, 2,2-dimethylbutanol, 3,3-dimethylbutanol, and 1-ethyl- Examples include 1-methylpropanol.
- the substituents are as follows.
- the lower alkoxy include groups in which —O— is substituted on the lower alkyl group.
- the lower alkoxy include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, sec-butoxy, t-butoxy, n-pentyloxy and the like.
- the halogen include fluorine, bromine, chlorine and iodine.
- Examples of the lower alcohol having one or more substituents selected from the group consisting of lower alkoxy, amino and halogen include methoxymethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-chloroethanol, ethanolamine and the like. Can be mentioned.
- the boiling point of the organic solvent is preferably 300 ° C. or lower. More preferably, it is 150 ° C to 250 ° C.
- the change in viscosity at room temperature of the composition for conductive material due to volatilization of the organic solvent can be suppressed, the workability is good, and furthermore, it can be completely volatilized by heating.
- the amount of the organic solvent added is not particularly limited because the required viscosity varies depending on the method of applying the composition for conductive material, but the upper limit is 30% by weight in order to suppress the porosity of the conductive material. It is preferable to do.
- the firing may be performed in a non-oxidizing atmosphere, in the air, in a vacuum atmosphere, in an oxygen or mixed gas atmosphere, in an atmosphere of air current, or the like.
- the firing is preferably performed in oxygen, ozone, or an atmospheric atmosphere. This is because if the firing is performed in the atmosphere, the oxidation reaction is promoted during firing.
- the firing is preferably performed at a temperature in the range of 150 ° C. to 320 ° C. This is because when fired in the temperature range, metal bonding is possible at a temperature lower than the melting point of the resin package on which the semiconductor element or the like is mounted.
- the firing is preferably performed at a temperature in the range of 160 ° C. to 260 ° C., and more preferably performed at a temperature in the range of 180 ° C. to 200 ° C.
- the content of the metal oxide in the first conductive material composition of the present invention is preferably 5% by weight to 40% by weight with respect to the silver particles. It is because the shear strength of the conductive material obtained will become high if it is the said content. Further, the content of the metal oxide is more preferably 5% by weight to 30% by weight with respect to the silver particles, and further preferably 10% by weight.
- the conductive material of the present invention may further include particles of a conductive metal other than silver.
- the conductive metal include palladium, platinum, gold, and copper.
- the conductive metal particles have an average particle diameter (median diameter) of, for example, 0.1 ⁇ m to 15 ⁇ m, preferably 0.1 ⁇ m to 10 ⁇ m, and more preferably 0.3 ⁇ m to 5 ⁇ m.
- the particles of the conductive metal is a specific surface area of for example 0.5m 2 / g ⁇ 3m 2 / g, preferably 0.6m 2 /g ⁇ 2.5m 2 / g, more preferably 0 0.6 m 2 / g to 2 m 2 / g.
- the present invention also relates to a conductive material obtained by the first manufacturing method or the second manufacturing method of the conductive material, wherein the silver particles are fused together, and the porosity is 5% by volume to 35%. % By volume.
- the conductive material has an advantage of high bonding strength.
- the porosity is preferably 5% by volume to 25% by volume, and more preferably 5% by volume to 15% by volume.
- the conductive material of the present invention preferably has a silver content of 70% by weight or more. This is because the conductive material has high bonding strength.
- the silver content is more preferably 85% by weight or more, and still more preferably 90% by weight or more and 100% by weight or less.
- the conductive material of the present invention preferably has an electric resistance value of 5.0 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or less. This is because the conductive material has a low electrical resistance value.
- the electric resistance value is more preferably 1.0 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or less, and further preferably 7.0 ⁇ 10 ⁇ 6 ⁇ ⁇ cm or less.
- the electronic device of the present invention is an electronic device including a conductive material obtained by the first manufacturing method or the second manufacturing method of the present invention, and the conductive material includes an electrical wiring, a component electrode, It is used as a material for a die attach bonding material or a fine bump.
- the conductive material includes an electrical wiring, a component electrode, It is used as a material for a die attach bonding material or a fine bump.
- a method for bonding a light emitting element and a wiring board is generally an organic bonding material such as an insulating adhesive, a conductive adhesive in which a conductive metal filler is dispersed, or a metal bonding material such as high-temperature lead solder or AuSn eutectic.
- organic bonding material such as an insulating adhesive, a conductive adhesive in which a conductive metal filler is dispersed, or a metal bonding material such as high-temperature lead solder or AuSn eutectic.
- the method using a metal bonding material has a problem that the plastic member of the light emitting device is severely deteriorated because it is exposed to a high temperature exceeding 300 ° C. during bonding.
- the conductive material composition contains silver as a main component and does not require an adhesive. Therefore, if the conductive material obtained by the manufacturing method of the present invention is used as a bonding material, there is almost no influence by light and heat, and the bonding temperature in the manufacturing method is also as low as 150 ° C. to 320 ° C. The heat deterioration of the plastic member in the light emitting device can be prevented, which is preferable.
- the method for producing a conductive material of the present invention there is no problem of generation of cracked gas due to rapid reaction heat, and therefore, formation of irregular voids is suppressed in the obtained conductive material. And good as a bonding material.
- the light emitting device of the present invention is a light emitting device including a conductive material obtained by the first method for producing a conductive material of the present invention, wherein the conductive material includes a wiring board or a lead frame, a light emitting element, It is the light-emitting device (1st light-emitting device) used as a joining material.
- the obtained first light emitting device has an advantage that the electrical resistance value is sufficiently small and the change with time is small.
- the obtained first light emitting device has an advantage that deterioration and discoloration of the wiring board or the lead frame are suppressed.
- the first light emitting device of the present invention has an advantage that it has a long life with little decrease in light output over time even when driven for a long time.
- the light-emitting device of the present invention is a light-emitting device including a conductive material obtained by the second manufacturing method of the conductive material of the present invention, and the conductive material includes a wiring board or a lead frame, and a light-emitting device. It is a light emitting device (second light emitting device) used as a bonding material with an element.
- the obtained second light emitting device has an advantage that the electrical resistance value is sufficiently small and the change with time is small.
- the obtained second light emitting device has an advantage that deterioration and discoloration of the wiring board or the lead frame are suppressed.
- the second light emitting device of the present invention has an advantage that it has a long lifetime with little decrease in light output over time even when driven for a long time.
- the light emitting device of the present invention is a conductive material obtained by heating a conductive paste containing silver particles having an average particle size (median diameter) of 0.1 ⁇ m to 15 ⁇ m and alcohol at 150 ° C. to 300 ° C.
- the conductive material is a light emitting device (third light emitting device) used as a bonding material between a wiring board or a lead frame and a light emitting element.
- the obtained third light emitting device has an advantage that the electrical resistance value is sufficiently small and the change with time is small.
- the obtained third light emitting device has an advantage that deterioration and discoloration of the wiring board or the lead frame are suppressed.
- the third light emitting device of the present invention has an advantage that it has a long life with little decrease in light output over time even when driven for a long time.
- the wiring substrate is not particularly limited as long as the composition for conductive material or the conductive paste can be applied to the surface thereof.
- a semiconductor element aluminum oxide, aluminum nitride, zirconium oxide, nitride Ceramic substrate containing zirconium, titanium oxide, titanium nitride or a mixture thereof, metal substrate containing Cu, Fe, Ni, Cr, Al, Ag, Au, Ti or alloys thereof, glass epoxy substrate, BT resin substrate, glass substrate , Resin substrate, paper and the like.
- the first light-emitting device, the second light-emitting device, and the third light-emitting device of the present invention are excellent in heat resistance.
- a wiring board that is vulnerable to heating such as a thermoplastic resin, can be used.
- the wiring substrate is preferably a ceramic substrate containing aluminum oxide, aluminum nitride, zirconium oxide, zirconium nitride, titanium oxide, titanium nitride, or a mixture thereof. This is because if the wiring substrate is a ceramic substrate, it is possible to suppress thermal stress from being applied to the joint between the substrate and the light emitting element when the light emitting element is a single crystal having a small linear expansion coefficient.
- the wiring board is more preferably a ceramic board containing aluminum oxide. This is because when the wiring substrate is a ceramic substrate containing aluminum oxide, the cost of the light emitting device can be suppressed.
- examples of the lead frame include metal frames formed from copper, iron, nickel, chromium, aluminum, silver, gold, titanium, or alloys thereof, and include copper, iron, or alloys thereof. Is preferred.
- the lead frame is more preferably a copper alloy in a light-emitting device that requires heat dissipation, and an iron alloy in a light-emitting device that requires bonding reliability with a semiconductor element.
- the wiring substrate or lead frame has a bonding material application portion surface of silver, silver oxide, silver alloy, silver alloy oxide, Pt, Pt alloy, Sn, Sn alloy, gold, gold alloy. , Cu, Cu alloy, Rh, Rh alloy or the like, and preferably coated with silver oxide (silver oxide).
- silver oxide silver oxide
- the coating can be performed by plating, vapor deposition, sputtering, coating, or the like.
- the light-emitting element has a surface to be fused to the bonding material such as silver, a silver alloy, Pt, a Pt alloy, Sn, a Sn alloy, gold, a gold alloy, copper, a copper alloy, Rh, It may be coated with an Rh alloy or the like, and is preferably coated with silver.
- the bonding material application portion surface is mainly composed of silver, and therefore, when it is covered with silver, the fusion bonding property with the bonding material application portion surface is good.
- the coating can be performed by plating, vapor deposition, sputtering, coating, or the like.
- the lead frame is made of Cu, Fe, Ni, Co, Cr, Al, Ag, Au, Ti, or an alloy thereof. It is preferable to include a metal member including, and more preferable to include a metal member including Cu, Fe, Ni, Co, or an alloy thereof.
- the wiring board or lead frame is preferably further coated with Ag, Au, Pt, Sn, Cu, Rh or an alloy thereof, and is further coated with Ag, Au, Pt or an alloy thereof. More preferred.
- the present invention is also a method for manufacturing a first light-emitting device for a first conductive material comprising silver particles having an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m and a metal oxide. Applying the composition to the wiring substrate or the lead frame; arranging the light emitting element on the first conductive material composition to obtain a light emitting device precursor; and the light emitting device precursor. Firing to obtain a light emitting device. According to the method for manufacturing the first light emitting device, it is possible to suppress deterioration and discoloration of the organic material on the substrate or the lead frame, and it is possible to easily manufacture a light emitting device with high mass productivity and high quality.
- the first composition for conductive material further contains an organic solvent having a boiling point of 300 ° C. or lower or water.
- the organic solvent preferably contains a lower alcohol or a lower alcohol having one or more substituents selected from the group consisting of lower alkoxy, amino and halogen.
- the present invention is also a method for manufacturing a second light emitting device, wherein the second conductive material composition containing silver particles having an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m is used as the wiring.
- the method for manufacturing the second light emitting device it is possible to suppress deterioration and discoloration of the organic material on the substrate or the lead frame, and it is possible to easily manufacture a light emitting device with high mass productivity and good quality.
- the metal can be bonded at a relatively low temperature of 150 ° C. to 320 ° C., and the remelting temperature of the bonded portion becomes the melting point of silver 962 ° C. Therefore, there is an advantage that reliability is not impaired even when the obtained light emitting device is exposed to a substrate mounting temperature of 250 ° C. to 300 ° C.
- the second conductive material composition may further include an organic solvent having a boiling point of 300 ° C. or lower or water.
- the organic solvent may contain a lower alcohol or a lower alcohol having one or more substituents selected from the group consisting of lower alkoxy, amino and halogen.
- the composition for the second conductive material further contains the organic solvent or water
- the silver particles can be highly filled in the organic solvent or water without impairing workability. Less volume shrinkage of later material. Therefore, there is an advantage that it is easy to predict the dimensions of the obtained conductive material. Further, since the volume of the conductive material obtained is small, there is an advantage that the adhesion with the wiring board or the lead frame is enhanced.
- the present invention is also a method for manufacturing a third light emitting device, comprising: a conductive paste containing silver particles having an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m and alcohol; Alternatively, the step of applying to the lead frame, the step of obtaining the light emitting device precursor by disposing the light emitting element on the conductive paste, and firing the light emitting device precursor at 150 ° C. to 300 ° C. Obtaining the step. According to the method for manufacturing the third light emitting device, it is possible to suppress deterioration and discoloration of the organic material on the substrate or the lead frame, and it is possible to easily manufacture a light emitting device with high mass productivity and good quality.
- the metal can be bonded at a relatively low temperature of 150 ° C. to 300 ° C., and the remelting temperature of the bonded portion becomes the melting point of silver 962 ° C. Therefore, there is an advantage that reliability is not impaired even when the obtained light emitting device is exposed to a substrate mounting temperature of 250 ° C. to 300 ° C.
