JP2008282999A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2008282999A
JP2008282999A JP2007126044A JP2007126044A JP2008282999A JP 2008282999 A JP2008282999 A JP 2008282999A JP 2007126044 A JP2007126044 A JP 2007126044A JP 2007126044 A JP2007126044 A JP 2007126044A JP 2008282999 A JP2008282999 A JP 2008282999A
Authority
JP
Japan
Prior art keywords
region
base region
semiconductor device
layer
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007126044A
Other languages
English (en)
Other versions
JP5056147B2 (ja
Inventor
Nozomi Akagi
望 赤木
Shigeki Takahashi
茂樹 高橋
Takashi Nakano
敬志 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007126044A priority Critical patent/JP5056147B2/ja
Publication of JP2008282999A publication Critical patent/JP2008282999A/ja
Application granted granted Critical
Publication of JP5056147B2 publication Critical patent/JP5056147B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】寄生ダイオードの動作を制御して、貫通電流の発生を抑制することができる半導体装置を提供する。
【解決手段】n導電型の半導体層と、半導体層の一面側の表層に形成されたp導電型のベース領域と、ベース領域の表層に形成されたn導電型のソース領域と、ベース領域の表層において、ソース領域に隣接して形成されたベース領域よりも不純物濃度の高いp導電型のベースコンタクト領域と、半導体層での少なくともベース領域の一部領域に対し、ゲート絶縁膜を介して配置されたゲート電極と、を有するDMOS素子を備えた半導体装置であって、ベース領域内に、印加される電位をソース領域の電位に対して所定電位に切り替えることにより、ベース領域と半導体層との間に構成される寄生ダイオードと高濃度領域の一部であるベースコンタクトとの間の電流経路を塞ぐように、ベース領域内に空乏層を形成するトレンチゲート電極が形成されている。
【選択図】図1

Description

本発明は、DMOS素子(Double diffused MOS-FET)を備える半導体装置に関するものである。
従来より、例えば所謂DC−DCコンバータなどのスイッチング電源回路として、特許文献1に示されるように、出力制御部にMOS素子が用いられた同期整流方式の回路が知られている。
このような同期整流方式の回路においては、直流電源の高電位側に接続されるハイサイド側のMOS素子と直流電源の低電位側に接続されるローサイド側のMOS素子が同時にオンして大きな貫通電流が流れないようにするために、各MOS素子のゲート電圧信号にデッドタイム(同時にオフする期間)を設けながら、ハイサイド側のMOS素子とローサイド側のMOS素子を交互にオンオフさせるようにしている。
特開2004−312913号公報
回路の動作周波数を高周波化するほど、できるだけ高いスイッチング速度のMOS素子が必要であり、DMOS素子は上記用途に好適である。しかしながら、例えば1A以上の電流を流す場合や、ディスクリート部品をワイヤで繋いで構成するようなシステムでは、寄生インダクタンスによってMOS素子のスイッチング時間が長くなるため、比較的長いデッドタイムを設けなければならない。この場合、デッドタイムの間にローサイド側のMOS素子に寄生するダイオードに電流が流れ、ダイオードのリカバリー特性(逆回復時間)の遅れにより、ハイサイド側のMOS素子とローサイド側のMOS素子に、貫通電流が流れてしまうという問題がある。
本発明は上記問題点に鑑み、寄生ダイオードの動作を制御して、貫通電流の発生を抑制することができる半導体装置を提供することを目的とする。
上記目的を達成する為に請求項1に記載の半導体装置は、第1導電型の半導体層と、半導体層の一面側の表層に形成された、第1導電型とは逆の第2導電型のベース領域と、ベース領域の表層に形成された第1導電型のソース領域と、ベース領域の表層において、ソース領域に隣接して形成されたベース領域よりも不純物濃度の高い第2導電型のベースコンタクト領域と、半導体層での少なくともベース領域の一部領域に対し、ゲート絶縁膜を介して配置されたゲート電極と、を有するDMOS素子を備えた半導体装置である。そして、ベース領域内には、印加される電位をソース領域に印加される電位に対して所定電位に切り替えることにより、ベース領域と半導体層との間に構成される寄生ダイオードと高濃度領域の一部であるベース領域のコンタクトとの間の電流経路を塞ぐように、ベース領域内に空乏層を形成する空乏層形成部が形成されていることを特徴とする。
