WO2006062153A1 - 電気化学素子用セパレータおよび電気化学素子 - Google Patents

電気化学素子用セパレータおよび電気化学素子 Download PDF

Info

Publication number
WO2006062153A1
WO2006062153A1 PCT/JP2005/022540 JP2005022540W WO2006062153A1 WO 2006062153 A1 WO2006062153 A1 WO 2006062153A1 JP 2005022540 W JP2005022540 W JP 2005022540W WO 2006062153 A1 WO2006062153 A1 WO 2006062153A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
resin
temperature
electrolyte
shutdown
Prior art date
Application number
PCT/JP2005/022540
Other languages
English (en)
French (fr)
Inventor
Hideaki Katayama
Toshihiro Abe
Nobuaki Matsumoto
Fusaji Kita
Shigeo Aoyama
Original Assignee
Hitachi Maxell, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004354850A external-priority patent/JP4743747B2/ja
Application filed by Hitachi Maxell, Ltd. filed Critical Hitachi Maxell, Ltd.
Priority to US11/666,921 priority Critical patent/US11050095B2/en
Priority to KR1020097010813A priority patent/KR100935003B1/ko
Priority to CA2586062A priority patent/CA2586062C/en
Priority to EP05814154.0A priority patent/EP1826842B1/en
Publication of WO2006062153A1 publication Critical patent/WO2006062153A1/ja
Priority to JP2006329646A priority patent/JP4184404B2/ja
Priority to CN2006800248797A priority patent/CN101218695B/zh
Priority to KR1020117011764A priority patent/KR101166091B1/ko
Priority to KR1020087016484A priority patent/KR101105748B1/ko
Priority to CN2011101597321A priority patent/CN102244220A/zh
Priority to JP2007522324A priority patent/JP4151852B2/ja
Priority to US11/919,652 priority patent/US8405957B2/en
Priority to EP06834336.7A priority patent/EP1965454B1/en
Priority to CN2011101597406A priority patent/CN102244221A/zh
Priority to PCT/JP2006/324581 priority patent/WO2007066768A1/ja
Priority to JP2008040312A priority patent/JP5219191B2/ja
Priority to JP2008043512A priority patent/JP5038186B2/ja
Priority to JP2008124988A priority patent/JP5148360B2/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrochemical element separator that is inexpensive and excellent in dimensional stability at high temperatures, and relates to an electrochemical element that is safe even in a high temperature environment, using the separator.
  • Electrochemical elements using non-aqueous electrolytes represented by lithium secondary batteries and supercapacitors, have a high energy density, and are therefore used in mobile devices such as mobile phones and notebook personal computers. Widely used as a power source. As the performance of mobile devices increases, the high capacity of electrochemical devices tends to advance further, and ensuring safety is important.
  • a separator interposed between a positive electrode and a negative electrode for example, a polyolefin-based porous film having a thickness of about 20 to 30 ⁇ m is used.
  • the constituent resin of the separator is melted at a temperature lower than the thermal runaway (abnormal heat generation) temperature of the battery to close the pores, thereby increasing the internal resistance of the battery and causing the battery to be short-circuited.
  • polyethylene (PE) having a low melting point may be applied.
  • a separator for example, a film stretched biaxially or biaxially is used to increase the porosity and improve the strength. Since such a separator is supplied as a single film, a certain strength is required in terms of workability and the like, and this is ensured by the above stretching. However, the degree of crystallinity of such stretched films has increased, and the shutdown temperature has increased to a temperature close to the thermal runaway temperature of the battery, so there is not enough margin for ensuring the safety of the battery. Say, difficult! /.
  • Patent Document 1 discloses a separator using a microporous membrane of all aromatic polyamide
  • Patent Document 2 discloses a separator using a polyimide porous membrane
  • Patent Document 3 describes a separator using a polyamide nonwoven fabric
  • Patent Document 4 describes a separator based on a nonwoven fabric using aramid fibers
  • Patent Document 5 discloses a separator using a polypropylene (PP) nonwoven fabric
  • Patent Document 6 discloses a technique related to a separator using a polyester nonwoven fabric.
  • a separator using the above heat-resistant resin or heat-resistant fiber has excellent dimensional stability at high temperatures and can be thinned. So-called shut-down characteristics in which pores are closed at high temperatures. Therefore, it is not possible to ensure sufficient safety in the event of an abnormal condition in which the temperature of the connected battery suddenly rises!
  • Patent Document 7 discloses a separator that also has a polymer strength that increases the content of an electrolyte at high temperatures.
  • Patent Document 8 proposes a separator containing thermally expandable particles such as microcapsules.
  • Patent Document 7 since a polymer film containing an electrolytic solution is used as the separator substrate, the strength is easily reduced. For example, the separator is thinned. Thus, it is difficult to increase the capacity of the battery.
  • Patent Document 7 has a description of the material and function of the separator, what kind of form is not disclosed at all about how the separator can be produced? Even unknown.
  • Patent Document 8 since thermal expansion of particles in the separator occurs irreversibly, the separator cannot be processed at a temperature higher than the temperature at which thermal expansion occurs in the battery manufacturing process, and particularly sufficient drying is performed. For lithium secondary batteries that must be performed, temperature control in the drying process must be strictly performed. There is such a problem.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-335005
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-306568
  • Patent Document 3 Japanese Patent Laid-Open No. 9 259856
  • Patent Document 4 Japanese Patent Laid-Open No. 11-40130
  • Patent Document 5 JP 2001-291503 A
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2003-123728
  • Patent Document 7 JP 2000-348704 A
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2004-111157
  • Patent Document 9 JP-A-8-287949
  • Patent Document 10 Japanese Patent Laid-Open No. 11 185773
  • Patent Document 11 Japanese Patent Laid-Open No. 2002-237332
  • Patent Document 12 describes a solution containing a resin such as polyvinylidene fluoride serving as a base.
  • PMMA cross-linked polymethylmetatalylate
  • the porous resin membrane disclosed in Patent Document 12 is substantially the same as the polymer gel electrolyte membrane, and the electrolytic solution in the separator is applied to the crosslinked fine particles and the porous resin membrane. Because it is absorbed and retained, the battery reaction is not suppressed at high temperatures. As with the gel electrolyte, a problem arises in safety.
  • Patent Document 12 Japanese Unexamined Patent Application Publication No. 2004-241135
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a separator that can constitute an electrochemical element excellent in safety when abnormal heat is generated, and an electrochemical element equipped with the separator. It is to provide.
  • the separator for electrochemical devices of the present invention is a separator for electrochemical devices comprising a porous substrate and a porous film containing a resin, and the porous substrate has a heat resistance of 150 ° C or higher.
  • the resin contains filler particles, and the resin has a resin A having a melting point in the range of 80 to 130 ° C., and swells by absorbing the electrolyte solution upon heating and the degree of swelling as the temperature increases. It is characterized in that it is at least one type of shutdown resin selected from the resin B that increases.
  • the electrochemical device of the present invention is an electrochemical device including a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, and the separator is the separator for an electrochemical device of the present invention. It is characterized by.
  • FIG. 1 shows a scanning electron micrograph of the cross section of the negative electrode of Example 10.
  • FIG. 2 shows a scanning electron micrograph in which the separator portion of FIG. 1 is enlarged.
  • FIG. 3 is a graph showing changes in internal resistance of Example 12A with temperature.
  • FIG. 4 is a diagram showing a change in internal resistance of Comparative Example 1 A with temperature.
  • the separator of the present invention includes a porous substrate having a heat resistant temperature of 150 ° C or higher and containing filler particles, a resin A having a melting point in the range of 80 to 130 ° C, and electrolysis by heating. It is a porous membrane comprising at least one type of shutdown resin selected from resin B that swells by absorbing liquid and increases in degree of swelling as the temperature rises.
  • the separator of the present invention contains the resin A
  • the separator of the present invention When the temperature of the incorporated lithium secondary battery reaches or exceeds the melting point of the resin A, the resin A melts and closes the pores of the separator, causing a shutdown that suppresses the progress of the electrochemical reaction.
  • the separator of the present invention contains the above-mentioned resin B
  • the resin B absorbs the electrolyte in the battery and swells due to an increase in the temperature of the battery, and the swollen particles are separated. As a result, the flowable electrolytic solution existing inside the pores is reduced and a shutdown occurs.
  • the separator of the present invention includes a porous substrate having a heat resistant temperature of 150 ° C or higher, so that the shape of the separator can be kept stable even in a high temperature state exceeding the shutdown temperature. The occurrence of a short circuit due to heat shrinkage can be prevented. For this reason, the safety
  • the term “heat-resistant temperature” refers to a change in the length of an object, that is, in the porous substrate, the shrinkage ratio (shrinkage rate) with respect to the length at room temperature is 5% or less. The maximum temperature that can be maintained.
  • the term “heat resistance” as used in this specification refers to the fact that substantial dimensional change due to softening or the like does not occur, and the heat resistance is evaluated based on whether the heat resistant temperature is sufficiently higher than the shutdown temperature.
  • the porous substrate has a heat resistant temperature that is 20 ° C or higher than the shutdown temperature. More specifically, the heat resistance temperature of the porous substrate is 150 ° C or higher. It is more desirable to be over 180 ° C.
  • the porous substrate contains a single particle of the filler in order to prevent internal short circuit and to ensure the shape stability of the separator (particularly the shape stability at high temperature).
  • filler particles are contained in the pores of the porous substrate or at least a part of the porous substrate composed of one filler particle.
  • the filler particles have heat resistance and electrical insulation, are stable to the solvent used in the production of the electrolyte separator, and are hardly oxidized or reduced in the battery operating voltage range.
  • V ⁇ Electrochemically stable fine particles are used.
  • separator of the present invention include, for example, the following modes (I) and (ii).
  • the separator of the embodiment (I) has a porous substrate formed by aggregating many filler particles.
  • a large number of filler particles, alone or together with a fibrous material, are integrated with a heat-resistant resin to form a porous substrate, and form a porous film together with a shutdown resin.
  • the separator according to the embodiment (II) comprises a fibrous base material such as a porous substrate, such as a woven fabric or a nonwoven fabric (including paper), and filler particles are contained in the pores to shut down the separator.
  • a porous substrate such as a woven fabric or a nonwoven fabric (including paper)
  • filler particles are contained in the pores to shut down the separator.
  • a porous membrane is formed together with fat.
  • the form of the shutdown resin is not particularly limited, but in order to uniformly disperse it in the porous membrane, it is preferable to use a fine particle in the form of a particle size when dried.
  • the separator has a mean particle size of 1Z100 to 1Z3, which is preferably a thickness of the separator.
  • the mean particle size is preferably 0.1 to 20 / ⁇ ⁇ .
  • the average particle size of the shirt tow down resin is determined by, for example, using a laser scattering particle size distribution analyzer such as “LA-920” manufactured by HORIBA, and dispersing the fine particles in a medium that does not swell the shutdown resin, such as water. It can prescribe
  • the shutdown resin may be used in other components that may be used in a form other than the above, for example, in a state where the porous substrate is laminated and integrated on the surface of the filler particle.
  • the porous substrate When the porous substrate is composed of a fibrous material, it may be used as a fiber having a multilayer structure having a shutdown resin on the surface of the core material.
  • filler particles are used as a core, and shutdown resin is used as a shell. It may be used as particles having a core-shell structure.
  • the shutdown resin may be composed of fine particles and disposed in the pores of the porous substrate together with the filler particles.
  • the shutdown resin of the present invention is a resin A having a melting point in the range of 80 to 130 ° C, or a resin B that swells by absorbing an electrolyte solution by heating and increases in degree of swelling as the temperature rises. Both of them can be used together.
  • the melting point is a melting point measured using a differential scanning calorimeter (DSC) in accordance with, for example, the Japanese Industrial Standard CFIS) K 7121. It can be defined by the solution temperature.
  • DSC differential scanning calorimeter
  • the constituent material of the resin A has an electrical insulating property, is stable to an electrolytic solution, and is electrochemically stable to be not easily oxidized and reduced within a battery operating voltage range.
  • Polyethylene (PE), copolymerized polyolefin, or polyolefin derivative (such as chlorinated polyethylene), polyolefin wax, petroleum wax, carnabarx, etc. are preferred.
  • the copolymer polyolefin include ethylene butyl monomer copolymer, more specifically, ethylene vinyl acetate copolymer (EVA), ethylene methyl acrylate copolymer, and ethylene ethyl acrylate copolymer. Examples thereof include an ethylene acrylic acid copolymer.
  • the structural unit derived from ethylene in the copolymerized polyolefin is 85 mol% or more.
  • polycyclohexylene or the like can be used, and two or more of the above-described constituent materials may be used.
  • PE polyolefin wax
  • EVA having a structural unit derived from ethylene of 85 mol% or more
  • the resin A contains, as necessary, various additives that are added to the resin, such as an acid-proofing agent.
  • the electrolyte solution is not absorbed or the amount of absorption is limited, and thus the swelling.
  • the degree is below a certain level, a resin having such a property that when it is heated to a temperature that requires shutdown, it absorbs the electrolyte and swells greatly, and the degree of swelling increases as the temperature rises is used.
  • the flowable electrolyte that is not absorbed by the resin B exists in the pores of the separator, so that the conductivity of Li ions inside the separator is increased, and the battery has good load characteristics. Become.
  • load characteristics refers to high rate discharge characteristics.
  • resin B absorbs the electrolyte in the battery. As the swelled particles close the pores of the separator, the flowable electrolyte decreases and the battery becomes dry, thereby shutting down and ensuring the safety of the battery.
  • the shutdown temperature When the temperature is higher than the above value, the above-mentioned liquid withering further proceeds due to thermal swellability, and the reaction power S of the battery is further suppressed, so that the high temperature safety after shutdown can be further improved.
  • the temperature at which the coffin B starts to exhibit thermal swellability is preferably at least 75 ° C or higher.
  • shutdown temperature the temperature at which the Li ion conductivity is remarkably reduced and the internal resistance of the battery increases. It is.
  • the higher the lower limit of the temperature exhibiting thermal swellability the higher the shutdown temperature of the separator. Therefore, in order to set the shutdown temperature to about 130 ° C or lower, the lower limit of the temperature exhibiting thermal swellability is 125 It is preferable that the temperature is not higher than ° C. 1 It is more preferable to be not higher than 15 ° C.
  • the temperature showing the thermal swellability is too high, the thermal runaway reaction of the active material in the battery may not be sufficiently suppressed, and the effect of improving the safety of the battery may not be sufficiently secured. If the temperature is too low, the lithium ion conductivity may be too low in the normal battery operating temperature range (approximately 70 ° C or less).
  • the temperature of the resin B is lower than the temperature at which the thermal swellability is exhibited. This is because in the operating temperature range of the battery, for example, room temperature, the electrolyte is more likely to flow into the pores of the separator than the resin B. It is also the power to improve.
  • the amount of electrolyte solution absorbed by resin B at room temperature (25 ° C) can be evaluated by the degree of swelling defined by the following formula (1) that represents the volume change of resin B. .
  • V represents the volume (cm 3 ) of resin B after being immersed in the electrolyte at 25 ° C for 24 hours
  • V represents the volume (cm 3 ) of the resin B before being immersed in the electrolytic solution.
  • the swelling degree B of the resin at normal temperature (25 ° C) is 2.5.
  • B which is desired to have a small swelling due to absorption of the electrolyte, should be as small as possible.
  • the temperature change of the degree of swelling is as small as possible on the lower temperature side than the temperature exhibiting thermal swellability.
  • the resin B when heated above the lower limit of the temperature exhibiting thermal swellability, those whose degree of swelling increases with temperature are used.
  • a swelling degree defined by the following formula (2) measured at 120 ° C and a B force of 1 or more is preferably used, and a swelling degree of 2 or more is more preferred.
  • V represents the volume (cm 3 ) of resin B after being immersed in the electrolyte at 25 ° C for 24 hours
  • V is immersed in the electrolyte at 25 ° C for 24 hours, then the electrolyte is heated to 120 ° C, and 1 at 120 ° C.
  • the swelling degree of the resin B defined by the above formula (2) may cause deformation of the battery if it becomes too large, and is preferably 10 or less, more preferably 5 or less. desirable.
  • the degree of swelling defined by the above equation (2) is directly measured by measuring the change in the size of cocoon B using a method such as light scattering or image analysis of an image taken with a CCD camera. However, it can be measured more accurately by using the following method, for example.
  • a binder resin having the same degree of swelling at 25 ° C and 120 ° C as defined in the above formulas (1) and (2) is used. Is mixed to prepare a slurry, which is coated on a substrate such as a polyethylene terephthalate (PET) sheet or glass plate to produce a film, and its mass is measured. Next, the film was immersed in an electrolyte at 25 ° C for 24 hours to measure the mass, and the electrolyte was heated to 120 ° C and held at 120 ° C for 1 hour. And the degree of swelling B is calculated by the following formulas (3) to (9). In the following formulas (3) to (9), the temperature is raised from 25 ° C to 120 ° C.
  • V M XW / P (3)
  • V (M -M) / P (4)
  • V M ZP -M ZP (5)
  • V M X (1 -W) / P (6)
  • V V + V -V X (B + 1) (7)
  • V VX (B + 1) (8)
  • B ⁇ V + V -VX (B + 1) ⁇ / V-1 (9)
  • V Volume of rosin B (cm 3 ) after 24 hours immersion in electrolyte at 25 ° C
  • V Volume of the electrolyte (cm 3) absorbed in the film after being immersed in the electrolyte at room temperature for 24 hours
  • V The temperature of the electrolyte is increased to 120 ° C after being immersed in the electrolyte at room temperature for 24 hours.
  • V Volume of binder resin before immersing in electrolyte (cm 3 ),
  • V volume of binder resin after immersion in electrolyte at room temperature for 24 hours (cm 3 ),
  • V Specific gravity (g / cm 3 ) of binder resin before being immersed in the electrolyte
  • the resin B there is an electrochemically stable material that has heat resistance and electrical insulation, is stable with respect to the electrolyte, and is not easily reduced in the operating voltage range of the battery.
  • a crosslinked resin is cited.
  • styrene resin polystyrene (PS), etc.), styrene butadiene copolymer, acryl resin (polymethyl methacrylate (PMMA), etc.), polyalkylene oxide (polyethylene oxide (PEO), etc.) ], Fluorinated resin (polyvinylidene fluoride (PVDF) etc.) and Examples thereof include crosslinked products of at least one resin selected from the group consisting of these derivatives, urea resins, polyurethanes, and the like, and two or more of these can be used.
  • rosin B contains, as necessary, various additives added to the rosin, for example, an anti-oxidation agent. It doesn't matter.
  • crosslinked PMMA in which a styrene resin crosslinked body, an acrylic resin crosslinked body, and a fluorine resin crosslinked body are preferred, is particularly preferably used.
  • the temperature change is such that, even when the electrolyte is contained, it is in a dry state, and even if it expands due to an increase in temperature, it contracts again by decreasing the temperature.
  • the volume change accompanying this is reversible to some extent, and it has a heat resistance temperature that is higher than the temperature showing heat swellability, so even if the lower limit of the temperature showing heat swellability is about 100 ° C, Materials that can be heated to 200 ° C or higher can be selected. Therefore, even if heating is performed in a separator manufacturing process or the like, the resin does not dissolve or the thermal swelling property of the resin does not deteriorate, and can be handled in a manufacturing process including a general heating process.
  • the separator of the present invention can be manufactured without applying a strong stress, so that the residual stress after manufacturing is almost or not at all. Since the base material hardly undergoes heat shrinkage, it is possible to improve safety at high temperatures from the viewpoint of the manufacturing method.
  • the above-mentioned rosin A and rosin B can be used alone, or both can coexist.
  • the content (volume ratio) of these shutdown resins is preferably 10% by volume or more, and preferably 20% by volume or more.
  • it is preferably 80% by volume or less, more preferably 40% by volume or less.
  • the filler particles used in the present invention are present as at least a part of the porous substrate constituting the separator as in the embodiment (I), or as in the embodiment (ii). In addition, it is present in the pores of the porous substrate.
  • the filler particles may be organic particles or inorganic particles, but inorganic fine particles are preferably used from the viewpoint of stability, which is desirable to be fine particles from the viewpoint of dispersibility.
  • Specific examples of the constituent material of the inorganic particles include, for example, iron oxide, SiO
  • inorganic oxides such as ZrO
  • inorganic nitrides such as aluminum nitride and silicon nitride
  • the inorganic oxide may be a substance derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, or an artificial product thereof.
  • metal, or conductive oxide such as SnO, tin indium oxide (ITO), or carbon braid
  • a conductive material exemplified by a carbonaceous material such as a glass or a graphite is coated with a material having electrical insulation properties, for example, the above-mentioned inorganic oxides to provide electrical insulation. It may also be a particle.
  • a material having electrical insulation properties for example, the above-mentioned inorganic oxides to provide electrical insulation. It may also be a particle.
  • the above inorganic oxides Al 2 O and
  • One mite is particularly preferably used.
  • the shape of the filler particles may be, for example, nearly spherical and may be a plate shape or a plate shape. From the viewpoint of preventing short circuit, the filler particles are preferably a plate particle. Typical examples of plate-like particles include plate-like Al 2 O 3 and plate-like boehmite. Also
  • the particle diameter of one particle is, for example, preferably 0.01 m or more, more preferably 0.1 ⁇ m or more, and preferably 15 m or less as the number average particle diameter measured by the measurement method. More preferably, it is 5 ⁇ m or less.
  • the plate surface of the fine particles can be oriented so as to be as parallel as possible to the film surface of the separator by a method described later. As a result, it is possible to more effectively prevent an internal short circuit from occurring due to the lithium dendrite deposited on the electrode surface and the projection of the active material on the electrode surface.
  • the aspect ratio (ratio between the maximum length of the plate-like particles and the thickness of the plate-like particles) is preferably, for example, 2 to: LOO.
  • the average particle diameter is preferably smaller than the thickness of the separator, but is preferably 1Z100 or more of the thickness of the separator.
  • a resin material having a heat resistant temperature of 150 ° C. or higher can be used as the plate-like fine particles. Two or more of the above exemplified materials may be used in combination.
  • the porous substrate of the separator according to the embodiment (I) is formed by integrating a large number of filler particles together with a binder or the like.
  • a binder EVA (a structural unit derived from vinyl acetate is 20 units). 35 mole 0/0 ones), E styrene acrylate copolymers such as ethylene E chill Atari rates copolymer, fluorinated rubber, styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl E chill cellulose (HEC), polybulal alcohol (PVA), polybutybutyral (PVB), polybulurpyrrolidone (PVP), polyurethan, and epoxy resin are used.
  • a heat-resistant resin having a heat-resistant temperature of 150 ° C. or higher is preferably used, and two or more kinds of binders may be used in combination.
  • these binders should be used in the form of an emulsion dissolved or dispersed in a solvent of a liquid composition for forming a separator described later.
  • the fibrous material in which the fibrous material or the like may be mixed with the filler particles has a heat resistant temperature of 150 ° C or higher,
  • the material is not particularly limited as long as it has electrical insulating properties, is electrochemically stable, and is stable to an electrolyte solution described in detail below and a solvent used in the production of a separator.
  • fibrous material means that the aspect ratio [length in the long direction Z width (diameter) in the direction perpendicular to the long direction] is 4 or more. Is preferably 10 or more.
  • Specific constituent materials of the fibrous material include, for example, cellulose and its modified products (such as strong ruboxymethyl cellulose (CMC) and hydroxypropyl cellulose (HPC)), poly Olefin (polypropylene (pp), propylene copolymer, etc.), polyester (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), etc.), polyacrylonitrile (PAN), polyaramid Examples thereof include resin such as polyamide-imide and polyimide, and inorganic oxides such as glass, alumina, zirconium, and silica, and these constituent materials may contain two or more kinds.
  • the fibrous material may contain various additives as necessary, for example, an anti-oxidation agent in the case of a fat.
  • the porous substrate of the separator according to the embodiment (ii) is obtained by forming the fibrous material into a sheet-like material such as a woven fabric or a non-woven fabric (including paper), and is commercially available. Non-woven fabrics can be used as the substrate.
  • one filler particle is contained in the pores of the porous substrate, but in order to bind the porous substrate and filler particles, or to bind the shutdown resin and the porous substrate.
  • the binder can also be used
  • the diameter of the fibrous material may be equal to or less than the thickness of the separator, but is preferably 0.01 to 5 m, for example.
  • the diameter is too large, the entanglement between the fibrous materials is insufficient, and when a sheet-like material is formed to form a porous membrane substrate, the strength may be reduced and handling may be difficult.
  • the diameter is too small, the gap of the separator becomes too small, and the ion permeability tends to decrease, which may deteriorate the load characteristics of the battery.