- the conductive paste contains alcohol
- the silver particles can be highly filled in the alcohol without impairing workability, so that the volume shrinkage of the material after firing is small. Therefore, there is an advantage that it is easy to predict the dimensions of the obtained conductive material. Further, since the volume of the conductive material obtained is small, there is an advantage that the adhesion with the wiring board or the lead frame is enhanced.
- the firing may be performed in a non-oxidizing atmosphere, in the air, in a vacuum atmosphere, in an oxygen or mixed gas atmosphere, in an air current, or the like. Since it is economical to form in an air atmosphere, it is preferable.
- the step of applying the conductive material composition onto the substrate includes applying the conductive material composition to the substrate surface.
- it may be performed by, for example, a printing method or a coating method.
- the printing method include screen printing method, offset printing method, ink jet printing method, flexographic printing method, dispenser printing method, gravure printing method, stamping, dispensing, squeegee printing, silk screen printing, spraying, brush coating, etc. Screen printing, stamping and dispensing are preferred.
- the thickness of the applied composition for conductive material is, for example, 3 ⁇ m to 100 ⁇ m, preferably 3 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m.
- stamping and dispensing are preferable, and stamping is more preferable. This is because according to the stamping, it is possible to accurately apply to a minute region and to increase the working speed.
- the step of applying the conductive paste on the substrate is not particularly limited as long as the conductive paste can be applied to the substrate surface.
- the printing method include screen printing method, offset printing method, ink jet printing method, flexographic printing method, dispenser printing method, gravure printing method, stamping, dispensing, squeegee printing, silk screen printing, spraying, brush coating, etc. Screen printing, stamping and dispensing are preferred.
- the thickness of the applied conductive paste is, for example, 3 ⁇ m to 100 ⁇ m, preferably 3 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m.
- stamping and dispensing are preferable, and stamping is more preferable. This is because according to the stamping, it is possible to accurately apply to a minute region and to increase the working speed.
- the method of manufacturing the first light-emitting device, the method of manufacturing the second light-emitting device, and the method of manufacturing the third light-emitting device further include the steps of: A step of wiring to the wiring portion can be included.
- the metal wire is preferably gold, silver, copper, or aluminum, and more preferably gold. This is because, when the metal wire is gold, stable bondability is obtained and the concern about corrosion is low.
- the method for manufacturing the first light emitting device, the method for manufacturing the second light emitting device, and the method for manufacturing the third light emitting device may further include sealing with a resin or an airtight cover or a non-airtight cover.
- a step of sealing may be included.
- the resin used in the sealing step include epoxy, phenolic, acrylic, polyimide, silicone, urethane, and thermoplastic.
- a silicone type is preferable because a light-emitting device having excellent heat resistance and light resistance and a long life can be produced.
- the hermetic cover or non-hermetic cover include inorganic glass, polyacrylic resin, polycarbonate resin, polyolefin resin, and polynorbornene resin. Among these, inorganic glass is preferable because it can produce a light-emitting device with excellent heat resistance and light resistance and a long lifetime.
- the conductive material is disposed between the wiring board or the lead frame and the light emitting element.
- the thickness of the conductive material is, for example, 2 ⁇ m to 80 ⁇ m, preferably 2 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 15 ⁇ m.
- the method for manufacturing the light emitting device of the present invention further includes a step of applying an adhesive to the conductive material.
- the step of applying the adhesive the adhesiveness between the wiring board and the conductive material can be improved.
- the conductive material formed from the conventional conductive composition containing an adhesive has a problem that the density between metal particles is insufficient and the electric resistance value is high.
- the denseness between the metal particles is sufficient, and as a result, a conductive material having a low electric resistance value can be obtained.
- the conductive material can be firmly bonded to the wiring board, so that the electric resistance value is low.
- a conductive material having high adhesion to the wiring board can be obtained, which is preferable.
- Examples of the adhesive that can be used in the above method include epoxy, phenol, acrylic, polyimide, silicone, urethane, and thermoplastic. Among these, as the adhesive, an epoxy type is preferable.
- the average particle diameter (median diameter) is a value measured by a laser method
- the specific surface area is a value measured by a BET method.
- Example 1 In Examples 1 to 5 and Comparative Examples 1 to 5, the exothermic behavior was confirmed with a differential scanning calorimeter (DSC) of the mixed particles. Specifically, 5 mg of each mixed particle was taken and the exothermic behavior was confirmed with a differential scanning calorimeter (DSC).
- DSC differential scanning calorimeter
- the temperature was raised from room temperature to 250 ° C. at 10 ° C./min.
- the mixed particles were put into an aluminum container subjected to an alumite treatment, and then fitted.
- the atmosphere used for the measurement is air and nitrogen atmosphere. When the atmosphere used for the measurement was a nitrogen atmosphere, the mixed particles were fitted in a glove box filled with nitrogen. Note that alumina particles were used as the standard substance.
- Table 1 shows the composition of the mixed particles, the measurement atmosphere, the heat generation start temperature, the heat generation amount, and the result of the presence or absence of fusion after the measurement.
- “silver” represents silver particles having an average particle size of 2.0 ⁇ m to 3.2 ⁇ m (product name “AgC-239” manufactured by Fukuda Metal Foil Powder Co., Ltd.)
- “silver (I)” represents Silver oxide (I) (Ag 2 O) particles having an average particle diameter of 18.5 ⁇ m (product name “Silver oxide (I)” manufactured by Wako Pure Chemical Industries, Ltd.) and “Silver oxide (II)” having an average particle diameter of 10 Means 6 ⁇ m silver (II) oxide (AgO) particles (product name “silver (II) oxide” manufactured by Wako Pure Chemical Industries, Ltd.).
- the silver particles used are as follows.
- the product name “AgC-239” manufactured by Fukuda Metal Foil Industry Co., Ltd. has an average particle diameter (median diameter) of 2.0 ⁇ m to 3.2 ⁇ m and a specific surface area of 0.6 to 0.9 m 2 / g.
- the product name “FHD” manufactured by Mitsui Mining & Smelting Co., Ltd. has an average particle diameter (median diameter) of 0.3 ⁇ m and a specific surface area of 2.54 m 2 / g.
- the product name “EHD” manufactured by Mitsui Mining & Smelting Co., Ltd. has an average particle diameter (median diameter) of 0.5 ⁇ m and a specific surface area of 1.70 m 2 / g.
- the product name “Silver (I) oxide” manufactured by Wako Pure Chemical Industries, Ltd. has an average particle diameter (median diameter) of 18.5 ⁇ m.
- the product name “silver (II) oxide” manufactured by Wako Pure Chemical Industries, Ltd. has an average particle diameter (median diameter) of 10.6 ⁇ m.
- Example 1 As shown in Table 1, from the results of Example 1 and Comparative Example 1, the second conductive material composition containing silver particles having an average particle diameter (median diameter) of 0.1 ⁇ m to 15 ⁇ m was obtained in the atmosphere. It was confirmed that the fusion occurred when heated at. Moreover, since the calorific value of Example 1 was very small, it was confirmed that there was no problem caused by intense heat generation.
- Reference Example 2 The same procedure as in Reference Example 1 was performed except that the heating temperature was changed to 300 ° C. instead of 150 ° C. The obtained wiring had an electric resistance of 4.2 ⁇ 10 ⁇ 6 ⁇ ⁇ cm.
- Example 6 Silver particles (made by Fukuda Metal Foil Powder Co., Ltd., product name “AgC-224”, 1.75 g) and silver oxide (II) having an average particle diameter of 10 ⁇ m (made by Wako Pure Chemical Industries, Ltd., product name “Silver oxide (II ) ”, 1.25 g) was mixed at 25 ° C. to obtain a first composition for a conductive material.
- the obtained composition for the first conductive material was applied to a glass substrate (thickness 1 mm) to a thickness of 200 ⁇ m by a screen printing method.
- the glass substrate coated with the first conductive material composition was heated in a nitrogen atmosphere at 150 ° C.
- the thickness of the obtained wiring is 160 ⁇ m to 190 ⁇ m.
- the electric resistance of the obtained wiring was 4.9 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 7 The same operation as in Example 6 was performed except that the heating atmosphere was an air atmosphere instead of the nitrogen atmosphere.
- the obtained wiring had an electric resistance of 4.4 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 8 The same operation as in Example 6 was performed except that the heating temperature was changed to 300 ° C. instead of 150 ° C.
- the obtained wiring had an electric resistance of 1.3 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 9 The same procedure as in Example 7 was performed except that the heating temperature was 300 ° C. instead of 150 ° C.
- the obtained wiring had an electric resistance of 1.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 10 The same procedure as in Example 6 was performed except that silver oxide (II) (1.25 g) having an average particle size of 0.3 ⁇ m was used instead of silver oxide (II) having an average particle size of 10 ⁇ m.
- the electric resistance of the obtained wiring was 3.9 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 11 The same operation as in Example 10 was performed except that the heating atmosphere was an air atmosphere instead of the nitrogen atmosphere.
- the electric resistance of the obtained wiring was 4.8 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 12 The same operation as in Example 10 was performed except that the heating temperature was changed to 300 ° C. instead of 150 ° C.
- the electric resistance of the obtained wiring was 2.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 13 The same operation as in Example 11 was performed except that the heating temperature was 300 ° C. instead of 150 ° C.
- the obtained wiring had an electric resistance of 3.3 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Reference Example 3 Performed in the same manner as in Reference Example 1 except that silver particles having an average particle size of 0.3 ⁇ m (product name “FHD”, 2.5 g) were used instead of silver particles having an average particle size of 10 ⁇ m. It was. The electric resistance of the obtained wiring was 1.1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Reference Example 4 Performed in the same manner as in Reference Example 2 except that silver particles having an average particle diameter of 0.3 ⁇ m (product name “FHD”, 2.5 g) were used instead of silver particles having an average particle diameter of 10 ⁇ m. It was. The obtained wiring had an electric resistance of 5.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 14 The same procedure as in Example 6 was performed except that silver particles (1.75 g) having an average particle diameter of 0.3 ⁇ m were used instead of silver particles having an average particle diameter of 10 ⁇ m.
- the obtained wiring had an electric resistance of 4.3 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 15 It carried out similarly to Example 14 except having changed the heating atmosphere into the air atmosphere instead of the nitrogen atmosphere.
- the electric resistance of the obtained wiring was 4.9 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 16 The same procedure as in Example 14 was performed except that the heating temperature was 300 ° C. instead of 150 ° C. The electric resistance of the obtained wiring was 1.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 17 The same operation as in Example 18 was performed except that the heating temperature was changed to 300 ° C. instead of 150 ° C.
- the electric resistance of the obtained wiring was 1.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 18 The same procedure as in Example 10 was performed except that silver oxide (II) (1.75 g) having an average particle diameter of 0.3 ⁇ m was used instead of silver oxide (II) having an average particle diameter of 10 ⁇ m.
- the obtained wiring had an electric resistance of 4.7 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 19 It carried out similarly to Example 14 except having changed the heating atmosphere into the air atmosphere instead of the nitrogen atmosphere.
- the electric resistance of the obtained wiring was 3.9 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 20 The same operation as in Example 18 was performed except that the heating temperature was changed to 300 ° C. instead of 150 ° C.
- the electric resistance of the obtained wiring was 2.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- Example 21 The same operation as in Example 19 was performed except that the heating temperature was 300 ° C. instead of 150 ° C.
- the electric resistance of the obtained wiring was 1.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- the silver particles used in Reference Examples 1 to 4 and Examples 6 to 21 are as follows. Fukuda Metal Foil & Powder Industry Co., Ltd., product name "AgC-224" has an average particle diameter (median diameter) of 6.5 ⁇ m ⁇ 9.0 ⁇ m, specific surface area of at 0.25m 2 /g ⁇ 0.40m 2 / g is there.
- the product name “FHD” manufactured by Mitsui Mining & Smelting Co., Ltd. has an average particle diameter (median diameter) of 0.3 ⁇ m and a specific surface area of 2.54 m 2 / g.
- the product name “silver (II) oxide” manufactured by Wako Pure Chemical Industries, Ltd. has an average particle diameter (median diameter) of 10.6 ⁇ m.
- Silver oxide (II) having an average particle size of 0.3 ⁇ m was internally produced as follows. After each of silver nitrate and ammonium persulfate was dissolved in pure water, they were mixed and stirred, and the precipitated particles were precipitated, separated, and washed with water.
- Table 2 shows the composition of the conductive paste in Reference Examples 1 to 4, the composition of the conductive material composition in Examples 6 to 21, the temperature at which the conductive paste and the conductive material composition were heated, The resistivity of the conductive material obtained after heating and heating is shown.