このように本発明によれば、ベース領域内に形成した空乏層形成部の電位を、ソース領域の電位に対して所定電位とすることにより、ベース領域内に空乏層を形成することができる。この空乏層は、ベース領域と半導体層との間に構成される寄生ダイオードとベース領域のコンタクト(高濃度層の表面の一部)との間の電流経路を塞ぐように形成されるので、空乏層によってコンタクトから寄生ダイオードのアノードへの電流の流れ込みを遮断することができる。すなわち、空乏層の有無によって、寄生ダイオードの動作を抑制することができ、これにより、同期整流方式の回路における貫通電流の発生を抑制することができる。
例えば請求項2に記載のように、第1導電型がn導電型の場合には、空乏層形成部をソース領域に対して正の電位とすることで、空乏層を形成することができる。
空乏層形成部としては、例えば請求項3に記載のように、ベース領域内において、半導体層の一面から形成されたトレンチ内に絶縁膜を介して導電材料が充填されたトレンチゲート電極を採用すると良い。このようなトレンチゲート電極は、公知の半導体プロセスで形成することができる。
この場合、請求項4に記載のように、寄生ダイオードに対して電流が流れ込む起点であるコンタクトの近傍にトレンチゲート電極が形成された構成とすると良い。このような構成とすると、コンタクトに近い位置に空乏層を形成することができ、コンタクトと寄生ダイオードとの間の電流経路を効率よく塞ぐことができる。
また、請求項5に記載のように、複数のトレンチゲート電極が、コンタクトを間に挟むように形成された構成としても良い。このような構成とすると、コンタクトを介して対向配置されたトレンチゲート電極による空乏層によって、コンタクトと寄生ダイオードとの間の電流経路を効率よく塞ぐことができる。
請求項5に記載の発明において、例えば請求項6に記載のように、ベース領域の表層において、複数のコンタクトが列状に形成される場合、コンタクトの配列方向において、複数のトレンチゲート電極がコンタクトと交互に形成された構成とすることが好ましい。このような構成とすると、均一に空乏層を形成して、複数のコンタクトと寄生ダイオードとの間の電流経路をもれなく塞ぐことができる。
また、請求項7に記載のように、複数のトレンチゲート電極が、コンタクトを取り囲むように形成された構成としても良い。このような構成としても、コンタクトを取り囲む各トレンチゲート電極による空乏層によって、コンタクトと寄生ダイオードとの間の電流経路を効率よく塞ぐことができる。
トレンチゲート電極以外の空乏層形成部としては、例えば請求項8に記載のように、ベース領域内であって、高濃度領域及びソース領域とは異なる部位に埋め込まれた第1導電型の埋め込み拡散層と、ベース領域の表層であって、高濃度領域及びソース領域とは異なる部位に形成され、埋め込み拡散層と接続された第1導電型の接続領域を有する構成を採用することもできる。
この場合、請求項9に記載のように、埋め込み拡散層の少なくとも一部がベース領域内であって高濃度領域の直下部位に形成された構成とすると良い。このような構成とすると、できるだけコンタクトに近い位置に空乏層を形成することができ、コンタクトと寄生ダイオードとの間の電流経路を効率よく塞ぐことができる。
また、請求項10に記載のように、複数の埋め込み拡散層が、コンタクトを間に挟むように形成された構成としても良い。このような構成とすると、コンタクトを介して対向配置された埋め込み拡散層による空乏層によって、コンタクトと寄生ダイオードとの間の電流経路を効率よく塞ぐことができる。
請求項10に記載の発明において、例えば請求項11に記載のように、ベース領域の表層において、複数のコンタクトが列状に形成される場合、コンタクトの配列方向に沿って、複数の埋め込み拡散層が形成された構成とすることが好ましい。このような構成とすると、均一に空乏層を形成して、複数のコンタクトと寄生ダイオードとの間の電流経路をもれなく塞ぐことができる。
なお、請求項1〜11いずれかに記載の発明においては、請求項12に記載のように、DMOS素子として、半導体層の表層に、ベース領域とは離れて形成された第1導電型のドレイン領域を有する横型DMOS素子を採用することができる。横型DMOS素子は、CMOSなどの他の素子との工程整合性が良く、集積化が容易である。なお、DMOS素子としては、横型DMOS素子以外にも、ドレイン領域が、ベース領域などが形成された半導体層の一面の裏面側に積層配置された構成の縦型DMOS素子を採用することもできる。
以下、本発明の実施の形態を図に基づいて説明する。
(第1実施形態)
図1は、本発明の第1実施形態に係る半導体装置の概略構成を示す平面図である。図2は、図1のII−II線に沿う概略構成を示す断面図である。図3は、空乏層形成時の断面図である。なお、図1においては、便宜上、半導体基板上の、LOCOS酸化膜、層間絶縁膜、保護膜などの絶縁膜を省略している。また、図2においても、層間絶縁膜や保護膜などの絶縁膜を省略している。
図1及び図2に示すように、半導体装置100は、DMOS素子として横型DMOS素子(Lateral Double Diffused MOS-FET、以下LDMOS素子と示す)を備えるものであり、本実施形態においては複数のLDMOS素子が半導体基板110に構成されている。半導体基板110は、特許請求の範囲に記載の第1導電型の半導体層に相当するものであり、本実施形態においては、例えば不純物濃度が1×1016cm−3程度のn導電型(n−)のバルク単結晶シリコン基板を採用している。