  • the content of the fibrous material in the separator of the aspect (ii) is, for example, preferably 10% by volume or more, more preferably 20% by volume or more, of all the constituent components of the separator, and 90 volumes % Or less is preferable. 80% by volume or less is more preferable.
  • the state of the fibrous material in the separator is, for example, that the angle of the long axis (long axis) with respect to the separator surface is preferably 30 ° or less on average, more preferably 20 ° or less. preferable.
  • the content of the filler particles is preferably 20% by volume or more, preferably 50% by volume or more, of all the constituent components of the separator in order to improve the effect of preventing internal short circuit.
  • the content is preferably suppressed to 80% by volume or less.
  • the filler particles and the binder are used so that the proportion force ratio occupied by the porous substrate is 10% by volume or more and 90% by volume or less in all the constituents of the separator. It is desirable to adjust the content of.
  • the separator thickness is expected to be, for example, 3 ⁇ m or more. More desirably, it is 5 ⁇ m or more, while 30 ⁇ m or less is desirable and 20 m or less is more desirable.
  • the porosity of the separator is more preferably 20% or more in a dry state in order to secure a retention amount of the electrolyte and to improve ion permeability. More than 30%.
  • the porosity of the separator is preferably 70% or less, more preferably 60% or less.
  • the porosity of the separator: P (%) can be calculated by obtaining the sum of all of the components i from the thickness of the separator, the mass per area, and the density of the constituent components using the following formula.
  • a ratio of component i expressed by mass%
  • p density of component i (g / cm 3 )
  • m mass per unit area of the separator (g / cm 2 )
  • t This is the thickness (cm) of the separator.
  • the separator containing the resin B absorbs the electrolyte solution and swells, and even if the porosity of the separator is somewhat reduced, the separator has no porosity. 10% or more is preferable.
  • the air permeability represented by the Gurley value of the separator of the present invention is preferably 10 to 300 seconds.
  • the Gurley value is a value of the number of seconds that lOOmL of air passes through the membrane under a pressure of 0.879 gZmm 2 measured by a method according to JIS P 8117. If the Gurley value is too large, the ion permeability decreases, whereas if it is too small, the strength of the separator may decrease.
  • the strength of the separator is desirably 50 g or more in terms of piercing strength using a needle having a diameter of 1 mm. If the piercing strength is too low, a short circuit may occur due to the breakage of the separator when lithium dendrite crystals are formed.
  • Examples of the method for producing the separator of the present invention include the following methods (a) and (b): Can be adopted.
  • the production method (a) is a method in which a separator composition is coated or impregnated with a liquid composition (slurry or the like) containing shutdown resin and filler particles, and then dried at a predetermined temperature.
  • the separator according to the embodiment (ii) can be produced.
  • a porous substrate in this case, a woven fabric composed of at least one kind of fibrous material containing each of the exemplified materials as a constituent component, or a structure in which these fibrous materials are entangled with each other.
  • a porous sheet such as a non-woven fabric is used. More specifically, non-woven fabrics such as paper, PP non-woven fabric, polyester non-woven fabric (PET non-woven fabric, PEN non-woven fabric, PBT non-woven fabric, etc.) and PAN non-woven fabric can be exemplified.
  • the above liquid composition contains, as necessary, a solder and the like, and these are dispersed in a solvent (including a dispersion medium, the same shall apply hereinafter).
  • the binder can be dissolved in a solvent.
  • the solvent used in the liquid composition is not particularly limited as long as it can uniformly disperse one particle of the shutdown resin and can dissolve or disperse the binder uniformly.
  • an aromatic hydrocarbon such as toluene
  • organic solvents such as furans such as tetrahydrofuran and ketones such as methyl ethyl ketone and methyl isobutyl ketone are preferably used.
  • alcohol ethylene glycol, propylene glycol, etc.
  • various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these solvents.
  • alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and ethylene glycol
  • the interfacial tension can be controlled.
  • the solid content including the shutdown resin, the filler particles, and the binder is preferably 10 to 40% by mass, for example.
  • the pore diameter of the porous substrate is relatively large, for example, 5 ⁇ m or more, this tends to cause a short circuit of the battery. Therefore, in this case, it is preferable to have a structure in which at least a part of the filler particles are present in the pores of the substrate. Further, it is more preferable that at least a part of the constituents other than the filler particles, such as shutdown resin, be present in the pores of the substrate together with the filler particles. [0068] In the case where the plate-like particles are contained in the separator, in order to enhance the orientation and effectively act its function, the substrate impregnated with the liquid composition shares the liquid composition. Or use a magnetic field!
  • the constituents may be unevenly distributed and gathered in layers in parallel with the film surface of the separator.
  • a liquid composition mainly composed of separate coatings for example, a shutdown resin
  • a method in which a liquid composition mainly composed of filler particles is separately applied and dried can be employed.
  • a fibrous material is further contained in the liquid composition as necessary, and this is applied onto a substrate such as a film or a metal foil. After drying at temperature, this substrate force is also peeled off.
  • the separator according to the embodiment (I) can be produced.
  • the liquid composition used in the method (b) preferably has a solid content including fibers such as 10 to 40% by mass.
  • a separator may be formed on at least one surface selected from the positive electrode and the negative electrode constituting the battery by the method (b), and the separator and the electrode may be integrated.
  • the separator of the present invention is not limited to the structures shown above.
  • the shutdown resin may be partly fused to each other or to a fibrous material which may be present in the form of particles and independently.
  • the electrochemical element to which the separator of the present invention can be applied is not particularly limited as long as it uses a nonaqueous electrolytic solution.
  • a lithium secondary battery, a lithium primary battery, a super capacitor, etc. It can also be applied to any application that requires safety.
  • lithium secondary battery examples include a tubular shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. It is also possible to provide a soft package battery with a metal-deposited laminated film as an outer package.
  • the positive electrode is not particularly limited as long as it is a positive electrode used in a conventional lithium secondary battery, that is, a positive electrode containing an active material capable of absorbing and releasing Li.
  • positive electrode active material L + x 2 expressed as Li MO (-0. Kx ⁇ 0.1, M: Co, Ni, Mn, Al, Mg, etc.)
  • LiMPO LiMPO (M: Co, Ni, Mn, Fe
  • Lithium-containing transition metal oxides with the above layered structure include LiCoO and LiNi Co AI O (0. 1 ⁇ 0. 3, 0
  • the positive electrode active material is prepared by adding a carbon material such as carbon black as a conductive additive and a fluorine resin such as polyvinylidene fluoride (PVDF) as a binder. Using this positive electrode mixture, a molded body (positive electrode mixture layer) is formed on the surface of the current collector.
  • a carbon material such as carbon black as a conductive additive
  • a fluorine resin such as polyvinylidene fluoride (PVDF) as a binder.
  • PVDF polyvinylidene fluoride
  • the positive electrode current collector a force capable of using a metal foil such as aluminum, a punching metal, a metal net, an expanded metal, etc.
  • a metal foil such as aluminum, a punching metal, a metal net, an expanded metal, etc.
  • an aluminum foil having a thickness of 10 to 30 / ⁇ ⁇ Are preferably used.
  • the lead portion on the positive electrode side is usually provided by forming an exposed portion of the current collector without forming the positive electrode mixture layer on a part of the current collector and forming the lead portion at the time of producing the positive electrode. It is done.
  • the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.
  • the negative electrode is not particularly limited as long as it is a negative electrode used in a conventional lithium secondary battery, that is, a negative electrode containing an active material capable of occluding and releasing Li.
  • the anode active material can occlude and release lithium, such as graphite, pyrolytic carbons, coatas, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), carbon fibers, etc.
  • MCMB mesocarbon microbeads
  • One or a mixture of two or more carbon-based materials is used.
  • elements such as Si, Sn, Ge, Bi, Sb, In and their alloys, lithium-containing nitrides, lithium-containing oxides, and other compounds that can be charged and discharged at a low voltage close to lithium metal, or lithium metal Lithium Z aluminum alloy can also be used as the negative electrode active material.
  • the negative electrode active material includes a carbon material such as carbon black as a conductive aid, PVDF or the like is appropriately added as a binder to prepare a negative electrode mixture, and a molded body (negative electrode mixture layer) is formed on the surface of the current collector using this negative electrode mixture.
  • a carbon material such as carbon black as a conductive aid, PVDF or the like
  • a molded body negative electrode mixture layer
  • various alloys and lithium metal foils can be used alone as a negative electrode, and these can be laminated on the current collector. You can also.
  • a current collector When a current collector is used for the negative electrode, a force capable of using a foil made of copper or nickel, a punching metal, a metal net, an expanded metal, or the like is usually used as the current collector.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit is preferably 5 ⁇ m. Good.
  • the lead portion on the negative electrode side may be formed in the same manner as the lead portion on the positive electrode side.
  • the electrode can be used in the form of a laminate obtained by laminating the positive electrode and the negative electrode via the separator of the present invention, or an electrode wound body obtained by winding the laminate.
  • the non-aqueous electrolyte a solution in which a lithium salt is dissolved in an organic solvent is used.
  • the lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and does not easily cause side reactions such as decomposition in the voltage range used as a battery.
  • Inorganic lithium salts such as iPF, LiBF, LiAsF, LiSbF, LiCF SO, LiCF CO, Li
  • the organic solvent used in the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery! ,.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate
  • chain carbonates such as dimethyl carbonate, jetyl carbonate and methyl ethyl carbonate
  • chain esters such as methyl propionate
  • cyclic esters such as ⁇ -butyrolatone Esters, dimethoxyethanes, jetyl esters, chain ethers such as 1,3 dixolane, diglyme, triglyme and tetraglyme
  • cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran, acetonitrile, propio-tolyl, methoxypropio -Tolyls such as
  • beylene carbonates 1,3-propane sultone, diphenyl disulfide, cyclohexyl Additives such as benzene, biphenyl, fluorobenzene, and t-butylbenzene can be appropriately added.
  • the concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol ZL, and more preferably 0.9 to 1.25 mol ZL.
  • Graphite as the negative electrode active material 95 parts by mass and PVDF as a binder: 5 parts by mass are mixed with N-methyl-2-pyrrolidone (NMP) as a solvent so that the mixture contains a negative electrode mixture.
  • NMP N-methyl-2-pyrrolidone
  • a strike was prepared.
  • This negative electrode mixture-containing paste was intermittently applied on both sides of a 10-m thick current collector having copper foil strength so that the active material application length was 320 mm on the front surface and 260 mm on the back surface, and dried. Thereafter, calendering was performed to adjust the thickness of the negative electrode mixture layer so that the total thickness was 142 m, and the negative electrode was cut to have a width of 45 mm to produce a negative electrode having a length of 330 mm and a width of 45 mm. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.
  • NMP N-methyl-2-pyrrolidone
  • LiCoO as positive electrode active material 85 parts by mass, acetylene black as conductive aid: 10 quality
  • a positive electrode mixture-containing paste was prepared by mixing 5 parts by mass of PVDF as a binder and 5 parts by mass with NMP as a solvent so as to be uniform. This paste was intermittently applied on both sides of a 15-m thick current collector, which was also an aluminum foil, so that the active material application length was 319 to 320 mm on the front surface and 258 to 260 mm on the back surface, and dried. Thereafter, calendering was performed, the thickness of the positive electrode mixture layer was adjusted so that the total thickness was 150 ⁇ m, and the positive electrode was cut to have a width of 43 mm to produce a positive electrode having a length of 330 mm and a width of 43 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion. [0087] The negative electrode and the positive electrode are used for manufacturing a battery to be described later.
  • alumina (Al 2 O 3) fine particles As filler particles, alumina (Al 2 O 3) fine particles [Sumitomo
  • ethylene acetate Bulle copolymer (vinyl acetate-derived structural units is 34 mol 0/0, Japan Interview - manufactured by Kerr Corporation]: the LOOG, toluene as a solvent: placed in a container along with 6 kg, Stir at room temperature until evenly dissolved to obtain a binder solution.
  • polyethylene powder [Sumitomo Seiki “Flow Beads LE1080” (trade name), melting point: 107 ° C., average particle size: 6 ⁇ m, particle size distribution: 2 to 15 m ]: 1 kg was added and dispersed with stirring with a disperser at 2800 rpm for 1 hour.
  • polypropylene powder ““PPW-5” (trade name) manufactured by Seishin Enterprise Co., Ltd.]: 1 kg was added and stirred with a disperser at 2800 rpm for 3 hours to obtain a uniform slurry.
  • the slurry was applied to a paper having a gap of 50 m and a paper having a thickness of 25 m (manufactured by Futtsubon Advanced Paper Co., Ltd.), and the solvent was removed to obtain a separator having a thickness of 35 m.
  • Polyethylene butyral (PVB) (Sekisui Chemical Co., Ltd. “S Lek KX-5” (trade name)) as an aqueous dispersion of polyethylene powder as in Example 1, 750 g, isopropyl alcohol (IPA): 200 g, and binder : 375 g was put in a container and dispersed with stirring with a disperser at 2800 rpm for 1 hour. To this was added 300 g of plate-like bermite fine particles (“BMM” (trade name) manufactured by Kawai Lime Co., Ltd.) as filler particles and stirred for 3 hours to obtain a uniform slurry.
  • BMM plate-like bermite fine particles
  • a 15 m thick PP non-woven fabric (manufactured by Nibon Advanced Paper Co., Ltd.) was passed through the slurry, and the slurry was applied by pulling up and then dried to obtain a separator having a thickness of 20 m.
  • As filler particles the same alumina fine particles as in Example 1: 3 kg and the above binder (PVB): 750 g were added and stirred for 3 hours to obtain a uniform slurry.
  • Resin B cross-linked PMMA fine particles
  • Example 5 In the same slurry as in Example 5, the same aqueous dispersion of polyethylene powder as that in Example 1: 1 kg was added as rosin A, and dispersed with stirring with a disperser at 2800 rpm for 1 hour. Thereafter, a separator having a thickness of 30 m was obtained in the same manner as in Example 5.
  • alumina fine particles of Example 4 plate-like alumina fine particles (“Seraph” (trade name) manufactured by Kinsei Matec Co., Ltd.): 3 kg of slurry was prepared, and this was made into a thickness of 50 m with a gap of 50 m.
  • a separator having a thickness of 20 m was obtained in the same manner as in Example 4 except that the non-woven fabric made of PET having a thickness of 15 m (manufactured by Freudenberg) was applied by scraping.
  • Resin A polyethylene powder
  • EVA ethylene acetate butyl copolymer
  • alumina fiber (Denka Alsene B100 (trade name) manufactured by Denki Kagaku Kogyo Co., Ltd.]: 1.5 kg as filler particles, and the mixture was stirred at room temperature until uniform.
  • the slurry was applied to a PET substrate with a coating thickness of 50 m using a die coater, dried, and then peeled off from the PET substrate, thereby forming a porous substrate and polyethylene formed of alumina fibers.
  • a separator with a thickness of 15 m having a powder was obtained.
  • the aspect ratio of the alumina fiber was 10 or more, and the average angle with respect to the separator surface was 10 ° or less.
  • Example 8 In place of the aqueous dispersion of polyethylene powder in Example 8, the same as in Example 5, except that an aqueous dispersion of crosslinked PMMA fine particles (wax B): 1 kg and 2 kg of water as a solvent were added. Similarly, a separator having a thickness of 15 m was obtained.
  • wax B crosslinked PMMA fine particles
  • EVA structural unit 34 mole 0/0 from acetic Bulle, Japan Interview - Made Kasha
  • 100g of toluene as a solvent in a container together with 6 kg, stirred at room temperature until uniformly dissolved
  • a binder solution was obtained.
  • polyethylene powder (“Flow Beads LE1080” (trade name) manufactured by Sumitomo Seika Co., Ltd.): 500 g is added to the above binder solution, and dispersed by stirring for 1 hour with a conditioner at 2800 rpm. It was.
  • Example 2 kg of the same alumina fine particles as in Example 1 were filled as filler particles and dispersed with stirring with a disperser at 2800 rpm for 3 hours to obtain a uniform liquid composition for forming a separator. . Apply this slurry on the active material layer on both sides of the negative electrode through a 50 m gap. After that, it was dried to form a 15-m thick separator integrated with the negative electrode on the negative electrode surface.
  • FIG. 1 shows a scanning electron micrograph of the cross section of the negative electrode
  • Fig. 2 shows an enlarged scanning electron micrograph of the separator.
  • 1 is a separator and 2 is a negative electrode.
  • 3 is a filler particle
  • 4 is a binder
  • 5 is a porous substrate
  • 6 is a shutdown resin. From the photographs in FIGS. 1 and 2, it can be seen that the separator 1 composed of the porous substrate 5 composed of the filler particles 3 and the binder 4 and the shutdown resin 6 is formed on the negative electrode 2.
  • a separator was formed on the negative electrode surface in the same manner as in Example 10, except that the amount of polyethylene powder was changed to 2 kg.
  • a separator was formed on the negative electrode surface in the same manner as in Example 10 except that the amount of polyethylene powder was changed to 1 kg.
  • a separator was formed on the surface of the negative electrode in the same manner as in Example 10 except that the amount of alumina fine particles was changed to 400 g, and the amount of fine particles and polyethylene powder was changed to 1 kg.
  • Filler particles are cross-linked PMMA fine particles ("Gantz Pearl 0407” (trade name) manufactured by Ganz Kasei Co., Ltd., heat-resistant temperature: 180 ° C or higher): Changed to lkg, and the procedure was carried out except that the amount of polyethylene powder was changed to lkg. In the same manner as in Example 10, a separator was formed on the negative electrode surface.
  • the cross-linked PMMA used in this example has increased stability to the electrolytic solution by increasing the degree of cross-linking of the resin so that the particles do not swell after absorbing the electrolytic solution.
  • ethylene ethyl acrylate copolymer (NUC 6570 manufactured by Nippon Car Co., Ltd. (trade name)]: 200 g was placed in a container together with 6 kg of toluene as a solvent, and kept at room temperature until evenly dissolved. And stirred to obtain a binder solution.
  • EVA powder structural unit derived from acetic Bulle 10 mol 0/0, Sumitomo Seii ⁇ made "flow back D5020" (quotient Product name), Melting point: 89 ° C., Average particle size: 10 m, Particle size distribution: 5-20 m]: 1 kg was added to the above binder solution and dispersed with stirring with a disperser at 2800 rpm for 1 hour.
  • 400 g of alumina fine particles as in Example 1 were added as filler particles, and a 20-m thick separator integrated with the negative electrode was formed on the negative electrode surface in the same manner as in Example 10. Formed.
  • a commercially available polyethylene microporous membrane with a thickness of 20 ⁇ m was used as the separator of Comparative Example 1.
  • Example 3 As filler particles, the same alumina fine particles as in Example 1: 3 kg, water: 800 g, isopropyl alcohol (IPA): 200 g, and as a binder, PVB: 375 g as in Example 3 were put in a container, and The mixture was stirred and dispersed for 1 hour at 2800 rpm to obtain a uniform slurry. A 15 m thick PP non-woven fabric (manufactured by Futtsubon Advanced Paper Co., Ltd.) was passed through the slurry, and the slurry was applied by pulling and then dried to obtain a separator having a thickness of 20 m.
  • IPA isopropyl alcohol
  • a separator having a thickness of 20 m was obtained in the same manner as in Comparative Example 2, except that the same aqueous dispersion of polyethylene powder (Resin A) as in Example 1 was used in place of the alumina fine particles.
  • Table 1 shows the configurations of the separators of Examples 1 to 15 and Comparative Examples 1 to 3.
  • Example 1 Polyethylene Alumina P B T Nonwoven fabric
  • Example 2 Polyethylene Polypropylene Paper
  • Example 8 Polyethylene Alumina Fiber Alumina Fiber
  • Example 9 Crosslinked P MMA Alumina Fiber Alumina Fiber
  • Example 1 Polyethylene-Alumina Alumina Fine Particle
  • Example 1 Polyethylene One Alumina Alumina Fine Particle
  • Example 1 2 Polyethylene-alumina alumina fine particles
  • Example 1 3 Polyethylene alumina Alumina fine particles
  • Example 1 4 Polyethylene cross-linked P MMA cross-linked P MMA fine particles
  • the shrinkage rate and the shutdown temperature were measured by the following methods.
  • the air permeability at room temperature of the separators of Examples 1 to 9 and Comparative Examples 1 to 3 was measured by a method based on JIS P 8117, and the Gurley value, that is, 0.879 g / mm 2 The number of seconds that lOOmL of air permeated through the membrane under a pressure of (8620Pa) was determined. Further, for the separators of Examples 1 to 3, 8 and Comparative Examples 1 to 3, the change in Gurley value was measured in the range of 80 ° C to 150 ° C by the following method. each The separator was held in a constant temperature bath at 80 ° C. for 10 minutes, then taken out and gradually cooled to room temperature, and the Gurley value after the temperature was raised to 80 ° C.
  • the shutdown temperature was determined by the following method.
  • Each separator piece cut to a size of 4cm x 4cm is sandwiched between two stainless steel plates with terminals, inserted into an aluminum laminate film bag, non-aqueous electrolyte is injected, and the tip of the terminal is then bagged. The bag was sealed in a state where it was taken out of the bag to prepare a test sample.
  • the non-aqueous electrolyte LiPF was dissolved at a concentration of 1.2 mol ZL in a solvent in which ethylene carbonate and ethylmethyl carbonate were mixed at a volume ratio of 1: 2.
  • the liquid was used. This non-aqueous electrolyte is also used in the production of a battery described later.
  • Table 3 shows the Gurley values and shutdown temperatures of the separators of Examples 1 to 9 and Comparative Examples 1 to 3.
  • Example 1 to 9 and Comparative Examples 1 to 3 were wound in a spiral shape together with the positive electrode and the negative electrode, respectively, to produce wound electrode bodies.
  • the wound electrode body is crushed into a flat shape, loaded into a battery container, injected with the non-aqueous electrolyte described above, and then sealed, so that Example 1A to Example 9A and Comparative Example 1A to A lithium secondary battery of Comparative Example 3A was produced.
  • Example 10 to 15 integrated with the negative electrode are the same as those of Example 1A to Example except that the negative electrode and the positive electrode are overlapped with each other through the separator.
  • Lithium secondary batteries of Example 10A to Example 15A were fabricated in the same manner as Example 9A and Comparative Example 1A to Comparative Example 3A.
  • the shutdown temperature of the separator used for each battery was determined. Put the battery in a thermostatic chamber and heat it at a rate of 1 ° C per minute from 30 ° C to 150 ° C in the same way as measuring the internal resistance of the separator alone. The change with temperature was determined. The temperature at which the resistance value increased to more than 5 times the value at 30 ° C was taken as the shutdown temperature of the separator.
  • the separator of Comparative Example 3 is not a separator in which the filler particles constitute a porous substrate, nor does it have filler particles in the pores of the porous substrate, so that the strength of the separator is weak. It seems that sometimes an internal short circuit occurred.
  • Table 4 shows the results of the above measurement.
  • changes in internal resistance of Example 12A and Comparative Example 1A with temperature are shown in FIGS. 3 and 4, respectively.
  • the shutdown temperature is in the range of 90 to 125 ° C, which is suitable for ensuring the safety at the high temperature of the battery. It became apparent that a shutdown occurred in the temperature range. Meanwhile, the separator of Comparative Example 1 The shutdown temperature exceeded 130 ° C, and the shutdown occurred at a temperature closer to the thermal runaway temperature of the battery. Further, since the separator of Comparative Example 2 did not have the shutdown resin, it was strong enough to prevent shutdown.
  • the separators of Examples 1 to 15 of the present invention showed very little shrinkage of the separator after being heated above the shutdown temperature, whereas the separators of Comparative Example 1 The separator contracted greatly after the shutdown temperature was exceeded. Therefore, as shown in FIG. 3, in the battery of Example 12A, the shutdown state was maintained without decreasing the internal resistance until 150 ° C was reached, and the safety after the shutdown was maintained. On the other hand, in the battery of Comparative Example 1A, the internal resistance suddenly decreased due to the shrinkage of the separator, and an internal short circuit was likely to occur.
  • Example 1A to Example 4A, Example 8A, Example 10A to Example 15A, and Comparative Example 1A were charged and discharged under the following conditions, and the load characteristics were measured. Charging was carried out by constant current charging at a current value of 0.2 C until the battery voltage reached 4.2 V, and then constant current charging at a constant voltage of 4.2 V. The total charging time until the end of charging was 15 hours for the batteries of Examples 1A to 4A and 8A, and 7.5 hours for the batteries of Examples 10A to 15A and Comparative Example 1A. .
  • the batteries were discharged at a discharge current of 0.2C and 2C until the battery voltage reached 3.0V, respectively, and the discharge capacities at the discharges of 0.2C and 2C were determined, respectively.
  • the ratio of the discharge capacity of 2C to was evaluated as load characteristics. The results are shown in Table 5.
  • Example 1A to Example 4A, Example 8A, Example 10A to Example 15A have the same or better load characteristics as those of Comparative Example 1A using conventional separators. Was functioning without problems.
  • Example 4A to Example 7A and Example 9A had a charging efficiency of almost 100% as in Comparative Example 1A, and the generation of lithium dendrite during charging was suppressed.
  • Comparative Example 2A containing only filler particles in the pores of the porous substrate, charging efficiency was poor, and an internal short circuit due to generation of lithium dendrite during charging was observed.
  • the shape of the alumina fine particles used as the filler particles was different from the plate shape excellent in the effect of suppressing the formation of lithium dendrite. Therefore, when shutdown resin particles do not coexist, It seems that there are cases where the generation cannot be suppressed.
  • the porous substrate having a heat resistant temperature of 150 ° C or higher and containing filler particles, the resin A having a melting point in the range of 80 to 130 ° C, and non-water by heating. At least selected from rosin B, which absorbs electrolyte and swells, and the degree of swelling increases with increasing temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