- “silver 10 ⁇ m” means silver particles having an average particle diameter of 6.5 ⁇ m to 9.0 ⁇ m (product name “AgC-224” manufactured by Fukuda Metal Foil Powder Co., Ltd.), “silver 0.3 ⁇ m”.
- a dam is formed by a mask on a glass substrate (thickness 1 mm), and silver particles having an average particle diameter of 10 ⁇ m (product name “AgC-224”, 2.5 g) manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. are placed in the dam.
- the composition for 2nd electroconductive material containing was pressure-filled so that silver particle might not be plastically deformed so that it might become 200 micrometers thickness.
- the glass substrate filled with the silver particles was heated in an air atmosphere at 200 ° C.
- the resulting wiring had a porosity of 8.2% and an electrical resistivity of 3.7 ⁇ 10 ⁇ 6 ⁇ ⁇ cm.
- Reference Example 8 The same procedure as in Reference Example 5 was carried out except that the weight of 2-ethyl-1,3-hexanediol was changed to 0.84 g instead of 0.28 g and the proportion in the paste was changed to 30% by weight.
- the obtained wiring had a porosity of 42.9% and an electrical resistivity of 3.1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- Table 3 shows the composition of the conductive material composition in Example 22, the amount of the solvent added in Reference Examples 5 to 8, and the conductive material obtained by heating the conductive paste and the conductive material composition. The porosity and resistivity are shown.
- An electron micrograph of the conductive material obtained in Example 22 is shown in FIG.
- An electron micrograph of the conductive material obtained in Reference Example 8 is shown in FIG.
- Example 22 As shown in Table 3, it was confirmed from the results of Example 22 and Reference Examples 5 to 8 that the porosity was most affected by the amount of solvent in the conductive paste. Moreover, as shown in FIG. 1, if the solvent is not used and the silver particles are pressure-filled, the volume occupied by the solvent is unnecessary, and there is no need for a route through which the volatile solvent escapes. It could be confirmed. As shown in FIG. 2, it was confirmed that when a large amount of the solvent was used, a volume portion occupied by the solvent and a volatilization release route were required, so that the porosity was increased.
- the obtained composition was stamped onto a silver-plated surface on an alumina substrate, and a sapphire die having a thickness of 500 ⁇ m ⁇ 500 ⁇ m ⁇ thickness 100 ⁇ m, which was metallized on one side, was mounted. This was heated under a nitrogen atmosphere at 200 ° C. A shearing force was applied in the direction of peeling the die from the alumina substrate, and the strength when peeled was measured to be 52 gf.
- Example 23 Silver particles (Fukuda Metal Foil Powder Co., Ltd., product name “AgC-239”, 2.375 g) and silver oxide (II) (Wako Pure Chemical Industries, Ltd., product name “silver (II) oxide”, 0 .125 g) and 2-ethyl-1,3-hexanediol (0.3 g) were mixed at 25 ° C. to obtain a first composition for a conductive material. The obtained composition was stamped onto a silver-plated surface on an alumina substrate, and a sapphire die having a thickness of 500 ⁇ m ⁇ 500 ⁇ m ⁇ thickness 100 ⁇ m, which was metallized on one side, was mounted. This was heated under a nitrogen atmosphere at 200 ° C. A shearing force was applied in the direction of peeling the die from the alumina substrate, and the strength when peeled was measured to be 392 gf.
- Example 24 Silver particles (Fukuda Metal Foil Powder Co., Ltd., product name “AgC-239”, 2.375 g) and silver oxide (II) (Wako Pure Chemical Industries, Ltd., product name “silver (II) oxide”, 0 .125 g), silver particles (Fukuda Metal Foil Powder Co., Ltd., product name “AgC-239”, 2.25 g) and silver oxide (II) (Wako Pure Chemical Industries, Ltd., product name “Oxidation”)
- the same procedure as in Example 23 was performed except that silver (II) ”and 0.25 g) were used.
- the measured shear strength was 553 gf.
- Example 25 Silver particles (Fukuda Metal Foil Powder Co., Ltd., product name “AgC-239”, 2.375 g) and silver oxide (II) (Wako Pure Chemical Industries, Ltd., product name “silver (II) oxide”, 0 .125 g), silver particles (Fukuda Metal Foil Powder Co., Ltd., product name “AgC-239”, 2.0 g) and silver oxide (II) (Wako Pure Chemical Industries, Ltd., product name “Oxidation”)
- the same procedure as in Example 23 was performed except that silver (II) ”and 0.5 g) were used.
- the measured shear strength was 478 gf.
- Example 26 Silver particles (Fukuda Metal Foil Powder Co., Ltd., product name “AgC-239”, 2.375 g) and silver oxide (II) (Wako Pure Chemical Industries, Ltd., product name “silver (II) oxide”, 0 .125 g), silver particles (Fukuda Metal Foil Powder Co., Ltd., product name “AgC-239”, 1.75 g) and silver oxide (II) (Wako Pure Chemical Industries, Ltd., product name “Oxidation”)
- the same procedure as in Example 23 was performed except that "silver (II)" and 0.75 g) were used.
- the measured shear strength was 322 gf.
- Example 27 Silver particles (Fukuda Metal Foil Powder Co., Ltd., product name “AgC-239”, 2.375 g) and silver oxide (II) (Wako Pure Chemical Industries, Ltd., product name “silver (II) oxide”, 0 .125 g), silver particles (Fukuda Metal Foil Powder Co., Ltd., product name “AgC-239”, 1.25 g) and silver oxide (II) (Wako Pure Chemical Industries, Ltd., product name “Oxidation”) This was carried out in the same manner as in Example 23 except that silver (II) ", 1.25 g) was used. The measured shear strength was 157 gf.
- Example 28 First, silver particles (Fukuda Metal Foil Powder Co., Ltd., product name “AgC-239”, 2.5 g) and 2-ethyl-1,3-hexanediol (0.3 g) were mixed at 25 ° C. A composition for conductive material was obtained. The obtained composition was stamped onto a silver-plated surface on an alumina substrate, and a sapphire die having a thickness of 500 ⁇ m ⁇ 500 ⁇ m ⁇ thickness 100 ⁇ m, which was metallized on one side, was mounted. This was heated at 200 ° C. in an atmospheric nitrogen atmosphere. A shearing force was applied in the direction of peeling the die from the alumina substrate, and the strength when peeled was measured to be 722 gf.
- a sapphire die having a thickness of 500 ⁇ m ⁇ 500 ⁇ m ⁇ thickness 100 ⁇ m, which was metallized on one side
- Example 29 It carried out like Example 23 except having changed the heating atmosphere into the air atmosphere instead of the nitrogen atmosphere.
- the measured shear strength was 703 gf.
- Example 30 The same procedure as in Example 24 was performed except that the heating atmosphere was an air atmosphere instead of the nitrogen atmosphere.
- the measured shear strength was 664 gf.
- Example 31 The same operation as in Example 25 was performed except that the heating atmosphere was changed to an air atmosphere instead of the nitrogen atmosphere.
- the measured shear strength was 544 gf.
- Example 32 The process was performed in the same manner as in Example 26 except that the heating atmosphere was changed to an air atmosphere instead of the nitrogen atmosphere.
- the measured shear strength was 391 gf.
- Example 33 The same operation as in Example 27 was performed except that the heating atmosphere was an air atmosphere instead of the nitrogen atmosphere.
- the measured shear strength was 123 gf.
- Table 4 shows the content of silver oxide (II) in the composition for conductive material in Comparative Example 6 and Examples 23 to 33, the heating atmosphere, and the shear strength of the obtained conductive material.
- the first conductive material composition containing silver particles having an average particle size of 0.1 ⁇ m to 15 ⁇ m and a metal oxide As shown in Table 4, from the results of Comparative Example 6 and Examples 23 to 27, the first conductive material composition containing silver particles having an average particle size of 0.1 ⁇ m to 15 ⁇ m and a metal oxide. It was confirmed that a conductive material having sufficient shear strength can be obtained by heating Further, from the results of Examples 28 to 33, if the composition for the first conductive material containing silver particles having an average particle diameter of 0.1 ⁇ m to 15 ⁇ m is fired in the air atmosphere, the conductive material having sufficient shear strength can be obtained. It was confirmed that a functional material was obtained.
- Example 34 Silver particles (Fukuda Metal Foil Powder Co., Ltd., product name “AgC-239”, 2.5 g) and 2-ethyl-1,3-hexanediol (0.44 g) having a boiling point of 243 ° C. at 25 ° C.
- This composition was applied onto an aluminum oxide substrate for a light emitting device, which was turned by Ag / Ni plating by a stamping method.
- the coating size and shape are a perfect circle having a diameter of about 700 ⁇ m.
- the coating was continuously applied 312 times, and the diameters of the 10 coated surfaces immediately after the start and the last 10 coated surfaces were determined to be significant by Student's t-test.
- FIG. 3 shows the variation in the application amount of the stamping method.
- Example 35 A 500 ⁇ m square light-emitting element was mounted on the stamping application surface of the composition for conductive material prepared in Example 34. A metal film was formed by vapor deposition on the surface where the light emitting element and the composition for conductive material were in contact, and the outermost surface was silver (thickness: 0.2 ⁇ m). The substrate on which the light-emitting element was mounted via the composition for conductive material was heated at 200 ° C. for 1 hour in an air atmosphere. The substrate was then cooled. The light emitting device showed sufficient bonding strength with the substrate. Moreover, the fusion
- Another aluminum oxide substrate for light emitting device was mounted on the light emitting element of the substrate, and further heated at 250 ° C. for 2 hours. At this time, it was confirmed that no discoloration was observed in the silver bonding between the light emitting element and the substrate. With respect to the bonding between the light emitting element and the substrate, the die shear strength was measured at room temperature, and the strength was about 0.7 kgf.
- the electrode of the light emitting element and the electrode of the substrate were wired with a gold wire and sealed with a silicone resin.
- an energization test (test conditions 25 ° C., 50 mA) was performed after 500 hours, 1000 hours, and 2000 hours.
- Table 5 shows the output results for the initial output. Note that, after 2000 hours, it was confirmed that no discoloration was observed in the silver bonding between the light-emitting element and the substrate.
- Another aluminum oxide substrate for light emitting device was mounted on the light emitting element of the substrate, and further heated at 250 ° C. for 2 hours. At this time, it was confirmed that the silver bonding between the light-emitting element and the substrate was discolored blackish brown. With respect to the bonding between the light emitting element and the substrate, when the die shear strength was measured at room temperature, the strength was about 0.4 kgf.
- the electrode of the light emitting element and the electrode of the substrate were wired with a gold wire and sealed with a silicone resin.
- an energization test (test conditions 25 ° C., 50 mA) was performed after 500 hours, 1000 hours, and 2000 hours.
- Table 5 shows the output results for the initial output. Note that after 2000 hours, it was confirmed that the silver bonding between the light-emitting element and the substrate was discolored in blackish brown.
- a silver paste of 80 wt% flaky silver filler and 20 wt% epoxy resin (curing conditions: 200 ° C., 1.5 hours) was applied onto an aluminum oxide substrate for a light emitting device patterned by Ag / Ni plating by a stamping method.
- the coating size and shape are a perfect circle having a diameter of about 700 ⁇ m.
- a light emitting element was mounted on the adhesive.
- the substrate on which the light-emitting element was mounted via an adhesive was heated at 200 ° C. for 1 hour in an air atmosphere. The substrate was then cooled. When the die shear strength of the substrate to which the light emitting element was bonded was measured at room temperature, the strength was about 0.7 kgf.
- Another aluminum oxide substrate for light emitting device was mounted on the light emitting element of the substrate, and further heated at 250 ° C. for 2 hours. At this time, it was confirmed that the silver bonding between the light-emitting element and the substrate was discolored blackish brown. With respect to the bonding between the light emitting element and the substrate, the die shear strength was measured at room temperature, and the strength was about 0.6 kgf.
- the electrode of the light emitting element and the electrode of the substrate were wired with a gold wire and sealed with a silicone resin.
- an energization test (test conditions 25 ° C., 50 mA) was performed after 500 hours, 1000 hours, and 2000 hours.
- Table 5 shows the output results for the initial output. Note that after 2000 hours, it was confirmed that the silver bonding between the light-emitting element and the substrate was discolored in blackish brown.
- Example 36 Silver oxide (product name “AgC-239”, 2.5 g, manufactured by Fukuda Metal Foil Industry Co., Ltd.) is weighted with silver oxide (AgO is the main component) having an average particle diameter of 0.5 ⁇ m to 1.0 ⁇ m. A 10 wt% (weight) ratio was added, tripropylene glycol monomethyl ether was added to the solid content so that the weight ratio was 85:15, and the mixture was mixed at 25 ° C. to prepare a first conductive material composition. The conductive material composition was applied by a stamping method to a light emitting element mounting position of a lead frame formed by insert molding of a resin portion to be a reflector.
