WO2005109521A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2005109521A1
WO2005109521A1 PCT/JP2005/008717 JP2005008717W WO2005109521A1 WO 2005109521 A1 WO2005109521 A1 WO 2005109521A1 JP 2005008717 W JP2005008717 W JP 2005008717W WO 2005109521 A1 WO2005109521 A1 WO 2005109521A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity type
region
igbt
insulating film
emitter region
Prior art date
Application number
PCT/JP2005/008717
Other languages
English (en)
French (fr)
Inventor
Sachiko Kawaji
Masayasu Ishiko
Takahide Sugiyama
Masanori Usui
Jun Saito
Koji Hotta
Original Assignee
Kabushiki Kaisha Toyota Chuo Kenkyusho
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha filed Critical Kabushiki Kaisha Toyota Chuo Kenkyusho
Priority to EP05739273.0A priority Critical patent/EP1760790B1/en
Priority to US11/596,063 priority patent/US7423316B2/en
Priority to JP2006513049A priority patent/JP5087272B2/ja
Publication of WO2005109521A1 publication Critical patent/WO2005109521A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Definitions

  • the present invention relates to a technology for reducing the on-voltage of an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • the present invention relates to a technique for reducing an on-voltage while keeping a saturation current value low.
  • An IGBT is provided with a first conductivity type emitter region, a first conductivity type drift region, and a second conductivity type body region separated therefrom.
  • a technology for reducing on-voltage by providing a first conductivity type semiconductor region in a second conductivity type body region has been proposed, and Pro of the 6th internat.Symposium on Power semiconductor Devices & ICs, Davos, Switzerland. 1994. "Trench Gate Emitter Switched Thyristors MSShekar, J. Korec, BJ Baliga. P189-194. IEEE Cat. No. 94CH3377-9.
  • FIG. 16 (a) schematically shows a cross-sectional view of a main part of the IGBT 100 disclosed in the above-mentioned document.
  • the IGBT 100 has an n + type emitter region 132, a p ⁇ type body region 128 in contact with the emitter region 132, and an n_ type drift in contact with the body region 128 and separated from the emitter region 132 by the body region 128.
  • An area 126 is provided.
  • the IGBT 100 further includes a trench gate electrode 142.
  • the trench gate electrode 142 extends from the emitter region 132 to the drift region 126 through a body region 128 separating the emitter region 132 and the drift region 126.
  • Trench gate electrode 142 faces body region 128 via gate insulating film 144.
  • the IGBT 100 further includes an n + type semiconductor region 154 formed in the body region 128 in addition to the above.
  • Semiconductor region 154 is separated from emitter region 132 by body region 128a, and is also separated from drift region 126 by body region 128b.
  • the body region 128a and the body region 128b are connected by a cross section (not shown).
  • a p + type body contact region 134 is formed in a region above the body region 128a and between the left and right emitter regions 132.
  • a p + type body contact region 134 is formed in a region above the body region 128a and between the left and right emitter regions 132.
  • a p + type body contact region 134 is formed in a region above the body region 128a and between the left and right emitter regions 132.
  • an n + type nofer region 124 and a p + type collector region 122
  • the IGBT 100 is characterized in that the semiconductor region 154 is provided in the body region 128.
  • the semiconductor region 154 extends between the gate insulating films 144 of the left and right trench gate electrodes 142 and is insulated from any of the emitter region 132, the body regions 128a, 128b, and the drift region 126.
  • the potential of the semiconductor region 154 is not directly determined by the potential applied to the IGBT, but floats according to the surrounding environment. In this specification, this potential state is floated! / ⁇ !
  • the portion of the body region 128 facing the trench gate electrode 142 becomes n-type. And a channel region is formed.
  • the electron carriers are supplied from the emitter region 132, injected into the drift region 126 via the channel region inverted to the n-type, and accumulated in the buffer region 124.
  • the contact potential difference between the buffer region 124 and the collector region 122 decreases, and hole carriers are injected from the collector region 122 toward the buffer region 124 and the drift region 126, so that conductivity modulation is performed. Occur.
  • the hole carriers injected from the collector region 122 are discharged to the emitter electrode E via a force that recombine with the electron carriers and disappear, or via the body region 128 and the body contact region 134.
  • the present inventors have studied in more detail the phenomenon obtained by the semiconductor region 154 in a floating state, and have found that the following phenomenon has occurred.
  • FIG. 16 (b) shows the concentration distribution of hole carriers accumulated on the line bb ′ (joining surface 129 between the semiconductor region 154 and the body region 128b) in FIG. 16 (a).
  • the vertical axis represents the hole carrier concentration, which corresponds to the horizontal axis force 3 ⁇ 4—b ′ line.
  • FIG. 16 (b) it can be seen that the amount of accumulated hole carriers is small at a position away from the opposing trench gate electrode 142. This is because the ability to raise the potential of the semiconductor region 154 in the floating state by the potential of the trench gate electrode 142 is small at a position away from the trench gate electrode 142, and thus formed between the semiconductor region 154 and the body region 128. The reason is that the potential difference is small. Therefore, it can be said that the conventional semiconductor region 154 has insufficient hole carrier accumulation ability.
  • An object of the present invention is to improve the carrier storage capacity over a wide range of a floating semiconductor region and reduce the ON voltage of an IGBT.
  • the present invention proposes a plurality of IGBTs created based on the above findings! Even for IGBTs with deviations of V, the common problem of reducing the on-state voltage while keeping the saturation current low can be overcome.
  • An IGBT includes a first conductivity type emitter region, a second conductivity type body region in contact with the first conductivity type emitter region, and a second conductivity type body region in contact with the second conductivity type body region.
  • a gate electrode is provided. The gate electrode penetrates through the body region of the second conductivity type separating the emitter region of the first conductivity type and the drift region of the first conductivity type, and the power of the emitter region of the first conductivity type also extends to the drift region of the first conductivity type. , Facing the body region of the second conductivity type via the gate insulating film.
  • One IGBT of the present invention further includes a first conductivity type semiconductor region and a second electrode in addition to the above.
  • the first conductivity type semiconductor region is formed in the second conductivity type body region, and is separated from both the first conductivity type emitter region and the first conductivity type drift region by the second conductivity type body region. .
  • the potential of the first conductivity type semiconductor region is in a floating state.
  • the second electrode is opposed to at least a part of the first conductivity type semiconductor region via an insulating film, and the first conductivity type emitter region is also far away. That is, the second electrode does not form an inversion layer in the second conductivity type body region that separates the first conductivity type semiconductor region and the first conductivity type emitter region.
  • the first conductivity type semiconductor region may be in contact with the gate insulating film of the gate electrode, or may be formed separately.
  • the potential of the first conductivity type semiconductor region facing the second electrode can be raised.
  • the potential difference between the semiconductor region of the first conductivity type and the body region of the second conductivity type increases, forming a potential barrier for carriers of the second conductivity type.
  • the flow of the second conductivity type carrier is hindered by the potential barrier.
  • carriers of the second conductivity type can be accumulated over a wide range of the body region of the second conductivity type existing between the semiconductor region of the first conductivity type and the drift region of the first conductivity type. The voltage can be reduced.
  • the plurality of second electrodes be dispersed and formed between the opposing gate electrodes because the potential of the first conductivity type semiconductor region can be raised over a wide range.
  • the potential of the first conductivity type semiconductor region can be raised in a well-balanced manner over a wide range.
  • the second electrode is not in contact with the first conductivity type emitter region. That is, the second electrode is provided with an inversion layer in the second conductivity type body region that separates the first conductivity type semiconductor region and the first conductivity type emitter region. Do not form. Therefore, the first conductivity type carrier is not supplied along the second electrode. Therefore, it is possible to avoid a situation in which the saturation current value increases and the IGBT is easily broken. According to the present invention, it is possible to reduce the ON voltage based on the increase in the amount of carriers of the second conductivity type while suppressing IGBT destruction due to an increase in the saturation current value.
  • the “carrier of the first conductivity type” used in this specification refers to “carrier in the semiconductor of the first conductivity type”.
  • the “second conductivity type carrier” refers to a “carrier in the second conductivity type semiconductor”.
  • the first conductivity type carrier means an electron carrier
  • the second conductivity type carrier means a hole.
  • the floating first conductivity type semiconductor region is in contact with the gate insulating film.
  • the first conductive type carrier supplied from the emitter region via the channel region diffuses through the first conductive type semiconductor region.
  • the carrier of the first conductivity type diffused in the semiconductor region of the first conductivity type is planarly injected toward the body region and the drift region using the semiconductor region of the first conductivity type (increase in current path lines). The ON voltage of the IGBT can be further reduced.
  • a second electrode extends from the first conductivity type semiconductor region to the first conductivity type drift region through a second conductivity type body region separating the first conductivity type semiconductor region and the first conductivity type drift region. It is preferable to face the second conductivity type body region via an insulating film.
  • the first conductivity type carrier diffused in the first conductivity type semiconductor region is easily injected toward the first conductivity type drift region via the inverted channel region.
  • the ON voltage can be further reduced.
  • the IGBT of the present invention As described above, a large amount of the second conductive type semiconductor region is utilized by utilizing the first conductive type semiconductor region. Conductive carriers can be stored. Further, the first conductivity type semiconductor region is in contact with the gate insulating film, so that the first conductivity type carrier diffuses through the first conductivity type semiconductor region (current path line), and the second conductivity type carrier accumulation amount. Is further improved. Due to these synergistic effects, we have succeeded for the first time in accumulating a large amount of second conductivity type carriers, which cannot be realized with the conventional structure.
  • the IGBT of the present invention can be characterized as follows.
  • the IGBT of the present invention when turned on, has a second conductivity type that accumulates on a junction surface of the first conductivity type semiconductor region and the second conductivity type body region that faces the first conductivity type drift region. It can be characterized as having a carrier concentration of at least 8 ⁇ 10 15 cm— 3 .
  • the second electrode and the gate electrode are electrically connected.
  • the configuration can be simplified.
  • the impurity concentration of the first conductivity type semiconductor region is 1 ⁇ 10 17 cnf 3 or less.
  • the latch-up phenomenon is a phenomenon in which excessively accumulated carriers of the second conductivity type are discharged through the emitter region of the first conductivity type, and makes the turn-off of the IGBT unstable.
  • the second electrode by providing the second electrode, the second conductivity type carriers can be accumulated in a well-balanced manner even in a low-concentration first conductivity type semiconductor region.
  • the ON voltage can be reduced by using the second electrode while suppressing excessive accumulation of the second conductivity type carrier by using the low concentration first conductivity type semiconductor region. Therefore, stable turn-off and low on-voltage can be obtained.
  • the impurity concentration of the first conductivity type semiconductor region is lower, the phenomenon that the accumulation amount of the second conductivity type carrier decreases at a position distant from the gate electrode appears more remarkably.
  • the impurity concentration of the first conductivity type semiconductor region is 1 ⁇ 10 17 cnf 3 or less, the first conductivity type semiconductor region is used by providing the second electrode. As a result, carriers of the second conductivity type can be accumulated. Therefore, it can be said that the present invention is particularly useful when the impurity concentration of the first conductivity type semiconductor region is 1 ⁇ 10 17 cnf 3 or less.
  • the impurity concentration of the first conductivity type semiconductor region may be different in a plane orthogonal to the direction connecting the first conductivity type emitter region and the first conductivity type drift region.
  • the impurity concentration is adjusted to be low in the first conductivity type semiconductor region, when the IGBT is turned off, the accumulated second conductivity type carrier is quickly discharged using the low concentration portion. can do. Therefore, the turn-off characteristics of the IGBT can be improved.
  • the high concentration portion of the first conductivity type semiconductor region is preferably located between the first conductivity type emitter region and the drift region.
  • the low-concentration portion of the first conductivity type semiconductor region is preferably located between the surface of the second conductivity type body region where the first conductivity type emitter region is not formed and the first conductivity type drift region. preferable.
  • the second conductivity type carrier discharged using the low-concentration portion does not flow into the first conductivity type emitter. , Is quickly discharged to the main electrode provided on the surface. Therefore, the turn-off characteristics of the IGBT can be improved while suppressing the occurrence of the latch-up phenomenon.
  • the present inventors have also created an IGBT that can reduce the on-voltage while keeping the saturation current value low by limiting the area of the first conductivity type emitter region.
  • another IGBT according to the present invention also includes a first conductivity type emitter region, a second conductivity type body region in contact with the first conductivity type emitter region, and a second conductivity type body in contact with the second conductivity type body region.
  • a gate electrode is provided. The gate electrode extends through the second conductive type body region separating the first conductive type emitter region and the first conductive type drift region to the first conductive type drift region. , Facing the second conductivity type body region via the gate insulating film.
  • Another IGBT of the present invention further includes a first conductivity type semiconductor region in addition to the above.
  • the first conductivity type semiconductor region is formed in the second conductivity type body region, and the second conductivity type semiconductor region is formed in the second conductivity type body region.
  • the mold body region is separated from both the first conductivity type emitter region and the first conductivity type drift region.
  • the potential of the first conductivity type semiconductor region is in a floating state.
  • the first conductivity type semiconductor region may be in contact with the gate insulating film of the gate electrode, or may be formed separately.
  • Another feature of the IGBT of the present invention is that it is in contact with the gate insulating film at a distance from the first conductive type emitter region within the surface of the semiconductor substrate.
  • the pitch width of the gate electrode allows the pitch width of the gate electrode to be adjusted without increasing the area of the first conductivity type emitter region occupying the semiconductor substrate surface. Even if the pitch width of the gate electrode is adjusted to be narrow, the area of the first conductivity type emitter region can be maintained at a predetermined amount. Therefore, the pitch width of the gate electrode can be adjusted to be narrow without increasing the area of the first conductivity type emitter region.
  • the storage capacity of the second conductivity type carrier in the first conductivity type semiconductor region can be improved without increasing the supply amount of the first conductivity type carrier supplied from the first conductivity type emitter region.
  • the saturation current value can be reduced.
  • the present inventors have found, based on new findings, that it is extremely effective to provide a first conductivity type emitter region in the case of an IGBT using the first semiconductor region in a floating state. .
  • the first conductivity type semiconductor region in a floating state is in contact with the gate insulating film.
  • the first conductivity type carrier supplied from the emitter region via the channel region diffuses in the first conductivity type semiconductor region.
  • the first-conductivity-type carrier diffused in the first-conductivity-type semiconductor region is planarly injected toward the body region and the drift region using the first-conductivity-type semiconductor region. The ON voltage of the IGBT can be further reduced.
  • the first conductivity type emitter region formed between the opposing gate electrodes and in contact with the gate insulating film of one of the gate electrodes has the first conductivity type emitter region. It is preferable that the gate electrode is formed in contact with the gate insulating film of the other gate electrode in a direction perpendicular to the surface directly in contact with the film.
  • the first conductivity type carrier supplied from the first conductivity type emitter region flows to the first conductivity type drift region through the following path.
  • the first conductivity type carrier supplied from the first conductivity type emitter region flows to the first conductivity type semiconductor region along the gate insulating film.
  • a part of the first conductivity type carrier passes through the first conductivity type semiconductor region and flows to the first conductivity type drift region along the gate insulating film (in this specification, this route is referred to as the first conductivity type drift region).
  • Channel The other part of the first conductivity type carrier diffuses into the first conductivity type semiconductor region and flows to the first conductivity type drift region along the gate insulating film of the opposing gate electrode.
  • the route is called the second channel).
  • the second channel can be used, so that the increase in the channel resistance can be suppressed.
  • the first conductivity type emitter region formed between the opposing gate electrodes and in contact with the gate insulating film of one of the gate electrodes is formed repeatedly.