半導体基板110には、一面側の表層の一部に、例えば不純物濃度が1×1017cm−3程度のp導電型(p)のベース領域120が形成されている。そして、ベース領域120の表層には、n導電型(n+)のソース領域130が形成されている。このソース領域130の不純物濃度としては、ソース電極との間でオーミック特性を確保できる濃度であれば良い。本実施形態においては、1×1020cm−3程度とされている。また、ベース領域120の表層には、ソース領域130と隣接してp導電型(p+)の高濃度領域140が形成されている。本実施形態においては、高濃度領域140がソース領域130の下部まで入り込むように形成されている。高濃度領域140は、ベース領域120におけるソース電極(図示略)とのコンタクト領域であり、その不純物濃度は、ソース電極との間でオーミック特性を確保できる濃度であれば良い。本実施形態においては、1×1020cm−3程度とされている。なお、本実施形態においては、1つのベース領域120内に、隣接するLDMOS素子のソース領域130が、高濃度層140を間に挟んで形成されている。
また、ソース領域130におけるソース電極とのコンタクト131と、高濃度領域140におけるソース電極とのコンタクト141は、それぞれ図1に示すように、ソース領域130及び高濃度領域140の長手方向に沿って複数形成されている。換言すれば、複数のコンタクト131がソース領域130の長手方向に沿って一列に配置され、複数のコンタクト141が高濃度領域140の長手方向に沿って一列に配置されている。このコンタクト141が、特許請求の範囲に記載のベース領域120のコンタクトに相当するものであり、以下、ベースコンタクト141と示す。
また、半導体基板110の表層には、ベース領域120とは離れて例えば不純物濃度が1×1020cm−3程度のn導電型(n+)のドレイン領域150が形成されている。そして、ソース領域130とドレイン領域150とに挟まれたベース領域120の部分が、LDMOS素子のチャネル形成領域となっている。すなわち、本実施形態においては、LDMOS素子としてnチャネル型のLDMOS素子が形成されている。なお、本実施形態においては、半導体層110の表層に、半導体基板110よりも高濃度であり、ドレイン領域150に近づくほど高濃度となるn導電型(n)のドリフト領域160が形成されており、このドリフト領域160の表層にドレイン領域150が形成されている。
また、ベース領域120などが形成された側の半導体基板110の表面上であって、ソース領域130とドレイン領域150とに挟まれたベース領域120の部位上(チャネル形成領域上)には、絶縁膜170を介してゲート電極180が形成されている。
このように構成されるLDMOS素子は、CMOSなどの他の素子との工程整合性が良く、半導体基板110への集積化が容易である。なお、図2に示す符号190は、p導電型(p)のベース領域120とn導電型(n−)の半導体基板110との間に構成される寄生ダイオードを示している。
さらに、本実施形態に係る半導体装置100においては、LDMOS素子を構成するベース領域120内に含まれるようにトレンチが形成され、このトレンチ内にシリコン酸化膜などの絶縁膜(図示略)を介して、不純物が導入された多結晶シリコンや金属材料が充填されたトレンチゲート電極200が形成されている。このトレンチゲート電極200が、特許請求の範囲に記載の空乏層形成部に相当する。
トレンチゲート電極200は、その少なくとも一部がベース領域120内であってソース領域130及び高濃度領域140とは異なる部位に位置するように形成されている。したがって、本実施形態に示すようにnチャネル型のLDMOS素子の場合には、トレンチゲート電極200の電位(図2に示す空乏層形成用パッドKに印加される電位)をソース領域130に印加される電位(図2に示すソース電極パッドSに印加される電位)に対して正の電位とすると、例えば図3に一点鎖線で示すように、トレンチゲート電極200からベース領域120に広がる空乏層210を形成することができる。
また、トレンチゲート電極200は、ベース領域120と半導体基板110との間に構成される寄生ダイオード190と高濃度領域140の一部であるベースコンタクト141との間の電流経路を、空乏層210によって塞ぐ(遮断する)ように形成(形状、配置、印加される電位などが決定)されている。すなわち、空乏層210の形成時には、ソース電極パッドSからベースコンタクト141を介して寄生ダイオード190のアノードに電流が流れないようにトレンチゲート電極200が形成されている。例えば寄生ダイオード190に対して電流が流れ込む起点であるベースコンタクト141の近傍にトレンチゲート電極200が形成された構成とすると、ベースコンタクト141に近い位置に空乏層190を形成することができるので、ベースコンタクト141と寄生ダイオード190との間の電流経路を効率よく塞ぐことができる。また、複数のトレンチゲート電極200によって、ベースコンタクト141を間に挟む構成とすると、ベースコンタクト141を介して対向配置されたトレンチゲート電極200から広がる空乏層210によって、ベースコンタクト141と寄生ダイオード190との間の電流経路を効率よく塞ぐことができる。
本実施形態においては、これらの点を考慮し、図1に示すように、ベース領域120の表層において、複数のベースコンタクト141が列状に形成された構成において、ベースコンタクト141の配列方向において、複数のトレンチゲート電極200がベースコンタクト141と交互に形成されている。また、複数のトレンチゲート電極200は互いに略平行となっている。したがって、複数のベースコンタクト141に対して、その近傍に均一に空乏層210を形成して、複数のベースコンタクト141と寄生ダイオード190との間の電流経路をもれなく塞ぐことができる。なお、本実施形態においては、トレンチゲート電極200の深さが、ESD耐量等を考慮して、空乏層210が形成された時点で所望の耐圧を確保できるように設定されている。具体的には、1つのベースコンタクト141を間に挟んで対向配置されたトレンチゲート電極200の間隔をD(図1参照)とすると、トレンチゲート電極200の底部とベース領域120の底部との対向間隔H(図2参照)を、少なくともD/2よりも大きくすれば良く、好ましくはDよりも大きくすると良い。本実施形態においては、対向間隔HがDよりも大きく設定されている。
