TW201351757A - 電化學隔離膜結構及其製作方法 - Google Patents

電化學隔離膜結構及其製作方法 Download PDF

Info

Publication number
TW201351757A
TW201351757A TW101120929A TW101120929A TW201351757A TW 201351757 A TW201351757 A TW 201351757A TW 101120929 A TW101120929 A TW 101120929A TW 101120929 A TW101120929 A TW 101120929A TW 201351757 A TW201351757 A TW 201351757A
Authority
TW
Taiwan
Prior art keywords
fiber
polymer
base phase
inorganic particles
electrochemical
Prior art date
Application number
TW101120929A
Other languages
English (en)
Inventor
yi-shun Wu
cheng-you Xie
yuan-xin Zhang
Jing-Ru Chen
shu-ling Xie
Original Assignee
Enerage Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerage Inc filed Critical Enerage Inc
Priority to TW101120929A priority Critical patent/TW201351757A/zh
Priority to US13/671,386 priority patent/US20130327702A1/en
Publication of TW201351757A publication Critical patent/TW201351757A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/54Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/40Fibre reinforced membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一種電化學隔離膜結構及其製作方法,該電化學隔離膜結構包含:基相高分子部分,為連續相結構;纖維支撐部份,以條狀方式分佈於該基相高分子部分中,以提供機械強度;以及複數個無機粒子,均勻地分佈於基相高分子部分中,佔整體0.1wt%~50wt%,其中該纖維支撐部份為多孔性結構,且具有孔隙,而使得基相高分子部分填入於孔隙之中,藉此具有較佳的連接性,且透過無機粒子有效降低隔離膜的收縮現象,進而改善高溫時的安全性能,進而,將電化學隔離膜結構應用於鋰電池中,能有效降低整體元件的電阻值,不但有較高的充放電電容量,也提升了整體元件的壽命。