 150°C以上の耐熱温度を有しかつフィラー粒子(3)を含む多孔質基体(5)と、融点が80~130°Cの範囲にある樹脂A、および、加熱により電解液を吸収して膨潤しかつ温度上昇とともに膨潤度が増大する樹脂Bより選ばれる少なくとも1種のシャットダウン樹脂(6)と、バインダ(4)とを含む多孔質膜からなる電気化学素子用セパレータを用いることにより、高温での安全性に優れた電気化学素子を提供できる。

Description

明 細 書
電気化学素子用セパレータおよび電気化学素子
技術分野
[0001] 本発明は、安価で高温時の寸法安定性に優れた電気化学素子用セパレータ、お よびこれを用いてなり、高温環境下においても安全な電気化学素子に関するもので ある。
背景技術
[0002] リチウム二次電池やスーパーキャパシタに代表される、非水電解液を用いた電気化 学素子は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコ ンピューターなどの携帯機器の電源として広く用いられている。携帯機器の高性能化 に伴って電気化学素子の高容量ィ匕が更に進む傾向にあり、安全性の確保が重要と なっている。
[0003] 現行のリチウム二次電池では、正極と負極の間に介在させるセパレータとして、例 えば厚みが 20〜30 μ m程度のポリオレフイン系の多孔性フィルムが使用されている 。また、セパレータの素材としては、電池の熱暴走 (異常発熱)温度以下でセパレータ の構成榭脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて 短絡の際などに電池の安全性を向上させる所謂シャツトダウン効果を確保するため、 融点の低 、ポリエチレン (PE)が適用されることがある。
[0004] ところで、こうしたセパレータとしては、例えば、多孔化と強度向上のためにー軸延 伸あるいは二軸延伸したフィルムが用いられている。このようなセパレータは、単独で 存在する膜として供給されるため、作業性などの点で一定の強度が要求され、これを 上記延伸によって確保している。しかし、このような延伸フィルムでは結晶化度が増大 しており、シャットダウン温度も、電池の熱暴走温度に近い温度にまで高まっているた め、電池の安全性確保のためのマージンが十分とは言 、難!/、。
[0005] また、上記延伸によってフィルムにはひずみが生じており、これが高温に曝されると 、残留応力によって収縮が起こるという問題がある。収縮温度は、融点、すなわちシャ ットダウン温度と非常に近いところに存在する。このため、ポリオレフイン系の多孔性フ イルムセパレータを使用するときには、充電異常時などにより電池の温度がシャットダ ゥン温度に達すると、電流を直ちに減少させて電池の温度上昇を防止しなければな らない。空孔が十分に閉塞せず電流を直ちに減少できな力つた場合には、電池の温 度は容易にセパレータの収縮温度にまで上昇するため、内部短絡による熱暴走の危 険性がある力 である。
[0006] このような熱収縮による短絡を防ぐために、耐熱性の榭脂を用いた微多孔膜ゃ不 織布をセパレータとして用いる方法が提案されている。例えば特許文献 1には、全芳 香族ポリアミドの微多孔膜を用いたセパレータが、特許文献 2にはポリイミド多孔膜を 用いたセパレータが開示されている。また、特許文献 3には、ポリアミド不織布を用い たセパレータ、特許文献 4にはァラミド繊維を用いた不織布を基材としたセパレータ、 特許文献 5にはポロプロピレン (PP)不織布を用いたセパレータ、特許文献 6にはポリ エステル不織布を用いたセパレータに関する技術が開示されて 、る。
[0007] しかし、上記耐熱性の榭脂あるいは耐熱性の繊維を用いたセパレータは、高温で の寸法安定性に優れ、薄型化が可能である力 高温時に空孔が閉塞するいわゆるシ ャットダウン特性を持たな 、ために、外部短絡や内部短絡と!/、つた電池の温度が急 激に上昇する異常時の安全性を十分に確保することができない。
[0008] このような問題を解決する技術として、例えば、特許文献 7には高温時に電解液の 含有率が高くなるポリマー力もなるセパレータが示されている。また、特許文献 8には 、マイクロカプセルなどの熱膨張性の粒子を含有するセパレータが提案されて ヽる。
[0009] し力しながら、特許文献 7に記載の技術では、セパレータの基体として、電解液を含 有するポリマーのフィルムを用いているために、強度の低下を招き易ぐ例えば、セパ レータを薄くして電池を高容量ィ匕することが困難である。そもそも、特許文献 7には、 セパレータの材料およびその機能についての記載はあるものの、いかにすれば当該 セパレータを作製することができるかについて一切開示がなぐどの様な形態を有す るものであるかさえも不明である。また、特許文献 8に記載の技術では、セパレータ中 の粒子の熱膨張が不可逆に起こるため、セパレータゃ電池の製造工程において、熱 膨張が生じる温度以上での処理ができず、特に十分な乾燥を行う必要のあるリチウム 二次電池においては、乾燥工程における温度管理を厳密に行わなければならないと いった問題がある。
特許文献 1 特開平 5— 335005号公報
特許文献 2特開 2000 — 306568号公報
特許文献 3特開平 9 259856号公報
特許文献 4特開平 11 - -40130号公報
特許文献 5特開 2001 — 291503号公報
特許文献 6特開 2003 — 123728号公報
特許文献 7特開 2000 — 348704号公報
特許文献 8特開 2004 — 111157号公報
[0010] また、微多孔膜を用いずに、例えば特許文献 9に記載されているようなゲル状の電 解質を用いる方法も検討されている。しかし、ゲル状電解質は、熱収縮性はないもの の機械的強度が弱ぐ特に高温時の機械的強度低下により短絡などが発生する可 能性がある。さらに、シャットダウン機能が付与されていないために、特に円筒形や角 形と!/、つた缶に封入された形態の電池などにぉ 、ては、安全性を十分に確保するこ とができないといった問題がある。また、ゲル状電解質を用いる技術では、たとえ、特 許文献 10や特許文献 11に記載されて 、るように、その機械的強度の確保のために 粒子や繊維状物で補強した場合であっても、シャットダウン機能が付与されるわけで はないので、やはり安全性に関する問題は生じることになる。
特許文献 9:特開平 8 - 287949号公報
特許文献 10:特開平 11 185773号公報
特許文献 11:特開 2002— 237332号公報
[0011] 一方、特許文献 12には、基体となるポリフッ化ビ-リデンなどの榭脂を含む溶液に
、架橋されたポリメチルメタタリレート (PMMA)などの微粒子を分散させ、これを塗布
•乾燥させること〖こより、多孔質榭脂膜の空隙内に架橋微粒子を保持させた、保液性 に優れるセパレータを形成する技術が示されて 、る。
[0012] しかしながら、特許文献 12に開示の上記多孔質榭脂膜は、実質的には高分子ゲ ル電解質膜と同じであり、セパレータ内の電解液は、架橋微粒子および多孔質榭脂 膜に吸収されて保持されるため、高温において電池の反応が抑制されるわけではな ぐ上記ゲル状電解質と同様に安全性において問題を生じることになる。
特許文献 12:特開 2004 - 241135号公報
[0013] 本発明は上記事情に鑑みてなされたものであり、その目的は、異常発熱した際の 安全性に優れた電気化学素子を構成し得るセパレータ、およびそのセパレータを備 えた電気化学素子を提供することにある。
発明の開示
[0014] 本発明の電気化学素子用セパレータは、多孔質基体と、榭脂とを含む多孔質膜か らなる電気化学素子用セパレータであって、前記多孔質基体は、 150°C以上の耐熱 温度を有し、かつフィラー粒子を含み、前記榭脂は、融点が 80〜130°Cの範囲にあ る榭脂 A、および、加熱により電解液を吸収して膨潤しかつ温度上昇とともに膨潤度 が増大する榭脂 Bより選ばれる少なくとも 1種のシャットダウン榭脂であることを特徴と する。
[0015] また、本発明の電気化学素子は、正極、負極、非水電解液およびセパレータを含 む電気化学素子であって、前記セパレータは、上記本発明の電気化学素子用セパ レータであることを特徴とする。
[0016] 本発明によれば、短絡や過充電などにより電池の温度が異常に上昇した時の安全 性に優れた電気化学素子を提供することができる。
図面の簡単な説明
[0017] [図 1]図 1は、実施例 10の負極の断面の走査型電子顕微鏡写真を示す。
[図 2]図 2は、図 1のセパレータ部分を拡大した走査型電子顕微鏡写真を示す。
[図 3]図 3は、実施例 12Aの内部抵抗の温度による変化を示す図である。
[図 4]図 4は、比較例 1 Aの内部抵抗の温度による変化を示す図である。
発明を実施するための最良の形態
[0018] 本発明のセパレータは、 150°C以上の耐熱温度を有しかつフィラー粒子を含む多 孔質基体と、融点が 80〜130°Cの範囲にある榭脂 A、および、加熱により電解液を 吸収して膨潤しかつ温度上昇とともに膨潤度が増大する榭脂 Bより選ばれる少なくと も 1種のシャットダウン榭脂とを備える多孔質膜である。
[0019] 本発明のセパレータが上記榭脂 Aを含有している場合は、本発明のセパレータが 組み込まれたリチウム二次電池の温度が、榭脂 Aの融点以上に達したときに、榭脂 A が溶融してセパレータの空孔を塞ぎ、電気化学反応の進行を抑制するシャットダウン を生じる。また、本発明のセパレータが上記榭脂 Bを含有している場合は、電池の温 度の上昇により、榭脂 Bが電池内の電解液を吸収して膨潤し、膨潤した粒子がセパレ ータの空孔を塞ぐとともに空孔内部に存在する流動可能な電解液が減少すること〖こ より、シャットダウンを生じる。
[0020] また、本発明のセパレータは、 150°C以上の耐熱温度を有する多孔質基体を備え ることにより、シャットダウン温度を超える高温状態においても、セパレータの形状を 安定に保つことが可能となり、熱収縮に起因する短絡の発生を防止することができる 。このため、シャットダウンが生じた後の電池の安全性を向上させることができる。なお 、本明細書でいう「耐熱温度」とは、対象物の長さの変化、すなわち、上記多孔質基 体においては、室温での長さに対する収縮の割合 (収縮率)が 5%以下を維持するこ とのできる上限温度をいう。また、本明細書でいう「耐熱性」とは、軟化などによる実質 的な寸法変化が生じな 、ことを 、 、、耐熱温度がシャットダウン温度よりも十分に高 いかどうかで耐熱性を評価する。シャットダウン後の安全性を高めるため、多孔質基 体は、シャットダウン温度よりも 20°C以上高い耐熱温度を有することが望ましぐより 具体的には、多孔質基体の耐熱温度を 150°C以上とすることが望ましぐ 180°C以上 とすることがより望ましい。
[0021] さらに、本発明のセパレータでは、内部短絡の防止ゃセパレータの形状安定性 (特 に高温時における形状安定性)の確保などのために、上記多孔質基体はフイラ一粒 子を含んでいる。即ち、上記多孔質基体の少なくとも一部をフイラ一粒子で構成する 力 または、多孔質基体の空孔内にフィラー粒子を含有させる。フィラー粒子としては 、耐熱性および電気絶縁性を有しており、電解液ゃセパレータの製造の際に使用す る溶媒に対して安定であり、さらに、電池の作動電圧範囲において酸化還元されにく Vヽ電気化学的に安定な微粒子が用いられる。
[0022] 本発明のセパレータのより具体的な態様としては、例えば、下記 (I)および (Π)の態 様が挙げられる。
[0023] (I)の態様のセパレータは、フィラー粒子が多数集合して多孔質基体を形成して ヽ るものであり、多数のフィラー粒子が単独であるいは繊維状物などとともに、耐熱榭脂 などにより一体化されて多孔質基体となり、シャットダウン榭脂とともに多孔質膜を形 成しているものである。
[0024] また、 (II)の態様のセパレータは、繊維状物で多孔質基体、例えば織布、不織布 ( 紙を含む)などを構成し、その空孔内にフィラー粒子を含有させ、シャットダウン榭脂 とともに多孔質膜を形成して ヽるものである。
[0025] シャットダウン榭脂の形態は特に限定はされないが、多孔質膜内に均一分散させる ために、微粒子の形状のものを用いることが好ましぐその大きさは、乾燥時における 粒径がセパレータの厚みより小さければ良ぐセパレータの厚みの 1Z100〜1Z3の 平均粒径を有することが好ましぐ具体的には、平均粒径が 0. 1〜20 /ζ πιであること が好ましい。粒径力 、さすぎる場合は、粒子同士の隙間が小さくなり、イオンの伝導 パスが長くなつて電池特性が低下することがある。また、粒径が大きすぎると、隙間が 大きくなつてリチウムデンドライトなどに起因する短絡が生じることがある。なお、シャツ トダウン榭脂の平均粒径は、例えば、レーザー散乱粒度分布計、例えば、 HORIBA 社製" LA— 920"を用い、シャットダウン榭脂を膨潤させない媒体、例えば水に当該 微粒子を分散させて測定した数平均粒子径として規定することができる。
[0026] また、シャットダウン榭脂は、上記以外の形態で用いてもよぐ他の構成要素、例え ば、多孔質基体ゃフイラ一粒子の表面に積層され一体化された状態で用いてもよい 。多孔質基体が繊維状物で構成されている場合は、芯材の表面にシャットダウン榭 脂を有する複層構造の繊維として用いてもよぐまた、フィラー粒子をコアとしシャット ダウン榭脂をシェルとするコアシェル構造の粒子として用いてもよい。また、榭脂 Αと 榭脂 Bをともに用いる場合は、榭脂 Bの表面に榭脂 Aを積層させ一体ィ匕したものを用 いることもできる。さらに、シャットダウン榭脂は、微粒子で構成され、フィラー粒子とと もに多孔質基体の空孔内に配置されて 、てもよ 、。
[0027] 本発明のシャットダウン榭脂は、融点が 80〜130°Cの範囲にある榭脂 A、または、 加熱により電解液を吸収して膨潤しかつ温度上昇とともに膨潤度が増大する榭脂 B であり、その両者を共に用いることもできる。なお、上記融点は、例えば、日本工業規 格 CFIS)K 7121の規定に準じて、示差走査熱量計 (DSC)を用いて測定される融 解温度により規定することができる。
[0028] 上記榭脂 Aの構成材料としては、電気絶縁性を有しており、電解液に対して安定で あり、さらに、電池の作動電圧範囲において酸ィ匕還元されにくい電気化学的に安定 な材料が好ましぐポリエチレン (PE)、共重合ポリオレフイン、またはポリオレフイン誘 導体(塩素化ポリエチレンなど)、ポリオレフインワックス、石油ワックス、カルナバヮック スなどが挙げられる。上記共重合ポリオレフインとしては、エチレン ビュルモノマー 共重合体、より具体的には、エチレン 酢酸ビニル共重合体 (EVA)、あるいは、ェ チレン メチルアタリレート共重合体やエチレン ェチルアタリレート共重合体などの 、エチレン アクリル酸共重合体が例示できる。上記共重合ポリオレフインにおけるェ チレン由来の構造単位は、 85モル%以上であることが望ましい。また、ポリシクロォレ フィンなどを用いることもできるし、上記構成材料の 2種以上を有して ヽても構わな ヽ
[0029] 上記材料の中でも、 PE、ポリオレフインワックス、またはエチレン由来の構造単位が 85モル%以上の EVAが好適に用いられる。また、榭脂 Aは、構成成分として、上記 の構成材料の他に、必要に応じて、榭脂に添加される各種添加剤、例えば、酸ィ匕防 止剤などを含有して 、ても構わな 、。
[0030] 一方、上記榭脂 Bの構成材料としては、通常、電池が使用される温度領域 (およそ 70°C以下)では、電解液を吸収しないかまたは吸収量が限られており、従って膨潤 度が一定以下であるが、シャットダウンが必要となる温度まで加熱されたときには、電 解液を吸収して大きく膨潤しかつ温度上昇とともに膨潤度が増大するような性質を有 する樹脂が用いられる。シャットダウン温度より低温側では、榭脂 Bに吸収されない流 動可能な電解液がセパレータの空孔内に存在するため、セパレータ内部の Liイオン の伝導性が高くなり、良好な負荷特性を有する電池となる。なお、本明細書でいう「負 荷特性」とは、高率放電特性をいう。一方、温度上昇に伴って膨潤度が増大する性 質 (以下、「熱膨潤性」という場合がある。)が現れる温度以上に加熱された場合は、 榭脂 Bは電池内の電解液を吸収して大きく膨潤し、膨潤した粒子がセパレータの空 孔を塞ぐとともに、上記流動可能な電解液が減少して電池が液枯れ状態となることに より、シャットダウンが生じて電池の安全性が確保される。しかも、シャットダウン温度 を超える高温となった場合、熱膨潤性により上記液枯れがさらに進行し、電池の反応 力 Sさらに抑制されることになるため、シャットダウン後の高温安全性をより高めることが できる。
[0031] 榭脂 Bが熱膨潤性を示しはじめる温度は、少なくとも 75°C以上であることが好ましい 。上記温度を 75°C以上とすることにより、 Liイオンの伝導性が著しく減少して電池の 内部抵抗が上昇する温度 (いわゆるシャットダウン温度)をおよそ 80°C以上に設定す ることができる力らである。一方、熱膨潤性を示す温度の下限が高くなるほど、セパレ ータのシャットダウン温度が高くなるので、シャットダウン温度をおよそ 130°C以下に 設定するために、熱膨潤性を示す温度の下限は、 125°C以下とするのが好ましぐ 1 15°C以下とするのがより好ましい。熱膨潤性を示す温度が高すぎると、電池内の活 物質の熱暴走反応を十分に抑制できず、電池の安全性向上効果が十分に確保でき ないことがあり、また、熱膨潤性を示す温度が低すぎると、通常の電池の使用温度域 (およそ 70°C以下)におけるリチウムイオンの伝導性が低くなりすぎることがある。
[0032] また、熱膨潤性を示す温度より低!、温度では、榭脂 Bは電解液をできるだけ吸収せ ず、膨潤が少ないほうが望ましい。これは、電池の使用温度領域、例えば室温では、 電解液は、榭脂 Bに取り込まれるよりもセパレータの空孔内に流動可能な状態で保 持される方が、負荷特性などの電池特性が良好になる力もである。
[0033] 常温(25°C)にお 、て榭脂 Bが吸収する電解液量は、榭脂 Bの体積変化を表す下 記式(1)で定義される膨潤度により評価することができる。
[0034] B = (V /V) - 1 (1)
R 0 i
但し、上記式中、 Vは、電解液中に 25°Cで 24時間浸漬後の榭脂 Bの体積 (cm3)、
0
Vは、電解液に浸漬する前の榭脂 Bの体積 (cm3)をそれぞれ表す。