  • the first conductive type emitter region that is in contact with the gate insulating film of the other gate electrode is formed repeatedly, and the first conductive type emitter region and the other first conductive type emitter region are repeatedly formed in the repeated direction. It is preferable that they are formed alternately. In this case, it can be said that the pattern of the first conductivity type emitter region group on the surface of the semiconductor substrate is formed in a “lattice (or checkerboard)” pattern between the opposing gate electrodes.
  • the set of the first channel and the second channel is arranged in a well-balanced manner throughout the semiconductor substrate (increase in current path lines), which is effective in reducing the on-state voltage.
  • the channel resistance is reduced while the IGBT is not destroyed due to the increase in the saturation current
  • the IGBT can be significantly reduced, and an IGBT with significantly reduced on-state voltage can be obtained.
  • the accumulation of the second conductivity type carriers based on the potential barrier formed at the junction surface between the first conductivity type semiconductor region and the second conductivity type body region also occurs.
  • the accumulation of the second conductivity type carrier corresponding to the diffusion of the first conductivity type carrier into the first conductivity type semiconductor region the accumulation of an amount of the second conductivity type carrier that cannot be realized by the conventional structure due to the synergistic effect of the accumulation of the second conductivity type carrier.
  • the second conductivity type carrier concentration accumulated on the junction surface facing the drift region out of the junction surface between the first conductivity type semiconductor region and the body region is 8 ⁇ 10 15 cm—can be characterized as being 3 or more.
  • each of the first conductivity type emitter regions that are separately in contact with the gate insulating film be continuously in contact with the gate insulating film in a certain position.
  • the portion of the first conductivity type emitter that is not in contact with the gate insulating film does not fatally increase the supply amount of the first conductivity type carrier, but rather does not contact the main electrode provided on the surface. Contact resistance can be reduced. Therefore, it is preferable to secure a large portion of the first conductivity type emitter region that is not in contact with the gate insulating film within a range where the supply amount of the first conductivity type carrier does not increase fatally. Therefore, it is preferable that each of the first conductivity type emitter regions be continuously in contact with the gate insulating film and at a certain position.
  • continuous includes a case where each of the first conductivity type emitter regions is connected via another semiconductor region of the first conductivity type.
  • the area of the first conductivity type emitter region exposed on the surface of the semiconductor substrate is equal to the area of the first conductivity type semiconductor region in a plane orthogonal to the direction connecting the first conductivity type emitter region and the first conductivity type drift region. On the other hand, it is preferably 50% or less.
  • the impurity concentration of the one conductivity type semiconductor region is 1 ⁇ 10 17 cnf 3 or less.
  • the second conductivity type carriers can be accumulated using the first conductivity type semiconductor region while suppressing the occurrence of the latch-up phenomenon.
  • the impurity concentration of the first conductivity type semiconductor region may be different in a plane orthogonal to the direction connecting the first conductivity type emitter region and the first conductivity type drift region.
  • the accumulated second conductivity type carriers can be quickly discharged when the IGBT is turned off. Therefore, the turn-off characteristics of the IGBT can be improved.
  • the high concentration portion of the first conductivity type semiconductor region is preferably located between the first conductivity type emitter region and the drift region.
  • the low-concentration portion of the first conductivity type semiconductor region is preferably located between the surface of the second conductivity type body region where the first conductivity type emitter region is not formed and the first conductivity type drift region. preferable.
  • the second conductivity type carrier discharged using the low-concentration portion does not flow into the first conductivity type emitter. , Is quickly discharged to the main electrode provided on the surface. Therefore, the turn-off characteristics of the IGBT can be improved while suppressing the latch-up phenomenon.
  • the second conductivity type carriers can be accumulated by utilizing a wide range of the first conductivity type semiconductor region in a floating state.
  • the ON voltage of the IGBT can be reduced.
  • FIG. 1 (a) schematically shows a cross-sectional view of a main part of an IGBT of a first embodiment.
  • FIG. 1 (b) shows the distribution of the hole carrier concentration corresponding to the line bb ′ in FIG. 1 (a).
  • FIG. 2 shows a plane pattern of the first embodiment.
  • FIG. 3 schematically shows a plane pattern of an IGBT according to a modification of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view of a main part of an IGBT of a second embodiment.
  • FIG. 5 is a schematic cross-sectional view of a main part of Modification 1 of the second embodiment.
  • FIG. 6 schematically shows a perspective view of a main part of a first modification of the second embodiment.
  • FIG. 7 is a schematic cross-sectional view of a main part of Modification 2 of the second embodiment.
  • FIG. 8 schematically shows a perspective view of a main part of a third embodiment.
  • FIG. 9 shows a flow path of electron carriers according to a third embodiment.
  • FIG. 10 shows a perspective view of a main part of a first modification of the third embodiment and a flow path of an electron carrier.
  • FIG. 11 shows a perspective view of a main part of a modification 2 of the third embodiment and a flow path of an electron carrier.
  • FIG. 12 shows an example of a plane pattern of an emitter region of another modification of the third embodiment.
  • FIG. 13 shows an example of a plane pattern of an emitter region of another modification of the third embodiment.
  • FIG. 14 shows an example of a plane pattern of an emitter region according to another modification of the third embodiment.
  • FIG. 15 shows a perspective view of a main part of a third modification of the third embodiment and a flow path of an electron carrier.
  • FIG. 16 (a) schematically shows a cross-sectional view of a main part of a conventional IGBT.
  • FIG. 16B shows the distribution of the hole carrier concentration corresponding to the line bb ′ in FIG. 16A.
  • a collector region of the second conductivity type for example, p + type
  • a drift region of the first conductivity type for example, n_ type
  • the body region of the second conductivity type for example, p-type
  • the emitter region of the first conductivity type for example, n + type
  • a floating semiconductor region of the first conductivity type (e.g., n-type) is formed in the body region, and reaches from the surface of the body contact region to the floating semiconductor region.
  • the floating region counter electrode reaches the drift region. In the vicinity of the junction interface between the body region and the drift region, carriers can be accumulated in the drift region using the bottom surface of the floating region facing electrode.
  • a collector region of the second conductivity type for example, p + type
  • a drift region of the first conductivity type for example, n_ type
  • the body region of the second conductivity type for example, p-type
  • the emitter region of the first conductivity type for example, n + type
  • a floating semiconductor region of the first conductivity type (for example, n-type) is formed in the body region, and the emitter region extends in the direction in which the gate electrode on the surface of the body region extends. It is formed at a distance, .
  • the width at which the emitter region is separated is adjusted in the range of 1 ⁇ m to 10 m!
  • the depth of the emitter region is preferably adjusted to a range of 0.1 ⁇ ⁇ ⁇ m, and it is preferable that the depth be adjusted!
  • the thickness of the first conductivity type semiconductor region in a floating state is preferably adjusted to be in the range of 0.1 ⁇ m- ⁇ m.
  • the effect of accumulating the second conductive type carriers is obtained. More preferably, the thickness of the semiconductor region is adjusted in the range of 0.3 / ⁇ to 0.5 / zm. The accumulation effect of the second conductivity type carrier is remarkably obtained, and the turn-off characteristics are also good.
  • the depth of the body region is 4.5 ⁇ m to 5.0 ⁇ m, and the depth of the gate electrode is about 5.5 ⁇ m.
  • the thickness of the drift region is preferably 100 ⁇ m or more.
  • Silicon-based materials are mainly used for the semiconductor materials of each IGBT described below. Instead of silicon-based materials, Similar effects can be obtained by using other semiconductor materials such as silicon carbide, gallium arsenide, or gallium nitride.
  • FIG. 1A schematically shows a cross-sectional view of a main part of the IGBT 11 of the first embodiment.
  • the IGBT 11 includes an emitter region 32 of the first conductivity type (n + type), a body region 28 of the second conductivity type (P—type) in contact with the emitter region 32, and an emitter in contact with the body region 28 and the body region 28.
  • a drift region of the first conductivity type (n_ type) separated from the region is provided.
  • the IGBT 11 further includes a trench gate electrode 42.
  • Trench gate electrode 42 extends from emitter region 32 to drift region 26 through body region 28, separating emitter region 32 and drift region 26.
  • Trench gate electrode 42 faces body region 28 via gate insulating film 44.
  • the material of the trench gate electrode 42 is, for example, polysilicon.
  • the trench gate electrode 42 is covered with a gate insulating film 44 which also has silicon oxide power.
  • the body region 28 where the trench gate electrode 42 is opposed via the gate insulating film 44 becomes a channel region.
  • the planar pattern of the trench gate electrode 42 is a stripe.
  • a buffer region 24 of the first conductivity type (n + type) and a collector region 22 of the second conductivity type (p + type) are sequentially formed.
  • Collector region 22 is electrically connected to collector electrode C.
  • the buffer area 24 may be omitted from this configuration.
  • a body contact region 34 of the second conductivity type (P + type) is formed in a region above the body region 28a and between the left and right emitter regions 32.
  • the emitter region 32 and the body contact region 34 are electrically connected to the emitter electrode E.
  • the body region 28, the emitter region 32, and the body contact region 34 are formed on the surface of the semiconductor substrate by, for example, an ion implantation method.
  • the IGBT 11 has a first conductivity type (n-type) semiconductor region 52 in the body region 28.
  • the semiconductor region 52 is separated from the emitter region 32 by a body region 28a, and is also separated from the drift region 26 by a body region 28b. Further, the semiconductor region 52 is also separated from the trench gate electrode 42 by the gate insulating film 44, and the potential is in a floating state.
  • the semiconductor region 52 is formed, for example, by an epitaxial growth technique, or It can be formed using an ion implantation technique or the like.
  • the body region 28a and the body 28b are connected in a cross section, not shown.
  • the IGBT 11 includes a second electrode 62 that penetrates through the body contact region 34 and the body region 28 and reaches the semiconductor region 52 of the first conductivity type.
  • Two second electrodes 62 are formed between the opposed trench gate electrodes 42.
  • FIG. 2 shows a cross section taken along the line II-II in FIG.
  • FIG. 2 shows a plane pattern of the surface structure of IGBT11. As shown in FIG. 2, the plane pattern of the second electrode 62 has a stripe shape extending in parallel with the trench gate electrode 42.
  • the second electrode 62 faces at least a part of the semiconductor region 52 via an insulating film 64.
  • the second electrode 62 is remote from the emitter region 32 and does not contact the emitter region 32.
  • the second electrode 62 faces the body region 28a separating the body contact region 34 and the semiconductor region 52. It can be evaluated that the second electrode 62 does not face the body region 28 separating the emitter region 32 and the semiconductor region 52.
  • Polysilicon is used for the second electrode 62, and the second electrode 62 is covered with an insulating film 64 made of silicon.
  • the second electrode 62 faces the floating semiconductor region 52 via the insulating film 64.
  • the second electrode 62 is electrically connected to the trench gate electrode 42 in a cross section (not shown), and is controlled by a common gate potential.
  • the second electrode 62 does not reach the lower surface of the semiconductor region 52. Therefore, the semiconductor region 52 is continuous left and right on the paper.
  • the impurity concentration and thickness of each semiconductor region are adjusted to the following values.
  • the impurity concentration of 22 is about 1 ⁇ 10 18 cm ⁇ 3 and the thickness is about 0.5 ⁇ m.
  • the buffer region 24 has an impurity concentration of about 2 ⁇ 10 17 cm— 3 and a thickness of about 0.5 m.
  • the drift region 26 has an impurity concentration of about 1 ⁇ 10 14 cm ⁇ 3 and a thickness of about 130 ⁇ m.
  • the impurity concentration of the body region 28b is about 1 ⁇ 10 16 cm— 3 and the thickness is about 2 m.
  • the impurity concentration of the semiconductor region 52 is about 4 ⁇ 10 16 cm ⁇ 3 , and the thickness is about 0.5 ⁇ m.
  • the body region 28a has an impurity concentration of about 2 ⁇ 10 17 cm— 3 and a thickness of about 2 m.
  • the emitter concentration of the emitter region 32 is about 1 ⁇ 10 2 Q cm ⁇ 3 , and the thickness is about 0.5 ⁇ m.
  • the body contact region 34 has an impurity concentration of about 1 ⁇ 10 2 ° cm- 3 and a thickness of about 0.7 ⁇ m.
  • a gate-on voltage is also applied to the second electrode 62, which is a common potential.
  • the supplied voltage may be changed by interposing a resistor or the like.
  • the floating potential of the semiconductor region 52 facing the second electrode 62 also rises.
  • a large potential difference occurs at the junction surface between the semiconductor region 52 and the body region 28, and a potential barrier is formed for hole carriers. For this reason, the flow of the hole carriers injected from the collector region 22 is hindered.
  • FIG. 1B shows the concentration distribution of hole carriers accumulated corresponding to the line bb ′ of FIG. 1A (the junction surface 29 between the semiconductor region 52 and the body region 28b).
  • the vertical axis represents the hole carrier concentration
  • the horizontal axis corresponds to the line 3 ⁇ 4—b ′.
  • the solid line 11 shows the concentration distribution of the present embodiment
  • the broken line 100 shows the concentration distribution of the conventional structure shown in FIG.
  • the hole carrier concentration is uniform over a wide range of the semiconductor region 52, indicating that the hole carrier concentration is greatly increased compared to the conventional structure. Power. Thereby, the ON voltage is reduced. Further, in the present embodiment, when the second electrode 62 itself physically prevents the flow of the hole carriers, the second electrode 62 also has an effect.
  • an increase in the floating potential of the semiconductor region 52 allows electron carriers injected from the emitter region 32 to diffuse in the semiconductor region 52.
  • the electron carriers diffused in the semiconductor region 52 are planarly injected into the body region 28b and the drift region 26 by using the semiconductor region 52, so that the ON voltage is extremely reduced.
  • the hole carrier concentration at the junction surface 29 between the semiconductor region 52 and the body region 28b is also significantly higher than in the conventional structure.
  • 8 ⁇ 10 15 cm ⁇ 3 or more hole carriers are accumulated.
  • the IGBT 11 can obtain the effect of increasing the hole carrier concentration even at the junction surface between the body region and the drift region, which is considered to have the largest drop in the hole carrier concentration in comparison with the conventional structure. For this reason, in the IGBT 11, the effect of increasing the hole carrier concentration can be obtained in both the drift region 26 and the body region 28b, so that the ON voltage can be significantly reduced.
  • the hole carrier concentration when the IGBT is on can be obtained by calculating the shape of each component, the impurity concentration, and the like. For example, it can be obtained by using a device simulator DESSIS manufactured by Synopsys.
  • the insulating film 64 of the second electrode 62 of the IGBT 11 is formed apart from the emitter region 32. Therefore, electron carriers are not injected along the second electrode 62. It is considered that the increase in the supply of electronic carriers is closely related to the increase in the saturation current value of the IGBT. In this embodiment, even if the second electrode 62 is formed, the supply amount of electron carriers does not substantially increase. If the pitch width of the trench gate electrode 42 is set to be equal to the pitch width of the conventional structure, the area of the emitter region 32 does not increase. Therefore, the situation where the saturation current value excessively increases is avoided. Since the occurrence of the latch-up phenomenon is suppressed, destruction of the IG BT is avoided.
  • the IGBT 11 the case where the semiconductor region 52 is in contact with the gate insulating films 44 on the left and right sides of the drawing is illustrated. Reduced. Another feature of the IGBT 11 is that it can be used even if the impurity concentration of the floating semiconductor region 52 is lower than that of the conventional structure. In the conventional structure, when the semiconductor region 52 has a low concentration, the amount of accumulated hole carriers is reduced, and the ON voltage is not reduced. On the other hand, if the impurity concentration of the semiconductor region 52 is increased in order to increase the hole carrier accumulation amount, a situation occurs in which the latch-up phenomenon occurs and the turn-off cannot be performed.
  • the hole carriers can be uniformly accumulated over a wide range of the semiconductor region 52, so that the ON voltage can be reduced.
  • a situation where a latch-up phenomenon occurs due to the low concentration can be suppressed.
  • the impurity concentration is 1 ⁇ 10 17 cm ⁇ 3 or less, the on-state voltage can be reduced without causing a latch-up phenomenon.
  • the second electrode 62 of the IGBT 11 when the second electrode 62 of the IGBT 11 is off, the potential of the floating semiconductor region 52 can be suppressed to around OV. Therefore, a reliable turn-off operation can be realized.
  • FIG. 3 schematically shows a planar pattern of an IGBT according to a modification of the first embodiment.
  • the second electrode 62 has a stripe shape extending in parallel with the trench gate electrode 42.In this modification, the second electrode 62 is formed in a dotted manner. ing.
  • the shape and positional relationship of the second electrode 62 are such that the distance L1 between the insulating film 64 of the second electrode 62 and the gate insulating film 44 is substantially equal to the distance L2, L3 between the opposing second electrodes 62. It has been adjusted.
  • the second electrode is set so that the distance to the gate insulating film 44, which is close to any position force of the floating semiconductor region 52 (not shown), or the distance of the second electrode 62 to the insulating film 64 is smaller than a predetermined value.
  • the shape and positional relationship of 62 have been adjusted.
  • the predetermined value here means that the floating potential at an arbitrary position in the semiconductor region 52 rises following the gate-on voltage applied to the trench gate electrode 42 and the second electrode 62, and a potential barrier against hole carriers is formed. Refers to the distance in the range that can be performed. As a result, hole carriers can be accumulated over a wide range of the floating semiconductor region 52, and the ON voltage can be reduced.