Description

電化學隔離膜結構及其製作方法
本發明涉及一種電化學隔離膜結構及其製作方法,主要用於鋰電池中,用以改善收縮現象及高溫時的安全性能。
二次鋰離子電池具有能量密度高、循環壽命長等優點,自問世以來即迅速取代了鎳鎘、鎳氫等傳統二次電池的地位,自1991年日本Sony公司率先將其商品化之後,市場佔有率持續增加,僅僅十餘年,全球產值就超過了鎳鎘和鎳氫電池之總和。隨著對現有材料和電池設計技術的改進以及新材料的出現,鋰離子電池的應用領域不斷被拓展,尤其是近年來3C電子產品不斷強調輕、薄、短小化,鋰離子電池已成為最佳的選擇。
在消費性電子或是電動車應用市場上,鋰電池的安全性需求是最重要的產品評估項目,因此在電池設計上如隔離膜等提升安全性相關的材料與設計工作至為關鍵。其中隔離膜的作用主要為隔離電子避免正負電極間短路、並讓離子可自由通過;另外電池異常溫度上升時,也需隔離膜作用來關閉原先作為離子通道的細孔,避免溫度持續升高導致熱暴走(thermal runaway)進而產生燃燒或爆炸。也因此隔離膜產品本身的強度、厚度、微孔分佈與熱啟動性等品質指標,決定了電池電容量、電池循環壽命、安全性等因素,也使鋰電池隔離膜的市場發展受到矚目,尤其隔離膜價格佔整體鋰電池成本的20%以上,也使得隔離膜的開發越形重要。
就目前看來,幾乎所有商業化的鋰離子電池都是採用聚烯烴類(polyolefin)的多孔高分子薄膜作為隔離膜,包含有PP、PE,乃至於PP/PE/PP三層合一的。聚烯烴類的隔離膜不僅成本較低廉,而且有優良的機械強度和化學穩定度。
關於隔離膜的生產方法則可分為乾式和溼式兩種。乾式的製程如美國專利案5952120、6207053與6368742號所揭露採用聚烯烴類(polyolefin)作為多孔隔離膜的材料與方法,主要使用聚乙烯(polyethylene;PE),聚丙烯(polypropylene;PP)為主要成分,或以PP/PE/PP三層疊合為一。其製作方法為先將材料融熔擠出成膜,再進行單向或雙向的拉伸,在拉伸的過程中,硬彈性材料垂直於擠出方向平行排列的片晶結構被拉開形成微孔,最後經由熱定型製程固定此一微孔結構。此法使用之材料成本低廉,但為符合鋰電池規格之所需,製程條件嚴格,導致隔離膜終端售價高昂,且其孔洞結構筆直,在鋰電池負極端容易形成鋰枝晶刺穿隔離膜形成短路,因此通常會製作熱阻層或添加無機粒子減少短路造成的安全問題。
對鋰電池系統而言,因聚烯烴類材料的極性低,而鋰電池中所使用的電解液多半是含有鋰鹽溶解於其中的高介電係數、高極性之有機溶劑,兩者之間的親合性通常不盡理想,影響所及,電解液對隔離膜之潤濕效果不好,因而整體的離子導電度將遠低於電解液本身之離子導電度。為了改善兩者的親合性,提高潤濕度,部分研究是針對於聚烯烴類材料進行表面改質,改善潤濕效果,如美國專利案6322923號在一聚烯烴多孔膜上披覆一層膠態高分子以增強其潤濕性;另一方法則是直接更換隔離膜材料,換為與電解液之間親合力更高之材料,甚至能與陰陽極板之間也有更高之親合力。
如前面所述,假若電池因為放熱反應而過熱,或是受到外部高熱破壞時,隔離膜上的孔隙會關閉,使得電極間的離子無法傳導,進而達到切斷電池電流的功用。基本上閉孔(Shutdown)機制的啟動是到達材料的熔點時,隔離膜會從固態轉換成液態,以聚乙烯(Polyethylene)材質來說,其熔點大約在130℃左右。然而在熔融態中為了避免正負電極直接接觸,在熔化前都必須維持其完整性。隨著電池內部溫度持續上升,隔離膜最終會熔化破裂(Meltdown),造成正負極接觸短路,進而導致爆 炸。熔化破裂溫度與閉孔溫度的差異即為隔離膜的安全界線,在傳統或一般的聚烯烴(Polyolefin;PO)隔離膜,其溫度差相當小,大約是在30~50℃,且取決於原料的分子量。近年來隔離膜生產廠商已認知傳統隔離膜(主要為聚乙烯)的缺點,並嘗試一些方法來提升其安全性。其中無機複合隔離膜技術將是未來高能量電池發展所需的關鍵隔離膜材料技術。