[0035] 本発明のセパレータにおいては、常温(25°C)における榭脂の膨潤度 Bは、 2. 5
R
以下であることが望ましぐ 1以下がより望ましい。すなわち、電解液の吸収による膨 潤が小さいことが望ましぐ Bはできるだけ 0に近い小さな値となることが望まれる。ま
R
た、熱膨潤性を示す温度より低温側では、膨潤度の温度変化ができるだけ小さくなる ものが望ましい。
[0036] 一方、榭脂 Bとしては、熱膨潤性を示す温度の下限以上に加熱された時は、電解 液の吸収量が大きくなり、熱膨潤性を示す温度範囲において、温度とともに膨潤度が 増大するものが用いられる。例えば、 120°Cにおいて測定される、下記式(2)で定義 される膨潤度 B力 1以上であるものが好ましく用いられ、 2以上のものがより好ましい
T
[0037] B = ( V /V ) - 1 (2)
T 1 0
但し、上記式中、 Vは、電解液中に 25°Cで 24時間浸漬後の榭脂 Bの体積 (cm3)、
0
Vは、電解液中に 25°Cで 24時間浸漬後、電解液を 120°Cに昇温させ、 120°Cで 1
1
時間保持した後における榭脂 Bの体積 (cm3)をそれぞれ表す。
[0038] 一方、上記式(2)で定義される榭脂 Bの膨潤度は、大きくなりすぎると電池の変形を 発生させることもあるため、 10以下であるのが望ましぐ 5以下がより望ましい。
[0039] 上記式(2)で定義される膨潤度は、榭脂 Bの大きさの変化を、光散乱法や CCDカメ ラ等により撮影された画像の画像解析といった方法を用いて、直接測定することによ り見積もることができるが、例えば以下の方法を用いてより正確に測定することができ る。
[0040] 上記式(1)および式(2)と同様に定義される、 25°Cおよび 120°Cにおける膨潤度 が分力つているバインダ榭脂を用い、その溶液またはェマルジヨンに、榭脂 Bを混合 してスラリーを調製し、これをポリエチレンテレフタレート(PET)シートやガラス板など の基材上に塗布してフィルムを作製し、その質量を測定する。次に、このフィルムを、 25°Cの電解液中に 24時間浸漬して質量を測定し、更に、電解液を 120°Cに加熱昇 温させ、 120°Cで 1時間保持した後における質量を測定し、下記式(3)〜(9)によつ て膨潤度 Bを算出する。なお、下記(3)〜(9)式では、 25°Cから 120°Cまでの昇温
T
した際の、電解液以外の成分の体積増加は無視できるものとする。
[0041] V =M XW/P (3)
i i A
V = (M -M ) /P (4)
B 0 i B
V =M ZP -M ZP (5)
C 1 C 0 B
V =M X (1 -W) /P (6)
V i V
V = V +V -V X (B + 1) (7)
0 i B V B
V =V X (B + 1) (8) B = {V +V -V X (B + 1) }/V - 1 (9)
T 0 C D C 0
ここで、上記式(3)〜(9)中、
電解液に浸漬する前の榭脂 Bの体積 (cm3)、
V:電解液中に 25°Cで 24時間浸漬後の榭脂 Bの体積 (cm3)、
0
V:電解液中に常温で 24時間浸漬後に、フィルムに吸収された電解液の体積 (cm3
B
)、
V:電解液中に常温で 24時間浸漬した時点から、電解液を 120°Cまで昇温させ、更
C
に 120°Cで 1時間経過するまでの間に、フィルムに吸収された電解液の体積 (cm3)、
V:電解液に浸漬する前のバインダ榭脂の体積 (cm3)、
V
V:電解液中に常温で 24時間浸漬後のバインダ榭脂の体積 (cm3)、
D
M:電解液に浸漬する前のフィルムの質量 (g)、
M:電解液中に常温で 24時間浸漬後のフィルムの質量 (g)、
0
M:電解液中に常温で 24時間浸漬した後、電解液を 120°Cまで昇温させ、更に 120
1
°Cで 1時間保持した後におけるフィルムの質量 (g)、
W:電解液に浸漬する前のフィルム中の榭脂 Bの質量比率、
P :電解液に浸漬する前の榭脂 Bの比重 (g/cm3)、
A
P:常温における電解液の比重 (g/cm3)、
B
P :所定温度での電解液の比重 (g/cm3)、
C
P
V:電解液に浸漬する前のバインダ榭脂の比重 (g/cm3)、
B:電解液中に常温で 24時間浸漬後のバインダ榭脂の膨潤度、
B
B :上記(1)式で定義される昇温時のバインダ榭脂の膨潤度
c
である。
榭脂 Bとしては、耐熱性および電気絶縁性を有しており、電解液に対して安定であ り、さらに、電池の作動電圧範囲において酸ィ匕還元されにくい電気化学的に安定な 材料が好ましぐそのような材料としては、例えば、榭脂架橋体が挙げられる。より具 体的には、スチレン榭脂〔ポリスチレン (PS)など〕、スチレンブタジエン共重合体、ァ クリル樹脂〔ポリメチルメタタリレート(PMMA)など〕、ポリアルキレンォキシド〔ポリエ チレンォキシド (PEO)など〕、フッ素榭脂〔ポリフッ化ビ-リデン (PVDF)など〕および これらの誘導体よりなる群から選ばれる少なくとも 1種の樹脂の架橋体、尿素樹脂、ポ リウレタンなどが例示でき、これらを 2種以上用いることもできる。また、榭脂 Bは、構成 成分として、上記のような主要構成材料の他に、必要に応じて、榭脂に添加される各 種添加剤、例えば、酸ィ匕防止剤などを含有していても構わない。
[0043] 上記の構成材料の中では、スチレン榭脂架橋体、アクリル榭脂架橋体およびフッ素 榭脂架橋体が好ましぐ架橋 PMMAが特に好ましく用いられる。
[0044] これらの榭脂架橋体が、温度上昇により電解液を吸収して膨潤するメカニズムにつ いては明らかではないが、ガラス転移温度との相関が考えられる。すなわち、榭脂は 、一般にそのガラス転移温度 (Tg)まで加熱されたときに柔軟になるため、上記の様 な榭脂は、ガラス転移温度以上の温度で多くの電解液の吸収が可能となり膨潤する のではないかと推定される。従って、榭脂 Bとしては、実際にシャットダウン作用が生 じる温度が、榭脂 Bが熱膨潤性を示し始める温度より多少高くなることを考慮し、およ そ 75〜 125°Cの範囲にガラス転移温度を有する材料を用 、ることが望ま 、と考え られる。同じ榭脂架橋体であっても、市販品には種々のガラス転移温度のものが存 在するが、例えば、材料の架橋度を制御することによりガラス転移温度を変化させる ことができるので、所望のガラス転移温度となるよう調製された材料を用いればょ 、。
[0045] 上記榭脂架橋体では、電解液を含む前の 、わゆる乾燥状態にぉ 、ては、温度上 昇により膨張しても、温度を下げることにより再び収縮するというように、温度変化に伴 う体積変化にある程度可逆性があり、また、熱膨潤性を示す温度よりも力なり高い耐 熱温度を有するため、熱膨潤性を示す温度の下限が 100°Cくらいであっても、 200 °Cあるいはそれ以上まで加熱することが可能な材料を選択することができる。そのた め、セパレータの作製工程などで加熱を行っても、榭脂が溶解したり榭脂の熱膨潤 性が損なわれたりすることがなく、一般の加熱プロセスを含む製造工程での取り扱 ヽ が容易となる。また、本発明のセパレータでは、従来のポリエチレン製多孔質フィルム で構成されるセパレータとは異なり、強い応力をかけることなく製造することが可能で あるため、製造後の残留応力が殆どまたは全くなぐ多孔質基体には根本的に熱収 縮が殆ど生じないため、製造方法の面からも高温での安全性向上を図ることができる [0046] 上記榭脂 Aおよび榭脂 Bは、それぞれ単独で用いることもでき、また、両者を共存さ せることもできる。これらシャットダウン榭脂の含有量 (体積比率)は、シャットダウンの 効果をより得やすくするために、セパレータの全構成成分中、 10体積%以上とする のが好ましぐ 20体積%以上とするのがより好ましぐ一方、セパレータの高温時にお ける形状安定性確保の点から、 80体積%以下であることが好ましぐ 40体積%以下 であることがより好ましい。
[0047] また、本発明で用いられるフィラー粒子は、前記 (I)の態様のように、セパレータを 構成する多孔質基体の少なくとも一部として存在するか、あるいは、前記 (Π)の態様 のように、多孔質基体の空孔内に存在するものである。
[0048] フィラー粒子は、有機粒子でも無機粒子でもよ ヽが、分散性などの点から微粒子で あるのが望ましぐ安定性などの点から無機微粒子が好ましく用いられる。無機粒子 の構成材料の具体例としては、例えば、酸化鉄、 SiO
2、 Al O
2 3、 TiO
2、 BaTiO
2、 ZrO などの無機酸ィ匕物、窒化アルミニウム、窒化ケィ素などの無機窒化物、フッ化カルシ
2
ゥム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶、シリコン、ダイヤモンド などの共有結合性結晶、モンモリロナイトなどの粘土が挙げられる。ここで、上記無機 酸化物は、ベーマイト、ゼォライト、アパタイト、カオリン、ムライト、スピネル、オリビン などの鉱物資源由来物質あるいはこれらの人造物などであってもよい。また、金属、 又は SnO、スズ一インジウム酸ィ匕物(ITO)などの導電性酸ィ匕物、又はカーボンブラ
2
ック、グラフアイトなどの炭素質材料などに例示される導電性材料の表面を、電気絶 縁性を有する材料、例えば、上記無機酸ィ匕物などで被覆することにより電気絶縁性 を持たせた粒子であってもよい。上記無機酸化物の中でも、 Al O およびべ
2 3、 SiO
2 一 マイトが特に好ましく用いられる。
[0049] フィラー粒子の形状としては、例えば、球状に近!、形状であってもよぐ板状であつ てもよいが、短絡防止の点からは、板状の粒子であることが望ましい。板状粒子の代 表的なものとしては、板状の Al Oや板状のベーマイトなどが挙げられる。また、フイラ
2 3
一粒子の粒径は、前記測定法で測定される数平均粒子径として、例えば、 0. 01 m以上が好ましぐより好ましくは 0. 1 μ m以上であって、 15 m以下が好ましぐ 5 μ m以下であることがより好ましい。 [0050] 板状の微粒子をセパレータに含有させる場合には、後述する方法などにより、微粒 子の板面をセパレータの膜面とできるだけ平行になるよう配向させることができる。こ れにより、電極表面に析出するリチウムデンドライトや電極表面の活物質の突起によ り内部短絡が生じるのをより効果的に防ぐことができる。板状粒子の場合には、その アスペクト比 (板状粒子中の最大長さと板状粒子の厚みの比)は、例えば、 2〜: LOO であることが好ましい。また、平均粒径は、セパレータの厚みより小さければよぐ一方 、セパレータの厚みの 1Z100以上とするのが好ましい。なお、板状の微粒子として は、上記無機微粒子のほかに、耐熱温度が 150°C以上の榭脂材料などを用いること もできる。上記例示の材料は、 2種以上を併用することもできる。
[0051] 前記 (I)の態様のセパレータの多孔質基体は、多数のフィラー粒子をバインダなど により一体ィ匕させて形成されるが、上記バインダとしては、 EVA (酢酸ビニル由来の 構造単位が 20〜35モル0 /0のもの)、エチレン ェチルアタリレート共重合体などのェ チレン アクリル酸共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、カルボ キシメチルセルロース(CMC)、ヒドロキシェチルセルロース(HEC)、ポリビュルアル コール(PVA)、ポリビュルブチラール(PVB)、ポリビュルピロリドン(PVP)、ポリウレ タン、エポキシ榭脂などが用いられる。特に、 150°C以上の耐熱温度を有する耐熱榭 脂が好ましく用いられ、上記バインダは 2種以上を併用しても構わない。なお、これら のバインダを使用する場合には、後述するセパレータ形成用の液状組成物の溶媒に 溶解させるか、または分散させたェマルジヨンの形態で用いればょ 、。
[0052] また、セパレータの形状安定性や柔軟性を確保するため、繊維状物などをフイラ一 粒子とともに混在させてもよぐ繊維状物としては、耐熱温度が 150°C以上であって、 電気絶縁性を有しており、電気化学的に安定で、更に下記に詳述する電解液や、セ パレータの製造の際に使用する溶媒に安定であれば、特に材質に制限はない。なお
、本明細書でいう「繊維状物」とは、アスペクト比〔長尺方向の長さ Z長尺方向に直交 する方向の幅(直径)〕が 4以上のものを意味しており、アスペクト比は 10以上であるこ とが好ましい。
[0053] 繊維状物の具体的な構成材料としては、例えば、セルロースおよびその変成体〔力 ルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース(HPC)など〕、ポリ ォレフィン〔ポリプロピレン(pp)、プロピレンの共重合体など〕、ポリエステル〔ポリェチ レンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレ ート(PBT)など〕、ポリアクリロニトリル (PAN)、ポリアラミド、ポリアミドイミド、ポリイミド などの榭脂、ガラス、アルミナ、ジルコユア、シリカなどの無機酸ィ匕物などを挙げること ができ、これらの構成材料は 2種以上を含有していても構わない。また、繊維状物は 、必要に応じて、各種添加剤、例えば、榭脂である場合には酸ィ匕防止剤などを含有 していても構わない。
[0054] 一方、前記 (Π)の態様のセパレータの多孔質基体は、上記繊維状物が織布、不織 布 (紙を含む)などのシート状物を形成してなるものであり、市販の不織布などを基体 として用いることができる。この態様のセパレータでは、多孔質基体の空孔内にフイラ 一粒子を含有させるが、多孔質基体とフィラー粒子を結着させるため、あるいは、シャ ットダウン榭脂と多孔質基体を結着させるために、前記バインダを用いることもできる
[0055] また、繊維状物の直径は、セパレータの厚み以下であればよいが、例えば、 0. 01 〜5 mであることが好ましい。直径が大きすぎると、繊維状物同士の絡み合いが不 足して、シート状物を形成して多孔質膜の基体を構成する場合に、その強度が小さく なって取り扱いが困難となることがある。また、直径が小さすぎると、セパレータの空 隙が小さくなりすぎて、イオン透過性が低下する傾向にあり、電池の負荷特性を低下 させてしまうことがある。
[0056] (Π)の態様のセパレータにおける繊維状物の含有量は、セパレータの全構成成分 中、例えば、 10体積%以上が好ましぐより好ましくは 20体積%以上であって、 90体 積%以下が好ましぐ 80体積%以下がより好ましい。セパレータ中での繊維状物の 存在状態は、例えば、長軸 (長尺方向の軸)の、セパレータ面に対する角度が平均で 30° 以下であることが好ましぐ 20° 以下であることがより好ましい。
[0057] また、フィラー粒子の含有量は、内部短絡防止の効果を向上させるためには、セパ レータの全構成成分中、 20体積%以上とするのが好ましぐ 50体積%以上とするの 力 り好ましぐシャットダウン榭脂の含有量を確保してシャットダウン特性を維持する ためには、 80体積%以下に含有量を抑制することが好ましい。 [0058] 一方、(I)の態様のセパレータにお 、ては、多孔質基体の占める割合力 セパレー タの全構成成分中、 10体積%以上 90体積%以下となるようにフィラー粒子やバイン ダの含有量を調整するのが望まし 、。
[0059] 電池の短絡防止効果をより高め、セパレータの強度を確保して取り扱い性を良好に しつつ、電池のエネルギー密度をより高める観点から、セパレータの厚みは、例えば 、 3 μ m以上が望ましぐより望ましくは 5 μ m以上であって、一方、 30 μ m以下が望ま しぐ 20 m以下であることがより望ましい。
[0060] また、セパレータの空隙率としては、電解液の保液量を確保してイオン透過性を良 好にするために、乾燥した状態で、 20%以上とするのがよぐより好ましくは 30%以 上である。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの 空隙率は、 70%以下とするのが好ましぐ 60%以下であることがより望ましい。なお、 セパレータの空隙率: P (%)は、セパレータの厚み、面積あたりの質量、構成成分の 密度から、次式を用いて各成分 iにつ 、ての総和を求めることにより計算できる。
[0061] P= 100- (∑a/ p ) X (m/t)
ここで、上記式中、 a:質量%で表した成分 iの比率、 p :成分 iの密度 (g/cm3)、 m :セパレータの単位面積あたりの質量(g/cm2)、 t:セパレータの厚み(cm)である。
[0062] なお、榭脂 Bを含むセパレータでは、電池の組み立て後において、榭脂 Bが電解液 を吸収して膨潤し、セパレータの空隙率が多少低下しても問題はなぐセパレータの 空隙率が 10%以上であれば好適である。
[0063] また、本発明のセパレータのガーレー値で表される透気度は、 10〜300secである ことが望ましい。ここで、ガーレー値とは、 JIS P 8117に準拠した方法で測定される 、 0. 879gZmm2の圧力下で lOOmLの空気が膜を透過する秒数の値をいう。ガー レー値が大きすぎると、イオン透過性が小さくなり、他方、小さすぎると、セパレータの 強度が小さくなることがある。さらに、セパレータの強度としては、直径 lmmのニード ルを用いた突き刺し強度で 50g以上であることが望ま 、。力かる突き刺し強度が小 さすぎると、リチウムのデンドライト結晶が発生した場合に、セパレータの突き破れによ る短絡が発生する場合がある。
[0064] 本発明のセパレータの製造方法としては、例えば、下記の(a)および (b)の方法を 採用できる。(a)の製造方法は、セパレータの基体に、シャットダウン榭脂およびフィ ラー粒子を含む液状組成物 (スラリーなど)を塗布または含浸させた後、所定の温度 で乾燥する方法である。これにより前記 (Π)の態様のセパレータを製造することがで きる。この場合の多孔質基体としては、具体的には、前記例示の各材料を構成成分 に含む繊維状物の少なくとも 1種で構成される織布や、これら繊維状物同士が絡み 合った構造を有する不織布などの多孔質シートなどが用いられる。より具体的には、 紙、 PP不織布、ポリエステル不織布(PET不織布、 PEN不織布、 PBT不織布など) 、 PAN不織布などの不織布を例示できる。