このように本実施形態に係る半導体装置100によれば、ベース領域120内に形成したトレンチゲート電極200の電位を、ソース領域130の電位に対して所定電位(正の電位)とすることにより、ベース領域120内に空乏層210を形成することができる。そして、この空乏層210により、ベース領域120と半導体基板110との間に構成される寄生ダイオード190とベースコンタクト141との間の電流経路を塞いで、ベースコンタクト141から寄生ダイオード190のアノードへの電流の流れ込みを遮断することができる。すなわち、トレンチゲート電極200が、ベースコンタクト141と寄生ダイオード190との間の電流経路において導通状態を制御するスイッチとして機能する。
なお、半導体装置100(LDMOS素子)の通常動作時には、トレンチゲート電極200の電位をソース領域130の電位に対して負の電位とすることで、n導電型のソース領域130、p導電型のベース領域120、及びn導電型の半導体基板110からなるnpnの寄生バイポーラトランジスタのベース抵抗を下げて寄生バイポーラトランジスタの動作を抑制し、LDMOS素子の特性を劣化しにくくすることができる。
次に、本実施形態に係る半導体装置100のLDMOS素子を、同期整流方式のスイッチング回路に適用した場合の効果について、図4及び図5を用いて説明する。図4は、本実施形態に係る半導体装置のLDMOS素子を、ローサイド側のMOS素子として適用した同期整流方式のスイッチング回路の一例を示す図である。図5は、スイッチング回路の動作波形を示す図である。
図4に示すスイッチング回路10(降圧回路)は、ハイサイド側のMOS素子と、ローサイド側のMOS素子からなる公知のスイッチング回路において、ローサイド側のMOS素子に上述した半導体装置100のLDMOS素子を適用したものである。
詳しくは、主スイッチング素子としてハイサイド側(直流電源11の高電位(正極)側)のMOS素子12、同期整流用素子としてのローサイド側(直流電源の低電位(負極)側)のLDMOS素子13、インダクタンス14、平滑コンデンサ15からなる回路群と、これらの回路群を制御する制御回路16とを有している。なお、図4に示す符号190は上述した寄生ダイオードであり、符号200は、上述したように、ベースコンタクト141と寄生ダイオード190との間の電流経路において導通状態を制御するスイッチとしてのトレンチゲート電極である。
MOS素子12とLDMOS素子13との直列回路は、直流電源11に対して並列に接続されている。また、LDMOS素子13のドレイン−ソース間にインダクタンス14と平滑コンデンサ15が直列に接続されている。また、制御回路16が、図5に示すように、MOS素子12とLDMOS素子13を交互にオンオフさせることにより、直流電源11の電圧が降下され平滑された出力VOUTが負荷(図示略)に供給されるようになっている。さらには、LDMOS素子13のドレイン−ソース間に寄生ダイオード190とトレンチゲート電極200が直列に接続されている。
このようなスイッチング回路10においては、上述したように、MOS素子12及びLDMOS素子13の同時オンを防止するために、図5に示すようにデッドタイムを設け、MOS素子12及びLDMOS素子13に対して交互にゲート信号Vg1,Vg2を与えている。ここで、ローサイド側のLDMOS素子13のゲート信号Vg2をオフしようとすると、過渡状態において、インダクタンス14がドレインから電流を引き出そうとする。なお、過渡状態とは、ドレイン−ソース間の抵抗がオン抵抗でもハイインピーダンスでもない状態である。従来の構成(スイッチとしてのトレンチゲート電極200のない構成)においては、これにより、ベースコンタクト141から寄生ダイオード190のアノードに電流が流れ、寄生ダイオード190のリカバリー特性の遅れにより、MOS素子12及びLDMOS素子13が同時オンとなって貫通電流が流れてしまうという問題があった。
これに対し、本実施形態においては、図5に示すように、制御回路16が、ローサイド側のLDMOS素子13のゲート信号Vg2をオフさせる際の過渡状態を含む所定期間において、スイッチとしてのトレンチゲート電極200に対し、空乏層信号Vkとして、ソース電位に対して正の信号を与える。これにより、上述したように、ベースコンタクト141と寄生ダイオード190との間の電流経路を遮るようにベース領域120に空乏層210が形成される。したがって、ベースコンタクト141から寄生ダイオード190のアノードに電流が流れず、寄生ダイオード190が動作しないので、貫通電流の発生を抑制することができる。
このように本実施形態に係る半導体装置100によれば、トレンチゲート電極200の印加電位に応じて空乏層210を形成することができ、空乏層210の有無によって寄生ダイオード190の動作を制御することができる。これにより、同期整流方式のスイッチング回路10における貫通電流の発生を抑制することができる。
なお、本実施形態においては、半導体装置100がローサイド側のMOS素子としてLDMOS素子を備えている。しかしながら、半導体装置100が、ローサイド側のLDMOS素子だけでなく、ハイサイド側のMOS素子12も含む構成としても良い。さらには、スイッチング回路10が同一の半導体基板110に集積化された構成としても良い。