目前大多數的無機複合隔離膜利用單層PE隔離膜作為無機複合隔離膜的基礎素材組成,目的為了維持無機複合隔離膜厚度,又能兼顧薄膜機械強度與高熱阻抗功能,無機複合層主要包括Polyamide與奈米氧化物(Al2O3 or SiO2),無機複合隔離膜的基礎素材為單層多孔PE薄膜(14~16μm),無機複合層(4μm)兼具加強單層多孔PE薄膜機械強度與提高導熱均勻性的功能,因此複合隔離膜的厚度約為(18~20μm),陶瓷複合層的孔隙率(60~65%)高於單層多孔PE薄膜的孔隙率(30~35%),因此不會影響隔離膜的潤濕性與鋰離子滲透能力。
如美國專利號第7959011為一種由氧化鋁、氧化鋯和氧化矽所混合的PET聚合物不織布,經過連續的浸漬且乾燥燒結後,由於金屬氧化物和PET之間產生了無機層,使該膜具有較高的熱穩定性,受熱不易變形,在200℃下不發生收縮和熔融現象,可提高動力電池的安全性。但複合層與基質膜間同樣存在粘合強度不夠、膜穩定性差的問題。
中國專利CN 101481855A公開了一種二氧化矽/聚偏氟乙烯奈米複合纖維膜的製備方法。該法借助溶膠凝膠原理一步法製備改性奈米二氧化矽,並把其與聚偏氟乙烯進行共混,利用靜電紡絲技術製備出複合奈米纖維膜。中國專利CN 101826606A公開了一種聚四氟乙烯鋰離子電池隔離膜及製備方法。它是以聚四氟乙烯多孔膜為基材,在聚四氟乙烯多孔膜的一個或兩個表面浸漬、塗布或噴塗一層聚合物,乾燥熱壓定型而成複合膜。該電池隔離膜因其良好的化學穩定性、熱穩定性和抗氧化性,可提高電池的使用壽命和安全性(膜孔自閉 溫度100-150℃)。
美國專利US 2010/0316903 A1同樣製備一複合隔離膜,先在一多孔的基材表面塗上連結劑及陶瓷粒子,其中連結劑為一交聯性高分子,因此漿料完成塗佈後,可再使高分子連結劑進行交聯反應以增強與多孔基材之間的附著力。美國專利US 2012/0015254 A1則以不同樣的方式來加強附著力,將包含連結劑及介電常數在5以上的陶瓷粒子的漿料塗在多孔基材上,再利用電化學方式將高分子溶液塗在外層,形成第二塗佈層來包覆主體結構,增加膜穩定性。但不論使用高分子二次交聯技術或是電化學塗佈包覆的方式,都將使製程複雜困難化。
綜上所述,在高功率鋰電池應用場合中,為避免鋰電池高溫下隔離膜扭曲變形,進而影響產物安全性,隔離膜需藉著高溫及機械性能安定性的提升來增加電池的安全性;多數的先前技術均使用添加陶瓷粒子塗布於原本薄膜的兩側形成保護層,此一方式不但不易控制薄膜厚度的精準性,且會發生連接力不足的問題,因而影響其性能。
本發明的主要目的是提供一種電化學隔離膜結構,該電化學隔離膜結構包含一基相高分子部分、一纖維支撐部份以及無機粒子,纖維支撐部份以條狀方式分佈於該基相高分子部分中,以提供機械強度,支撐整體的基相高分子部分,無機粒子以0.1wt%~50wt%均勻地分佈於基相高分子部分中,基相高分子部分呈現連續結構形成纖維支撐部份的周邊,具有多孔性,而整體電化學隔離膜結構的厚度範圍係10~60um。
纖維支撐部份係由聚烯烃纖維所製成,該纖維支撐部份為一多孔性結構,且具有孔隙,而使得基相高分子部分能填入於孔隙之中,而緊密地結合。無機粒子為金屬氧化物、金屬碳化物、金屬氮化物、金屬鈦酸化合物、金屬磷酸化合物的至少其中之一,其粒徑範圍是0.01~30 um,具有高燃點、高裂解溫度, 用以防止在電化學反應時溫度過度上升,同時也提供支撐性,防止電化學隔離膜結構大幅收縮。