[0065] 上記液状組成物は、シャットダウン榭脂およびフィラー粒子のほか、必要に応じて ノ^ンダなどを含有し、これらを溶媒 (分散媒を含む、以下同じ。 )に分散させたもの であり、バインダについては溶媒に溶解させることもできる。液状組成物に用いられる 溶媒は、シャットダウン榭脂ゃフイラ一粒子を均一に分散でき、また、バインダを均一 に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水 素、テトラヒドロフランなどのフラン類、メチルェチルケトン、メチルイソブチルケトンな どのケトン類など、一般に有機溶媒が好適に用いられる。なお、これらの溶媒に、界 面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールな ど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエー テルなどを適宜添加してもよい。また、バインダが水溶性である場合、ェマルジヨンと して使用する場合などでは、水を溶媒としてもよぐこの際にもアルコール類 (メチルァ ルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適 宜加えて界面張力を制御することもできる。
[0066] 上記液状組成物では、シャットダウン榭脂、フィラー粒子およびバインダを含む固形 分量を、例えば 10〜40質量%とすることが好ましい。
[0067] 上記多孔質基体の空孔の開口径が比較的大きい場合、例えば、 5 μ m以上の場合 には、これが電池の短絡の要因となりやすい。よって、この場合には、フィラー粒子の 少なくとも一部が基体の空孔内に存在する構造とすることが好ましい。また、シャット ダウン榭脂などフィラー粒子以外の構成物の少なくとも一部も、フィラー粒子とともに 基体の空孔内に存在する構造とすることがより好ましい。 [0068] なお、セパレータ中に板状粒子を含有させる場合に、配向性を高めてその機能を 有効に作用させるためには、上記液状組成物を含浸させた基体において、この液状 組成物にシェアや磁場をかけると!、つた方法を用いればよ!、。
[0069] また、上記構成物のそれぞれの持つ効果をより有効に発揮させるために、構成物を 偏在させて、セパレータの膜面と平行に層状に集まった形態としてもよい。このような 形態とするには、例えば、ダイコーターやリバースロールコーターのヘッドやロールを 2つ用いて、基体の裏表両方向力 別々の塗料、例えば、シャットダウン榭脂を主体 とした液状組成物と、フィラー粒子を主体とした液状組成物とを別々に塗布し、乾燥 する方法が採用できる。
[0070] 本発明のセパレータの(b)の製造方法は、上記液状組成物に、更に必要に応じて 繊維状物を含有させ、これをフィルムや金属箔などの基板上に塗布し、所定の温度 で乾燥した後に、この基板力も剥離する方法である。(b)の方法によって、前記 (I)の 態様のセパレータを製造することができる。(b)の方法で使用する液状組成物は、繊 維状物などを含めた固形分量が、例えば 10〜40質量%であることが好ましい。また 、(b)の方法によって、電池を構成する正極および負極より選ばれる少なくとも一方の 表面にセパレータを形成し、セパレータと電極とを一体ィ匕した構造としてもよ 、。
[0071] なお、本発明のセパレータは、上記に示した各構造に限定されるものではない。例 えば、シャットダウン榭脂は、粒子状で個々に独立して存在していてもよぐ互いに、 または繊維状物などに、一部が融着されていても構わない。また、本発明のセパレー タを適用できる電気化学素子は、非水電解液を用いるものであれば特に限定される ものではなく、リチウム二次電池のほか、リチウム一次電池やスーパーキャパシタなど 高温での安全性が要求される用途であれば、同じく適用可能なものである。
[0072] 以下、本発明の一例として、リチウム二次電池への適用につ!/、て詳述する。リチウ ムニ次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用し た筒形 (角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィ ルムを外装体としたソフトパッケージ電池とすることもできる。
[0073] 正極としては、従来のリチウム二次電池に用いられて 、る正極、すなわち、 Liを吸 蔵放出可能な活物質を含有する正極であれば特に制限はない。例えば、正極活物 質として、 Li MO (-0. Kx< 0. 1、 M : Co、 Ni、 Mn、 Al、 Mgなど)で表される l+x 2
層状構造のリチウム含有遷移金属酸化物、 LiMn Oやその元素の一部を他元素で
2 4
置換したスピネル構造のリチウムマンガン酸化物、 LiMPO (M : Co、 Ni、 Mn、 Feな
4
ど)で表されるオリビン型化合物などを用いることが可能である。上記層状構造のリチ ゥム含有遷移金属酸化物としては、 LiCoOや LiNi Co AI O (0. 1≤χ≤0. 3, 0
2 1-χ χ-y y 2
. 01≤y≤0. 2)などのほ力、少なくとも Co、Niおよび Mnを含む酸化物(LiMn Ni
1/3 1
Co 0、LiMn Ni Co O、 LiMn Ni Co Oなど)を具体的に例示する
/3 1/3 2 5/12 5/12 1/6 2 3/5 1/5 1/5 2
ことができる。
[0074] 上記正極活物質には、導電助剤としてカーボンブラックなどの炭素材料及びバイン ダとしてポリフッ化ビ-リデン (PVDF)などのフッ素榭脂が添加されて正極合剤が調 製される。この正極合剤を用いて集電体の表面に成形体 (正極合剤層)が形成され る。
[0075] また、正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、金 属網、エキスパンドメタルなどを用い得る力 通常、厚みが 10〜30 /ζ πιのアルミ-ゥ ム箔が好適に用いられる。
[0076] 正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せ ずに集電体の露出部を残し、そこをリード部とすることによって設けられる。但し、リー ド部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体 にアルミニウム製の箔などを後から接続することによって設けてもよい。
[0077] 負極としては、従来のリチウム二次電池に用いられて 、る負極、すなわち、 Liを吸 蔵放出可能な活物質を含有する負極であれば特に制限はない。例えば、負極活物 質として、黒鉛、熱分解炭素類、コータス類、ガラス状炭素類、有機高分子化合物の 焼成体、メソカーボンマイクロビーズ (MCMB)、炭素繊維などの、リチウムを吸蔵、 放出可能な炭素系材料の 1種または 2種以上の混合物が用いられる。また、 Si、 Sn、 Ge、 Bi、 Sb、 Inなどの元素およびその合金、リチウム含有窒化物またはリチウム含有 酸ィ匕物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金 属ゃリチウム Zアルミニウム合金も負極活物質として用いることができる。
[0078] 上記負極活物質には、導電助剤としてカーボンブラックなどの炭素材料や、ノイン ダとして PVDFなどが適宜添加されて負極合剤が調製され、この負極合剤を用いて 集電体の表面に成形体 (負極合剤層)が形成される。また、負極活物質として上記各 種合金やリチウム金属を用いる場合には、各種合金やリチウム金属の箔を単独で負 極として用いることができ、さらにこれらを集電体上に積層して用いることもできる。
[0079] 負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチ ングメタル、金属網、エキスパンドメタルなどを用い得る力 通常、銅箔が用いられる。 この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くす る場合、厚みの上限は 30 μ mであることが好ましぐ下限は 5 μ mであることが望まし い。また、負極側のリード部は、正極側のリード部と同様にして形成すればよい。
[0080] 電極は、上記正極と上記負極とを、本発明のセパレータを介して積層した積層体や 、更にこれを卷回した電極卷回体の形態で用いることができる。
[0081] 非水電解液としては、リチウム塩を有機溶媒に溶解した溶液が用いられる。リチウム 塩としては、溶媒中で解離して Li+イオンを形成し、電池として使用される電圧範囲で 分解などの副反応を起こしにくいものであれば特に制限は無い。例えば、 LiCIO、 L
4 iPF、 LiBF、 LiAsF、 LiSbFなどの無機リチウム塩、 LiCF SO、 LiCF CO、 Li
6 4 6 6 3 3 3 2 2
C F (SO )、 LiN (CF SO ) 、 LiC (CF SO )、 LiC F SO (n≥2)、 LiN (RfOS
2 4 3 2 3 2 2 3 2 3 n 2n+l 3
O ) 〔ここで、 Rfはフルォロアルキル基〕などの有機リチウム塩などを用いることができ
2 2
る。
[0082] 非水電解液に用いる有機溶媒としては、上記リチウム塩を溶解し、電池として使用 される電圧範囲で分解などの副反応を起こさな 、ものであれば特に限定されな!、。 例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニ レンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジェチルカーボネ ート、メチルェチルカーボネートなどの鎖状カーボネート、プロピオン酸メチルなどの 鎖状エステル、 γ ブチロラタトンなどの環状エステル、ジメトキシェタン、ジェチルェ 一テル、 1, 3 ジォキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エー テル、ジォキサン、テトラヒドロフラン、 2—メチルテトラヒドロフランなどの環状エーテル 、ァセトニトリル、プロピオ-トリル、メトキシプロピオ-トリルなどの-トリル類、エチレン グリコールサルファイトなどの亜硫酸エステル類などが挙げられ、これらは 2種以上混 合して用いることもできる。なお、より良好な特性の電池とするためには、エチレン力 ーボネートと鎖状カーボネートとの混合溶媒など、高い導電率を得ることができる組 み合わせで用いることが望ましい。また、これらの非水電解液に安全性ゃ充放電サイ クル性、高温貯蔵性といった特性を向上させる目的で、ビ-レンカーボネート類、 1, 3—プロパンサルトン、ジフエ-ルジスルフイド、シクロへキシルベンゼン、ビフエ-ル、 フルォロベンゼン、 t—ブチルベンゼンなどの添加剤を適宜カ卩えることもできる。
[0083] 上記リチウム塩の非水電解液中の濃度としては、 0. 5〜1. 5molZLとすることが好 ましく、 0. 9〜1. 25molZLとすることがより好ましい。
[0084] 以下、実施例に基づいて本発明を詳細に説明する。但し、本発明は下記の実施例 に限定されるものではない。なお、本実施例における榭脂 Bの膨潤度 Bおよび Bは
R T
、それぞれ前記式(1)および式 (2)に基づき求められた膨潤度である。
[0085] <負極の作製 >
負極活物質である黒鉛: 95質量部と、バインダである PVDF : 5質量部とを、 N—メ チルー 2—ピロリドン (NMP)を溶剤として均一〖こなるように混合して負極合剤含有べ 一ストを調製した。この負極合剤含有ペーストを、銅箔力もなる厚さ 10 mの集電体 の両面に、活物質塗布長が表面 320mm、裏面 260mmになるように間欠塗布し、乾 燥した。その後、カレンダー処理を行って、全厚が 142 mになるように負極合剤層 の厚みを調整し、幅 45mmになるように切断して、長さ 330mm、幅 45mmの負極を 作製した。さらに、この負極の銅箔の露出部にタブを溶接してリード部を形成した。
[0086] <正極の作製 >
正極活物質である LiCoO : 85質量部、導電助剤であるアセチレンブラック: 10質
2
量部、およびバインダである PVDF : 5質量部を、 NMPを溶剤として均一になるように 混合して、正極合剤含有ペーストを調製した。このペーストを、アルミニウム箔カもな る厚さ 15 mの集電体の両面に、活物質塗布長が表面 319〜320mm、裏面 258 〜260mmになるように間欠塗布し、乾燥した。その後、カレンダー処理を行って、全 厚が 150 μ mになるように正極合剤層の厚みを調整し、幅 43mmになるように切断し て、長さ 330mm、幅 43mmの正極を作製した。さらに、この正極のアルミニウム箔の 露出部にタブを溶接してリード部を形成した。 [0087] なお、上記負極および上記正極は、後述する電池の作製に用いる。
[0088] <セパレータの作製と評価 >
(実施例 1)
ポリエチレン粉末 (榭脂 A)の水分散液〔三井ィ匕学社製"ケミパール W— 700" (商品 名)〕: 2kgとエタノール 800gとを容器に入れ、デイスパーで、 2800rpmの条件で 1時 間攪拌して分散させた。これに、フィラー粒子として、アルミナ (Al O )微粒子〔住友
2 3
化学社製"スミコランダム AA04" (商品名)、耐熱温度: 180°C以上、平均粒径: 0. 4 m、粒度分布: 0. 3〜0. 7 m〕:300gをカ卩え、 3時間撹拌して、均一なスラリーと した。このスラリー中に、多孔質基体となる厚さ 28 mの PBT製不織布 (タピルス社 製)を通し、引き上げ塗布によりスラリーを塗布した後、乾燥することにより、不織布の 空隙内に榭脂 Aとフイラ一粒子を有する厚さ 35 μ mのセパレータを得た。
[0089] (実施例 2)
ノ インダとして、エチレン 酢酸ビュル共重合体 (EVA)〔酢酸ビニル由来の構造 単位が 34モル0 /0、日本ュ-カー社製〕: lOOgを、溶媒であるトルエン: 6kgとともに容 器に入れ、均一に溶解するまで室温にて撹拌してバインダ溶液を得た。このバインダ 溶液に、榭脂 Aとして、ポリエチレン粉末〔住友精ィ匕社製"フロービーズ LE1080" (商 品名)、融点: 107°C、平均粒径: 6 μ m、粒度分布: 2〜 15 m〕: 1kgをカ卩え、デイス パーで、 2800rpmの条件で 1時間攪拌して分散させた。これに、フィラー粒子として 、ポリプロピレン粉末〔セイシン企業社製" PPW— 5" (商品名)〕: lkgを加え、デイス パーで、 2800rpmの条件で 3時間撹拌して、均一なスラリーとした。このスラリーを、 ギャップを 50 mにして、厚さ 25 mの紙 (二ツボン高度紙社製)の上に摺り切り塗 布し、溶媒を除去して、厚さ 35 mのセパレータを得た。
[0090] (実施例 3)
実施例 1と同じポリエチレン粉末の水分散液: 750g、イソプロピルアルコール (IPA ) : 200g、および、バインダとして、ポリビュルブチラール (PVB)〔積水化学社製"エス レック KX— 5" (商品名)〕: 375gを容器に入れ、デイスパーで、 2800rpmの条件で 1 時間撹拌して分散させた。これに、フィラー粒子として、板状べ一マイト微粒子〔河合 石灰社製" BMM" (商品名)〕: 300gを加え、 3時間撹拌して、均一なスラリーとした。 このスラリー中に、厚さ 15 mの PP製不織布 (二ツボン高度紙社製)を通し、引き上 げ塗布によりスラリーを塗布した後、乾燥して、厚さ 20 mのセパレータを得た。
[0091] (実施例 4)
榭脂 Bとして、架橋 PMMA微粒子〔ガンツ化成社製"ガンツパール 0104" (商品名 )、平均粒径: m、Tg=約 120。C、B =0. 5、 B = 2. 3〕: lkg、水: 800g、イソプ
R T
口ピルアルコール(IPA) : 200g、および、バインダとして、実施例 3と同じ PVB : 375g を容器に入れ、デイスパーで、 2800rpmの条件で 1時間撹拌して分散させた。これ に、フィラー粒子として、実施例 1と同様のアルミナ微粒子: 3kg、上記バインダ (PVB ) : 750gを加え、 3時間撹拌して均一なスラリーとした。このスラリー中に、厚さ 28 m の PBT製不織布 (タピルス社製)を通し、引き上げ塗布によりスラリーを塗布した後、 乾燥して、厚さ 35 μ mのセパレータを得た。
[0092] (実施例 5)
バインダとして、 SBRラテックス FSR社製" TRD— 2001" (商品名)〕: 300gおよび CMC〔ダイセルィ匕学社製" 2200"〕:30gと、水: 4kgとを容器に入れ、均一に溶解す るまで室温にて撹拌した。さらに、架橋 PMMA微粒子 (榭脂 B)の水分散体〔ガンツ 化成社製"スタフイロイド"(商品名)、平均粒径 0. 3 m、 B = 1. 2、 B = 1. 2〕:2.
R T
5kgをカ卩え、デイスパーで、 2800rpmの条件で 1時間撹拌して分散させた。これに、 実施例 3と同様のフィラー粒子 (板状べ一マイト微粒子): 3kgを加え、デイスパーで、 2800rpmの条件で 3時間撹拌して、均一なスラリーとした。このスラリーを、アプリケ 一ターを用いて、厚さ 23 μ mの ΡΡ製不織布 (日本バイリーン社製)上にギャップを 5 0 mにして摺り切り塗布し、乾燥して、厚さ 30 mのセパレータを得た。
[0093] (実施例 6)
実施例 5と同じスラリーに、さらに、榭脂 Aとして、実施例 1と同じポリエチレン粉末の 水分散液: lkgをカ卩え、デイスパーで、 2800rpmの条件で 1時間撹拌して分散させた 。以下、実施例 5と同様にして厚さ 30 mのセパレータを得た。
[0094] (実施例 7)
実施例 4のアルミナ微粒子に代え、板状アルミナ微粒子〔キンセイマテック社製"セ ラフ"(商品名)〕: 3kgをカ卩えてスラリーを作製し、これを、ギャップを 50 mにして、厚 さ 15 mの PET製不織布 (フロイデンベルグ社製)に摺り切り塗布した以外は実施例 4と同様にして、厚さ 20 mのセパレータを得た。
[0095] (実施例 8)