  • the second electrodes 62 interspersed, when forming in a stripe shape, In comparison, an increase in the insulating film 64 covering the second electrode 62 can be suppressed. Therefore, it is possible to suppress an increase in the capacitance between the gate and the collector due to the increase in the insulating film 64. Thus, even if the second electrode 62 is provided, an effect of reducing the ON voltage without deteriorating the switching characteristics can be obtained.
  • FIG. 4 schematically shows a cross-sectional view of a main part of the IGBT 12 of the second embodiment. Note that the same reference numerals are given to the structures that are substantially the same as those in the first embodiment, and description thereof will be omitted.
  • the feature of the IGBT 12 is that the second electrode 63 reaches the drift region 26. For this reason, the second electrode 63 faces the body region 28 b separating the floating semiconductor region 52 and the drift region 26 via the insulating film 65. Note that the second electrode 63 does not separate the semiconductor region 52 extending left and right on the paper surface, and the semiconductor region 52 is continuous in a cross section (not shown). Specifically, for example, the second electrodes 63 are separated in the direction perpendicular to the paper surface, and the semiconductor regions 52 are continuously formed using the separation.
  • the floating potential of the semiconductor region 52 in a floating state rises, hole carriers are accumulated at the junction interface between the semiconductor region 52 and the body region 28b, and the on-voltage is reduced.
  • a potential to the second electrode 63 a portion facing the second electrode 63 in the body region 28b separating the semiconductor region 52 and the drift region 26 is inverted to the n-type.
  • the electron carrier force injected from the emitter region 32 and diffused in the semiconductor region 52 is directed toward the drift region 26 via the inverted channel (referred to as the second channel, which will be described in detail in the third embodiment). Injection becomes easier (increase of current path line). Therefore, the ON voltage is reduced.
  • the concentration of the electron carriers diffused in the semiconductor region 52 also increases.
  • the hole carrier concentration accumulated in the junction surface 29 between the semiconductor region 52 and the body region 28b also increases. Therefore, the IGBT 12 has an extremely low on-state voltage.
  • the bottom surface of the second electrode 63 of the present embodiment is formed near the upper surface of the drift region 26. Therefore, hole carriers can be physically accumulated by the bottom surface of the second electrode 63.
  • This embodiment is also preferable from the viewpoint of manufacturing. Since the distance in the depth direction between the second electrode 63 and the trench gate electrode 42 is equal, both can be formed using the same manufacturing process. For example, if a trench having a surface anisotropy of the semiconductor substrate is formed by reactive ion etching, the second electrode 63 and the trench gate electrode 42 can be formed simultaneously. The second electrode 63 and the trench gate electrode 42 can be formed without increasing the number of processes by appropriately adjusting the mask used for the trench width, the interval between the trenches, and the like.
  • the IGBT 12 of the present embodiment can be easily realized using the same manufacturing process as the conventional one.
  • the second electrodes 63 interspersed, it is possible to suppress an increase in the capacitance between the gate and the collector. A structure that suppresses the switching characteristics from deteriorating may be employed.
  • FIG. 5 schematically shows a cross-sectional view of a main part of an IGBT 13 which is a modification of the second embodiment.
  • the second electrode 66 is formed to extend from the surface of the semiconductor substrate in the cross section shown in FIG. Absent.
  • the second electrode 66 is buried in the semiconductor substrate.
  • the second electrode 66 faces the floating semiconductor region 52 via the insulating film 68, and further faces the body region 28b separating the semiconductor region 52 and the drift region 26. Therefore, the accumulation of hole carriers and the injection of electron carriers can be increased as in the above-described embodiment, and the ON voltage can be significantly reduced.
  • the body contact area Since the region 34 can be secured widely, hole carriers are quickly discharged when the turn-off is performed.
  • the IGBT 13 is useful because the switching speed can be increased.
  • the second electrode 66 In order to apply a voltage to the second electrode 66, it is preferable that at least a part of the second electrode 66 is formed to extend to the surface of the semiconductor substrate. This situation is schematically shown using the perspective view of the main part in FIG. The front surface in FIG. 6 corresponds to the cross section in FIG. The upper part on the right side of FIG. 6 is cut away.
  • the second electrode 66 (part of the inside of the semiconductor substrate in this perspective view) is directed toward the surface of the semiconductor substrate, and penetrates through the body region 28a and the body contact region 34.
  • An extended second electrode 66 is formed.
  • the second electrode 66 is electrically connected to the trench gate electrode 42 at a location where the second electrode 66 is exposed on the surface of the semiconductor substrate (67 in the drawing). Therefore, a voltage common to the trench gate electrode 42 can be applied to the second electrode 66. From this, the second electrode 66 is turned on following the on of the IGBT, so that the on-voltage can be reduced.
  • FIG. 7 schematically shows a cross-sectional view of a main part of an IGBT 14 according to another modification of the second embodiment.
  • the impurity concentration of the semiconductor region 52 is different in a plane orthogonal to the direction connecting the emitter region 32 and the drift region 26 (vertical direction in the drawing).
  • the semiconductor region 52 has a high concentration portion 52a and a low concentration portion 52b.
  • the high concentration portion 52a is located between the emitter region 32 and the drift region 26.
  • Low concentration portion 52b is located between body contact region 34 and drift region 26.
  • the accumulated holes The carrier can be quickly discharged using the low concentration portion 52b. Further, since the low-concentration portion 52b and the body contact region 34 are vertically aligned, the hole carriers discharged using the low-concentration portion 52b do not flow into the emitter region 32, and the body contact does not flow. It is quickly discharged to the emitter electrode E via the area 34. Therefore, the turn-off characteristics of the IGBT 14 can be improved while suppressing the occurrence of the latch-up phenomenon. Even if the low-concentration portion 52b is provided, a low on-state voltage can be obtained due to the hole carrier accumulation effect of the second electrode 63.
  • FIG. 8 schematically shows a perspective view of a main part of the IGBT 15 of the third embodiment.
  • the area occupied by the emitter region 33 on the surface of the semiconductor substrate is limited in order to reduce the on-voltage while keeping the saturation current value low.
  • the area of the emitter region 33 refers to the vicinity of a portion of the emitter region 33 that is in contact with the gate insulating film 44. More specifically, in the emitter region 33, when a gate-on voltage is applied to the trench gate electrode, the area corresponds to a channel region formed in the body region 28 immediately below.
  • the size of the channel region varies depending on the gate-on voltage, it generally refers to a range from the side surface of the gate insulating film 44 to 0.1 ⁇ m.
  • the area of the emitter region 33 means an area existing within a range of 0.1 ⁇ m from the side surface of the gate insulating film 44. In the IGBT 15, the ratio of this area to the region sandwiched between the trench gate electrodes 42 is limited. As will be described later, in the emitter region 33 other than the region corresponding to the channel region, the contact resistance with the emitter electrode E can often be reduced by securing the emitter region 33 rather than limiting the area.
  • the emitter region 33 is spaced apart from the gate insulating film 44 on the surface of the semiconductor substrate.
  • the emitter region 33 is spaced apart from the gate insulating film 44 in the direction in which the trench gate electrode 42 extends (longitudinal direction).
  • the width La at which the emitter region 33 is separated is adjusted in the range of l ⁇ m ⁇ lO ⁇ m.
  • the depth Lb of the emitter region 33 is adjusted in the range of 0.1 to 1 ⁇ m.
  • the pitch width of the trench gate electrode 42 can be adjusted. Even if the pitch width of the trench gate electrode 42 is adjusted to be narrow, the area of the emitter region 33 can be maintained at a predetermined amount. Therefore, by adjusting the pitch width of the torch gate electrode 42 to be narrow without increasing the area of the emitter region 33, the hole carrier generated by the semiconductor region 52 can be reduced while suppressing the supply amount of the electron carrier supplied from the emitter region 33. Storage capacity can be improved.
  • the ON voltage is significantly reduced.
  • the width La at which the emitter region 33 is separated is adjusted to a range of 1 ⁇ m or more, the supply amount of the supplied electron carriers can be suppressed low. Note that if the separation width La is too large, the channel resistance may be adversely affected.
  • the separation width La of the emitter region 33 is preferably adjusted to a range of 10 m or less. If the depth Lb of the emitter region 33 is adjusted in the range of 0.1 ⁇ ⁇ ⁇ m, the ability of the emitter region 33 itself to supply electron carriers is reduced, and the supply amount of electron carriers is reduced. be able to.
  • the IGBT 15 can realize a reduction in ON voltage based on an increase in the amount of accumulated hole carriers, while suppressing destruction of the IGBT 15 due to an increase in the saturation current value.
  • the area of the emitter region 33 greatly affects the saturation current value.
  • the area of the floating semiconductor region 52 (the area in a plane orthogonal to the direction connecting the emitter region 33 and the drift region 26) greatly affects the amount of hole carrier accumulation.
  • An IGBT having both these characteristics can be related between the area of the emitter region 33 and the area of the floating semiconductor region 52. That is, the area of the emitter region 33 is preferably adjusted to 50% or less of the area of the semiconductor region 52. More preferably, it is in the range of 10 to 30%. In this case, destruction based on the saturation current value is prevented, and an IGBT with an extremely low on-voltage can be obtained.
  • the optimum value varies depending on the chip size, the number and shape of the trench gate electrodes, and the like, but if it is adjusted within the above numerical range, an IGBT with excellent characteristics can be obtained. Further, the IGBT 15 is provided with measures to reduce the channel resistance.
  • the emitter region 33 is not formed facing the trench gate electrode 42 when observed in a direction perpendicular to the direction in which the trench gate electrode 42 extends in the horizontal plane. The emitter region 33 is not in contact with the gate insulating film 44 of the other trench gate electrode 42 in the direction facing the surface of the one trench gate electrode 42 that directly contacts the gate insulating film 44.
  • the emitter region 33 formed in contact with the gate insulating film 44 of one trench gate electrode 42 is not in contact with the gate insulating film 44 of the other trench gate electrode 42. Further, in the IGBT 15, the emitter region 33 is repeatedly formed. The emitter region 33 is repeatedly formed in contact with the gate insulating film 44 of one of the trench gate electrodes 42. The emitter region 33 is repeatedly formed in contact with the gate insulating film 44 of the other trench gate electrode 42. One emitter region 33 and the other emitter region 33 are formed alternately in the repetition direction. In this case, the pattern of the emitter region 33 on the surface of the semiconductor substrate is formed between the opposing trench gate electrodes 42 in a "lattice-like (or grid-like)!
  • FIG. 9 shows a path through which the electron carriers supplied from the emitter region 33 flow. It was noted that part of I GBT15 was cut out! ,.
  • the electron carriers supplied from the emitter region 33 flow to the drift region 26 through the following path.
  • the electron carriers supplied from the emitter region 33 flow to the semiconductor region 52 along the gate insulating film 44.
  • a part of the electron carriers passes through the semiconductor region 52 and flows to the drift region 26 along the gate insulating film 44 (arrow A: referred to as a first channel).
  • Some of the other electron carriers diffuse into the semiconductor region 52 and flow to the drift region 26 along the gate insulating film 44 of the opposed trench gate electrode 42 (arrow B: referred to as a second channel).
  • the amount of supplied electron carriers is suppressed by the emitter region 33 having a limited area, the supplied electron carriers can cover a wide area using the semiconductor region 52 and the opposed trench gate electrode 42. Can flow.
  • the channel resistance when the supplied electron carriers flow can be kept low while limiting the amount of the supplied electron carriers to keep the saturation current value low.
  • the channel region tends to decrease and the channel resistance tends to increase.
  • the IGBT 15 while using the path through the semiconductor region 52 and the second channel B, Thus, an increase in channel resistance is suppressed.
  • the first channel A Since the second channel B is used synergistically, an increase in channel resistance is significantly suppressed.
  • the concentration of the electron carrier diffusing in the semiconductor region 52 increases.
  • the concentration of hole carriers accumulated in the junction surface 29 between the semiconductor region 52 and the body region 28b also increases.
  • FIG. 10 is a schematic perspective view of a main part of an IGBT 16 according to a modification of the third embodiment.
  • each of the emitter regions 35 is continuous at a position not in contact with the power gate insulating film 44. Alternatively, it is continuously located at a position other than the range corresponding to each force channel region of the emitter region 35.
  • each of the emitter regions 35 is preferably continuous at a position not in contact with the gate insulating film 44. As a result, the contact resistance can be reduced, and the ON voltage can be reduced.
  • FIG. 11 schematically shows a perspective view of a main part of an IGBT 17 according to another modification of the third embodiment.
  • the emitter region 36 is continuous between the opposed trench gate electrodes 42.
  • the Assembly of emitter region 36 and body contact region 34 Trench gate electrode 42 is formed repeatedly in the extending direction! Puru.
  • a portion of the emitter region 35 that is not in contact with the gate insulating film 44 is continuous, so that the contact resistance between the emitter region 35 and the emitter electrode can be reduced by being provided on the surface. it can.
  • the electron carriers supplied from the emitter region 36 diffuse into the semiconductor region 52 and are injected into the drift region 26. For this reason, since the second channel can be used, the channel resistance when the supplied electron carrier flows can be kept low, and the IGBT 17 with significantly reduced ON voltage can be obtained.
  • FIGS. 12, 13 and 14 schematically show plane patterns of an emitter region of another modification of the third embodiment.
  • Various structures can be adopted for the planar pattern for limiting the area of the emitter region, and various structures other than the following modifications can be adopted. If the emitter regions are provided at a distance, the same operation and effect as in the above example can be obtained.
  • the emitter region 37 is provided only on one side surface of the trench gate electrode 42.
  • the emitter region 37 is formed in contact with the gate insulating film 44 of the opposing trench gate electrode 42.
  • the emitter regions 38 are provided on the side surfaces of the left and right gate insulating films 44 so as to be spaced apart from each other. A part is opposed in a direction orthogonal to the direction in which the trench gate electrode 42 extends, and a part is opposed in a direction orthogonal to the direction in which the trench gate electrode 42 is extended.
  • an emitter region 39 in contact with one gate insulating film 44 and an emitter region 39 in contact with the other gate insulating film 44 are continuous.
  • the set is repeatedly formed in the direction in which the trench gate electrode 42 extends.
  • FIG. 15 schematically shows a perspective view of a main part of the IGBT 18 of the fourth embodiment.
  • the pitch width of the stripe-shaped trench gate electrode is different. was narrowed.
  • this structure there is a concern that the capacitance between the gate and the collector will increase due to the increase in the amount of the gate insulating film, which may affect switching characteristics.
  • IGBT18 proposes a structure that takes measures against this point.
  • the IGBT 18 is formed by a complicated pattern in which the trench gate electrode 46 does not have a stripe shape.
  • individual trench gate electrodes 46 are formed in a loop, and they are formed scattered on the surface of the semiconductor substrate.
  • the distance L4 between the opposing gate insulating films 48 inside the looped trench gate electrode 46 and the distance between the gate insulating film 48 of one trench gate electrode 46 and the gate insulating film 48 of the other trench gate electrode 46 are determined.
  • the shape and positional relationship of the trench gate electrode 46 are adjusted so that the distances L5 and L6 between them are substantially equal.
  • the shape and positional relationship of the trench gate electrode 46 are adjusted so that the distance to the gate insulating film 48, which is also close to any position force of the floating semiconductor region 52, is smaller than a predetermined value.
  • the predetermined value is a distance within a range in which the floating potential at an arbitrary position in the semiconductor region 52 rises following the gate-on voltage applied to the torch gate electrode 42 and a potential barrier for hole carriers can be formed.
  • hole carriers can be accumulated over a wide range of the floating semiconductor region 52, and the ON voltage can be reduced.
  • the increase in the gate insulating film 48 can be suppressed as compared with the case where the trench gate electrode 46 is formed in a stripe shape. Therefore, it is possible to suppress an increase in the gate-collector capacitance due to an increase in the gate insulating film 48. As a result, even if the width of the opposing trench gate electrode 46 is reduced, the effect of reducing the ON voltage without deteriorating the switching characteristics can be obtained.
  • the emitter region 31 is provided inside the trench gate electrode 46 that makes a circuit.
  • the emitter region 31 is not in contact with the gate insulating film 44 of the opposed trench gate electrode 46 in the direction facing the surface of the trench gate electrode 46 that directly contacts the gate insulating film 44. Therefore, the electron carriers supplied from the emitter region 31 are supplied to the drift region 26 by using the second channel B within the looped trench gate electrode 46.
  • the outside of the trench gate electrode The decontact region 34 is not provided. Therefore, the outside of the rounded trench gate electrode 46 is in a floating state, and the effect of accumulating hole carriers is large.
  • the semiconductor region 52 may be provided with a portion where the impurity concentration is high and a portion where the impurity concentration is low. When turned off, the hole carrier can be discharged using the low concentration portion.
  • a second electrode may be provided between the trench gate electrodes. Hole carriers can be accumulated more effectively.
  • the emitter region 31 may be formed in the range indicated by L5 and L6 in the fourth embodiment. More electron carriers can be supplied inside the device.