また、本実施形態においては、ローサイド側のLDMOS素子13のゲート信号Vg2をオフさせる際の過渡状態を含む所定期間において、スイッチとしてのトレンチゲート電極200に対し、空乏層信号Vkとして、ソース電位に対して正の信号を与える例を示した。しかしながら、ゲート信号Vg2をオンさせる際の過渡状態を含む所定期間において、スイッチとしてのトレンチゲート電極200に対し、空乏層信号Vkとして、ソース電位に対して正の信号を与えるようにしても良い。さらには、図6に示すように、ハイサイド側のMOS素子12のゲート信号Vg1をオフさせる際の過渡状態を含む所定期間において、スイッチとしてのトレンチゲート電極200に対し、空乏層信号Vkとして、ソース電位に対して正の信号を与えるようにしても良い。これにより、寄生ダイオード190が動作してインダクタンス14へ電流を供給した場合であっても、寄生ダイオード190への電流が遮断されて貫通電流の発生を抑制することができる。なお、ゲート信号Vg1をオフさせる際の過渡状態を含む所定期間において、スイッチとしてのトレンチゲート電極200に対し、空乏層信号Vkとして、ソース電位に対して正の信号を与えるようにしても良い。
また、本実施形態においては、トレンチゲート電極200とベースコンタクト141が交互に形成される例を示した。しかしながら、トレンチゲート電極200の態様は上記例に限定されるものではない。例えば図7に示すように、複数のトレンチゲート電極200が、ベースコンタクト141を取り囲むように形成された構成としても良い。このような構成としても、ベースコンタクト141を取り囲む各トレンチゲート電極200から広がる空乏層210によって、ベースコンタクト141の近傍で、ベースコンタクト141と寄生ダイオード190との間の電流経路を効率よく塞ぐことができる。なお、図7においては、各トレンチゲート200がソース領域130と高濃度領域140を跨いで形成され、4つのトレンチゲート電極200によって、1つのベースコンタクト141を取り囲んだ構成となっている。図7は変形例を示す平面図である。
また、図8に示すように、ベースコンタクト141の配列方向に沿って、ソース領域130と高濃度領域140を跨いで2つのトレンチゲート電極200が形成され、トレンチゲート電極200の間に複数のベースコンタクト141が挟まれた構成とすることも可能である。この場合も、ベースコンタクト141の近傍で、ベースコンタクト141と寄生ダイオード190との間の電流経路を効率よく塞ぐことができる。しかしながら、本実施形態に示した構成や図7に示した構成と比べて、ソース領域130、ベース領域120、及び半導体基板110からなる寄生バイポーラトランジスタのベース抵抗が大きくなり、寄生バイポーラトランジスタが動作しやすくなる。したがって、この点を考慮すると、本実施形態に示した構成や図7に示した構成を採用することが好ましい。図8は変形例を示す平面図である。
本実施形態においては、ソース領域130と高濃度領域140を跨いで形成される例を示した。しかしながら、トレンチゲート電極200は、上述したように、その少なくとも一部がベース領域120内であってソース領域130及び高濃度領域140とは異なる部位に位置するように形成されていれば良い。例えば、高濃度領域140のみを貫通して形成されたものでも良いし、ソース領域130のみを貫通して形成されたものでも良い。さらには、ベース領域120内であってソース領域130及び高濃度領域140とは異なる部位のみに形成されたものでも良い。ただし、効率よく電流経路をする点を考慮すると、上述したように、ベースコンタクト141の近傍に形成された構成とすることが好ましい。
(第2実施形態)
次に、本発明の第2実施形態を、図9及び図10に基づいて説明する。図9は、第2実施形態に係る半導体装置の概略構成を示す平面図である。図10は、図9のX−X線に沿う概略構成を示す断面図である。なお、図9においては、便宜上、半導体基板上の、LOCOS酸化膜、層間絶縁膜、保護膜などの絶縁膜を省略している。また、図10においても、層間絶縁膜や保護膜などの絶縁膜を省略している。
第2実施形態に係る半導体装置は、第1実施形態に示した半導体装置と共通するところが多いので、以下、共通部分については詳しい説明は省略し、異なる部分を重点的に説明する。なお、第1実施形態に示した要素と同一の要素には、同一の符号を付与するものとする。
第1実施形態においては、ベース領域120内に空乏層210を形成するための空乏層形成部として、トレンチゲート電極200の例を示した。これに対し、本実施形態においては、図9及び図10に示すように、空乏層形成部が、ベース領域120内であって、高濃度領域140及びソース領域130とは異なる部位に埋め込まれたn導電型の埋め込み拡散層220と、ベース領域120の表層であって、高濃度領域140及びソース領域130とは異なる部位に形成され、埋め込み拡散層220と接続されたn導電型の接続領域221を有する点を特徴とする。なお、その他の構成については、第1実施形態に示した構成と同じである。
このような、埋め込み拡散層220は、例えばイオン注入法によって形成することができる。本実施形態においては、高加速インプラにより、高濃度領域140及びソース領域130を跨ぐように、高濃度領域140及びソース領域130の直下に高濃度領域140及びソース領域130とは離間して形成されている。なお、不純物濃度としては、少なくとも半導体基板110よりも高濃度であれば良く、本実施形態においてはベース領域120と同程度(1×1017cm−3程度)とされている。なお、接続領域221は、埋め込み拡散層220のコンタクト領域であり、その不純物濃度は、ソース領域130と同程度(1×1020cm−3程度)とされている。