ポリエチレン粉末 (榭脂 A)の水分散液〔岐阜セラック社製" AB— 50" (商品名)〕: 3 kgに、バインダとして、エチレン 酢酸ビュル共重合体(EVA)のェマルジヨン〔酢酸 ビュル由来の構造単位が 20モル0 /0、住化ケムテックス社製"住化フレックス S 850H Q" (商品名)〕: 100gをカ卩え、デイスパーで、 2800rpmの条件で 1時間攪拌して分散 させた。これに、フィラー粒子として、アルミナ繊維〔電気化学工業社製"デンカアル セン B100" (商品名)〕: 1. 5kgを加え、均一になるまで室温にて撹拌した。このスラリ 一を、ダイコーターを用いて、塗布厚さ 50 mで PET基材上に塗布し、乾燥した後、 PET基材から剥離することにより、アルミナ繊維により形成された多孔質基体とポリェ チレン粉末とを有する厚さ 15 mのセパレータを得た。
[0096] 作製したセパレータの断面を走査型電子顕微鏡で観察したところ、アルミナ繊維の アスペクト比は 10以上であり、また、セパレータ面に対する平均角度は 10° 以下で めつに。
[0097] (実施例 9)
実施例 8のポリエチレン粉末の水分散液に代え、実施例 5と同様の架橋 PMMA微 粒子 (榭脂 B)の水分散体: lkgを用い、溶媒として水を 2kg加えた以外は実施例 8と 同様にして、厚さ 15 mのセパレータを得た。
[0098] (実施例 10)
バインダとして、 EVA〔酢酸ビュル由来の構造単位が 34モル0 /0、日本ュ-カー社 製〕: 100gを、溶媒であるトルエン: 6kgとともに容器に入れ、均一に溶解するまで室 温にて撹拌してバインダ溶液を得た。次いで、榭脂 Aとして、ポリエチレン粉末〔住友 精ィ匕社製"フロービーズ LE1080" (商品名)〕: 500gを上記バインダ溶液に加え、デ イスパーで、 2800rpmの条件で 1時間攪拌して分散させた。これに、フィラー粒子と して、実施例 1と同じアルミナ微粒子: 2kgをカ卩え、デイスパーで、 2800rpmの条件で 3時間攪拌して分散させ、セパレータ形成用の均一な液状組成物を得た。このスラリ 一を、 50 mのギャップを通して前述の負極の両面の活物質層上に摺り切り塗布し た後、乾燥させて、負極表面に、負極と一体ィ匕された厚さ 15 mのセパレータを形 成した。
[0099] この負極の断面の走査型電子顕微鏡写真を図 1に、また、そのセパレータ部分を 拡大した走査型電子顕微鏡写真を図 2に示す。図 1において、 1はセパレータであり 、 2は負極である。また、図 2において、 3はフイラ一粒子、 4はバインダ、 5は多孔質基 体、 6はシャットダウン榭脂である。図 1および図 2の写真より、フィラー粒子 3およびバ インダ 4で構成された多孔質基体 5と、シャットダウン榭脂 6とからなるセパレータ 1が 負極 2上に形成されて ヽる様子がわかる。
[0100] (実施例 11)
ポリエチレン粉末の量を 2kgに変更した以外は実施例 10と同様にして、負極表面 にセパレータを形成した。
[0101] (実施例 12)
ポリエチレン粉末の量を lkgに変更した以外は実施例 10と同様にして、負極表面 にセパレータを形成した。
[0102] (実施例 13)
アルミナ微粒子の量を 400g〖こ変更し、さら〖こ、ポリエチレン粉末の量を lkgに変更 した以外は実施例 10と同様にして、負極表面にセパレータを形成した。
[0103] (実施例 14)
フィラー粒子を、架橋 PMMA微粒子〔ガンツ化成社製"ガンツパール 0407" (商品 名)、耐熱温度: 180°C以上〕: lkgに変更し、さらに、ポリエチレン粉末の量を lkgに 変更した以外は実施例 10と同様にして、負極表面にセパレータを形成した。なお、 本実施例で用いた架橋 PMMAは、粒子が電解液を吸収して膨潤することのな ヽよう 、榭脂の架橋度を高めることにより電解液に対する安定性を高めたものである。
[0104] (実施例 15)
ノインダとして、エチレン ェチルアタリレート共重合体〔日本ュ-カー社製" NUC 6570" (商品名)〕: 200gを、溶媒であるトルエン: 6kgとともに容器に入れ、均一に溶 解するまで室温にて撹拌してバインダ溶液を得た。次いで、榭脂 Aとして、 EVA粉末 〔酢酸ビュル由来の構造単位が 10モル0 /0、住友精ィ匕社製"フローバック D5020" (商 品名)、融点: 89°C、平均粒径: 10 m、粒度分布: 5〜20 m〕:1kgを上記バイン ダ溶液に加え、デイスパーで、 2800rpmの条件で 1時間攪拌して分散させた。これ に、フィラー粒子として、実施例 1と同様のアルミナ微粒子: 400gをカ卩え、以下、実施 例 10と同様にして、負極表面に、負極と一体ィ匕された厚さ 20 mのセパレータを形 成した。
[0105] (比較例 1)
市販の厚さ 20 μ mのポリエチレン製微多孔膜を比較例 1のセパレータとした。
[0106] (比較例 2)
フィラー粒子として、実施例 1と同様のアルミナ微粒子: 3kg、水: 800g、イソプロピ ルアルコール(IPA) : 200g、および、バインダとして、実施例 3と同様の PVB : 375g を容器に入れ、デイスパーで、 2800rpmの条件で 1時間撹拌して分散させて均一な スラリーとした。このスラリー中に、厚さ 15 mの PP製不織布 (二ツボン高度紙社製) を通し、引き上げ塗布によりスラリーを塗布した後、乾燥して、厚さ 20 mのセパレー タを得た。
[0107] (比較例 3)
アルミナ微粒子に代えて、実施例 1と同様のポリエチレン粉末 (榭脂 A)の水分散液 を用いた以外は比較例 2と同様にして、厚さ 20 mのセパレータを得た。
[0108] 上記実施例 1〜15および比較例 1〜3のセパレータの構成を表 1に示す。
[0109] [表 1]
シャツ卜ダウン榭脂
セパレータ フィラー粒了 多孔質基体
樹脂 A 樹脂 B
実施例 1 ポリエチレン アルミナ P B T不織布 実施例 2 ポリエチレン ポリプロピレン 紙
実施例 3 ポリエチレン 板状べ一マイト P P不織布
実施例 4 ― 架橋 P MM A アルミナ P B T不織布 実施例 5 - 架橋 P MMA 板状べ一マイト P P不織布
実施例 6 ポリエチレン 架橋 P MMA 板状べ一マイト P P不織布
実施例 7 - 架橋 P MMA 板状アルミナ P E T不織布 実施例 8 ポリエチレン アルミナ繊維 アルミナ繊維 実施例 9 架橋 P MMA アルミナ繊維 アルミナ繊維 実施例 1 0 ポリエチレン ― アルミナ アルミナ微粒子 実施例 1 1 ポリエチレン 一 アルミナ アルミナ微粒子 実施例 1 2 ポリエチレン - アルミナ アルミナ微粒子 実施例 1 3 ポリエチレン アルミナ アルミナ微粒子 実施例 1 4 ボリエチレン 架橋 P MMA 架橋 P MMA微粒子 実施例 1 5 E VA アルミナ アルミナ微粒子 比較例 1 ― P E微多孔膜 比較例 2 ― - アルミナ P P不織布
比較例 3 ポリエチレン P P不織布
[0110] 作製された各セパレータについて、以下の方法により、収縮率とシャットダウン温度 を測定した。
[0111] 上記実施例 1〜実施例 9および比較例 1〜比較例 3のセパレータを、それぞれ 4cm
X 4cmの大きさに切断し、クリップで固定した 2枚のステンレス板で挟みこみ、 150°C の恒温槽内に 30分放置した後に取り出して、各セパレータ片の長さを測定し、試験 前の長さと比較してその減少率をセパレータの収縮率として求めた。
[0112] また、実施例 10〜実施例 15の電極と一体ィ匕されたセパレータについては、電極と ともに 150°Cの恒温槽内に 60分放置した後に取り出して、セパレータの長辺の長さ を加熱前と比較して収縮率を求めた。各セパレータの収縮率を表 2に示す。
[0113] [表 2] セパレー夕 収縮率 (%)
実施例 1 0 . 1
実施例 2 0
実施例 3 2
実施例 4 1
実施例 5 2
実施例 6 1
実施例 7 2
実施例 8 0 . 5
実施例 9 2
実施例 1 0 0
実施例 1 1 0
実施例 1 2 0
実施例 1 3 0
実施例 1 4 0
実施例 1 5 0
比較例 1 3 5
比較例 2 1
比較例 3 1
また、実施例 1〜実施例 9および比較例 1〜比較例 3のセパレータの室温における 透気度の測定を、 JIS P 8117に準拠した方法で行い、ガーレー値、すなわち、 0. 879g/mm2 (8620Pa)の圧力下で lOOmLの空気が膜を透過する秒数を求めた。 さらに、実施例 1〜実施例 3、実施例 8および比較例 1〜比較例 3のセパレータにつ いて、以下の方法により、 80°C〜150°Cの範囲でガーレー値の変化を測定した。各 セパレータを、 80°Cの恒温槽中で 10分間保持した後、取り出して室温まで徐冷し、 上記方法により 80°Cまで昇温後のガーレー値を測定した。以後、 5°C刻みで 150°C まで温度を上昇させ、それぞれの温度でセパレータを 10分間保持した後、上記と同 様にしてガーレー値を測定した。求めたガーレー値の温度による変化から、ガーレー 値が 1 X 104sec/100mLを超えたときの温度を、セパレータのシャットダウン温度と した。なお、比較例 2のセパレータでは、シャットダウンが生じなかったため、シャットダ ゥン温度は測定できな力つた。
[0115] 一方、実施例 4〜実施例 7および実施例 9のセパレータは、以下の方法により、シャ ットダウン温度を求めた。 4cm X 4cmの大きさに切断された各セパレータ片を、端子 付きの 2枚のステンレス板で挟みこみ、アルミラミネートフィルムの袋に挿入し、非水 電解液を注入した後、端子の先を袋の外に出した状態で袋を封止して試験用の試 料とした。ここで、非水電解液としては、エチレンカーボネートとェチルメチルカーボ ネートを体積比 1 : 2で混合した溶媒に LiPFを 1. 2molZLの濃度で溶解させた溶
6
液を用いた。なお、この非水電解液は、後述する電池の作製においても用いる。
[0116] 上記試料を恒温槽に入れ、 HIOKI社製接点抵抗計" 3560ACミリオームハイテス タ"(商品名)により、上記端子に 1kHzの交流を印カロしたときの抵抗値を測定しなが ら、室温力 毎分 1°Cの割合で温度上昇させて加熱し、内部抵抗の温度による変化 を求めた。そして、抵抗値が室温での値の 10倍以上となったときの温度を、そのセパ レータのシャットダウン温度とした。
[0117] 上記実施例 1〜実施例 9および比較例 1〜比較例 3のセパレータのガーレー値およ びシャットダウン温度を表 3に示す。
[0118] [表 3] ガ一レー値 シャツトダウン温度
セパレー夕
( s e c / 1 0 O mL ) C)
実施例 1 1 2 0 1 2 5
実施例 2 2 5 0 1 0 5
実施例 3 1 1 0 1 2 5
実施例 4 8 0 1 2 0
実施例 5 6 0 1 0 5
実施例 6 8 0 1 0 5
実施例 7 7 0 1 0 5
実施例 8 9 0 1 2 5
実施例 9 1 0 0 1 0 5
比較例 1 1 5 0 1 4 0
比較例 2 9 0 測定されず
比較例 3 1 1 0 1 2 5
[0119] なお、実施例 10〜実施例 15の電極と一体ィ匕されたセパレータについては、後述 するように、電池の組み立て後に、電池の内部抵抗の温度による変化を測定すること により、セパレータのシャットダウン温度を求めた。
[0120] <電池の作製と評価 >
実施例 1〜実施例 9および比較例 1〜比較例 3のセパレータを、それぞれ、前述の 正極および負極とともに渦巻状に卷回して卷回電極体を作製した。この卷回電極体 を押しつぶして扁平状にし、電池容器内に装填し、前述の非水電解液を注入した後 、封止を行って、実施例 1 A〜実施例 9Aおよび比較例 1 A〜比較例 3Aのリチウム二 次電池を作製した。
[0121] また、負極と一体ィ匕された実施例 10〜実施例 15のセパレータは、それぞれ、当該 セパレータを介して負極と前記正極とを重ね合わせた以外は、上記実施例 1 A〜実 施例 9Aおよび比較例 1 A〜比較例 3Aと同様にして、実施例 10A〜実施例 15Aのリ チウムニ次電池を作製した。
[0122] まず、上記実施例 10A〜実施例 15Aのリチウム二次電池について、以下の方法に より、それぞれの電池に用いたセパレータのシャットダウン温度を求めた。電池を恒 温槽に入れ、前記セパレータ単独での内部抵抗の測定と同様にして、 30°Cから 150 °Cまで毎分 1°Cの割合で温度上昇させて加熱し、電池の内部抵抗の温度による変化 を求めた。そして、抵抗値が 30°Cでの値の 5倍以上に上昇したときの温度を、そのセ パレータのシャットダウン温度とした。また、前記ガーレー値の変化によりシャットダウ ン温度を求める方法と比較するため、比較例 1Aの電池の内部抵抗の温度による変 ィ匕も上記と同様にして求め、比較例 1のセパレータのシャットダウン温度を求めたが、 いずれの方法でもほぼ同じ結果が得られた。さらに、比較例 3Aの電池についても、 同様に内部抵抗の温度による変化を測定しょうとしたが、電池作製時に内部短絡が 生じていることが判明し、電池としての評価を行うことができなかった。すなわち、比較 例 3のセパレータは、フィラー粒子が多孔質基体を構成しているものではなぐまた、 多孔質基体の空孔内にフィラー粒子を有するものでもないため、セパレータの強度 が弱ぐ電池作製時に内部短絡を生じたものと思われる。
[0123] 上記測定の結果を表 4に示す。また、実施例 12Aおよび比較例 1 Aの内部抵抗の 温度による変化をそれぞれ図 3および図 4に示す。
[0124] [表 4]
Figure imgf000032_0001
表 3および表 4に示すように、本発明の実施例 1〜15のセパレータでは、シャットダ ゥン温度が 90〜125°Cの範囲となり、電池の高温での安全性を確保するのに適切な 温度範囲でシャットダウンを生じることが明ら力となった。一方、比較例 1のセパレータ は、シャットダウン温度が 130°Cを超えており、電池の熱暴走温度により近い温度で シャットダウンを生じていた。また、比較例 2のセパレータは、シャットダウン榭脂を持 たな 、ため、シャットダウンが生じな力つた。
[0126] また、表 2に示すように、本発明の実施例 1〜15のセパレータは、シャットダウン温 度を超えて加熱した後のセパレータの収縮がごくわずかであるのに対し、比較例 1の セパレータは、シャットダウン温度を超えた後にセパレータが大きく収縮していた。こ のため、図 3に示すように、実施例 12Aの電池では、 150°Cに達するまで内部抵抗が 低下することなくシャットダウンの状態が保たれ、シャットダウン後の安全性が維持さ れた。一方、比較例 1 Aの電池では、セパレータの収縮により内部抵抗が急激に低下 して内部短絡を生じやすい状態となった。
[0127] 次に、実施例 1A〜実施例 4A、実施例 8A、実施例 10A〜実施例 15Aおよび比較 例 1Aの電池について、以下の条件で充放電を行い、負荷特性の測定を行った。充 電は、 0. 2Cの電流値で電池電圧が 4. 2Vになるまで定電流充電を行い、次いで、 4 . 2Vでの定電圧充電を行う定電流一定電圧充電とした。充電終了までの総充電時 間は、実施例 1A〜実施例 4Aおよび実施例 8Aの電池では 15時間とし、実施例 10 A〜実施例 15Aおよび比較例 1 Aの電池では 7. 5時間とした。充電後の電池は、 0. 2Cおよび 2Cの放電電流で、それぞれ電池電圧が 3. 0Vになるまで放電を行い、 0. 2Cおよび 2Cの放電における放電容量をそれぞれ求め、 0. 2Cの放電容量に対する 2Cの放電容量の割合を負荷特性として評価した。その結果を表 5に示す。
[0128] [表 5]
負荷特性 〔容量比〕
電池
(%)
実施例 1 A 6 0
実施例 2 A 8 5
実施例 3 A 7 2
実施例 4 A 8 0
実施例 8 A 7 5
実施例 1 0 A 9 0
実施例 1 1 A 8 0
実施例 1 2 A 8 5
実施例 1 3 A 6 3
実施例 1 4 A 8 2
実施例 1 5 A 6 8
比較例 1 A 6 0
[0129] 上記実施例 1A〜実施例 4A、実施例 8A、実施例 10A〜実施例 15Aの電池は、負 荷特性が従来のセパレータを用いた比較例 1 Aの電池と同等以上であり、電池として 問題なく機能していた。
[0130] さら〖こ、実施例 4A〜実施例 7A、実施例 9A、比較例 1Aおよび比較例 2Aの電池に っ ヽて、上記条件にて充電 (総充電時間: 15時間)を行 ヽ、充電容量および放電容 量をそれぞれ求め、充電容量に対する放電容量の割合を充電効率として評価した。 その結果を表 6に示す。
[0131] [表 6] 充電効率 〔容量比〕
電池
(%)
実施例 4 A 9 9 . 5
実施例 5 A 9 9 . 9
実施例 6 A 9 9 . 6
実施例 Ί A 9 9 . 3
実施例 9 A 9 9 . 5
比較例 1 A 9 9 . 5
比較例 2 A 5 6
[0132] 実施例 4A〜実施例 7A、実施例 9Aの電池は、比較例 1Aと同じく充電効率がほぼ 100%となり、充電時のリチウムデンドライトの生成が抑止されていた。一方、多孔質 基体の空孔内にフィラー粒子のみを含む比較例 2Aの電池では、充電効率が悪ぐ 充電時のリチウムデンドライトの生成による内部短絡が認められた。上記フィラー粒子 として用いたアルミナ微粒子の形状は、リチウムデンドライトの生成の抑制効果に優 れる板状の形状とは異なる形状であったため、シャットダウン榭脂粒子などが共存し な 、場合は、リチウムデンドライトの生成を抑制できな 、こともあると思われる。
[0133] 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能で ある。本出願に開示された実施形態は一例であって、これらに限定はされない。本発 明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先 して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれ るものである。
産業上の利用可能性
[0134] 以上説明したように、 150°C以上の耐熱温度を有しかつフィラー粒子を含む多孔質 基体と、融点が 80〜130°Cの範囲にある榭脂 A、および、加熱により非水電解液を 吸収して膨潤しかつ温度上昇とともに膨潤度が増大する榭脂 Bより選ばれる少なくと も 1種のシャットダウン榭脂とを備える多孔質膜によりセパレータを構成することにより
、従来のセパレータと同等以上の特性を有し、高温での安全性に優れた電気化学素 子用セパレータおよびそれを用いた電気化学素子を提供することができる。