本發明的另一目的是提供一種電化學隔離膜結構的製作方法,該方法包含高分子漿料準備步驟、塗佈步驟以及乾燥步驟,高分子漿料準備步驟是準備一高分子基相材料溶液,該高分子基相材料溶液包含溶劑、高分子基相材料以及無機粒子,高分子基相材料溶於溶劑中,而無機粒子以0.1wt%~50wt%,均勻地分散於該高分子基相材料溶液中,該高分子基相材料溶液更進一步包含一黏結劑。
塗佈步驟以浸置、塗佈的方式,將高分子基相材料溶液塗佈充份形成於一多孔性纖維支撐部份的周邊,同時使得高分子基相材料填入多孔性纖維支撐部份的孔隙中,而形成一電化學隔離膜結構。乾燥步驟是以靜置、風乾或是加熱方式,將該高分子基相材料溶液乾燥,從而形成具有基相高分子部分、纖維支撐部份以及無機粒子的電化學隔離膜結構。
本發明電化學隔離膜結構及其製作方法的特點在於,本發明電化學隔離膜結構中,高分子基相材料溶液能夠填入纖維支撐部份的孔隙中,且透過纖維支撐部份的機械強度,如此具有較佳的連接性,且透過無機粒子有效降低隔離膜的收縮現象,進而改善高溫時的安全性能,進而,將電化學隔離膜結構應用於鋰電池中,能有效降低整體元件的電阻值,不但有較高的充放電電容量,也提升了整體元件的壽命。
以下配合圖式及元件符號對本發明之實施方式做更詳細的說明,俾使熟習該項技藝者在研讀本說明書後能據以實施。
參閱第一圖,本發明電化學隔離膜結構之微結構的上視示意圖。如第一圖所示,本發明電化學隔離膜結構1,包含一基相高分子部分10、一纖維支撐部份20以及無機粒子30,纖維支撐部份20為條狀,以條狀方式分佈於該基相高分子部分10 中,以提供機械強度,支撐整體的基相高分子部分10,無機粒子30以0.1wt%~50wt%均勻地分佈於基相高分子部分10中,基相高分子部分10呈現連續結構形成纖維支撐部份20的周邊,具有多孔性,而整體電化學隔離膜結構1的厚度範圍係10~60 um。
基相高分子部分10係以聚偏氟乙烯(polyvinylidene fluoride)、聚對苯二甲酸乙烯酯(polyethylene terephthalate)、聚氨酯(polyurethane)、聚氧化乙烯(polyethylene oxide)、聚氧化丙烯(polypropylene oxide)、聚丙烯腈(polyacrylonitrile)、聚丙烯醯胺(polyacrylamide)、聚丙烯酸甲酯(polymethyl acrylate)、聚甲基丙烯酸甲酯(polymethyl methacrylate)、聚醋酸乙烯酯(polyvinylacetate)、聚乙烯吡咯烷酮(polyvinylpyrroidone)、聚四甘醇二丙烯酸酯(polytetraethylene glycol diacrylate),以及聚醯亞胺(polyimide)的至少其中之一所製成,在與電解液接觸時,會形成膠態。
纖維支撐部份20係由聚乙烯纖維、聚丙烯纖維、聚丁烯纖維、聚戊稀纖維、聚對苯二甲酸乙烯酯纖維的至少其中之一所製成,該纖維支撐部份20的直徑範圍係0.5~30 um,為一多孔性結構,且具有孔隙,孔隙之大小約為0.1~20 um,而使得基相高分子部分10能填入於孔隙之中,而緊密地結合。
無機粒子為金屬氧化物、金屬碳化物、金屬氮化物、金屬鈦酸化合物、金屬磷酸化合物的至少其中之一,其粒徑範圍是0.01~30 um,較佳地為氧化鋁、二氧化矽、二氧化鈦、鈦酸鈣銅(CaCu3Ti4O12)、鈦酸鋰、碳酸鈣、氧化鋯、氧化鈣、磷酸鋰鐵等,具有高燃點、高裂解溫度,用以防止在電化學反應時溫度過度上升,同時也提供支撐性,防止電化學隔離膜結構1大幅收縮。
參閱第二圖,第一圖中基相高分子部分的局部放大圖。如第二圖所示,該基相高分子部分10除了無機粒子30外,還包含均勻分布的複數個孔隙15,且孔隙15大小的範圍約為0.1 μM~5um,而相高分子部分10的孔隙率為40至75%。