したがって、ベース領域120内に形成した埋め込み拡散層220及び接続領域221に印加される電位を、ソース領域130の電位に対して所定電位(正の電位)とすることにより、ベース領域120内に空乏層(図示略)を形成することができる。そして、この空乏層により、ベース領域120と半導体基板110との間に構成される寄生ダイオード190とベースコンタクト141との間の電流経路を塞いで、ベースコンタクト141から寄生ダイオード190のアノードへの電流の流れ込みを遮断することができる。すなわち、埋め込み拡散層220及び接続領域221からなる空乏層形成部が、ベースコンタクト141と寄生ダイオード190との間の電流経路において導通状態を制御するスイッチとして機能する。したがって、同期整流方式のスイッチング回路10における貫通電流の発生を抑制することができる。
また、本実施形態においては、複数のベースコンタクト141が列状に形成され、ベースコンタクト141の配列方向に沿って、2つの埋め込み拡散層220が複数のベースコンタクト141を間に挟むように略平行に形成されている。したがって、複数のベースコンタクト141に対して、その近傍に均一に空乏層210を形成して、複数のベースコンタクト141と寄生ダイオード190との間の電流経路をもれなく塞ぐことができる。なお、埋め込み拡散層220は、一部のみ(本実施形態においては両端部)が接続領域221と接続されている。したがって、ベースコンタクト141の配列方向に沿って形成される構成でありながら、同様の構成のトレンチゲート電極200よりも、ソース領域130、ベース領域120、及び半導体基板110からなる寄生バイポーラトランジスタの動作を抑制することができる。
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
本実施形態においては、DMOS素子として、LDMOS素子の例を示した。しかしながら、ドレイン領域が、ベース領域などが形成された半導体層の一面の裏面側に積層配置された構成の縦型DMOS素子(所謂VDMOS素子)に対して、本発明を適用した構成(空乏層形成部を設けた構成)としても良い。しかしながら、VDMOS素子においては、半導体基板110の厚さ方向の設計要因が入るため、CMOSなどの他の素子との集積化が困難である。したがって、CMOSなどの他の素子との工程整合性や集積化を考慮すると、LDMOS素子を採用するほうが好ましい。
また、本実施形態においては、DMOS素子(LDMOS素子)がnチャネル型である例を示した。しかしながら、pチャネル型においても本発明を適用することができる。pチャネル型の場合、空乏層形成部に印加される電位をp導電型のソース領域に印加される電位に対して負の電位とすることで、空乏層形成部からn導電型のベース領域に広がる空乏層を形成することができる。さらには、半導体装置100が、スイッチング回路10を構成するハイサイド側及びローサイド側のMOS素子として、nチャネル型とpチャネル型のDMOS素子(LDMOS素子)をそれぞれ含む構成としても良い。なお、pチャネル型のDMOS素子を適用した同期整流方式のスイッチング回路の一例を図11に示す。図11においては、上述したスイッチング回路と同一の要素について同じ符号を付与している。図11に示すスイッチング回路10(昇圧回路)は、ハイサイド側のMOS素子12としてのpチャネル型のDMOS素子(LDMOS素子)、ローサイド側のnチャネル型のMOS素子13、インダクタンス14、平滑コンデンサ15からなる回路群と、これらの回路群を制御する制御回路16とを有している。また、図11に示す符号190は上述した寄生ダイオードであり、符号200は、上述したように、ベースコンタクト141と寄生ダイオード190との間の電流経路において導通状態を制御するスイッチとしてのトレンチゲート電極である。
本実施形態においては、半導体基板110としてバルク単結晶シリコン基板を採用する例を示した。しかしながら、支持基板上に絶縁層を介して半導体層を配置してなるSOI構造基板の半導体層を、半導体基板として採用しても良い。
第1実施形態に係る半導体装置の概略構成を示す平面図である。 図1のII−II線に沿う概略構成を示す断面図である。 空乏層形成時の断面図である。 第1実施形態に係る半導体装置のLDMOS素子を、ローサイド側のMOS素子として適用した同期整流方式のスイッチング回路の一例を示す図である。 スイッチング回路の動作波形を示す図である。 動作波形の変形例を示す図である。 変形例を示す平面図である。 変形例を示す平面図である。 第2実施形態に係る半導体装置の概略構成を示す平面図である。 図9のX−X線に沿う概略構成を示す断面図である。 同期整流方式のスイッチング回路のその他例を示す図である。
符号の説明
10・・・スイッチング回路
12・・・ハイサイド側のMOS素子
13・・・ローサイド側のLDMOS素子(半導体装置)
14・・・インダクタンス
13・・・平滑コンデンサ
100・・・半導体装置
110・・・半導体基板(半導体層)
120・・・ベース領域
130・・・ソース領域
140・・・高濃度領域
141・・・ベースコンタクト
150・・・ドレイン領域
160・・・ドリフト層
180・・・ゲート電極
190・・・寄生ダイオード
200・・・トレンチゲート電極(空乏層形成部)
210・・・空乏層

Claims (12)

  1. 第1導電型の半導体層と、
    前記半導体層の一面側の表層に形成された、第1導電型とは逆の第2導電型のベース領域と、
    前記ベース領域の表層に形成された第1導電型のソース領域と、
    前記ベース領域の表層において、前記ソース領域に隣接して形成された前記ベース領域よりも不純物濃度の高い第2導電型の高濃度領域と、