- the surface of the lead frame where the light emitting element is mounted was further coated with silver (thickness: 2 ⁇ m) by vapor deposition.
- a 300 ⁇ m square light-emitting element was placed on the conductive material composition coated with silver.
- the lead frame on which the light emitting element was arranged was taken out at 180 ° C. for 2 hours in a non-oxidizing atmosphere, then taken out and cooled. A sufficient strength was obtained in the bonding between the light emitting element and the substrate. Moreover, when the joint part of the said light emitting element and the said board
- Another aluminum oxide substrate for light emitting device was mounted on the light emitting element of the substrate, and further heated at 250 ° C. for 2 hours. At this time, it was confirmed that no discoloration was observed in the silver bonding between the light emitting element and the substrate. With respect to the bonding between the light emitting element and the substrate, the die shear strength was measured at room temperature, and the strength was about 0.3 kgf.
- the electrode of the light emitting element and the electrode of the substrate were wired with a gold wire and sealed with a silicone resin.
- an energization test (test conditions 25 ° C., 50 mA) was performed after 500 hours, 1000 hours, and 2000 hours.
- Table 6 shows the output result with respect to the initial output. Note that, after 2000 hours, it was confirmed that no discoloration was observed in the silver bonding between the light-emitting element and the substrate.
- Another aluminum oxide substrate for a light emitting device was mounted on the light emitting element of the substrate, and further heated at 250 ° C. for 2 hours. At this time, it was confirmed that the silver bonding between the light-emitting element and the substrate was discolored blackish brown. With respect to the bonding between the light emitting element and the substrate, the die shear strength was measured at room temperature, and the strength was about 0.1 kgf.
- the electrode of the light emitting element and the electrode of the substrate were wired with a gold wire and sealed with a silicone resin.
- an energization test (test conditions 25 ° C., 50 mA) was performed after 500 hours, 1000 hours, and 2000 hours.
- Table 6 shows the output result with respect to the initial output. Note that after 2000 hours, it was confirmed that the silver bonding between the light-emitting element and the substrate was discolored in blackish brown.
- Example 10 The same procedure as in Example 36 was performed except that Ag paste (curing conditions: 200 ° C., 1.5 hours) containing 80 wt% silver filler and 20 wt% epoxy resin was used instead of the first conductive material composition. When the die shear strength of the substrate to which the light emitting element was bonded was measured at room temperature, the strength was about 0.3 kgf.
- Another aluminum oxide substrate for light emitting device was mounted on the light emitting element of the substrate, and further heated at 250 ° C. for 2 hours. At this time, it was confirmed that the silver bonding between the light-emitting element and the substrate was discolored blackish brown. With respect to the bonding between the light emitting element and the substrate, the die shear strength was measured at room temperature, and the strength was about 0.1 kgf.
- the electrode of the light emitting element and the electrode of the substrate were wired with a gold wire and sealed with a silicone resin.
- an energization test (test conditions 25 ° C., 50 mA) was performed after 500 hours, 1000 hours, and 2000 hours.
- Table 6 shows the output result with respect to the initial output. Note that after 2000 hours, it was confirmed that the silver bonding between the light-emitting element and the substrate was discolored in blackish brown.
- the method for producing a conductive material of the present invention includes, for example, heat-resistant power wiring, component electrodes, die attach, fine bumps, flat panels, solar wiring, and other uses, wafer connection, and the like. Applicable to parts manufacturing. Moreover, the manufacturing method of the electroconductive material of this invention is applicable also when manufacturing the light-emitting device using light emitting elements, such as LED and LD, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Conductive Materials (AREA)
- Powder Metallurgy (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
実施例1~5および比較例1~5において、混合粒子の示差走査熱量計(DSC)にて発熱挙動を確認した。
具体的には、混合粒子各5mgとり示差走査熱量計(DSC)にて発熱挙動を確認した。DSC測定は、室温から250℃までの範囲を10℃/分で昇温した。250℃において、前記混合粒子を、アルマイト処理を施したアルミ容器へ入れ、その後に嵌合した。測定に用いた雰囲気は、大気中と窒素雰囲気である。測定に用いた雰囲気が窒素雰囲気の場合、前記混合粒子の勘嵌合は、窒素充填したグローブボックス中で行った。なお、標準物質としてはアルミナ粒子を使用した。混合粒子の組成と、測定雰囲気と、発熱開始温度と、発熱量と、測定後の融着有無の結果を表1に示す。表1中、「銀」は、平均粒径2.0μm~3.2μmの銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」)を、「酸化銀(I)」は、平均粒径18.5μmの酸化銀(I)(Ag2O)粒子(和光純薬製、製品名「酸化銀(I)」)を、「酸化銀(II)」は、平均粒径10.6μmの酸化銀(II)(AgO)粒子(和光純薬製、製品名「酸化銀(II)」)を意味する。
福田金属箔粉工業株式会社製、製品名「AgC-239」は平均粒径(メジアン径)が2.0μm~3.2μm、比表面積が0.6~0.9m2/gである。
三井金属鉱業株式会社製、製品名「FHD」は、平均粒径(メジアン径)が0.3μm、比表面積が2.54m2/gである。
三井金属鉱業株式会社製、製品名「EHD」は、平均粒径(メジアン径)が0.5μm、比表面積が1.70m2/gである。
和光純薬製、製品名「酸化銀(I)」は平均粒径(メジアン径)が18.5μmである。
和光純薬製、製品名「酸化銀(II)」は平均粒径(メジアン径)が10.6μmである。
平均粒径10μmの銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-224」、2.5g)と2-エチル-1,3-ヘキサンジオール(0.3g)とを25℃で混合して導電性ペーストを得た。得られた導電性ペーストを、ガラス基板(厚み1mm)にスクリ-ン印刷法により厚み200μmに塗布した。前記導電性ペーストが塗布されたガラス基板を、150℃の窒素雰囲気下で加熱した。得られた配線の厚みは160μm~190μmであった。得られた配線の電気抵抗は9.9×10-6Ω・cmであった。
加熱温度を150℃の代わりに300℃とした以外は、参考例1と同様にして行った。得られた配線の電気抵抗は4.2×10-6Ω・cmであった。
銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-224」、1.75g)と平均粒径10μmの酸化銀(II)(和光純薬株式会社製、製品名「酸化銀(II)」、1.25g)とを25℃で混合して第1導電性材料用組成物を得た。得られた第1導電性材料用組成物を、ガラス基板(厚み1mm)にスクリ-ン印刷法により厚み200μmに塗布した。前記第1導電性材料用組成物が塗布されたガラス基板を、150℃の窒素雰囲気下で加熱した。得られた配線の厚みは160μm~190μmである。得られた配線の電気抵抗は4.9×10-5Ω・cmであった。
加熱雰囲気を窒素雰囲気の代わりに大気雰囲気とした以外は実施例6と同様にして行った。得られた配線の電気抵抗は4.4×10-5Ω・cmであった。
加熱温度を150℃の代わりに300℃とした以外は実施例6と同様にして行った。得られた配線の電気抵抗は1.3×10-5Ω・cmであった。
加熱温度を150℃の代わりに300℃とした以外は実施例7と同様にして行った。得られた配線の電気抵抗は、1.2×10-5Ω・cmであった。
平均粒径10μmの酸化銀(II)のかわりに平均粒径0.3μmの酸化銀(II)(1.25g)を用いた以外は、実施例6と同様にして行った。得られた配線の電気抵抗は3.9×10-5Ω・cmであった。
加熱雰囲気を窒素雰囲気の代わりに大気雰囲気とした以外は実施例10と同様にして行った。得られた配線の電気抵抗は4.8×10-5Ω・cmであった。
加熱温度を150℃の代わりに300℃とした以外は実施例10と同様にして行った。得られた配線の電気抵抗は2.2×10-5Ω・cmであった。
加熱温度を150℃の代わりに300℃とした以外は実施例11と同様にして行った。得られた配線の電気抵抗は3.3×10-5Ω・cmであった。
平均粒径10μmの銀粒子の代わりに、平均粒径0.3μmの銀粒子(三井金属鉱業株式会社製、製品名「FHD」、2.5g)とした以外は参考例1と同様にして行った。得られた配線の電気抵抗は1.1×10-5Ω・cmであった。
平均粒径10μmの銀粒子の代わりに、平均粒径0.3μmの銀粒子(三井金属鉱業株式会社製、製品名「FHD」、2.5g)とした以外は参考例2と同様にして行った。得られた配線の電気抵抗は5.2×10-5Ω・cm、であった。
平均粒径10μmの銀粒子の代わりに平均粒径0.3μmの銀粒子(1.75g)を用いた以外は実施例6と同様にして行った。得られた配線の電気抵抗は4.3×10-5Ω・cmであった。
加熱雰囲気を窒素雰囲気の代わりに大気雰囲気とした以外は実施例14と同様にして行った。得られた配線の電気抵抗は4.9×10-5Ω・cmであった。
加熱温度を150℃の代わりに300℃とした以外は実施例14と同様にして行った。得られた配線の電気抵抗は1.2×10-5Ω・cmであった。
加熱温度を150℃の代わりに300℃とした以外は実施例18と同様にして行った。得られた配線の電気抵抗は1.2×10-5Ω・cmであった。
平均粒径10μmの酸化銀(II)のかわりに平均粒径0.3μmの酸化銀(II)(1.75g)を用いた以外は実施例10と同様にして行った。得られた配線の電気抵抗は4.7×10-5Ω・cmであった。
加熱雰囲気を窒素雰囲気の代わりに大気雰囲気とした以外は実施例14と同様にして行った。得られた配線の電気抵抗は3.9×10-5Ω・cmであった。
加熱温度を150℃の代わりに300℃とした以外は実施例18と同様にして行った。得られた配線の電気抵抗は2.2×10-5Ω・cmであった。
加熱温度を150℃の代わりに300℃とした以外は実施例19と同様にして行った。得られた配線の電気抵抗は1.5×10-5Ω・cmであった。
福田金属箔粉工業株式会社製、製品名「AgC-224」は平均粒径(メジアン径)が6.5μm~9.0μm、比表面積が0.25m2/g~0.40m2/gである。
三井金属鉱業株式会社製、製品名「FHD」は、平均粒径(メジアン径)が0.3μm、比表面積が2.54m2/gである。
和光純薬製、製品名「酸化銀(II)」は平均粒径(メジアン径)が10.6μmである。
平均粒径0.3μmの酸化銀(II)は、以下のようにして内製した。硝酸銀と過硫酸アンモニウムの各々を純水に溶かしたのち、これらを混合撹拌し、析出した粒子を沈降、分離、水洗して得た。
表2中に示すように、参考例1~4および実施例6~21の結果から、導電性ペーストおよび導電性材料用組成物を加熱して得られる導電性材料の電気抵抗率は全て5.0×10-5Ω・cm以下であることが確認できた。この導電性組成物は樹脂成分を含んでいないため、信頼性の高い接合材料を得られた。
ガラス基板(厚み1mm)上にマスクによりダムを形成し、前記ダム中へ、平均粒径10μmの銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-224」、2.5g)を含む第2導電性材料用組成物を、200μm厚となるよう銀粒子が塑性変形しないよう圧充填した。前記銀粒子がその上に充填されたガラス基板を200℃の大気雰囲気下で加熱した。得られた配線の空隙率は8.2%、電気抵抗率は3.7×10-6Ω・cmであった。