Claims

請求の範囲
[1] 多孔質基体と、榭脂とを含む多孔質膜からなる電気化学素子用セパレータであつ て、
前記多孔質基体は、 150°C以上の耐熱温度を有し、かつフィラー粒子を含み、 前記榭脂は、融点が 80〜130°Cの範囲にある榭脂 A、および、加熱により電解液 を吸収して膨潤しかつ温度上昇とともに膨潤度が増大する榭脂 Bより選ばれる少なく とも 1種のシャットダウン榭脂であることを特徴とする電気化学素子用セパレータ。
[2] 前記多孔質基体の少なくとも一部が、前記フィラー粒子で構成されている請求項 1 に記載の電気化学素子用セパレータ。
[3] 前記フィラー粒子は、前記多孔質基体の空孔内に含有されている請求項 1に記載 の電気化学素子用セパレータ。
[4] 少なくとも電解液で濡れた状態で 130°Cに加熱されたときに、前記榭脂 Aの溶融ま たは前記榭脂 Bの膨潤によりシャットダウンを生じる請求項 1に記載の電気化学素子 用セパレータ。
[5] 前記多孔質基体は、 150°C以上の耐熱温度を有する繊維状物で構成されている 請求項 1に記載の電気化学素子用セパレータ。
[6] 前記繊維状物は、セルロースおよびその変成体、ポリオレフイン、ポリエステル、ポリ アクリロニトリル、ポリアラミド、ポリアミドイミド、ポリイミドおよび無機酸ィ匕物よりなる群か ら選択される少なくとも 1種力 構成されている請求項 5に記載の電気化学素子用セ ノ レータ。
[7] 前記繊維状物は、織布または不織布である請求項 5に記載の電気化学素子用セ ノ レータ。
[8] 前記シャットダウン榭脂は、微粒子で構成されて ヽる請求項 1に記載の電気化学素 子用セパレータ。
[9] 前記シャットダウン榭脂は、微粒子で構成され、前記フィラー粒子とともに前記多孔 質基体の空孔内に配置されている請求項 1に記載の電気化学素子用セパレータ。
[10] 前記榭脂 Aは、ポリエチレン、エチレン ビュルモノマー共重合体およびポリオレフ インワックスより選ばれる少なくとも 1種である請求項 1に記載の電気化学素子用セパ レータ。
[11] 前記榭脂 Bは、 75〜125°Cの温度範囲にガラス転移温度を有する榭脂架橋体で ある請求項 1に記載の電気化学素子用セパレータ。
[12] 前記榭脂架橋体は、スチレン榭脂、スチレンブタジエン共重合体、アクリル榭脂、ポ リアルキレンォキシド、フッ素榭脂およびこれらの誘導体よりなる群から選ばれる少な くとも 1種の樹脂の架橋体である請求項 11に記載の電気化学素子用セパレータ。
[13] 以下の式で表される前記榭脂 Bの 25°Cにおける膨潤度 B 2. 5以下である請求
R
項 1に記載の電気化学素子用セパレータ。
B = (V /V) - l
R 0 i
但し、上記式中、 Vは、電解液中に 25°Cで 24時間浸漬後の榭脂 Bの体積 (cm3)
0 、
Vは、電解液に浸漬する前の榭脂 Bの体積 (cm3)をそれぞれ表す。
[14] 以下の式で表される前記榭脂 Bの 120°Cにおける膨潤度 B
T I 1以上である請求 項 1に記載の電気化学素子用セパレータ。
B = (V /V ) - 1
T 1 0
但し、上記式中、 Vは、電解液中に 25°Cで 24時間浸漬後の榭脂 Bの体積 (cm3)
0 、
Vは、電解液中に 25°Cで 24時間浸漬後、電解液を 120°Cに昇温させ、 120°Cで 1
1
時間保持した後における榭脂 Bの体積 (cm3)をそれぞれ表す。
[15] 前記フィラー粒子は、無機酸化物で構成されて ヽる請求項 1に記載の電気化学素 子用セパレータ。
[16] 前記無機酸化物は、 Al O
2 3、 SiOおよびべ
2 一マイトより選ばれるいずれか 1種であ る請求項 15に記載の電気化学素子用セパレータ。
[17] 前記フィラー粒子は、板状の粒子である請求項 1に記載の電気化学素子用セパレ ータ。
[18] ガーレー値で表される透気度が、 10〜300 (secZl00mL)である請求項 1に記載 の電気化学素子用セパレータ。
[19] 正極、負極、非水電解液およびセパレータを含む電気化学素子であって、
前記セパレータは、請求項 1〜18のいずれかに記載の電気化学素子用セパレータ であることを特徴とする電気化学素子。 前記セパレータは、正極および負極より選ばれる少なくとも一方と一体ィ匕されている 請求項 19に記載の電気化学素子。
PCT/JP2005/022540 2004-12-08 2005-12-08 電気化学素子用セパレータおよび電気化学素子 WO2006062153A1 (ja)

Priority Applications (17)

Application Number Priority Date Filing Date Title
US11/666,921 US11050095B2 (en) 2004-12-08 2005-12-08 Separator for electrochemical device, and electrochemical device
KR1020097010813A KR100935003B1 (ko) 2004-12-08 2005-12-08 전기화학 소자용 세퍼레이터 및 전기화학 소자
CA2586062A CA2586062C (en) 2004-12-08 2005-12-08 Separator for electrochemical device, and electrochemical device
EP05814154.0A EP1826842B1 (en) 2004-12-08 2005-12-08 Separator for electrochemical cell and electrochemical cell
JP2006329646A JP4184404B2 (ja) 2005-12-08 2006-12-06 電気化学素子用セパレータおよび電気化学素子
PCT/JP2006/324581 WO2007066768A1 (ja) 2005-12-08 2006-12-08 電気化学素子用セパレータとその製造方法、並びに電気化学素子とその製造方法
CN2011101597406A CN102244221A (zh) 2005-12-08 2006-12-08 电化学元件用隔板
KR1020087016484A KR101105748B1 (ko) 2005-12-08 2006-12-08 전기화학소자용 세퍼레이터와 그 제조방법, 및전기화학소자와 그 제조방법
KR1020117011764A KR101166091B1 (ko) 2005-12-08 2006-12-08 전기화학소자용 세퍼레이터
CN2006800248797A CN101218695B (zh) 2005-12-08 2006-12-08 电化学元件用隔板及其制造方法以及电化学元件及其制造方法
CN2011101597321A CN102244220A (zh) 2005-12-08 2006-12-08 电化学元件用隔板
JP2007522324A JP4151852B2 (ja) 2005-12-08 2006-12-08 電気化学素子用セパレータとその製造方法、並びに電気化学素子とその製造方法
US11/919,652 US8405957B2 (en) 2005-12-08 2006-12-08 Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
EP06834336.7A EP1965454B1 (en) 2005-12-08 2006-12-08 Separator for electrochemical device and method for producing same, and electrochemical device and method for manufacturing same
JP2008040312A JP5219191B2 (ja) 2005-12-08 2008-02-21 電気化学素子用セパレータおよび電気化学素子
JP2008043512A JP5038186B2 (ja) 2005-12-08 2008-02-25 電気化学素子用セパレータおよび電気化学素子
JP2008124988A JP5148360B2 (ja) 2005-12-08 2008-05-12 セパレータ用多孔質基体、電気化学素子用セパレータ、電極および電気化学素子

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004354850A JP4743747B2 (ja) 2004-12-08 2004-12-08 セパレータおよびその製造方法、並びに非水電解質電池
JP2004-354850 2004-12-08
JP2005-232250 2005-08-10
JP2005232250 2005-08-10
JP2005309465 2005-10-25
JP2005-309465 2005-10-25

Publications (1)

Publication Number Publication Date
WO2006062153A1 true WO2006062153A1 (ja) 2006-06-15

Family

ID=36577976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022540 WO2006062153A1 (ja) 2004-12-08 2005-12-08 電気化学素子用セパレータおよび電気化学素子

Country Status (3)

Country Link
US (1) US11050095B2 (ja)
CA (1) CA2586062C (ja)
WO (1) WO2006062153A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210782A (ja) * 2007-01-29 2008-09-11 Hitachi Maxell Ltd 電池用セパレータ、電池用セパレータの製造方法およびリチウム二次電池
WO2008114727A1 (ja) * 2007-03-15 2008-09-25 Hitachi Maxell, Ltd. 電気化学素子用セパレータ、電気化学素子用電極および電気化学素子
EP2031611A1 (en) * 2006-07-14 2009-03-04 Panasonic Corporation Electric double layer capacitor and method for manufacturing same
EP2034540A1 (de) * 2007-09-07 2009-03-11 Carl Freudenberg KG Vliesstoff mit Partikelfüllung
JP2009224341A (ja) * 2006-09-07 2009-10-01 Hitachi Maxell Ltd 電池用セパレータとその製造方法、およびリチウム二次電池
JP2009272153A (ja) * 2008-05-08 2009-11-19 Hitachi Maxell Ltd リチウム二次電池
WO2010052786A1 (ja) * 2008-11-07 2010-05-14 トヨタ自動車株式会社 電池、車両及び電池搭載機器
JP2011517704A (ja) * 2008-02-20 2011-06-16 カール・フロイデンベルク・カー・ゲー 架橋材料を含むフリース布
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
WO2013051079A1 (ja) * 2011-10-03 2013-04-11 日立マクセル株式会社 耐熱性多孔質膜、非水電池用セパレータおよび非水電池
WO2013133025A1 (ja) * 2012-03-06 2013-09-12 ソニー株式会社 セパレータ、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
CN104051687A (zh) * 2014-07-07 2014-09-17 中国科学院宁波材料技术与工程研究所 一种多孔隔膜、其制备方法及锂离子电池
US8920960B2 (en) 2007-07-04 2014-12-30 Hitachi Maxell, Ltd. Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
US9166251B2 (en) 2007-10-03 2015-10-20 Hitachi Maxell, Ltd. Battery separator and nonaqueous electrolyte battery
US9972816B2 (en) 2008-01-29 2018-05-15 Microconnect Corp. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
WO2019004175A1 (ja) * 2017-06-29 2019-01-03 東レ株式会社 電池用セパレータ、電極積層体、電極巻回体、及び電池
US11258136B2 (en) 2018-03-15 2022-02-22 Ricoh Company, Ltd. Porous insulator, electrode, and nonaqueous power storage element

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210686A (ja) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
KR100908977B1 (ko) * 2007-03-29 2009-07-22 삼성에스디아이 주식회사 이차전지의 전극 조립체
JP5879018B2 (ja) 2007-05-10 2016-03-08 日立マクセル株式会社 電気化学素子およびその製造方法
KR100947181B1 (ko) * 2007-11-19 2010-03-15 주식회사 엘지화학 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자
KR100995074B1 (ko) * 2007-12-11 2010-11-18 삼성에스디아이 주식회사 비수계 리튬 이차전지용 세퍼레이터 및 이를 포함하는 비수계 리튬 이차전지
KR101031880B1 (ko) * 2008-01-08 2011-05-02 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 리튬 이차 전지
CN101981117B (zh) * 2008-03-26 2013-05-01 爱克工业株式会社 热熔组合物、密封材料和太阳能电池
JP2010034024A (ja) * 2008-06-25 2010-02-12 Hitachi Maxell Ltd リチウムイオン二次電池
EP2306552B1 (en) * 2008-07-16 2014-11-26 Toray Industries, Inc. Separator for electricity storage device
JP5689800B2 (ja) 2008-09-03 2015-03-25 エルジー・ケム・リミテッド 多孔性コーティング層を備えたセパレータ及びこれを備えた電気化学素子
KR101562276B1 (ko) * 2008-09-12 2015-10-21 니혼바이린 가부시기가이샤 리튬 이온 이차 전지용 세퍼레이터, 그의 제조 방법 및 리튬 이온 이차 전지
JP5163439B2 (ja) * 2008-11-19 2013-03-13 Tdk株式会社 繊維含有高分子膜及びその製造方法、並びに、電気化学デバイス及びその製造方法
KR101091228B1 (ko) 2008-12-30 2011-12-07 주식회사 엘지화학 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2010104127A1 (ja) * 2009-03-13 2010-09-16 日立マクセル株式会社 電池用セパレータおよびそれを用いた非水電解液電池
KR101055536B1 (ko) 2009-04-10 2011-08-08 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
DE102009028145A1 (de) * 2009-07-31 2011-02-03 Evonik Degussa Gmbh Keramische Membranen mit Polyaramid-Faser haltigen Supportmaterialien und Verfahren zur Herstellung dieser Membranen
EP2485295B1 (en) 2009-09-30 2019-03-20 Zeon Corporation Porous membrane for secondary battery, and secondary battery
KR20110083515A (ko) 2010-01-13 2011-07-20 소니 주식회사 세퍼레이터 및 비수 전해질 전지
WO2011135801A1 (ja) 2010-04-27 2011-11-03 パナソニック株式会社 シート状繊維構造体およびそれを用いた電池、断熱材、防水シート、および細胞培養用の足場
CN108320916A (zh) * 2010-08-02 2018-07-24 赛尔格有限责任公司 超高熔温微孔高温电池的隔板及其相关方法
HUE040024T2 (hu) * 2010-08-09 2019-02-28 Zeon Corp Porózus membrán újratölthetõ telephez, annak gyártási eljárása és alkalmazása
WO2012019626A1 (de) * 2010-08-11 2012-02-16 Carl Freudenberg Kg Separator mit erhöhter durchstossfestigkeit
JP5820158B2 (ja) * 2010-08-18 2015-11-24 セイコーインスツル株式会社 電気二重層キャパシタ及びその製造方法
WO2012040407A1 (en) 2010-09-22 2012-03-29 Daramic Llc Batteries, separators, components, and compositions with heavy metal removal capability and related methods
EP4050069A1 (en) * 2010-09-22 2022-08-31 Daramic, LLC Improved separator for lead acid batteries and use of the separator
KR20130108594A (ko) * 2010-09-30 2013-10-04 어플라이드 머티어리얼스, 인코포레이티드 리튬―이온 배터리들을 위한 일체형 분리막의 전기방사
JP5768359B2 (ja) 2010-11-17 2015-08-26 ソニー株式会社 耐熱性微多孔膜、電池用セパレータ及びリチウムイオン二次電池
JP5796367B2 (ja) 2011-06-22 2015-10-21 日産自動車株式会社 耐熱絶縁層付セパレータ
JP5922665B2 (ja) * 2011-09-29 2016-05-24 日立マクセル株式会社 リチウム二次電池
JP6336703B2 (ja) 2011-10-05 2018-06-06 日産自動車株式会社 耐熱絶縁層付セパレータ
DE112011105851B4 (de) * 2011-11-15 2021-07-15 Toyota Jidosha Kabushiki Kaisha Nicht-wässrige Elektrolyt-Sekundärbatterie
JP6018498B2 (ja) 2012-02-09 2016-11-02 三菱製紙株式会社 リチウムイオン二次電池セパレータ用基材、リチウムイオン二次電池セパレータ用基材の製造方法及びリチウムイオン二次電池セパレータ
WO2013126490A1 (en) * 2012-02-21 2013-08-29 Arkema Inc. Aqueous polyvinylidene fluoride composition
JP5497245B2 (ja) * 2012-03-09 2014-05-21 帝人株式会社 非水系二次電池用セパレータ、その製造方法および非水系二次電池
US9620760B2 (en) * 2012-03-28 2017-04-11 Zeon Corporation Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
WO2013153954A1 (ja) * 2012-04-13 2013-10-17 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその製造方法
US10096810B2 (en) * 2012-05-10 2018-10-09 Samsung Sdi Co., Ltd. Separator and method of manufacturing the same and rechargeable lithium battery including the same
US9525160B2 (en) * 2012-05-15 2016-12-20 The Regents Of The University Of California High-rate overcharge-protection separators for rechargeable lithium-ion batteries and the method of making the same
TW201351757A (zh) * 2012-06-11 2013-12-16 Enerage Inc 電化學隔離膜結構及其製作方法
JP5984051B2 (ja) 2012-07-12 2016-09-06 株式会社Gsユアサ 電極体
EP2899777B1 (en) * 2012-09-19 2017-11-08 Asahi Kasei Kabushiki Kaisha Separator, manufacturing method thereof, and lithium ion secondary cell
CN104037375B (zh) * 2013-03-06 2017-04-19 万向电动汽车有限公司 一种锂离子动力电池用隔膜及其制作方法
CN104051689B (zh) * 2013-03-13 2020-06-02 三星Sdi株式会社 隔板和包括该隔板的可再充电锂电池
CN103441230B (zh) * 2013-08-21 2016-03-09 东莞新能源科技有限公司 有机/无机复合多孔隔离膜及其制备方法及电化学装置
US10903467B2 (en) 2013-12-24 2021-01-26 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including same
CN106163807B (zh) 2014-04-09 2018-04-24 住友化学株式会社 层叠多孔膜及非水电解液二次电池
CN106463675B (zh) * 2014-06-27 2019-04-19 日本瑞翁株式会社 非水系二次电池功能层用组合物、非水系二次电池用功能层和非水系二次电池
JP6645430B2 (ja) * 2014-08-11 2020-02-14 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
US11283136B2 (en) 2014-09-29 2022-03-22 Gs Yuasa International Ltd. Energy storage device and method of producing energy storage device
WO2016056289A1 (ja) 2014-10-10 2016-04-14 住友化学株式会社 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
KR20160102108A (ko) 2014-10-10 2016-08-29 스미또모 가가꾸 가부시키가이샤 적층체, 적층체를 포함하는 비수 전해액 이차 전지용 세퍼레이터, 및 비수 전해액 이차 전지
KR101831354B1 (ko) 2014-10-24 2018-02-22 주식회사 엘지화학 유/무기 복합 다공층을 포함하는 이차 전지용 세퍼레이터 및 이의 제조 방법
KR102297823B1 (ko) * 2014-11-21 2021-09-02 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
WO2016161367A1 (en) 2015-04-03 2016-10-06 The Regents Of The University Of California Polymeric materials for electrochemical cells and ion separation processes
JP6451506B2 (ja) * 2015-05-28 2019-01-16 トヨタ自動車株式会社 電極の製造方法
US10153474B1 (en) 2015-09-30 2018-12-11 Apple Inc. Separators having improved temperature ranges for battery shutdown
CN109661737B (zh) 2016-09-08 2022-12-20 三菱制纸株式会社 锂离子电池隔板用基材和锂离子电池隔板
EP3293801A1 (en) * 2016-09-12 2018-03-14 Lithium Energy and Power GmbH & Co. KG Electrode with an improved security behavior and battery cell comprising the same
CN109804496A (zh) 2016-09-28 2019-05-24 赛鹏科技有限公司 多孔隔板提供离子隔离的电化学电池
JP6536524B2 (ja) * 2016-10-03 2019-07-03 トヨタ自動車株式会社 セパレータ一体電極板、及びこれを用いた蓄電素子
JP7298845B2 (ja) 2016-12-07 2023-06-27 セピオン テクノロジーズ,インコーポレイティド 微細構造化イオン伝導性複合体及びその使用
JP6472822B2 (ja) 2017-03-03 2019-02-20 住友化学株式会社 非水電解液二次電池用セパレータ
JP7226314B2 (ja) * 2017-07-18 2023-02-21 株式会社Gsユアサ 電極、蓄電素子、及び電極の製造方法
EP3435466A1 (en) * 2017-07-24 2019-01-30 Robert Bosch GmbH Safety device, safety system, safeguarded battery unit and method for decreasing the total power output of a battery element
JP6936670B2 (ja) 2017-09-14 2021-09-22 三洋化成工業株式会社 リチウムイオン電池用セパレータ
US11367927B2 (en) * 2018-05-14 2022-06-21 International Business Machines Corporation Separator for energy storage device
KR102259219B1 (ko) 2018-07-03 2021-05-31 삼성에스디아이 주식회사 리튬 이차 전지
KR102259218B1 (ko) 2018-07-03 2021-05-31 삼성에스디아이 주식회사 리튬 이차 전지용 전극, 및 이를 포함하는 리튬 이차 전지
KR102388261B1 (ko) 2018-10-12 2022-04-18 주식회사 엘지에너지솔루션 다공성 분리막 및 이를 포함하는 리튬 이차 전지
CN109411675B (zh) * 2018-10-30 2021-08-24 安徽金力新能源有限公司 一种镍钴锰/镍钴铝酸锂电池及其用功能性隔膜和该隔膜的生产工艺
KR102323950B1 (ko) 2018-12-12 2021-11-08 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
JP7085147B2 (ja) 2019-04-09 2022-06-16 トヨタ自動車株式会社 非水電解質二次電池
JP7085149B2 (ja) * 2019-04-09 2022-06-16 トヨタ自動車株式会社 非水電解質二次電池
JP7277234B2 (ja) 2019-04-16 2023-05-18 住友化学株式会社 非水電解液二次電池用積層セパレータ
KR102425515B1 (ko) 2019-05-03 2022-07-25 삼성에스디아이 주식회사 리튬 이차 전지
KR102487628B1 (ko) 2019-05-03 2023-01-12 삼성에스디아이 주식회사 리튬 이차 전지
KR102492832B1 (ko) 2019-05-03 2023-01-26 삼성에스디아이 주식회사 리튬 이차 전지
KR102425513B1 (ko) 2019-05-03 2022-07-25 삼성에스디아이 주식회사 리튬 이차 전지
KR102425514B1 (ko) 2019-05-03 2022-07-25 삼성에스디아이 주식회사 리튬 이차 전지
KR102492831B1 (ko) 2019-05-03 2023-01-26 삼성에스디아이 주식회사 리튬 이차 전지
CN111987277B (zh) * 2019-05-22 2022-11-08 聚和国际股份有限公司 多孔性载体以及电化学装置隔离膜
US12021258B2 (en) 2020-07-07 2024-06-25 Sk Innovation Co., Ltd. Separator having inorganic composite layer including inorganic particles and one-dimensional inorganic material and electrochemical device using the same
US11990643B2 (en) 2020-07-07 2024-05-21 Sk Innovation Co., Ltd. Separator having inorganic composite layer including inorganic particles and one-dimensional inorganic material without polymer-based organic binder and electrochemical device using the same
KR20220010463A (ko) * 2020-07-17 2022-01-25 주식회사 엘지에너지솔루션 세퍼레이터 및 이를 포함하는 전기화학소자
WO2023179248A1 (zh) * 2022-03-25 2023-09-28 宁德时代新能源科技股份有限公司 隔离膜及其制备方法、电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042867A (ja) * 2000-07-31 2002-02-08 Sanyo Electric Co Ltd リチウムイオン二次電池
JP2002541633A (ja) * 1999-03-31 2002-12-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 非水系バッテリに用いる細孔質電極又は隔壁及びその製造方法
JP2003007279A (ja) * 2001-06-21 2003-01-10 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2003317693A (ja) * 2002-04-24 2003-11-07 Teijin Ltd リチウムイオン二次電池用セパレータ
JP2004241135A (ja) * 2003-02-03 2004-08-26 Matsushita Electric Ind Co Ltd 二次電池およびその製造法