參閱第三圖,本發明電化學隔離膜結構的製作方法的流程圖。如第三圖所示,本發明電化學隔離膜結構的製作方法S1包含高分子漿料準備步驟S10、塗佈步驟S20以及乾燥步驟S30,高分子漿料準備步驟S10是準備一高分子基相材料溶液,該高分子基相材料溶液包含高分子基相材料、溶劑以及無機粒子,高分子基相材料溶於該溶劑中,無機粒子佔以0.1wt%~50wt%,均勻地分散於該高分子基相材料溶液中,該高分子基相材料溶液更進一步包含一黏結劑,該高分子基相材料包含聚偏氟乙烯、聚對苯二甲酸乙烯酯、聚氨酯、聚氧化乙烯、聚氧化丙烯、聚丙烯腈、聚丙烯醯胺、聚丙烯酸甲酯、聚甲基丙烯酸甲酯、聚醋酸乙烯酯、聚乙烯吡咯烷酮、聚四甘醇二丙烯酸,以及聚醯亞胺的至少其中之一。該溶劑為丙酮、丁酮、N-甲基吡喀烷酮、四氫呋喃、二甲基甲酰胺、二甲基乙酰胺、四甲基脲的至少其中之一。
黏結劑為醋酸纖維素(cellulose acetate)、醋酸丁酸纖維素(cellulose acetate butyrate)、醋酸丙酸纖維素(cellulose acetate propionate)、乙基纖維素(ethyl cellulose)、氰乙基纖維素(cyanoethyl cellulose)、氰乙基聚乙烯醇(cyanoehyl polyvinyl alcohol)及羧甲基纖維素(carboxymethyl cellulose)的至少其中之一,佔該等無機粒子的0.1~20wt%。
塗佈步驟S20以浸置、塗佈的方式,將高分子基相材料溶液塗佈充份形成於一多孔性纖維支撐部份的周邊,同時使得高分子基相材料填入多孔性纖維支撐部份的孔隙中,而形成一電化學隔離膜結構。
乾燥步驟S30是以靜置、風乾或是加熱方式,使得溶劑、從高分子基相材料溶液揮發,而將該高分子基相材料溶液乾燥,從而形成如第一圖所示之具有一基相高分子部分10、一纖維支撐部份20以及無機粒子30的電化學隔離膜結構1。
以下將以四個實驗示例,來具體說明本發明電化學隔離膜 結構及其製作方法,該等實驗示例僅作為示例,並不用於限制。
<實驗示例1>
實驗示例1將聚偏氟乙烯,溶於丙酮,加入重量百分比為0.7wt%的二氧化矽SiO2粒子(粒徑為5微米),攪散約16小時或更久以形成漿料,作為高分子基相材料溶液。隨後將高分子基相材料溶液以浸沾式塗佈(dip coating)塗覆至聚丙烯纖維基材上。
將實驗示例1乾燥後所得之電化學隔離膜,並以磷酸鋰鐵作為正極材料,鋰箔作為負極材料,電解液為六氟磷鋰,並以習用技術組裝為鈕扣型電池,並與習用Celgard 2320隔離膜進行比較快速充放電測試及壽命分析,其結果如第四A圖至第四C圖所示,結果顯示該電化學隔離膜在不同放電速率下皆與商業隔離膜之效能相近,且阻抗值也接近,更有效提高元件壽命,充分顯示本發明可作為電化學裝置之隔離膜。
將實驗示例1乾燥後所得之電化學隔離膜,按習用技術組裝為鈕扣型超級電容,以活性炭做為正負極材料,電解液為六氟磷鋰,並進行不同電流密度的充放電測試。應用實驗示例1之電化學隔離膜的電池之電化學電流密度與電容之關係如第四D圖所示,該結果同樣顯示本發明之電化學隔離膜可應用於超級電容器裝置。
另外將所得複合薄膜進行高溫熱收縮性測試,並與Celgard 2320隔離膜進行比較。將隔離膜二端固定於玻璃載板上,放入130℃烘箱加熱2小時後,商用Celgard 2320隔離膜收縮變形超過20%,而實驗示例1之電化學隔離膜收縮率小於1%,可推斷由於使用高分子作為連續相填充及添加無機粒子有效降低隔離膜的收縮現象,亦提昇了高溫時的安全性能。
<實驗示例2>