平均粒径10μmの銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-224」、2.5g)と2-エチル-1,3-ヘキサンジオール(0.28g)とを25℃で混合して導電性ペーストを得た。ペースト中の2-エチル-1,3-ヘキサンジオールの割合は10重量%である。得られた導電性ペーストを、ガラス基板(厚み1mm)上にスクリ-ン印刷法により厚み200μmに塗布した。前記導電性ペーストが塗布されたガラス基板を200℃の大気雰囲気下で加熱した。得られた配線の空隙率は21.3%、電気抵抗率は8.3×10-6Ω・cmであった。
2-エチル-1,3-ヘキサンジオールの重量を0.28gの代わりに0.44gとし、ペースト中の割合を15重量%とした以外は参考例5と同様にして行った。得られた配線の空隙率は27.5%、電気抵抗率は1.2×10-5Ω・cmであった。
2-エチル-1,3-ヘキサンジオールの重量を0.28gの代わりに0.63gとし、ペースト中の割合を20重量%とした以外は参考例5と同様にして行った。得られた配線の空隙率は35.1%、電気抵抗率は7.2×10-5Ω・cmであった。
2-エチル-1,3-ヘキサンジオールの重量を0.28gの代わりに0.84gとし、ペースト中の割合を30重量%とした以外は参考例5と同様にして行った。得られた配線の空隙率は42.9%、電気抵抗率は3.1×10-4Ω・cmであった。
銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、2.5g)と2-エチル-1,3-ヘキサンジオール(0.3g)とを25℃で混合して組成物を得た。得られた組成物をアルミナ基板上の銀メッキ面にスタンピングし、片面銀メタライズされた500μm×500μm×厚さ100μmのサファイアダイスをマウントした。これを200℃の窒素雰囲気下で加熱した。アルミナ基板からダイスを剥す方向に剪断力をかけ、剥離したときの強度を測定すると52gfであった。
銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、2.375g)と、酸化銀(II)(和光純薬株式会社製、製品名「酸化銀(II)」、0.125g)と、2-エチル-1,3-ヘキサンジオール(0.3g)とを25℃で混合して第1導電性材料用組成物を得た。得られた組成物をアルミナ基板上の銀メッキ面にスタンピングし、片面銀メタライズされた500μm×500μm×厚さ100μmのサファイアダイスをマウントした。これを200℃の窒素雰囲気下で加熱した。アルミナ基板からダイスを剥す方向に剪断力をかけ、剥離したときの強度を測定すると392gfであった。
銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、2.375g)と、酸化銀(II)(和光純薬株式会社製、製品名「酸化銀(II)」、0.125g)との代わりに、銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、2.25g)と酸化銀(II)(和光純薬株式会社製、製品名「酸化銀(II)」、0.25g)とを用いた以外は実施例23と同様に行った。測定された剪断強度は553gfであった。
銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、2.375g)と、酸化銀(II)(和光純薬株式会社製、製品名「酸化銀(II)」、0.125g)との代わりに、銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、2.0g)と酸化銀(II)(和光純薬株式会社製、製品名「酸化銀(II)」、0.5g)とを用いた以外は実施例23と同様に行った。測定された剪断強度は478gfであった。
銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、2.375g)と、酸化銀(II)(和光純薬株式会社製、製品名「酸化銀(II)」、0.125g)との代わりに、銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、1.75g)と酸化銀(II)(和光純薬株式会社製、製品名「酸化銀(II)」、0.75g)とを用いた以外は実施例23と同様に行った。測定された剪断強度は322gfであった。
銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、2.375g)と、酸化銀(II)(和光純薬株式会社製、製品名「酸化銀(II)」、0.125g)との代わりに、銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、1.25g)と酸化銀(II)(和光純薬株式会社製、製品名「酸化銀(II)」、1.25g)とを用いた以外は実施例23と同様に行った。測定された剪断強度は157gfであった。
銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、2.5g)と2-エチル-1,3-ヘキサンジオール(0.3g)とを25℃で混合して第1導電性材料用組成物を得た。得られた組成物をアルミナ基板上の銀メッキ面にスタンピングし、片面銀メタライズされた500μm×500μm×厚さ100μmのサファイアダイスをマウントした。これを200℃の大気窒素雰囲気下で加熱した。アルミナ基板からダイスを剥す方向に剪断力をかけ、剥離したときの強度を測定すると722gfであった。
加熱雰囲気を窒素雰囲気の代わりに大気雰囲気とした以外は実施例23と同様にして行った。測定された剪断強度は703gfであった。
加熱雰囲気を窒素雰囲気の代わりに大気雰囲気とした以外は実施例24と同様にして行った。測定された剪断強度は664gfであった。
加熱雰囲気を窒素雰囲気の代わりに大気雰囲気とした以外は実施例25と同様にして行った。測定された剪断強度は544gfであった。
加熱雰囲気を窒素雰囲気の代わりに大気雰囲気とした以外は実施例26と同様にして行った。測定された剪断強度は391gfであった。
加熱雰囲気を窒素雰囲気の代わりに大気雰囲気とした以外は実施例27と同様にして行った。測定された剪断強度は123gfであった。
銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、2.5g)と、沸点243℃である2-エチル-1,3-ヘキサンジオール(0.44g)とを25℃で混合して第2導電性材料用組成物を得た。この組成物をスタンピング法でAg/Niメッキにて派ターニングした発光装置用酸化アルミニウム基板上へ塗布した。塗布寸法ならびに形状は直径約700μmの真円状である。312回連続的に塗布し、時系列順に開始すぐの10個と最後の10個の塗布面の直径を、スチューデントのt検定にて有意性判定した。図3に、スタンプング法塗布量のばらつきを示す。
実施例34で作製した導電性材料用組成物のスタンピング塗布面へ500μm角の発光素子をマウントした。発光素子と導電性材料用組成物とが接する面には、蒸着により金属膜が形成されており、その最表面は銀(厚み:0.2μm)となっていた。導電性材料用組成物を介して発光素子がマウントされた基板を、大気雰囲気下で200℃、1時間加熱した。前記基板をその後、冷却した。前記発光素子は、前記基板と十分な接合強度を示していた。また、前記発光素子と前記基板との接合部分を目視観察により、接合材料中の粒子の融着が確認できた。発光素子が接合された基板について、ダイシェア強度を室温で測定したところ、強度は約0.7kgfであった。
絶縁性エポキシ樹脂(硬化条件180℃、2時間)をスタンピング法でAg/Niメッキにて派ターニングした発光装置用酸化アルミニウム基板上へ塗布した。塗布寸法ならびに形状は直径約700μmの真円状である。その接着剤の上に、発光素子をマウントした。接着剤を介して発光素子がマウントされた基板を、大気雰囲気下で200℃、1時間加熱した。前記基板をその後、冷却した。発光素子が接合された基板について、ダイシェア強度を室温で測定したところ、強度は約1kgfであった。
フレーク状銀フィラー80wt%-エポキシ樹脂20wt%の銀ペースト(硬化条件200℃、1.5時間)をスタンピング法でAg/Niメッキにてパターニングした発光装置用酸化アルミニウム基板上へ塗布した。塗布寸法ならびに形状は直径約700μmの真円状である。その接着剤の上に、発光素子をマウントした。接着剤を介して発光素子がマウントされた基板を、大気雰囲気下で200℃、1時間加熱した。前記基板をその後、冷却した。発光素子が接合された基板について、ダイシェア強度を室温で測定したところ、強度は約0.7kgfであった。
銀粒子(福田金属箔粉工業株式会社製、製品名「AgC-239」、2.5g)へ粒径0.5μm~1.0μmの平均粒径を有する酸化銀(AgOが主成分)を重量比で10wt%(重量)添加し、トリプロピレングリコ-ルモノメチルエーテルを固形分に対し重量比85:15となるよう加え、25℃で混合して第1導電性材料用組成物を調製した。リフレクターとなる樹脂部分をインサート成形してなるリードフレームの発光素子実装位置に、前記導電性材料用組成物をスタンピング法で塗布した。なお、このリードフレームの発光素子実装位置の表面を、蒸着により、銀(厚み:2μm)でさらにコ-ティングした。銀でコーティングされた前記導電性材料用組成物の上に、300μm角サイズの発光素子を配置した。前記発光素子を配置したリードフレームを、非酸化雰囲気下で180℃、2時間加熱後、取り出し、冷却した。この発光素子と前記基板との接合は十分な強度が得られた。また、前記発光素子と前記基板との接合部分を目視観察したところ、接合材料中の粒子の融着が確認できた。さらに、非酸化雰囲気での加熱であったため、リードフレーム樹脂部分の劣化、変色も無いことを確認した。発光素子が接合された基板について、ダイシェア強度を室温で測定したところ、強度は約0.3kgfであった。
第1導電性材料用組成物の代わりにエポキシ樹脂(硬化条件180℃、2時間)を使用した以外は、実施例36と同様にして行った。発光素子が接合された基板について、ダイシェア強度を室温で測定したところ、強度は約0.4kgfであった。
第1導電性材料用組成物の代わりに銀フィラー80wt%-エポキシ樹脂20wt%のAgペースト(硬化条件200℃、1.5時間)を使用した以外は、実施例36と同様にして行った。発光素子が接合された基板について、ダイシェア強度を室温で測定したところ、強度は約0.3kgfであった。
Claims (23)
- 導電性材料の製造方法であって、
前記方法が、
0.1μm~15μmの平均粒径(メジアン径)を有する銀粒子と、金属酸化物とを含む第1導電性材料用組成物を焼成して、導電性材料を得ることを含む方法。 - 前記第1導電性材料用組成物が、沸点300℃以下の有機溶剤または水を更に含む請求項1に記載の導電性材料の製造方法。
- 前記有機溶剤が、低級アルコール、または、低級アルコキシ、アミノおよびハロゲンからなる群から選択される1以上の置換基を有する低級アルコールを含む請求項2に記載の導電性材料の製造方法。
- 前記焼成が、酸素、オゾン又は大気雰囲気下で行われる請求項1~3のいずれか一項に記載の導電性材料の製造方法。
- 前記焼成が、150℃~320℃の範囲の温度で行われる請求項1~4のいずれか一項に記載の導電性材料の製造方法。
- 前記金属酸化物が、AgO、Ag2O及びAg2O3からなる群から選択される1つ以上である請求項1~5のいずれか一項に記載の導電性材料の製造方法。
- 前記第1導電性材料用組成物における前記金属酸化物の含有量が、前記銀粒子に対して5重量%~40重量%である請求項1~6のいずれか一項に記載の導電性材料の製造方法。
- 前記金属酸化物が、0.1μm~15μmの平均粒径(メジアン径)を有する請求項1~7のいずれか一項に記載の導電性材料の製造方法。
- 導電性材料の製造方法であって、
前記方法が、
0.1μm~15μmの平均粒径(メジアン径)を有する銀粒子を含む第2導電性材料用組成物を、酸素、オゾン又は大気雰囲気下で150℃~320℃の範囲の温度で焼成して、導電性材料を得ることを含む方法。 - 請求項1~9のいずれか一項に記載の製造方法により得られた導電性材料であり、
前記銀粒子が互いに融着されており、空隙率が5体積%~35体積%である導電性材料。 - 銀含有量が70重量%以上である請求項10に記載の導電性材料。
- 電気抵抗値が5.0×10-5Ω・cm以下である請求項10または11に記載の導電性材料。
- 請求項1~9のいずれか一項に記載の製造方法により得られた導電性材料を含む電子機器であって、
前記導電性材料が、電気配線、部品電極、ダイアタッチ接合材または微細バンプの材料として使用される電子機器。 - 請求項1~8のいずれか一項に記載の製造方法により得られた導電性材料を含む発光装置であって、
前記導電性材料が、配線基板又はリードフレームと、発光素子との接合材料として使用される発光装置。 - 請求項9に記載の製造方法により得られた導電性材料を含む発光装置であって、
前記導電性材料が、配線基板又はリードフレームと、発光素子との接合材料として使用される発光装置。 - 0.1μm~15μmの平均粒径(メジアン径)を有する銀粒子と、アルコールとを含む導電性ペーストを150℃~300℃で加熱して得られる導電性材料を含む発光装置であって、
前記導電性材料が、配線基板又はリードフレームと、発光素子との接合材料として使用される発光装置。 - 前記アルコールが、低級アルコール、または、低級アルコキシ、アミノおよびハロゲンからなる群から選択される1以上の置換基を有する低級アルコールである請求項16に記載の発光装置。
- 前記配線基板が、酸化アルミニウム、窒化アルミニウム、酸化ジルコニウム、窒化ジルコニウム、酸化チタン、窒化チタンまたはこれらの混合物を含むセラミック基板、Cu、Fe、Ni、Cr、Al、Ag、Au、Tiまたはこれらの合金を含む金属基板、ガラスエポキシ基板及びBTレジン基板からなる群から選択される少なくとも一つを含む請求項14~17のいずれか一項に記載の発光装置。
- 前記リードフレームが、Cu、Fe、Ni、Cr、Al、Ag、Au、Tiまたはこれらの合金を含む金属部材を含む請求項14~18のいずれか一項に記載の発光装置。
- 前記配線基板又はリードフレームが、Ag、Au、Pt、Sn、Cu、Rh又はこれらの合金によりさらに被覆されている請求項14~19のいずれか一項に記載の発光装置。
- 請求項14に記載の発光装置を製造する方法であって、
0.1μm~15μmの平均粒径(メジアン径)を有する銀粒子と、金属酸化物とを含む第1導電性材料用組成物を、前記配線基板または前記リードフレームに塗布する工程と、
前記発光素子を前記第1導電性材料用組成物上に配置して発光装置前駆体を得る工程と、
前記発光装置前駆体を焼成して、発光装置を得る工程と、を含む製造方法。 - 請求項15に記載の発光装置を製造する方法であって、
0.1μm~15μmの平均粒径(メジアン径)を有する銀粒子を含む第2導電性材料用組成物を、前記配線基板または前記リードフレームに塗布する工程と、
前記発光素子を前記第2導電性材料用組成物上に配置して発光装置前駆体を得る工程と、
前記発光装置前駆体を酸素、オゾン又は大気雰囲気下で150℃~320℃で焼成して、発光装置を得る工程と、を含む製造方法。 - 請求項16に記載の発光装置を製造する方法であって、
0.1μm~15μmの平均粒径(メジアン径)を有する銀粒子と、アルコールとを含む導電性ペーストを、前記配線基板または前記リードフレームに塗布する工程と、
前記発光素子を前記導電性ペースト上に配置して発光装置前駆体を得る工程と、
前記発光装置前駆体を150℃~300℃で焼成して、発光装置を得る工程と、を含む製造方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09702097.8A EP2239743B1 (en) | 2008-01-17 | 2009-01-09 | Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for manufacturing light-emitting device |
JP2009512355A JP5212364B2 (ja) | 2008-01-17 | 2009-01-09 | 導電性材料の製造方法、その方法により得られた導電性材料、その導電性材料を含む電子機器、発光装置、発光装置製造方法 |
US12/596,339 US8968608B2 (en) | 2008-01-17 | 2009-01-09 | Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device |
CN200980102372.2A CN101911219B (zh) | 2008-01-17 | 2009-01-09 | 导电性材料及其制造方法、电子设备、发光装置及其制造方法 |
EP20154844.3A EP3678198A1 (en) | 2008-01-17 | 2009-01-09 | A method for producing an electronic device |
US14/608,064 US9812624B2 (en) | 2008-01-17 | 2015-01-28 | Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device |
US15/708,848 US10573795B2 (en) | 2008-01-17 | 2017-09-19 | Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device |