Landscapes

  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Pinball Game Machines (AREA)
  • Slot Machines And Peripheral Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 IGBTのボディ領域内に形成されるフローティング状態の半導体領域の広い範囲に亘って、正孔キャリアを蓄積する作用が発揮されるようにする。  p-型のボディ領域28内に形成されており、ボディ領域28によってn+型のエミッタ領域32とn-型のドリフト領域26の双方から隔てられており、電位がフローティングしているn型の半導体領域52が形成されている。さらに、その半導体領域52の少なくとも一部に絶縁膜64を介して対向するとともに、エミッタ領域32に対向していない第2電極62が形成されている。

Description

明 細 書
半導体装置
技術分野
[0001] 本出願は、 2004年 5月 12日に出願された日本国特許出願第 2004— 141797号 に基づく優先権を主張する。その出願の全ての内容はこの明細書中に参照により援 用されている。
本発明は、 IGBT (Insulated Gate Bipolar Transistor)のオン電圧を低減する技術 に関する。特に、飽和電流値を低く保ちながらオン電圧を低減する技術に関する。 背景技術
[0002] IGBTは、第 1導電型ェミッタ領域と、第 1導電型ドリフト領域と、両者を隔てて!/ヽる第 2導電型ボディ領域を備えて 、る。第 2導電型ボディ領域内に第 1導電型半導体領域 を設けることによってオン電圧の低減を図る技術が提案されており、 Pro of the 6th internat. Symposium on Power semiconductor Devices & IC s, Davos, Switzerland. 1994. "Trench Gate Emitter Switched Thyristors M.S.Shekar, J.Korec, B.J.Baliga. P189-194. IEEE Cat.no.94CH3377- 9の文献に開示されている。
[0003] 図 16 (a)に、上記の文献に開示されている IGBT100の要部断面図を模式的に示 す。 IGBT100は、 n+型のェミッタ領域 132と、ェミッタ領域 132に接する p—型のボデ ィ領域 128と、ボディ領域 128に接するとともにボディ領域 128によってェミッタ領域 1 32から隔てられている n_型のドリフト領域 126を備えている。さらに IGBT100は、ト レンチゲート電極 142を備えている。トレンチゲート電極 142は、ェミッタ領域 132とド リフト領域 126を隔てているボディ領域 128を貫通してェミッタ領域 132からドリフト領 域 126まで伸びている。トレンチゲート電極 142は、ゲート絶縁膜 144を介してボディ 領域 128に対向している。 IGBT100は上記に加えて、ボディ領域 128内に形成され ている n+型の半導体領域 154を備えている。半導体領域 154は、ボディ領域 128a によってェミッタ領域 132から隔てられており、ボディ領域 128bによってドリフト領域 1 26からも隔てられている。ボディ領域 128aとボディ領域 128bは図示しない断面で接 続している。 ボディ領域 128aの上方部分であって左右のェミッタ領域 132の間の領域には、 p+ 型のボディコンタクト領域 134が形成されている。ドリフト領域 126の下方には n+型の ノッファ領域 124と p+型のコレクタ領域 122が順に形成されている。ェミッタ領域 132 とボディコンタクト領域 134はェミッタ電極 Eに電気的に接続しており、コレクタ領域 1 22はコレクタ電極 Cに電気的に接続している。
IGBT100は、ボディ領域 128内に半導体領域 154を備えていることを特徴として いる。半導体領域 154は、紙面左右のトレンチゲート電極 142のゲート絶縁膜 144の 間に亘つて伸びており、ェミッタ領域 132、ボディ領域 128a, 128b,ドリフト領域 126 のいずれからも絶縁されている。半導体領域 154の電位は、 IGBTに与える電位によ つて直接には決定されず、周囲の環境に応じて浮動する。この電位状態を本明細書 ではフローティングされて!/ヽると!/、う。
IGBT100のェミッタ電極 Eを接地してコレクタ電極 Cに正電圧を印加した状態でト レンチゲート電極 142に正のゲート電圧を印加すると、ボディ領域 128内のトレンチ ゲート電極 142に対向する箇所が n型に反転してチャネル領域が形成される。電子 キャリアはェミッタ領域 132から供給され、 n型に反転したチャネル領域を経由してドリ フト領域 126へ注入され、ノ ッファ領域 124内に蓄積する。電子キャリアがバッファ領 域 124に蓄積すると、ノ ッファ領域 124とコレクタ領域 122の接触電位差が低下し、 コレクタ領域 122からバッファ領域 124及びドリフト領域 126に向けて正孔キャリアが 注入され伝導度変調が起こる。
コレクタ領域 122から注入された正孔キャリアは、電子キャリアと再結合して消滅す る力、あるいはボディ領域 128とボディコンタクト領域 134を経由してェミッタ電極 Eに 排出される。
ボディ領域 128内に半導体領域 154が設けられて 、ると、半導体領域 154とボディ 領域 128bの間にポテンシャル障壁が形成される。コレクタ領域 122から注入された 正孔キャリアは、このポテンシャル障壁によって流動が妨げられる。これにより、ボディ 領域 128bとドリフト領域 126内に正孔キャリアが蓄積されて、オン電圧が低減される 発明の開示 発明が解決しょうとする課題
[0005] 本発明者らは、フローティング状態の半導体領域 154によって得られる現象をより 詳細に検討したところ、次のような現象が生じていることを見出した。
図 16(b)に、図 16(a)の b—b'線(半導体領域 154とボディ領域 128bの接合面 129) に蓄積されて 、る正孔キャリアの濃度分布を示す。縦軸が正孔キャリアの濃度であり 、横軸力 ¾—b'線に対応している。図 16(b)に示すように、対向するトレンチゲート電 極 142から離れた位置では、正孔キャリアの蓄積量が少ないことが分かる。これは、 フローティング状態の半導体領域 154の電位をトレンチゲート電極 142の電位によつ て引き上げる能力が、トレンチゲート電極 142から離れた位置では小さくなつており、 そのためボディ領域 128との間に形成されるポテンシャル差が小さいことが理由だと 考えられる。従って、従来の半導体領域 154は、正孔キャリアの蓄積能力が不十分 であったと言える。
[0006] 上記現象を克服するためには、対向するトレンチゲート電極 142の間隔(ピッチ幅と もいう)を狭くすることが有効に思われる。し力しながら、対向するトレンチゲート電極 1 42の間隔を狭くすると、それに追随してェミッタ領域 132の半導体基板表面に占める 面積が大きくなり、ェミッタ領域 132の電子キャリアを供給する能力が増大する。この 結果、 IGBTの飽和電流値が上昇し、 IGBTが破壊され易くなるという新たな問題が 生じることが本発明者らの研究により分力 てきた。本発明者らは、上記の現象を鑑 みて、ェミッタ領域 132の面積を増力!]させないで半導体領域 154による正孔キャリア の蓄積能力を向上させることが重要であることを見出したのである。
本発明は、フローティングされている半導体領域の広い範囲に亘つてキャリアの蓄 積能力を向上させ、 IGBTのオン電圧を低減することを目的とする。
課題を解決するための手段
[0007] 本発明では、上記の知見に基づ!/、て創作された複数の IGBTを提案する。 V、ずれ の IGBTにおいても、飽和電流値を低く保ちながらオン電圧を低減するという共通の 課題を克服することができる。
本発明の IGBTは、第 1導電型ェミッタ領域と、第 1導電型ェミッタ領域に接する第 2 導電型ボディ領域と、第 2導電型ボディ領域に接するとともに第 2導電型ボディ領域 によって第 1導電型ェミッタ領域力も隔てられている第 1導電型ドリフト領域を備えて いる。さらにゲート電極を備えている。ゲート電極は、第 1導電型ェミッタ領域と第 1導 電型ドリフト領域を隔てている第 2導電型ボディ領域を貫通して第 1導電型ェミッタ領 域力も第 1導電型ドリフト領域まで伸びており、ゲート絶縁膜を介して第 2導電型ボデ ィ領域に対向している。
本発明の一つの IGBTは、上記に加えて、第 1導電型半導体領域と第 2電極を備え ている。第 1導電型半導体領域は、第 2導電型ボディ領域内に形成されており、第 2 導電型ボディ領域によって第 1導電型ェミッタ領域と第 1導電型ドリフト領域の双方か ら隔てられて 、る。第 1導電型半導体領域の電位はフローティング状態となって 、る 。第 2電極は、第 1導電型半導体領域の少なくとも一部に絶縁膜を介して対向すると ともに、第 1導電型ェミッタ領域力も遠く隔てられている。即ち、第 2電極は、第 1導電 型半導体領域と第 1導電型ェミッタ領域を隔てている第 2導電型ボディ領域に反転層 を形成しない。
第 1導電型半導体領域は、ゲート電極のゲート絶縁膜に接していてもよいし、離間 して形成されていてもよい。
上記の IGBTの場合、第 2電極に所定の電圧を印加すると、第 2電極に対向する第 1導電型半導体領域の電位を引き上げることができる。第 1導電型半導体領域の電 位が上昇することによって、第 1導電型半導体領域と第 2導電型ボディ領域との間の ポテンシャル差が大きくなり、第 2導電型キャリアに対するポテンシャル障壁が形成さ れる。第 2導電型キャリアはこのポテンシャル障壁によって流動が妨げられる。これに より、第 1導電型半導体領域と第 1導電型ドリフト領域の間に存在する第 2導電型ボ ディ領域の広い範囲に亘つて第 2導電型キャリアを蓄積することができ、 IGBTのオン 電圧を低減することができる。なお、対向するゲート電極の間に複数個の第 2電極が 分散配置して形成されていると、第 1導電型半導体領域の電位を広い範囲に亘つて 引き上げることができるので好ましい。第 1導電型半導体領域の電位を広い範囲に亘 つてバランスよく持ち上げることができる。
第 2電極は、第 1導電型ェミッタ領域に接していない。即ち、第 2電極は、第 1導電 型半導体領域と第 1導電型ェミッタ領域を隔てている第 2導電型ボディ領域に反転層 を形成しない。したがって、第 2電極に沿って第 1導電型キャリアが供給されることが ない。このため、飽和電流値が上昇して IGBTが破壊されやすくなる事態を回避する ことができる。本発明によれば、飽和電流値の上昇に基づく IGBTの破壊を抑制しな がら、第 2導電型キャリアの蓄積量の増大に基づくオン電圧の低減化を実現すること ができる。
なお、本明細書の使われる「第 1導電型キャリア」とは、「第 1導電型半導体における キャリア」のことをいう。同様に、「第 2導電型キャリア」とは、「第 2導電型半導体におけ るキャリア」のことをいう。例えば、第 1導電型が n型の場合は、第 1導電型キャリアとは 電子キャリアのこと意味し、第 2導電型キャリアとは正孔のことを意味する。
[0008] フローティングしている第 1導電型半導体領域はゲート絶縁膜に接しているのが好 ましい。
第 1導電型半導体領域がゲート絶縁膜に接して!/、ると、ェミッタ領域からチャネル領 域を経て供給された第 1導電型キャリアが、第 1導電型半導体領域を拡散する。第 1 導電型半導体領域を拡散した第 1導電型キャリアは、第 1導電型半導体領域を利用 してボディ領域とドリフト領域に向けて面的に注入される(電流パスラインの増加)。 IG BTのオン電圧をさらに低減することができる。
[0009] 第 2電極が、第 1導電型半導体領域と第 1導電型ドリフト領域を隔てている第 2導電 型ボディ領域を貫通して第 1導電型半導体領域から第 1導電型ドリフト領域まで伸び ており、絶縁膜を介して第 2導電型ボディ領域に対向することが好ましい。
第 2電極に電圧を印加すると、第 1導電型半導体領域と第 1導電型ドリフト領域を隔 てている第 2導電型ボディ領域内の第 2電極と対向する箇所を反転させることができ る。したがって、第 1導電型半導体領域を拡散した第 1導電型キャリアは、反転された チャネル領域を経由して第 1導電型ドリフト領域に向けて注入され易くなる。オン電圧 をさらに低減することができる。
なお、複数の第 2電極が分散配置されている場合は、そのうちの一部だけが第 1導 電型半導体領域と第 1導電型ドリフト領域を隔てるボディ領域を貫通するものであつ てもよ 、。その場合でも上記の効果を奏することができる。
[0010] 本発明の IGBTでは、前記したように第 1導電型半導体領域を利用して多量の第 2 導電型キャリアを蓄積することができる。さらに、第 1導電型半導体領域がゲート絶縁 膜に接することによって、第 1導電型キャリアが第 1導電型半導体領域 (電流パスライ ン)を拡散するのに呼応して第 2導電型キャリアの蓄積量がさらに向上する。これらの 相乗効果によって、従来の構造では実現し得な!、量の第 2導電型キャリアの蓄積に 初めて成功している。
即ち、本発明の IGBTは次のように特徴づけることができる。本発明の IGBTは、ォ ンしているときに、第 1導電型半導体領域と第 2導電型ボディ領域の接合面のうち第 1導電型ドリフト領域に対向する接合面に蓄積する第 2導電型キャリア濃度が 8 X 10 15cm— 3以上であると特徴づけることができる。
[0011] 第 2電極とゲート電極は電気的に接続されていることが好ましい。
この場合、ゲート電極にオン電圧が印加されると、第 2電極にも電圧が印加される。 IGBTがオンしている間、第 1導電型半導体領域の電位を利用して第 2導電型キヤリ ァを蓄積する作用が得られる。
第 2電極用に別個の電圧供給源を準備する必要がな ヽので、構成を簡単ィ匕するこ とがでさる。
[0012] 第 1導電型半導体領域の不純物濃度が 1 X 1017cnf 3以下であることが好ましい。
第 1導電型半導体領域の不純物濃度が小さいと、ラッチアップ現象を抑制すること ができる。ラッチアップ現象とは、過剰に蓄積された第 2導電型キャリアが第 1導電型 ェミッタ領域を経由して排出される現象であり、 IGBTのターンオフを不安定にする。 本発明では、第 2電極を設けることによって、低濃度な第 1導電型半導体領域であつ ても第 2導電型キャリアをバランスよく蓄積することができる。低濃度な第 1導電型半 導体領域を利用して過剰な第 2導電型キャリアの蓄積を抑制しながら、第 2電極を利 用してオン電圧を低減することができる。したがって、安定的なターンオフと低いオン 電圧を得ることができる。
なお、第 1導電型半導体領域の不純物濃度が小さいほど、ゲート電極から離れた 位置にお ヽて第 2導電型キャリアの蓄積量が低下する現象が顕著に現れる。しかし ながら、本発明の IGBTでは、第 1導電型半導体領域の不純物濃度が 1 X 1017cnf 3以 下の場合であっても、第 2電極を設けることによって、第 1導電型半導体領域を利用 して第 2導電型キャリアを蓄積することができる。したがって、第 1導電型半導体領域 の不純物濃度が 1 X 1017cnf 3以下の場合には、本発明は特に有用であるといえる。
[0013] 第 1導電型半導体領域の不純物濃度が、第 1導電型ェミッタ領域と第 1導電型ドリ フト領域を結ぶ方向に直交する面内で異なって 、てもよ 、。
第 1導電型半導体領域内に不純物濃度が薄く調整された部分を設けることによつ て、 IGBTがオフしたときに、蓄積された第 2導電型キャリアを低濃度な部分を利用し て素早く排出することができる。このため、 IGBTのターンオフ特性を向上させることが できる。
[0014] 第 1導電型半導体領域の不純物濃度を面内で異ならせる場合、第 1導電型半導体 領域の高濃度部分は、第 1導電型ェミッタ領域とドリフト領域の間に位置しているのが 好ましい。さらに、第 1導電型半導体領域の低濃度部分は、第 1導電型ェミッタ領域 が形成されていない第 2導電型ボディ領域の表面と第 1導電型ドリフト領域の間に位 置しているのが好ましい。
高濃度部分と低濃度部分を上記の位置関係に形成すると、 IGBTがオフしたときに 、低濃度部分を利用して排出される第 2導電型キャリアが、第 1導電型ェミッタ領域に 流入しないで、表面に設けられている主電極に素早く排出される。このため、ラッチァ ップ現象の発生を抑制しながら、 IGBTのターンオフ特性を向上させることができる。
[0015] 本発明者らは、第 1導電型ェミッタ領域の面積を制限することによって、飽和電流値 を低く保ちながらオン電圧を低減することができる IGBTをも創作した。
即ち、本発明の他の一つの IGBTも、第 1導電型ェミッタ領域と、第 1導電型ェミッタ 領域に接する第 2導電型ボディ領域と、第 2導電型ボディ領域に接するとともに第 2 導電型ボディ領域によって第 1導電型ェミッタ領域から隔てられている第 1導電型ドリ フト領域を備えている。さらにゲート電極を備えている。ゲート電極は、第 1導電型エミ ッタ領域と第 1導電型ドリフト領域を隔てている第 2導電型ボディ領域を貫通して第 1 導電型ェミッタ領域力 第 1導電型ドリフト領域まで伸びており、ゲート絶縁膜を介し て第 2導電型ボディ領域に対向している。
本発明の他の一つの IGBTは、上記に加えて、第 1導電型半導体領域を備えてい る。第 1導電型半導体領域は、第 2導電型ボディ領域内に形成されており、第 2導電 型ボディ領域によって第 1導電型ェミッタ領域と第 1導電型ドリフト領域の双方から隔 てられている。第 1導電型半導体領域の電位はフローティング状態となっている。第 1 導電型半導体領域は、ゲート電極のゲート絶縁膜に接していてもよいし、離間して形 成されていてもよい。
本発明の他の一つの IGBTの特徴は、第 1導電型ェミッタ領域力 半導体基板表 面内にお!、てゲート絶縁膜に対して離隔的に接して 、ることである。
第 1導電型ェミッタ領域を離隔的に設けることによって、第 1導電型ェミッタ領域の 半導体基板表面内に占める面積を増加させないで、ゲート電極のピッチ幅を調整す ることが可能になる。ゲート電極のピッチ幅を狭く調整したとしても、第 1導電型ェミツ タ領域の面積を所定量に維持することができる。したがって、第 1導電型ェミッタ領域 の面積を増カロさせないで、ゲート電極のピッチ幅を狭く調整することができる。第 1導 電型ェミッタ領域から供給される第 1導電型キャリアの供給量を増加させないで、第 1 導電型半導体領域による第 2導電型キャリアの蓄積能力を向上させることができる。 本発明では、第 1導電型ェミッタ領域を離隔的に設けるという簡単な構造と、ボディ領 域内に第 1導電型半導体領域を設けるという構造を組合せて用いることによって、飽 和電流値を低く抑えながら、オン電圧が優位に低減された IGBTを得ることに成功し たのである。フローティング状態にある第 1半導体領域を利用する IGBTの場合、第 1 導電型ェミッタ領域を離隔的に設けることが極めて有効であることを、本発明者らは 新たな知見に基づいて突き止めたのである。
[0016] フローティング状態にある第 1導電型半導体領域がゲート絶縁膜に接しているのが 好ましい。
第 1導電型半導体領域がゲート絶縁膜に接して!/、ると、ェミッタ領域からチャネル領 域を経て供給される第 1導電型キャリアが、第 1導電型半導体領域を拡散する。第 1 導電型半導体領域を拡散した第 1導電型キャリアは、第 1導電型半導体領域を利用 してボディ領域とドリフト領域に向けて面的に注入される。 IGBTのオン電圧をさらに 低減することができる。
[0017] 対向するゲート電極の間に形成されており、一方のゲート電極のゲート絶縁膜に接 して形成されている第 1導電型ェミッタ領域は、第 1導電型ェミッタ領域がゲート絶縁 膜に直接的に接する面に直交する方向において、他方のゲート電極のゲート絶縁膜 に接して形成されて 、な 、ことが好まし 、。
上記の構造の第 1導電型ェミッタ領域を備えている IGBTでは、第 1導電型ェミッタ 領域から供給された第 1導電型キャリアは、次の経路を迪つて第 1導電型ドリフト領域 まで流動する。まず、第 1導電型ェミッタ領域から供給された第 1導電型キャリアは、 ゲート絶縁膜に沿って第 1導電型半導体領域まで流れる。ここで、第 1導電型キャリア の一部は、第 1導電型半導体領域を通過して、ゲート絶縁膜に沿って第 1導電型ドリ フト領域に流れる (本明細書では、この経路を第 1チャネルという)。第 1導電型キヤリ ァの他の一部は、第 1導電型半導体領域を拡散して対向するゲート電極のゲート絶 縁膜に沿って第 1導電型ドリフト領域に流れる (本明細書では、この経路を第 2チヤネ ルという)。即ち、面積が制限された第 1導電型ェミッタ領域によって、供給される第 1 導電型キャリアの量は抑えられているものの、供給された第 1導電型キャリアは第 1導 電型半導体領域と対向するゲート電極を利用して、広い範囲に流れることができる。 ェミッタ領域を離隔的に設けると、チャネル抵抗が増大する傾向にあるが、上記の構 造では第 2チャネルを利用することができるので、チャネル抵抗の増大を抑えることが できる。供給される第 1導電型キャリアの量を制限して飽和電流値を低く抑えながら、 供給された第 1導電型キャリアが流動するときのチャネル領域の面積を大きく確保し チャネル抵抗を低く抑えることができる。
上記した第 1導電型キャリアの流動を効果的に利用するには、対向するゲート電極 の間に形成されており、一方のゲート電極のゲート絶縁膜に接する第 1導電型ェミツ タ領域が繰返し形成されており、他方のゲート電極のゲート絶縁膜に接する第 1導電 型ェミッタ領域が繰返し形成されており、一方の第 1導電型ェミッタ領域と他方の第 1 導電型ェミッタ領域は繰返し方向にぉ ヽて交互に形成されて ヽることが好まし ヽ。こ の場合、半導体基板表面の第 1導電型ェミッタ領域群のパターンは、対向するゲート 電極の間において、「格子状 (あるいは碁盤目状)」に形成されているともいえる。この 構造を採用すると、第 1チャネルと第 2チャネルの組が、半導体基板内の全体に亘っ てバランスよく配置され (電流パスラインの増加)、オン電圧の低減に効果的となる。こ のため、飽和電流値の上昇に基づく IGBTの破壊を抑制しながら、チャネル抵抗を 顕著に低減することができ、ひ ヽてはオン電圧が顕著に低減された IGBTを得ること ができる。