實驗示例2係說明以扁平式高密度纖維材料作為骨架支撐結構,使膠態的高分子基相材料溶液與無機粒子完全滲入多孔纖維材料之孔洞內部,以形成電化學裝置隔離膜。其實施方 式與實施例1步驟相同,採用聚偏氟乙烯/丙酮溶液,加入1.5%的二氧化矽SiO2粒子,攪散約8小時或更久以形成漿料,作為高分子基相材料溶液。隨後將作為高分子基相材料溶液以浸沾式塗佈(dip coating)塗覆至扁平式的聚丙烯纖維基材上。
將實驗示例2所獲得之電化學隔離膜作為鋰電池隔離膜,以磷酸鋰鐵作為正極材料,鋰箔作為負極材料,電解液為六氟磷鋰,並按習用技術組裝為鈕扣型電池後進行1C及3C速率的充放電測試,其結果如第五圖所示。
<實驗示例3>
實驗示例3是前述聚偏氟乙烯高分子溶液,加入0.7wt%的鈦酸鈣銅(CaCu3Ti4O12,CCTO),充分攪散以形成漿料,作為高分子基相材料溶液。鈦酸鈣銅材料是一鈣鈦礦立方晶結構,可以在一定的溫度範圍內保持一巨大的介電常數。同時加入乙基纖維素(ethyl cellulose)做為黏結劑,持續攪散4小時或更久以形成漿料以浸沾式塗佈(dip coating)塗覆至聚丙烯纖維基材上。以常溫將塗佈之溶液完全乾燥,即可得到一厚度為30-40um之薄膜,為一纖維材料作為骨架支撐結構且內含聚偏氟乙烯/鈦酸鈣銅作為一連續相填充於骨架支撐結構當中。
<實驗示例4>
實驗示例4係說明以高密度多孔聚乙烯膜作為骨架支撐結構,並取前述聚偏氟乙烯高分子溶液,加入0.7wt%的二氧化矽SiO2粒子,以浸沾式塗佈(dip coating)塗覆至多孔聚乙烯膜基材上,以形成電化學裝置隔離膜。
取實驗示例4之電化學隔離膜作為鋰電池隔離膜,以磷酸鋰鐵作為正極材料,鋰箔作為負極材料,電解液為六氟磷鋰,並按習用技術組裝為鈕扣型電池後進行0.2C及3C速率的充放電測試及55℃高溫效能分析,並與Celgard 2320、2400商業隔離膜進行比較,結果分別如第六A圖及第六B圖所示,顯示本發明之隔離膜在高溫運作下同樣具有較高之穩定性與性能表現。
本發明電化學隔離膜結構及其製作方法的特點在於,本發明電化學隔離膜結構中,高分子基相材料溶液能夠填入纖維支撐部份的孔隙中,且透過纖維支撐部份的機械強度,如此具有較佳的連接性,且透過無機粒子有效降低隔離膜的收縮現象,進而改善高溫時的安全性能,進而,將電化學隔離膜結構應用於鋰電池中,能有效降低整體元件的電阻值,不但有較高的充放電電容量,也提升了整體元件的壽命。
以上所述者僅為用以解釋本發明之較佳實施例,並非企圖據以對本發明做任何形式上之限制,是以,凡有在相同之發明精神下所作有關本發明之任何修飾或變更,皆仍應包括在本發明意圖保護之範疇。
1‧‧‧電化學隔離膜結構
10‧‧‧基相高分子部分
15‧‧‧孔隙
20‧‧‧纖維支撐部份
30‧‧‧無機粒子
S1‧‧‧電化學隔離膜結構的製作方法
S10‧‧‧高分子漿料準備步驟
S20‧‧‧塗佈步驟
S30‧‧‧乾燥步驟
第一圖是電化學隔離膜結構之微結構的上視示意圖。
第二圖是第一圖中基相高分子部分的局部放大圖。
第三圖是本發明電化學隔離膜結構的製作方法的流程圖。
第四A至第四C圖為應用實驗示例1之電池與習用商業Celgard 2320隔離膜之電池進行比較快速充放電測試及壽命分析的比較圖。
第四D圖為應用實驗示例1之電化學隔離膜的電池之電化學電流密度與電容之關係圖。
第五圖為應用實驗示例2之電化學隔離膜的鋰電池進行1C及3C速率的充放電測試的結果圖。
第六A圖及第六B圖分別為應用實驗示例4之電池與習用商業Ce-elgard 2320隔離膜之電池進行進行0.2C及3C速率的充放電測試及55℃高溫效能分析的比較圖。
1‧‧‧電化學隔離膜結構
10‧‧‧基相高分子部分
20‧‧‧纖維支撐部份
30‧‧‧無機粒子