US16/451,559 US10950770B2 (en) | 2008-01-17 | 2019-06-25 | Method for producing an electronic device |
US17/171,268 US11652197B2 (en) | 2008-01-17 | 2021-02-09 | Method for producing an electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008007583 | 2008-01-17 | ||
JP2008-007583 | 2008-01-17 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/596,339 A-371-Of-International US8968608B2 (en) | 2008-01-17 | 2009-01-09 | Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device |
US14/608,064 Division US9812624B2 (en) | 2008-01-17 | 2015-01-28 | Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009090915A1 true WO2009090915A1 (ja) | 2009-07-23 |
Family
ID=40885306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/050212 WO2009090915A1 (ja) | 2008-01-17 | 2009-01-09 | 導電性材料の製造方法、その方法により得られた導電性材料、その導電性材料を含む電子機器、発光装置、発光装置製造方法 |
Country Status (6)
Country | Link |
---|---|
US (5) | US8968608B2 (ja) |
EP (2) | EP3678198A1 (ja) |
JP (1) | JP5212364B2 (ja) |
CN (1) | CN101911219B (ja) |
TW (1) | TWI508103B (ja) |
WO (1) | WO2009090915A1 (ja) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010053449A (ja) * | 2008-08-27 | 2010-03-11 | Wc Heraeus Gmbh | 無圧力の低温焼結プロセス用の金属ペーストの多孔度の制御 |
EP2390903A1 (en) * | 2009-01-23 | 2011-11-30 | Nichia Corporation | Semiconductor device and method of manufacturing same |
EP2610979A2 (en) | 2011-12-28 | 2013-07-03 | Nichia Corporation | Laser light source |
JP2013251295A (ja) * | 2012-05-30 | 2013-12-12 | Nichia Chem Ind Ltd | 光源装置 |
WO2014020673A1 (ja) * | 2012-07-31 | 2014-02-06 | 三洋電機株式会社 | 太陽電池モジュールの製造方法及び太陽電池モジュール |
WO2014020674A1 (ja) * | 2012-07-31 | 2014-02-06 | 三洋電機株式会社 | 太陽電池モジュールの製造方法 |
WO2014020672A1 (ja) * | 2012-07-31 | 2014-02-06 | 三洋電機株式会社 | 太陽電池の製造方法及び太陽電池 |
JP2014063995A (ja) * | 2012-08-30 | 2014-04-10 | Nichia Chem Ind Ltd | 半導体装置 |
WO2014073085A1 (ja) * | 2012-11-09 | 2014-05-15 | 株式会社 日立製作所 | 配線基板とその製造方法 |
US8852463B2 (en) | 2010-04-09 | 2014-10-07 | Hitachi Metals, Ltd. | Metal fine particle for conductive metal paste, conductive metal paste and metal film |
EP2889923A1 (en) | 2013-12-25 | 2015-07-01 | Nichia Corporation | Semiconductor element, semiconductor device including the same, and method for manufacturing semiconductor element |
EP2933848A1 (en) | 2014-04-14 | 2015-10-21 | Nichia Corporation | Semiconductor device |
JP2016072595A (ja) * | 2014-09-30 | 2016-05-09 | ニホンハンダ株式会社 | 発光ダイオード装置の製造方法 |
WO2016143985A1 (ko) * | 2015-03-06 | 2016-09-15 | (주)뉴옵틱스 | 전도성 페이스트 |
JP2018190540A (ja) * | 2017-04-28 | 2018-11-29 | 日亜化学工業株式会社 | 金属粉焼結ペースト及びその製造方法、ならびに導電性材料の製造方法 |
US10201852B2 (en) | 2014-06-16 | 2019-02-12 | Osaka University | Silver particle synthesizing method, silver particles, conductive paste producing method, and conductive paste |
WO2020149113A1 (ja) * | 2019-01-17 | 2020-07-23 | Jxtgエネルギー株式会社 | 透明導電性フィルム |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8968608B2 (en) | 2008-01-17 | 2015-03-03 | Nichia Corporation | Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device |
KR101559617B1 (ko) | 2010-03-01 | 2015-10-12 | 오사카 유니버시티 | 반도체장치 및 반도체장치용 접합재 |
JP4940363B1 (ja) * | 2011-02-28 | 2012-05-30 | 株式会社東芝 | 半導体発光素子及び半導体発光装置 |
DE102011016034A1 (de) * | 2011-04-04 | 2012-10-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Metallhaltige Zusammensetzung, Verfahren zur Herstellung einer elektrischen Kontaktstruktur sowie Verwendung eines Oxidationsmittels |
KR102020093B1 (ko) | 2012-09-05 | 2019-09-09 | 히타치가세이가부시끼가이샤 | 은페이스트 조성물 및 그것을 사용한 반도체 장치 |
JP5814204B2 (ja) * | 2012-09-10 | 2015-11-17 | 京都エレックス株式会社 | Led用セラミックパッケージ用ペースト |
JP5849036B2 (ja) * | 2012-09-27 | 2016-01-27 | 富士フイルム株式会社 | 導電ペースト、プリント配線基板 |
TWI463710B (zh) * | 2012-10-05 | 2014-12-01 | Subtron Technology Co Ltd | 接合導熱基板與金屬層的方法 |
JP6294614B2 (ja) * | 2013-05-08 | 2018-03-14 | 有限会社マイテック | 癌関連物質の定量方法 |
EP2853567A1 (en) * | 2013-09-27 | 2015-04-01 | Heraeus Precious Metals GmbH & Co. KG | Solar cells produced from high ohmic wafers and paste comprising Ag metal-oxide additive |
TW201543720A (zh) * | 2014-05-06 | 2015-11-16 | Genesis Photonics Inc | 封裝結構及其製備方法 |
CN107078199B (zh) * | 2014-09-26 | 2019-11-08 | 首尔伟傲世有限公司 | 发光器件及其制造方法 |
JP6920029B2 (ja) * | 2016-04-04 | 2021-08-18 | 日亜化学工業株式会社 | 金属粉焼結ペースト及びその製造方法、導電性材料の製造方法 |
JP6431013B2 (ja) * | 2016-09-21 | 2018-11-28 | シャープ株式会社 | 窒化アルミニウム系半導体深紫外発光素子 |
JP6209666B1 (ja) * | 2016-12-02 | 2017-10-04 | 田中貴金属工業株式会社 | 導電性接合材料及び半導体装置の製造方法 |
US20200039007A1 (en) * | 2017-02-23 | 2020-02-06 | Osaka University | Bonding member, method for producing bonding member and method for producing bonding structure |
KR20200068499A (ko) * | 2018-12-05 | 2020-06-15 | 삼성에스디아이 주식회사 | 태양전지 전극 형성용 조성물 및 이로부터 제조된 태양전지 전극 |
JP6609073B1 (ja) * | 2019-01-15 | 2019-11-20 | 株式会社日本マイクロニクス | プローブ基板及び電気的接続装置 |
JP7215273B2 (ja) * | 2019-03-22 | 2023-01-31 | 三菱マテリアル株式会社 | 接合構造体 |
CN110416510B (zh) * | 2019-07-18 | 2022-09-23 | 新乡市中天新能源科技股份有限公司 | 一种基于锂硫电池正极的硫基吸附导电载体材料 |
CN113470865B (zh) * | 2021-09-06 | 2021-12-21 | 西安宏星电子浆料科技股份有限公司 | 一种氮化铝用环保型银导体浆料 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11111052A (ja) * | 1997-10-07 | 1999-04-23 | Ngk Spark Plug Co Ltd | 導電ペースト組成物、導電ペースト組成物の製造方法、表層導体形成方法、およびセラミック多層基板 |
JP2001216839A (ja) * | 2000-01-31 | 2001-08-10 | Kyocera Corp | 導電性ペースト及び多層基板の製法 |
JP2003309352A (ja) | 2002-04-16 | 2003-10-31 | Fujikura Ltd | 導電性接着剤およびこれを用いた電子部品実装構造 |
JP2004253251A (ja) | 2003-02-20 | 2004-09-09 | Fujikura Ltd | 導電性組成物 |
JP2004362950A (ja) * | 2003-06-05 | 2004-12-24 | Noritake Co Ltd | 銀粉末を主体とする導体ペースト及びその製造方法 |
JP2005129303A (ja) | 2003-10-22 | 2005-05-19 | Denso Corp | 導体組成物および導体組成物を用いた実装基板ならびに実装構造 |
JP2005200604A (ja) | 2004-01-19 | 2005-07-28 | Fujikura Ltd | 粒子状銀化合物及びその利用 |
JP2005267900A (ja) | 2004-03-16 | 2005-09-29 | Sumitomo Osaka Cement Co Ltd | 導電性ペースト及びその製造方法 |
JP2006024808A (ja) | 2004-07-09 | 2006-01-26 | Mitsubishi Paper Mills Ltd | 導電性組成物作製方法、層間接続方法、及び導電性膜または導電性画像作製方法 |
JP2007053212A (ja) * | 2005-08-17 | 2007-03-01 | Denso Corp | 回路基板の製造方法 |
JP2007184153A (ja) * | 2006-01-06 | 2007-07-19 | Kyoto Elex Kk | 低温焼成用導電性ペースト組成物及びそのペースト組成物を用いた配線パターンの形成方法 |
Family Cites Families (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61148883A (ja) | 1984-12-22 | 1986-07-07 | Toshiba Corp | 光半導体装置用リ−ドフレ−ム |
WO1989009478A1 (en) * | 1988-03-26 | 1989-10-05 | Doduco Gmbh + Co. Dr. Eugen Dürrwächter | Semifinished product for electrical contacts, made of a composite material based on silver and tin oxide, and powder metallurgical process for producing it |
CA2000787A1 (en) | 1988-11-04 | 1990-05-04 | Richard L. Cole | Electrically conductive silicone compositions |
JPH064790A (ja) | 1992-06-24 | 1994-01-14 | Mitsubishi Electric Corp | 遠方監視システム |
JPH0613756A (ja) | 1992-06-25 | 1994-01-21 | Matsushita Electric Ind Co Ltd | 導体ペースト組成物 |
JPH0661602A (ja) | 1992-08-10 | 1994-03-04 | Kao Corp | 電子回路基板の製造方法 |
JP2678965B2 (ja) | 1993-04-14 | 1997-11-19 | 住友金属鉱山株式会社 | 導電性樹脂ペースト |
JPH0711364A (ja) | 1993-06-29 | 1995-01-13 | Toshiba Corp | 発光ダイオード用リードフレーム材料 |
JPH08148512A (ja) | 1994-11-21 | 1996-06-07 | Rohm Co Ltd | 半導体装置の製造方法 |
US5882722A (en) * | 1995-07-12 | 1999-03-16 | Partnerships Limited, Inc. | Electrical conductors formed from mixtures of metal powders and metallo-organic decompositions compounds |
US5653152A (en) | 1995-09-01 | 1997-08-05 | Kennametal Inc. | Toolholder for roughing and finishing a workpiece |
JP4025839B2 (ja) | 1996-09-12 | 2007-12-26 | Dowaエレクトロニクス株式会社 | 銀粉および銀粉の製造方法 |
JP3575945B2 (ja) | 1997-04-02 | 2004-10-13 | 株式会社ルネサステクノロジ | 半導体装置の製造方法 |
JP3690552B2 (ja) | 1997-05-02 | 2005-08-31 | 株式会社アルバック | 金属ペーストの焼成方法 |
JPH1111052A (ja) | 1997-06-25 | 1999-01-19 | Shotaro Arai | 投票カードホルダー |
US6366690B1 (en) | 1998-07-07 | 2002-04-02 | Applied Materials, Inc. | Pixel based machine for patterned wafers |
JP3399440B2 (ja) | 1999-04-26 | 2003-04-21 | 松下電器産業株式会社 | 複合発光素子と発光装置及びその製造方法 |