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU524460B2 (en) * 1978-08-11 1982-09-16 Asahi Kasei Kogyo Kabushiki Kaisha Microporous film
NL8303079A (nl) * 1983-09-05 1985-04-01 Stichting Energie Werkwijze voor de bereiding van scheurvrije semi-permeabele anorganische membranen.
JPS60136161A (ja) 1983-12-26 1985-07-19 Japan Vilene Co Ltd リチウム電池用セパレ−タ材
JPS6177687A (ja) 1984-09-22 1986-04-21 エスケ−化研株式会社 耐火性能の優れた組成物
US4741979A (en) 1986-05-19 1988-05-03 Eastman Kodak Company Battery separator assembly
JPH01258358A (ja) 1988-04-06 1989-10-16 Japan Vilene Co Ltd リチウム電池用セパレータ
JP2745308B2 (ja) 1988-09-20 1998-04-28 日本無機株式会社 蓄電池用セパレータの製造法
JPH04340972A (ja) 1991-05-17 1992-11-27 Minolta Camera Co Ltd 静電荷像現像用トナー
JPH0574436A (ja) 1991-09-13 1993-03-26 Asahi Chem Ind Co Ltd 電池用セパレーター
JPH05335005A (ja) 1992-06-02 1993-12-17 Asahi Chem Ind Co Ltd セパレータ
KR100283901B1 (ko) * 1995-03-31 2001-03-02 온다 요시히로 비수 전해액 전지 세파레이터용 부직포 및 이것을 사용한 비수 전해액 전지
JPH08287949A (ja) 1995-04-07 1996-11-01 Matsushita Electric Ind Co Ltd リチウム・ポリマー電池およびその製造法
CA2226366C (en) 1995-08-28 2002-05-21 Asahi Kasei Kogyo Kabushiki Kaisha Novel battery and method for producing the same
JP3376191B2 (ja) 1995-11-08 2003-02-10 キヤノン株式会社 静電荷像現像用トナー
JP3549661B2 (ja) 1996-03-19 2004-08-04 株式会社クラレ 電池用セパレ−タ
EP0898316A4 (en) * 1997-01-16 2005-05-25 Mitsubishi Paper Mills Ltd SEPARATOR FOR NON-AQUEOUS ELECTROLYTE BATTERY, THE PRODUCTION THEREOF AND ITS USE IN SUCH BATTERY
JPH1140130A (ja) 1997-07-18 1999-02-12 Oji Paper Co Ltd 二次電池用セパレータ
JPH11185773A (ja) 1997-12-18 1999-07-09 Sony Corp ゲル状電解質電池
US6153337A (en) 1997-12-19 2000-11-28 Moltech Corporation Separators for electrochemical cells
DE69841381D1 (de) 1998-01-19 2010-01-28 Mitsubishi Electric Corp Sekundärbatterie ausgestaltet mit klebharzschichten
US6811928B2 (en) 1998-01-22 2004-11-02 Mitsubishi Denki Kabushiki Kaisha Battery with adhesion resin layer including filler
TW460505B (en) 1998-04-27 2001-10-21 Sumitomo Chemical Co Separator for nonaqueous electrolyte battery and lithium secondary battery made from the same
JP3175730B2 (ja) 1998-04-27 2001-06-11 住友化学工業株式会社 非水電解質電池セパレーターとリチウム二次電池
JP2000048639A (ja) 1998-07-29 2000-02-18 Asahi Chem Ind Co Ltd 複合構造ゲル電解質シート積層体
JP3283475B2 (ja) * 1998-09-16 2002-05-20 河合石灰工業株式会社 板状ベーマイト及び板状アルミナ並びにそれらの製造方法
DE19850826A1 (de) * 1998-11-04 2000-05-11 Basf Ag Als Separatoren in elektrochemischen Zellen geeignete Verbundkörper
US20020012848A1 (en) * 1999-02-26 2002-01-31 Callahan Robert W. Electrochemical cell incorporating polymer matrix material
JP4075208B2 (ja) 1999-04-23 2008-04-16 宇部興産株式会社 多孔質フィルム及びそれを用いた電池用セパレータ
US20030129379A1 (en) 1999-04-23 2003-07-10 Shigeru Yao Porous insulating film and its laminates
JP4538866B2 (ja) 1999-06-07 2010-09-08 パナソニック株式会社 非水電解液電気化学装置
WO2000079618A1 (en) 1999-06-22 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Separator for cell, cell, and method for producing separator
JP2001084987A (ja) 1999-09-14 2001-03-30 Toshiba Corp 電気化学デバイス
JP4812919B2 (ja) 1999-09-24 2011-11-09 日本板硝子株式会社 非水電解液電池用セパレータ
CN1236508C (zh) 1999-11-10 2006-01-11 宇部兴产株式会社 电池隔膜和锂二次电池
JP4470288B2 (ja) 2000-07-07 2010-06-02 宇部興産株式会社 電池用セパレータ及びそれを用いたリチウム二次電池
JP4470248B2 (ja) 1999-11-10 2010-06-02 宇部興産株式会社 電池用セパレータ
JP2001266828A (ja) 2000-03-17 2001-09-28 Nippon Muki Co Ltd 非水電解液電池用セパレータ
JP2001291503A (ja) 2000-04-05 2001-10-19 Japan Vilene Co Ltd 電池用セパレータ
US6432586B1 (en) 2000-04-10 2002-08-13 Celgard Inc. Separator for a high energy rechargeable lithium battery
TW595035B (en) 2000-08-30 2004-06-21 Sumitomo Chemical Co Separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4712251B2 (ja) 2000-09-22 2011-06-29 帝人株式会社 両面同時塗工方法
JP2002151040A (ja) 2000-11-13 2002-05-24 Kuraray Co Ltd セパレータ
JP2002237332A (ja) 2001-02-08 2002-08-23 Oji Paper Co Ltd ポリマー電池用不織布複合化ゲル状電解質
JP4060562B2 (ja) 2001-05-02 2008-03-12 日本碍子株式会社 電極体の評価方法
US6881515B2 (en) * 2001-05-08 2005-04-19 Celgard Inc. Separator for polymer battery
WO2003014251A1 (en) 2001-08-09 2003-02-20 Hitachi Maxell, Ltd. Non-magnetic particles having a plate shape and method for production thereof, abrasive material, polishing article and abrasive fluid comprising such particles
DE10142622A1 (de) 2001-08-31 2003-03-20 Creavis Tech & Innovation Gmbh Elektrischer Separator, Verfahren zu dessen Herstellung und Verwendung
JP4424581B2 (ja) 2001-09-26 2010-03-03 日立マクセル株式会社 非磁性板状粒子とその製造方法、およびこの粒子を用いた研磨材、研磨体、研磨液
JP2003123728A (ja) 2001-10-17 2003-04-25 Oji Paper Co Ltd 非水系二次電池用セパレータ
JP4204231B2 (ja) 2001-11-08 2009-01-07 日本碍子株式会社 リチウム二次電池
DE10238945B4 (de) 2002-08-24 2013-01-03 Evonik Degussa Gmbh Elektrischer Separator mit Abschaltmechanismus, Verfahren zu dessen Herstellung, Verwendung des Separators in Lithium-Batterien und Batterie mit dem Separator
JP2004111157A (ja) 2002-09-17 2004-04-08 Matsushita Electric Ind Co Ltd 二次電池およびその製造方法
DE10255121B4 (de) 2002-11-26 2017-09-14 Evonik Degussa Gmbh Separator mit asymmetrischem Porengefüge für eine elektrochemische Zelle
JP2004273282A (ja) 2003-03-10 2004-09-30 Mitsubishi Electric Corp 電池の製造方法
JP4045989B2 (ja) 2003-03-25 2008-02-13 松下電器産業株式会社 電気化学素子用セパレータ
JP4593566B2 (ja) 2003-06-17 2010-12-08 ナノフィル カンパニー リミテッド 電気化学素子用複合膜、その製造方法及びこれを備えた電気化学素子
KR100470314B1 (ko) 2003-06-17 2005-02-07 (주)삼신크리에이션 전기화학소자용 복합막, 그 제조방법 및 이를 구비한전기화학소자
KR101285032B1 (ko) * 2003-08-11 2013-07-11 우베 고산 가부시키가이샤 리튬 2차 전지 및 그의 비수 전해액
DE10347566A1 (de) 2003-10-14 2005-05-12 Degussa Keramischer Separator für elektrochemische Zellen mit verbesserter Leitfähigkeit
KR100647966B1 (ko) 2004-02-24 2006-11-23 가부시키가이샤 도모에가와 세이시쇼 전자부품용 세퍼레이터 및 그 제조방법
JP4495516B2 (ja) 2004-05-14 2010-07-07 株式会社巴川製紙所 電子部品用セパレータ及びその製造方法
KR100699215B1 (ko) 2004-03-19 2007-03-27 가부시키가이샤 도모에가와 세이시쇼 전자부품용 세퍼레이터 및 그 제조 방법
JP4974448B2 (ja) 2004-04-07 2012-07-11 株式会社巴川製紙所 電子部品用セパレータの製造方法
DE102004018930A1 (de) 2004-04-20 2005-11-17 Degussa Ag Verwendung eines keramischen Separators in Lithium-Ionenbatterien, die einen Elektrolyten aufweisen, der ionische Flüssigkeiten enthält
JP4531444B2 (ja) 2004-05-26 2010-08-25 パナソニック株式会社 リチウムイオン二次電池用電極の製造方法
KR100659820B1 (ko) 2004-11-17 2006-12-19 삼성에스디아이 주식회사 리튬 이온 이차 전지
KR100775310B1 (ko) 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
KR100659854B1 (ko) 2005-04-28 2006-12-19 삼성에스디아이 주식회사 리튬 이차 전지
WO2007066768A1 (ja) 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. 電気化学素子用セパレータとその製造方法、並びに電気化学素子とその製造方法
KR101223081B1 (ko) 2006-09-07 2013-01-17 히다치 막셀 가부시키가이샤 전지용 세퍼레이터 및 리튬 2차 전지
KR101281568B1 (ko) * 2007-03-15 2013-07-03 히다치 막셀 가부시키가이샤 전기 화학 소자용 세퍼레이터, 전기 화학 소자용 전극 및 전기 화학 소자
JP2010120813A (ja) 2008-11-20 2010-06-03 Kawai Sekkai Kogyo Kk ベーマイトの用途
WO2013066052A1 (ko) 2011-11-01 2013-05-10 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541633A (ja) * 1999-03-31 2002-12-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 非水系バッテリに用いる細孔質電極又は隔壁及びその製造方法
JP2002042867A (ja) * 2000-07-31 2002-02-08 Sanyo Electric Co Ltd リチウムイオン二次電池
JP2003007279A (ja) * 2001-06-21 2003-01-10 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2003317693A (ja) * 2002-04-24 2003-11-07 Teijin Ltd リチウムイオン二次電池用セパレータ
JP2004241135A (ja) * 2003-02-03 2004-08-26 Matsushita Electric Ind Co Ltd 二次電池およびその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1826842A4 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
EP2031611A4 (en) * 2006-07-14 2011-06-22 Panasonic Corp DOUBLE LAYER ELECTRICAL CAPACITOR AND METHOD FOR MANUFACTURING THE SAME
EP2031611A1 (en) * 2006-07-14 2009-03-04 Panasonic Corporation Electric double layer capacitor and method for manufacturing same
US9166250B2 (en) 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
JP2013030497A (ja) * 2006-09-07 2013-02-07 Hitachi Maxell Ltd リチウム二次電池
JP2009224341A (ja) * 2006-09-07 2009-10-01 Hitachi Maxell Ltd 電池用セパレータとその製造方法、およびリチウム二次電池
JP2010157521A (ja) * 2006-09-07 2010-07-15 Hitachi Maxell Ltd 電池用セパレータおよびそれを用いたリチウム二次電池
JP2008210782A (ja) * 2007-01-29 2008-09-11 Hitachi Maxell Ltd 電池用セパレータ、電池用セパレータの製造方法およびリチウム二次電池
JP2014017264A (ja) * 2007-01-29 2014-01-30 Hitachi Maxell Ltd 電池用セパレータ、電池用セパレータの製造方法およびリチウム二次電池
KR101281568B1 (ko) * 2007-03-15 2013-07-03 히다치 막셀 가부시키가이샤 전기 화학 소자용 세퍼레이터, 전기 화학 소자용 전극 및 전기 화학 소자
JPWO2008114727A1 (ja) * 2007-03-15 2010-07-01 日立マクセル株式会社 電気化学素子用セパレータ、電気化学素子用電極および電気化学素子
JP5193998B2 (ja) * 2007-03-15 2013-05-08 日立マクセル株式会社 電気化学素子用セパレータ、電気化学素子用電極および電気化学素子
US8822082B2 (en) 2007-03-15 2014-09-02 Hitachi Maxwell, Ltd. Separator for electrochemical device, electrode for electrochemical device, and electrochemical device
WO2008114727A1 (ja) * 2007-03-15 2008-09-25 Hitachi Maxell, Ltd. 電気化学素子用セパレータ、電気化学素子用電極および電気化学素子
US8920960B2 (en) 2007-07-04 2014-12-30 Hitachi Maxell, Ltd. Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
US9172074B2 (en) 2007-09-07 2015-10-27 Carl Freudenberg Kg Nonwoven material with particle filler
CN108023049A (zh) * 2007-09-07 2018-05-11 卡尔·弗罗伊登伯格公司 用颗粒填充的非织造材料
KR101138581B1 (ko) * 2007-09-07 2012-05-10 칼 프로이덴베르크 카게 입자 충전재가 포함된 부직포 재료
WO2009033514A1 (de) * 2007-09-07 2009-03-19 Carl Freudenberg Kg Vliesstoff mit partikelfüllung
EP2034540A1 (de) * 2007-09-07 2009-03-11 Carl Freudenberg KG Vliesstoff mit Partikelfüllung
KR101123984B1 (ko) * 2007-09-07 2012-03-23 칼 프로이덴베르크 카게 입자로 충전된 부직포 재료
JP2010538173A (ja) * 2007-09-07 2010-12-09 カール・フロイデンベルク・カー・ゲー 粒子が充填された不織材料
CN108023049B (zh) * 2007-09-07 2021-10-29 卡尔·弗罗伊登伯格公司 用颗粒填充的非织造材料
WO2009033627A1 (de) * 2007-09-07 2009-03-19 Carl Freudenberg Kg Vliesstoff mit partikelfüllung
JP2010538172A (ja) * 2007-09-07 2010-12-09 カール・フロイデンベルク・カー・ゲー 粒子が充填された不織材料
US9166251B2 (en) 2007-10-03 2015-10-20 Hitachi Maxell, Ltd. Battery separator and nonaqueous electrolyte battery
US9972816B2 (en) 2008-01-29 2018-05-15 Microconnect Corp. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
US9159979B2 (en) 2008-02-20 2015-10-13 Carl Freudenberg Kg Nonwoven fabric having cross-linking material
JP2011517704A (ja) * 2008-02-20 2011-06-16 カール・フロイデンベルク・カー・ゲー 架橋材料を含むフリース布
JP2009272153A (ja) * 2008-05-08 2009-11-19 Hitachi Maxell Ltd リチウム二次電池
CN102210040A (zh) * 2008-11-07 2011-10-05 丰田自动车株式会社 电池、车辆以及电池搭载设备
WO2010052786A1 (ja) * 2008-11-07 2010-05-14 トヨタ自動車株式会社 電池、車両及び電池搭載機器
WO2013051079A1 (ja) * 2011-10-03 2013-04-11 日立マクセル株式会社 耐熱性多孔質膜、非水電池用セパレータおよび非水電池
US9287544B2 (en) 2011-10-03 2016-03-15 Hitachi Maxell, Ltd. Heat-resistant porous film, separator for nonaqueous battery, and nonaqueous battery
US9496534B2 (en) 2012-03-06 2016-11-15 Sony Corporation Separator, battery, battery pack, electronic apparatus, electric vehicle, electric storage device, and power system
WO2013133025A1 (ja) * 2012-03-06 2013-09-12 ソニー株式会社 セパレータ、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US10243189B2 (en) 2012-03-06 2019-03-26 Murata Manufacturing Co., Ltd. Separator, battery, battery pack, electronic apparatus, electric vehicle, electric storage device, and power system
CN104051687A (zh) * 2014-07-07 2014-09-17 中国科学院宁波材料技术与工程研究所 一种多孔隔膜、其制备方法及锂离子电池
WO2019004175A1 (ja) * 2017-06-29 2019-01-03 東レ株式会社 電池用セパレータ、電極積層体、電極巻回体、及び電池
JPWO2019004175A1 (ja) * 2017-06-29 2020-04-30 東レ株式会社 電池用セパレータ、電極積層体、電極巻回体、及び電池
US11258136B2 (en) 2018-03-15 2022-02-22 Ricoh Company, Ltd. Porous insulator, electrode, and nonaqueous power storage element

Also Published As

Publication number Publication date
US11050095B2 (en) 2021-06-29
CA2586062C (en) 2013-04-02
US20070264577A1 (en) 2007-11-15
CA2586062A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP4184404B2 (ja) 電気化学素子用セパレータおよび電気化学素子
WO2006062153A1 (ja) 電気化学素子用セパレータおよび電気化学素子
JP5611505B2 (ja) 電池用セパレータおよびリチウム二次電池
KR101166091B1 (ko) 전기화학소자용 세퍼레이터
JP5403857B2 (ja) 電池用セパレータ、その製造方法およびリチウム二次電池
JP5093882B2 (ja) 電気化学素子用セパレータ、電気化学素子および電気化学素子の製造方法
JP5101569B2 (ja) 電池用セパレータとその製造方法、およびリチウム二次電池
EP1826842B1 (en) Separator for electrochemical cell and electrochemical cell
WO2013051079A1 (ja) 耐熱性多孔質膜、非水電池用セパレータおよび非水電池
JP5148360B2 (ja) セパレータ用多孔質基体、電気化学素子用セパレータ、電極および電気化学素子
JP2008041581A (ja) 巻回体電極群、角形二次電池およびラミネート形二次電池
JP2009032677A (ja) セパレータ用多孔質膜およびその製造方法、電池用セパレータおよびその製造方法、電池用電極およびその製造方法、ならびにリチウム二次電池
JP2008027839A (ja) ライナー付き多孔質膜、多孔質膜の製造方法、およびリチウム二次電池の製造方法
JP2008066094A (ja) 電池用セパレータおよびリチウム二次電池
JP2008004442A (ja) リチウム二次電池用セパレータおよびリチウム二次電池
JP2008004439A (ja) 電池用セパレータ、およびリチウム二次電池
JP2008004441A (ja) リチウム二次電池、リチウム二次電池用セパレータ、リチウム二次電池用電極、リチウム二次電池用非水電解液およびリチウム二次電池用外装体
JP2008004440A (ja) リチウム二次電池、およびその使用方法
JPWO2013051079A1 (ja) 耐熱性多孔質膜、非水電池用セパレータおよび非水電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 2005-232250

Country of ref document: JP

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 2005-309465

Country of ref document: JP

Date of ref document: 20051025

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

WWE Wipo information: entry into national phase

Ref document number: 200580036485.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2586062

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005814154

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11666921

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077010172

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005814154

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11666921

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097010813

Country of ref document: KR