Claims (13)

  1. 一種電化學隔離膜結構,包含:一基相高分子部分,為一連續相結構;一纖維支撐部份,以條狀方式分佈於該基相高分子部分中,以提供機械強度;以及複數個無機粒子,均勻地分佈於該基相高分子部分中,佔整體0.1wt%~50wt%,其中該纖維支撐部份為一多孔性結構,且具有複數個孔隙,而使得該基相高分子部分填入於該等孔隙之中。
  2. 如申請專利範圍第1項所述之結構,其中該基相高分子部分係以聚偏氟乙烯、聚對苯二甲酸乙烯酯、聚氨酯、聚氧化乙烯、聚丙烯腈、聚丙烯醯胺、聚丙烯酸甲酯、聚甲基丙烯酸甲酯、聚醋酸乙烯酯、聚乙烯吡咯烷酮、聚四甘醇二丙烯酸酯,以及聚醯亞胺的至少其中之一所製成。
  3. 如申請專利範圍第1項所述之結構,其中該基相高分子部分在與一電解液接觸時,會形成膠態。
  4. 如申請專利範圍第1項所述之結構,其中該電化學隔離膜結構的厚度範圍係10~60 um。
  5. 如申請專利範圍第1項所述之結構,其中該纖維支撐部份以聚乙烯纖維、聚丙烯纖維、聚丁烯纖維、聚戊稀纖維、聚對苯二甲酸乙烯酯纖維的至少其中之一所製成,且該纖維支撐部份的直徑範圍係0.5~30 um,而該纖維支撐部份的該等孔隙之大小約為0.1~20 um。
  6. 如申請專利範圍第1項所述之結構,其中該等無機粒子為金屬氧化物、金屬碳化物、金屬氮化物、金屬鈦酸化合物、金屬 磷酸化合物的至少其中之一,且該等無機粒子的粒徑範圍是0.01~30 um。
  7. 如申請專利範圍第1項所述之結構,其中該基相高分子部分還包含均勻分布的複數個孔隙,且孔隙大小的範圍約為0.1μm~5um,而該基相高分子部分的孔隙率為40至75%。
  8. 一種電化學隔離膜結構的製作方法,包含:一高分子漿料準備步驟,是準備一高分子基相材料溶液,該高分子基相材料溶液包含一高分子基相材料、一溶劑以及複數個無機粒子,該高分子基項材料溶於該溶劑中,該等無機粒子佔以0.1wt%~50wt%,均勻地分散於該高分子基相材料溶液中;一塗佈步驟,將高分子基相材料溶液塗佈充份形成於一多孔性纖維支撐部份的周邊,同時使得該高分子基相材料填入多孔性纖維支撐部份的孔隙中,而形成一電化學隔離膜結構;以及一乾燥步驟,是以靜置、風乾或是加熱方式使該電化學隔離膜結構乾燥。
  9. 如申請專利範圍第8項所述之方法,其中該高分子基相材料為聚偏氟乙烯、聚對苯二甲酸乙烯酯、聚氨酯、聚氧化乙烯、聚丙烯、聚丙烯腈、聚丙烯醯胺、聚丙烯酸甲酯、聚甲基丙烯酸甲酯、聚醋酸乙烯酯、聚乙烯吡咯烷酮、聚四甘醇二丙烯酸酯,以及聚醯亞胺的至少其中之一。
  10. 如申請專利範圍第8項所述之方法,其中該多孔性纖維支撐部份以聚乙烯纖維、聚丙烯纖維、聚丁烯纖維、聚戊稀纖維、聚對苯二甲酸乙烯酯纖維的至少其中之一所製成,且該纖維支撐部份的直徑範圍係0.5~30 um,而該纖維支撐部份中的複數個孔隙之大小約為0.1~20 um。
  11. 如申請專利範圍第8項所述之方法,其中該等無機粒子為金屬氧化物、金屬碳化物、金屬氮化物、金屬鈦酸化合物、金屬磷酸化合物的至少其中之一,且該等無機粒子的粒徑範圍是0.01~30 um。
  12. 如申請專利範圍第8項所述之方法,其中該高分子基相材料溶液進一步包含一溶劑,該溶劑為丙酮、丁酮、N-甲基吡喀烷酮、四氫呋喃、二甲基甲酰胺、二甲基乙酰胺、四甲基脲的至少其中之一。
  13. 如申請專利範圍第8項所述之方法,其中該高分子基相材料溶液進一步包含一黏結劑,該黏結劑為醋酸纖維素、醋酸丁酸纖維素、醋酸丙酸纖維素、乙基纖維素、氰乙基纖維素、氰乙基聚乙烯醇及羧甲基纖維素的至少其中之一,佔該等無機粒子的0.1~20wt%。
TW101120929A 2012-06-11 2012-06-11 電化學隔離膜結構及其製作方法 TW201351757A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101120929A TW201351757A (zh) 2012-06-11 2012-06-11 電化學隔離膜結構及其製作方法
US13/671,386 US20130327702A1 (en) 2012-06-11 2012-11-07 Structure of an electrochemical separation membrane and manufacturing method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101120929A TW201351757A (zh) 2012-06-11 2012-06-11 電化學隔離膜結構及其製作方法