JP2001049086A (ja) * | 1999-08-09 | 2001-02-20 | Sumitomo Metal Mining Co Ltd | 導電性樹脂組成物 |
JP4862180B2 (ja) | 1999-08-13 | 2012-01-25 | Dowaエレクトロニクス株式会社 | 銀粉の製造方法及びフレーク状銀粉の製造方法 |
JP2001131499A (ja) | 1999-11-09 | 2001-05-15 | Toray Ind Inc | 半導体装置用接着剤シートおよびそれを用いた部品ならびに半導体装置 |
DE10009678C1 (de) | 2000-02-29 | 2001-07-19 | Siemens Ag | Wärmeleitende Klebstoffverbindung und Verfahren zum Herstellen einer wärmeleitenden Klebstoffverbindung |
JP2001325831A (ja) | 2000-05-12 | 2001-11-22 | Bando Chem Ind Ltd | 金属コロイド液、導電性インク、導電性被膜及び導電性被膜形成用基底塗膜 |
JP3540769B2 (ja) | 2000-06-09 | 2004-07-07 | 三洋電機株式会社 | 光照射装置とその製造方法及びその光照射装置を用いた照明装置 |
TW506236B (en) | 2000-06-09 | 2002-10-11 | Sanyo Electric Co | Method for manufacturing an illumination device |
TW507482B (en) | 2000-06-09 | 2002-10-21 | Sanyo Electric Co | Light emitting device, its manufacturing process, and lighting device using such a light-emitting device |
CA2426861C (en) | 2000-10-25 | 2008-10-28 | Yorishige Matsuba | Conductive metal paste |
JP2002368285A (ja) | 2001-06-11 | 2002-12-20 | Omron Corp | 発光器、発光モジュール及びその製造方法 |
JP2003318217A (ja) | 2001-06-20 | 2003-11-07 | Toray Eng Co Ltd | 実装方法および装置 |
JP2003008071A (ja) | 2001-06-22 | 2003-01-10 | Stanley Electric Co Ltd | Led基板アセンブリを使用したledランプ |
JP2003008161A (ja) | 2001-06-26 | 2003-01-10 | Matsushita Electric Ind Co Ltd | 導電体、および回路基板 |
JP3874634B2 (ja) | 2001-08-10 | 2007-01-31 | 福田金属箔粉工業株式会社 | 導体ペースト用のフレーク状銀粉及びそれを用いた導体ペースト |
JP3797281B2 (ja) * | 2001-09-20 | 2006-07-12 | 株式会社村田製作所 | 積層セラミック電子部品の端子電極用導電性ペースト、積層セラミック電子部品の製造方法、積層セラミック電子部品 |
CN101038795A (zh) | 2001-10-18 | 2007-09-19 | 霍尼韦尔国际公司 | 导电膏及传热材料 |
US7083850B2 (en) | 2001-10-18 | 2006-08-01 | Honeywell International Inc. | Electrically conductive thermal interface |
JP4301763B2 (ja) * | 2001-10-31 | 2009-07-22 | 藤倉化成株式会社 | 銀化合物ペースト |
JP4023723B2 (ja) | 2002-04-05 | 2007-12-19 | シチズン電子株式会社 | 表面実装型発光ダイオード |
TWI251018B (en) | 2002-04-10 | 2006-03-11 | Fujikura Ltd | Electroconductive composition, electroconductive coating and method of producing the electroconductive coating |
JP2004058466A (ja) | 2002-07-29 | 2004-02-26 | Mitsubishi Paper Mills Ltd | 酸化銀の熱分解による銀の作製方法、及び酸化銀の熱分解により作成される銀膜、または銀画像 |
JP3783212B2 (ja) | 2002-10-04 | 2006-06-07 | スタンレー電気株式会社 | チップタイプledランプの製造方法 |
JP3796476B2 (ja) | 2002-10-25 | 2006-07-12 | バンドー化学株式会社 | 導電性インク |
CN1195308C (zh) * | 2002-11-05 | 2005-03-30 | 天津大学 | 银纳米氧化锡电触头及其制备方法 |
JP2004172160A (ja) | 2002-11-15 | 2004-06-17 | Denso Corp | 発光素子 |
WO2004055843A1 (ja) | 2002-12-13 | 2004-07-01 | Sanyo Electric Co.,Ltd. | 固体電解コンデンサ及びその製造方法 |
JP3991218B2 (ja) * | 2002-12-20 | 2007-10-17 | 信越化学工業株式会社 | 導電性接着剤及びその製造方法 |
JP2004217978A (ja) | 2003-01-14 | 2004-08-05 | Mitsubishi Paper Mills Ltd | 多孔質銀素材 |
JP2004277688A (ja) | 2003-01-23 | 2004-10-07 | Sumitomo Chem Co Ltd | インキおよび電磁波シールド材 |
JP4400277B2 (ja) | 2003-03-28 | 2010-01-20 | 日油株式会社 | 導電性ペースト |
JP2004335920A (ja) | 2003-05-12 | 2004-11-25 | Stanley Electric Co Ltd | 面実装型led及びその製造方法 |
JP4489388B2 (ja) | 2003-07-29 | 2010-06-23 | 三井金属鉱業株式会社 | 微粒銀粉の製造方法 |
JP4489389B2 (ja) | 2003-07-29 | 2010-06-23 | 三井金属鉱業株式会社 | 微粒銀粉の製造方法 |
JP4196377B2 (ja) * | 2003-09-09 | 2008-12-17 | ソニーケミカル&インフォメーションデバイス株式会社 | 電子部品の実装方法 |
US9006296B2 (en) * | 2003-09-12 | 2015-04-14 | Harima Chemicals, Inc. | Metal nanoparticle dispersion usable for ejection in the form of fine droplets to be applied in the layered shape |
JP4447273B2 (ja) | 2003-09-19 | 2010-04-07 | 三井金属鉱業株式会社 | 銀インク及びその銀インクの製造方法 |
JP2005136224A (ja) | 2003-10-30 | 2005-05-26 | Asahi Kasei Electronics Co Ltd | 発光ダイオード照明モジュール |
KR20070033329A (ko) | 2004-02-18 | 2007-03-26 | 버지니아 테크 인터렉추얼 프라퍼티스, 인크. | 인터커넥트를 위한 나노 크기의 금속 페이스트 및 이의사용 방법 |
US8257795B2 (en) * | 2004-02-18 | 2012-09-04 | Virginia Tech Intellectual Properties, Inc. | Nanoscale metal paste for interconnect and method of use |
JP3858902B2 (ja) * | 2004-03-03 | 2006-12-20 | 住友電気工業株式会社 | 導電性銀ペーストおよびその製造方法 |
JP4367631B2 (ja) | 2004-04-12 | 2009-11-18 | 信越化学工業株式会社 | 室温硬化型導電性シリコーンゴム組成物 |
JP4583063B2 (ja) | 2004-04-14 | 2010-11-17 | 三井金属鉱業株式会社 | 銀化合物被覆銀粉及びその製造方法 |
JP2005310820A (ja) | 2004-04-16 | 2005-11-04 | Stanley Electric Co Ltd | フレキシブル両面プリント回路基板 |
JP2006023141A (ja) | 2004-07-07 | 2006-01-26 | Hitachi Ltd | 車両の燃料情報出力装置 |
JP2006032511A (ja) | 2004-07-14 | 2006-02-02 | Citizen Electronics Co Ltd | 基板及び実装基板 |
JP4482930B2 (ja) * | 2004-08-05 | 2010-06-16 | 昭栄化学工業株式会社 | 導電性ペースト |
JP2006066519A (ja) | 2004-08-25 | 2006-03-09 | Kyocera Corp | 発光素子用配線基板ならびに発光装置 |
JP2006100500A (ja) | 2004-09-29 | 2006-04-13 | Sanken Electric Co Ltd | 半導体発光素子及びその製造方法 |
JP2006135267A (ja) | 2004-11-09 | 2006-05-25 | Hitachi Cable Ltd | 発光ダイオード用リードフレーム |
JP4462019B2 (ja) | 2004-11-24 | 2010-05-12 | 昭栄化学工業株式会社 | 酸化銀粉末、その製造方法及び導体ペースト |
JP4254700B2 (ja) | 2004-12-03 | 2009-04-15 | 株式会社デンソー | 実装用導電性接着剤 |
JP2006237141A (ja) | 2005-02-23 | 2006-09-07 | Stanley Electric Co Ltd | サブマウント型led |
EP1860163A4 (en) | 2005-03-11 | 2009-08-26 | Toyo Ink Mfg Co | ELECTRICALLY CONDUCTIVE INK, ELECTRICALLY CONDUCTIVE CIRCUIT, AND NON-CONTACT TYPE MEDIUM |
WO2006126614A1 (ja) * | 2005-05-25 | 2006-11-30 | Nihon Handa Co., Ltd. | ペースト状銀組成物、その製造方法、固形状銀の製造方法、固形状銀、接着方法および回路板の製造方法 |
JP2007019106A (ja) | 2005-07-05 | 2007-01-25 | Kyocera Chemical Corp | 電極形成用導電性ペースト及び太陽電池セル |
JP4973830B2 (ja) * | 2005-07-29 | 2012-07-11 | 戸田工業株式会社 | 導電性組成物、導電性ペースト及び導電性皮膜 |
KR101046197B1 (ko) * | 2005-09-21 | 2011-07-04 | 니혼한다가부시끼가이샤 | 페이스트형 은입자 조성물, 고형상 은의 제조 방법, 고형상은, 접합 방법 및 인쇄 배선판의 제조 방법 |
US7784668B2 (en) * | 2005-12-16 | 2010-08-31 | United Technologies Corporation | Repair method for propagating epitaxial crystalline structures by heating to within 0-100° f of the solidus |
JP2007194580A (ja) * | 2005-12-21 | 2007-08-02 | E I Du Pont De Nemours & Co | 太陽電池電極用ペースト |
JP2007180059A (ja) | 2005-12-26 | 2007-07-12 | Toshiba Corp | 光半導体装置とその製造方法 |
TWI347614B (en) | 2006-01-11 | 2011-08-21 | Dowa Electronics Materials Co Ltd | Silver electroconductive film and manufacturing method of the same |
JP4819516B2 (ja) | 2006-02-02 | 2011-11-24 | 京都エレックス株式会社 | 導電性ペースト及びその導電性ペーストを用いたセラミック多層回路基板 |
JP2007214162A (ja) | 2006-02-07 | 2007-08-23 | Ngk Spark Plug Co Ltd | 配線基板およびその製造方法 |
JP4918790B2 (ja) | 2006-02-28 | 2012-04-18 | 旭硝子株式会社 | 透明導電膜の製造方法、透明導電膜および塗布液 |
JP5470673B2 (ja) | 2006-03-27 | 2014-04-16 | 日亜化学工業株式会社 | 半導体発光装置及び半導体発光素子 |
JP4967437B2 (ja) | 2006-04-27 | 2012-07-04 | 旭硝子株式会社 | 透明導電膜の製造方法および透明導電膜 |
JP4715628B2 (ja) | 2006-05-11 | 2011-07-06 | トヨタ自動車株式会社 | 接合材料及び接合方法 |
JP4638382B2 (ja) | 2006-06-05 | 2011-02-23 | 田中貴金属工業株式会社 | 接合方法 |
JP5151150B2 (ja) | 2006-12-28 | 2013-02-27 | 株式会社日立製作所 | 導電性焼結層形成用組成物、これを用いた導電性被膜形成法および接合法 |
JP4737116B2 (ja) | 2007-02-28 | 2011-07-27 | 株式会社日立製作所 | 接合方法 |
US8555491B2 (en) * | 2007-07-19 | 2013-10-15 | Alpha Metals, Inc. | Methods of attaching a die to a substrate |
US8623500B2 (en) * | 2007-08-16 | 2014-01-07 | Empire Technology Development Llc | Conductive paste and method for manufacturing the same, wiring using the conductive paste and method for manufacturing the same |
CN101195308A (zh) | 2007-12-27 | 2008-06-11 | 北京盛行之道品牌顾问有限公司 | 一种宣纸的印制方法及其制品 |
US8968608B2 (en) * | 2008-01-17 | 2015-03-03 | Nichia Corporation | Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device |
-
2009
- 2009-01-09 US US12/596,339 patent/US8968608B2/en active Active
- 2009-01-09 JP JP2009512355A patent/JP5212364B2/ja active Active
- 2009-01-09 EP EP20154844.3A patent/EP3678198A1/en active Pending
- 2009-01-09 EP EP09702097.8A patent/EP2239743B1/en active Active
- 2009-01-09 CN CN200980102372.2A patent/CN101911219B/zh active Active
- 2009-01-09 WO PCT/JP2009/050212 patent/WO2009090915A1/ja active Application Filing
- 2009-01-14 TW TW098101256A patent/TWI508103B/zh active
-
2015
- 2015-01-28 US US14/608,064 patent/US9812624B2/en active Active
-
2017
- 2017-09-19 US US15/708,848 patent/US10573795B2/en active Active
-
2019