[0019] 第 1導電型ェミッタ領域を離隔的に設ける IGBTにおいても、第 1導電型半導体領 域と第 2導電型ボディ領域の接合面に形成されるポテンシャル障壁に基づく第 2導電 型キャリアの蓄積と、第 1導電型キャリアが第 1導電型半導体領域を拡散するのに呼 応する第 2導電型キャリアの蓄積の相乗効果によって従来の構造では実現し得ない 量の第 2導電型キャリアの蓄積に成功して 、る。
即ち、本発明の IGBTは、オンしているときに、第 1導電型半導体領域とボディ領域 の接合面のうちドリフト領域に対向する接合面に蓄積する第 2導電型キャリア濃度が 8 X 1015cm— 3以上であると特徴づけることができる。
[0020] 離隔的にゲート絶縁膜に接している第 1導電型ェミッタ領域のそれぞれは、ゲート 絶縁膜に接して 、な 、位置にぉ 、て連続して 、ることが好ま 、。
第 1導電型ェミッタ領域のうち、ゲート絶縁膜に接していない部分は、第 1導電型キ ャリアの供給量を致命的に増カロさせることはなぐむしろ表面に設けられている主電 極とのコンタクト抵抗を低減させることができる。したがって、第 1導電型ェミッタ領域 のうち、ゲート絶縁膜に接していない部分は、第 1導電型キャリアの供給量が致命的 に増加しない範囲内で大きく確保することが好ましい。したがって、第 1導電型ェミツ タ領域のそれぞれは、ゲート絶縁膜に接して 、な 、位置にぉ 、て連続して 、ることが 好ましい。ここでいう「連続」とは、第 1導電型ェミッタ領域のそれぞれが、第 1導電型 の他の半導体領域を介して連結する場合も含む。これにより、コンタクト抵抗を低減さ せ、ひいてはオン電圧を小さくすることができる。
[0021] 第 1導電型ェミッタ領域の半導体基板表面に露出する面積は、第 1導電型ェミッタ 領域と第 1導電型ドリフト領域を結ぶ方向に直交する面内の第 1導電型半導体領域 の面積に対して 50%以下であることが好まし 、。
上記の範囲内に第 1導電型ェミッタ領域の面積が調整されていると、飽和電流値に 基づく破壊が防止されるとともに、オン電圧が極めて小さい IGBTを得ることができる
[0022] 1導電型半導体領域の不純物濃度が 1 X 1017cnf 3以下であることが好ましい。 ラッチアップ現象の発生を抑制しながら、第 1導電型半導体領域を利用して第 2導 電型キャリアを蓄積することができる。
[0023] 第 1導電型半導体領域の不純物濃度が、第 1導電型ェミッタ領域と第 1導電型ドリ フト領域を結ぶ方向に直交する面内で異なって 、てもよ 、。
第 1導電型半導体領域の不純物濃度が薄く調整された部分を設けることによって、 IGBTがオフしたときに、蓄積された第 2導電型キャリアを素早く排出することができる 。このため、 IGBTのターンオフ特性を向上させることができる。
[0024] 第 1導電型半導体領域の不純物濃度を面内で異ならせる場合、第 1導電型半導体 領域の高濃度部分は、第 1導電型ェミッタ領域とドリフト領域の間に位置しているのが 好ましい。さらに、第 1導電型半導体領域の低濃度部分は、第 1導電型ェミッタ領域 が形成されていない第 2導電型ボディ領域の表面と第 1導電型ドリフト領域の間に位 置しているのが好ましい。
高濃度部分と低濃度部分を上記の位置関係に形成すると、 IGBTがオフしたときに 、低濃度部分を利用して排出される第 2導電型キャリアが、第 1導電型ェミッタ領域に 流入しないで、表面に設けられている主電極に素早く排出される。このため、ラッチァ ップ現象を抑制しながら、 IGBTのターンオフ特性を向上させることができる。
発明の効果
[0025] 本発明によると、フローティング状態にある第 1導電型半導体領域の広い範囲を活 用して第 2導電型キャリアを蓄積することができる。 IGBTのオン電圧を低減すること ができる。
図面の簡単な説明
[0026] [図 1]図 1 (a)は、第 1実施例の IGBTの要部断面図を模式的に示す。図 1 (b)は、図 1 (a)の b— b'線に対応する正孔キャリア濃度の分布を示す。
[図 2]図 2は、第 1実施例の平面パターンを示す。
[図 3]図 3は、第 1実施例の変形例の IGBTの平面パターンを模式的に示す。
[図 4]図 4は、第 2実施例の IGBTの要部断面図を模式的に示す。
[図 5]図 5は、第 2実施例の変形例 1の要部断面図を模式的に示す。
[図 6]図 6は、第 2実施例の変形例 1の要部斜視図を模式的に示す。 [図 7]図 7は、第 2実施例の変形例 2の要部断面図を模式的に示す。
[図 8]図 8は、第 3実施例の要部斜視図を模式的に示す。
[図 9]図 9は、第 3実施例の電子キャリアの流動経路を示す。
[図 10]図 10は、第 3実施例の変形例 1の要部斜視図と電子キャリアの流動経路を示 す。
[図 11]図 11は、第 3実施例の変形例 2の要部斜視図と電子キャリアの流動経路を示 す。
[図 12]図 12は、第 3実施例の他の変形例のェミッタ領域の平面パターンの一例を示 す。
[図 13]図 13は、第 3実施例の他の変形例のェミッタ領域の平面パターンの一例を示 す。
[図 14]図 14は、第 3実施例の他の変形例のェミッタ領域の平面パターンの一例を示 す。
[図 15]図 15は、第 3実施例の変形例 3の要部斜視図と電子キャリアの流動経路を示 す。
[図 16]図 16 (a)は、従来の IGBTの要部断面図を模式的に示す。図 16 (b)は、図 16 (a)の b—b '線に対応する正孔キャリア濃度の分布を示す。
発明を実施するための最良の形態
最初に実施例の主要な特徴を列記する。
(第 1形態) 第 2導電型 (例えば p+型)のコレクタ領域と、そのコレクタ領域上に形成さ れている第 1導電型 (例えば n_型)のドリフト領域と、そのドリフト領域上に形成されて V、る第 2導電型 (例えば p—型)のボディ領域と、そのボディ領域の表面に選択的に形 成されている第 1導電型 (例えば n+型)のェミッタ領域と、そのボディ領域の表面に選 択的に形成されている第 2導電型 (例えば p+型)のボディコンタクト領域と、ェミッタ領 域とドリフト領域を隔てているボディ領域にゲート絶縁膜を介して対向するトレンチゲ ート電極とを備えている IGBTにおいて、第 1導電型 (例えば n型)のフローティング状 態の半導体領域がボディ領域内に形成されており、ボディコンタクト領域の表面から そのフローティングの半導体領域まで到達するとともに、絶縁膜で被覆されて ヽるフ ローテイング領域対向電極が形成されて!ヽる。
(第 2形態) 前記フローティング領域対向電極がドリフト領域まで到達している。ボデ ィ領域とドリフト領域の接合界面近傍において、フローティング領域対向用電極の底 面を利用してキャリアをドリフト領域に蓄積することができる。
(第 3形態) 第 2導電型 (例えば p+型)のコレクタ領域と、そのコレクタ領域上に形成さ れている第 1導電型 (例えば n_型)のドリフト領域と、そのドリフト領域上に形成されて V、る第 2導電型 (例えば p—型)のボディ領域と、そのボディ領域の表面に選択的に形 成されている第 1導電型 (例えば n+型)のェミッタ領域と、そのボディ領域の表面に選 択的に形成されている第 2導電型 (例えば p+型)のボディコンタクト領域と、ェミッタ領 域とドリフト領域を隔てているボディ領域にゲート絶縁膜を介して対向するトレンチゲ ート電極とを備えている IGBTにおいて、第 1導電型 (例えば n型)のフローティング状 態の半導体領域がボディ領域内に形成されており、ェミッタ領域がボディ領域表面の ゲート電極が伸びる方向にぉ ヽて離隔的に形成されて 、る。
(第 4形態) 第 3形態の IGBTにおいて、ェミッタ領域が離隔する幅は 1 μ m〜10 mの範囲に調整されて!、るのが好まし!/、。
(第 5形態) 第 3形態の IGBTにおいて、ェミッタ領域の深さは 0. 1 μ ηι→μ mの範 囲に調整されて 、るのが好まし!/、。
(第 6形態) 第 3形態の IGBTにおいて、フローティング状態にある第 1導電型の半 導体領域の厚みは、 0. Ι μ χη- ΐ μ mの範囲に調整されているのが好ましい。第 2導 電型キャリア (例えば正孔)を蓄積する効果が得られる。より好ましくは、半導体領域 の厚みが、 0. 3 /ζ πι〜0. 5 /z mの範囲に調整されているのがよい。第 2導電型キヤリ ァの蓄積効果が顕著に得られるとともに、ターンオフ特性も良好である。
(第 7形態) 第 3形態の IGBTにお!/、て、ボディ領域の深さが 4. 5 μ m〜5. 0 μ mで あり、ゲート電極の深さが約 5. 5 μ mであり、ドリフト領域の厚みが 100 μ m以上であ るのが好ましい。
実施例
図面を参照して以下に各実施例を詳細に説明する。以下に説明する各 IGBTの半 導体材料には、主としてシリコン系材料が利用されている。シリコン系材料に代えて、 炭化シリコン、ガリウムヒ素、又は窒化ガリウム等の他の半導体材料を利用しても同様 の作用効果が得られる。
[0029] (第 1実施例)
図 1(a)に、第 1実施例の IGBT11の要部断面図を模式的に示す。
IGBT11は、第 1導電型 (n+型)のェミッタ領域 32と、ェミッタ領域 32に接する第 2 導電型 (P—型)のボディ領域 28と、ボディ領域 28に接するとともにボディ領域 28によ つてェミッタ領域 32から隔てられている第 1導電型 (n_型)のドリフト領域 26を備えて いる。 IGBT11はさらに、トレンチゲート電極 42を備えている。トレンチゲート電極 42 は、ェミッタ領域 32とドリフト領域 26を隔てて 、るボディ領域 28を貫通してェミッタ領 域 32からドリフト領域 26まで伸びている。トレンチゲート電極 42は、ゲート絶縁膜 44 を介してボディ領域 28に対向している。トレンチゲート電極 42の材料には、例えばポ リシリコンが利用されている。トレンチゲート電極 42は、酸ィ匕シリコン力もなるゲート絶 縁膜 44によって被覆されている。トレンチゲート電極 42がゲート絶縁膜 44を介して 対向するボディ領域 28がチャネル領域となる。トレンチゲート電極 42の平面パターン はストライプ状である。
[0030] ドリフト領域 26の下方には、第 1導電型 (n+型)のバッファ領域 24と第 2導電型 (p+ 型)のコレクタ領域 22が順に形成されている。コレクタ領域 22はコレクタ電極 Cに電 気的に接続している。なお、ノ ッファ領域 24がこの構成から省かれていてもよい。 ボディ領域 28aの上方部分であって左右のェミッタ領域 32の間の領域に第 2導電 型 (P+型)のボディコンタクト領域 34が形成されている。ェミッタ領域 32とボディコンタ タト領域 34はェミッタ電極 Eに電気的に接続している。ボディ領域 28、ェミッタ領域 3 2及びボディコンタクト領域 34は、例えばイオン注入法によって半導体基板表面部に 形成される。
[0031] IGBT11は、ボディ領域 28内に第 1導電型 (n型)の半導体領域 52を備えている。
半導体領域 52は、ボディ領域 28aによってェミッタ領域 32から隔てられており、ボデ ィ領域 28bによってドリフト領域 26からも隔てられている。さらに、半導体領域 52は、 ゲート絶縁膜 44によってトレンチゲート電極 42からも隔てられており、電位がフロー ティング状態となっている。半導体領域 52は、例えばェピタキシャル成長技術、又は イオン注入技術等を利用して形成することができる。ボディ領域 28aとボディ 28bは図 示しな 、断面で接続して 、る。
さらに、 IGBT11は、ボディコンタクト領域 34とボディ領域 28を貫通して第 1導電型 の半導体領域 52まで到達する第 2電極 62を備えている。 2個の第 2電極 62が対向 するトレンチゲート電極 42の間に形成されている。図 2に、図 1の II— II線に対応した 矢視断面を示す。図 2は、 IGBT11の表面構造の平面パターンを示す。図 2に示す ように、第 2電極 62の平面パターンは、トレンチゲート電極 42と平行に伸びるストライ プ状である。
図 1に示すように、第 2電極 62は、半導体領域 52の少なくとも一部に絶縁膜 64を 介して対向している。第 2電極 62は、ェミッタ領域 32から遠く隔てられており、ェミッタ 領域 32に接していない。第 2電極 62は、ボディコンタクト領域 34と半導体領域 52を 隔てているボディ領域 28aに対向している。第 2電極 62は、ェミッタ領域 32と半導体 領域 52を隔てているボディ領域 28には対向していないと評価することができる。 第 2電極 62にはポリシリコンが利用されており、第 2電極 62は酸ィ匕シリコン力 なる 絶縁膜 64によって被覆されている。第 2電極 62は、絶縁膜 64を介してフローテイン グ状態の半導体領域 52に対向している。第 2電極 62は、図示しない断面でトレンチ ゲート電極 42に電気的に接続されており、共通のゲート電位で制御される。第 2電極 62は、半導体領域 52の下面まで到達していない。したがって、半導体領域 52は紙 面左右に連続している。
各半導体領域の不純物濃度及び厚みは以下の値に調整されている。コレクタ領域
22の不純物濃度は約 1 X 1018cm— 3であり、厚みは約 0. 5 μ mである。バッファ領域 2 4の不純物濃度は約 2 X 1017cm— 3であり、厚みは約 0. 5 mである。ドリフト領域 26の 不純物濃度は約 1 X 1014cm— 3であり、厚みは約 130 μ mである。ボディ領域 28bの不 純物濃度は約 1 X 1016cm— 3であり、厚みは約 2 mである。半導体領域 52の不純物 濃度は約 4 X 1016cm— 3であり、厚みは約 0. 5 μ mである。ボディ領域 28aの不純物濃 度は約 2 X 1017cm— 3であり、厚みは約 2 mである。ェミッタ領域 32の不純物濃度は 約 1 X 102Qcm— 3であり、厚みは約 0. 5 μ mである。ボディコンタクト領域 34の不純物濃 度は約 1 X 102°cm— 3であり、厚みは約 0. 7 μ mである。 [0032] IGBT11のェミッタ電極 Eを接地し、コレクタ電極 Cに正電圧(350V)を印加した状 態でトレンチゲート電極 42に正電圧(15V)を印加すると、ボディ領域 28のうちトレン チゲート電極 42と対向する箇所が n型に反転される。電子キャリア (第 1導電型キヤリ ァ)がェミッタ領域 32から n型に反転したチャネルを経由しドリフト領域 26とバッファ領 域 24に向けて注入される。一方、コレクタ領域 22からバッファ領域 24とドリフト領域 2 6に向けて正孔キャリア (第 2導電型キャリア)が注入され伝導度変調が起こる。
トレンチゲート電極 42にゲートオン電圧が印加されると、共通電位である第 2電極 6 2にもゲートオン電圧が印加される (なお、抵抗などを介在させて、供給される電圧を 変化させてもよい)。すると、第 2電極 62に対向する半導体領域 52のフローティング 電位も追随して上昇する。フローティング電位が上昇することで、半導体領域 52とボ ディ領域 28との接合面に大きなポテンシャル差が生じ、正孔キャリアに対してポテン シャル障壁が形成される。このため、コレクタ領域 22から注入された正孔キャリアはそ の流動が妨げられる。
図 1 (b)に、図 1 (a)の b—b'線(半導体領域 52とボディ領域 28bの接合面 29)に対 応して蓄積されて ヽる正孔キャリアの濃度分布を示す。縦軸が正孔キャリア濃度であ り、横軸力 ¾—b'線に対応している。なお、実線 11が本実施例の濃度分布を示し、破 線 100は図 16に示す従来構造の濃度分布を示す。
図 1 (b)に示すように、正孔キャリア濃度は半導体領域 52の広い範囲に亘つて一様 であり、従来構造に比してその正孔キャリア濃度が大きく増カロしていることが分力る。 これにより、オン電圧は低減される。また、本実施例では、第 2電極 62自体が物理的 に正孔キャリアの流動を妨げると 、う効果も有して 、る。
[0033] さらに、 IGBT11では、半導体領域 52のフローティング電位の上昇によって、ェミツ タ領域 32から注入された電子キャリアが半導体領域 52内を拡散することが可能にな つている。これにより、半導体領域 52を拡散した電子キャリアが、半導体領域 52を利 用してボディ領域 28bとドリフト領域 26に向けて面的に注入されるので、オン電圧が 極めて低減される。
また、電子キャリアが半導体領域 52を拡散することによって、その電子キャリアに呼 応して半導体領域 52とボディ領域 28bの接合面 29に正孔キャリアが多量に蓄積さ れる。したがって、半導体領域 52とボディ領域 28bの接合面 29に形成されるポテン シャル障壁に基づく正孔キャリアの蓄積と、電子キャリアが半導体領域 52を拡散する のに呼応する正孔キャリアの蓄積の相乗効果によって、従来の構造では実現し得な い量の正孔キャリアが蓄積することができる。具体的には、 IGBT11がオンしていると きに、半導体領域 52とボディ領域 28bの接合面 29には、 8 X 1015cm— 3以上の正孔キ ャリアが蓄積している。
さらに、半導体領域 52とボディ領域 28bの接合面 29の正孔キャリア濃度を上昇さ せることによって、ボディ領域 28bとドリフト領域 26の接合面 27における正孔キャリア 濃度も従来構造に比して大幅に上昇する。具体的には、ボディ領域 28bとドリフト領 域 26の接合面 27には 8 X 1015cm— 3以上の正孔キャリアが蓄積している。 IGBT11は 、従来構造にぉ 、て正孔キャリア濃度の落ち込みが最も大き 、とされるボディ領域と ドリフト領域の接合面に対してさえも、正孔キャリア濃度の増加効果を得ることができ る。このため、 IGBT11では、ドリフト領域 26とボディ領域 28bの両者において、正孔 キャリア濃度の増加効果を得ることができるので、オン電圧を顕著に小さくすることが できる。なお、 IGBTがオンしているときの正孔キャリア濃度は、各構成要素の形状及 び不純物濃度等力も計算によって求めることができる。例えばシノプシス (Synopsys) 社製のデバイスシミュレータ DESSIS等を利用して求めることができる。
IGBT11の第 2電極 62の絶縁膜 64は、ェミッタ領域 32から離れて形成されて 、る 。したがって、第 2電極 62に沿って電子キャリアが注入されることがない。電子キヤリ ァ供給量の増大は、 IGBTの飽和電流値の増大と密接に関係して 、ると考えられる。 本実施例では、第 2電極 62を形成しても実質的に電子キャリア供給量が増大するこ とがない。トレンチゲート電極 42のピッチ幅を従来構造のピッチ幅と同等に設定すれ ば、ェミッタ領域 32の面積が増加することがない。したがって、飽和電流値が過剰に 増大するという事態は回避される。ラッチアップ現象の発生が抑制されることから、 IG BTの破壊が回避される。
なお、 IGBT11では、半導体領域 52が紙面左右のゲート絶縁膜 44に接する場合 を例示しているが、離間している場合でも半導体領域の正孔キャリアの蓄積量を増加 させることができオン電圧は低減される。 また、 IGBT11の他の特徴に、フローティングの半導体領域 52の不純物濃度が従 来構造に比して低濃度でも利用できるということがある。従来構造では、半導体領域 52を低濃度にすると正孔キャリア蓄積量が少なくなり、オン電圧が低減されない。一 方、正孔キャリア蓄積量を増大させるために半導体領域 52の不純物濃度を増加させ ると、ラッチアップ現象が生じてターンオフができなくなるという事態が発生してしまう。 本実施例では、低濃度であっても半導体領域 52の広い範囲に亘つて一様に正孔 キャリアを蓄積することができるのでオン電圧を低減することができる。また、低濃度 であることからラッチアップ現象が生じる事態も抑制できる。不純物濃度が 1 X 1017cm — 3以下であれば、ラッチアップ現象が発生することなくオン電圧を低減することができ る。
また、 IGBT11の第 2電極 62は、オフのときにフローティングの半導体領域 52の電 位を OV近辺に抑えることができる。したがって、確実なターンオフ動作を実現するこ とがでさる。
(第 1実施例の変形例)
図 3に、第 1実施例の変形例の IGBTの平面パターンを模式的に示す。第 1実施例 の IGBT11は、図 2に示すように、第 2電極 62がトレンチゲート電極 42と平行に伸び るストライプ状であるが、この変形例では第 2電極 62が点在して形成されている。第 2 電極 62の絶縁膜 64とゲート絶縁膜 44の間の距離 L1と、対向する第 2電極 62の間 の距離 L2、 L3は略等しくなるように、第 2電極 62の形状及び位置関係が調整されて いる。より詳しくは、図示しないフローティングの半導体領域 52の任意の位置力も近 接するゲート絶縁膜 44までの距離又は第 2電極 62の絶縁膜 64までの距離が所定値 よりも小さくなるように、第 2電極 62の形状及び位置関係が調整されている。ここでい う所定値とは、トレンチゲート電極 42及び第 2電極 62に印加されるゲートオン電圧に 追随して、半導体領域 52の任意の位置のフローティング電位が上昇し正孔キャリア に対するポテンシャル障壁が形成され得る範囲の距離をいう。これにより、フローティ ングの半導体領域 52の広い範囲に亘つて正孔キャリアを蓄積することが可能になり、 オン電圧を低減することができる。
さらに、第 2電極 62を点在して設けることによって、ストライプ状で形成する場合に 比して、第 2電極 62を被覆する絶縁膜 64の増大を抑制することができる。したがって 、絶縁膜 64の増大に基づいてゲート'コレクタ間容量が増大してしまうことを抑制する ことができる。これにより、第 2電極 62を設けたとしてもスイッチング特性を悪ィ匕させる ことなぐオン電圧を低減する効果を得ることができる。
(第 2実施例)
図 4に、第 2実施例の IGBT12の要部断面図を模式的に示す。なお、第 1実施例と 略同一の構造に関しては同一符号を付してその説明を省略する。
IGBT12の特徴は、第 2電極 63がドリフト領域 26まで到達していることである。この ため、フローティングの半導体領域 52とドリフト領域 26を隔てているボディ領域 28b に、第 2電極 63が絶縁膜 65を介して対向している。なお、第 2電極 63は、紙面左右 に伸びる半導体領域 52を分離しておらず、半導体領域 52は図示しない断面で連続 している。具体的には、例えば第 2電極 63が、紙面垂直方向で離間しており、その離 間する間を利用して半導体領域 52が連続して 、る。
IGBT12がオンすると、フローティング状態の半導体領域 52のフローティング電位 が上昇し、半導体領域 52とボディ領域 28bの接合界面において正孔キャリアが蓄積 され、オン電圧が低減される。さら〖こ、第 2電極 63に電位が印加されることによって、 半導体領域 52とドリフト領域 26を隔てているボディ領域 28bのうち第 2電極 63に対 向する箇所が n型に反転される。これにより、ェミッタ領域 32から注入されて半導体領 域 52を拡散した電子キャリア力 この反転したチャネル (第 2チャネルという。詳しくは 第 3実施例で説明する)を経由してドリフト領域 26に向けて注入され易くなる(電流パ スラインの増加)。したがって、オン電圧が低減される。半導体領域 52を拡散した電 子キャリアが第 2チャネルを利用してドリフト領域 26に向けて注入され易くなると、半 導体領域 52を拡散する電子キャリア濃度も上昇する。半導体領域 52の電子キャリア 濃度が上昇すると、それに呼応して半導体領域 52とボディ領域 28bの接合面 29に 蓄積する正孔キャリア濃度も増加する。したがって、 IGBT12は、オン電圧が極めて 低減されるのである。
また、本実施例の第 2電極 63の底面は、ドリフト領域 26の上面近傍に形成されてい る。このため、第 2電極 63の底面によって物理的に正孔キャリアを蓄積することができ る。ボディ領域 28bとドリフト領域 26の接合界面近傍では正孔キャリア濃度の低下が 著しい箇所であるが、本実施例によれば、この箇所で正孔キャリア濃度を増加させる ことができる。ボディ領域 28bとドリフト領域 26の接合界面近傍の正孔キャリア濃度が 、第 2電極 63を設けることによって、設けない場合に比して 1桁以上大きくなることが 確認されている。具体的には、第 2電極 63を設けない場合に 2 X 1015cm— 3〜8 X 1015 cm— 3の正孔キャリア濃度であったもの力 第 2電極 63を設けることによって 8 X 1016cm 3にまで増加することが確認されて ヽる。本実施例のオン電圧の低減効果は極めて 大きい。
また、本実施例は製造の面からも好適である。第 2電極 63とトレンチゲート電極 42 の深さ方向の距離が等しいので、両者を同一の製造工程を利用して形成することが できる。例えば、反応性イオンエッチングによって半導体基板表面力 異方性のトレ ンチを形成すれば、第 2電極 63とトレンチゲート電極 42を同時に形成することができ る。トレンチ幅や、トレンチの間隔などは使用するマスクを適宜調整すれば、工程数を 増加させることなく第 2電極 63とトレンチゲート電極 42を形成することができる。従来 と同一の製造工程を利用して、本実施例の IGBT12を簡単に具現ィ匕することができ る。
なお、 IGBT12においても、第 2電極 63を点在して設けることによって、ゲート'コレ クタ間容量が増大してしまうことを抑制することができる。スイッチング特性が悪ィ匕する ことを抑制する構造を採用してもよい。
(第 2実施例の変形例 1)
図 5に、第 2実施例の変形例の一つである IGBT13の要部断面図を模式的に示す 第 2電極 66は、図 5に示す断面において、半導体基板の表面から伸びて形成され ていない。第 2電極 66は、半導体基板内に埋設して形成されている。第 2電極 66は 、絶縁膜 68を介してフローティングの半導体領域 52に対向しており、さらに、半導体 領域 52とドリフト領域 26を隔てているボディ領域 28bにも対向している。したがって、 上述した実施例と同様に正孔キャリアの蓄積と電子キャリアの注入を増大させること ができ、オン電圧を顕著に低減することができる。 IGBT13では、ボディコンタクト領 域 34を広く確保することが可能になるので、ターンオフしたときの正孔キャリアの排出 が素早く行われる。 IGBT13は、スイッチング速度を速くすることができるので有用で ある。
なお、第 2電極 66に電圧を印加するために、少なくともその一部が半導体基板の表 面まで伸びて形成されているのが好ましい。この様子を図 6の要部斜視図を用いて 模式的に示す。なお、図 6の前面が図 5の断面に対応している。また、図 6の右側面 の上部は切り欠かれて図示されている。
図 6に示すように、第 2電極 66の少なくとも一部 (この斜視図では半導体基板内部 側の一部)から半導体基板の表面に向力つて、ボディ領域 28aとボディコンタクト領域 34を貫通して伸びる第 2電極 66が形成されている。第 2電極 66が半導体基板の表 面に露出する箇所 (図示 67)でトレンチゲート電極 42と電気的に接続される。したがつ て、第 2電極 66にはトレンチゲート電極 42と共通の電圧を印加することができる。こ れ〖こより、 IGBTのオンに追随して第 2電極 66をオンさせて、オン電圧の低減化を実 現することができる。
また、第 2電極 66の形状を採用すると、第 2電極 66を被覆する絶縁膜 68の量が増 大することを顕著に抑制することができる。したがって、 IGBT13では、第 2電極 66を 被覆する絶縁膜 68の増大に基づいてゲート'コレクタ間容量が増大してしまうことを 顕著に抑制することができる。これにより、第 2電極 62を設けたとしてもスイッチング特 性を悪化させることなぐオン電圧を低減する効果を得ることができる。
(第 2実施例の変形例 2)
図 7に、第 2実施例の他の一つの変形例の IGBT14の要部断面図を模式的に示す
IGBT14では、半導体領域 52の不純物濃度が、ェミッタ領域 32とドリフト領域 26を 結ぶ方向(紙面上下方向)に直交する面内で異なっている。半導体領域 52は、高濃 度部分 52aと低濃度部分 52bを備えている。高濃度部分 52aは、ェミッタ領域 32とド リフト領域 26の間に位置している。低濃度部分 52bは、ボディコンタクト領域 34とドリ フト領域 26の間に位置している。
低濃度部分 52bを設けることによって、 IGBT14がオフしたときに、蓄積された正孔 キャリアを低濃度部分 52bを利用して素早く排出することができる。さらに、低濃度部 分 52bとボディコンタクト領域 34の位置関係が上下に一致しているので、低濃度部分 52bを利用して排出される正孔キャリアは、ェミッタ領域 32に流入しないで、ボディコ ンタクト領域 34を介してェミッタ電極 Eに素早く排出される。このため、ラッチアップ現 象の発生を抑制しながら、 IGBT14のターンオフ特性を向上させることができる。 なお、低濃度部分 52bが設けられていても、第 2電極 63による正孔キャリアの蓄積 効果によって、低いオン電圧を得ることができる。
[0039] (第 3実施例)
図 8に、第 3実施例の IGBT15の要部斜視図を模式的に示す。
IGBT15では、飽和電流値を低く保ちながらオン電圧を低減するために、ェミッタ 領域 33の半導体基板表面に占める面積を制限する。ここでいぅェミッタ領域 33の面 積とは、ェミッタ領域 33のうち、ゲート絶縁膜 44に接する部分近傍をいう。より具体的 には、ェミッタ領域 33のうち、トレンチゲート電極 42にゲートオン電圧が印加されたと きに、直下のボディ領域 28に形成されるチャネル領域に対応する範囲の面積をいう 。チャネル領域の大きさはゲートオン電圧によって変動するが、概ねゲート絶縁膜 44 の側面から 0. 1 μ mまでの範囲をいう。したがって、ェミッタ領域 33の面積とは、ゲー ト絶縁膜 44の側面から 0. 1 μ mまでの範囲に存在するものをいう。 IGBT15では、こ の面積がトレンチゲート電極 42に挟まれた領域に占める割合を制限する。後に説明 するように、チャネル領域に対応する範囲以外のェミッタ領域 33は、その面積を制限 するよりもむしろ、ェミッタ領域 33を確保することによってェミッタ電極 Eとのコンタクト 抵抗を低減できることが多 、。
[0040] ェミッタ領域 33は、半導体基板表面においてゲート絶縁膜 44に対して離隔的に接 している。ェミッタ領域 33は、トレンチゲート電極 42が伸びる方向(長手方向)におい て、ゲート絶縁膜 44に対して離隔的に接している。ェミッタ領域 33が離隔する幅 La は、 l ^ m^ lO ^ mの範囲に調整されている。ェミッタ領域 33の深さ Lbは、 0. l ^ m 〜1 μ mの範囲に調整されている。
ェミッタ領域 33を離隔的に設けることによって、ェミッタ領域 33の半導体基板表面 内に占める面積 (前記したように、チャネル領域に対応する範囲の面積を ヽぅ)を増 加させないで、トレンチゲート電極 42のピッチ幅を調整することが可能になる。トレン チゲート電極 42のピッチ幅を狭く調整したとしても、ェミッタ領域 33の面積を所定量 に維持することができる。したがって、ェミッタ領域 33の面積を増加させないで、トレ ンチゲート電極 42のピッチ幅を狭く調整することによって、ェミッタ領域 33から供給さ れる電子キャリアの供給量を低く抑えながら、半導体領域 52による正孔キャリアの蓄 積能力を向上させることができる。半導体領域 52による正孔キャリアの蓄積能力が向 上すると、半導体領域 52とボディ領域 28bの接合面 29に正孔キャリアが多量に蓄積 される。さらに、半導体領域 52とボディ領域 28bの接合面 29に正孔キャリアが多量に 蓄積することによって、ボディ領域 28bとドリフト領域 26の接合面 27にも多量の正孔 キャリアが蓄積する。これにより、オン電圧が顕著に低減される。また、ェミッタ領域 33 が離隔する幅 Laが、 1 μ m以上の範囲に調整されていると、供給される電子キャリア の供給量を低く抑えることができる。なお、離隔する幅 Laが大き過ぎると、チャネル抵 抗に悪影響を及ぼすことが懸念されるので、ェミッタ領域 33が離隔する幅 Laは、 10 m以下の範囲に調整されているのが好ましい。ェミッタ領域 33の深さ Lbが、 0. 1 μ ι→μ mの範囲に調整されていると、ェミッタ領域 33自体の電子キャリアを供給 する能力が低下し、ひいては電子キャリアの供給量を低く抑えることができる。
IGBT15は、飽和電流値の上昇に基づく IGBT15の破壊を抑制しながら、正孔キ ャリアの蓄積量の増大に基づくオン電圧の低減ィ匕を実現することができる。
なお、ェミッタ領域 33の面積は飽和電流値に大きく影響する。フローティングの半 導体領域 52の面積 (ェミッタ領域 33とドリフト領域 26を結ぶ方向に直交する面内の 面積)は正孔キャリアの蓄積量に大きく影響する。この両者の特性を具備する IGBT は、ェミッタ領域 33の面積とフローティングの半導体領域 52の面積との間で関係付 けることもできる。即ち、ェミッタ領域 33の面積が半導体領域 52の面積の 50%以下 に調整されているのが好ましい。より好ましくは 10〜30%の範囲である。この場合、 飽和電流値に基づく破壊が防止されるとともに、オン電圧が極めて小さい IGBTを得 ることができる。なお、チップサイズ、トレンチゲート電極の本数及び形状等によって 最適値は変動するが、概ね上記の数値範囲内に調整されていると、優れた特性の I GBTを得ることができる。 [0041] さらに、 IGBT15は、チャネル抵抗を小さくする対策が施されている。ェミッタ領域 3 3は、トレンチゲート電極 42が水平面内で伸びる方向に直交する方向に観測したとき に、対向して形成されていない。ェミッタ領域 33は、一方のトレンチゲート電極 42の ゲート絶縁膜 44に直接的に接する面に対向する方向において、他方のトレンチゲー ト電極 42のゲート絶縁膜 44に接していない。即ち、一方のトレンチゲート電極 42の ゲート絶縁膜 44に接して形成されているェミッタ領域 33は、他方のトレンチゲート電 極 42のゲート絶縁膜 44に接していない。さらに、 IGBT15では、ェミッタ領域 33が繰 返し形成されている。ェミッタ領域 33は、一方のトレンチゲート電極 42のゲート絶縁 膜 44に接して繰返し形成されている。ェミッタ領域 33は、他方のトレンチゲート電極 42のゲート絶縁膜 44に接して繰返し形成されて 、る。一方のェミッタ領域 33と他方 のェミッタ領域 33は、繰返し方向において交互に形成されている。この場合、半導体 基板表面のェミッタ領域 33のパターンは、対向するトレンチゲート電極 42の間にお V、て、「格子状 (あるいは碁盤目状)」に形成されて!、るとも 、える。
[0042] 図 9に、ェミッタ領域 33から供給された電子キャリアが流動する経路を示す。なお、 I GBT15の一部が切り欠かれて!/、ることに留意された!、。
ェミッタ領域 33から供給された電子キャリアは、次の経路を迪つてドリフト領域 26ま で流動する。まず、ェミッタ領域 33から供給された電子キャリアは、ゲート絶縁膜 44 に沿って半導体領域 52まで流れる。ここで、電子キャリアの一部は、半導体領域 52 を通過して、ゲート絶縁膜 44に沿ってドリフト領域 26に流れる(矢印 A:第 1チャネル という)。他の電子キャリアの一部は、半導体領域 52を拡散して対向するトレンチゲー ト電極 42のゲート絶縁膜 44に沿ってドリフト領域 26に流れる(矢印 B:第 2チャネルと いう)。即ち、面積が制限されたェミッタ領域 33によって、供給される電子キャリアの 量は抑えられているものの、供給された電子キャリアは半導体領域 52及び対向する トレンチゲート電極 42を利用して、広い範囲を流れることができる。供給される電子キ ャリアの量を制限して飽和電流値を低く抑えながら、供給された電子キャリアが流動 するときのチャネル抵抗を低く抑えることができる。ェミッタ領域 33を離隔的に設ける と、チャネル領域が減少しチャネル抵抗が増大する傾向にある。し力しながら、 IGBT 15の場合は、半導体領域 52及び第 2チャネル Bを介した経路を利用することによつ て、チャネル抵抗の増大が抑えられている。特に、 IGBT15のように、トレンチゲート 電極 42が伸びる方向に直交する方向にお 、て、ェミッタ領域 33がゲート絶縁膜 44 に接する部分と接しない部分が設けられていると、第 1チャネル Aと第 2チャネル Bが 相乗的に利用されるので、チャネル抵抗の増大が顕著に抑制される。さらに、 IGBT 15では、第 2チャネルが効果的に利用されるので、半導体領域 52を拡散する電子キ ャリア濃度が増加する。電子キャリア量が増加するのに呼応して半導体領域 52とボ ディ領域 28bの接合面 29に蓄積する正孔キャリア濃度も増加する。正孔キャリア濃 度が 8 X 1015cm— 3以上という従来構造では実現し得な力つた量にまで増加させること に成功している。
この構造を採用すると、飽和電流値の上昇に基づく IGBT15の破壊を抑制しながら 、チャネル抵抗の増大を抑制するとともに、半導体領域 52による正孔キャリアの蓄積 によって、オン電圧が顕著に低減された IGBT15を得ることができる。
[0043] (第 3実施例の変形例 1)
図 10に、第 3実施例の一つの変形例の IGBT16の要部斜視図を模式的に示す。
IGBT16では、ェミッタ領域 35のそれぞれ力 ゲート絶縁膜 44に接していない位 置において連続している。あるいは、ェミッタ領域 35のそれぞれ力 チャネル領域に 対応する範囲以外の位置にぉ 、て連続して 、る。
ェミッタ領域 35のうち、ゲート絶縁膜 44に接していない部分は、電子キャリアの供 給量を致命的に増カロさせることはなぐむしろ表面に設けられているェミッタ電極との コンタクト抵抗を低減させることができる。したがって、ェミッタ領域 35のうち、ゲート絶 縁膜 44に接して 、な 、部分は、電子キャリアの供給量が致命的に増加しな 、範囲 内で大きく確保することが好ましい。したがって、ェミッタ領域 35のそれぞれは、ゲー ト絶縁膜 44に接していない位置において連続していることが好ましい。これにより、コ ンタクト抵抗を低減させ、ひ 、てはオン電圧を小さくすることができる。
[0044] (第 3実施例の変形例 2)
図 11に、第 3実施例の他の一つの変形例の IGBT17の要部斜視図を模式的に示 す。
IGBT17では、ェミッタ領域 36が対向するトレンチゲート電極 42の間を連続してい る。ェミッタ領域 36とボディコンタクト領域 34の組力 トレンチゲート電極 42が伸びる 方向に繰返し形成されて!ヽる。
IGBT17においても、ェミッタ領域 35のうち、ゲート絶縁膜 44に接していない部分 が連続して 、るので、ェミッタ領域 35と表面に設けられて 、るェミッタ電極とのコンタ タト抵抗を低減させることができる。
また、 IGBT17においても、ェミッタ領域 36から供給された電子キャリアは、半導体 領域 52を拡散してドリフト領域 26に注入される。このため、第 2チャネルを利用するこ とができるので、供給された電子キャリアが流動するときのチャネル抵抗を低く抑える ことができ、ひいてはオン電圧が顕著に低減された IGBT17を得ることができる。
[0045] (第 3実施例の他の変形例)
図 12、図 13及び図 14に、第 3実施例の他の変形例のェミッタ領域の平面パターン を模式的に示す。ェミッタ領域の面積を制限するための平面パターンは、様々な構 造を採用することができ、以下に示す変形例の他にも様々な構造を採用し得る。エミ ッタ領域が離隔的に設けられていれば、上記の例と同様の作用効果を奏することが できる。
図 12の IGBTでは、ェミッタ領域 37がトレンチゲート電極 42の一方の側面にのみ 設けられている。ェミッタ領域 37は、対向するトレンチゲート電極 42のゲート絶縁膜 4 4に接して形成されて ヽな 、。
図 13の IGBTでは、ェミッタ領域 38が左右のゲート絶縁膜 44の側面にェミッタ領域 38が離隔的に設けられている。一部はトレンチゲート電極 42が伸びる方向に直交す る方向において対向しており、一部はトレンチゲート電極 42が伸びる方向に直交す る方向にお 、て対向して 、な 、。
図 14の IGBTでは、一方のゲート絶縁膜 44に接するェミッタ領域 39と他方のゲート 絶縁膜 44に接するェミッタ領域 39が連続している。その組が、トレンチゲート電極 42 が伸びる方向に繰返し形成されて 、る。
[0046] (第 4実施例)
図 15に、第 4実施例の IGBT18の要部斜視図を模式的に示す。
第 3実施例とその変形例の構造では、ストライプ状のトレンチゲート電極のピッチ幅 を狭くする構造であった。この構造を採用すると、ゲート絶縁膜の量の増大に基づい てゲート'コレクタ間容量が増大しスイッチング特性に影響を及ぼすことが懸念される
。 IGBT18では、この点に対しても対策を講じた構造を提案する。
IGBT18は、トレンチゲート電極 46がストライプ状ではなぐ複雑なパターンで形成 されている。 IGBT18では、個々のトレンチゲート電極 46がー巡して形成されており 、それらが半導体基板表面に点在して形成されている。 IGBT18では、一巡するトレ ンチゲート電極 46の内部において対向するゲート絶縁膜 48の間の距離 L4と、一方 のトレンチゲート電極 46のゲート絶縁膜 48と他方のトレンチゲート電極 46のゲート絶 縁膜 48の間の距離 L5、 L6が略等しくなるように、トレンチゲート電極 46の形状及び 位置関係が調整されている。より詳しくは、フローティングの半導体領域 52の任意の 位置力も近接するゲート絶縁膜 48までの距離が所定値よりも小さくなるように、トレン チゲート電極 46の形状及び位置関係が調整されている。ここでいう所定値とは、トレ ンチゲート電極 42に印加されるゲートオン電圧に追随して、半導体領域 52の任意の 位置のフローティング電位が上昇し正孔キャリアに対するポテンシャル障壁が形成さ れ得る範囲の距離をいう。これにより、フローティングの半導体領域 52の広い範囲に 亘つて正孔キャリアを蓄積することが可能になり、オン電圧を低減することができる。 さらに、トレンチゲート電極 46の形状及び位置関係を工夫することによって、ストラ イブ状で形成される場合に比して、ゲート絶縁膜 48の増大を抑制することができる。 したがって、ゲート絶縁膜 48の増大に基づいてゲート'コレクタ間容量が増大してし まうことを抑制することができる。これにより、対向するトレンチゲート電極 46の幅を狭 く形成したとしても、スイッチング特性を悪化させることなぐオン電圧を低減する効果 を得ることができる。
IGBT18では、一巡するトレンチゲート電極 46の内部にェミッタ領域 31が設けられ ている。ェミッタ領域 31は、トレンチゲート電極 46のゲート絶縁膜 44に直接的に接す る面に対向する方向において、対向するトレンチゲート電極 46のゲート絶縁膜 44に 接していない。したがって、ェミッタ領域 31から供給された電子キャリアは、一巡する トレンチゲート電極 46の内部にお 、て、第 2チャネル Bを利用してドリフト領域 26に向 けて面的に供給される。 IGBT18では、一巡するトレンチゲート電極 46の外部にはボ ディコンタクト領域 34が設けられていない。したがって、一巡するトレンチゲート電極 4 6の外部はフローティング状態となっており、正孔キャリアを蓄積する効果が大きい。 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の 範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した 具体例を様々に変形、変更したものが含まれる。
例えば、第 3実施例とその変形例及び第 4実施例においても、半導体領域 52に不 純物濃度が高濃度な部分と低濃度な部分を設けてもよい。ターンオフしたときに、低 濃度部分を利用して正孔キャリアを排出することができる。
あるいは、第 3実施例及びその変形例において、トレンチゲート電極 42の間に、第 2電極を設けてもよい。より正孔キャリアを効果的に蓄積し得る。
あるいは、第 4実施例の L5及び L6で示される範囲に、ェミッタ領域 31を形成しても よい。より多くの電子キャリアを素子内部に供給することができる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せ によって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定さ れるものではない。また、本明細書または図面に例示した技術は複数目的を同時に 達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を 持つものである。

Claims

請求の範囲
[1] 第 1導電型ェミッタ領域、
第 1導電型ェミッタ領域に接する第 2導電型ボディ領域、
第 2導電型ボディ領域に接するとともに、第 2導電型ボディ領域によって第 1導電型 ェミッタ領域力 隔てられている第 1導電型ドリフト領域、
第 1導電型ェミッタ領域と第 1導電型ドリフト領域を隔てている第 2導電型ボディ領 域を貫通して第 1導電型ェミッタ領域力 第 1導電型ドリフト領域まで伸びており、ゲ ート絶縁膜を介して第 2導電型ボディ領域に対向するゲート電極、
第 2導電型ボディ領域内に形成されており、第 2導電型ボディ領域によって第 1導 電型ェミッタ領域と第 1導電型ドリフト領域の双方力 隔てられており、電位がフロー ティングしている第 1導電型半導体領域、
第 1導電型半導体領域の少なくとも一部に絶縁膜を介して対向するとともに、第 1導 電型半導体領域と第 1導電型ェミッタ領域を隔てている第 2導電型ボディ領域には対 向していない第 2電極、
を備えている IGBT。
[2] 第 1導電型半導体領域がゲート絶縁膜に接することを特徴とする請求項 1の IGBT
[3] 第 2電極が、第 1導電型半導体領域と第 1導電型ドリフト領域を隔てている第 2導電 型ボディ領域を貫通して第 1導電型半導体領域から第 1導電型ドリフト領域まで伸び ており、絶縁膜を介して第 2導電型ボディ領域に対向することを特徴とする請求項 2 の IGBT。
[4] IGBTがオンしているときに、第 1導電型半導体領域とボディ領域の接合面のうちド リフト領域に対向する側の接合面に蓄積する第 2導電型キャリア濃度が 8 X 1015cm"3 以上であることを特徴とする請求項 2又は 3の IGBT。
[5] 第 2電極とゲート電極が電気的に接続されていることを特徴とする請求項 1〜4のい ずれかの IGBT。
[6] 第 1導電型半導体領域の不純物濃度が 1 X 1017cnf 3以下であることを特徴とする請 求項 1〜5のいずれかの IGBT。
[7] 第 1導電型半導体領域の不純物濃度が、第 1導電型ェミッタ領域と第 1導電型ドリ フト領域を結ぶ方向に直交する面内で異なることを特徴とする請求項 1〜5のいずれ かの IGBT。
[8] 第 1導電型半導体領域の高濃度部分は、第 1導電型ェミッタ領域とドリフト領域の間 に位置しており、
第 1導電型半導体領域の低濃度部分は、第 1導電型ェミッタ領域が形成されてい ない第 2導電型ボディ領域の表面と第 1導電型ドリフト領域の間に位置していることを 特徴とする請求項 7の IGBT。
[9] 第 1導電型ェミッタ領域は、半導体基板表面内においてゲート絶縁膜に対して離隔 的に接して 、ることを特徴とする請求項 1〜8の 、ずれかの IGBT。
[10] 第 1導電型ェミッタ領域、
第 1導電型ェミッタ領域に接する第 2導電型ボディ領域、
第 2導電型ボディ領域に接するとともに、第 2導電型ボディ領域によって第 1導電型 ェミッタ領域力 隔てられている第 1導電型ドリフト領域、
第 1導電型ェミッタ領域と第 1導電型ドリフト領域を隔てている第 2導電型ボディ領 域を貫通して第 1導電型ェミッタ領域力 第 1導電型ドリフト領域まで伸びており、ゲ ート絶縁膜を介して第 2導電型ボディ領域に対向するゲート電極、
第 2導電型ボディ領域内に形成されており、第 2導電型ボディ領域によって第 1導 電型ェミッタ領域と第 1導電型ドリフト領域の双方力 隔てられており、電位がフロー ティングしている第 1導電型半導体領域を備え、
第 1導電型ェミッタ領域は、半導体基板表面内においてゲート絶縁膜に対して離隔 的に接して ヽることを特徴とする IGBT。
[11] 第 1導電型半導体領域がゲート絶縁膜に接することを特徴とする請求項 10の IGB Τ0
[12] 対向するゲート電極の間に形成されており、一方のゲート電極のゲート絶縁膜に接 して形成されている第 1導電型ェミッタ領域は、第 1導電型ェミッタ領域がゲート絶縁 膜に直接的に接する面に直交する方向において、他方のゲート電極のゲート絶縁膜 に接して!/、な 、ことを特徴とする請求項 11の IGBT。
[13] 対向するゲート電極の間に形成されており、一方のゲート電極のゲート絶縁膜に接 する第 1導電型ェミッタ領域が繰返し形成されており、他方のゲート電極のゲート絶 縁膜に接する第 1導電型ェミッタ領域が繰返し形成されており、一方の第 1導電型ェ ミッタ領域と他方の第 1導電型ェミッタ領域は繰返し方向において交互に形成されて いることを特徴とする請求項 12の IGBT。
[14] IGBTがオンしているときに、第 1導電型半導体領域とボディ領域の界面のうちドリフ ト領域に対向する界面の第 2導電型キャリア濃度が 8 X 1015cnf 3以上であることを特 徴とする請求項 11〜 13の!、ずれかの IGBT
[15] 離隔的にゲート絶縁膜に接している第 1導電型ェミッタ領域のそれぞれは、ゲート 絶縁膜に接して 、な 、位置にぉ 、て連続して 、ることを特徴とする請求項 10〜14の いずれかの IGBT。
[16] 第 1導電型ェミッタ領域の半導体基板表面に露出する面積は、第 1導電型ェミッタ 領域と第 1導電型ドリフト領域を結ぶ方向に直交する面内の第 1導電型半導体領域 の面積に対して 50%以下であることを特徴とする請求項 10〜 15のいずれかの IGB Τ0
[17] 第 1導電型半導体領域の不純物濃度が 1 X 1017cnf 3以下であることを特徴とする請 求項 10〜16のいずれかの IGBT。
[18] 第 1導電型半導体領域の不純物濃度が、第 1導電型ェミッタ領域と第 1導電型ドリ フト領域を結ぶ方向に直交する面内で異なることを特徴とする請求項 10〜16のいず れかの IGBT。
[19] 第 1導電型半導体領域の高濃度部分は、第 1導電型ェミッタ領域とドリフト領域の間 に位置しており、
第 1導電型半導体領域の低濃度部分は、第 1導電型ェミッタ領域が形成されてい ない第 2導電型ボディ領域の表面と第 1導電型ドリフト領域の間に位置していることを 特徴とする請求項 18の IGBT。
[20] 第 1導電型半導体領域の少なくとも一部に絶縁膜を介して対向するとともに、第 1導 電型半導体領域と第 1導電型ェミッタ領域を隔てている第 2導電型ボディ領域には対 向して 、な 、第 2電極をさらに備えて 、ることを特徴とする請求項 10〜 19の 、ずれ かの IGBT<
PCT/JP2005/008717 2004-05-12 2005-05-12 半導体装置 WO2005109521A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05739273.0A EP1760790B1 (en) 2004-05-12 2005-05-12 Semiconductor device
US11/596,063 US7423316B2 (en) 2004-05-12 2005-05-12 Semiconductor devices
JP2006513049A JP5087272B2 (ja) 2004-05-12 2005-05-12 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-141797 2004-05-12
JP2004141797 2004-05-12

Publications (1)

Publication Number Publication Date
WO2005109521A1 true WO2005109521A1 (ja) 2005-11-17

Family

ID=35320479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008717 WO2005109521A1 (ja) 2004-05-12 2005-05-12 半導体装置

Country Status (6)

Country Link
US (1) US7423316B2 (ja)
EP (1) EP1760790B1 (ja)
JP (1) JP5087272B2 (ja)
KR (1) KR100830982B1 (ja)
CN (1) CN100514675C (ja)
WO (1) WO2005109521A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347289A (ja) * 2004-05-31 2005-12-15 Mitsubishi Electric Corp 絶縁ゲート型半導体装置
JP2008205205A (ja) * 2007-02-20 2008-09-04 Toyota Central R&D Labs Inc 半導体装置とその製造方法
US7423316B2 (en) 2004-05-12 2008-09-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor devices
JP2008251620A (ja) * 2007-03-29 2008-10-16 Toyota Motor Corp 半導体装置とその製造方法
JP2008282999A (ja) * 2007-05-10 2008-11-20 Denso Corp 半導体装置
JP2008288386A (ja) * 2007-05-17 2008-11-27 Hitachi Ltd 半導体装置
JP2009253004A (ja) * 2008-04-07 2009-10-29 Toyota Motor Corp 半導体素子と半導体装置とその駆動方法
JP2010045144A (ja) * 2008-08-12 2010-02-25 Hitachi Ltd 半導体装置及びそれを用いた電力変換装置
JP2010114136A (ja) * 2008-11-04 2010-05-20 Toyota Central R&D Labs Inc バイポーラ型半導体装置
DE102009000249A1 (de) * 2009-01-15 2010-07-29 Zf Friedrichshafen Ag Getriebesteuerungseinrichtung
WO2011080928A1 (ja) * 2010-01-04 2011-07-07 株式会社日立製作所 半導体装置、及びそれを用いた電力変換装置
JP2011165928A (ja) * 2010-02-10 2011-08-25 Toyota Central R&D Labs Inc 絶縁ゲートバイポーラトランジスタ
JP2012190938A (ja) * 2011-03-09 2012-10-04 Toyota Motor Corp Igbt
US20130193510A1 (en) * 2007-01-25 2013-08-01 Infineon Technologies Ag Semiconductor device having a trench gate and method for manufacturing
JP2013168671A (ja) * 2013-04-25 2013-08-29 Hitachi Ltd 半導体装置
JP2014168106A (ja) * 2014-06-18 2014-09-11 Rohm Co Ltd 半導体装置
DE102012211374B4 (de) * 2011-07-11 2014-11-20 Toyota Jidosha Kabushiki Kaisha Halbleitergerät und Verfahren zu dessen Herstellung
JP2015179705A (ja) * 2014-03-19 2015-10-08 富士電機株式会社 トレンチmos型半導体装置
JP2015225872A (ja) * 2014-05-26 2015-12-14 トヨタ自動車株式会社 半導体装置
JPWO2017099096A1 (ja) * 2015-12-11 2018-03-29 富士電機株式会社 半導体装置
JP2020047790A (ja) * 2018-09-19 2020-03-26 株式会社東芝 半導体装置
US10636877B2 (en) 2016-10-17 2020-04-28 Fuji Electric Co., Ltd. Semiconductor device
JP2020191439A (ja) * 2019-05-15 2020-11-26 富士電機株式会社 半導体装置

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227251A (ja) 2007-03-14 2008-09-25 Mitsubishi Electric Corp 絶縁ゲート型トランジスタ
JP5767430B2 (ja) * 2007-08-10 2015-08-19 ローム株式会社 半導体装置および半導体装置の製造方法
JP4544360B2 (ja) * 2008-10-24 2010-09-15 トヨタ自動車株式会社 Igbtの製造方法
JP4857353B2 (ja) * 2009-03-02 2012-01-18 株式会社日立製作所 半導体装置、およびそれを用いたプラズマディスプレイ駆動用半導体装置
US8264033B2 (en) * 2009-07-21 2012-09-11 Infineon Technologies Austria Ag Semiconductor device having a floating semiconductor zone
JP5511308B2 (ja) * 2009-10-26 2014-06-04 三菱電機株式会社 半導体装置およびその製造方法
US8120074B2 (en) * 2009-10-29 2012-02-21 Infineon Technologies Austria Ag Bipolar semiconductor device and manufacturing method
DE102009055328B4 (de) * 2009-12-28 2014-08-21 Infineon Technologies Austria Ag Halbleiterbauelement mit einer Emittersteuerelektrode und IGBT eine solche aufweisend
DE102011079747A1 (de) 2010-07-27 2012-02-02 Denso Corporation Halbleitervorrichtung mit Schaltelement und Freilaufdiode, sowie Steuerverfahren hierfür
CN104157685B (zh) * 2010-07-27 2018-01-16 株式会社电装 具有开关元件和续流二极管的半导体装置及其控制方法
JP5480084B2 (ja) * 2010-09-24 2014-04-23 株式会社東芝 半導体装置
EP2551910B1 (en) * 2011-07-28 2020-05-06 STMicroelectronics S.r.l. Insulated gate semiconductor device with optimized breakdown voltage and manufacturing method thereof
KR101642618B1 (ko) * 2011-09-28 2016-07-25 도요타 지도샤(주) Igbt 와 그 제조 방법
JP5895947B2 (ja) 2012-02-14 2016-03-30 トヨタ自動車株式会社 Igbtの製造方法
JP2014075483A (ja) * 2012-10-04 2014-04-24 Sanken Electric Co Ltd 半導体装置及び半導体装置の製造方法
US9219138B2 (en) * 2012-10-05 2015-12-22 Semiconductor Components Industries, Llc Semiconductor device having localized charge balance structure and method
KR101420528B1 (ko) * 2012-12-07 2014-07-16 삼성전기주식회사 전력 반도체 소자
JP6265594B2 (ja) 2012-12-21 2018-01-24 ラピスセミコンダクタ株式会社 半導体装置の製造方法、及び半導体装置
US9024413B2 (en) 2013-01-17 2015-05-05 Infineon Technologies Ag Semiconductor device with IGBT cell and desaturation channel structure
CN104078497B (zh) * 2013-03-28 2019-03-15 南京励盛半导体科技有限公司 一种功率场效应晶体管器件的结构
WO2014162498A1 (ja) * 2013-04-02 2014-10-09 トヨタ自動車株式会社 トレンチゲート電極を利用するigbt
US10249721B2 (en) 2013-04-04 2019-04-02 Infineon Technologies Austria Ag Semiconductor device including a gate trench and a source trench
US9293559B2 (en) 2013-07-31 2016-03-22 Alpha And Omega Semiconductor Incorporated Dual trench-gate IGBT structure
US9666663B2 (en) 2013-08-09 2017-05-30 Infineon Technologies Ag Semiconductor device with cell trench structures and contacts and method of manufacturing a semiconductor device
US9076838B2 (en) 2013-09-13 2015-07-07 Infineon Technologies Ag Insulated gate bipolar transistor with mesa sections between cell trench structures and method of manufacturing
CN103489907B (zh) * 2013-09-16 2016-02-03 电子科技大学 一种绝缘栅双极型晶体管
EP3047522A1 (en) * 2013-09-20 2016-07-27 ABB Technology AG Power semiconductor device
US9385228B2 (en) 2013-11-27 2016-07-05 Infineon Technologies Ag Semiconductor device with cell trench structures and contacts and method of manufacturing a semiconductor device
US9105679B2 (en) 2013-11-27 2015-08-11 Infineon Technologies Ag Semiconductor device and insulated gate bipolar transistor with barrier regions
US9553179B2 (en) 2014-01-31 2017-01-24 Infineon Technologies Ag Semiconductor device and insulated gate bipolar transistor with barrier structure
JP6279927B2 (ja) * 2014-02-17 2018-02-14 トヨタ自動車株式会社 絶縁ゲート型スイッチング素子を製造する方法及び絶縁ゲート型スイッチング素子
US10608104B2 (en) * 2014-03-28 2020-03-31 Infineon Technologies Ag Trench transistor device
JP6221922B2 (ja) 2014-04-25 2017-11-01 トヨタ自動車株式会社 半導体装置の製造方法
US9536999B2 (en) 2014-09-08 2017-01-03 Infineon Technologies Ag Semiconductor device with control structure including buried portions and method of manufacturing
US9935126B2 (en) 2014-09-08 2018-04-03 Infineon Technologies Ag Method of forming a semiconductor substrate with buried cavities and dielectric support structures
JP6063915B2 (ja) * 2014-12-12 2017-01-18 株式会社豊田中央研究所 逆導通igbt
DE102014119543B4 (de) 2014-12-23 2018-10-11 Infineon Technologies Ag Halbleitervorrichtung mit transistorzellen und anreicherungszellen sowie leistungsmodul
US10217738B2 (en) * 2015-05-15 2019-02-26 Smk Corporation IGBT semiconductor device
US9929260B2 (en) 2015-05-15 2018-03-27 Fuji Electric Co., Ltd. IGBT semiconductor device
JP6192686B2 (ja) 2015-07-02 2017-09-06 株式会社豊田中央研究所 半導体装置
JP6631632B2 (ja) * 2015-09-16 2020-01-15 富士電機株式会社 半導体装置
DE102015117994B8 (de) 2015-10-22 2018-08-23 Infineon Technologies Ag Leistungshalbleitertransistor mit einer vollständig verarmten Kanalregion
JP6668804B2 (ja) * 2016-02-16 2020-03-18 富士電機株式会社 半導体装置
US9768247B1 (en) 2016-05-06 2017-09-19 Semiconductor Components Industries, Llc Semiconductor device having improved superjunction trench structure and method of manufacture
WO2018052098A1 (ja) * 2016-09-14 2018-03-22 富士電機株式会社 半導体装置およびその製造方法
CN106920846A (zh) * 2017-02-21 2017-07-04 深圳深爱半导体股份有限公司 功率晶体管及其制造方法
CN110914996B (zh) * 2017-05-25 2023-08-25 丹尼克斯半导体有限公司 半导体器件
US10388726B2 (en) * 2017-10-24 2019-08-20 Semiconductor Components Industries, Llc Accumulation enhanced insulated gate bipolar transistor (AEGT) and methods of use thereof
CN109841674B (zh) * 2017-11-29 2020-08-28 株洲中车时代电气股份有限公司 具有改进的发射极结构的沟槽栅igbt
JP7115000B2 (ja) * 2018-04-04 2022-08-09 富士電機株式会社 半導体装置
CN111211169A (zh) * 2020-02-26 2020-05-29 无锡新洁能股份有限公司 屏蔽型igbt结构及其制造方法
DE102020113145A1 (de) 2020-05-14 2021-11-18 Infineon Technologies Ag Vertikale leistungs-halbleitervorrichtung und herstellungsverfahren
CN115148801A (zh) * 2021-03-29 2022-10-04 无锡锡产微芯半导体有限公司 绝缘栅双极型晶体管装置及其制备方法
CN113421919A (zh) * 2021-05-28 2021-09-21 广东美的白色家电技术创新中心有限公司 绝缘栅双极型晶体管、制作方法、功率器件及电子设备
CN115394834B (zh) * 2022-07-29 2024-01-09 安世半导体科技(上海)有限公司 具有控制栅极及载流子存储层的igbt元胞结构及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100770A (ja) * 2000-09-22 2002-04-05 Toshiba Corp 絶縁ゲート型半導体装置
JP2002190595A (ja) * 2000-12-21 2002-07-05 Denso Corp 半導体装置及びその製造方法
US20020179976A1 (en) 2001-05-29 2002-12-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6518629B1 (en) 1999-07-01 2003-02-11 Toyota Jidosha Kabushiki Kaisha Semiconductor device and process for producing the device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448083A (en) * 1991-08-08 1995-09-05 Kabushiki Kaisha Toshiba Insulated-gate semiconductor device
JP3222692B2 (ja) 1991-08-08 2001-10-29 株式会社東芝 電力用半導体素子
EP1469524A3 (en) 1991-08-08 2005-07-06 Kabushiki Kaisha Toshiba Insulated trench gate bipolar transistor
JP3617938B2 (ja) 1991-08-08 2005-02-09 株式会社東芝 半導体素子
JP3617950B2 (ja) 1991-08-08 2005-02-09 株式会社東芝 半導体素子
JP3409244B2 (ja) * 1998-02-26 2003-05-26 株式会社豊田中央研究所 半導体装置
KR20000040529A (ko) * 1998-12-18 2000-07-05 김덕중 수평형 확산 모스 트랜지스터 및 그 제조방법
JP4761011B2 (ja) * 1999-05-26 2011-08-31 株式会社豊田中央研究所 サイリスタを有する半導体装置及びその製造方法
GB9921068D0 (en) 1999-09-08 1999-11-10 Univ Montfort Bipolar mosfet device
KR100304719B1 (ko) * 1999-10-29 2001-11-02 김덕중 트렌치형 게이트를 갖는 전력용 반도체 소자 및 그 제조방법
JP2002305304A (ja) * 2001-04-05 2002-10-18 Toshiba Corp 電力用半導体装置
US20020179968A1 (en) * 2001-05-30 2002-12-05 Frank Pfirsch Power semiconductor component, compensation component, power transistor, and method for producing power semiconductor components
JP4723816B2 (ja) 2003-12-24 2011-07-13 株式会社豊田中央研究所 半導体装置
EP1760790B1 (en) 2004-05-12 2019-04-03 Toyota Jidosha Kabushiki Kaisha Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518629B1 (en) 1999-07-01 2003-02-11 Toyota Jidosha Kabushiki Kaisha Semiconductor device and process for producing the device
JP2002100770A (ja) * 2000-09-22 2002-04-05 Toshiba Corp 絶縁ゲート型半導体装置
JP2002190595A (ja) * 2000-12-21 2002-07-05 Denso Corp 半導体装置及びその製造方法
US20020179976A1 (en) 2001-05-29 2002-12-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.S.SHEKAR; J.KOREC; B.J.BALIGA: "Trench Gate Emitter Switched Thyristors", PROC. OF THE 6TH INTERNAT. SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES & IC'S, DAVOS, SWITZERLAND, 1994, pages 189 - 194, XP000505818, DOI: doi:10.1109/ISPSD.1994.583706

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423316B2 (en) 2004-05-12 2008-09-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor devices
JP2005347289A (ja) * 2004-05-31 2005-12-15 Mitsubishi Electric Corp 絶縁ゲート型半導体装置
JP4575713B2 (ja) * 2004-05-31 2010-11-04 三菱電機株式会社 絶縁ゲート型半導体装置
US20130193510A1 (en) * 2007-01-25 2013-08-01 Infineon Technologies Ag Semiconductor device having a trench gate and method for manufacturing
JP2008205205A (ja) * 2007-02-20 2008-09-04 Toyota Central R&D Labs Inc 半導体装置とその製造方法
JP2008251620A (ja) * 2007-03-29 2008-10-16 Toyota Motor Corp 半導体装置とその製造方法
JP2008282999A (ja) * 2007-05-10 2008-11-20 Denso Corp 半導体装置
JP2008288386A (ja) * 2007-05-17 2008-11-27 Hitachi Ltd 半導体装置
JP2009253004A (ja) * 2008-04-07 2009-10-29 Toyota Motor Corp 半導体素子と半導体装置とその駆動方法
JP4644730B2 (ja) * 2008-08-12 2011-03-02 株式会社日立製作所 半導体装置及びそれを用いた電力変換装置
JP2010045144A (ja) * 2008-08-12 2010-02-25 Hitachi Ltd 半導体装置及びそれを用いた電力変換装置
JP2010114136A (ja) * 2008-11-04 2010-05-20 Toyota Central R&D Labs Inc バイポーラ型半導体装置
DE102009000249A1 (de) * 2009-01-15 2010-07-29 Zf Friedrichshafen Ag Getriebesteuerungseinrichtung
WO2011080928A1 (ja) * 2010-01-04 2011-07-07 株式会社日立製作所 半導体装置、及びそれを用いた電力変換装置
JP2011165928A (ja) * 2010-02-10 2011-08-25 Toyota Central R&D Labs Inc 絶縁ゲートバイポーラトランジスタ
JP2012190938A (ja) * 2011-03-09 2012-10-04 Toyota Motor Corp Igbt
US9425271B2 (en) 2011-03-09 2016-08-23 Toyota Jidosha Kabushiki Kaisha Insulated-gate bipolar transistor
US9000478B2 (en) 2011-07-11 2015-04-07 Toyota Jidosha Kabushiki Kaisha Vertical IGBT adjacent a RESURF region
DE102012211374B4 (de) * 2011-07-11 2014-11-20 Toyota Jidosha Kabushiki Kaisha Halbleitergerät und Verfahren zu dessen Herstellung
JP2013168671A (ja) * 2013-04-25 2013-08-29 Hitachi Ltd 半導体装置
JP2015179705A (ja) * 2014-03-19 2015-10-08 富士電機株式会社 トレンチmos型半導体装置
JP2015225872A (ja) * 2014-05-26 2015-12-14 トヨタ自動車株式会社 半導体装置
US9761681B2 (en) 2014-05-26 2017-09-12 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2014168106A (ja) * 2014-06-18 2014-09-11 Rohm Co Ltd 半導体装置
JPWO2017099096A1 (ja) * 2015-12-11 2018-03-29 富士電機株式会社 半導体装置
US11031471B2 (en) 2016-10-17 2021-06-08 Fuji Electric Co., Ltd. Semiconductor device
US10636877B2 (en) 2016-10-17 2020-04-28 Fuji Electric Co., Ltd. Semiconductor device
CN110931551A (zh) * 2018-09-19 2020-03-27 株式会社东芝 半导体电路以及控制电路
JP2020047790A (ja) * 2018-09-19 2020-03-26 株式会社東芝 半導体装置
JP7091204B2 (ja) 2018-09-19 2022-06-27 株式会社東芝 半導体装置
CN110931551B (zh) * 2018-09-19 2024-01-02 株式会社东芝 半导体电路以及控制电路
JP2020191439A (ja) * 2019-05-15 2020-11-26 富士電機株式会社 半導体装置
JP7434848B2 (ja) 2019-05-15 2024-02-21 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP5087272B2 (ja) 2012-12-05
US20080012040A1 (en) 2008-01-17
KR20070009734A (ko) 2007-01-18
EP1760790A4 (en) 2008-06-04
JPWO2005109521A1 (ja) 2008-03-21
US7423316B2 (en) 2008-09-09
CN1950947A (zh) 2007-04-18
CN100514675C (zh) 2009-07-15
KR100830982B1 (ko) 2008-05-20
EP1760790A1 (en) 2007-03-07
EP1760790B1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
WO2005109521A1 (ja) 半導体装置
JP5869291B2 (ja) 半導体装置
JP3392665B2 (ja) 半導体装置
EP2200089A1 (en) Trench gate field effect devices
US10998410B2 (en) Semiconductor device
JP2013149798A (ja) 炭化珪素半導体装置
JP2004022941A (ja) 半導体装置
JP2007043123A (ja) 半導体装置
WO2005122274A1 (ja) 絶縁ゲート型半導体素子及びその製造方法
JP2017191817A (ja) スイッチング素子の製造方法
US8853775B2 (en) Insulated gate bipolar transistor having control electrode disposed in trench
JP7487692B2 (ja) 電界効果トランジスタ
JP5156238B2 (ja) 半導体装置
KR20160098385A (ko) 전력용 반도체 장치
KR101994728B1 (ko) 전력 반도체 소자
JP3845584B2 (ja) バイポーラ型半導体装置
JP2019160877A (ja) 半導体装置
JP7517206B2 (ja) 電界効果トランジスタ
JP2010251627A (ja) 横型半導体装置
JP7119378B2 (ja) 半導体装置
JPH1140818A (ja) 半導体装置
JP2024137200A (ja) 電界効果トランジスタ
JPH08222726A (ja) ラテラル電圧駆動型半導体装置
JP2024131786A (ja) 半導体装置
JP2006179815A (ja) 半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580014771.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513049

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11596063

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067025772

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005739273

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005739273

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11596063

Country of ref document: US