Publications (1)

Publication Number Publication Date
TW201351757A true TW201351757A (zh) 2013-12-16

Family

ID=49714428

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101120929A TW201351757A (zh) 2012-06-11 2012-06-11 電化學隔離膜結構及其製作方法

Country Status (2)

Country Link
US (1) US20130327702A1 (zh)
TW (1) TW201351757A (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510030A (ja) * 2014-02-19 2017-04-06 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガンThe Regents Of The University Of Michigan 極度の電池条件に耐える、アラミドナノ繊維からのデンドライト抑制イオン導体
DE102014207233A1 (de) * 2014-04-15 2015-10-15 Bayerische Motoren Werke Aktiengesellschaft Lithium-Zelle, Batterie mit der Lithium-Zelle, sowie Kraftfahrzeug, mobiles Gerät oder stationäres Speicherelement umfassend die Batterie
KR101840520B1 (ko) * 2014-10-24 2018-03-20 주식회사 엘지화학 배터리용 분리막 커팅 방법 및 이에 의하여 제조된 배터리용 분리막
CN106299217A (zh) * 2016-08-26 2017-01-04 浙江长兴金太阳电源有限公司 一种锂离子电池用复合隔膜及其制备方法
CN106299219A (zh) * 2016-08-26 2017-01-04 浙江长兴金太阳电源有限公司 一种锂离子电池用安全隔膜及其制备方法
CN107256936B (zh) * 2017-01-13 2020-07-03 北京理工大学 聚偏氟乙烯/氰乙基纤维素复合锂离子电池隔膜及其制备方法
CN113262648B (zh) * 2021-05-17 2022-07-22 郑州大学 一种锂离子选择性透过膜及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957651A (en) * 1971-12-16 1976-05-18 Chemical Systems Incorporated Microporous polyester membranes and polymer assisted phase inversion process for their manufacture
DE19850826A1 (de) * 1998-11-04 2000-05-11 Basf Ag Als Separatoren in elektrochemischen Zellen geeignete Verbundkörper
US6881515B2 (en) * 2001-05-08 2005-04-19 Celgard Inc. Separator for polymer battery
EP1552878A4 (en) * 2002-10-18 2006-03-22 Asahi Kasei Pharma Corp MICROPOR SE HYDROPHILIC MEMBRANE
WO2006062153A1 (ja) * 2004-12-08 2006-06-15 Hitachi Maxell, Ltd. 電気化学素子用セパレータおよび電気化学素子
KR101002161B1 (ko) * 2007-11-29 2010-12-17 주식회사 엘지화학 다공성 코팅층이 형성된 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자

Also Published As

Publication number Publication date
US20130327702A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
KR102215959B1 (ko) 리튬이온배터리용 다층 복합 기능 격막
JP7073105B2 (ja) リチウム二次電池用融着型複合分離膜およびその製造方法
JP6285092B2 (ja) 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
KR100647966B1 (ko) 전자부품용 세퍼레이터 및 그 제조방법
JP5031835B2 (ja) 耐熱性超極細繊維状分離膜及びそれを利用した二次電池
CN111653717B (zh) 一种复合隔膜的制备方法、复合隔膜和锂离子电池
JP5678201B2 (ja) セパレータの製造方法、その方法により形成したセパレータ、及びそれを備えた電気化学素子
TW201351757A (zh) 電化學隔離膜結構及其製作方法
EP2077594A1 (en) Composite separator films for lithium-ion batteries
JP2015043318A (ja) セパレータの製造方法、これから形成されたセパレータ、及びこれを含む電気化学素子の製造方法
JP2006059733A (ja) 電子部品用セパレータ及びその製造方法
WO2006123811A1 (ja) リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
CN104466188B (zh) 多层复合正极极片和该极片制备方法及应用其的锂离子电池
JP2018508926A (ja) 一体型の電極組立体及びこれを含む電気化学素子
JP2014013693A (ja) リチウムイオン二次電池およびその製造方法
WO2019157695A1 (en) Separator and preparation method therefor and electrochemical device comprising separator
JP4812266B2 (ja) 電子部品用セパレータ及びその製造方法
JP2006331759A (ja) 電子部品用セパレータ及びその製造方法
JP2006338918A (ja) 電子部品用セパレータおよび電子部品
CN114006024A (zh) 一种隔膜及含有该隔膜的电池
JP2006338917A (ja) 電子部品用セパレータおよび電子部品
CN103531733A (zh) 电化学隔离膜结构及其制作方法
KR20140060799A (ko) 전기화학소자용 분리막 및 그의 제조방법
JP7298872B2 (ja) セパレータ、セパレータの製造方法及びリチウムイオン電池
JP2010287697A (ja) 蓄電デバイス用セパレータ