- 2019-06-25 US US16/451,559 patent/US10950770B2/en active Active
-
2021
- 2021-02-09 US US17/171,268 patent/US11652197B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11111052A (ja) * | 1997-10-07 | 1999-04-23 | Ngk Spark Plug Co Ltd | 導電ペースト組成物、導電ペースト組成物の製造方法、表層導体形成方法、およびセラミック多層基板 |
JP2001216839A (ja) * | 2000-01-31 | 2001-08-10 | Kyocera Corp | 導電性ペースト及び多層基板の製法 |
JP2003309352A (ja) | 2002-04-16 | 2003-10-31 | Fujikura Ltd | 導電性接着剤およびこれを用いた電子部品実装構造 |
JP2004253251A (ja) | 2003-02-20 | 2004-09-09 | Fujikura Ltd | 導電性組成物 |
JP2004362950A (ja) * | 2003-06-05 | 2004-12-24 | Noritake Co Ltd | 銀粉末を主体とする導体ペースト及びその製造方法 |
JP2005129303A (ja) | 2003-10-22 | 2005-05-19 | Denso Corp | 導体組成物および導体組成物を用いた実装基板ならびに実装構造 |
JP2005200604A (ja) | 2004-01-19 | 2005-07-28 | Fujikura Ltd | 粒子状銀化合物及びその利用 |
JP2005267900A (ja) | 2004-03-16 | 2005-09-29 | Sumitomo Osaka Cement Co Ltd | 導電性ペースト及びその製造方法 |
JP2006024808A (ja) | 2004-07-09 | 2006-01-26 | Mitsubishi Paper Mills Ltd | 導電性組成物作製方法、層間接続方法、及び導電性膜または導電性画像作製方法 |
JP2007053212A (ja) * | 2005-08-17 | 2007-03-01 | Denso Corp | 回路基板の製造方法 |
JP2007184153A (ja) * | 2006-01-06 | 2007-07-19 | Kyoto Elex Kk | 低温焼成用導電性ペースト組成物及びそのペースト組成物を用いた配線パターンの形成方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2239743A4 |
YI LI; C.P. WONG: "Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications", MATERIALS SCIENCE AND ENGINEERING, vol. R 51, 2006, pages 1 - 35, XP025137126, DOI: doi:10.1016/j.mser.2006.01.001 |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010053449A (ja) * | 2008-08-27 | 2010-03-11 | Wc Heraeus Gmbh | 無圧力の低温焼結プロセス用の金属ペーストの多孔度の制御 |
EP3163602A3 (en) * | 2009-01-23 | 2017-08-09 | Nichia Corporation | Method of producing a semiconductor device by bonding silver on a surface of a semiconductor element with silver on a surface of a base in air or in an oxygen environment |
EP3163601A3 (en) * | 2009-01-23 | 2017-08-09 | Nichia Corporation | Method of producing a semiconductor device by bonding silver or silver oxide on a surface of a semiconductor element with silver oxide on a surface of a base |
US9018664B2 (en) | 2009-01-23 | 2015-04-28 | Nichia Corporation | Semiconductor device and production method therefor |
EP3151268A3 (en) * | 2009-01-23 | 2017-08-09 | Nichia Corporation | Method of producing a semiconductor device by bonding silver oxide on a surface of a semiconductor element with silver or silver oxide on a surface of a base |
EP2390903A4 (en) * | 2009-01-23 | 2012-10-17 | Nichia Corp | SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING |
EP2390903A1 (en) * | 2009-01-23 | 2011-11-30 | Nichia Corporation | Semiconductor device and method of manufacturing same |
US8642392B2 (en) | 2009-01-23 | 2014-02-04 | Nichia Corporation | Semiconductor device and production method therefor |
US8852463B2 (en) | 2010-04-09 | 2014-10-07 | Hitachi Metals, Ltd. | Metal fine particle for conductive metal paste, conductive metal paste and metal film |
US8944635B2 (en) | 2011-12-28 | 2015-02-03 | Nichia Corporation | Light source apparatus |
US9518725B2 (en) | 2011-12-28 | 2016-12-13 | Nichia Corporation | Light source apparatus |
EP3588701A1 (en) | 2011-12-28 | 2020-01-01 | Nichia Corporation | Light source apparatus |
EP2610979A2 (en) | 2011-12-28 | 2013-07-03 | Nichia Corporation | Laser light source |
JP2013251295A (ja) * | 2012-05-30 | 2013-12-12 | Nichia Chem Ind Ltd | 光源装置 |
WO2014020674A1 (ja) * | 2012-07-31 | 2014-02-06 | 三洋電機株式会社 | 太陽電池モジュールの製造方法 |
WO2014020672A1 (ja) * | 2012-07-31 | 2014-02-06 | 三洋電機株式会社 | 太陽電池の製造方法及び太陽電池 |
WO2014020673A1 (ja) * | 2012-07-31 | 2014-02-06 | 三洋電機株式会社 | 太陽電池モジュールの製造方法及び太陽電池モジュール |
JP5934984B2 (ja) * | 2012-07-31 | 2016-06-15 | パナソニックIpマネジメント株式会社 | 太陽電池の製造方法及び太陽電池 |
JP5934985B2 (ja) * | 2012-07-31 | 2016-06-15 | パナソニックIpマネジメント株式会社 | 太陽電池モジュールの製造方法及び太陽電池モジュール |
JPWO2014020672A1 (ja) * | 2012-07-31 | 2016-07-11 | パナソニックIpマネジメント株式会社 | 太陽電池の製造方法及び太陽電池 |
JPWO2014020673A1 (ja) * | 2012-07-31 | 2016-07-11 | パナソニックIpマネジメント株式会社 | 太陽電池モジュールの製造方法及び太陽電池モジュール |
JPWO2014020674A1 (ja) * | 2012-07-31 | 2016-07-11 | パナソニックIpマネジメント株式会社 | 太陽電池モジュールの製造方法 |
JP2014063995A (ja) * | 2012-08-30 | 2014-04-10 | Nichia Chem Ind Ltd | 半導体装置 |
WO2014073085A1 (ja) * | 2012-11-09 | 2014-05-15 | 株式会社 日立製作所 | 配線基板とその製造方法 |
EP2889923A1 (en) | 2013-12-25 | 2015-07-01 | Nichia Corporation | Semiconductor element, semiconductor device including the same, and method for manufacturing semiconductor element |
US10290778B2 (en) | 2014-04-14 | 2019-05-14 | Nichia Corporation | Semiconductor device having semiconductor element bonded to base body by adhesive member |
EP2933848A1 (en) | 2014-04-14 | 2015-10-21 | Nichia Corporation | Semiconductor device |
EP3696866A1 (en) | 2014-04-14 | 2020-08-19 | Nichia Corporation | Semiconductor device |
US10978623B2 (en) | 2014-04-14 | 2021-04-13 | Nichia Corporation | Light emitting element including adhesive member containing particles |
US10201852B2 (en) | 2014-06-16 | 2019-02-12 | Osaka University | Silver particle synthesizing method, silver particles, conductive paste producing method, and conductive paste |
JP2016072595A (ja) * | 2014-09-30 | 2016-05-09 | ニホンハンダ株式会社 | 発光ダイオード装置の製造方法 |
WO2016143985A1 (ko) * | 2015-03-06 | 2016-09-15 | (주)뉴옵틱스 | 전도성 페이스트 |
JP2018190540A (ja) * | 2017-04-28 | 2018-11-29 | 日亜化学工業株式会社 | 金属粉焼結ペースト及びその製造方法、ならびに導電性材料の製造方法 |
JP2021144942A (ja) * | 2017-04-28 | 2021-09-24 | 日亜化学工業株式会社 | 金属粉焼結ペースト及びその製造方法、ならびに導電性材料の製造方法 |
JP7174910B2 (ja) | 2017-04-28 | 2022-11-18 | 日亜化学工業株式会社 | 金属粉焼結ペースト及びその製造方法、ならびに導電性材料の製造方法 |
JP7436906B2 (ja) | 2017-04-28 | 2024-02-22 | 日亜化学工業株式会社 | 半導体装置 |
WO2020149113A1 (ja) * | 2019-01-17 | 2020-07-23 | Jxtgエネルギー株式会社 | 透明導電性フィルム |
Also Published As
Publication number | Publication date |
---|---|
JP5212364B2 (ja) | 2013-06-19 |
US9812624B2 (en) | 2017-11-07 |
EP3678198A1 (en) | 2020-07-08 |
TW200949862A (en) | 2009-12-01 |
US10950770B2 (en) | 2021-03-16 |
US20150171299A1 (en) | 2015-06-18 |
EP2239743A4 (en) | 2014-03-05 |
US20100186999A1 (en) | 2010-07-29 |
US10573795B2 (en) | 2020-02-25 |
US8968608B2 (en) | 2015-03-03 |
CN101911219A (zh) | 2010-12-08 |
US20180013045A1 (en) | 2018-01-11 |
EP2239743B1 (en) | 2020-03-11 |
JPWO2009090915A1 (ja) | 2011-05-26 |
CN101911219B (zh) | 2015-12-16 |
EP2239743A1 (en) | 2010-10-13 |
US20210167264A1 (en) | 2021-06-03 |
US20190326493A1 (en) | 2019-10-24 |
TWI508103B (zh) | 2015-11-11 |
US11652197B2 (en) | 2023-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5212364B2 (ja) | 導電性材料の製造方法、その方法により得られた導電性材料、その導電性材料を含む電子機器、発光装置、発光装置製造方法 | |
JP5673536B2 (ja) | 導電性材料の製造方法、その方法により得られた導電性材料、その導電性材料を含む電子機器、および発光装置 | |
JP5417861B2 (ja) | 導電性材料、その製造方法、導電性材料を含む電子機器、発光装置 | |
CN107004752B (zh) | 发光装置用基板、发光装置以及照明装置 | |
CN104704618B (zh) | 半导体装置、陶瓷电路基板及半导体装置的制造方法 | |
JP2009087939A (ja) | 金属面の接続方法及びそのためのペースト | |
JP2020527461A (ja) | 活性ハンダ付けのためのハンダ付け材料、及び活性ハンダ付け方法 | |
KR20160064071A (ko) | Cu/세라믹스 접합체, Cu/세라믹스 접합체의 제조 방법, 및 파워 모듈용 기판 | |
JP2003187968A (ja) | 表示デバイスのパッケージ構造 | |
JP6677231B2 (ja) | 電子部品の接合方法および接合体の製造方法 | |
TWI404495B (zh) | 在基板上形成電路圖案之方法 | |
KR101318091B1 (ko) | 금속 및 젖산 축합물로 이루어진 재료, 및 전자 부품 | |
JP2008034721A (ja) | 熱電発電素子およびその製造方法 | |
JP2006066752A (ja) | セラミック回路基板 | |
JP2020139223A (ja) | 焼結体の製造方法、焼結体および発光装置の製造方法 | |
JP2003155593A (ja) | 配線基板 | |
JP2005144522A (ja) | はんだ付け方法およびこのはんだ付け方法を用いた実装物品 | |
JPH02209795A (ja) | 回路基板の製造方法 | |
JP2003342083A (ja) | 白金基活性金属ろう及び該活性金属ろうを用いた接合方法。 | |
JP2001068806A (ja) | 配線基板 | |
JPH02209789A (ja) | 回路基板の製造方法 | |
JP2002015688A (ja) | 画像表示装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980102372.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009512355 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09702097 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12596339 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1666/MUMNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009702097 Country of ref document: EP |