    前記半導体層での少なくとも前記ベース領域の一部領域に対し、ゲート絶縁膜を介して配置されたゲート電極と、を有するDMOS素子を備えた半導体装置であって、
    前記ベース領域内には、印加される電位を前記ソース領域に印加される電位に対して所定電位に切り替えることにより、前記ベース領域と前記半導体層との間に構成される寄生ダイオードと前記高濃度領域の一部である前記ベース領域のコンタクトとの間の電流経路を塞ぐように、前記ベース領域内に空乏層を形成する空乏層形成部が形成されていることを特徴とする半導体装置。
  2. 前記第1導電型はn導電型であり、
    前記空乏層形成部を前記ソース領域に対して正の電位とすることにより、前記空乏層が形成されることを特徴とする請求項1に記載の半導体装置。
  3. 前記空乏層形成部は、前記ベース領域内において、前記半導体層の一面から形成されたトレンチ内に絶縁膜を介して導電材料が充填されたトレンチゲート電極であることを特徴とする請求項1又は請求項2に記載の半導体装置。
  4. 前記トレンチゲート電極は、前記コンタクトの近傍に形成されていることを特徴とする請求項3に記載の半導体装置。
  5. 複数の前記トレンチゲート電極が、前記コンタクトを間に挟むように形成されていることを特徴とする請求項3又は請求項4に記載の半導体装置。
  6. 前記ベース領域の表層において、複数の前記コンタクトが列状に形成され、
    前記コンタクトの配列方向において、複数の前記トレンチゲート電極が前記コンタクトと交互に形成されていることを特徴とする請求項5に記載の半導体装置。
  7. 複数の前記トレンチゲート電極が、前記コンタクトを取り囲むように形成されていることを特徴とする請求項3〜6いずれか1項に記載の半導体装置。
  8. 前記空乏層形成部として、前記ベース領域内であって、前記高濃度領域及び前記ソース領域とは異なる部位に埋め込まれた第1導電型の埋め込み拡散層と、前記ベース領域の表層であって、前記高濃度領域及び前記ソース領域とは異なる部位に形成され、前記埋め込み拡散層と接続された第1導電型の接続領域を有することを特徴とする請求項1又は請求項2に記載の半導体装置。
  9. 前記埋め込み拡散層は、少なくとも一部が前記ベース領域内であって前記高濃度領域の直下部位に形成されていることをと特徴とする請求項8に記載の半導体装置。
  10. 複数の前記埋め込み拡散層が、前記コンタクトを間に挟むように形成されていることを特徴とする請求項9に記載の半導体装置。
  11. 前記ベース領域の表層において、複数の前記コンタクトが列状に形成され、
    前記コンタクトの配列方向に沿って、複数の前記埋め込み拡散層が形成されていることを特徴とする請求項9又は請求項10に記載の半導体装置。
  12. 前記DMOS素子は、前記半導体層の表層に、前記ベース領域とは離れて形成された第1導電型のドレイン領域を有する横型DMOS素子であることを特徴とする請求項1〜11いずれか1項に記載の半導体装置。
JP2007126044A 2007-05-10 2007-05-10 半導体装置 Expired - Fee Related JP5056147B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126044A JP5056147B2 (ja) 2007-05-10 2007-05-10 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126044A JP5056147B2 (ja) 2007-05-10 2007-05-10 半導体装置

Publications (2)

Publication Number Publication Date
JP2008282999A true JP2008282999A (ja) 2008-11-20
JP5056147B2 JP5056147B2 (ja) 2012-10-24

Family

ID=40143568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126044A Expired - Fee Related JP5056147B2 (ja) 2007-05-10 2007-05-10 半導体装置

Country Status (1)

Country Link
JP (1) JP5056147B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059912A (ja) * 2010-09-09 2012-03-22 On Semiconductor Trading Ltd 半導体装置
WO2014133138A1 (ja) * 2013-03-01 2014-09-04 富士電機株式会社 半導体装置
US8878572B2 (en) 2013-03-05 2014-11-04 Denso Corporation Drive control apparatus
US9590616B2 (en) 2013-07-10 2017-03-07 Denso Corporation Drive control device
JP2019117883A (ja) * 2017-12-27 2019-07-18 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2020047647A (ja) * 2018-09-14 2020-03-26 キオクシア株式会社 半導体装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974190A (ja) * 1995-09-06 1997-03-18 Denso Corp 半導体装置
JPH11251573A (ja) * 1998-02-26 1999-09-17 Toyota Central Res & Dev Lab Inc 半導体装置
JP2005210047A (ja) * 2003-12-24 2005-08-04 Toyota Central Res & Dev Lab Inc 半導体装置
WO2005109521A1 (ja) * 2004-05-12 2005-11-17 Kabushiki Kaisha Toyota Chuo Kenkyusho 半導体装置
JP2008251620A (ja) * 2007-03-29 2008-10-16 Toyota Motor Corp 半導体装置とその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974190A (ja) * 1995-09-06 1997-03-18 Denso Corp 半導体装置
JPH11251573A (ja) * 1998-02-26 1999-09-17 Toyota Central Res & Dev Lab Inc 半導体装置
JP2005210047A (ja) * 2003-12-24 2005-08-04 Toyota Central Res & Dev Lab Inc 半導体装置
WO2005109521A1 (ja) * 2004-05-12 2005-11-17 Kabushiki Kaisha Toyota Chuo Kenkyusho 半導体装置
JP2008251620A (ja) * 2007-03-29 2008-10-16 Toyota Motor Corp 半導体装置とその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059912A (ja) * 2010-09-09 2012-03-22 On Semiconductor Trading Ltd 半導体装置
WO2014133138A1 (ja) * 2013-03-01 2014-09-04 富士電機株式会社 半導体装置
JP5962843B2 (ja) * 2013-03-01 2016-08-03 富士電機株式会社 半導体装置
US9705488B2 (en) 2013-03-01 2017-07-11 Fuji Electric Co., Ltd. Semiconductor device
US8878572B2 (en) 2013-03-05 2014-11-04 Denso Corporation Drive control apparatus
US9590616B2 (en) 2013-07-10 2017-03-07 Denso Corporation Drive control device
JP2019117883A (ja) * 2017-12-27 2019-07-18 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2020047647A (ja) * 2018-09-14 2020-03-26 キオクシア株式会社 半導体装置
JP7077194B2 (ja) 2018-09-14 2022-05-30 キオクシア株式会社 半導体装置

Also Published As

Publication number Publication date
JP5056147B2 (ja) 2012-10-24

Similar Documents

Publication Publication Date Title
JP4817827B2 (ja) 半導体装置
CN107580725B (zh) 高压半导体器件及其制造方法
US11233147B2 (en) Semiconductor device
US8169021B2 (en) Trench gate semiconductor device and method of manufacturing the same
JP4832731B2 (ja) 電力用半導体装置
US7485921B2 (en) Trench gate type MOS transistor semiconductor device
JP4967236B2 (ja) 半導体素子
JP4772843B2 (ja) 半導体装置及びその製造方法
JP5229288B2 (ja) 半導体装置およびその制御方法
JP2008066708A (ja) 半導体装置
JP5504235B2 (ja) 半導体装置
JP2004022693A (ja) 半導体装置
JP2006237066A (ja) 半導体装置
JP5056147B2 (ja) 半導体装置
JP2006351652A (ja) 半導体デバイス
US9257517B2 (en) Vertical DMOS-field effect transistor
JP4966351B2 (ja) 半導体装置
US20120126312A1 (en) Vertical dmos-field effect transistor
JP2008103378A (ja) 半導体装置とその製造方法
WO2006112305A1 (ja) 半導体デバイス
JP2006120894A (ja) 半導体装置
JP2005116876A (ja) 半導体装置
JP2009224811A (ja) 半導体装置
US20110227554A1 (en) Semiconductor device and dc-dc converter
JP2009277956A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees