WO2005096326A1 - 希土類磁石及びその製造方法 - Google Patents

希土類磁石及びその製造方法 Download PDF

Info

Publication number
WO2005096326A1
WO2005096326A1 PCT/JP2005/006404 JP2005006404W WO2005096326A1 WO 2005096326 A1 WO2005096326 A1 WO 2005096326A1 JP 2005006404 W JP2005006404 W JP 2005006404W WO 2005096326 A1 WO2005096326 A1 WO 2005096326A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
rare earth
magnet
protective layer
earth magnet
Prior art date
Application number
PCT/JP2005/006404
Other languages
English (en)
French (fr)
Inventor
Masashi Miwa
Takeshi Sakamoto
Jun Hagiwara
Masami Mori
Mutsuko Nakano
Hiroshi Kawahara
Hiroki Kitamura
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005055011A external-priority patent/JP4276631B2/ja
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/594,338 priority Critical patent/US20080050581A1/en
Priority to EP05728033.1A priority patent/EP1744331B1/en
Priority to CN2005800107722A priority patent/CN1938795B/zh
Priority claimed from JP2005102487A external-priority patent/JP3993613B2/ja
Priority claimed from JP2005101835A external-priority patent/JP4276635B2/ja
Publication of WO2005096326A1 publication Critical patent/WO2005096326A1/ja
Priority to US13/352,172 priority patent/US9903009B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a rare earth magnet, in particular, a rare earth magnet having a protective layer formed on its surface, and a method for producing the same.
  • R-Fe-B based magnet R represents a rare earth element such as neodymium (Nd); the same applies hereinafter
  • Nd neodymium
  • Patent Document 1 discloses a magnet formed by sintering
  • Patent Document 2 discloses a magnet formed by rapid quenching as such a rare earth magnet.
  • this rare earth magnet has a high energy product, it has a relatively low corrosion resistance because it contains a rare earth element and iron that are relatively easily oxidized as main components.
  • Patent Document 3 proposes forming a protective layer by heating a rare-earth magnet at 200 to 500 ° C. in an oxidizing atmosphere.
  • Patent Document 1 JP-A-59-46008
  • Patent Document 2 JP-A-60-9852
  • Patent Document 3 JP-A-5-226129
  • Patent Document 3 Although it has been proposed in Patent Document 3 that a protective layer is formed at a specific temperature in an oxidizing atmosphere, the corrosion of the rare earth magnet can be sufficiently reduced by such a method. In many cases, it was not possible to satisfactorily form a protective layer that could be prevented. For this reason, it was still difficult for the obtained rare earth magnet to sufficiently prevent the occurrence of dusting and weight loss in the corrosion resistance test.
  • the present invention has been made in view of such circumstances, and has sufficient corrosion resistance. It is an object of the present invention to provide a rare earth magnet and a method for manufacturing the same.
  • the present inventors have conducted intensive studies. As a result, by forming a plurality of layers having different compositions or constituent materials on the surface of the magnet body, compared to the related art, The inventors have found that excellent corrosion resistance can be obtained, and have completed the present invention.
  • the rare earth magnet of the present invention includes a magnet element containing a rare earth element and a protective layer formed on the surface of the magnet element, and the protective layer covers the magnet element and is a rare earth element.
  • the rare earth magnet having the above configuration has sufficient corrosion resistance.
  • the rare earth magnet of the present invention has a first layer in which the protective layer covers the magnet body and contains a rare earth element, and a second layer in which the first layer covers the first layer and contains substantially no rare earth element. Having the following layers. Since the surface force of the rare-earth magnet is covered by the second layer substantially not containing the rare-earth element, it is considered that the stability of the protective layer is improved, and thereby the corrosion resistance is improved. In addition, since the protective layer having the above specific structure has a dense structure, it is considered that this also improves the stability of the protective layer and the corrosion resistance.
  • the protective layer includes a first layer covering the magnet body and containing a rare earth element, and a second layer covering the first layer and containing substantially no rare earth element.
  • the magnet body In a oxidizing atmosphere containing an oxidizing gas, the magnet body is heat-treated by adjusting at least one of the oxidizing gas partial pressure, the processing temperature, and the processing time. It is preferred that it was done.
  • the rare earth magnet of the present invention includes a magnet element containing a rare earth element, and a protective layer formed on the surface of the magnet element, and the protective layer covers the magnet element and covers the rare earth element.
  • the present inventors speculate as to the reason why such a rare earth magnet has sufficient corrosion resistance as follows. That is, the rare earth magnet contains a rare earth element as its constituent element. Such rare earth elements are very oxidized and readily elute into acidic solutions.
  • the rare earth magnet obtained by the production method of the present invention has a protective layer that covers the magnetite body and contains the first layer containing the rare earth element, and a rare earth element that covers the first layer and is more rare earth element than the first layer.
  • the protective layer having the above specific structure has a dense structure, it is considered that this also improves the stability of the protective layer and the corrosion resistance.
  • the protective layer covers the magnet body and includes the first layer containing the rare earth element and the first layer covering the first layer and containing less rare earth element than the first layer.
  • Heat treatment of the magnet body is performed in an oxidizing atmosphere containing an oxidizing gas by adjusting at least one of the oxidizing gas partial pressure, the processing temperature, and the processing time so that the magnet body has two layers. And more preferably those formed with.
  • the protective layer preferably contains oxygen and an element derived from the magnet body.
  • the strong protective layer has extremely excellent adhesion to the magnet body, and the corrosion resistance of the rare earth magnet is further improved.
  • Such a rare earth magnet of the present invention has sufficiently excellent corrosion resistance, has a uniform thickness of the protective layer, and has excellent dimensional accuracy. Further, since the rare earth magnet is formed with the specific protective layer, deterioration of performance during production and use is suppressed, and the rare earth magnet has excellent reliability.
  • the magnet body includes a rare earth element and a transition element other than the rare earth element
  • the first layer is a layer containing the rare earth element, the transition element, and oxygen
  • the second layer is a layer containing the rare earth element, the transition element, and oxygen.
  • the layer is preferably a layer containing the above transition element and oxygen.
  • the rare earth element in the first layer, the transition element in the first layer, and the transition element in the second layer are preferably elements derived from a magnet body.
  • the rare earth element in the first layer, the transition element in the first layer, and the transition element in the second layer are magnetic. More preferably, it is an element constituting the main phase of the stone body.
  • the rare earth element is more preferably neodymium. Further, as the transition element other than the rare earth element, iron and Z or cobalt are preferable.
  • the total thickness of the first layer and the second layer is more preferably 0.1 to 20 / ⁇ .
  • the rare earth magnet of the present invention includes a magnet body containing a rare earth element and a protective layer formed on the surface of the magnet body, and the protective layer is formed of a rare earth element and a metal or a transition element. It may include an internal protective layer containing oxygen and oxygen, and an external protective layer made of a constituent material different from the internal protective layer.
  • rare earth magnets As motor magnets in hybrid vehicles has been studied.
  • the rare-earth magnet is used around the engine and is exposed to high temperatures exceeding 150 ° C.
  • conventional rare-earth magnets tend to undergo corrosion degradation under such a high-temperature environment, and the heat resistance of the protective layer is insufficient.
  • the rare earth magnet of the present invention has two protective layers, an inner protective layer and an outer protective layer, each of which is made of a different material, the conventional rare earth magnet has only one protective layer. Compared to the rare earth magnets of the above, they have excellent heat resistance in addition to excellent corrosion resistance.
  • the internal protective layer in the rare earth magnet of the present invention is a first layer covering the magnet element and containing a rare earth element, and a second layer covering the first layer and containing substantially no rare earth element. More preferably, the layer has
  • the first layer adjacent to the magnet body has excellent adhesion to the magnet body because it contains a rare earth element.
  • the second layer formed on the outside is substantially not oxidized because it does not substantially contain a rare earth element. Therefore, the rare-earth magnet including the first and second layers can exhibit more excellent corrosion resistance than the rare earth magnet including the two protective layers.
  • the inner protective layer covers the magnet element and contains the first layer containing the rare earth element
  • the second protective layer covers the first layer and has a lower content of the rare earth element than the first layer. It may be a layer having the following layers. Such a second layer is also provided with such first and second layers, which are extremely difficult to be oxidized. Rare earth magnets can exhibit better corrosion resistance than those without these two protective layers.
  • the magnet body contains a rare earth element and a transition element other than the rare earth element
  • the first layer is a layer containing the rare earth element, the transition element, and oxygen.
  • the layer 2 is more preferably a layer containing the above transition element and oxygen.
  • the rare earth element in the first layer, the transition element in the first layer, and the transition element in the second layer are more preferably elements derived from a magnet body. That is, the first and second layers are preferably formed by changing the magnet body by a reaction or the like. With a strong structure, the adhesion of each layer is further improved, and each of them can be an extremely dense film. As a result, the corrosion resistance of the rare earth magnet is further improved.
  • the outer protective layer is preferably an oxide layer having a composition different from that of the inner protective layer.
  • the rare earth magnet becomes extremely excellent not only in corrosion resistance but also in heat resistance.
  • the oxide layer is a layer containing an oxide of a metal element different from the metal element contained in the first and second layers, such an effect is further improved.
  • Such an oxide layer is more preferably an amorphous layer.
  • the outer protective layer which also becomes amorphous, has no grain boundaries microscopically. Usually, in the case of a crystalline substance, the grain boundary portion is deteriorated to cause the loss of particles and the like, which may be a cause of corrosion. By making it amorphous, it is possible to effectively suppress the occurrence of corrosion due to such a cause.
  • the oxide layer has a layer made of a p-type oxide semiconductor and a layer formed on the outside of the oxide layer and also having an n-type oxide semiconductor property. It is believed that the corrosion of rare earth magnets is caused by oxidation of the rare earth element, that is, the deprivation of the rare earth element of electrons. Therefore, the magnet element side force is also p-half When a layer made of a conductor oxide and a layer made of an n-type semiconductor oxide are formed, the flow of electrons in the above-described direction is obstructed by the rectification effect of such coupling. As a result, the corrosion resistance of the rare earth magnet is further improved.
  • the external protective layer is made of Al, Ta, Zr, Hf, Nb, P, Si, Ti, Mg, Cr, Ni, Ba, Mo, V, W, Zn, Sr, Bi U, preferably an anilide layer containing at least one element selected from the group consisting of B, Ca, Ga, Ge, La, Pb, In and Mn. Layers made of these elemental oxides have excellent heat resistance. Among them, the oxide layer preferably contains an oxide of Mo or W.
  • a resin layer containing a resin is also preferable.
  • a resin layer as an external protective layer in addition to the internal protective layer, a rare-earth magnet having sufficient corrosion resistance and excellent heat resistance can be obtained.
  • the resin contained in the resin layer serving as the external protective layer is preferably a thermosetting resin because desired properties can be exhibited even in a high-temperature environment (for example, 150 ° C or higher).
  • the resin constituting the resin layer is more preferably at least one resin selected from the group consisting of phenol resin, epoxy resin and melamine resin. These resins can form a cured product having extremely excellent heat resistance among the resin materials. Therefore, the rare earth magnet of the present invention provided with such an external protective layer has not only corrosion resistance but also extremely excellent heat resistance.
  • the external protective layer of the rare earth magnet of the present invention may be a metal salt layer.
  • a metal salt layer With such a metal salt layer, the heat resistance of the rare earth magnet can be increased. Further, when the surface of the rare earth magnet is further coated or the like, the metal salt layer can also exhibit the property of increasing the adhesion between the magnetite body and the coating film. For this reason, the rare earth magnet of the present invention having a metal salt layer on its surface has excellent adhesiveness to a coating film and extremely excellent corrosion resistance and heat resistance after coating.
  • the metal salt layer includes at least one element selected from the group consisting of Cr, Ce, Mo, W, Mn, Mg, Zn, Si, Zr, V, Ti, and Fe; It is more preferable that the layer contains at least one element selected from the group consisting of S. A metal salt layer containing these elements has extremely excellent corrosion resistance and heat resistance. [0036] Further, the metal salt layer comprises at least one element selected from the group consisting of Mo, Ce, Mg, Zr, Mn and W, and at least one element selected from the group consisting of P, 0, C and S More preferably, it contains an element. A metal salt layer containing these elements has particularly excellent corrosion resistance and heat resistance.
  • a layer containing an organic-inorganic hybrid conjugate having a structural unit composed of an organic polymer and a structural unit composed of an inorganic polymer is also suitable.
  • the external protective layer containing such an organic-inorganic hybrid compound also has an excellent effect of improving the heat resistance of the rare earth magnet. Further, such an external protective layer can exhibit the following characteristics in addition to heat resistance.
  • the organic polymer-based structural unit has the property of being flexible. For this reason, in a layer containing a strong structural unit, for example, even when heat or the like is applied when the layer is formed, a volume change occurs, and even when a stress or the like is generated, a flexible organic polymer is generated. Such a stress can be sufficiently relieved by a structural unit that is also strong. Therefore, in the external protective layer, defects such as cracks and pinholes due to stress generated during the formation thereof are hard to be formed, and deterioration of corrosion resistance due to these defects is small.
  • a compound containing a structural unit which also has an inorganic high molecular weight has excellent heat resistance, and has the property of permeating through the power of moisture, moisture, etc., and also has the property of being resistant to moisture (moisture permeability).
  • the outer protective layer of the rare earth magnet of the present invention contains the organic-inorganic hybrid conjugate having both of these structural units. For this reason, the strong outer protective layer will have both of the properties of these two structural units. Therefore, a rare earth magnet provided with such an external protective layer has excellent corrosion resistance, heat resistance and moisture resistance.
  • the outer protective layer in the present invention is formed of an organic-inorganic compound or an ibridide conjugate, that is, a structural unit having an organic polymer and a structural unit having an inorganic polymer have a predetermined interaction. Including those linked together by For this reason, in the layer, the two structural units hardly separate. Therefore, the outer protective layer having the organic-inorganic compound and the hybrid compound has uniform properties over the entire layer, and can impart excellent corrosion resistance, heat resistance, and moisture resistance to the rare earth magnet.
  • the organic-inorganic hybrid compound is preferably a compound in which a structural unit also having organic polymer power and a structural unit also having inorganic polymer power are bonded by a covalent bond.
  • the organic-inorganic hybrid conjugate a conjugate in which a structural unit also having an organic polymer power and a structural unit also having an inorganic polymer power are bonded by a hydrogen bond is also preferable.
  • the organic-inorganic hybrid compound is a compound in which a structural unit composed of an organic polymer having an aromatic ring and a structural unit composed of an inorganic polymer having an aromatic ring are bonded to each other by interaction between aromatic rings. It may be.
  • These organic-inorganic hybrid compounds have a structure in which the structural unit composed of an organic molecule and the structural unit composed of an inorganic molecule are bonded by a predetermined interaction due to a V difference, so that the organic protective layer is separated in the external protective layer. Is less likely to occur.
  • the rare earth magnet provided with the external protective layer containing such an organic-inorganic hybrid conjugate has extremely excellent heat resistance and moisture resistance in addition to corrosion resistance.
  • the outer protective layer further contains an inorganic additive.
  • the outer protective layer further containing an inorganic additive has not only better heat resistance but also excellent strength, and for example, cracks may be generated by an impact applied during the manufacture or use of the rare earth magnet. hard. Therefore, the rare earth magnet provided with such an external protective layer has more excellent corrosion resistance and heat resistance.
  • the present invention also provides a method for suitably producing the rare earth magnet of the present invention. That is, the method for producing a rare earth magnet of the present invention is a method for producing a rare earth magnet in which a protective layer is formed on the surface of a magnet element containing a rare earth element. A protective layer forming step of forming a protective layer including a first layer covering the element body and containing a rare earth element, and a second layer covering the first layer and containing substantially no rare earth element It is characterized by the following. Further, the method for producing a rare earth magnet of the present invention is a method for producing a rare earth magnet in which a protective layer is formed on the surface of a magnet element containing a rare earth element.
  • an acid is added in an oxidizing atmosphere containing an oxidizing gas so that the protective layer has the first layer and the second layer. It is preferable to heat-treat the magnet body by adjusting at least one condition among the partial pressure of the oxidizing gas, the processing temperature, and the processing time.
  • a protective layer can be formed very easily and at low cost, a protective layer having a uniform thickness can be formed, and a rare earth magnet excellent in dimensional accuracy can be manufactured. it can.
  • this manufacturing method it is preferable to heat-treat the magnet body by adjusting the partial pressure of the oxidizing gas, the processing temperature and the processing time. By adjusting these three conditions, a rare earth magnet having sufficient corrosion resistance can be obtained more easily and reliably.
  • the production method of the present invention further includes an acid cleaning step of cleaning the magnet element with an acid before the heat treatment.
  • an acid cleaning step of cleaning the magnet element with an acid before the heat treatment By performing acid cleaning on the magnet body in the preceding stage of the above-described heat treatment, it is possible to remove the deteriorated layer and the oxidized layer by processing formed on the magnet body surface during or after the manufacture of the magnet body.
  • a desired protective layer can be formed with higher precision.
  • the oxidizing atmosphere is preferably a steam atmosphere having a steam partial pressure of 10 to 2000 hPa.
  • the above-described first and second layers are favorably formed, and the corrosion resistance of the rare-earth magnet is further improved.
  • the treatment time is set to 1 minute to 24 hours, preferable.
  • the above-described first and second layers can be favorably formed, and further, the characteristic deterioration of the magnet element due to heat treatment or the like is extremely unlikely to occur.
  • the method for producing a rare earth magnet according to the present invention is a method for producing a rare earth magnet in which a protective layer is formed on the surface of a magnet element containing a rare earth element.
  • a rare-earth magnet having a multilayer protective layer having an inner protective layer and an outer protective layer, each having a different constituent material, and having extremely excellent heat resistance in addition to corrosion resistance can be obtained.
  • the magnet body is heat-treated to cover the magnet body, to cover the first layer containing the rare earth element, and to cover the first layer with the rare earth element. It is preferable to form an internal protective layer having a second layer substantially free of elements.
  • the magnet body is heat-treated to cover the magnet body and contain a first layer containing a rare earth element, and a second layer covering the first layer and containing less rare earth element than the first layer.
  • An inner protective layer having the following layers may be formed.
  • the first and second layers having extremely excellent corrosion resistance are formed as the internal protective layer as described above, and the corrosion resistance of the obtained rare earth magnet is further improved.
  • the partial pressure of the oxidizing gas and the treatment are performed in an oxidizing atmosphere containing an oxidizing gas so that the first protective layer and the second layer have the internal protective layer. It is preferable to heat-treat the magnet body by adjusting at least one of the temperature and the processing time. By adjusting these conditions, the first and second layers can be favorably formed.
  • an external protective layer made of an oxide layer having a composition different from that of the internal protective layer on the surface of the internal protective layer it is preferable to form an external protective layer made of an oxide layer having a composition different from that of the internal protective layer on the surface of the internal protective layer.
  • the external protective layer made of such an oxidizing layer can impart excellent heat resistance to the rare earth magnet.
  • a resin-containing resin coating liquid containing a resin is applied on the surface of the internal protective layer and dried to form an external protective layer composed of a resin layer. Even if formed Good.
  • the rare earth magnet provided with the resin layer formed in this way also has extremely excellent corrosion resistance and heat resistance.
  • the resin is at least one resin selected from the group consisting of phenol resin, epoxy resin and melamine resin, more excellent heat resistance can be obtained.
  • the magnet body after the step of forming the inner protective layer is subjected to a shading treatment to form an outer protective layer comprising a chemical conversion layer on the surface of the inner protective layer. May be formed.
  • the external protective layer thus formed can also impart excellent heat resistance to the rare earth magnet.
  • a layer cover containing an organic-inorganic hybrid conjugate having a structural unit composed of an organic polymer and a structural unit composed of an inorganic molecule on the surface of the inner protective layer It is also preferable to form an external protective layer made of such a material.
  • the rare earth magnet provided with the outer protective layer containing the organic-inorganic hybrid conjugate has excellent moisture resistance in addition to the corrosion resistance and heat resistance as described above.
  • another method for producing a rare earth magnet of the present invention is a method for producing a rare earth magnet in which a magnet element containing a rare earth element is heat-treated to form a protective layer on the surface of the magnet element. And a heat treatment step of heat-treating the magnet body after acid cleaning in an oxidizing atmosphere containing oxidizing gas. Such a heat treatment step is more preferably performed immediately after the acid cleaning, which is preferably performed subsequent to the acid cleaning step.
  • the magnet element including the unprocessed part when the magnet element including the unprocessed part is pickled after the sintering in the acid washing step, the magnet element may exude or remain on the surface of the internal force during sintering. It is possible to remove the rare earth rich layer, which has a large content. Therefore, it is particularly effective for forming a desired oxide film.
  • a rare earth magnet having sufficient corrosion resistance and a method for producing the same are provided. It is possible to
  • FIG. 1 is a schematic perspective view showing a rare earth magnet according to a first embodiment.
  • FIG. 2 is a diagram schematically showing a cross-sectional configuration that appears when the rare earth magnet shown in FIG. 1 is cut along the line II-II.
  • FIG. 3 is a schematic perspective view showing a rare earth magnet according to a second embodiment.
  • FIG. 4 is a view schematically showing a cross-sectional configuration that appears when the rare earth magnet shown in FIG. 3 is cut along the line IV-IV.
  • FIG. 5 is an electron micrograph of the rare earth magnet of Example 1A.
  • FIG. 6 is an electron micrograph showing an enlarged part of FIG.
  • FIG. 7 is an electron micrograph of the rare earth magnet of Comparative Example 1A.
  • FIG. 8 is an electron micrograph showing a part of FIG. 7 in an enlarged manner.
  • FIG. 9 is an electron micrograph of the rare earth magnet of Example 1C.
  • FIG. 10 is an electron micrograph showing a part of FIG. 9 in an enlarged manner.
  • FIG. 11 is an electron micrograph of the rare earth magnet of Comparative Example 1C.
  • FIG. 12 is an electron micrograph showing a part of FIG. 11 in an enlarged manner.
  • FIG. 13 is an electron micrograph of the rare earth magnet of Example 2C before a salt spray test.
  • FIG. 14 is an electron micrograph of the rare earth magnet of Example 2C 24 hours after the start of the salt spray test.
  • FIG. 15 is an electron micrograph of the rare earth magnet of Comparative Example 1C before the salt spray test.
  • FIG. 16 is an electron micrograph of the rare earth magnet of Comparative Example 1C 24 hours after the start of the salt spray test.
  • FIG. 17 is an electron micrograph of the rare earth magnet of Reference Example 1C before a salt spray test.
  • FIG. 18 is an electron micrograph of the rare earth magnet of Reference Example 1C 24 hours after the start of the salt spray test.
  • the rare earth magnet of the first embodiment includes a magnet body containing a rare earth element and a protective layer formed on the surface of the magnet body, and the protective layer covers the magnet body and removes the rare earth element.
  • FIG. 1 is a schematic perspective view showing the rare earth magnet according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating a cross-sectional configuration that appears when the rare-earth magnet illustrated in FIG. 1 is cut along the line II-II.
  • the rare-earth magnet 1 of the present embodiment includes a magnet body 3 and a protective layer 5 formed by covering the entire surface of the magnet body 3. is there.
  • the magnet body 3 is a permanent magnet containing a rare earth element.
  • the rare earth elements refer to scandium (Sc), yttrium (Y), and lanthanoid elements belonging to Group 3 of the long period type periodic table.
  • the lanthanoid elements include, for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), and terbidium. (Tb), dysprosium (Dy), holmium (Ho), erupium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) and the like.
  • Examples of the constituent material of the magnet body 3 include those containing a combination of the rare earth element and a transition element other than the rare earth element.
  • the rare earth element is preferably at least one element selected from the group consisting of Nd, Sm, Dy, Pr, Ho and Tb forces.
  • these elements La, Ce, Gd, Er, Eu, Tm, Yb And at least one selected from the group consisting of Y It is more preferable that both of them further contain one kind of element.
  • the transition elements other than the rare earth elements include iron (Fe), cobalt (Co), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), and copper. (Cu), zirconium (Zr), niobium (Nb), molybdenum (Mo), hafnium (Hf), tantalum (Ta), tungsten (W) at least one element selected from the group consisting of Fe and Z is preferred. Or Co is more preferred.
  • examples of the constituent material of the magnet body 3 include an R—Fe—B-based material and an R—Co-based material.
  • R is preferably a rare earth element containing Nd as a main component
  • R is preferably a rare earth element containing Sm as a main component.
  • an R-Fe-B-based constituent material is particularly preferable.
  • Such a material has a main phase having a substantially tetragonal crystal structure, and a rare earth-rich phase containing a high proportion of a rare earth element and a boron atom distribution in a grain boundary portion of the main phase.
  • the mixture ratio is high and has a boron-rich phase.
  • These rare earth-rich phases and boron-rich phases are magnetic and non-magnetic phases, and such non-magnetic phases are usually contained in a magnet constituent material in an amount of 0.5 to 50% by volume. .
  • the particle size of the main phase is usually about 1 to: LOO / zm.
  • the content of the rare earth element is preferably from 8 to 40 atomic%.
  • the content of the rare earth element is less than 8 atomic%, the crystal structure of the main phase becomes almost the same as that of ex-iron, and the coercive force (iHc) tends to decrease.
  • iHc coercive force
  • the residual magnetic flux density (Br) tends to decrease.
  • the content of Fe is preferably 42 to 90 atomic%. If the Fe content force is less than 2 atomic%, the residual magnetic flux density tends to decrease, and if it exceeds 90 atomic%, the coercive force tends to decrease.
  • the content of B is preferably a 2 to 28 atoms 0/0. If the B content is less than 2 atomic%, a rhombohedral structure is formed, and the coercive force tends to decrease immediately. If the B content exceeds 28 atomic%, a boron-rich phase is excessively formed, Therefore, the residual magnetic flux density tends to decrease.
  • a partial force Co of Fe in the R-Fe-B system may be substituted by Co.
  • the substitution amount of Co is desirably set to an extent that does not become larger than the Fe content.
  • a part of B in the above constituent material may be replaced by an element such as carbon (C), phosphorus (P), sulfur (S) or copper (Cu).
  • C carbon
  • P phosphorus
  • S sulfur
  • Cu copper
  • the replacement amount of these elements is preferably 4 atomic% or less based on the total amount of constituent atoms, which is desired to be an amount that does not substantially affect magnetic properties.
  • the added amount of calories is also not more than 10 atomic% with respect to the total amount of the constituent atoms, which is preferably in a range that does not affect the magnetic properties.
  • Other components that are unavoidably mixed include oxygen (O), nitrogen (N), carbon (C), calcium (Ca), and the like. These may be contained in an amount of about 3 atomic% or less based on the total amount of the constituent atoms.
  • the magnet body 3 having such a configuration can be manufactured by a powder metallurgy method.
  • an alloy having a desired composition is produced by a known alloy production process such as a production method or a strip casting method.
  • the alloy is pulverized using a coarse pulverizer such as a jaw crusher, a brown mill, a stamp mill or the like to have a particle size of 10 to 100 ⁇ m, and then finely pulverized using a jet mill, an attritor, or the like.
  • the particle size is adjusted to 0.5 to 5 / ⁇ .
  • the powder thus obtained is compacted in a magnetic field having a magnetic field strength of preferably 600 kAZm or more at a pressure of 0.5 to 5 tZcm 2 .
  • the obtained molded body is sintered at a temperature of 1000 to 1200 ° C for 0.5 to L0 hours, preferably in an inert gas atmosphere or vacuum, and then rapidly cooled. Furthermore, an inert gas is added to this sintered body. A heat treatment is performed in an atmosphere or vacuum at 500 to 900 ° C. for 1 to 5 hours, and the sintered body is processed into a desired shape (practical shape) as needed to obtain a magnet body 3.
  • the magnet element 3 thus obtained is preferably further subjected to acid cleaning. That is, it is preferable that the surface of the magnet body 3 is subjected to acid cleaning before the heat treatment described later.
  • nitric acid is preferable.
  • a non-oxidizing acid such as hydrochloric acid or sulfuric acid is often used.
  • the magnet body 3 contains a rare earth element, as in the magnet body 3 in the present embodiment, when the treatment is performed using these acids, hydrogen generated by the acid generates hydrogen in the magnet body 3. Occluded on the surface, the occluded site becomes brittle and a large amount of undissolved powder is generated. Since this powdery undissolved substance causes surface roughness, defects, poor adhesion and the like after the surface treatment, it is preferable that the above-mentioned non-oxidizing acid is not contained in the acid cleaning treatment liquid. Therefore, it is preferable to use nitric acid, which is an acid having low hydrogen generation.
  • the amount of dissolution of the surface of the magnet body 3 by such acid washing is preferably 5 ⁇ m or more, preferably 10 to 15 m in average thickness from the surface.
  • the nitric acid concentration of the treatment solution used for the acid cleaning is preferably 1N or lower, particularly preferably 0.5N or lower. If the nitric acid concentration is too high, the dissolution rate of the magnet element 3 will be extremely high.It is difficult to control the amount of dissolution, and it will be difficult to maintain the dimensional accuracy of the product, especially in large-scale processing such as barrel processing. Tend. If the nitric acid concentration is too low, the amount of dissolution tends to be insufficient. For this reason, the nitric acid concentration is preferably set to 1N or less, particularly preferably 0.5 to 0.05N. Also, the amount of Fe dissolved at the end of the treatment is about 1 to: LOgZl.
  • the magnet body 3 that has been subjected to the acid cleaning is preferably subjected to cleaning using ultrasonic waves in order to completely remove a small amount of undissolved substances and residual acid components on the surface.
  • This ultrasonic cleaning is preferably performed in pure water in which the surface of the magnet element 3 has very little chlorine ions that generate ⁇ . Also, before and after the above ultrasonic cleaning, and in each step of the acid cleaning as necessary The same washing may be performed.
  • the protective layer 5 contains an element derived from the magnet body 3 and oxygen, and covers the magnet body 3 and contains a first layer 5a containing a rare earth element. And a second layer 5b having a low rare earth element content. More specifically, it contains the elements constituting the above-described main phase in the magnet body 3 and oxygen.
  • the element derived from the magnet element 3 is a constituent material of the magnet element 3, and includes at least a rare earth element and a transition element other than the rare earth element, and further includes B, Bi, Si, A1 May be included.
  • the protective layer 5 is made of an element which appears on the magnet body 3 by being changed by oxidation or the like of the magnet body 3 itself, which is not applied or pasted on the magnet body 3. For this reason, the protective layer 5 does not include a new metal element that does not constitute the magnet body. In some cases, the protective layer 5 includes a nonmetal element such as oxygen or nitrogen.
  • the first layer 5a contains a rare earth element and other elements derived from the magnet element 3 and oxygen, and more specifically, contains oxygen, the rare earth element, and a transition element other than the rare earth element.
  • the constituent material of the magnet body 3 is an R—Fe—B-based material
  • the transition element is mainly composed of Fe, and may contain Co or the like depending on the composition of the constituent material.
  • the second layer 5b is a layer containing an element derived from the magnet body 3 and oxygen, but having a lower content of rare earth elements than the first layer.
  • the constituent material of the magnet element 3 is of the 3 ⁇ 4—Fe—B type
  • the transition element is mainly composed of Fe, and may contain Co or the like depending on the composition of the constituent material.
  • the content of the rare earth element in the second layer 7 is preferably not more than half the content of the rare earth element in the first layer 6. It is more preferable that the second layer 7 is a layer substantially containing no rare earth element. That is, it is particularly preferable that the second layer 7 is a layer containing transition elements other than the rare earth elements contained in the oxygen and the magnet element 3.
  • each constituent material of the first layer 5a and the second layer 5b is determined by EPMA (X-ray microanalyzer), XPS (X-ray photoelectron spectroscopy), AES (Age electron spectroscopy) Alternatively, it can be confirmed using a known composition analysis method such as EDS (energy dispersive X-ray fluorescence spectroscopy).
  • EPMA X-ray microanalyzer
  • XPS X-ray photoelectron spectroscopy
  • AES Address electron spectroscopy
  • EDS energy dispersive X-ray fluorescence spectroscopy
  • the protective layer 5 is formed in an oxidizing atmosphere containing an oxidizing gas so that the protective layer 5 has the above-described configuration, at least one of the oxidizing gas partial pressure, the processing temperature, and the processing time. Is formed by heat-treating (heating) the magnet element 3. In the case of such heat treatment, it is preferable to adjust three conditions of the oxidizing gas partial pressure, the treatment temperature and the treatment time.
  • the oxidizing atmosphere is not particularly limited as long as it is an atmosphere containing an oxidizing gas.
  • the oxidizing atmosphere include an air atmosphere, an oxygen atmosphere (preferably an oxygen partial pressure adjusting atmosphere), and a water vapor atmosphere (preferably.
  • the oxidizing gas is not particularly limited, and examples thereof include oxygen and water vapor.
  • an oxygen atmosphere is an atmosphere having an oxygen concentration of 0.1% or more, in which an inert gas coexists with oxygen.
  • An example of a strong inert gas is nitrogen. That is, as an aspect of the oxygen atmosphere, there is an atmosphere composed of oxygen and an inert gas.
  • a steam atmosphere is an atmosphere having a partial pressure of steam of 10 OhPa or more, and an inert gas coexists with water vapor in the atmosphere.
  • Nitrogen is mentioned as a powerful inert gas, and an embodiment of a steam atmosphere is an atmosphere composed of steam and an inert gas. It is preferable to use a steam atmosphere as the oxidizing atmosphere since the protective layer can be more easily formed.
  • examples of the oxidizing atmosphere include an atmosphere containing oxygen, water vapor, and an inert gas.
  • a correlation between the configuration of the protective layer 5 and at least one of the oxidizing gas partial pressure, the processing temperature, and the processing time is determined.
  • at least one condition among the oxidizing gas partial pressure, the processing temperature, and the processing time is adjusted at the time of the heat treatment so that the protective layer 5 has the above specific configuration.
  • the processing temperature is preferably adjusted in the range of 200 to 550 ° C. More preferably, the range force of oo ° c is also adjusted. If the processing temperature exceeds the upper limit, the magnetic properties tend to deteriorate, while if it is lower than the lower limit, it tends to be difficult to form a desired oxide film.
  • the processing time is preferably adjusted in a range of 1 minute to 24 hours, and more preferably in a range of 5 minutes to 10 hours. If the treatment time exceeds the upper limit, the magnetic properties tend to deteriorate, while if it is less than the lower limit, it tends to be difficult to form a desired oxide film.
  • the oxidizing atmosphere is a water vapor atmosphere
  • the correlation between the configuration of the protective layer 5 and the water vapor partial pressure, the processing temperature and the processing time is determined.
  • at least one condition among the partial pressure of steam, the processing temperature, and the processing time is adjusted at the time of the heat treatment so that the protective layer 5 has the specific configuration described above.
  • the processing temperature and the processing time are preferably adjusted within the above-described ranges.
  • the partial pressure of water vapor is preferably adjusted in the range of 10 to 2000 hPa. If the water vapor partial pressure is less than 10 OhPa, the protective layer 5 tends not to have the two-layer structure as described above. On the other hand, if the pressure exceeds 2000 hPa, the workability tends to deteriorate, for example, as the pressure is high and the device configuration becomes more complicated, and the dew condensation and the like are more likely to occur.
  • the total thickness of the first layer 5a and the second layer 5b is more preferably 0.1 ⁇ m or more, preferably 1 ⁇ m or more. If the total thickness is less than 0.1 ⁇ m, it tends to be difficult to form a protective layer having a two-layer structure. On the other hand, the total thickness of the first layer 5a and the second layer 5b is more preferably 5 m or less, preferably less than 20 m. If the total film thickness is more than 20 m, formation of an oxide film tends to be difficult, and magnetic properties tend to deteriorate.
  • the thickness of the second layer 5b is preferably 5 nm or more. If the thickness is less than 5 nm, the effect of suppressing corrosion tends to be insufficient because the thickness is too thin.
  • the rare earth magnet of the second embodiment includes a magnet body containing a rare earth element and a protective layer formed on the surface of the magnet body. Has an inner protective layer containing a transition element and oxygen, and an outer protective layer made of a constituent material different from the inner protective layer. Further, in the rare earth magnet of the second embodiment, the inner protective layer covers the magnet element body and contains the first layer containing the rare earth element, and the first layer covering the first layer contains substantially no rare earth element. It has a configuration with two layers.
  • FIG. 3 is a schematic perspective view showing a rare earth magnet according to the second embodiment.
  • FIG. 4 is a diagram schematically showing a cross-sectional configuration that appears when the rare earth magnet shown in FIG. 3 is cut along the line IV-IV.
  • the rare earth magnet 10 of the present embodiment includes a magnet body 13 and a protective layer 15 formed by covering the entire surface of the magnet body 13. .
  • the protective layer 15 has an inner protective layer 18 and an outer protective layer 19 in order from the magnet element 13 side.
  • the inner protective layer 18 includes a first layer 16 and a second layer 17 in order from the magnet element 13 side.
  • each configuration of the rare earth magnet 10 will be described.
  • the magnet body 13 is a permanent magnet containing a rare earth element, and preferably contains a rare earth element and a transition element other than the rare earth element.
  • a magnet element 13 a member having the same configuration as that shown in the first embodiment described above is preferable.
  • the protective layer 15 includes an inner protective layer 18 and an outer protective layer 19 in order from the magnet body 13 as described above.
  • the inner protective layer 18 includes a first layer 16 and a second layer 17 in order from the magnet body 13 side, and such a first layer 16 and a second layer 17 include: Examples thereof include those similar to the first layer 5a and the second layer 5b in the first embodiment described above.
  • the outer protective layer 19 is a layer formed on the surface of the inner protective layer 18. Unlike the inner protective layer 18, the outer protective layer 19 is different from the layer formed by the reaction of the magnet body 13 and the like. This is a layer newly provided separately on the surface of the element body 13. Therefore, the outer protective layer 19 does not include elements derived from the magnet body 13.
  • the external protective layer 19 a material having various constituent materials may be used.
  • an oxide layer, a resin layer, a metal salt layer, or an organic-inorganic hybrid compound is used. Any of the layers containing is preferred.
  • each of these external protective layers 19 will be described.
  • the oxide layer is formed so as to cover the internal protective layer 18 (the second layer 17), and is a layer made of an oxide having a composition different from that of the internal protective layer 18.
  • Such an oxide layer may be crystalline or amorphous, but is more preferably amorphous. Since the amorphous oxide layer has a relatively small number of grain boundary portions where deterioration is likely to occur in the crystalline structure, it can exhibit excellent corrosion resistance and heat resistance.
  • the oxidized product layer examples include a layer made of a metal oxidized product.
  • a metal oxidized product For example, Al, Ta, Zr, Hf, Nb, P, Si, Ti, Mg, Cr, Ni, Ba, Mo, V, W, Zn, Sr, Bi, B, Ca, Ga, Ge, La, Pb, It may be a layer containing a plurality of these layers, which is preferably a layer composed of an In or Mn oxide.
  • oxides of Mo, Mg, or W, and oxides of Mo, which are more preferred by oxides of Mo or W are particularly preferred.
  • These oxide layers can exhibit particularly excellent corrosion resistance and heat resistance.
  • a preferred oxide layer contains an oxide of each of the above-described elements.
  • a part of oxygen of the oxidized substance is not necessarily composed of only a strong oxidized substance.
  • N sulfur
  • S sulfur
  • silicon oxynitride (SiO N (0 ⁇ ⁇ 1) may be mentioned.
  • SiO N (0 ⁇ x ⁇ 1) is an n-type semiconductor.
  • the outer protective layer 19 is formed of the p-type oxidized layer semiconductor cap from the viewpoint of obtaining better corrosion resistance. And a layer formed of an n-type oxide semiconductor formed outside the layer. Further, the second layer 17 may be made of a p-type oxide semiconductor, and the oxide layer may be made of an n-type oxide semiconductor. With such a configuration, the oxidation reaction of the rare earth element contained in the magnet body 13 is less likely to occur, and the deterioration of the magnet body 13 and thus the rare earth magnet 10 is effectively reduced.
  • an oxide formed from an oxide of Cr, Cu, Mn, or Ni is used. Combinations with physical layers can be mentioned.
  • Examples of the method for forming the outer protective layer 19 composed of an oxide layer include a vapor deposition method such as a vacuum evaporation method, a sputtering method, an ion plating method, a CVD method or a thermal spraying method, and a coating method.
  • a vapor deposition method such as a vacuum evaporation method, a sputtering method, an ion plating method, a CVD method or a thermal spraying method, and a coating method.
  • Known examples include a liquid phase growth method such as a solution deposition method, and a known film forming technique such as a sol-gel method.
  • the reactive vacuum deposition method, reactive sputtering method, reactive ion plating method, plasma CVD method, thermal CVD method, or Cat-CVD method which are preferable when using the vapor deposition method (dry process). It is more preferable to use. According to such a dry process, it is possible to prevent the function of the rare earth magnet 10 from deteriorating due to the elution of the constituent material of the magnet body 13.
  • a method capable of uniformly forming a large area at a time is preferable.
  • a method for forming such an oxide layer include a sputtering method and a CVD method. As a specific method of these, it is possible to apply a film-forming technique established in the field of flat panel displays and the like for uniformly forming a large-area layer.
  • Alkoxides used as raw materials include Si (OC H), B (OCH), B (OC H), Ge (OC H), A1 (CH COCHCOCH
  • Metal alloys such as Cr (OCH), Mo (CHO), Mo (CHO), MoO (CHO)
  • the vacuum evaporation method generally uses a point source as the evaporation source, there is a disadvantage in using a vacuum evaporation method to form a display that requires a uniform formation of a large-area layer at a time. Since the rare earth magnet 10 of the present embodiment is relatively small, an oxide layer can be easily formed even by a vacuum deposition method. However, the vacuum deposition method tends to increase the cost of forming the oxide layer because the area that can be formed at a time is small. Therefore, when the vacuum deposition method is used, it is desirable to increase the film forming rate in order to reduce the cost of forming the oxide layer. However, if the deposition rate is too high, coarse particles such as splash are generated, and as a result, an oxide layer having a uniform surface may not be obtained.
  • a coating material (a constituent material of the oxide layer in the present embodiment) is used as an anode, and a substrate to be coated (an inner protective layer in the present embodiment) is used as a cathode in a vacuum vessel.
  • a magnet body 13) with 18 formed thereon is arranged, and the anode is heated in the presence or absence of a reactive gas to make the coating material atomic, molecular or particulate, which is then heated.
  • the ionized material is attached to the cathode substrate to be coated.
  • a heating method of the substance to be ionized as a heating method of the substance to be ionized, a resistance heating method of a crucible method or a direct resistance heating method, a high-frequency induction heating method, an electron beam heating method, or the like can be used.
  • the resistance heating method tends to be unsuitable for forming an inorganic compound having a low vapor pressure.
  • the electron beam heating method can evaporate various materials, but when the deposition rate is increased, coarse particles such as splash are generated, and as a result, an oxide layer having a uniform surface is formed. May not be obtained.
  • this method has an extremely low ionization rate of the plasma gun compared to the conventional one. High, the ionization rate of the evaporated particles is high, and the film density can be maintained high even when the substrate temperature is relatively low, and the effect of improving the film quality such as crystallinity and reactivity including the surface shape is improved. , And the like.
  • the film formation temperature at the time of forming the oxide layer is not particularly limited, but it is preferable that the heat history at the time of film formation does not deteriorate the magnetic properties of the magnetic body 13. From such a viewpoint, the film formation temperature is preferably 500 ° C or lower, more preferably 300 ° C or lower.
  • the composition of the atmosphere gas when forming the oxidizing layer is not particularly limited.
  • the oxygen content in the oxidizing layer constituting the If the stoichiometric amount is smaller than the stoichiometric amount, the film forming rate, the substrate temperature, or the oxygen concentration in the atmospheric gas may be adjusted.
  • the film formation rate is 0.4 nmZ seconds or more
  • the obtained silicon oxide can be obtained.
  • the oxygen content in the dandelion layer tends to be less than 1.5 times the A1 content on an atomic basis.
  • the film forming conditions referred to here include, for example, in the case of the above-described ion plating method, heating conditions of a substance to be ionized.
  • the input power corresponds to the input power
  • the electron beam heating method the current amount of the electron beam corresponds to the film forming conditions.
  • the amount of oxygen is reduced by first forming a metal element constituting the oxide and then performing post-treatment such as high-temperature oxidation, plasma oxidation, or anodic oxidation. Control it.
  • a diffusion infiltration method is a method in which a film of a metal or the like is formed by sputtering or the like, and then heated to 200 to 500 ° C. to oxidize the air.
  • the oxide layer as the outer protective layer 19 has a single-layer structure in the above-described example, the oxide layer may be a layer including a plurality of layers. Good. Although the oxide layer does not contain any element derived from the magnet body, the oxide layer may be moved, for example, through the internal protective layer 18 if the properties of the layer are not reduced. , Which contains elements derived from the magnet body.
  • Fat layer A resin layer which is another example of the outer protective layer 19, is formed so as to cover the inner protective layer 18 (second layer 17), and is a layer containing resin.
  • the resin may be a synthetic resin or a natural resin, but a thermosetting resin, which is preferred by a synthetic resin, is more preferable.
  • thermosetting resin examples include phenol resin, epoxy resin, urethane resin, silicone resin, melamine resin, epoxymelamine resin, and thermosetting acrylic resin.
  • thermoplastic resin there may be mentioned, for example, a bubble resin obtained from a vinylidized compound such as acrylic acid, ethylene, styrene, vinyl chloride or vinyl acetate.
  • the resin layer may contain metal particles, oxidized particles, and the like.
  • the resin layer is formed using each of the above-described resins. That is, each resin described above is dissolved in an organic solvent to prepare a resin layer forming coating solution, and the coating solution is applied on the surface of the inner protective layer 18 and dried to form a resin layer. be able to.
  • the coating method for forming the resin layer is not particularly limited, and examples thereof include a dip coating method, a deep spin coating method, and a spray coating method.
  • the resin layer may be formed by applying the coating solution for forming a resin layer once or may be formed by applying a plurality of times. ⁇ When the resin layer is formed by applying the coating liquid a plurality of times, the uncoated portion tends to hardly occur.
  • the thickness of the resin layer as the external protective layer 19 is 0.1 to: LOO / zm is preferable, and 1 to 50 m is more preferable.
  • a layer containing phenol resin, epoxy resin or melamine resin is preferable among the above.
  • a layer containing a combination of phenol resin or epoxy resin and melamine resin is more preferable.
  • Examples of the phenol resin include an alkyl phenol resin and an alkyl polyphenol resin.
  • Examples thereof include alkyl phenols, monomers of alkyl polyphenols, oligomers, and those obtained by curing mixtures thereof. Can be exemplified. Curing can be performed, for example, by reacting the above-mentioned monomer or the like with formaldehyde to form a resole, and then polymerizing the obtained resole, or reacting urushiol with water.
  • Examples of the alkyl phenol or alkyl polyphenol include a compound represented by the following general formula (1).
  • R and R represent a hydroxyl group or an alkyl group, and at least one of R and R is an alkyl group.
  • alkyl polyphenols having a hydroxy group at the ortho position to the hydroxy group in the formula and having an alkyl group at the meta or para position are preferred.
  • alkyl polyhydric phenol a component generally contained in a wax coating is preferable. Specifically, urushiol having a C H group at the meta position and C
  • Examples include thiol having an H group or Laccol having a C H group at the meta position.
  • the above-mentioned alkylphenol or alkylpolyphenol can act as a reducing agent, when forming the external protective layer 19 made of a strong resin, heat treatment was performed at a high temperature for curing. Even so, the magnet body 13 is covered with a strongly reducing atmosphere, so that deterioration due to oxidation of the magnet body 13 can be greatly reduced.
  • the epoxy resin is not particularly limited !, but examples thereof include bisphenol type, glycidyl ether type of polyol, glycidyl ester type of polyacid, glycidylamine type of polyamine, and alicyclic epoxy type. And the like. Further, the epoxy resin preferably further contains a curing agent capable of curing the compound in addition to the above-described epoxy resin conjugate. Examples of the curing agent include polyamines, polyamine epoxy resin adducts, polyamidoamines, polyamide resin, and the like.Specifically, metaxylene diamine, isophorone diamine, diethylene triamine, triethylene tetramine And diaminodiphenylmethane.
  • melamine resin is composed of melamine (2,4,6 triamino-1,3,5 triazine) and form. It is a resin obtained by reacting aldehyde to obtain methylolmelamine and then curing it. Such melamine resin may form the outer protective layer 19 alone, but is more preferably used in combination with, for example, the above-mentioned phenol resin or epoxy resin.
  • the outer protective layer 19 containing these in combination has extremely excellent heat resistance and strength. Become. As a result, the corrosion resistance and heat resistance of the rare earth magnet 10 are further improved.
  • the outer protective layer containing phenol resin, epoxy resin or melamine resin is used, for example, by dissolving or dispersing these resins in a solvent to form a solution or a varnish.
  • the resin can be formed by applying the composition on the top, appropriately drying and then curing the resin by heating or the like.
  • the metal salt layer serving as the outer protective layer 19 is formed so as to cover the inner protective layer 18 (the second layer 17), and is a layer mainly configured with a metal salt force.
  • the outer protective layer 19 made of this metal salt is particularly preferably a chemical conversion layer formed by subjecting the magnet body 13 on which the inner protective layer 18 is formed to a chemical conversion treatment.
  • a chemical conversion treatment layer has, for example, a shape in which a large number of small plate-like crystals having a metal salt strength are attached so as to cover the internal protective layer 18 (the second layer 17).
  • the metal salt constituting the metal salt layer is at least one selected from the group consisting of Cr, Ce, Mo, W, Mn, Mg, Zn, Si, Zr, V, Ti and Fe.
  • a metal element containing at least one element selected from the group consisting of P, 0, C and S is preferable. Specifically, phosphates more preferably phosphates or sulfates of the above metal elements are more preferred.
  • the metal salt includes at least one metal element selected from the group consisting of Mo, Ce, Mg, Zr, Mn, and W, and at least one metal element selected from the group consisting of P, 0, C, and S
  • the phosphates or sulfates of the above-mentioned metal elements are more preferable, and the phosphates are particularly preferable.
  • the metal salt layer (chemical conversion treatment layer) is formed on the magnet body 13 on which the inner protective layer 18 is formed as described above.
  • the surface can be suitably formed by subjecting the surface to a chemical conversion treatment.
  • the surface of the magnet body 13 on which the inner protective layer 18 is formed is washed with an alkali degreaser or the like.
  • the magnet element 13 is subjected to a chemical conversion treatment by immersing the magnet element 13 in a chemical conversion treatment liquid or the like, thereby forming a chemical conversion treatment layer on the surface of the second layer 17.
  • Examples of the chemical conversion treatment solution used for the chemical conversion treatment include an aqueous solution containing the metal constituting the above-mentioned metal salt and an acid ion.
  • a chemical conversion treatment solution containing a metal raw material, phosphoric acid, and an oxidizing agent can be used.
  • the chemical conversion treatment solution contains a molybdate such as sodium molybdate or molybdic acid as a metal raw material, What combined this with phosphoric acid and an oxidizing agent can be applied.
  • the chemical conversion treatment solution contains a cerium salt such as cerium nitrate as a metal raw material, which is combined with phosphoric acid and an oxidizing agent.
  • a cerium salt such as cerium nitrate
  • an oxidizing agent can be applied.
  • the oxidizing agent to be contained in the chemical conversion treatment liquid include sodium nitrite, sodium nitrate, potassium permanganate, sodium chromate, hydrogen peroxide and the like.
  • the temperature of the chemical conversion treatment solution during the chemical conversion treatment is not particularly limited, but from the viewpoint of promoting the reaction between the magnet element 13 and the chemical conversion treatment solution to form a metal salt layer (chemical conversion treatment layer) in a short time, It is preferable to use the chemical conversion treatment solution by heating it to room temperature or higher. For example, it is preferably 30 to: LOO ° C.
  • the time for immersing the magnet body 13 in the chemical conversion treatment liquid is not particularly limited, but is preferably 1 to 60 minutes, and more preferably 2 to 30 minutes.
  • the chemical conversion treatment time is less than 1 minute, the formation state of the chemical conversion treatment layer tends to be non-uniform, and if it exceeds 60 minutes, the chemical conversion treatment layer becomes too thick and the denseness is reduced, resulting in rare earth. In some cases, the corrosion resistance and the like of the similar magnet 10 may deteriorate.
  • the surface of the obtained rare-earth magnet 10 is washed with water to sufficiently remove the chemical conversion treatment liquid and the like remaining on the surface, and thereafter, the rare-earth magnet 10 is sufficiently heated, for example. It is preferable to dry in minutes. If the drying is insufficient, the rare earth magnet 10 may be corroded by moisture adhering to the surface. However, the heating temperature during drying It is preferable that the temperature is set to such a degree that the characteristics of the rare earth magnet 10 are not deteriorated.
  • the chemical conversion treatment as described above When the chemical conversion treatment as described above is performed on a substrate containing a metal element, the chemical conversion treatment usually proceeds by dissolving the metal element in the substrate, thereby stabilizing the substrate. A pretreatment layer is formed.
  • a chemical conversion treatment layer is to be formed directly on the surface of a magnet body such as the R-TM-B system, the rare earth rich phase in the magnet body as described above is selectively dissolved. Conventionally, however, there has been a tendency that a chemical conversion treatment layer cannot be formed sufficiently.
  • the chemical conversion treatment is performed after the formation of the internal protective layer 18 on the surface of the magnet body 13 containing the rare earth element, the selective dissolution of such a rare earth rich phase does not occur. It is extremely unlikely to occur.
  • a stable metal salt layer (chemical conversion treatment layer) is formed on the outermost layer of the rare earth magnet 10.
  • the outer protective layer 19 containing the organic-inorganic compound and the Ibriddi conjugate is formed so as to cover the inner protective layer 18 (the second layer 17).
  • the organic-inorganic hybrid conjugate included in the organic-inorganic hybrid layer is a compound containing a structural unit composed of an organic polymer and a structural unit composed of an inorganic polymer.
  • the “structural unit composed of an organic high molecular weight” is referred to as “organic structural unit” as necessary, and the “structural unit composed of an inorganic high molecular weight” is referred to as “inorganic structural unit”. .
  • Examples of the organic structural unit include a polymer structure having a main chain composed of bonds between carbon atoms.
  • the main chain may partially have an atom other than carbon, for example, an oxygen atom, a nitrogen atom, or the like.
  • Such an organic structural unit is not particularly limited as long as it is a polymer structure formed from an organic compound.
  • a polymer of an organic compound formed by various polymerization reactions such as addition polymerization, polycondensation, and addition. Structure.
  • a vinyl polymer structure formed from a vinyl group-containing monomer and an epoxy polymer structure capable of obtaining an epoxy group-containing monomer are preferable.
  • Examples of the inorganic structural unit include a polymer structure having a main chain composed of elements other than carbon atoms. Such a main chain contains a metal atom as an element other than carbon, and preferably has a structure in which a metal atom and an oxygen atom are alternately bonded. That's right.
  • the metal atom contained in the main chain of the inorganic structural unit Si, Al, Ti, Zr, Ta, Mo, Nb or B is preferable.
  • a polymer structure having a main chain containing Si-O bonds in particular, a polysiloxane structure can be relatively easily synthesized, and polymers having various structures can be formed. Force is particularly preferred as a polymer structure constituting the main chain of the inorganic structural unit.
  • a polymer structure having a main chain containing a Si—O bond a polymer structure obtained by condensation or co-condensation of a compound represented by the following formula (2) and Z or a hydrolysis product thereof is particularly preferable. It is.
  • Such an inorganic structural unit composed of a polymer structure has excellent stress relaxation properties, so that the protective layer containing an organic-inorganic compound containing this structure and the Ibriddy ligated product may have cracks or the like. It will be difficult.
  • R 21 is an organic group having 1 to 8 carbon atoms
  • R 22 is also an alkyl group having 1 to 5 carbon atoms indicates Ashiru group having 1 to 4 carbon atoms
  • m is 1 or 2 It is.
  • each may be the same or different.
  • Examples of the organic-inorganic hybrid conjugate include a compound in which an organic structural unit and an inorganic structural unit are bonded by a covalent bond, a compound in which an organic structural unit and an inorganic structural unit are bonded by a hydrogen bond, or A compound in which an organic structural unit having an aromatic ring and an inorganic structural unit having an aromatic ring are bonded by the interaction between these aromatic rings is exemplified.
  • a compound in which an organic structural unit having an aromatic ring and an inorganic structural unit having an aromatic ring are bonded by the interaction between these aromatic rings is exemplified.
  • the covalent bond between the organic structural unit and the inorganic structural unit is mainly a bond between a carbon atom in the organic structural unit and a metal atom in the inorganic structural unit.
  • This covalent bond may be one in which the carbon atom and the metal atom are directly bonded, or one in which the carbon atom and the metal atom are bonded through an element other than these. . In the latter case, only a covalent bond is formed between the carbon atom and the metal element.
  • the covalent bond in the organic-inorganic hybrid conjugate is preferably the former in which a carbon atom and a metal atom are directly bonded.
  • Such an organic-inorganic hybrid compound can be formed, for example, by the following method. That is, an organic polymer compound and an inorganic compound each having a functional group capable of being condensed with each other are prepared, and a condensation reaction between the organic polymer compound and the inorganic compound is caused, and a condensation reaction between the inorganic compounds is caused. To obtain an organic-inorganic compound having an organic structural unit and an inorganic structural unit.
  • examples of the combination of condensable functional groups of the organic polymer compound or the inorganic compound include a combination of a hydroxyl group and an alkoxy group ⁇ a combination of hydroxy groups. . Further, both may have an alkoxy group.
  • the above-mentioned condensation can be caused by hydrolyzing one of the alkoxy groups to form a hydroxyl group.
  • an organic polymer compound a part - M 1 - OR (M 1 represents a metal element) having a government functional group represented by the inorganic compound over M 2 - functional represented by OR If the compound has a group, the hydrolysis-condensation reaction produces a bond represented by —M 1 —O—M 2 —. Further, a condensation reaction occurs between the functional groups represented by —M 2 —OR in the inorganic compound, thereby forming an inorganic structural unit. As a result, an organic-inorganic hybrid conjugate in which the organic structural unit and the inorganic structural unit are bonded by a covalent bond is obtained.
  • the metal element represented by M 1 and M 2 Si is particularly preferred in consideration of the ease of the condensation reaction and the availability.
  • the outer protective layer 19 containing such an organic-inorganic hybrid compound is prepared, for example, by preparing a solution containing the above-mentioned organic polymer compound and inorganic compound, and applying the solution to the surface of the inner protective layer 18.
  • the inorganic compound can be formed by causing a polymerization reaction (for example, a condensation reaction) of the inorganic compound by heating or by leaving it in the air.
  • the outer protective layer 19 may be formed by forming an organic-inorganic hybrid conjugate in advance and applying this to the surface of the inner protective layer 18.
  • hydrogen bond refers to a bond formed by intervening hydrogen between two atoms, and is generally represented by X—H—Y.
  • X and Y represent two atoms bonded by a hydrogen bond
  • X—H represents a covalent bond between the X atom and hydrogen. That is, a hydrogen bond is formed between the group represented by X—H and the Y atom. From such a viewpoint, it can be considered that a strong organic-inorganic hybrid conjugate has a structure in which an organic polymer and an inorganic polymer, which are separate molecules, are bonded by a hydrogen bond.
  • the organic structural unit and the inorganic structural unit have a functional group capable of forming a hydrogen bond with each other in a molecule in order to form a hydrogen bond.
  • the functional group capable of forming a hydrogen bond includes a proton-donating functional group that provides hydrogen in a hydrogen bond (the group represented by X—H) and a proton-accepting function that accepts hydrogen in a hydrogen bond. Combinations of the functional groups (groups containing Y described above).
  • the organic structural unit and the inorganic structural unit may each have either a proton-donating functional group or a proton-accepting functional group, but the organic structural unit may have a proton-receiving functional group. And the inorganic structural unit preferably has a proton-donating functional group.
  • Examples of the proton-accepting functional group of the organic structural unit include a functional group having an electronegative oxygen atom, nitrogen atom, fluorine atom, chlorine atom, or the like.
  • a functional group having an electronegative oxygen atom, nitrogen atom, fluorine atom, chlorine atom, or the like Specifically, an amide group, an imide group, a carbonate group, and a urethane group are preferred. Among them, an amide group is particularly preferable because it can exhibit high proton acceptability when forming a hydrogen bond.
  • Specific examples of such an organic structural unit (organic polymer) include polybutylpyrrolidone, polyoxazoline, polyacrylamide derivatives, poly (N-bulkyrolatum), polybutylacetamide, and nylon derivatives.
  • the proton donating functional group in the inorganic structural unit is, for example, a functional group having a structure represented by OH or 1NH.
  • Specific examples of the functional group having such a structure include a hydroxyl group and a amino group.
  • a hydroxyl group is particularly preferable because it can form a hydrogen bond with the above-described proton-accepting functional group satisfactorily.
  • Examples of such an inorganic structural unit include a compound represented by the above formula (2) and Z or a compound thereof.
  • a polysiloxane having a main chain composed of —Si—O— bonds and having a hydroxyl group that is a proton-donating functional group is obtained.
  • FT-IR Fourier transform infrared spectrometer
  • Such an organic-inorganic hybrid compound is prepared, for example, by preparing an organic polymer compound having a proton-accepting functional group and an inorganic compound having a proton-donating functional group, and mixing these. And a method of obtaining an organic-inorganic hybrid conjugate having an organic structural unit and an inorganic structural unit by causing polymerization of an inorganic compound.
  • the inorganic compound may have a functional group that becomes a proton donating functional group after a reaction such as hydrolysis, such as the above-mentioned alkoxy group.
  • Examples of the organic polymer compound used in the powerful production method include polybutylpyrrolidone, polyoxazoline, polyacrylamide derivatives, poly (N-vinylcaprolataton), and polybutyl which can form the above-mentioned organic structural unit. Acetoamide or nylon derivatives. Further, examples of the inorganic compound include a compound represented by the above general formula (1).
  • the outer protective layer 19 containing such an organic-inorganic hybrid compound is prepared, for example, by preparing a solution containing the above-described organic polymer compound and inorganic compound, and applying the solution to the surface of the inner protective layer 18.
  • the inorganic compound can be formed by causing a polymerization reaction (for example, a condensation reaction) of the inorganic compound in such a solution by heating, or leaving it in the air.
  • the outer protective layer 19 may be formed by forming an organic-inorganic hybrid compound in advance and applying this to the surface of the inner protective layer 18.
  • the aromatic ring is a general term for rings belonging to aromatic groups.
  • ⁇ electrons are delocalized such as a benzene ring, a fused benzene ring, a non-benzene-based aromatic ring, and a heteroaromatic ring. It refers to a thermodynamically stable ring structure.
  • a benzene ring is preferable as the aromatic ring contained in the organic structural unit and the inorganic structural unit!
  • This organic-inorganic hybrid compound is a compound in which an organic structural unit and an inorganic structural unit are weakly bound by the interaction between ⁇ electrons in each aromatic ring ( ⁇ - ⁇ interaction). is there. From this point of view, a strong organic-inorganic hybrid conjugate can be regarded as a compound in which an organic polymer and an inorganic polymer, which are separate molecules from each other, are bonded by ⁇ - ⁇ interaction. A little monster.
  • Such an organic structural unit having an aromatic ring is a thermoplastic organic polymer or a thermosetting organic polymer which may have an aromatic ring in either the main chain or the side chain. Both organic polymers can be applied.
  • the thermoplastic organic polymer include polystyrene, polyester, polyphenylene ether, polysulfone, polyethersulfone, polyphthalamide, polyphenylene sulfide, polyarylate, polyimide, polyamideimide, and polyetherimide.
  • the thermosetting organic polymer compound includes phenol resin, epoxy resin, acrylic resin, melamine resin, alkyd resin, and urea resin having one or more aromatic rings in the repeating structural unit. And the like.
  • the inorganic structural unit having an aromatic ring may have an aromatic ring in the main chain or in the side chain, and may have, for example, the formula (2) And a polymer structure obtained by condensation or co-condensation of the compound represented by the formula (1) or a hydrolysis product thereof, wherein at least one of the groups represented by R 21 is a group having an aromatic ring.
  • Such an aromatic ring is preferably introduced into the compound of the above formula (2) in the form of a benzyl group, ⁇ -phenethyl group, ⁇ -tolyl group, mesityl group, ⁇ -sturyl group or phenyl group.
  • the outer protective layer 19 containing such an organic-inorganic hybrid compound is prepared, for example, by preparing a solution containing the above-described organic polymer compound and inorganic compound, and applying the solution to the surface of the inner protective layer 18. To cause polymerization reaction (for example, condensation reaction) of inorganic compounds in such a solution by heating, or leaving in the air Can do. Note that the outer protective layer 19 may be formed by forming an organic-inorganic hybrid compound in advance and applying this to the surface of the inner protective layer 18.
  • the outer protective layer 19 is any one of the oxide layer, the resin layer, the metal salt layer, and the layer containing the organic-inorganic hybrid compound.
  • the layer 19 is made of an inorganic additive in addition to these constituent materials. May be contained. By containing the inorganic additive in this manner, the external protective layer 19 has not only more excellent heat resistance but also excellent strength.
  • Such an inorganic additive is preferably an inorganic additive having a plate-like structure (a plate-like inorganic additive), which is preferably the above-mentioned organic-inorganic hybrid compound resin or an external protective layer. Those which are insoluble in the solvent or the like used are preferred.
  • Examples of the constituent material of such an inorganic additive include talc, silica, titanium, alumina, carbon black (CB), zinc oxide (ZnO), magnesium silicate (MgSiO), and barium sulfate. (BaSO 3).
  • the content of the inorganic additive in the outer protective layer 19 is
  • the content is preferably 1 to 30% by mass based on the total mass of the outer protective layer 19.
  • the rare-earth magnet 10 As described above, the rare-earth magnet 10 according to the preferred embodiment and the method for manufacturing the same are described above.
  • the rare-earth magnet 10 having such a configuration first, the inside of the first layer 16 and the second layer 17 Since the protective layer 18 is formed by changing the surface of the magnet body 13, the protective layer 18 has a dense structure and has characteristics of being excellent in adhesion to the magnet body 13. For this reason, the influence of the outside air such as moisture on the magnet body 13 can be favorably reduced.
  • the outer protective layer 19 covering the inner protective layer 18 is a stable layer separately provided on the surface of the magnet body 13 (the second layer 17). It is difficult to obtain with a layer of and it can exhibit excellent heat resistance.
  • the rare-earth magnet 10 includes the protective layer 15 including the inner protective layer 18 and the outer protective layer 19 as described above, Compared to the conventional rare earth magnet with a protective layer, it has not only excellent corrosion resistance but also heat resistance that can withstand the high temperature of about 200 ° C required for applications such as hybrid car motors.
  • the rare earth magnet of the second embodiment is not limited to the above, and may be appropriately modified.
  • the inner protective layer 18 has a two-layer structure including the first layer 16 and the second layer 17 as an example.
  • the internal protective layer 18 is not limited to this. It may be something.
  • an oxide layer obtained by oxidizing the surface of the magnet body 13 is exemplified. Examples of such an oxide layer include a layer containing a rare earth element and Z or a transition element derived from a magnet body, and oxygen atoms.
  • a lump having a composition of 14.7Nd-77.6Fe-l.6Co-6.IB (the number represents an atomic percentage) was prepared by powder metallurgy and coarsely pulverized. Thereafter, a jet mill was performed with an inert gas to obtain a fine powder having an average particle size of about 3.5 m. The obtained fine powder was filled in a mold and molded in a magnetic field. Next, after sintering in vacuum, heat treatment was performed to obtain a sintered body. The obtained sintered body was cut out to a size of 20 mm ⁇ 10 mm ⁇ 2 mm, and was then barrel-polished to obtain a magnet body processed into a practical shape.
  • the obtained magnet body was immersed in a 2% HNO aqueous solution for 2 minutes, and then the ultrasonic water
  • the magnet body that has been subjected to the acid washing (acid treatment) as described above is subjected to a heat treatment at 450 ° C for 10 minutes in a nitrogen atmosphere with a partial pressure of water vapor of 475 hPa to form a protective layer, thereby forming a rare earth magnet.
  • a processing section was prepared using a focused ion beam processing apparatus on the fractured surface of the rare earth magnet in which the protective layer was formed on the surface of the magnet body as described above, and the film structure near the surface was scanned by a scanning electron microscope. Observed under a microscope. The scanning electron microscope has an S-4 700 was used. The obtained electron micrograph is shown in FIG. 5, and FIG. 6 is an enlarged photograph of a part of the electron micrograph of FIG.
  • the white layer is a platinum-palladium film for analysis, and a second layer having an average thickness lOOnm is formed under the white layer and on the outermost surface of the rare earth magnet.
  • a second layer having an average thickness lOOnm is formed under the white layer and on the outermost surface of the rare earth magnet.
  • the first layer having an average thickness of 3 m was formed below the second layer.
  • the first layer was formed on the magnet body and the second layer was formed on the first layer.
  • this rare earth magnet was sliced using a focused ion beam processing apparatus, and the film structure near the surface was observed with a transmission electron microscope (JEM-3010 manufactured by JEOL Ltd.).
  • the elements contained in the two layers were analyzed by EDS (Voyagerlll from Noraan Instruments). As a result, Nd, Fe, and O were detected as main components from the first layer, Fe and O were detected from the second layer as the outermost layer, and Nd was not detected.
  • a rare earth magnet having a protective layer was manufactured in the same manner as in Example 1A, except that the heat treatment was performed at 350 ° C. for 13 minutes in an oxidizing atmosphere with an oxygen concentration of 7%.
  • Example 1A Observation of the obtained rare earth magnet in the same manner as in Example 1A revealed that a first layer having an average thickness of 0.9 m and an average thickness of 60 nm were formed on the surface of the magnet body. It was confirmed that a protective layer having the second layer in this order was formed. As a result of analyzing this protective layer in the same manner as in Example 1A, Nd, Fe, and O were detected as main components from the first layer, and Fe and O were detected from the second layer. No power detected. Further, a pressure 'cooker-one' test was performed on the obtained rare earth magnet in the same manner as in Example 1A, and it was confirmed that the magnetic flux deterioration of the rare earth magnet was extremely small, 0.2%.
  • a rare earth magnet having a protective layer was manufactured in the same manner as in Example 1A, except that the heat treatment was performed at 390 ° C. for 7 minutes in an oxidizing atmosphere with an oxygen concentration of 7%.
  • Example 1A As a result of observing the obtained rare-earth magnet in the same manner as in Example 1A, a first layer having an average thickness of 1 m and an average thickness of 70 nm were formed on the surface of the magnet body. It was confirmed that a protective layer having the second layer in this order was formed. As a result of analyzing this protective layer in the same manner as in Example 1A, Nd, Fe, and O were detected as main components from the first layer, and Fe and O were detected from the second layer. No power detected.
  • a rare earth magnet having a protective layer was produced in the same manner as in Example 1A, except that the heat treatment was performed at 410 ° C. for 10 minutes in an oxidizing atmosphere having an oxygen concentration of 0.5%.
  • Example 1A Observation of the obtained rare earth magnet in the same manner as in Example 1A revealed that a first layer having an average thickness of 1.5 m and an average thickness of 50 nm were formed on the surface of the magnet body. It was confirmed that a protective layer having the second layer in this order was formed. As a result of analyzing this protective layer in the same manner as in Example 1A, Nd, Fe, and O were detected as main components from the first layer.
  • a rare earth magnet having a protective layer was manufactured in the same manner as in Example 1A, except that the heat treatment was performed at 410 ° C. for 10 minutes in an oxidizing atmosphere with an oxygen concentration of 21%.
  • the obtained rare earth magnet was observed in the same manner as in Example 1A.
  • the first layer having an average film thickness of 2.1 ⁇ m and the average film thickness were found on the surface of the magnet body.
  • a protective layer having a second layer of lOOnm in this order was formed.
  • Nd, Fe, and O were detected as main components from the first layer, and Fe and O were detected from the second layer. Nd was not detected.
  • a rare earth magnet having a protective layer was manufactured in the same manner as in Example 1A, except that the heat treatment was performed at 500 ° C. for 10 minutes in an oxidizing atmosphere with an oxygen concentration of 7%.
  • Example 1A The obtained rare earth magnet was observed in the same manner as in Example 1A.
  • the first layer having an average thickness of 5 m and the average thickness of 300 nm were formed on the surface of the magnet body.
  • a protective layer including the second layer in this order was formed.
  • Nd, Fe, and O were detected as main components from the first layer, and Fe and O were detected from the second layer. No power detected.
  • a rare earth magnet having a protective layer was produced in the same manner as in Example 1A, except that the heat treatment was performed at 390 ° C. for 10 minutes in an oxidizing atmosphere with an oxygen concentration of 0.5% and a water vapor partial pressure of 74 hPa.
  • Example 1A As a result of observing the obtained rare earth magnet in the same manner as in Example 1A, a first layer having an average film thickness of 1.7 m and an average film thickness of 100 nm were formed on the surface of the magnet body. It was confirmed that a protective layer having the second layer in this order was formed. As a result of analyzing this protective layer in the same manner as in Example 1A, Nd, Fe, and O were detected as main components from the first layer, and Fe and O were detected from the second layer. Nd was not detected. [0212] In addition, a pressure 'cooker-one' test was performed on the obtained rare earth magnet in the same manner as in Example 1A, and it was confirmed that the deterioration of the magnetic flux of the rare earth magnet was extremely small, 0.2%.
  • a rare earth magnet having a protective layer was produced in the same manner as in Example 1A, except that the heat treatment was performed at 390 ° C. for 10 minutes in an oxidizing atmosphere with an oxygen concentration of 0.5% and a water vapor partial pressure of 12 hPa.
  • Example 1A The obtained rare earth magnet was observed in the same manner as in Example 1A. As a result, a first layer having an average thickness of 1.4 m and an average thickness of 80 nm were formed on the surface of the magnet body. It was confirmed that a protective layer having the second layer in this order was formed. As a result of analyzing this protective layer in the same manner as in Example 1A, Nd, Fe, and O were detected as main components from the first layer, Fe and O were detected from the second layer, and Nd was detected. No power detected.
  • a rare earth magnet having a protective layer was manufactured in the same manner as in Example 1A, except that the heat treatment was performed in an oxidizing atmosphere at a steam partial pressure of 2000 hPa at 400 ° C. for 10 minutes.
  • Example 1A Observation of the obtained rare earth magnet in the same manner as in Example 1A showed that a first layer having an average thickness of 1.8 m and an average thickness of 120 nm were formed on the surface of the magnet body. It was confirmed that a protective layer having the second layer in this order was formed. As a result of analyzing this protective layer in the same manner as in Example 1A, Nd, Fe, and O were detected as main components from the first layer, and Fe and O were detected from the second layer. Nd power not detected.
  • Example 1A Except that the heat treatment was performed in an oxidizing atmosphere with an oxygen concentration of 7% at 330 ° C for 10 minutes, A rare earth magnet having a protective layer was manufactured in the same manner as in Example 1A.
  • M680 was used. As a result, a second layer containing Fe and O and not detecting Nd was formed at a depth of 16 nm from the surface, and Nd, Fe, O was added 0.4 m below this second layer. It was confirmed that the first layer including the first layer was formed.
  • a rare earth magnet having a protective layer was manufactured in the same manner as in Example 1A, except that the heat treatment was performed at 290 ° C. for 10 minutes in an oxidizing atmosphere having an oxygen concentration of 21%.
  • Example 2 After preparing a magnet body in the same manner as in Example 1, the magnet body was added to a 2% HNO aqueous solution.
  • Fig. 7 shows the obtained electron micrograph
  • Fig. 8 shows a part of the electron micrograph of Fig. 7 in an enlarged scale.
  • the white layer is a platinum-palladium film for analysis, and a magnet element was confirmed below the white layer.
  • Example 1A After magnetizing the obtained magnet body, the same ATF immersion test as in Example 1A was performed, and the magnet after the test was magnetized again and the magnetic flux was measured. The magnets showed 7.5% magnetic flux deterioration compared to before the test. Thus, while the magnet of Example 1A had a magnetic flux deterioration of only 1.0% before and after the ATF immersion test, the magnet of Comparative Example 1A had a magnetic flux deterioration of 7.5%. In addition, it was confirmed that such a magnet had extremely large magnetic flux deterioration after the ATF immersion test.
  • a rare earth magnet having a protective layer was manufactured in the same manner as in Example 1A, except that the heat treatment was performed at 200 ° C. for 10 minutes in an oxidizing atmosphere with an oxygen concentration of 7.0% and a water vapor partial pressure of 0.5 hPa. did.
  • Example 1A Observation of the obtained rare earth magnet in the same manner as in Example 1A revealed that a protective layer having a single layer with an average film thickness of 20 nm and having a strong force was formed on the surface of the magnet body. Was confirmed. As a result of analyzing this protective layer in the same manner as in Example 1A, Nd, Fe, and O were detected as main components.
  • Example 1A After magnetizing the obtained magnet body, the same ATF immersion test as in Example 1A was performed, and the magnet after the test was magnetized again and the magnetic flux was measured. The magnets showed 4.7% magnetic flux deterioration compared to before the test. Thus, while the magnet of Example 1A showed only 1.0% magnetic flux deterioration before and after the ATF immersion test, the magnet of Comparative Example 2A showed 4.7% magnetic flux deterioration. It was confirmed that the magnet had extremely large magnetic flux deterioration after the ATF immersion test.
  • the obtained magnet body was immersed in a 2% HNO aqueous solution for 2 minutes.
  • the magnet body subjected to the acid washing was subjected to a heat treatment at 450 ° C. for 8 minutes in an oxygen-nitrogen mixed atmosphere at an oxygen partial pressure of 70 hPa (oxygen concentration: 7%).
  • the magnet body was fixed in the vacuum film forming chamber and evacuated until a degree of vacuum of 1 X 10_3 Pa or less was obtained.
  • an oxide layer made of aluminum oxide (alumina) was formed on the surface of the magnet body so as to have a thickness of 5 m using a vacuum evaporation method that is a vapor phase growth method.
  • the formation of the oxidized product layer was performed by irradiating the oxidized aluminum particles (particle diameter: about 2 to 3 mm) with an electron beam and dissolving and evaporating the particles at the same time.
  • the applied voltage when generating the electron beam was 5 kV and the current value was 200 mA.
  • oxygen gas was passed through the vacuum deposition chamber at a flow rate of 1. Osccm, and the pressure in the chamber was maintained at 1 ⁇ 10 _2 Pa.
  • the surface temperature of the magnet body was adjusted to be 200 ° C., and the deposition rate of 0.4 nmZ seconds was maintained.
  • the rare earth magnet of Example 1 was obtained.
  • the obtained rare earth magnet was sliced using a focused ion beam processing apparatus, and the film structure near the surface was observed with a transmission electron microscope (JEM-3010 manufactured by JEOL). It was confirmed that two layers, a layer with an average thickness of 1 m and a layer with an average thickness of Onm, were formed between the magnet body and the oxide layer in the order of the magnet body force. .
  • the elements contained in these two layers were analyzed using EDS (Voyagerlll manufactured by Noraan Instruments), and as a result, Nd, Fe, and O were detected as the main components from the layer on the magnet body side, and oxygen was detected. Fe and O were detected from the layer on the dagger layer side, and Nd was not detected.
  • Example 1B First, in the same manner as in Example 1B, after a magnet body was manufactured, acid cleaning was performed. Next, this magnet body was treated under an oxidizing atmosphere with an oxygen concentration of 0.5% and a partial pressure of water vapor of 74 hPa for 390 times. For 10 minutes.
  • this magnet body was installed in a normal pressure thermal CVD apparatus.
  • This atmospheric-pressure thermal CVD apparatus is capable of forming a metal oxide layer on a magnet element by introducing a metal alkoxide as a vapor deposition source and water vapor into a reactor using a carrier gas such as nitrogen gas. .
  • Example 1B First, in the same manner as in Example 1B, after producing a magnet body, acid cleaning was performed, and further, a heat treatment was performed on the magnet body under the same conditions as in Example 1B.
  • Nd, Fe, and O were detected as the main components from the layer on the magnet body side, and the layer force on the oxide layer side was also Fe. , O was detected, and Nd was not detected.
  • 13.2Nd-l. 5Dy-7.7.6Fe-1.6Co-6.IB (numbers represent atomic percentages) were prepared by powder metallurgy, and this was roughly pulverized. did. Then, it was jet milled with an inert gas to obtain a fine powder having an average particle size of about 3.5 m. The obtained fine powder was filled in a mold and molded in a magnetic field. Next, after sintering in a vacuum, a heat treatment was performed to obtain a sintered body. The obtained sintered body was cut out into a size of 35 mm ⁇ 19 mm ⁇ 6.5 mm to obtain a magnet body processed into a practical shape.
  • the obtained magnet body was immersed in a 2% HNO aqueous solution for 2 minutes, and then the ultrasonic water
  • the magnet body subjected to the acid washing is subjected to a heat treatment at 450 ° C for 8 minutes in an oxygen-nitrogen mixed atmosphere at an oxygen partial pressure of 70 hPa (oxygen concentration 7%) to form a protective layer. did.
  • the rare earth magnet of Reference Example 1B was obtained.
  • the obtained rare earth magnet was observed with a transmission electron microscope in the same manner as in Example 1B. As a result, on the surface of the magnet body, an average film thickness was defined between the magnet body and the oxide layer. It was confirmed that two layer forces, a layer with a thickness of 1 ⁇ m and a layer with an average film thickness of 50 nm, were also formed sequentially in the magnet body. The elements contained in these two layers were analyzed using EDS, and as a result, Nd, Fe, and O were detected as main components from the layer on the magnet body side, and Fe and O were detected from the layer on the oxide layer side. O was detected and Nd was not detected.
  • a salt spray test was performed on the rare earth magnets of Examples 1B to 3B, Reference Example IB, and Comparative Example IB in accordance with JIS K5600-7-1, using 5% salt water at 35 ° C for 96 hours. .
  • the rare earth magnets of Examples 1B to 3B and Comparative Example 1B did not produce ⁇
  • the rare earth magnet of Reference Example 1B produced ⁇ .
  • Examples 1B to 3B, Reference Example IB and Comparative Example An immersion test was conducted in which the rare earth magnet of IB was immersed in a Nippon Oil Corporation ATF (Auto Transmission Transfer Field) at 200 ° C for 1000 hours. . As a result, the rare-earth magnets of Examples 1B to 3B and Reference Example 1B all had a magnetic flux deterioration of 0.2% or less after immersion, whereas the rare-earth magnet of Comparative Example 1B had 5.2% Met.
  • 13.2Nd-l. 5Dy-7.7.6Fe-1.6Co-6.IB (numbers represent atomic percentages) were prepared by powder metallurgy, and this was roughly pulverized. did. Then, it was jet milled with an inert gas to obtain a fine powder having an average particle size of about 3.5 m. The obtained fine powder was filled in a mold and molded in a magnetic field. Next, after sintering in a vacuum, a heat treatment was performed to obtain a sintered body. The obtained sintered body was cut out into a size of 35 mm ⁇ 19 mm ⁇ 6.5 mm to obtain a magnet body processed into a practical shape.
  • the obtained magnet body was immersed in a 2% HNO aqueous solution for 2 minutes, and then the ultrasonic
  • the magnet body subjected to the acid washing (acid treatment) as described above was subjected to a heat treatment at 450 ° C for 8 minutes in an oxygen-nitrogen mixed atmosphere at an oxygen partial pressure of 70 hPa (oxygen concentration 7%).
  • a protective layer was formed.
  • the rare earth magnet having the protective layer formed on the surface of the magnet body as described above is The film was sliced using an electron beam processing device, and the film structure near the surface was observed with a transmission electron microscope. In addition, JEM-3010 manufactured by JEOL Ltd. was used for the transmission electron microscope. The obtained electron micrograph is shown in FIG. 9, and a photograph in which a part of the electron micrograph of FIG. 9 is enlarged is shown in FIG.
  • the rightmost black layer is a platinum-palladium film
  • the white layer adjacent to the black layer is the second neodymium-free protective layer of the rare earth magnet.
  • the average film thickness was confirmed to be 50 nm.
  • the gray layer adjacent to the second layer is the first layer containing neodymium, and its average film thickness The thickness was confirmed to be 1 ⁇ m. As can be seen from FIGS. 9 and 10, it was confirmed that the first layer was formed on the magnet body, and the second layer was formed on the first layer. .
  • the rare earth magnet was sliced using a focused ion beam processing apparatus, and the film structure near the surface was observed with a transmission electron microscope (JEM-3010 manufactured by JEOL Ltd.), and the first layer and the second layer were observed.
  • the elements contained in the layers were prayed using EDS (Voyagerlll manufactured by Noraan Instruments). As a result, Nd, Fe, and O were detected as main components from the first layer, and Fe and O were detected from the second layer, and Nd was not detected.
  • a phenolic resin paint was further applied to the rare-earth magnet on which the protective layer was formed by dip spin coating, and heated at 150 ° C for 20 minutes. This step was repeated twice to form a resin layer of about 3 m to obtain the rare earth magnet of Example 1C.
  • a sintered body was prepared in the same manner as in Example 1C, and the obtained sintered body was cut out into dimensions of 30 mm ⁇ 19 mm ⁇ 6.5 mm to obtain a magnet body processed into a practical shape. Next, acid cleaning was performed and heat treatment was performed in the same manner as in Example 1C to form a protective layer. It was confirmed that the obtained rare-earth magnet had the first layer formed on the magnet body and the second layer formed on the first layer.
  • a magnet body was prepared in the same manner as in Example 1C, and acid-washed with a 2% HNO aqueous solution.
  • FIG. 11 shows the obtained electron micrograph
  • FIG. 12 shows an enlarged photograph of a part of the electron micrograph of FIG.
  • the white layer is a platinum-palladium film for analysis, and a magnet body was confirmed below the white layer.
  • a magnet body was prepared in the same manner as in Example 1C, and acid-washed with a 2% HNO aqueous solution.
  • Example 1C a heat treatment was performed in the same manner as in Example 1C to form a protective layer, and a rare earth magnet of Reference Example 1C was obtained.
  • the rare earth magnet of Reference Example 1C does not have a resin layer.
  • the rare earth magnet of Reference Example 1C was observed with a transmission electron microscope in the same manner as in Example 1C.
  • the protective layer was formed on the outermost surface of the rare earth magnet with the second layer having an average thickness of 50 nm and the first layer having an average thickness of 1 ⁇ m below the second layer. It was confirmed that it was composed of the following layers.
  • the rare earth magnets of Examples 1C to 2C, Comparative Example 1C, and Reference Example 1C were subjected to a salt spray test for 96 hours at 35 ° C. using 5% salt water in accordance with JIS K5600 7-1.
  • Fig. 14 shows a photograph of the rare earth magnet of Example 2C
  • Fig. 16 shows a photograph of the rare earth magnet of Comparative Example 1C
  • Fig. 18 shows a photograph of the rare earth magnet of Reference Example 1C 24 hours after the start of the salt spray test.
  • Example 1C when the cross section was confirmed, in Reference Example 1C, ⁇ occurred at a thickness of about 50 m from the magnet surface. On the other hand, in Example 1C, ⁇ was observed in the cross section. In Example 2C, no occurrence of ⁇ was observed.
  • Example 1 A pressure 'tucker' test was performed on the rare earth magnets of 1C to 2C. The test conditions were left for 100 hours in an environment of 120 ° C, 0.2 MPa, and 100% RH. As a result, in Examples 1C to 2C, there was no change in appearance such as peeling of the resin layer, swelling, and generation of ⁇ in the test, and no change in magnetic flux before and after the test was observed.
  • 13.2Nd-l. 5Dy-7.7.6Fe-1.6Co-6.IB (numbers represent atomic percentages) were prepared by powder metallurgy, and this was roughly pulverized. did. Then, it was jet milled with an inert gas to obtain a fine powder having an average particle size of about 3.5 m. The obtained fine powder was filled in a mold and molded in a magnetic field. Next, after sintering in a vacuum, a heat treatment was performed to obtain a sintered body. The obtained sintered body was cut out into a size of 35 mm ⁇ 19 mm ⁇ 6.5 mm to obtain a magnet body processed into a practical shape.
  • the obtained magnet element was immersed in a 2% HNO aqueous solution for 2 minutes, and then the ultrasonic
  • the magnet body subjected to the acid washing is subjected to an oxygen partial pressure of 70 hPa ( Heat treatment was performed at 450 ° C. for 8 minutes in an oxygen-nitrogen mixed atmosphere (oxygen concentration: 7%).
  • the magnet body after the heat treatment was immersed in a 70 ° C conversion solution containing 0.1 M sodium molybdate, 1. OM phosphoric acid, and 0.05 M sodium nitrite for 10 minutes, and the magnet body was Was subjected to a chemical conversion treatment to form a chemical conversion treatment layer on the surface.
  • the obtained rare earth magnet was sliced using a focused ion beam processing device, and the film structure near the surface was observed with a transmission electron microscope (JEM-3010 manufactured by JEOL). It was confirmed that between the magnet body and the chemical conversion treatment layer, two layer forces, a layer with an average film thickness of 2. and a layer with an average film thickness of 80 nm, were formed in this order. .
  • the elements contained in these two layers were analyzed using EDS (Voyagerlll manufactured by Noraan Instruments) .As a result, Nd, Fe, and O were detected as the main components from the layer on the magnet body side, and the chemical conversion treatment was performed. Fe and O were detected from the layer on the layer side, but Nd was not detected
  • Example 1D First, in the same manner as in Example 1D, after a magnet body was manufactured, acid cleaning was performed. Next, heat treatment was performed at 450 ° C for 8 minutes in an oxygen-nitrogen mixed atmosphere at an oxygen partial pressure of 70 hPa (oxygen concentration: 7%).
  • oxygen-nitrogen mixed atmosphere at an oxygen partial pressure of 70 hPa (oxygen concentration: 7%).
  • the film structure in the vicinity of the surface of the magnet body after the heat treatment was analyzed by a depth direction analysis by Auger electron spectroscopy.
  • SAM680 made by ULVAC-FINE was used. As a result, a layer containing Fe and O and containing no Nd was formed at a depth of 80 nm from the surface, and a layer containing Nd, Fe, and O was formed below 2.5 ⁇ m of this layer. It was confirmed that.
  • the magnet body after the heat treatment was immersed in a chemical conversion solution containing 0.1M cerium nitrate, 1.0M phosphoric acid and 0.05M sodium nitrite at 80 ° C for 10 minutes, and the magnet body was A chemical conversion treatment was performed on the surface to form a chemical conversion treatment layer on the surface.
  • a magnet body was formed in the same manner as in Example 1D, washed with an acid, and then heat-treated.
  • the obtained rare earth magnet was used as the rare earth magnet of Reference Example 1D.
  • the average film thickness between the magnet body and the oxide layer was 2.5 m on the surface of the magnet body.
  • Layer force It was confirmed that the magnet body side force was also formed in order.
  • Nd, Fe, and O were detected as main components from the layer on the magnet body side, and Fe was detected from the layer on the oxide layer side. , O was detected, and Nd was not detected.
  • Examples 1D to 2D and Reference Example 1D were subjected to a salt spray test in which 5% salt water was sprayed at 35 ° C for 96 hours in accordance with JIS K5600-7-1. As a result, ⁇ was not observed in the rare earth magnets of Examples 1D to 2D, whereas ⁇ was observed in the rare earth magnet of Reference Example 1D.
  • Examples 1D to 2D and Reference Example 1D were subjected to an immersion test in which the rare earth magnet of Example 1D was immersed in ATF (Automation Transfer Field) manufactured by Nippon Oil Corporation at 200 ° C. for 1000 hours.
  • ATF Automatic Transfer Field
  • the rare-earth magnets of Examples 1D to 2D all had a magnetic flux deterioration of 0.2% or less after immersion, and the rare-earth magnet of Reference Example 1D had 5.3%.
  • 13.2Nd-l. 5Dy-7.7.6Fe-1.6Co-6.IB (numbers represent atomic percentages) were prepared by powder metallurgy, and this was roughly pulverized. did. Then, it was jet milled with an inert gas to obtain a fine powder having an average particle size of about 3.5 m. The obtained fine powder was filled in a mold and molded in a magnetic field. Next, after sintering in a vacuum, a heat treatment was performed to obtain a sintered body. The obtained sintered body was cut out into a size of 35 mm ⁇ 19 mm ⁇ 6.5 mm to obtain a magnet body processed into a practical shape.
  • the obtained magnet body was immersed in a 2% HNO aqueous solution for 2 minutes, and then ultrasonic Washed. Then, the magnet body subjected to the acid washing (acid treatment) is subjected to a heat treatment at 450 ° C. for 8 minutes in an oxygen-nitrogen mixed atmosphere at an oxygen partial pressure of 70 hPa (oxygen concentration: 7%), thereby obtaining a surface of the magnet body.
  • an internal protective layer is formed from an internal protective layer.
  • a composition containing 40 parts by mass of xylene as a solvent and 60 parts by mass of a thermosetting alkylphenol was prepared, applied to the surface of the magnet body after the heat treatment, and dried at room temperature. Thereafter, the coating was cured by heating at 150 ° C. for 30 minutes in the air to form an external protective layer on the surface of the internal protective layer, thereby obtaining a rare earth magnet.
  • the obtained rare earth magnet was sliced using a focused ion beam processing device, and the film structure near the surface was observed with a transmission electron microscope (JEM-3010 manufactured by JEOL). In addition, it was confirmed that two layers having an average film thickness of 50 nm and a layer having an average film thickness of 50 nm were formed in this order as the internal protective layer in the magnet element side.
  • the elements contained in the two layers were analyzed using EDS (Voyagerlll manufactured by Noraan Instruments) .As a result, Nd, Fe, and O were detected as the main components from the layer adjacent to the magnet body. However, Fe and O were detected from the layer far from the magnet body, and Nd was not detected.
  • a rare earth magnet was obtained in the same manner as in Example 1E, except that an alkyl polyphenol (urushiol) was used instead of the thermosetting alkyl phenol as a material for forming the outer protective layer.
  • an alkyl polyphenol urushiol
  • Example 1E When the film structure near the surface of the obtained rare earth magnet was observed in the same manner as in Example 1E, a layer having an average film thickness of: L m was formed on the surface of the magnet body as an internal protective layer. It was confirmed that the two layers having the average film thickness Onm were formed in this order on the magnet element side. The elements contained in these two layers were analyzed using EDS, and as a result, Nd, Fe, and O were detected as the main components from the layer adjacent to the magnet body, and the layers far from the magnet body were detected. In the sample, Fe and O were detected, but Nd was not detected.
  • a rare earth magnet was obtained in the same manner as in Example 1E, except that 30% by mass of epoxy resin (araldite) was further added as a material for forming the outer protective layer.
  • Example 1E The film structure near the surface of the obtained rare-earth magnet was observed in the same manner as in Example 1E.
  • two layers having an average thickness of: L m and a layer having an average thickness of Onm are formed in this order as an internal protective layer as an internal protective layer. confirmed.
  • the elements contained in these two layers were analyzed using EDS, and as a result, Nd, Fe, and O were detected as the main components from the layer adjacent to the magnet body, and the layers far from the magnet body were detected. In the sample, Fe and O were detected, but Nd was not detected.
  • methyltrimethoxysilane 15 g of 2-propanol, and 17.5 g of 0.1% aqueous ammonia are further added to 40 g of the acrylic resin solution, and the mixture is reacted at 50 ° C. for 5 hours.
  • a coating liquid containing an organic-inorganic compound formed by bonding an acrylic resin and a polymer of methyltrimethoxysilane and an Ibriddy conjugate was obtained.
  • this coating solution was applied to the surface of the inner protective layer in the above-mentioned magnet body by dip coating, and then heated at 150 ° C for 20 minutes to obtain an organic inorganic hybrid.
  • An outer protective layer made of a daggered product was formed to obtain a rare earth magnet.
  • Example 1E When the film structure near the surface of the obtained rare earth magnet was observed in the same manner as in Example 1E, a layer having an average film thickness of: L m was formed on the surface of the magnet body as an internal protective layer. It was confirmed that the two layers having the average film thickness Onm were formed in this order on the magnet element side. The elements contained in these two layers were analyzed using EDS, and as a result, Nd, Fe, and O were detected as the main components from the layer adjacent to the magnet body, and the layers far from the magnet body were detected. In the sample, Fe and O were detected, but Nd was not detected.
  • Example 5E First, after a magnet body was manufactured in the same manner as in Example IE, an inner protective layer was formed on the surface of the magnet body.
  • This coating solution was applied to the surface of the inner protective layer in the above-described magnet body by a dip coating method, and then heated at 150 ° C for 20 minutes to form an outer protective layer. A rare earth magnet was obtained.
  • Example 1E When the film structure near the surface of the obtained rare earth magnet was observed in the same manner as in Example 1E, a layer having an average film thickness of: L m was formed on the surface of the magnet body as an internal protective layer. It was confirmed that the two layers having the average film thickness Onm were formed in this order on the magnet element side. The elements contained in these two layers were analyzed using EDS, and as a result, Nd, Fe, and O were detected as the main components from the layer adjacent to the magnet body, and the layers far from the magnet body were detected. In the sample, Fe and O were detected, but Nd was not detected.
  • the weight average molecular weight is a value obtained by measuring by gel permeation chromatography and converting it by a calibration curve using standard polystyrene.
  • This coating solution was applied to the surface of the inner protective layer in the above-described magnet body by dip coating, and then heated at 150 ° C for 20 minutes to form an outer protective layer. And a rare earth magnet was obtained.
  • Example 1E When the film structure near the surface of the obtained rare earth magnet was observed in the same manner as in Example 1E, a layer having an average film thickness of: L m was formed on the surface of the magnet body as an internal protective layer. It was confirmed that the two layers having the average film thickness Onm were formed in this order on the magnet element side. The elements contained in these two layers were analyzed using EDS, and as a result, Nd, Fe, and O were detected as the main components from the layer adjacent to the magnet body, and the layers far from the magnet body were detected. In the sample, Fe and O were detected, but Nd was not detected.
  • talc H Mg O Si
  • inorganic additive As a material for forming the outer protective layer, talc (H Mg O Si) as an inorganic additive is further included.
  • a rare earth magnet was obtained in the same manner as in Example 1E, except that a magnet was used.
  • the amount of talc was adjusted so that the content of talc in the outer protective layer was 20% by volume.
  • Example 1E After a magnet body was formed in the same manner as in Example 1E, an internal protective layer was formed on the surface of the magnet body, and this was used as a rare earth magnet of Comparative Example 1E. Observation of the obtained rare earth magnet with a transmission electron microscope in the same manner as in Example 1E revealed that a layer having an average thickness of 1 ⁇ m and a layer having an average thickness of 50 nm were formed on the surface of the magnet body. It was confirmed that the two layer forces were formed in order from the magnet body side. As a result of analyzing the elements contained in these two layers using EDS, Nd, Fe, and O were detected as the main components from the layer adjacent to the magnet body, and Fe and O was detected and Nd was not detected.
  • a magnet body was manufactured in the same manner as in Example 1E. After that, without forming an internal protective layer, a bisphenol-type epoxy resin paint was applied on the surface of the magnet element, thereby forming a protective layer having a thickness of 10 m, thereby obtaining a rare earth magnet. .
  • was not observed in the rare earth magnets of Examples 1E to 7E and the rare earth magnets of Comparative Examples 1E to 2E, whereas ⁇ was observed in the rare earth magnet of Reference Example 1E.
  • Examples 1E to 7E, Reference Example IE and Comparative Examples The rare earth magnets of Examples 1E to 2E were added to a solution obtained by adding water to an ATF (automatic transfer field) manufactured by Nippon Oil Co., Ltd. at 120 ° C. for 500 hours. An immersion test of immersion under the conditions was performed. As a result, the rare-earth magnets of Examples 1E to 7E and the rare-earth magnet of Reference Example 1E all had a magnetic flux deterioration of 0.05% or less after immersion, whereas the rare-earth magnets of Comparative Examples IE and 2E had The external protective layer was peeled off, and the magnetic flux deterioration after immersion was 3.2% and 2.4%, respectively.
  • ATF automatic transfer field

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

 本発明は、十分な耐食性を有する希土類磁石及びその製造方法を提供することを目的とする。好適な実施形態に係る希土類磁石は、希土類元素を含有する磁石素体と、この磁石素体の表面上に形成された保護層とを備えている。好適な実施形態に係る保護層は、磁石素体を覆い希土類元素を含有する第1の層、及び、該第1の層を覆い希土類元素を実質的に含有しない第2の層を含む層である。また、好適な実施形態に係る他の保護層は、磁石素体側から順に内部保護層及び外部保護層を備えている。外部保護層は、酸化物層、樹脂層、金属塩層又は有機無機ハイブリッド化合物を含む層のいずれかである。

Description

明 細 書
希土類磁石及びその製造方法
技術分野
[0001] 本発明は、希土類磁石、特に表面に保護層が形成された希土類磁石及びその製 造方法に関する。
背景技術
[0002] 25MGOe以上の高エネルギー積を示す永久磁石として、いわゆる希土類磁石(R — Fe— B系磁石; Rはネオジム (Nd)などの希土類元素を示す。以下、同様。)が開 発されている。このような希土類磁石としては、例えば、特許文献 1では焼結により形 成されるものが、また特許文献 2では高速急冷により形成されるものが開示されてい る。
[0003] この希土類磁石は高エネルギー積を示すものの、主成分として比較的容易に酸ィ匕 される希土類元素及び鉄を含有するため耐食性が比較的低い。
[0004] このような希土類磁石の耐食性を改善することを目的として、保護層を形成すること が提案されている。この中でも、特許文献 3では、希土類磁石を酸化性雰囲気下に て 200〜500°Cで加熱することで、保護層を形成することが提案されて 、る。
特許文献 1:特開昭 59—46008号公報
特許文献 2:特開昭 60— 9852号公報
特許文献 3 :特開平 5— 226129号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、上記特許文献 3においては、酸化性雰囲気下において特定の温度 で保護層を形成することが提案されているが、このような方法によっても、希土類磁石 の腐食を十分に防止し得る保護層を満足に形成することができない場合が多力つた 。このため、得られた希土類磁石は、耐食試験による粉ふきや重量減少の発生を十 分に防止するのが未だ困難なものであった。
[0006] そこで、本発明はこのような事情に鑑みてなされたものであり、十分な耐食性を有す る希土類磁石及びその製造方法を提供することを目的とする。
課題を解決するための手段
[0007] 上記目的を達成するため、本発明者らが鋭意研究を行った結果、磁石素体の表面 上に、組成又は構成材料の異なる複数の層を形成することで、従来に比して優れた 耐食性が得られるようになることを見出し、本発明を完成させた。
[0008] すなわち、本発明の希土類磁石は、希土類元素を含有する磁石素体と、この磁石 素体の表面上に形成された保護層とを備え、保護層は、磁石素体を覆い希土類元 素を含有する第 1の層、及び、第 1の層を覆い希土類元素を実質的に含有しない第 2の層を有する層であることを特徴とする。
[0009] 上記構成を有する希土類磁石が十分な耐食性を有する理由につ!/ヽて、本発明者 らは、以下のように推察している。すなわち、希土類磁石は、その構成元素として希 土類元素を含有している。かかる希土類元素は、非常に酸化されやすぐ酸性溶液 に溶出しやすい。これに対し、上記本発明の希土類磁石は、保護層が磁石素体を覆 い希土類元素を含有する第 1の層、及び、当該第 1の層を覆い希土類元素を実質的 に含有しない第 2の層を有するものである。このように希土類磁石の表面力 希土類 元素を実質的に含有しない第 2の層によって覆われているため、保護層の安定性が 向上し、これにより耐食性が向上するものと考えられる。また、上記特定の構成の保 護層は、緻密な構成を有するようになるため、これによつても保護層の安定性が向上 して耐食性が向上するものと考えられる。
[0010] 本発明の希土類磁石においては、保護層は、磁石素体を覆い希土類元素を含有 する第 1の層及び当該第 1の層を覆い希土類元素を実質的に含有しない第 2の層を 有するように、酸化性ガスを含有する酸化性雰囲気中で、酸化性ガス分圧、処理温 度及び処理時間のうちの少なくとも 1つの条件を調整して、磁石素体を熱処理するこ とで形成されたものであると好まし 、。
[0011] また、本発明の希土類磁石は、希土類元素を含有する磁石素体と、この磁石素体 の表面上に形成された保護層とを備え、保護層は、磁石素体を覆い希土類元素を含 有する第 1の層、及び、第 1の層を覆い第 1の層よりも希土類元素の含有量が少ない 第 2の層を有する層であることを特徴としてもょ 、。 [0012] このような希土類磁石が十分な耐食性を有する理由について、本発明者らは、以 下のように推察している。すなわち、希土類磁石は、その構成元素として希土類元素 を含有している。かかる希土類元素は、非常に酸化されやすぐ酸性溶液に溶出し やすい。これに対し、本発明の製造方法により得られる希土類磁石は、保護層が磁 石素体を覆い希土類元素を含有する第一の層、及び、当該第一の層を覆い第一の 層よりも希土類元素の含有量が少な 、第二の層を有して 、る。このように希土類磁石 の表面が、第一の層よりも希土類元素の含有量が少な!、第二の層によって覆われる ため、保護層の安定性が向上し、これにより耐食性が向上するものと考えられる。また 、上記特定の構成の保護層は、緻密な構成を有するようになるため、これによつても 保護層の安定性が向上して耐食性が向上するものと考えられる。
[0013] このような希土類磁石においても、保護層が、磁石素体を覆い希土類元素を含有 する第 1の層及び第 1の層を覆い第 1の層よりも希土類元素の含有量が少ない第 2の 層を有するように、酸化性ガスを含む酸化性雰囲気中で、酸化性ガス分圧、処理温 度及び処理時間のうちの少なくとも 1つの条件を調整して、磁石素体を熱処理するこ とで形成されたものであるとより好まし 、。
[0014] 上記本発明の希土類磁石において、保護層は、酸素及び磁石素体由来の元素を 含有するものであると好ましい。こうすれば、力かる保護層は、磁石素体との密着性 に極めて優れるものとなり、希土類磁石の耐食性が更に向上する。このような本発明 の希土類磁石は、十分に優れた耐食性を有するものであり、保護層の膜厚が均一で あり、寸法精度に優れている。また、この希土類磁石は、上記特定の保護層が形成さ れていることから、製造時及び使用時における性能の劣化が抑制されており、優れた 信頼性を有するものとなる。
[0015] 具体的には、磁石素体は、希土類元素及び希土類元素以外の遷移元素を含み、 第 1の層は、上記希土類元素、上記遷移元素及び酸素を含有する層であり、第 2の 層は、上記遷移元素及び酸素を含有する層であると好まし 、。
[0016] つまり、第 1の層における希土類元素、第 1の層における遷移元素、及び、第 2の層 における遷移元素は、磁石素体由来の元素であると好ましい。特に、第 1の層におけ る希土類元素、第 1の層における遷移元素、及び、第 2の層における遷移元素は、磁 石素体の主相を構成する元素であるとより好ましい。
[0017] また、保護層においては、希土類元素がネオジムであるとさらに好ましい。さらに、 かかる希土類元素以外の遷移元素としては、鉄及び Z又はコバルトが好まし 、。
[0018] さらに、上記本発明の希土類磁石においては、第 1の層と第 2の層との総膜厚は、 0 . 1〜20 /ζ πιであると一層好ましい。
[0019] また、本発明の希土類磁石は、希土類元素を含有する磁石素体と、この磁石素体 の表面上に形成された保護層とを備え、保護層が、希土類元素及び Ζ又は遷移元 素と酸素とを含有する内部保護層と、内部保護層とは異なる構成材料からなる外部 保護層とを含むものであってもよい。
[0020] 近年では、希土類磁石は、ハイブリッド自動車におけるモーター用磁石としての利 用が検討されている。この場合、希土類磁石はエンジン周辺で用いられ、 150°Cを超 えるような高温〖こ晒されること〖こなる。ところが、従来の希土類磁石は、このような高温 環境下では腐食劣化が生じ易い傾向にあり、保護層の耐熱性が不十分であった。
[0021] これに対し、上記本発明の希土類磁石は、それぞれ構成材料の異なる内部保護層 及び外部保護層という 2層の保護層を備えていることから、一層のみの保護層を形成 させた従来の希土類磁石に比して、優れた耐食性に加え、優れた耐熱性をも具備す るちのとなる。
[0022] 上記本発明の希土類磁石における内部保護層は、磁石素体を覆い希土類元素を 含有する第 1の層、及び、第 1の層を覆い希土類元素を実質的に含有しない第 2の 層を有する層であるとより好ましい。
[0023] 力かる構成を有する内部保護層においては、磁石素体に隣接する第 1の層が、希 土類元素を含むことから磁石素体に対する優れた密着性を有するものとなる。また、 この外側に形成された第 2の層は、希土類元素を実質的に含有しないことから極めて 酸化され難い。したがって、このような第 1及び第 2の層を備える希土類磁石は、この 2層の保護層を備えて ヽな ヽものに比してより優れた耐食性を発揮し得る。
[0024] また、内部保護層は、磁石素体を覆い希土類元素を含有する第 1の層、及び、第 1 の層を覆 、第 1の層よりも希土類元素の含有量が少な 、第 2の層を有する層であつ てもよい。このような第 2の層も極めて酸化され難ぐこのような第 1及び第 2の層を備 える希土類磁石は、この 2層の保護層を備えていないものに比してより優れた耐食性 を発揮し得る。
[0025] より具体的には、磁石素体は、希土類元素及び希土類元素以外の遷移元素を含 み、第 1の層は、上記希土類元素、上記遷移元素及び酸素を含有する層であり、第 2 の層は、上記遷移元素及び酸素を含有する層であるとより好ましい。こうすれば、第 1 の層は磁石素体と同じ希土類元素を含み、第 2の層は第 1の層と同じ遷移元素を含 むこととなるため、各層の密着性が更に良好となり得る。その結果、希土類磁石の耐 食性が更に向上する。
[0026] 特に、第 1の層における希土類元素、第 1の層における遷移元素、及び、第 2の層 における遷移元素は、磁石素体由来の元素であると更に好ましい。つまり、第 1及び 第 2の層は、磁石素体が反応等によって変化して形成されるものであると好ましい。 力かる構成とすれば、各層の密着性が一層良好となるほか、それぞれが極めて緻密 な膜となり得る。その結果、希土類磁石の耐食性が更に良好となる。
[0027] 上記本発明の希土類磁石において、外部保護層は、内部保護層とは異なる組成を 有する酸ィ匕物層であると好ましい。このように、内部保護層の外側にこれらとは異なる 組成を有する酸化物層を有することで、希土類磁石は、耐食性のみならず耐熱性に も極めて優れるものとなる。特に、酸化物層が、第 1及び第 2の層に含まれる金属元 素とは異なる金属元素の酸ィ匕物を含む層であると、このような効果に更に優れるよう になる。
[0028] かかる酸化物層は、非晶質の層であるとより好ましい。非晶質の酸ィ匕物力もなる外 部保護層は、微視的には粒界を有していないものとなる。通常、結晶性の物質にお いては、粒界部分が劣化することによって粒子の欠落等が生じ、これが腐食の一因と なり得るが、このように外部保護層である酸ィ匕物層を非晶質とすることで、かかる原因 による腐食の発生を効果的に抑制することが可能となる。
[0029] また、上記酸化物層は、 p型酸化物半導体からなる層とこれよりも外側に形成された n型酸ィ匕物半導体力もなる層とを有するものであるとより好ましい。希土類磁石の腐 食は、希土類元素が酸化される、すなわち、希土類元素が電子を奪われることにより 生じるものであると考えられている。したがって、このように磁石素体側力も順に p型半 導体酸化物からなる層、 n型半導体酸化物からなる層を形成すれば、かかる結合に よる整流作用によって、上述したような方向への電子の流れが阻害されることとなる。 その結果、希土類磁石の耐食性が更に向上する。
[0030] より具体的には、外部保護層は、 Al、 Ta、 Zr、 Hf、 Nb、 P、 Si、 Ti、 Mg、 Cr、 Ni、 B a、 Mo、 V、 W、 Zn、 Sr、 Bi、 B、 Ca、 Ga、 Ge、 La、 Pb、 In及び Mn力らなる群より選 ばれる少なくとも一種の元素の酸ィ匕物を含む酸ィ匕物層であると好ま U、。これらの元 素の酸化物からなる層は、優れた耐熱性を有するものとなる。なかでも、酸化物層と しては、 Mo又は Wの酸化物を含むものが好ましい。
[0031] また、外部保護層としては、榭脂を含有する榭脂層も好ましい。内部保護層に加え 、外部保護層として榭脂層を設けることにより、十分な耐食性のほか、優れた耐熱性 を有する希土類磁石を得ることができる。
[0032] 外部保護層である榭脂層に含有される榭脂としては、高温環境 (例えば、 150°C以 上)においても所望の特性を発揮できることから、熱硬化性榭脂が好ましい。
[0033] なかでも、榭脂層を構成する榭脂は、フエノール榭脂、エポキシ榭脂及びメラミン榭 脂からなる群より選ばれる少なくとも一種の榭脂であるとより好ましい。これらの榭脂は 、榭脂材料のなかでも、極めて優れた耐熱性を有する硬化物を形成し得る。したがつ て、このような外部保護層を備える本発明の希土類磁石は、耐食性のみならず、極め て優れた耐熱性をも有するものとなる。
[0034] また、上記本発明の希土類磁石における外部保護層は、金属塩層であっても好ま しい。このような金属塩層によっても、希土類磁石の耐熱性を高めることが可能である 。さらに、希土類磁石の表面に更に塗装等が施される場合には、上記金属塩層は磁 石素体と塗膜との密着性を高め得るという特性をも発揮し得る。このため、金属塩層 を表面に備える本発明の希土類磁石は、塗膜に対する接着性が優れるものとなり、 塗装後の耐食性及び耐熱性にも極めて優れるものとなる。
[0035] 金属塩層は、 Cr、 Ce、 Mo、 W、 Mn、 Mg、 Zn、 Si、 Zr、 V、 Ti及び Feからなる群よ り選ばれる少なくとも一種の元素と、 P、 0、 C及び Sからなる群より選ばれる少なくとも 一種の元素とを含む層であるとより好ましい。これらの元素を含む金属塩層は、極め て優れた耐食性及び耐熱性を有するものとなる。 [0036] さらに、金属塩層は、 Mo、 Ce、 Mg、 Zr、 Mn及び Wからなる群より選ばれる少なく とも一種の元素と、 P、 0、 C及び Sからなる群より選ばれる少なくとも一種の元素とを 含むものであるとより好ましい。これらの元素を含む金属塩層は、特に優れた耐食性 及び耐熱性を有するものとなる。
[0037] また、外部保護層としては、有機高分子からなる構造単位及び無機高分子からなる 構造単位を有する有機無機ハイブリッドィ匕合物を含む層も好適である。このような有 機無機ハイブリッド化合物を含有する外部保護層も、希土類磁石の耐熱性を向上す る効果に優れるものである。また、このような外部保護層は、耐熱性に加え、以下に 示すような特性をも発揮し得る。
[0038] すなわち、まず、有機高分子力 なる構造単位は柔軟であるという特性を有してい る。このため、力かる構造単位を含む層においては、例えば、当該層を形成する際に 加熱等が施されて体積変化が生じ、これに伴って応力等が発生したとしても、柔軟な 有機高分子力もなる構造単位によって、このような応力が十分に緩和され得る。した がって、外部保護層は、その形成時に生じる応力に起因するクラックやピンホール等 の欠陥が形成され難いものとなり、これらの欠陥に基づく耐食性の低下が少ないもの となる。一方、無機高分子力もなる構造単位を含む化合物は、優れた耐熱性を有し て!、るほ力、水分等を透過し 、と 、う特性 (耐透湿性)も有して 、る。
[0039] そして、上記本発明の希土類磁石における外部保護層は、これらの両方の構造単 位を有する有機無機ハイブリッドィ匕合物を含むものである。このため、力かる外部保 護層は、これらの 2つの構造単位が有する両方の特性を併せ持つこととなる。したが つて、このような外部保護層を備える希土類磁石は、優れた耐食性、耐熱性及び耐 湿性を具備するものとなる。
[0040] ただし、本発明者らの検討によると、上述した両方の特性を有する保護層を得るた めに、単に有機分子と無機分子とを混合しただけの材料を用いると、得られる保護層 において有機分子と無機分子とが分離し易いため、保護層に、上述したような特性 のいずれかが不十分な領域が形成される場合があることが判明した。
[0041] これに対し、本発明における外部保護層は、有機無機ノ、イブリツドィ匕合物、つまり、 有機高分子力 なる構造単位と無機高分子力 なる構造単位とが所定の相互作用 によって結びついたィ匕合物を含むものである。このため、当該層においては、 2つの 構造単位が分離することが極めて少ない。したがって、この有機無機ノ、イブリツドィ匕 合物を有する外部保護層は、層全体にわたって均質な特性を有しており、希土類磁 石に対して優れた耐食性、耐熱性及び耐湿性を付与し得る。
[0042] 具体的には、有機無機ハイブリッドィ匕合物は、有機高分子力もなる構造単位と無機 高分子力もなる構造単位とが共有結合により結合したィ匕合物であると好ま U、。また 、有機無機ハイブリッドィ匕合物としては、有機高分子力もなる構造単位と無機高分子 力もなる構造単位とが水素結合により結合したィ匕合物も好ましい。さらに、有機無機 ハイブリッドィ匕合物は、芳香環を有する有機高分子からなる構造単位と芳香環を有 する無機高分子力 なる構造単位とが芳香環同士の相互作用により結合したィ匕合物 であってもよい。
[0043] これらの有機無機ハイブリッド化合物は、 Vヽずれも有機分子からなる構造単位と無 機分子力 なる構造単位とが所定の相互作用によって結合したものであることから、 外部保護層において分離等を生じることが少ない。そして、このような有機無機ハイ ブリツドィ匕合物を含む外部保護層を備える希土類磁石は、耐食性に加え、耐熱性及 び耐湿性にも極めて優れるものとなる。
[0044] さらに、上記本発明の希土類磁石においては、外部保護層が、無機添加剤を更に 含むものであるとより好ましい。無機添加剤を更に含む外部保護層は、更に優れた耐 熱性を有するほか、強度の点においても優れるものとなり、例えば、希土類磁石の製 造時や使用時に加わる衝撃等によってもクラック等が発生し難い。したがって、このよ うな外部保護層を備える希土類磁石は、更に優れた耐食性及び耐熱性を有するもの となる。
[0045] また、本発明は、上記本発明の希土類磁石を好適に製造する方法を提供する。す なわち、本発明の希土類磁石の製造方法は、希土類元素を含有する磁石素体の表 面上に保護層を形成する希土類磁石の製造方法であって、磁石素体を熱処理して 、磁石素体を覆い希土類元素を含有する第 1の層、及び、当該第 1の層を覆い希土 類元素を実質的に含有しない第 2の層を有する保護層を形成する保護層形成工程 を有することを特徴とする。 [0046] また、本発明の希土類磁石の製造方法は、希土類元素を含有する磁石素体の表 面上に保護層を形成する希土類磁石の製造方法であって、磁石素体を熱処理して 、磁石素体を覆い希土類元素を含有する第 1の層、及び、当該第 1の層を覆い第 1 の層よりも希土類元素の含有量が少ない第 2の層を有する保護層を形成する保護層 形成工程を含むことを特徴としてもょ ヽ。
[0047] 力かる希土類磁石の製造方法においては、保護層形成工程において、第 1の層及 び第 2の層を保護層が有するように、酸化性ガスを含有する酸化性雰囲気中で、酸 化性ガス分圧、処理温度及び処理時間のうちの少なくとも 1つの条件を調整して、磁 石素体を熱処理することが好まし ヽ。
[0048] このように、希土類磁石の表面上に形成される膜 (酸化膜)の構成を指標とし、磁石 素体を酸化性雰囲気下で熱処理する際の酸化性ガス分圧、処理温度及び処理時間 のうちの少なくとも 1つの条件を調整することで、希土類磁石が腐食し易い酸化性雰 囲気において過度の腐食の発生を抑制できると共に、十分な耐食性を有する希土類 磁石を得ることができる。また、力かる製造方法によれば、非常に簡易に且つ低コスト で保護層を形成することができ、さらに均一な膜厚の保護層を形成でき、寸法精度に 優れる希土類磁石を製造することができる。特に、この製造方法においては、酸化性 ガス分圧、処理温度及び処理時間を調整して磁石素体を熱処理することが好ま 、 。これらの 3つの条件を調整することで、より容易で確実に、十分な耐食性を有する希 土類磁石を得ることができる。
[0049] また、本発明の製造方法は、磁石素体を、熱処理の前段において酸洗浄する酸洗 浄工程を更に含むことが好ましい。上述した熱処理の前段において、磁石素体を酸 洗浄しておくことで、磁石素体の製造時又は製造後に磁石素体表面上に形成する 加工による変質層や酸ィ匕層を除去できることから、所望の保護層をより精度よく形成 することができる。
[0050] また、本発明の製造方法においては、酸化性雰囲気を、水蒸気分圧が 10〜2000 hPaである水蒸気雰囲気とすることが好ましい。こうすれば、上述した第 1及び第 2の 層が良好に形成され、希土類磁石の耐食性が更に向上するようになる。
[0051] さらに、本発明の製造方法においては、上記処理時間を 1分〜 24時間とするとより 好ましい。こうすれば、上述した第 1及び第 2の層が良好に形成されるようになるほか 、熱処理等による磁石素体の特性劣化も極めて生じ難くなる。
[0052] また、本発明による希土類磁石の製造方法は、希土類元素を含有する磁石素体の 表面上に保護層を形成する希土類磁石の製造方法であって、磁石素体を熱処理し て、磁石素体を覆い、希土類元素及び Z又は遷移元素と酸素とを含有する内部保 護層を形成する内部保護層形成工程と、内部保護層の表面上に、内部保護層とは 異なる構成材料からなる外部保護層を形成する外部保護層形成工程とを含むことを 特徴としてもよい。
[0053] このような製造方法によって、それぞれ構成材料の異なる内部保護層及び外部保 護層という多層の保護層を備え、耐食性に加えて極めて耐熱性にも優れる希土類磁 石が得られるようになる。
[0054] 内部保護層形成工程にぉ ヽては、磁石素体を熱処理して、磁石素体を覆 、希土 類元素を含有する第 1の層、及び、当該第 1の層を覆い希土類元素を実質的に含有 しない第 2の層を有する内部保護層を形成することが好ましい。また、磁石素体を熱 処理して、磁石素体を覆い希土類元素を含有する第 1の層、及び、当該第 1の層を 覆い第 1の層よりも希土類元素の含有量が少ない第 2の層を有する内部保護層を形 成してもよい。こうすれば、内部保護層として、上述のように極めて耐食性に優れる第 1及び第 2の層が形成され、得られる希土類磁石の耐食性が更に向上する。
[0055] この内部保護層形成工程においては、上記第 1の層及び第 2の層を内部保護層が 有するように、酸化性ガスを含有する酸化性雰囲気中で、酸化性ガス分圧、処理温 度及び処理時間のうちの少なくとも 1つの条件を調整して、前記磁石素体を熱処理 することが好ましい。これらの条件を調整することにより、第 1及び第 2の層を良好に 形成することができる。
[0056] また、外部保護層形成工程においては、内部保護層の表面上に、内部保護層とは 異なる組成を有する酸化物層からなる外部保護層を形成することが好ま ヽ。このよ うな酸ィ匕物層からなる外部保護層は、希土類磁石に優れた耐熱性を付与し得る。
[0057] さらに、外部保護層形成工程においては、内部保護層の表面上に、榭脂を含有す る榭脂層形成用塗布液を塗布して乾燥し、榭脂層からなる外部保護層を形成しても よい。こうして形成された榭脂層を備える希土類磁石も、極めて耐食性及び耐熱性に 優れるものとなる。特に、榭脂が、フエノール榭脂、エポキシ榭脂及びメラミン榭脂か らなる群より選ばれる少なくとも一種の榭脂であると、一層優れた耐熱性が得られるよ うになる。
[0058] また、外部保護層形成工程にお!ヽては、内部保護層形成工程後の磁石素体をィ匕 成処理して、内部保護層の表面上に化成処理層からなる外部保護層を形成してもよ い。このように形成された外部保護層も、希土類磁石に対して優れた耐熱性を付与し 得る。
[0059] さらに、外部保護層形成工程において、内部保護層の表面上に、有機高分子から なる構造単位及び無機分子カゝらなる構造単位を有する有機無機ハイブリッドィ匕合物 を含む層カゝらなる外部保護層を形成することも好適である。カゝかる有機無機ハイプリ ッドィ匕合物を含む外部保護層を備える希土類磁石は、上述の如ぐ耐食性、耐熱性 に加え、優れた耐湿性をも有するものとなる。
[0060] さらに、本発明の他の希土類磁石の製造方法は、希土類元素を含有する磁石素体 を熱処理して、当該磁石素体の表面上に保護層を形成する希土類磁石の製造方法 であって、磁石素体を酸洗浄する酸洗浄工程と、酸洗浄後の磁石素体を、酸化性ガ スを含有する酸化性雰囲気中で熱処理する熱処理工程とを有することを特徴として もよい。このような熱処理工程は、酸洗浄工程に続いて実施することが好ましぐ酸洗 浄の直後に実施することがより好ましい。
[0061] このような酸洗浄工程を行うことで、磁石素体表面が有する多数の凹凸や酸ィ匕層、 加工変質層を除去してその表面を清浄にできる。これにより、酸洗浄後の熱処理ェ 程において所望の酸ィ匕膜をより精度よく形成することができる。
[0062] 特に、酸洗浄工程にぉ ヽて、焼結後、未加工の部分を含む磁石素体を酸洗浄する 場合、焼結時に磁石素体の内部力 表面に染み出したまた残存することが多い希土 類リッチ層を除去することができる。このため、所望の酸化膜を形成するのに特に効 果的である。
発明の効果
[0063] 本発明によれば、十分な耐食性を有する希土類磁石及びその製造方法を提供す ることが可能となる。
図面の簡単な説明
[0064] [図 1]第 1実施形態に係る希土類磁石を示す概略斜視図である。
[図 2]図 1に示す希土類磁石を II II線に沿って切断した際に表れる断面構成を模式 的に示す図である。
[図 3]第2実施形態に係る希土類磁石を示す概略斜視図である。
[図 4]図 3に示す希土類磁石を IV— IV線に沿って切断した際に表れる断面構成を模 式的に示す図である。
[図 5]実施例 1Aの希土類磁石の電子顕微鏡写真である。
[図 6]図 5の一部を拡大した電子顕微鏡写真である。
[図 7]比較例 1Aの希土類磁石の電子顕微鏡写真である。
[図 8]図 7の一部を拡大した電子顕微鏡写真である。
[図 9]実施例 1Cの希土類磁石の電子顕微鏡写真である。
[図 10]図 9の一部を拡大した電子顕微鏡写真である。
[図 11]比較例 1Cの希土類磁石の電子顕微鏡写真である。
[図 12]図 11の一部を拡大した電子顕微鏡写真である。
[図 13]塩水噴霧試験前の実施例 2Cの希土類磁石の電子顕微鏡写真である。
[図 14]塩水噴霧試験開始から 24時間の時点での実施例 2Cの希土類磁石の電子顕 微鏡写真である。
[図 15]塩水噴霧試験前の比較例 1Cの希土類磁石の電子顕微鏡写真である。
[図 16]塩水噴霧試験開始から 24時間の時点での比較例 1Cの希土類磁石の電子顕 微鏡写真である。
[図 17]塩水噴霧試験前の参考例 1Cの希土類磁石の電子顕微鏡写真である。
[図 18]塩水噴霧試験開始から 24時間の時点での参考例 1Cの希土類磁石の電子顕 微鏡写真である。
符号の説明
[0065] 1…希土類磁石、 3…磁石素体、 5· ··保護層、 5a…第 1の層、 5b…第 2の層、 10 ·· 希土類磁石、 13· ··磁石素体、 15· ··保護層、 16…第 1の層、 17…第 2の層、 18· ··内 部保護層、 19…外部保護層。
発明を実施するための最良の形態
[0066] 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に 説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省 略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係 に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
[第 1実施形態]
[0067] 以下、まず、本発明に係る希土類磁石及びその製造方法の第 1実施形態について 説明する。第 1実施形態の希土類磁石は、希土類元素を含有する磁石素体と、この 磁石素体の表面上に形成された保護層とを備えており、保護層が、磁石素体を覆い 希土類元素を含有する第 1の層、及び、該第 1の層を覆い希土類元素を実質的に含 有しな 、第 2の層を含む構成を有するものである。
[0068] 図 1は、第 1実施形態に係る希土類磁石を示す概略斜視図である。また、図 2は、 図 1に示す希土類磁石を II II線に沿って切断した際に表れる断面構成を模式的に 示す図である。図 1、 2に示すように、本実施形態の希土類磁石 1は磁石素体 3と、こ の磁石素体 3の表面の全体を被覆して形成される保護層 5とから構成されるものであ る。
[0069] (磁石素体)
磁石素体 3は、希土類元素を含有する永久磁石である。この場合、希土類元素とは 、長周期型周期表の第 3族に属するスカンジウム (Sc)、イットリウム (Y)及びランタノ イド元素のことをいう。なお、ランタノイド元素には、例えば、ランタン (La)、セリウム (C e)、プラセォジゥム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、ガド リニゥム(Gd)、テルビ-ゥム(Tb)、ジスプロシウム (Dy)、ホルミウム(Ho)、エルピウ ム(Er)、ツリウム (Tm)、イッテルビウム (Yb)、ルテチウム (Lu)等が含まれる。
[0070] 磁石素体 3の構成材料としては、上記希土類元素と、希土類元素以外の遷移元素 とを組み合わせて含有させたものが例示できる。この場合、希土類元素としては、 Nd 、 Sm、 Dy、 Pr、 Ho及び Tb力もなる群より選ばれる少なくとも一種の元素が好ましぐ これらの元素に La、 Ce、 Gd、 Er、 Eu、 Tm、 Yb及び Yからなる群より選ばれる少なく とも一種の元素を更に含有したものであるとより好適である。
[0071] また、希土類元素以外の遷移元素としては、鉄 (Fe)、コバルト (Co)、チタン (Ti)、 バナジウム(V)、クロム(Cr)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)、ジルコニウム (Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf )、タンタノレ (Ta)、タングステン (W)力もなる群より選ばれる少なくとも一種の元素が好ましぐ Fe及び Z又は Coがよ り好ましい。
[0072] より具体的には、磁石素体 3の構成材料としては、 R— Fe— B系や R— Co系のもの が例示できる。前者の構成材料においては、 Rとしては Ndを主成分とした希土類元 素が好ましぐまた後者の構成材料においては、 Rとしては Smを主成分とした希土類 元素が好ましい。
[0073] 磁石素体 3の構成材料としては、特に、 R—Fe— B系の構成材料が好ましい。この ような材料は実質的に正方晶系の結晶構造の主相を有しており、また、この主相の 粒界部分に希土類元素の配合割合が高い希土類リッチ相、及び、ホウ素原子の配 合割合が高 、ホウ素リッチ相を有して 、る。これらの希土類リッチ相及びホウ素リッチ 相は磁性を有して ヽな 、非磁性相であり、このような非磁性相は通常、磁石構成材 料中に 0. 5〜50体積%含有されている。また、主相の粒径は、通常 1〜: LOO /z m程 度である。
[0074] このような R— Fe— B系の構成材料においては、希土類元素の含有量が 8〜40原 子%であると好ましい。希土類元素の含有量が 8原子%未満である場合、主相の結 晶構造が ex鉄とほぼ同じ結晶構造となり、保持力(iHc)が小さくなる傾向にある。一 方、 40原子%を超えると希土類リッチ相が過度に形成されてしまい、残留磁束密度( Br)が小さくなる傾向にある。
[0075] また、 Feの含有量は 42〜90原子%であると好まし!/、。 Feの含有量力 2原子%未 満であると残留磁束密度が小さくなり、また、 90原子%を超えると保持力が小さくなる 傾向にある。さらに、 Bの含有量は 2〜28原子0 /0であると好ましい。 Bの含有量が 2原 子%未満であると菱面体構造が形成されやすぐこれにより保持力が小さくなる傾向 にあり、 28原子%を超えると、ホウ素リッチ相が過度に形成されて、これにより残留磁 束密度が小さくなる傾向にある。 [0076] 上述した構成材料においては、 R— Fe— B系における Feの一部力 Coで置換され ていてもよい。このように Feの一部を Coで置換すると、磁気特性を低下させることなく 温度特性を向上させることができる。この場合、 Coの置換量は、 Feの含有量よりも大 きくならない程度とすることが望ましい。 Co含有量が Fe含有量を超えると、磁石素体 3の磁気特性が小さくなる傾向にある。
[0077] また上記構成材料における Bの一部は、炭素(C)、リン (P)、硫黄 (S)又は銅 (Cu) 等の元素により置換されていてもよい。このように Bの一部を置換することによって、磁 石素体の製造が容易となるほか、製造コストの低減も図れるようになる。このとき、これ らの元素の置換量は、磁気特性に実質的に影響しない量とすることが望ましぐ構成 原子総量に対して 4原子%以下とすることが好ましい。
[0078] さらに、保持力の向上や製造コストの低減等を図る観点から、上記構成に加え、ァ ルミ-ゥム(A1)、チタン (Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ビスマス (Bi)、ニオブ(Nb)、タンタノレ (Ta)、モリブデン(Mo)、タングステン(W)、アンチモン (Sb)、ゲルマニウム(Ge)、スズ(Sn)、ジルコニウム(Zr)、ニッケル(Ni)、ケィ素(Si) 、ガリウム(Ga)、銅(Cu)、ハフニウム (Hf)等の元素を添加してもよ!/、。これらの添カロ 量も磁気特性に影響を及ぼさない範囲とすることが好ましぐ構成原子の総量に対し て 10原子%以下とすることが好ましい。また、その他、不可避的に混入する成分とし ては、酸素(O)、窒素 (N)、炭素(C)、カルシウム(Ca)等が考えられる。これらは構 成原子の総量に対して 3原子%程度以下の量で含有されて 、ても構わな 、。
[0079] このような構成を有する磁石素体 3は、粉末冶金法によって製造することができる。
この方法にぉ ヽては、まず铸造法やストリップキャスト法等の公知の合金製造プロセ スにより所望の組成を有する合金を作製する。次に、この合金をジョークラッシャー、 ブラウンミル、スタンプミル等の粗粉砕機を用いて 10〜: L 00 μ mの粒径となるように 粉砕した後、更にジェットミル、アトライター等の微粉砕機により 0. 5〜5 /ζ πιの粒径と なるようにする。こうして得られた粉末を、好ましくは 600kAZm以上の磁場強度を有 する磁場のなかで、 0. 5〜5tZcm2の圧力で成形する。
[0080] その後、得られた成形体を、好ましくは不活性ガス雰囲気又は真空中、 1000〜12 00°Cで 0. 5〜: L0時間焼結させた後に急冷する。さらに、この焼結体に、不活性ガス 雰囲気又は真空中、 500〜900°Cで 1〜5時間の熱処理を施し、必要に応じて焼結 体を所望の形状 (実用形状)に加工して、磁石素体 3を得る。
[0081] このようにして得られた磁石素体 3には、さらに酸洗浄が施されることが好ましい。す なわち、後述する熱処理の前段にぉ 、て磁石素体 3の表面に対して酸洗浄が施され ることが好ましい。
[0082] 酸洗浄で使用する酸としては、硝酸が好ましい。一般の鋼材にメツキ処理を施す場 合、塩酸、硫酸等の非酸ィ匕性の酸が用いられることが多い。しかし、本実施形態での 磁石素体 3のように、磁石素体 3が希土類元素を含む場合には、これらの酸を用いて 処理を行うと、酸により発生する水素が磁石素体 3の表面に吸蔵され、吸蔵部位が脆 化して多量の粉状未溶解物が発生する。この粉状未溶解物は、表面処理後の面粗 れ、欠陥、密着不良等を引き起こすため、上述した非酸化性の酸を酸洗浄処理液に 含有させないことが好ましい。したがって、水素の発生が少ない酸ィ匕性の酸である硝 酸を用いることが好ましい。
[0083] このような酸洗浄による磁石素体 3の表面の溶解量は、表面から平均厚みで 5 μ m 以上、好ましくは 10〜15 mとするのが好適である。磁石素体 3の表面の加工による 変質層や酸化層を完全に除去することで、後述する熱処理により、所望の酸化膜を より精度よく形成することができる。
[0084] 酸洗浄に用いられる処理液の硝酸濃度は、好ましくは 1規定以下、特に好ましくは 0. 5規定以下である。硝酸濃度が高すぎると、磁石素体 3の溶解速度が極めて速ぐ 溶解量の制御が困難となり、特にバレル処理のような大量処理ではバラツキが大きく なり、製品の寸法精度の維持が困難となる傾向がある。また、硝酸濃度が低すぎると 、溶解量が不足する傾向がある。このため、硝酸濃度は 1規定以下とすることが好ま しぐ特に 0. 5〜0. 05規定とすることが好ましい。また、処理終了時の Feの溶解量 は、 1〜: LOgZl程度とする。
[0085] 酸洗浄を行った磁石素体 3には、その表面カゝら少量の未溶解物、残留酸成分を完 全に除去するために、超音波を使用した洗浄を実施することが好ましい。この超音波 洗浄は、磁石素体 3の表面に鲭を発生させる塩素イオンが極めて少ない純水中で行 うのが好ましい。また、上記超音波洗浄の前後、及び酸洗浄の各過程で必要に応じ て同様な水洗を行ってもよい。
[0086] (保護層)
保護層 5は、磁石素体 3由来の元素及び酸素を含有し、磁石素体 3を覆い希土類 元素を含有する第 1の層 5aと、当該第 1の層 5aを覆い第 1の層よりも希土類元素の 含有量が少ない第 2の層 5bとを有する。より具体的には、磁石素体 3における上述し た主相を構成する元素及び酸素を含んで 、る。
[0087] ここで、磁石素体 3由来の元素とは、磁石素体 3の構成材料であり、少なくとも希土 類元素及び希土類元素以外の遷移元素が含まれ、さらに B、 Bi、 Si、 A1などが含ま れる場合がある。保護層 5は、磁石素体 3上に塗ったり貼ったりなどしたものではなぐ 磁石素体 3自体が酸化するなどして変化することで、磁石素体 3上に現れる元素から なる。そのため、保護層 5には磁石素体を構成しない新たな金属元素は含まれない 力 酸素、窒素などの非金属元素が含まれる場合がある。
[0088] 第 1の層 5aは、希土類元素を始めとする磁石素体 3由来の元素及び酸素を含有し 、より具体的には、酸素、希土類元素及び希土類元素以外の遷移元素を含有する。 磁石素体 3の構成材料が R— Fe— B系のものである場合には、遷移元素は Feを主 成分とするものであり、その構成材料の組成により Coなどを含んでいてもよい。
[0089] また、第 2の層 5bは、磁石素体 3由来の元素及び酸素を含有するが、第 1の層より も希土類元素の含有量が少ない層である。磁石素体 3の構成材料力 ¾— Fe— B系の ものである場合には、遷移元素は Feを主成分とするものであり、その構成材料の組 成により Coなどを含んでいてもよい。この第 2の層 7による更に優れた耐食性を得る 観点からは、第 2の層 7における希土類元素の含有量は、第 1の層 6における希土類 元素の含有量の半分以下であると好ましぐ第 2の層 7が、希土類元素を実質的に含 有しない層であると更に好ましい。つまり、第 2の層 7は、酸素及び磁石素体 3に含ま れている希土類元素以外の遷移元素を含有する層であると特に好適である。
[0090] 第 1の層 5a及び第 2の層 5bの各構成材料の含有量は、 EPMA(X線マイクロアナ ライザ一法)、 XPS (X線光電子分光法)、 AES (オージ 電子分光法)又は EDS (ェ ネルギー分散型蛍光 X線分光法)等の公知の組成分析法を用いて確認することがで きる。 [0091] ここで、希土類元素を実質的に含有しない態様としては、上述した EPMA、 XPS、 AES又は EDSにより希土類元素が検出されない態様が考えられる。すなわち、第 2 の層 5bにおいては、希土類元素の含有率が、上記組成分析法による検出限界以下 程度となっている。換言すれば、第 2の層 5bには、上記組成分析法により検出限界 以下の希土類元素が含まれて 、てもよ 、。
[0092] 保護層 5は、酸化性ガスを含有する酸化性雰囲気中で、保護層 5が上述した構成と なるように、酸化性ガス分圧、処理温度及び処理時間のうちの少なくとも 1つの条件 を調整して、磁石素体 3を熱処理 (加熱)することによって形成される。なお、かかる熱 処理の際には、酸化性ガス分圧、処理温度及び処理時間の 3つの条件を調整するこ とが好ましい。
[0093] ここで、酸化性雰囲気とは、酸化性ガスを含有する雰囲気であれば特に限定されな いが、例えば、大気、酸素雰囲気 (好ましくは酸素分圧調整雰囲気)、水蒸気雰囲気 (好ましくは水蒸気分圧調整雰囲気)等の酸化が促進される雰囲気である。また、酸 化性ガスとしては、特に限定されないが、酸素、水蒸気等が挙げられる。例えば、酸 素雰囲気とは、酸素濃度が 0. 1%以上の雰囲気であり、その雰囲気には、酸素と共 に不活性ガスが共存している。力かる不活性ガスとしては窒素が挙げられる。つまり、 酸素雰囲気の態様としては酸素と不活性ガスとからなる雰囲気がある。また、例えば 、水蒸気雰囲気とは水蒸気分圧が lOhPa以上の雰囲気であり、その雰囲気には、水 蒸気と共に不活性ガスが共存して 、る。力かる不活性ガスとしては窒素が挙げられ、 水蒸気雰囲気の態様としては水蒸気と不活性ガスとからなる雰囲気がある。酸化性 雰囲気を水蒸気雰囲気とすることで、より簡易に保護層を形成することができることか ら好ましい。さらに、酸化性雰囲気としては、酸素、水蒸気及び不活性ガスを含む雰 囲気も挙げられる。
[0094] 上記条件を調整する際には、先ず、保護層 5の構成と、酸化性ガス分圧、処理温度 及び処理時間のうちの少なくとも 1つの条件との相関を求める。次に、その相関に基 づき、保護層 5が、上記特定の構成となるように、熱処理の際に、酸化性ガス分圧、 処理温度及び処理時間のうちの少なくとも 1つの条件を調整する。
[0095] このとき、処理温度は、 200〜550°Cの範囲力 調整されることが好ましぐ 250-5 oo°cの範囲力も調整されることがより好ましい。処理温度が上記上限値を超えると、 磁気特性が劣化する傾向があり、他方、上記下限値未満であると、所望の酸化膜を 形成することが困難となる傾向がある。
[0096] また、処理時間は、 1分〜 24時間の範囲力 調整されることが好ましぐ 5分〜 10時 間の範囲力も調整されることがより好ましい。処理時間が上記上限値を超えると、磁 気特性が劣化する傾向があり、他方、上記下限値未満であると、所望の酸化膜を形 成することが困難となる傾向がある。
[0097] ここで、酸化性雰囲気が水蒸気雰囲気である場合には、先ず、保護層 5の構成と、 水蒸気分圧、処理温度及び処理時間との相関を求める。次に、その相関に基づき、 保護層 5が、上記特定の構成となるように、熱処理の際に、水蒸気分圧、処理温度及 び処理時間のうちの少なくとも 1つの条件を調整する。
[0098] この場合、処理温度及び処理時間は、上述した範囲内から調整されることが好まし い。また、水蒸気分圧は、 10〜2000hPaの範囲力 調整されることが好ましい。水 蒸気分圧が lOhPa未満であると、保護層 5が上述したような 2層構造になり難い傾向 にある。一方、 2000hPaを超える場合は、高圧であるため装置構成が複雑となるほ 力 結露等が生じ易くなる等、作業性が悪くなる傾向にある。
[0099] また、第 1の層 5aと第 2の層 5bとの総膜厚は、 0. 1 mよりも大きいことが好ましぐ 1 μ m以上であることがより好ましい。この総膜厚が 0. 1 μ m以下であると 2層構造を 有する保護層の形成が困難となる傾向にある。一方、第 1の層 5aと第 2の層 5bとの総 膜厚は、 20 m未満であることが好ましぐ 5 m以下であることがより好ましい。この 総膜厚が 20 m以上であると、酸化膜の形成が困難となったり、磁気特性が低下し たりする傾向にある。
[0100] また、第 2の層 5bの膜厚は、 5nm以上であることが好ましい。この膜厚が 5nm未満 であると、膜厚が薄くなり過ぎるため、腐食の抑制効果が不十分となる傾向がある。
[第 2実施形態]
[0101] 次に、本発明に係る希土類磁石及びその製造方法の第 2実施形態について説明 する。第 2実施形態の希土類磁石は、希土類元素を含有する磁石素体と、この磁石 素体の表面上に形成された保護層とを備えており、保護層は、希土類元素及び Z又 は遷移元素と酸素とを含有する内部保護層と、内部保護層とは異なる構成材料から なる外部保護層とを有するものである。また、第 2実施形態の希土類磁石においては 、内部保護層が、磁石素体を覆い希土類元素を含有する第 1の層、及び、この第 1の 層を覆い希土類元素を実質的に含有しない第 2の層を備える構成を有している。
[0102] 図 3は、第 2実施形態に係る希土類磁石を示す概略斜視図である。また、図 4は、 図 3に示す希土類磁石を IV— IV線に沿って切断した際に表れる断面構成を模式的 に示す図である。図 3、 4に示すように、本実施形態の希土類磁石 10は磁石素体 13 と、この磁石素体 13の表面の全体を被覆して形成される保護層 15とから構成される ものである。また、保護層 15は、磁石素体 13側から順に、内部保護層 18及び外部 保護層 19を有している。更に、内部保護層 18は、磁石素体 13側から順に、第 1の層 16及び第 2の層 17を備えている。以下、希土類磁石 10の各構成についてそれぞれ 説明する。
[0103] (磁石素体)
磁石素体 13は、希土類元素を含有する永久磁石であり、好ましくは、希土類元素 及びこの希土類元素以外の遷移元素を含有している。このような磁石素体 13として は、上述した第 1実施形態で示したものと同様の構成を有するものが好適である。
[0104] (保護層)
保護層 15は、上述の如ぐ磁石素体 13側から順に内部保護層 18及び外部保護層 19を備えるものである。このうち、内部保護層 18は、磁石素体 13側から順に、第 1の 層 16及び第 2の層 17を備えており、このような第 1の層 16及び第 2の層 17としては、 上述した第 1実施形態における第 1の層 5a及び第 2の層 5bと同様のものが挙げられ る。
[0105] 外部保護層 19は、内部保護層 18の表面上に形成された層であり、この内部保護 層 18とは異なり、磁石素体 13が反応する等して形成された層ではなぐ磁石素体 13 の表面上に別途新たに設けられた層である。したがって、外部保護層 19には、磁石 素体 13に由来する元素は含まれな 、こととなる。
[0106] この外部保護層 19としては、種々の構成材料力もなるものが挙げられる力 本実施 形態においては、酸化物層、榭脂層、金属塩層又は有機無機ハイブリッド化合物を 含む層のいずれかが好ましい。以下、これらの外部保護層 19についてそれぞれ説 明する。
[0107] (1)酸化物層
酸化物層は、内部保護層 18 (第 2の層 17)を覆うように形成されており、この内部保 護層 18とは異なる組成を有する酸ィ匕物からなる層である。
[0108] このような酸ィ匕物層は、結晶質であっても非晶質であってもよいが、非晶質であると より好ましい。非晶質の酸化物層は、結晶質の構造において比較的劣化が生じ易い 粒界部分が少ないため、優れた耐食性及び耐熱性を発揮し得るものとなる。
[0109] 酸ィ匕物層としては、金属酸ィ匕物からなる層が挙げられる。例えば、 Al、 Ta、 Zr、 Hf 、 Nb、 P、 Si、 Ti、 Mg、 Cr、 Ni、 Ba、 Mo、 V、 W、 Zn、 Sr、 Bi、 B、 Ca、 Ga、 Ge、 La 、 Pb、 In又は Mnの酸ィ匕物により構成される層であると好ましぐこれらを複数種類含 む層であってもよい。なかでも、 Mo、 Mg又は Wの酸化物、更には Mo又は Wの酸ィ匕 物が好ましぐ Moの酸化物が特に好ましい。これらの酸化物層は、特に優れた耐食 性及び耐熱性を発揮し得る。なお、好適な酸化物層は、上述した各元素の酸化物を 含有するものであるが、必ずしも力かる酸ィ匕物のみ力も構成されるものではなぐ酸ィ匕 物の酸素の一部が窒素 (N)、硫黄 (S)等によって置換されたものが含まれて 、てもよ い。具体的には、例えば、酸化窒化ケィ素(SiO N (0<χ< 1)が挙げられる。一 般に、 SiO N (0<x< 1)は、 n型半導体となる。
[0110] このように、外部保護層 19として酸ィ匕物層を備える保護層 15においては、より良好 な耐食性を得る観点から、外部保護層 19が、 p型酸ィ匕物半導体カゝらなる層及びその 外側に形成された n型酸化物半導体からなる層を備えていると好ましい。また、第 2の 層 17が p型酸化物半導体から構成されており、酸化物層が n型酸化物半導体から構 成されていてもよい。カゝかる構成とすれば、磁石素体 13に含まれる希土類元素の酸 化反応が生じ難くなり、磁石素体 13ひいては希土類磁石 10の劣化が効果的に低減 される。
[0111] このような外部保護層 19の組み合わせとしては、例えば、磁石素体 13が R— Fe— B系の構成材料からなる場合、 Cr、 Cu、 Mn又は Niの酸化物から形成される酸化物 層との組み合わせが挙げられる。 [0112] 酸ィ匕物層からなる外部保護層 19の形成方法としては、例えば、真空蒸着法、スパ ッタ法、イオンプレーティング法、 CVD法若しくは溶射法等の気相成長法、塗布法若 しくは溶液析出法等の液相成長法、ゾルゲル法等の公知の成膜技術が挙げられる。 これらのなかでも、気相成長法 (ドライプロセス)を用いると好ましぐ反応性真空蒸着 法、反応性スパッタ法、反応性イオンプレーティング法、プラズマ CVD法、熱 CVD法 若しくは Cat— CVD法を用いるとより好ましい。このようなドライプロセスによれば、磁 石素体 13の構成材料の溶出に伴う希土類磁石 10の機能低下を防止することができ るよつになる。
[0113] さらに酸ィ匕物層をより低コストで形成する観点からは、一度に大面積を均一に形成 できる方法が好ましい。このような酸化物層の形成方法としては、スパッタ法ゃ CVD 法等が挙げられる。これらの具体的な方法としては、フラットパネルディスプレイの分 野等で確立された、大面積の層を均一に形成する成膜技術を応用して適用すること ができる。
[0114] 例えば、上記のように酸化物半導体からなる酸化物層を形成する場合、原料にァ ルコキシドを用いた常圧熱 CVD法を適用することが好ましい。力かる方法によれば、 安価に良質な酸ィ匕物層を形成することができる。原料に用いるアルコキシドとしては、 Si(OC H ) 、 B(OCH ) 、 B(OC H ) 、 Ge(OC H ) 、 A1(CH COCHCOCH
2 5 4 3 3 2 5 3 2 5 4 3 3
) 、 Al(0-i-C H ) 、 Ga(0-i-C H ) 、 ln(0— i C H ) 、 Sn(0—i—C H
2 3 7 3 3 7 3 3 7 3 3 7
) 、Pb(0—i—CH ) , Bi(0-t-C H ) 、Ti(0—i—CH ) 、TiO(CH COC
4 3 7 2 5 11 3 3 7 4 3
HCOCH ) 、 V(OC H ) 、 VO(CH COCHCOCH ) 、 Cr(CH COCHCOCH
3 2 2 5 3 3 3 2 3 3
) 、 Fe(0—i—C H ) 、 Co(CH COCHCOCH ) 、 Co(CH COCHCOCH ) 、
3 3 7 3 3 3 3 3 3 2
Ni(0 C H ) 、 Ni(CH COCHCOCH ) 、 Cu(0 C H ) 、 Cu(CH COCHCO
2 5 7 3 3 3 2 2 5 7 3 3
CH ) 、 Zn(OC H ) 、 Zn(CH COCHCOCH ) 、 Zr(0—i—C H ) 、 Zr(0—t
3 2 2 5 2 3 3 2 3 7 4 C H ) 、 Zr(0— n— C H ) 、 Nb(OC H ) 、 Mo(OC H ) 、 Hf (O— i C H )
4 9 4 4 9 4 2 5 5 2 5 5 3 7
、 Ta(OC H ) 、 W(OC H ) 、 Mg(OC H ) 、 Ca(OC H ) 、 Sr(0— i— C H )
4 2 5 5 2 5 5 2 5 2 2 5 2 3 7 2
、 Ba(OC H ) 、 La(0-i-C H ) 、 P(OCH ) 、 PO (OCH ) 、 PO(OC H ) 、
2 5 2 3 7 3 3 3 3 3 2 5 3
Cr(OC H ) 、 Mo(C H O ) 、 Mo(C H O ) 、 MoO (C H O ) などの金属アル
2 5 3 5 5 2 2 5 7 2 2 2 5 7 2 2 コキシドが挙げられる。 [0115] また、真空蒸着法は、一般的に蒸着源が点源であるため、一度に大面積の層を均 一に形成する必要のあるディスプレイの形成に用いるには不利な面がある力 本実 施形態の希土類磁石 10は比較的小型であるため、真空蒸着法によっても容易に酸 化物層を形成することができる。ところが、真空蒸着法は、一度に成膜できる面積が 小さいため、酸ィ匕物層の形成コストが高くなる傾向にある。そこで、真空蒸着法を用 いる場合には、酸ィ匕物層の形成コストを下げるため、成膜速度を上げることが望まし い。ただし、成膜速度が高くなりすぎるとスプラッシュ等の粗大粒子が発生し、それに 起因して、均一な表面を有する酸化物層が得られなくなる場合もある。
[0116] イオンプレーティング法は、減圧容器中で、陽極としてコーティング材 (本実施形態 においては酸ィ匕物層の構成材料)、陰極として被コーティング基板 (本実施形態にお いては内部保護層 18が形成された磁石素体 13)を配置し、反応性ガスの存在下若 しくは非存在下で、陽極を加熱することによりコーティング材を原子状、分子状又は 微粒子状とし、これを熱電子等でイオン化したものを陰極の被コーティング基板に付 着させる手法である。
[0117] このイオンプレーティング法において、イオン化する物質の加熱方法としては、るつ ぼ方式若しくは直接抵抗加熱方式の抵抗加熱法、高周波誘導加熱法、又は電子線 加熱法などを用いることができる。これらのうち抵抗加熱法は、蒸気圧の低い無機化 合物を成膜するには適さない傾向にある。また、電子線加熱法は、様々な材料を蒸 発することができるが、成膜速度が高くなるとスプラッシュ等の粗大粒子が発生し、そ れに起因して、均一な表面を有する酸化物層が得られなくなる場合がある。
[0118] さらにイオンプレーティング法は、蒸着源が点源であるため、上記真空蒸着法と同 様に比較的低コストで酸ィ匕物層を形成することが困難な傾向にある。そこで、イオン プレーティング法を用いて、比較的低コストで酸ィ匕物層を形成するには、「月刊デイス プレイ」の 1999年 9月号、第 28頁に提案されている圧力勾配型ホロ一力ソード型プ ラズマガンによる高密度プラズマを利用した成膜装置を用いればよ 、。この方法はィ オンプレーティング法の 1種であり、特開平 2— 209475号公報に記載されているよう なシート状プラズマを用いるので、比較的低コストで大面積の層を均一に形成するこ とができる。しかも、この方法はプラズマガンのイオン化率が従来のものと比較して極 めて高いため、蒸発粒子のイオン化率が高くなり、基板温度が比較的低温であっても 膜密度を高く維持することができ、表面形状を含めた結晶性及び反応性等の膜質改 善効果が得られる、などの効果を奏することができる傾向にある。
[0119] 酸化物層を形成する際の成膜温度は特に限定されないが、成膜時の熱履歴が磁 石素体 13の磁気特性を劣化させない程度とすることが好ましい。そのような観点から 、成膜温度は、 500°C以下であると好ましぐ 300°C以下であるとより好ましい。
[0120] 酸ィ匕物層を形成する際の雰囲気ガスの組成は特に限定されないが、例えば、酸ィ匕 物層中の酸素含有量を、これを構成している酸ィ匕物中の酸素の化学量論量よりも少 なくする場合には、成膜速度、基板温度あるいは雰囲気ガス中の酸素濃度を調整す るのがよい。具体的には、例えば、酸ィ匕物層の構成材料として酸ィ匕アルミニウムを用 いる場合、成膜速度が 0. 4nmZ秒以上となるように成膜条件を調整すると、得られ る酸ィ匕物層中の酸素含有量は、 A1含有量に対して、原子基準で 1. 5倍未満となる 傾向にある。ここでいう成膜条件とは、例えば、上述のイオンプレーティング法の場合 、イオンィ匕する物質の加熱条件などをいう。また、抵抗加熱法及び高周波誘導加熱 法においては投入電力、電子線加熱法においては電子線の電流量などがその成膜 条件に該当する。
[0121] また、酸化物層を形成する際には、まず酸化物を構成する金属元素を形成した後、 高温酸化法、プラズマ酸化法、陽極酸化法等の後処理を行うことにより酸素量を制 御してちょい。
[0122] さらに、酸ィ匕物層の形成方法としては、拡散浸透法が挙げられる。拡散浸透法とは 、スパッタリング等により金属等の膜を形成した後、 200〜500°Cに加熱して空気酸 化させる方法である。
[0123] なお、外部保護層 19である酸ィ匕物層としては上述した例では単層構造のものを例 示したが、酸化物層は、複数の層から構成される層であってもよい。また、酸化物層 中には磁石素体由来の元素が含まれないこととしたが、当該層の特性を低下させな い程度であれば、例えば、内部保護層 18を介して移動する等によって、磁石素体由 来の元素が含まれて 、てもよ 、。
[0124] (2)榭脂層 外部保護層 19の他の例である榭脂層は、内部保護層 18 (第 2の層 17)を覆うように 形成されており、榭脂を含有して構成される層である。カゝかる榭脂 (resin)としては合 成榭脂でも天然榭脂でもよいが、合成樹脂が好ましぐ熱硬化性榭脂がより好ましい
[0125] 熱硬化性榭脂としては、フエノール榭脂、エポキシ榭脂、ウレタン榭脂、シリコーン 榭脂、メラミン榭脂、エポキシメラミン榭脂、熱硬化性アクリル榭脂等が挙げられる。ま た、熱可塑性榭脂としては、アクリル酸、エチレン、スチレン、塩化ビュル、酢酸ビ- ル等のビニルイ匕合物を原料とするビュル榭脂が挙げられる。また、榭脂層は、金属粒 子、酸ィ匕物粒子等を含有していてもよい。
[0126] 榭脂層は、上述した各榭脂を用いて形成される。すなわち、上述した各榭脂を有機 溶剤に溶解させて榭脂層形成用塗布液を調製し、かかる塗布液を内部保護層 18の 表面上に塗布して乾燥させることで榭脂層を形成することができる。
[0127] この榭脂層を形成する際の塗布方法は特に限定されな 、が、ディップコート法、デ イッブスピンコート法、スプレーコート法等が挙げられる。また、榭脂層は、榭脂層形 成用塗布液を 1回塗布することで形成してもよぐ複数回塗布して形成してもよい。榭 脂層を、塗布液を複数回塗布することにより形成した場合には、未塗布部分が生じに くい傾向にある。
[0128] 外部保護層 19である榭脂層の膜厚は、 0. 1〜: LOO /z mが好ましぐ 1〜50 mが より好まし 、。
[0129] 外部保護層 19である榭脂層を構成する榭脂としては、上述したなかでも、フエノー ル榭脂、エポキシ榭脂又はメラミン榭脂を含む層が好ましい。特に、フエノール榭脂 又はエポキシ榭脂と、メラミン榭脂とを組み合わせて含む層であるとより好ま 、。
[0130] フエノール榭脂としては、アルキルフエノール榭脂ゃアルキル多価フエノール榭脂 が挙げられ、例えば、アルキルフエノール、アルキル多価フエノールのモノマー、オリ ゴマーやこれらの混合物を硬化して得られたものが例示できる。硬化は、例えば、上 述したモノマー等とホルムアルデヒドとを反応させてレゾールを形成した後、得られた レゾールを重合する方法や、ウルシオールと水とを反応させる方法により行うことがで きる。 アルキルフエノール又はアルキル多価フエノールとしては、下記一般式(1)で表さ れる化合物が挙げられる。
[化 1]
Figure imgf000028_0001
[0132] 式中、 R 及び R はヒドロキシル基又はアルキル基を示し、 R 及び R のうち少な くとも一方はアルキル基である。なかでも、式中のヒドロキシ基のオルト位にヒドロキシ 基を有するとともに、メタ位又はパラ位にアルキル基を有するアルキル多価フエノー ルが好ましい。
[0133] このようなアルキル多価フエノールとしては、一般にうるし塗料に含まれる成分が好 適であり、具体的には、メタ位に C H 基を有するウルシオール、パラ位に C
17 25 17
H 基を有するチチオール又はメタ位に C H 基を有するラッコール等が挙げら
33 17 31
れる。
[0134] 上記のアルキルフエノール又はアルキル多価フエノールは、還元剤として作用する ことができるため、力かる樹脂からなる外部保護層 19を形成する際、硬化のために高 温で熱処理が行われたとしても、磁石素体 13は強 ヽ還元雰囲気で覆われることとな り、この磁石素体 13が酸ィ匕されることによる劣化を大幅に低減することができる。
[0135] また、エポキシ榭脂としては、特に制限されな!ヽが、例えば、ビスフエノール型、ポリ オールのグリシジルエーテル型、ポリアシッドのグリシジルエステル型、ポリアミンのグ リシジルァミン型、脂環式エポキシ型等のエポキシィ匕合物が適用できる。また、ェポキ シ榭脂は、上述したエポキシィ匕合物に加え、当該化合物を硬化させ得る硬化剤を更 に含むことが好ましい。硬化剤としては、例えば、ポリアミン類、ポリアミンのエポキシ 榭脂付加物、ポリアミドアミン類、ポリアミド榭脂等が挙げられ、具体的には、メタキシ レンジァミン、イソホロンジァミン、ジエチレントリァミン、トリエチレンテトラミン、ジァミノ ジフエ-ルメタン等が例示できる。
[0136] さらに、メラミン榭脂は、メラミン(2, 4, 6 トリアミノ一 1, 3, 5 トリァジン)とホルム アルデヒドを反応させてメチロールメラミンを得た後、これを硬化して得られる榭脂で ある。このようなメラミン榭脂は、単独で外部保護層 19を形成してもよいが、例えば、 上述したフエノール榭脂ゃエポキシ榭脂と組み合わせて用いることがより好ま 、。
[0137] メラミン榭脂は、フエノール榭脂ゃエポキシ榭脂中に多くの架橋構造を形成すること ができることから、これらを組み合わせて含む外部保護層 19は、耐熱性及び強度に 極めて優れたものとなる。その結果、希土類磁石 10の耐食性、耐熱性が一層向上す る。
[0138] フエノール榭脂、エポキシ榭脂又はメラミン榭脂を含む外部保護層は、例えば、こ れらの榭脂を溶媒に溶解又は分散させて溶液又はワニスとし、これを内部保護層 18 の表面上に塗布し、適宜乾燥等を行った後、加熱等により上記榭脂を硬化させること によって形成することができる。
[0139] (3)金属塩層
外部保護層 19である金属塩層は、内部保護層 18 (第 2の層 17)を覆うように形成さ れており、主として金属塩力も構成される層である。
[0140] この金属塩から構成される外部保護層 19は、内部保護層 18が形成された磁石素 体 13に化成処理を施すことにより形成された化成処理層であると特に好ましい。この ような化成処理層は、例えば、金属塩力 なる多数の小さな板状結晶が内部保護層 18 (第 2の層 17)を覆うように付着した形状を有するものとなる。
[0141] 金属塩層(化成処理層)を構成する金属塩としては、 Cr、 Ce、 Mo、 W、 Mn、 Mg、 Zn、 Si、 Zr、 V、 Ti及び Feからなる群より選ばれる少なくとも一種の金属元素を含む ものが挙げられ、これらの元素と P、 0、 C及び Sからなる群より選ばれる少なくとも一 種の元素とを含むものが好ましい。具体的には、上記金属元素のリン酸塩又は硫酸 塩が好ましぐリン酸塩がより好ましい。
[0142] なかでも、金属塩としては、 Mo、 Ce、 Mg、 Zr、 Mn及び Wからなる群より選ばれる 少なくとも一種の金属元素と、 P、 0、 C及び Sからなる群より選ばれる少なくとも一種 の元素とを含むものが好ましぐ上記金属元素のリン酸塩又は硫酸塩がより好ましぐ リン酸塩が特に好ましい。
[0143] 金属塩層 (化成処理層)は、上述の如ぐ内部保護層 18が形成された磁石素体 13 の表面に化成処理を施すことによって好適に形成し得る。化成処理に際しては、ま ず、内部保護層 18が形成された磁石素体 13に対し、アルカリ脱脂剤等を用いて表 面を洗浄する。次いで、この磁石素体 13を化成処理液に浸漬する等により磁石素体 13に対して化成処理を行い、第 2の層 17の表面上に化成処理層を形成する。
[0144] 化成処理に用いる化成処理液としては、上述した金属塩を構成する金属及び酸ィ オンを含む水溶液が挙げられる。例えば、金属塩層として上述した金属のリン酸塩か らなる化成処理層を形成する場合、金属原料、リン酸及び酸化剤を含む化成処理液 を用いることができる。
[0145] より具体的には、リン酸モリブデン力 なる金属塩層(化成処理層)を形成する場合 、化成処理液としては、金属原料としてモリブデン酸ナトリウム等のモリブデン酸塩や モリブデン酸を含み、これをリン酸及び酸化剤と組み合わせたものが適用できる。
[0146] また、リン酸セリウム力もなる金属塩層を形成する場合には、化成処理液としては、 金属原料として硝酸セリウム等のセリウム塩を含み、これをリン酸及び酸化剤と組み 合わせたものが適用できる。化成処理液に含有させる酸化剤としては、亜硝酸ナトリ ゥム、硝酸ナトリウム、過マンガン酸カリウム、クロム酸ナトリウム、過酸化水素等が挙 げられる。
[0147] 化成処理の際の化成処理液温度は特に制限されないが、磁石素体 13と化成処理 液との反応を促進して金属塩層 (化成処理層)を短時間で形成させる観点から、化成 処理液は室温以上に加熱して用いることが好ましぐ例えば、 30〜: LOO°Cとすること が好ましい。また、磁石素体 13を化成処理液に浸漬させる時間(化成処理時間)は、 特に制限されないが、 1〜60分とすることが好ましぐ 2〜30分とすることがより好まし い。化成処理時間が 1分未満であると、化成処理層の形成状態が不均一となる傾向 にあり、 60分を超えると、化成処理層が厚くなりすぎて緻密性が低下し、得られる希 土類磁石 10の耐食性等が劣化する場合がある。
[0148] そして、化成処理の後には、得られた希土類磁石 10の表面を水洗して、表面に残 存する化成処理液等を十分に除去し、その後、希土類磁石 10を加熱する等して十 分に乾燥させることが好ましい。乾燥が不十分であると、表面に付着した水分によつ て希土類磁石 10の腐食が引き起こされる場合がある。ただし、乾燥の際の加熱温度 は、希土類磁石 10の特性を劣化させな 、程度の温度とすることが好ま 、。
[0149] 上述したような化成処理を、金属元素を含む基体に対して行う場合には、化成処理 は、通常、基体中の金属元素が溶解することによって進行し、これによつて安定な化 成処理層が形成される。ところが、 R—TM— B系のような磁石素体の表面上に化成 処理層を直接形成しょうとすると、上述したような磁石素体中の希土類リツチ相が選 択的に溶解されてしまうため、従来は十分に化成処理層が形成できない傾向にあつ た。ところが、上記実施形態においては、希土類元素を含む磁石素体 13の表面上に 内部保護層 18を形成させた後に、化成処理を行っていることから、このような希土類 リッチ相の選択的溶解が極めて生じ難くなつている。こうして、本実施形態において は、希土類磁石 10の最外層に安定な金属塩層 (化成処理層)が形成されることとな る。
[0150] (4)有機無機ハイブリッド化合物を含む層
有機無機ノ、イブリツドィ匕合物を含む外部保護層 19は、内部保護層 18 (第 2の層 17 )を覆うように形成されている。
[0151] 有機無機ハイブリッド層に含まれる有機無機ハイブリッドィ匕合物は、有機高分子か らなる構造単位及び無機高分子力 なる構造単位を含む化合物である。以下、説明 の便宜上、必要に応じて「有機高分子カゝらなる構造単位」を「有機構造単位」といい、 「無機高分子カゝらなる構造単位」を「無機構造単位」 t ヽぅ。
[0152] 有機構造単位としては、炭素原子同士の結合により構成される主鎖を有する高分 子構造が挙げられる。当該主鎖は、その一部に炭素以外の原子、例えば酸素原子、 窒素原子等を有していてもよい。このような有機構造単位としては、有機化合物から 形成される重合体構造であれば特に制限はなぐ例えば、付加重合、重縮合、重付 加等の各種重合反応により形成された有機化合物の重合体構造が挙げられる。なか でも、ビニル基含有モノマーから形成されるビニル系重合体構造やエポキシ基含有 モノマー力も得られるエポキシ系重合体構造が好適である。
[0153] また、無機構造単位としては、炭素原子以外の元素により構成される主鎖を有する 高分子構造が挙げられる。かかる主鎖は、炭素以外の元素として金属原子を含有し ており、金属原子と酸素原子とが交互に結合してなる構造を有するものであると好ま しい。無機構造単位の主鎖が有している金属原子としては、 Si、 Al、 Ti、 Zr、 Ta、 M o、 Nb又は Bが好ましい。
[0154] なかでも、 Si— O 結合を含む主鎖を有する高分子構造、特にポリシロキサン構 造は比較的容易に合成することが可能であり、種々の構造を有する重合体を形成で きること力 、無機構造単位における主鎖を構成する重合体構造として特に好ま ヽ 。この Si— O 結合を含む主鎖を有する高分子構造としては、下記式(2)で表さ れる化合物及び Z又はこの加水分解生成物を、縮合又は共縮合させてなる重合体 構造が特に好適である。このような重合体構造カゝらなる無機構造単位は優れた応力 緩和性を有して 、るため、この構造を含む有機無機ノ、イブリツドィ匕合物を含む保護 層は、クラック等が発生し難いものとなる。
[化 2]
R21 mSi(OR22)4-m (2)
[0155] なお、上記式中、 R21は炭素数 1〜8の有機基、 R22は炭素数 1〜5のアルキル基又 は炭素数 1〜4のァシル基を示し、 mは 1又は 2である。 R21又は R22が複数存在する 場合、それぞれは同一でも異なっていてもよい。
[0156] 有機無機ハイブリッドィ匕合物としては、有機構造単位と無機構造単位とが共有結合 により結合したィ匕合物、有機構造単位と無機構造単位とが水素結合により結合した 化合物、又は、芳香環を有する有機構造単位と芳香環を有する無機構造単位とがこ れらの芳香環同士の相互作用によって結合した化合物が挙げられる。以下、これら の有機無機ハイブリッドィ匕合物についてそれぞれ説明する。
[0157] まず、有機構造単位と無機構造単位とが共有結合により結合した有機無機ハイプリ ッド化合物について説明する。
[0158] 有機構造単位と無機構造単位との共有結合は、主に、有機構造単位における炭素 原子と無機構造単位における金属原子との間の結合である。この共有結合は、上記 炭素原子と上記金属原子とが直接結合してなるものであってもよぐまた炭素原子と 金属原子とがこれら以外の元素を介して結合したものであってもよ 、。後者の場合、 炭素原子と金属元素との間には、共有結合のみが形成されることになる。なかでも、 有機無機ハイブリッドィ匕合物における共有結合は、前者の炭素原子と金属原子とが 直接結合してなるものが好ま 、。
[0159] このような有機無機ハイブリッド化合物は、例えば、以下に示す方法によって形成 することができる。すなわち、互いに縮合可能な官能基をそれぞれ有している有機高 分子化合物及び無機化合物を準備し、有機高分子化合物と無機化合物との縮合反 応を生じさせるとともに、無機化合物同士の縮合反応を生じさせて高分子化し、これ により有機構造単位及び無機構造単位を有する有機無機ノ、イブリツドィ匕合物を得る 方法が挙げられる。
[0160] このような製造方法にぉ 、て、有機高分子化合物又は無機化合物が有する縮合可 能な官能基の組み合わせとしては、ヒドロキシル基とアルコキシ基の組み合わせゃヒ ドロキシル基同士の組み合わせが挙げられる。また、双方がアルコキシ基を有してい てもよく、この場合は、一方のアルコキシ基を加水分解してヒドロキシル基を形成する ことで、上述した縮合を生じさせることができる。
[0161] 例えば、有機高分子化合物が、一部に— M1— OR (M1は金属元素)で表される官 能基を有し、無機化合物がー M2— ORで表される官能基を有している場合、これら の加水分解—縮合反応によって、—M1— O— M2—で表される結合が生じる。また、 無機化合物中の— M2— ORで表される官能基同士で縮合反応が生じ、これにより無 機構造単位が形成される。その結果、有機構造単位と無機構造単位とが共有結合 により結合した有機無機ハイブリッドィ匕合物が得られる。 M1及び M2で表される金属 元素としては、縮合反応の容易さ及び入手の容易さ等を考慮すると、 Siが特に好まし い。
[0162] そして、このような有機無機ハイブリッド化合物を含む外部保護層 19は、例えば、 上述した有機高分子化合物及び無機化合物を含む溶液を準備し、これを内部保護 層 18の表面に塗布した後、加熱するか、又は、大気中に放置することにより無機化 合物の重合反応 (例えば、縮合反応)を生じさせることによって形成することができる 。また、外部保護層 19は、予め有機無機ハイブリッドィ匕合物を形成しておき、これを 内部保護層 18の表面に塗布することにより形成してもよい。
[0163] 次に、有機高分子力 なる構造単位と無機高分子力もなる構造単位とが水素結合 により結合した有機無機ハイブリッドィ匕合物について説明する。
[0164] ここで、「水素結合」とは、 2原子間に水素が介在して形成される結合のことをいい、 一般的には X— H—Yで表される。 X及び Yは、水素結合により結合される 2つの原 子を示し、 X—Hは X原子と水素の共有結合を示す。つまり、 X— Hで表される基と Y 原子との間で水素結合が形成されている。このような観点力もは、力かる有機無機ハ イブリツドィ匕合物は、互いに別々の分子である有機高分子と無機高分子とが水素結 合によって結合したものと考えることもできる。
[0165] 有機構造単位及び無機構造単位は、水素結合を形成するために、互いに水素結 合を形成可能な官能基を分子中に有している。ここで、水素結合を形成可能な官能 基としては、水素結合において水素を供与するプロトン供与性の官能基 (上記 X—H で表される基)、及び、水素結合において水素を受容するプロトン受容性の官能基( 上述の Yを含有する基)の組み合わせが挙げられる。
[0166] 有機構造単位及び無機構造単位は、それぞれプロトン供与性及びプロトン受容性 のうちどちらの官能基を有していても構わないが、有機構造単位がプロトン受容性の 官能基を有しており、無機構造単位がプロトン供与性の官能基を有していると好まし い。
[0167] 有機構造単位の有する、プロトン受容性の官能基としては、電気陰性の大きい酸素 原子、窒素原子、フッ素原子、塩素原子等を有する官能基が挙げられる。具体的に は、アミド基、イミド基、カーボネート基、ウレタン基が好ましい。なかでも、アミド基が、 水素結合を形成する際に高いプロトン受容性を発揮し得ることから特に好ましい。こ のような有機構造単位 (有機高分子)としては、具体的には、ポリビュルピロリドン、ポ リオキサゾリン、ポリアクリルアミド誘導体、ポリ(N—ビュル力プロラタトン)、ポリビュル ァセトアミド又はナイロン誘導体が挙げられる。
[0168] 無機構造単位におけるプロトン供与性の官能基は、例えば OH、 一 NHで表され る構造を有する官能基である。このような構造を含む官能基としては、具体的には水 酸基ゃァミノ基が例示できる。なかでも水酸基は、上述したプロトン受容性の官能基 と水素結合を良好に形成し得ることから特に好ましい。
[0169] このような無機構造単位としては、上記式(2)で表される化合物及び Z又はこの加 水分解生成物を縮合又は共縮合させてなる重合体構造であって、かかる構造中に、 上記縮合又は共縮合反応において— OR22で表されるアルコキシ基が加水分解され て生じた水酸基を有するものが好適である。その結果、主鎖が— Si— O—結合により 構成されており、プロトン供与性の官能基である水酸基を有しているポリシロキサンが 得られる。
[0170] 有機構造単位と無機構造単位との間に水素結合が形成されているかどうかは、例 えば、フーリエ変換赤外分光測定装置 (FT— IR)によって確認することができる。具 体的には、外部保護層 19の剥離片を FT— IRにより分析すると、水素結合が形成さ れている場合、水素結合に寄与している官能基が、通常、水素結合に関与していな V、状態で得られる吸収波数力 シフトした位置に吸収を示すようになる。
[0171] このような有機無機ハイブリッド化合物は、例えば、プロトン受容性の官能基を有す る有機高分子化合物、及び、プロトン供与性の官能基を有する無機化合物を準備し 、これらを混合した後、無機化合物の重合を生じさせることにより、有機構造単位及 び無機構造単位を有する有機無機ハイブリッドィ匕合物を得る方法が挙げられる。この 場合、無機化合物は、上述のアルコキシ基のような、加水分解等の反応後にプロトン 供与性の官能基となる官能基を有するものであってもよい。
[0172] 力かる製造方法に用いる有機高分子化合物としては、上述した有機構造単位を形 成し得るポリビュルピロリドン、ポリオキサゾリン、ポリアクリルアミド誘導体、ポリ(N—ビ 二ルカプロラタトン)、ポリビュルァセトアミド又はナイロン誘導体が挙げられる。また、 無機化合物としては、上記一般式(1)で表される化合物が挙げられる。
[0173] そして、このような有機無機ハイブリッド化合物を含む外部保護層 19は、例えば、 上述した有機高分子化合物及び無機化合物を含む溶液を準備し、これを内部保護 層 18の表面に塗布した後、加熱、又は、大気中に放置することによりかかる溶液中 で無機化合物の重合反応 (例えば、縮合反応)を生じさせること〖こよって形成すること ができる。なお、外部保護層 19は、予め有機無機ハイブリッド化合物を形成しておき 、これを内部保護層 18の表面に塗布することにより形成してもよい。
[0174] 次に、芳香環を有する有機構造単位と芳香環を有する無機構造単位とがこれらの 芳香環同士の相互作用によって結合した有機無機ハイブリッドィ匕合物について説明 する。
[0175] 芳香環とは、芳香族に属する環の総称であり、例えば、ベンゼン環、縮合ベンゼン 環、非ベンゼン系芳香環、複素芳香環等のような、 π電子が非局在化している熱力 学的に安定な環状構造をいうものとする。なかでも、有機構造単位及び無機構造単 位が有して 、る芳香環としては、ベンゼン環が好まし!/、。
[0176] そして、この有機無機ハイブリッド化合物は、有機構造単位と無機構造単位とが、そ れぞれの芳香環における π電子同士の相互作用( π— π相互作用)によって弱く結 合したものである。このような観点からは、力かる有機無機ハイブリッドィ匕合物は、互 いに別々の分子である有機高分子と無機高分子とが π— π相互作用によって結合 したちのと考免ることちでさる。
[0177] このような芳香環を有する有機構造単位 (有機高分子)は、主鎖又は側鎖のいずれ に芳香環を有するものであってもよぐ熱可塑性の有機高分子及び熱硬化性の有機 高分子の両方を適用できる。熱可塑性の有機高分子としては、ポリスチレン、ポリエス テル、ポリフエ二レンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリフタルァ ミド、ポリフエ-レンサルファイド、ポリアリレート、ポリイミド、ポリアミドイミド、ポリエーテ ルイミド等が挙げられる。また、熱硬化性の有機高分子化合物としては、繰り返し構 造単位中に一つ以上の芳香環を有する、フエノール榭脂、エポキシ榭脂、アクリル榭 脂、メラミン榭脂、アルキド榭脂、尿素樹脂等が挙げられる。
[0178] また、芳香環を有する無機構造単位 (無機高分子)は、主鎖又は側鎖の!/、ずれに 芳香環を有するものであってもよぐ例えば、上記式(2)で表される化合物及び Ζ又 はその加水分解生成物を縮合又は共縮合させてなる重合体構造であって、 R21で表 される基の少なくとも 1つが芳香環を有する基であるものが好ましい。かかる芳香環は 、ベンジル基、 β フエネチル基、 ρ トルィル基、メシチル基、 ρ—スチュル基又は フエニル基の形で上記式(2)の化合物に導入されて 、ると好ま U、。
[0179] そして、このような有機無機ハイブリッド化合物を含む外部保護層 19は、例えば、 上述した有機高分子化合物及び無機化合物を含む溶液を準備し、これを内部保護 層 18の表面に塗布した後、加熱、又は、大気中に放置することによりかかる溶液中 で無機化合物の重合反応 (例えば、縮合反応)を生じさせること〖こよって形成すること ができる。なお、外部保護層 19は、予め有機無機ハイブリッド化合物を形成しておき 、これを内部保護層 18の表面に塗布することにより形成してもよい。
[0180] (無機添加剤)
外部保護層 19は、上述した酸化物層、榭脂層、金属塩層又は有機無機ハイブリツ ド化合物を含む層のいずれかである力 当該層 19は、これらの構成材料に加えて無 機添加剤を含有していてもよい。このように無機添加剤を含有することで、外部保護 層 19は、更に優れた耐熱性を有するほか、強度の点においても優れるものとなる。
[0181] このような無機添加剤は、板状構造を有する無機添加剤 (板状無機添加剤)である と好ましぐ上記の有機無機ハイブリッド化合物ゃ榭脂、或いは、外部保護層の形成 時に用いる溶媒等に対して不溶のものが好まし 、。
[0182] このような無機添加剤の構成材料としては、例えば、タルク、シリカ、チタ-ァ、アル ミナ、カーボンブラック(CB)、酸化亜鉛 (ZnO)、ケィ酸マグネシウム(MgSiO)、硫 酸バリウム (BaSO )等が挙げられる。外部保護層 19中の無機添加剤の含有量は、
4
外部保護層 19の総質量中、 1〜30質量%とすることが好ましい。
[0183] 以上、好適な実施形態に係る希土類磁石 10及びその製造方法について説明した 力 このような構成を有する希土類磁石 10においては、まず、第 1の層 16及び第 2の 層 17からなる内部保護層 18は、磁石素体 13の表面が変化することにより形成されて いることから、緻密な構造を有し、また磁石素体 13への密着性に優れるという特性を 有している。このため、磁石素体 13に対する湿気等の外気の影響を良好に低減し得 る。また、この内部保護層 18を覆うようにされた外部保護層 19は、磁石素体 13 (第 2 の層 17)の表面上に別途設けられた安定な層であるから、磁石素体 13由来の層で は得られ難 ヽ優れた耐熱性を発揮し得る。
[0184] 従来、希土類磁石の保護層としては、磁石素体の表面を酸ィ匕して得られる単層の 酸化物層、又は、磁石素体の表面に塗布等により形成された榭脂層等が知られてい る力 単層の酸ィ匕物層のみでは十分な耐食性が得られ難ぐまた、榭脂層のみでは 十分な耐熱性 (具体的には、 120°C程度を超える温度に耐え得る耐熱性)が得られ 難い傾向にあった。これに対し、上記第 2の実施形態に係る希土類磁石 10は、上述 したような内部保護層 18と外部保護層 19を含む保護層 15を備えていることから、上 記従来の保護層を備える希土類磁石に比して、耐食性に優れるのみならず、ハイブ リツドカーのモーター等の用途において要求される 200°C程度の高温にも耐え得る 耐熱性を有するものとなる。
[0185] なお、第 2実施形態の希土類磁石は、上述したものに限定されず適宜変更されたも のであってもよい。例えば、上述した実施形態では、内部保護層 18として、第 1の層 16及び第 2の層 17を備える 2層構造のものを例示した力 これに限定されず、内部 保護層 18は一層構造のものであってもよい。一層構造の内部保護層 18としては、例 えば、磁石素体 13の表面を酸化してなる酸化物層が挙げられる。このような酸ィ匕物 層としては、磁石素体由来の希土類元素及び Z又は遷移元素と、酸素原子とを含む 層が挙げられる。 実施例
[0186] 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に 限定されるものではない。
[実施例 A]
[0187] (実施例 1A)
粉末冶金法により、組成が 14. 7Nd- 77. 6Fe- l. 6Co— 6. IB (数字は原子百 分率を表す。)である铸塊を作製し、これを粗粉砕した。その後、不活性ガスによるジ エツトミル粉砕を行って、平均粒径約 3. 5 mの微粉末を得た。得られた微粉末を金 型内に充填し、磁場中で成形した。次いで、真空中で焼結後、熱処理を施して焼結 体を得た。得られた焼結体を 20mm X 10mm X 2mmの寸法に切り出しカ卩ェし、さら にバレル研磨を施し、実用形状に加工した磁石素体を得た。
[0188] 次に、得られた磁石素体を 2%HNO水溶液中に 2分間浸漬し、その後超音波水
3
洗を施した。
[0189] 上記のように酸洗浄 (酸処理)を施した磁石素体を、水蒸気分圧 475hPaの窒素雰 囲気中、 450°Cで 10分間の熱処理を行い、保護層を形成して希土類磁石を得た。
[0190] 上記のようにして磁石素体の表面上に保護層が形成した希土類磁石の破断面に、 集束イオンビーム加工装置を用いて加工断面を作製し、表面近傍の膜構造を走査 型電子顕微鏡で観察した。なお、走査型電子顕微鏡には、日立製作所社製の S— 4 700を使用した。得られた電子顕微鏡写真を図 5に、図 5の電子顕微鏡写真の一部 を拡大した写真を図 6に示す。
[0191] 図 5及び 6において白色の層は分析用の白金 パラジウム膜であり、その白色の層 の下側であって希土類磁石の最表面に平均膜厚 lOOnmの第 2の層が形成している ことが確認された。また、第 2の層の下側には平均膜厚 3 mの第 1の層が形成して いることが確認された。また、図 5からもわ力るように、第 1の層は磁石素体上に形成し ており、第 2の層は第 1の層上に形成していることが確認された。
[0192] 次に、この希土類磁石を集束イオンビーム加工装置を用いて薄片化し、表面近傍 の膜構造を透過型電子顕微鏡(日本電子製の JEM-3010)で観察し、第 1の層及び 第 2の層に含まれる元素を、 EDS (Noraan Instruments社製の Voyagerlll)により分析 した。その結果、第 1の層からは主な成分として Nd, Fe, Oが検出され、最表面層の 第 2の層からは Fe, Oが検出され、 Ndは検出されな力つた。
[0193] また、得られた希土類磁石について、プレッシャー 'タッカー'テストを行った。試験 条件は、 120°C、 0. 2MPa、 100%RHの環境下に 100時間放置とした。その結果、 試験による外観上の変化は認められず、また試験前後における磁束の変化も認めら れなかった。
[0194] さらに、得られた希土類磁石を着磁した後、 0. 2%の水を添加した市販のハイプリ ッド自動車用オートマティック 'トランスミッション'フルード (ATF)に浸漬し、 150°Cで 1000時間放置する試験を行った (ATF浸漬試験)。そして、試験後の磁石を再度着 磁して磁束を測定したところ、試験前に対して 1. 0%の磁束劣化が見られた。
[0195] (実施例 2A)
熱処理を、酸素濃度 7%の酸化性雰囲気下、 350°Cで 13分行ったこと以外は、実 施例 1Aと同様にして保護層を有する希土類磁石を製造した。
[0196] 得られた希土類磁石を実施例 1Aと同様にして観察した結果、磁石素体の表面上 に、平均膜厚が 0. 9 mである第 1の層、及び、平均膜厚が 60nmである第 2の層を この順に備える保護層が形成されていることが確認された。この保護層を実施例 1A と同様にして分析した結果、第 1の層からは、主な成分として Nd, Fe, Oが検出され 、第 2の層からは Fe, Oが検出され、 Ndは検出されな力つた。 [0197] また、得られた希土類磁石について、実施例 1Aと同様にしてプレッシャー'クッカ 一'テストを行ったところ、希土類磁石の磁束劣化は 0. 2%と極めて小さいことが確認 された。
[0198] (実施例 3A)
熱処理を、酸素濃度 7%の酸化性雰囲気下、 390°Cで 7分行ったこと以外は、実施 例 1Aと同様にして保護層を有する希土類磁石を製造した。
[0199] 得られた希土類磁石を実施例 1Aと同様にして観察した結果、磁石素体の表面上 に、平均膜厚が 1 mである第一の層、及び、平均膜厚が 70nmである第二の層をこ の順に備える保護層が形成されていることが確認された。この保護層を実施例 1Aと 同様にして分析した結果、第 1の層からは、主な成分として Nd, Fe, Oが検出され、 第 2の層からは Fe, Oが検出され、 Ndは検出されな力つた。
[0200] また、得られた希土類磁石について、実施例 1Aと同様にしてプレッシャー'クッカ 一'テストを行ったところ、希土類磁石の磁束劣化は 0. 3%と極めて小さいことが確認 された。
[0201] (実施例 4A)
熱処理を、酸素濃度 0. 5%の酸化性雰囲気下、 410°Cで 10分行ったこと以外は、 実施例 1Aと同様にして保護層を有する希土類磁石を製造した。
[0202] 得られた希土類磁石を実施例 1Aと同様にして観察した結果、磁石素体の表面上 に、平均膜厚が 1. 5 mである第 1の層、及び、平均膜厚が 50nmである第 2の層を この順に備える保護層が形成されていることが確認された。この保護層を実施例 1A と同様にして分析した結果、第 1の層からは、主な成分として Nd, Fe, Oが検出され
、第 2の層からは Fe, Oが検出され、 Ndは検出されな力つた。
[0203] また、得られた希土類磁石について、実施例 1Aと同様にしてプレッシャー'クッカ 一'テストを行ったところ、希土類磁石の磁束劣化は 0. 3%と極めて小さいことが確認 された。
[0204] (実施例 5A)
熱処理を、酸素濃度 21%の酸化性雰囲気下、 410°Cで 10分行ったこと以外は、実 施例 1Aと同様にして保護層を有する希土類磁石を製造した。 [0205] 得られた希土類磁石を実施例 1Aと同様にして観察した結果、磁石素体の表面上 に、平均膜厚が 2. 1 μ mである第 1の層、及び、平均膜厚が lOOnmである第 2の層 をこの順に備える保護層が形成されていることが確認された。この保護層を実施例 1 Aと同様にして分析した結果、第 1の層からは、主な成分として Nd, Fe, Oが検出さ れ、第 2の層からは Fe, Oが検出され、 Ndは検出されなかった。
[0206] また、得られた希土類磁石について、実施例 1Aと同様にしてプレッシャー'クッカ 一'テストを行ったところ、希土類磁石の磁束劣化は 0. 2%と極めて小さいことが確認 された。
[0207] (実施例 6A)
熱処理を、酸素濃度 7%の酸化性雰囲気下、 500°Cで 10分行ったこと以外は、実 施例 1Aと同様にして保護層を有する希土類磁石を製造した。
[0208] 得られた希土類磁石を実施例 1Aと同様にして観察した結果、磁石素体の表面上 に、平均膜厚が 5 mである第 1の層、及び、平均膜厚が 300nmである第 2の層をこ の順に備える保護層が形成されていることが確認された。この保護層を実施例 1Aと 同様にして分析した結果、第 1の層からは、主な成分として Nd, Fe, Oが検出され、 第 2の層からは Fe, Oが検出され、 Ndは検出されな力つた。
[0209] また、得られた希土類磁石について、実施例 1Aと同様にしてプレッシャー'クッカ 一'テストを行ったところ、希土類磁石の磁束劣化は 0. 3%と極めて小さいことが確認 された。
[0210] (実施例 7A)
熱処理を、酸素濃度 0. 5%、水蒸気分圧 74hPaの酸化性雰囲気下、 390°Cで 10 分行ったこと以外は、実施例 1Aと同様にして保護層を有する希土類磁石を製造した
[0211] 得られた希土類磁石を実施例 1Aと同様にして観察した結果、磁石素体の表面上 に、平均膜厚が 1. 7 mである第 1の層、及び、平均膜厚が lOOnmである第 2の層 をこの順に備える保護層が形成されていることが確認された。この保護層を実施例 1 Aと同様にして分析した結果、第 1の層からは、主な成分として Nd, Fe, Oが検出さ れ、第 2の層からは Fe, Oが検出され、 Ndは検出されなかった。 [0212] また、得られた希土類磁石について、実施例 1Aと同様にしてプレッシャー'クッカ 一'テストを行ったところ、希土類磁石の磁束劣化は 0. 2%と極めて小さいことが確認 された。
[0213] (実施例 8A)
熱処理を、酸素濃度 0. 5%、水蒸気分圧 12hPaの酸化性雰囲気下、 390°Cで 10 分行ったこと以外は、実施例 1Aと同様にして保護層を有する希土類磁石を製造した
[0214] 得られた希土類磁石を実施例 1Aと同様にして観察した結果、磁石素体の表面上 に、平均膜厚が 1. 4 mである第 1の層、及び、平均膜厚が 80nmである第 2の層を この順に備える保護層が形成されていることが確認された。この保護層を実施例 1A と同様にして分析した結果、第 1の層からは、主な成分として Nd, Fe, Oが検出され 、第 2の層からは Fe, Oが検出され、 Ndは検出されな力つた。
[0215] また、得られた希土類磁石について、実施例 1Aと同様にしてプレッシャー'クッカ 一'テストを行ったところ、希土類磁石の磁束劣化は 0. 2%と極めて小さいことが確認 された。
[0216] (実施例 9A)
熱処理を、水蒸気分圧 2000hPaの酸化性雰囲気下、 400°Cで 10分行ったこと以 外は、実施例 1Aと同様にして保護層を有する希土類磁石を製造した。
[0217] 得られた希土類磁石を実施例 1Aと同様にして観察した結果、磁石素体の表面上 に、平均膜厚が 1. 8 mである第 1の層、及び、平均膜厚が 120nmである第 2の層 をこの順に備える保護層が形成されていることが確認された。この保護層を実施例 1 Aと同様にして分析した結果、第 1の層からは、主な成分として Nd, Fe, Oが検出さ れ、第二の層からは Fe, Oが検出され、 Ndは検出されな力つた。
[0218] また、得られた希土類磁石について、実施例 1Aと同様にしてプレッシャー'クッカ 一'テストを行ったところ、希土類磁石の磁束劣化は 0. 3%と極めて小さいことが確認 された。
[0219] (実施例 10A)
熱処理を、酸素濃度 7%の酸化性雰囲気下、 330°Cで 10分行ったこと以外は、実 施例 1Aと同様にして保護層を有する希土類磁石を製造した。
[0220] 得られた希土類磁石における表面近傍の構造を、オージ 電子分光法による深さ 方向分析により解析した。なお、ォージェ電子分光には、アルバック 'ファイネ土製 SA
M680を使用した。その結果、表面から 16nmの深さまでは Fe、 Oを含み Ndが検出 されない第 2の層が形成されており、この第 2の層の下側 0. 4 mには、 Nd, Fe, O を含む第 1の層が形成されていることが確認された。
[0221] また、得られた希土類磁石について、実施例 1Aと同様にしてプレッシャー'クッカ 一'テストを行ったところ、希土類磁石の磁束劣化は 0. 2%と極めて小さいことが確認 された。
[0222] (実施例 11 A)
熱処理を、酸素濃度 21%の酸化性雰囲気下、 290°Cで 10分行ったこと以外は、実 施例 1Aと同様にして保護層を有する希土類磁石を製造した。
[0223] 得られた希土類磁石における表面近傍の膜構造を、実施例 10Aと同様の方法によ り解析した。その結果、表面から 10nmの深さまでは Fe、 Oを含み Ndが検出されない 第 2の層が形成されており、この第 2の層の下側 0. l iu mには、Nd, Fe, Oを含む第
1の層が形成されていることが確認された。
[0224] また、得られた希土類磁石について、実施例 1Aと同様にしてプレッシャー'クッカ 一'テストを行ったところ、希土類磁石の磁束劣化は 0. 3%と極めて小さいことが確認 された。
[0225] (比較例 1A)
実施例 1と同様にして磁石素体を作製した後、この磁石素体に 2%HNO水溶液に
3 よる酸洗浄を施した。
[0226] この磁石素体を、実施例 1Aと同様にして走査型電子顕微鏡で観察した。得られた 電子顕微鏡写真を図 7に、図 7の電子顕微鏡写真の一部を拡大した写真を図 8に示 す。図 7及び 8において白色の層は分析用の白金 パラジウム膜であり、その白色の 層の下側には磁石素体が確認された。
[0227] 次に、得られた磁石素体に対して、水蒸気雰囲気中における熱処理を行わずに、 実施例 1Aと同様にしてプレッシャー 'タッカー'テストを行った。その結果、外観が銀 色から黒色に変化するとともに、 2. 1%の磁束劣化が確認された。
[0228] また、得られた磁石素体を着磁した後、実施例 1Aと同様の ATF浸漬試験を行い、 試験後の磁石を再度着磁して磁束を測定したところ、この比較例 1 Aの磁石では、試 験前と比較して 7. 5%の磁束劣化が見られた。このように、実施例 1 Aの磁石では A TF浸漬試験前後で 1. 0%の磁束劣化しか見られな力つたのに対し、比較例 1 Aの 磁石では 7. 5%の磁束劣化が見られ、かかる磁石は、 ATF浸漬試験後の磁束劣化 が極めて大き 、ことが確認された。
[0229] (比較例 2A)
熱処理を、酸素濃度 7. 0%、水蒸気分圧 0. 5hPaの酸化性雰囲気下、 200°Cで 1 0分行ったこと以外は、実施例 1Aと同様にして保護層を有する希土類磁石を製造し た。
[0230] 得られた希土類磁石を実施例 1Aと同様にして観察した結果、磁石素体の表面上 に、平均膜厚が 20nmである単一の層のみ力もなる保護層が形成されていることが確 認された。この保護層を実施例 1Aと同様にして分析した結果、主な成分として Nd, Fe, Oが検出された。
[0231] また、得られた希土類磁石について、実施例 1Aと同様にしてプレッシャー'クッカ 一'テストを行ったところ、希土類磁石の磁束劣化は 0. 4%であることが確認された。
[0232] さらに、得られた磁石素体を着磁した後、実施例 1Aと同様の ATF浸漬試験を行い 、試験後の磁石を再度着磁して磁束を測定したところ、この比較例 1 Aの磁石では、 試験前と比較して 4. 7%の磁束劣化が見られた。このように、実施例 1 Aの磁石では ATF浸漬試験前後で 1. 0%の磁束劣化しか見られな力つたのに対し、比較例 2Aの 磁石では 4. 7%の磁束劣化が見られ、かかる磁石は、 ATF浸漬試験後の磁束劣化 が極めて大き 、ことが確認された。
[実施例 B]
<希土類磁石の製造 >
[0233] (実施例 1B)
粉末冶金法により、糸且成カ 13. 2Nd- l. 5Dy- 77. 6Fe— 1. 6Co— 6. IB (数 字は原子百分率を表す。)である铸塊を作製し、これを粗粉砕した。その後、不活性 ガスによるジェットミル粉砕を行って、平均粒径約 3. 5 mの微粉末を得た。得られ た微粉末を金型内に充填し、磁場中で成形した。次いで、真空中で焼結後、熱処理 を施して焼結体を得た。得られた焼結体を 35mm X 19mmX 6. 5mmの寸法に切り 出し加工し、実用形状に加工した磁石素体を得た。
[0234] 次に、得られた磁石素体を 2%HNO水溶液中に 2分間浸漬し、その後超音波水
3
洗を施した。それから、この酸洗浄 (酸処理)を施した磁石素体を、酸素分圧 70hPa ( 酸素濃度 7%)の酸素 窒素混合雰囲気中、 450°Cで 8分間の熱処理を行った。
[0235] その後、磁石素体を真空製膜チャンバ一内に固定し、 1 X 10_3Pa以下の真空度が 得られるまで真空排気した。次いで、気相成長法である真空蒸着法を用いて、酸ィ匕 アルミニウム (アルミナ)からなる酸ィ匕物層を、その膜厚が 5 mとなるように磁石素体 表面上に形成した。
[0236] この酸ィ匕物層の形成は、具体的には、酸ィ匕アルミニウム粒子 (粒子径 2〜3mm程 度)に電子ビームを照射し、溶解と同時に蒸発させることにより行なった。電子ビーム を発生させる際の印可電圧は 5kV、電流値は 200mAとした。また、酸化物層を形成 する間、真空成膜チャンバ一内に酸素ガスを 1. Osccmの流量で流通させ、このチヤ ンバー内の圧力を 1 X 10_2Paに維持した。この際の磁石素体の表面温度は 200°C になるように調整し、 0. 4nmZ秒の成膜速度を維持した。このようにして実施例 1の 希土類磁石を得た。
[0237] 得られた希土類磁石を、集束イオンビーム加工装置を用い薄片化し、表面近傍の 膜構造を透過型電子顕微鏡(日本電子製の JEM-3010)で観察したところ、磁石素体 の表面上には、磁石素体と酸化物層の間に、平均膜厚が 1 mの層及び平均膜厚 力 Onmの層の 2つの層が、磁石素体側力 順に形成されていることが確認された。 そして、この 2つの層に含まれる元素を、 EDS (Noraan Instruments社製の Voyagerlll )を用いて分析した結果、磁石素体側の層からは主な成分として Nd, Fe, Oが検出 され、酸ィ匕物層側の層からは Fe, Oが検出され、 Ndは検出されな力 た。
[0238] (実施例 2B)
まず、実施例 1Bと同様にして、磁石素体を製造した後、酸洗浄を行った。次に、こ の磁石素体に対し、酸素濃度 0. 5%、水蒸気分圧 74hPaの酸化性雰囲気下、 390 でで 10分の熱処理を行つた。
[0239] 次いで、この磁石素体を、常圧熱 CVD装置に設置した。この常圧熱 CVD装置は、 蒸着源となる金属アルコキシド、及び、水蒸気を、窒素ガス等のキャリアガスによって 反応炉内に導入し、磁石素体上に金属酸化物層を形成し得るものである。
[0240] そして、蒸着源として Mo (OC H ) 、 Ti(0-i-C H ) 、及び 60°Cに加熱した水
2 5 5 3 7 4
を用い、これらを、 200cm3Zminのキャリアガスにより 200°Cに加熱した磁石素体に 供給した。これにより、磁石素体の表面上に、厚さ 0. 1 μ mの酸化モリブデン及び酸 化チタンからなる混合酸化物層を形成した。このようにして実施例2 Bの希土類磁石 を得た。
[0241] 得られた希土類磁石を、実施例 1Bと同様にして透過型電子顕微鏡で観察したとこ ろ、磁石素体の表面上には、磁石素体と酸化物層の間に、平均膜厚が 1. の 層及び平均膜厚が lOOnmの層の 2つの層力 磁石素体側力も順に形成されている ことが確認された。そして、この 2つの層に含まれる元素を、 EDSを用いて分析した結 果、磁石素体側の層からは主な成分として Nd, Fe, Oが検出され、酸化物層側の層 力 は Fe, Oが検出され、 Ndは検出されなかった。また、この希土類磁石の表面に 形成された混合酸化物層の蛍光 X線分析を行った結果、当該層内の金属比は、 Mo 力 S3原子%であり、 Tiが 97原子%であった。
[0242] (実施例 3B)
まず、実施例 1Bと同様にして、磁石素体を製造した後、酸洗浄を行い、更に、この 磁石素体に対して、実施例 1Bと同様の条件で熱処理を行った。
[0243] 次いで、蒸着源として Cr(C H O )及び 60°Cに加熱した水を用い、これらを、 200
5 7 2 3
cm3Zminのキャリアガスにより 200°Cに加熱した磁石素体に供給した。これにより、 磁石素体の表面上に、厚さ 0. 3 mの酸ィ匕クロム力 なる酸ィ匕物層を形成した。この ようにして実施例 3Bの希土類磁石を得た。
[0244] なお、この製造方法においては、上記熱処理後に、磁石素体の表面に形成された 層の半導体特性を調べたところ、当該層は、 n型の半導体特性を示すことが確認され た。また同様に酸ィ匕物層の半導体特性を調べたところ、当該層は、 p型の半導体特 性を示すことが確認された。 [0245] そして、得られた希土類磁石を、実施例 1Bと同様にして透過型電子顕微鏡で観察 したところ、磁石素体の表面上には、磁石素体と酸化物層の間に、平均膜厚が 1 μ m の層及び平均膜厚が 50nmの層の 2つの層が、磁石素体側から順に形成されている ことが確認された。そして、この 2つの層に含まれる元素を、 EDSを用いて分析した結 果、磁石素体側の層からは主な成分として Nd, Fe, Oが検出され、酸化物層側の層 力もは Fe, Oが検出され、 Ndは検出されなかった。
[0246] (参考例 1B)
粉末冶金法により、糸且成カ 13. 2Nd- l. 5Dy- 77. 6Fe— 1. 6Co— 6. IB (数 字は原子百分率を表す。)である铸塊を作製し、これを粗粉砕した。その後、不活性 ガスによるジェットミル粉砕を行って、平均粒径約 3. 5 mの微粉末を得た。得られ た微粉末を金型内に充填し、磁場中で成形した。次いで、真空中で焼結後、熱処理 を施して焼結体を得た。得られた焼結体を 35mm X 19mmX 6. 5mmの寸法に切り 出し加工し、実用形状に加工した磁石素体を得た。
[0247] 次に、得られた磁石素体を 2%HNO水溶液中に 2分間浸漬し、その後超音波水
3
洗を施した。次いで、この酸洗浄 (酸処理)を施した磁石素体を、酸素分圧 70hPa ( 酸素濃度 7%)の酸素—窒素混合雰囲気中、 450°Cで 8分間の熱処理を行い、保護 層を形成した。このようにして参考例 1Bの希土類磁石を得た。
[0248] 得られた希土類磁石を、実施例 1Bと同様にして透過型電子顕微鏡で観察したとこ ろ、磁石素体の表面上には、磁石素体と酸化物層の間に、平均膜厚が 1 μ mの層及 び平均膜厚が 50nmの層の 2つの層力 磁石素体側力も順に形成されていることが 確認された。そして、この 2つの層に含まれる元素を、 EDSを用いて分析した結果、 磁石素体側の層からは主な成分として Nd, Fe, Oが検出され、酸化物層側の層から は Fe, Oが検出され、 Ndは検出されなかった。
[0249] (比較例 1B)
まず、実施例 1Bと同様にして磁石素体を製造した後、得られた磁石素体を 2%HN O水溶液中に 2分間浸漬し、その後超音波水洗を施した。次いで、この酸洗浄 (酸
3
処理)を施した磁石素体の表面に、 10 μ mの厚さとなるようにアクリル榭脂塗料を塗 装し、保護層を形成させた。このようにして比較例 1Bの希土類磁石を得た。 <特性評価 >
[0250] (塩水噴霧試験)
実施例 1B〜3B、参考例 IB及び比較例 IBの希土類磁石に対して、 JIS K5600 — 7—1に準拠し、 5%の塩水を用いて 35°Cで、 96時間塩水噴霧試験を行った。そ の結果、実施例 1B〜3B及び比較例 1Bの希土類磁石では鲭の発生が見られな力つ たのに対し、参考例 1Bの希土類磁石では鲭の発生が見られた。
[0251] (耐熱試験)
実施例 1B〜3B、参考例 IB及び比較例 IBの希土類磁石を、新日本石油社製 AT F (オートミッショントランスファーフィールド)に、 200°C、 1000時間の条件で浸漬す る浸漬試験を行った。その結果、実施例 1B〜3B及び参考例 1Bの希土類磁石は、 浸漬後の磁束劣化がいずれも 0. 2%以下であつたのに対し、比較例 1Bの希土類磁 石は、 5. 2%であった。
[0252] 以上の塩水噴霧試験及び耐熱試験の結果から、実施例 1B〜3Bの希土類磁石は 、耐食性及び耐熱性の両方の特性に優れるものであることが確認された。
[実施例。]
[0253] (実施例 1C)
粉末冶金法により、糸且成カ 13. 2Nd- l. 5Dy- 77. 6Fe— 1. 6Co— 6. IB (数 字は原子百分率を表す。)である铸塊を作製し、これを粗粉砕した。その後、不活性 ガスによるジェットミル粉砕を行って、平均粒径約 3. 5 mの微粉末を得た。得られ た微粉末を金型内に充填し、磁場中で成形した。次いで、真空中で焼結後、熱処理 を施して焼結体を得た。得られた焼結体を 35mm X 19mmX 6. 5mmの寸法に切り 出し加工し、実用形状に加工した磁石素体を得た。
[0254] 次に、得られた磁石素体を 2%HNO水溶液中に 2分間浸漬し、その後超音波水
3
洗を施した。
[0255] 上記のように酸洗浄 (酸処理)を施した磁石素体を、酸素分圧 70hPa (酸素濃度 7 %)の酸素—窒素混合雰囲気中、 450°Cで 8分間の熱処理を行い、保護層を形成し た。
[0256] 上記のようにして磁石素体の表面上に保護層が形成した希土類磁石を、集束ィォ ンビーム加工装置を用いて薄片化し、表面近傍の膜構造を透過型電子顕微鏡で観 察した。なお、透過型電子顕微鏡には、日本電子社製の JEM— 3010を使用した。 得られた電子顕微鏡写真を図 9に、図 9の電子顕微鏡写真の一部を拡大した写真を 図 10に示す。
[0257] 図 9及び 10において一番右側の黒色の層は白金 パラジウム膜であり、その黒色 の層に隣接する白色の層は、希土類磁石の保護層のうちネオジムを含有しない第 2 の層であり、その平均膜厚は 50nmであることが確認された。また、第 2の層に隣接す る灰色の層(白色の境界力も磁石素体側に向力つて徐々に色が濃くなつている層) はネオジゥムを含有する第 1の層であり、その平均膜厚は 1 μ mであることが確認され た。なお、図 9及び 10からもわ力るように、第 1の層は磁石素体上に形成しており、第 2の層は第 1の層上に形成して 、ることが確認された。
[0258] さらに、上記希土類磁石を集束イオンビーム加工装置を用い薄片化し、表面近傍 の膜構造を透過型電子顕微鏡(日本電子製の JEM-3010)で観察し、第 1の層及び 第 2の層に含まれる元素を、 EDS (Noraan Instruments社製の Voyagerlll)を用いて分 祈した。その結果、第 1の層からは主な成分として Nd, Fe, Oが検出され、第 2の層 力もは Fe, Oが検出され、 Ndは検出されなかった。
[0259] このように保護層が形成された希土類磁石に、さらにフエノール榭脂の塗料をデイツ プスピンコートにより塗布し、 150°Cで 20分加熱した。この工程を 2回繰り返し、約 3 mの榭脂層を形成し、実施例 1 Cの希土類磁石を得た。
[0260] (実施例 2C)
実施例 1Cと同様にして焼結体を作製し、得られた焼結体を 30mmX 19mm X 6. 5mmの寸法に切り出し加工し、実用形状に加工した磁石素体を得た。次いで、実施 例 1Cと同様に酸洗浄を施し、熱処理を行い、保護層を形成した。なお、得られた希 土類磁石は、第 1の層は磁石素体上に形成しており、第 2の層は第 1の層上に形成し ていることが確認された。
[0261] このように保護層が形成された希土類磁石に、さらにフエノール榭脂の塗料をスプ レーコートにより塗布し、 150°Cで 20分加熱した。このようにして約 5 mの榭脂層を 形成し、実施例 2Cの希土類磁石を得た。 [0262] (比較例 1C)
実施例 1Cと同様にして磁石素体を作製し、 2%HNO水溶液による酸洗浄を施し
3
、比較例 1Cの希土類磁石を得た。カゝかる磁石素体に対して、集束イオンビーム加工 装置を用いて加工断面を作製し、走査型電子顕微鏡(日立製作所社製、 S-4700) で観察した。得られた電子顕微鏡写真を図 11に、図 11の電子顕微鏡写真の一部を 拡大した写真を図 12に示す。図 11及び 12において白色の層は分析用の白金—パ ラジウム膜であり、その白色の層の下側には磁石素体が確認された。
[0263] (参考例 1C)
実施例 1Cと同様にして磁石素体を作製し、 2%HNO水溶液による酸洗浄を施し
3
た。次に、実施例 1Cと同様にして熱処理を行い、保護層を形成し、参考例 1Cの希 土類磁石を得た。なお、参考例 1Cの希土類磁石は、榭脂層を形成していないもので ある。また、参考例 1Cの希土類磁石を、実施例 1Cと同様にして透過型電子顕微鏡 で観察した。その結果、参考例 1Cの希土類磁石でも、保護層は、希土類磁石の最 表面に平均膜厚 50nmの第 2の層、及び第 2の層の下側には平均膜厚 1 μ mの第 1 の層から構成されて ヽることが確認された。
[0264] (塩水噴霧試験)
実施例 1C〜2C、比較例 1C及び参考例 1Cの希土類磁石に対して、 JIS K5600 7—1に準拠し、 5%の塩水を用いて 35°Cで、 96時間塩水噴霧試験を行った。
[0265] そして、塩水噴霧試験後における実施例 1C〜2C、比較例 1C及び参考例 1Cの希 土類磁石磁束を測定したところ、試験前と比較した磁束低下は、実施例 1Cでは 0. 4 %であり、比較例 1Cでは 2. 7%であり、参考例 1Cでは 2. 0%であった。なお、実施 例 2Cでは、磁束の低下は見られな力つた。
[0266] また、塩水噴霧試験による実施例 1C〜2C、比較例 1C及び参考例 1Cの希土類磁 石の鲭の発生状況を比較した。塩水噴霧試験前の、実施例 2Cの希土類磁石の写 真を図 13に、比較例 1Cの希土類磁石の写真を図 15に、参考例 1Cの希土類磁石 の写真を図 17にそれぞれ示す。塩水噴霧試験開始力も 24時間の時点では、実施 例 1Cでは鲭の発生は部分的であり軽微であり、また実施例 2Cでは鲭の発生は見ら れな力つた。これに対し、比較例 1C及び参考例 1Cでは磁石全体を鲭が覆っており、 特に比較例 1Cでは鲭の発生が顕著であった。塩水噴霧試験開始から 24時間の時 点での、実施例 2Cの希土類磁石の写真を図 14に、比較例 1Cの希土類磁石の写真 を図 16に、参考例 1Cの希土類磁石の写真を図 18にそれぞれ示す。
[0267] また、塩水噴霧試験開始から 96時間経過後においても各希土類磁石の鲭の発生 状況を比較した。その結果、比較例 1C及び参考例 1Cでは磁石表面から鲭が剥が れ落ちるほどに鲭が厚く発生しており、鲭を拭き取っても拭き取りきれずに、表面に鲭 の層が残った。一方、実施例 1Cでは、磁石の角部などの榭脂層が不完全な部分か ら発生して流れた鲭が、磁石表面の半分ほどを覆ったものの、鲭を拭き取ると鲭の層 は除去され、鲭の発生が軽微であることが確認された。また、断面を確認したところ、 参考例 1Cでは、磁石表面から 50 m程度の厚さで鲭が発生していた。一方、実施 例 1Cでは断面に鲭が観察されな力つた。また、実施例 2Cでは、鲭の発生は見られ なかった。
[0268] (プレッシャ^ ~ ·クッカ^ ~ ·テスト)
実施例 1C〜2Cの希土類磁石に対して、プレッシャー 'タッカー'テストを行った。試 験条件は、 120°C、 0. 2MPa、 100%RHの環境下に 100時間放置とした。その結 果、実施例 1C〜2Cでは共に試験による榭脂層の剥離、膨れ、鲭の発生といった外 観上の変化は認められず、また試験前後における磁束の変化も認められな力つた。
[実施例 D]
<希土類磁石の製造 >
[0269] (実施例 1D)
粉末冶金法により、糸且成カ 13. 2Nd- l. 5Dy- 77. 6Fe— 1. 6Co— 6. IB (数 字は原子百分率を表す。)である铸塊を作製し、これを粗粉砕した。その後、不活性 ガスによるジェットミル粉砕を行って、平均粒径約 3. 5 mの微粉末を得た。得られ た微粉末を金型内に充填し、磁場中で成形した。次いで、真空中で焼結後、熱処理 を施して焼結体を得た。得られた焼結体を 35mm X 19mmX 6. 5mmの寸法に切り 出し加工し、実用形状に加工した磁石素体を得た。
[0270] 次に、得られた磁石素体を 2%HNO水溶液中に 2分間浸漬し、その後超音波水
3
洗を施した。それから、この酸洗浄 (酸処理)を施した磁石素体を、酸素分圧 70hPa ( 酸素濃度 7%)の酸素 窒素混合雰囲気中、 450°Cで 8分間の熱処理を行った。
[0271] その後、熱処理後の磁石素体を、 0. 1Mモリブデン酸ナトリウム、 1. OMリン酸及び 0. 05M亜硝酸ナトリウムを含む 70°Cの化成液に 10分間浸漬して、磁石素体に対し て化成処理を行い、表面に化成処理層を形成させた。
[0272] 得られた希土類磁石を、集束イオンビーム加工装置を用い薄片化し、表面近傍の 膜構造を透過型電子顕微鏡(日本電子製の JEM-3010)で観察したところ、磁石素体 の表面上には、磁石素体と化成処理層の間に、平均膜厚が 2. の層及び平均 膜厚が 80nmの層の 2つの層力 磁石素体側力 この順に形成されていることが確認 された。そして、この 2つの層に含まれる元素を、 EDS (Noraan Instruments社製の Voyagerlll)を用いて分析した結果、磁石素体側の層からは主な成分として Nd, Fe, Oが検出され、化成処理層側の層からは Fe, Oが検出され、 Ndは検出されなカゝつた
[0273] (実施例 2D)
まず、実施例 1Dと同様にして、磁石素体を製造した後、酸洗浄を行った。次に、酸 素分圧 70hPa (酸素濃度 7%)の酸素 窒素混合雰囲気中、 450°Cで 8分間の熱処 理を行った。ここで、熱処理後の磁石素体における表面近傍の膜構造を、オージュ 電子分光法による深さ方向分析により解析した。なお、オージュ電子分光には、アル バック ·ファイネ土製 SAM680を使用した。その結果、表面から 80nmの深さまでは Fe 、 Oを含み Ndが検出されない層が形成されており、この層の下側 2. 5 μ mには、 Nd , Fe, Oを含む層が形成されていることが確認された。
[0274] その後、熱処理後の磁石素体を、 0. 1M硝酸セリウム、 1. 0Mリン酸及び 0. 05M 亜硝酸ナトリウムを含む 80°Cの化成液に 10分間浸漬して、磁石素体に対して化成 処理を行い、表面に化成処理層を形成させた。
[0275] (参考例 1D)
実施例 1Dと同様にして磁石素体を形成し、酸洗浄した後、熱処理を行った。得ら れた希土類磁石を、参考例 1Dの希土類磁石とした。この希土類磁石を、実施例 1と 同様にして透過型電子顕微鏡で観察したところ、磁石素体の表面上には、磁石素体 と酸化物層の間に、平均膜厚が 2. 5 mの層及び平均膜厚が 80nmの層の 2つの 層力 磁石素体側力も順に形成されていることが確認された。そして、この 2つの層に 含まれる元素を、 EDSを用いて分析した結果、磁石素体側の層からは主な成分とし て Nd, Fe, Oが検出され、酸化物層側の層からは Fe, Oが検出され、 Ndは検出され なかった。
[特性評価]
[0276] (塩水噴霧試験)
実施例 1D〜2D及び参考例 1Dの希土類磁石に対し、 JIS K5600- 7- 1に準拠 して、 5%の塩水を 35°Cで、 96時間噴霧する塩水噴霧試験を行った。その結果、実 施例 1D〜2Dの希土類磁石では鲭の発生が見られなかったのに対し、参考例 1Dの 希土類磁石では鲭の発生が見られた。
[0277] (耐熱試験)
実施例 1D〜2D及び参考例 1Dの希土類磁石を、新日本石油社製 ATF (オートミ ッシヨントランスファーフィールド)に、 200°C、 1000時間の条件で浸漬する浸漬試験 を行った。その結果、実施例 1D〜2Dの希土類磁石は、浸漬後の磁束劣化がいず れも 0. 2%以下であり、参考例 1Dの希土類磁石は、 5. 3%であった。
[0278] 以上の塩水噴霧試験及び耐熱試験の結果から、実施例 1D〜2Dの希土類磁石は 、参考例 1Dの希土類磁石に比して耐食性及び耐熱性の両方の特性に優れるもので あることが確認された。
[実施例 E]
<希土類磁石の製造 >
[0279] (実施例 1E)
粉末冶金法により、糸且成カ 13. 2Nd- l. 5Dy- 77. 6Fe— 1. 6Co— 6. IB (数 字は原子百分率を表す。)である铸塊を作製し、これを粗粉砕した。その後、不活性 ガスによるジェットミル粉砕を行って、平均粒径約 3. 5 mの微粉末を得た。得られ た微粉末を金型内に充填し、磁場中で成形した。次いで、真空中で焼結後、熱処理 を施して焼結体を得た。得られた焼結体を 35mm X 19mmX 6. 5mmの寸法に切り 出し加工し、実用形状に加工した磁石素体を得た。
[0280] 次に、得られた磁石素体を 2%HNO水溶液中に 2分間浸漬し、その後超音波水 洗を施した。それから、この酸洗浄 (酸処理)を施した磁石素体を、酸素分圧 70hPa ( 酸素濃度 7%)の酸素 窒素混合雰囲気中、 450°Cで 8分間の熱処理を行 、磁石素 体の表面に内部保護層を形成させた。
[0281] その後、溶媒であるキシレン 40質量部、熱硬化性アルキルフエノール 60質量部を 含む組成物を準備し、これを、上記熱処理後の磁石素体の表面に塗布し、常温で乾 燥した後、大気中で 150°C、 30分間加熱して硬化させて、内部保護層の表面上に外 部保護層を形成し、希土類磁石を得た。
[0282] 得られた希土類磁石を、集束イオンビーム加工装置を用い薄片化し、表面近傍の 膜構造を透過型電子顕微鏡(日本電子製の JEM-3010)で観察したところ、磁石素体 の表面上には、内部保護層として、平均膜厚が の層及び平均膜厚が 50nmの 層の 2つの層が、磁石素体側カゝらこの順に形成されていることが確認された。そして、 この 2つの層に含まれる元素を、 EDS (Noraan Instruments社製の Voyagerlll)を用い て分析した結果、磁石素体に隣接する層からは主な成分として Nd, Fe, Oが検出さ れ、磁石素体から遠い側の層からは Fe, Oが検出され、 Ndは検出されな力つた。
[0283] (実施例 2E)
外部保護層の形成材料として、熱硬化性アルキルフエノールに代えて、アルキル多 価フエノール (ウルシォール)を用いたこと以外は、実施例 1Eと同様にして希土類磁 石を得た。
[0284] 得られた希土類磁石の表面近傍の膜構造を実施例 1Eと同様にして観察したところ 、磁石素体の表面上には、内部保護層として、平均膜厚が: L mの層及び平均膜厚 力 Onmの層の 2つの層が、磁石素体側力 この順に形成されていることが確認され た。そして、この 2つの層に含まれる元素を、 EDSを用いて分析した結果、磁石素体 に隣接する層からは主な成分として Nd, Fe, Oが検出され、磁石素体から遠い側の 層からは Fe, Oが検出され、 Ndは検出されなかった。
[0285] (実施例 3E)
外部保護層の形成材料として、エポキシ榭脂 (ァラルダイト)を 30質量%更に添カロ したこと以外は、実施例 1Eと同様にして希土類磁石を得た。
[0286] 得られた希土類磁石の表面近傍の膜構造を実施例 1Eと同様にして観察したところ 、磁石素体の表面上には、内部保護層として、平均膜厚が: L mの層及び平均膜厚 力 Onmの層の 2つの層が、磁石素体側力 この順に形成されていることが確認され た。そして、この 2つの層に含まれる元素を、 EDSを用いて分析した結果、磁石素体 に隣接する層からは主な成分として Nd, Fe, Oが検出され、磁石素体から遠い側の 層からは Fe, Oが検出され、 Ndは検出されなかった。
[0287] (実施例 4E)
まず、実施例 1Eと同様にして磁石素体を製造した後、この磁石素体の表面上に内 部保護層を形成した。
[0288] また、これとは別に、メタクリル酸メチル 28g、メタクリル酸 2 ェチルへキシル 6g 及び γ—メタクリロキシプロピルトリメトキシシラン 6gを 40gの 2 プロパノールに加え て混合した後、この溶液に 2, 2,—ァゾイソブチ口-トリル 1. 6gをカ卩え、 80°Cで 6時 間反応させて、シリル基を有するアクリル榭脂の溶液を調製した。なお、このアクリル 榭脂の分子量をゲル浸透クロマトグラフィーで測定したところ、その重量平均分子量 は約 10000であった (標準ポリスチレンを用いた検量線により換算)。
[0289] 次いで、このアクリル榭脂の溶液 40gに、メチルトリメトキシシラン 80g、 2 プロパノ ール 15g、及び 0. 1%アンモニア水 17. 5gを更に添加し、 50°Cで 5時間反応させる ことにより、アクリル榭脂とメチルトリメトキシシランの重合体とが結合してなる有機無機 ノ、イブリツドィ匕合物を含む塗布液を得た。
[0290] その後、この塗布液を、ディップコーティング法により上述した磁石素体における内 部保護層の表面に塗布した後、 150°C、 20分の条件で加熱を行うことにより、有機無 機ハイブリッドィ匕合物カゝらなる外部保護層を形成させ、希土類磁石を得た。
[0291] 得られた希土類磁石の表面近傍の膜構造を実施例 1Eと同様にして観察したところ 、磁石素体の表面上には、内部保護層として、平均膜厚が: L mの層及び平均膜厚 力 Onmの層の 2つの層が、磁石素体側力 この順に形成されていることが確認され た。そして、この 2つの層に含まれる元素を、 EDSを用いて分析した結果、磁石素体 に隣接する層からは主な成分として Nd, Fe, Oが検出され、磁石素体から遠い側の 層からは Fe, Oが検出され、 Ndは検出されなかった。
[0292] (実施例 5E) まず、実施例 IEと同様にして磁石素体を製造した後、この磁石素体の表面上に内 部保護層を形成した。
[0293] また、これとは別に、重量平均分子量 40000のポリビニルピロリドン 20gを 2—プロ パノールに溶解させ、さらにこの溶液にメチルトリメトキシシラン 80g、 0. 1%アンモ- ァ水 17. 5gを添カ卩した後、 50°Cで 5時間の熱処理を行いメチルトリメトキシシランの 重縮合反応を生じさせて、塗布液を調製した。なお、重量平均分子量は、ゲル浸透 クロマトグラフィーで測定した後、標準ポリスチレンを用いた検量線により換算すること により求めた値である。
[0294] この塗布液を、ディップコーティング法により上述した磁石素体における内部保護 層の表面に塗布した後、 150°C、 20分の条件で加熱を行うことにより、外部保護層を 形成させ、希土類磁石を得た。
[0295] 得られた希土類磁石の表面近傍の膜構造を実施例 1Eと同様にして観察したところ 、磁石素体の表面上には、内部保護層として、平均膜厚が: L mの層及び平均膜厚 力 Onmの層の 2つの層が、磁石素体側力 この順に形成されていることが確認され た。そして、この 2つの層に含まれる元素を、 EDSを用いて分析した結果、磁石素体 に隣接する層からは主な成分として Nd, Fe, Oが検出され、磁石素体から遠い側の 層からは Fe, Oが検出され、 Ndは検出されなかった。
[0296] (実施例 6E)
まず、実施例 1Eと同様にして磁石素体を製造した後、この磁石素体の表面上に内 部保護層を形成した。
[0297] また、これとは別に、重量平均分子量 2000のポリスチレン 20gをテトラヒドロフラン( THF) 80gに溶解させ、さらにこの溶液にフエ-ルトリメトキシシラン 105g、 0. 1%ァ ンモ-ァ水 17. 5gを添カ卩した後、 50°Cで 5時間の熱処理を行いフエ-ルトリメトキシ シランの重縮合反応を生じさせて、塗布液を調製した。なお、重量平均分子量は、ゲ ル浸透クロマトグラフィーで測定した後、標準ポリスチレンを用いた検量線により換算 することにより求めた値である。
[0298] この塗布液を、ディップコーティング法により上述した磁石素体における内部保護 層の表面に塗布した後、 150°C、 20分の条件で加熱を行うことにより、外部保護層を 形成させ、希土類磁石を得た。
[0299] 得られた希土類磁石の表面近傍の膜構造を実施例 1Eと同様にして観察したところ 、磁石素体の表面上には、内部保護層として、平均膜厚が: L mの層及び平均膜厚 力 Onmの層の 2つの層が、磁石素体側力 この順に形成されていることが確認され た。そして、この 2つの層に含まれる元素を、 EDSを用いて分析した結果、磁石素体 に隣接する層からは主な成分として Nd, Fe, Oが検出され、磁石素体から遠い側の 層からは Fe, Oが検出され、 Ndは検出されなかった。
[0300] (実施例 7E)
外部保護層の形成材料として、無機添加剤であるタルク (H Mg O Si )を更に含
2 3 12 4 むものを用いたこと以外は、実施例 1Eと同様にして希土類磁石を得た。なお、タルク の配合量は、外部保護層中のタルクの含有量が 20体積%となるようにした。
[0301] (参考例 1E)
実施例 1Eと同様にして磁石素体を形成した後、この磁石素体の表面上に内部保 護層を形成し、これを比較例 1Eの希土類磁石とした。得られた希土類磁石を、実施 例 1Eと同様にして透過型電子顕微鏡で観察したところ、磁石素体の表面上には、平 均膜厚が 1 μ mの層及び平均膜厚が 50nmの層の 2つの層力 磁石素体側から順に 形成されていることが確認された。そして、この 2つの層に含まれる元素を、 EDSを用 いて分析した結果、磁石素体に隣接する層からは主な成分として Nd, Fe, Oが検出 され、遠い側の層からは Fe, Oが検出され、 Ndは検出されなかった。
[0302] (比較例 1E)
まず、実施例 1Eと同様にして磁石素体を製造した。その後、内部保護層は形成さ せずに、この磁石素体の表面上にビスフエノール型エポキシ榭脂塗料を塗布し、これ により厚さ 10 mの保護層を形成させて、希土類磁石を得た。
[0303] (比較例 2E)
まず、実施例 1Eと同様にして磁石素体を製造した後、この磁石素体の表面上に内 部保護層を形成した。次いで、この内部保護層の表面上に、シリコーン榭脂塗料 (S R2410、東レシリコーン社製)を塗布し、厚さ の保護層を形成させ、希土類磁 石を得た。 <特性評価 >
[0304] (塩水噴霧試験)
実施例 1E〜7E、参考例 IE及び比較例 1E〜2Eの希土類磁石に対し、 JIS K56 00— 7— 1に準拠して、 5%の塩水を 35°Cで、 96時間噴霧する塩水噴霧試験を行つ た。その結果、実施例 1E〜7Eの希土類磁石、及び、比較例 1E〜2Eの希土類磁石 では鲭の発生が見られなかったのに対し、参考例 1Eの希土類磁石では鲭の発生が 見られた。
[0305] (耐熱試験)
実施例 1E〜7E、参考例 IE及び比較例 1E〜2Eの希土類磁石を、新日本石油社 製 ATF (オートミッショントランスファーフィールド)に水を添カ卩した溶液に、 120°C、 5 00時間の条件で浸漬する浸漬試験を行った。その結果、実施例 1E〜7Eの希土類 磁石及び参考例 1Eの希土類磁石は、浸漬後の磁束劣化がいずれも 0. 05%以下 であったのに対し、比較例 IE, 2Eの希土類磁石は、外部保護層の剥離が生じ、浸 漬後の磁束劣化がそれぞれ 3. 2%及び 2. 4%となった。
[0306] 以上の塩水噴霧試験及び耐熱試験の結果から、実施例 1E〜7Eの希土類磁石は 、耐食性及び耐熱性の両方の特性に優れることが確認された。これに対し、参考例 1 Eの希土類磁石は、耐熱性に優れるものの耐食性がやや低ぐまた、比較例 IE, 2E の希土類磁石は、耐食性に優れるものの、耐熱性が極めて低いことが確認された。

Claims

請求の範囲
[1] 希土類元素を含有する磁石素体と、該磁石素体の表面上に形成された保護層とを 備え、
前記保護層は、前記磁石素体を覆い希土類元素を含有する第 1の層、及び、該第 1の層を覆 、希土類元素を実質的に含有しな 、第 2の層を有する層である、希土類 磁石。
[2] 前記保護層が、前記磁石素体を覆い希土類元素を含有する第 1の層及び当該第 1 の層を覆い希土類元素を実質的に含有しない第 2の層を有するように、酸ィ匕性ガス を含む酸化性雰囲気中で、酸化性ガス分圧、処理温度及び処理時間のうちの少なく とも 1つの条件を調整して、前記磁石素体を熱処理することにより形成されたものであ る、請求項 1記載の希土類磁石。
[3] 希土類元素を含有する磁石素体と、該磁石素体の表面上に形成された保護層とを 備え、
前記保護層は、前記磁石素体を覆い希土類元素を含有する第 1の層、及び、該第 1の層を覆い前記第 1の層よりも希土類元素の含有量が少ない第 2の層を有する層 である、希土類磁石。
[4] 前記保護層が、前記磁石素体を覆い希土類元素を含有する第 1の層及び当該第 1 の層を覆 、前記第 1の層よりも希土類元素の含有量が少な 、第 2の層を有するように 、酸化性ガスを含む酸化性雰囲気中で、酸化性ガス分圧、処理温度及び処理時間 のうちの少なくとも 1つの条件を調整して、前記磁石素体を熱処理することにより形成 されたものである、請求項 3記載の希土類磁石。
[5] 前記保護層は、酸素及び磁石素体由来の元素を含有する、請求項 1〜4のいずれ か一項に記載の希土類磁石。
[6] 前記磁石素体は、希土類元素及び希土類元素以外の遷移元素を含み、
前記第 1の層は、前記希土類元素、前記遷移元素及び酸素を含有する層であり、 前記第 2の層は、前記遷移元素及び酸素を含有する層である、請求項 1〜5のいず れか一項に記載の希土類磁石。
[7] 前記第 1の層における前記希土類元素、前記第 1の層における前記遷移元素、及び 、前記第 2の層における前記遷移元素は、前記磁石素体由来の元素である、請求項 6記載の希土類磁石。
[8] 前記第 1の層における前記希土類元素、前記第 1の層における前記遷移元素、及び 、前記第 2の層における前記遷移元素は、前記磁石素体の主相を構成する元素であ る、請求項 6記載の希土類磁石。
[9] 前記希土類元素がネオジムである、請求項 1〜8のいずれか一項に記載の希土類磁 石。
[10] 前記第 1の層と前記第 2の層との総膜厚力 0. 1〜20 111でぁる請求項1〜9のぃず れか一項に記載の希土類磁石。
[11] 希土類元素を含有する磁石素体と、該磁石素体の表面上に形成された保護層とを 備え、
前記保護層は、希土類元素及び Z又は遷移元素と酸素とを含有する内部保護層 と、該内部保護層を覆うように形成され該内部保護層とは異なる構成材料カゝらなる外 部保護層と、を有する層である、希土類磁石。
[12] 前記内部保護層は、前記磁石素体を覆い希土類元素を含有する第 1の層、及び、 該第 1の層を覆い希土類元素を実質的に含有しない第 2の層を有する層である、請 求項 11記載の希土類磁石。
[13] 前記内部保護層は、前記磁石素体を覆い希土類元素を含有する第 1の層、及び、 該第 1の層を覆い前記第 1の層よりも希土類元素の含有量が少ない第 2の層を有す る層である、請求項 11記載の希土類磁石。
[14] 前記磁石素体は、希土類元素及び希土類元素以外の遷移元素を含み、
前記第 1の層は、前記希土類元素、前記遷移元素及び酸素を含有する層であり、 前記第 2の層は、前記遷移元素及び酸素を含有する層である、請求項 12又は 13 記載の希土類磁石。
[15] 前記第 1の層における前記希土類元素、前記第 1の層における前記遷移元素、及び 、前記第 2の層における前記遷移元素は、前記磁石素体由来の元素である、請求項 14記載の希土類磁石。
[16] 前記第 1の層における前記希土類元素、前記第 1の層における前記遷移元素、及び 、前記第 2の層における前記遷移元素は、前記磁石素体の主相を構成する元素であ る、請求項 14記載の希土類磁石。
[17] 前記外部保護層は、前記内部保護層とは異なる組成を有する酸ィ匕物層である、請求 項 11〜16のいずれか一項に記載の希土類磁石。
[18] 前記酸化物層は、前記内部保護層に含まれる金属元素とは異なる金属元素を含む 層である、請求項 17記載の希土類磁石。
[19] 前記酸化物層は、非晶質の層である、請求項 17又は 18記載の希土類磁石。
[20] 前記酸化物層は、 p型酸化物半導体からなる層とこれよりも外側に形成された n型酸 化物半導体力 なる層とを有する、請求項 17〜 19のいずれか一項に記載の希土類 磁石。
[21] 前記酸ィ匕物層は、 Al、 Ta、 Zr、 Hf、 Nb、 P、 Si、 Ti、 Mg、 Cr、 Ni、 Ba、 Mo、 V、 W、 Zn、 Sr、 Bi、 B、 Ca、 Ga、 Ge、 La、 Pb、 In及び Mnからなる群より選ばれる少なくとも 一種の元素の酸ィ匕物を含む酸ィ匕物層である、請求項 17〜20のいずれか一項に記 載の希土類磁石。
[22] 前記酸化物層は、 Mo又は Wの酸ィ匕物を含む層である、請求項 17〜21のいずれか 一項に記載の希土類磁石。
[23] 前記外部保護層は、榭脂を含有する榭脂層である、請求項 11〜16のいずれか一項 に記載の希土類磁石。
[24] 前記榭脂は、熱硬化性榭脂である、請求項 23記載の希土類磁石。
[25] 前記榭脂は、フエノール榭脂、エポキシ榭脂及びメラミン榭脂からなる群より選ばれる 少なくとも一種の榭脂である、請求項 23又は 24記載の希土類磁石。
[26] 前記外部保護層は、金属塩層である、請求項 11〜16のいずれか一項に記載の希 土類磁石。
[27] 前記金属塩層は、 Cr、 Ce、 Mo、 W、 Mn、 Mg、 Zn、 Si、 Zr、 V、 Ti及び Feからなる 群より選ばれる少なくとも一種の元素と、 P、 0、 C及び Sからなる群より選ばれる少な くとも一種の元素と、を含む層である、請求項 26記載の希土類磁石。
[28] 前記金属塩層は、 Mo、 Ce、 Mg、 Zr、 Mn及び Wからなる群より選ばれる少なくとも 一種の元素と、 P、 0、 C及び Sからなる群より選ばれる少なくとも一種の元素と、を含 む層である、請求項 26又は 27記載の希土類磁石。
[29] 前記外部保護層は、有機高分子力 なる構造単位と無機高分子力 なる構造単位と が化学結合を有する有機無機ハイブリッド化合物を含む層である、請求項 11〜16の
V、ずれか一項に記載の希土類磁石。
[30] 前記有機無機ハイブリッド化合物は、有機高分子からなる構造単位と無機高分子か らなる構造単位とが共有結合により結合したィ匕合物である、請求項 29記載の希土類 磁石。
[31] 前記有機無機ハイブリッド化合物は、有機高分子からなる構造単位と無機高分子か らなる構造単位とが水素結合により結合したィ匕合物である、請求項 29記載の希土類 磁石。
[32] 前記有機無機ハイブリッドィ匕合物は、芳香環を有する有機高分子力もなる構造単位 と芳香環を有する無機高分子からなる構造単位とが前記芳香環同士の相互作用に より結合したィ匕合物である、請求項 29記載の希土類磁石。
[33] 前記外部保護層は、無機添加剤を更に含む層である、請求項 11〜32のいずれか 一項に記載の希土類磁石。
[34] 希土類元素を含有する磁石素体の表面上に保護層を形成する希土類磁石の製造 方法であって、
前記磁石素体を熱処理して、前記磁石素体を覆い希土類元素を含有する第 1の層 、及び、当該第 1の層を覆い希土類元素を実質的に含有しない第 2の層を有する保 護層を形成する保護層形成工程を含む、希土類磁石の製造方法。
[35] 希土類元素を含有する磁石素体の表面上に保護層を形成する希土類磁石の製造 方法であって、
前記磁石素体を熱処理して、前記磁石素体を覆い希土類元素を含有する第 1の層 、及び、当該第 1の層を覆い前記第 1の層よりも希土類元素の含有量が少ない第 2の 層を有する保護層を形成する保護層形成工程を含む、希土類磁石の製造方法。
[36] 前記保護層形成工程において、前記第 1の層及び前記第 2の層を前記保護層が有 するように、酸化性ガスを含有する酸化性雰囲気中で、酸化性ガス分圧、処理温度 及び処理時間のうちの少なくとも 1つの条件を調整して、前記磁石素体を熱処理する 、請求項 34又は 35記載の希土類磁石の製造方法。
[37] 前記磁石素体を、前記熱処理の前段において酸洗浄する酸洗浄工程を更に含む、 請求項 34〜36のいずれか一項に記載の希土類磁石の製造方法。
[38] 前記酸化性雰囲気を、水蒸気分圧が 10〜2000hPaである水蒸気雰囲気とする、請 求項 34〜37のいずれか一項に記載の希土類磁石の製造方法。
[39] 前記処理時間を、 1分〜 24時間とする、請求項 34〜38のいずれか一項に記載の希 土類磁石の製造方法。
[40] 希土類元素を含有する磁石素体の表面上に保護層を形成する希土類磁石の製造 方法であって、
前記磁石素体を熱処理して、前記磁石素体を覆い、希土類元素及び Z又は遷移 元素と酸素とを含有する内部保護層を形成する内部保護層形成工程と、
前記内部保護層の表面上に、前記内部保護層とは異なる構成材料力もなる外部 保護層を形成する外部保護層形成工程と、を含む、希土類磁石の製造方法。
[41] 前記内部保護層形成工程において、前記磁石素体を熱処理して、前記磁石素体を 覆い希土類元素を含有する第 1の層、及び、当該第 1の層を覆い希土類元素を実質 的に含有しな ヽ第 2の層を有する内部保護層を形成する、請求項 40記載の希土類 磁石の製造方法。
[42] 前記内部保護層形成工程にお!ヽて、前記磁石素体を熱処理して、前記磁石素体を 覆い希土類元素を含有する第 1の層、及び、当該第 1の層を覆い前記第 1の層よりも 希土類元素の含有量が少ない第 2の層を有する内部保護層を形成する、請求項 40 記載の希土類磁石の製造方法。
[43] 前記内部保護層形成工程において、前記第 1の層及び前記第 2の層を前記内部保 護層が有するように、酸化性ガスを含有する酸化性雰囲気中で、酸化性ガス分圧、 処理温度及び処理時間のうちの少なくとも 1つの条件を調整して、前記磁石素体を 熱処理する、請求項 41又は 42記載の希土類磁石の製造方法。
[44] 前記外部保護層形成工程において、前記内部保護層の表面上に、前記内部保護 層とは異なる組成を有する酸化物層からなる外部保護層を形成する、請求項 40〜4 3の 、ずれか一項に記載の希土類磁石の製造方法。
[45] 前記外部保護層形成工程において、前記内部保護層の表面上に、榭脂を含有する 榭脂層形成用塗布液を塗布して乾燥し、榭脂層からなる前記外部保護層を形成す る、請求項 40〜43のいずれか一項に記載の希土類磁石の製造方法。
[46] 前記榭脂は、フエノール榭脂、エポキシ榭脂及びメラミン榭脂からなる群より選ばれる 少なくとも一種の榭脂である、請求項 45記載の希土類磁石の製造方法。
[47] 前記外部保護層形成工程にお!ヽて、前記内部保護層形成工程後の磁石素体をィ匕 成処理して、前記内部保護層の表面上に金属塩を含む金属塩層からなる外部保護 層を形成する、請求項 40〜43の 、ずれか一項に記載の希土類磁石の製造方法。
[48] 前記外部保護層形成工程において、前記内部保護層の表面上に、有機高分子から なる構造単位及び無機高分子カゝらなる構造単位を有する有機無機ハイブリッドィ匕合 物を含む層からなる外部保護層を形成する、請求項 40〜43のいずれか一項に記載 の希土類磁石の製造方法。
[49] 希土類元素を含有する磁石素体を熱処理して、当該磁石素体の表面上に保護層を 形成する希土類磁石の製造方法であって、
前記磁石素体を酸洗浄する酸洗浄工程と、
前記酸洗浄後の磁石素体を、酸化性ガスを含有する酸化性雰囲気中で熱処理す る熱処理工程と、
を有することを特徴とする希土類磁石の製造方法。
[50] 前記熱処理工程を、前記酸洗浄工程に続!ヽて実施する請求項 49記載の希土類磁 石の製造方法。
[51] 前記酸洗浄工程において、未加工部分を含む前記磁石素体を酸洗浄することを特 徴とする請求項 49又は 50記載の希土類磁石の製造方法。
PCT/JP2005/006404 2004-03-31 2005-03-31 希土類磁石及びその製造方法 WO2005096326A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/594,338 US20080050581A1 (en) 2004-03-31 2005-03-31 Rare Earth Magnet and Method for Manufacturing Same
EP05728033.1A EP1744331B1 (en) 2004-03-31 2005-03-31 Rare earth magnet and method for manufacturing same
CN2005800107722A CN1938795B (zh) 2004-03-31 2005-03-31 稀土类磁铁及其制造方法
US13/352,172 US9903009B2 (en) 2004-03-31 2012-01-17 Rare earth magnet and method for manufacturing same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2004-103913 2004-03-31
JP2004103913 2004-03-31
JP2004167693 2004-06-04
JP2004-167693 2004-06-04
JP2004-377336 2004-12-27
JP2004377336 2004-12-27
JP2005055011A JP4276631B2 (ja) 2005-02-28 2005-02-28 希土類磁石及びその製造方法
JP2005-055011 2005-02-28
JP2005102487A JP3993613B2 (ja) 2005-03-31 2005-03-31 磁石及びその製造方法
JP2005101835A JP4276635B2 (ja) 2005-03-31 2005-03-31 磁石
JP2005-101835 2005-03-31
JP2005-102487 2005-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/594,338 A-371-Of-International US20080050581A1 (en) 2004-03-31 2005-03-31 Rare Earth Magnet and Method for Manufacturing Same
US13/352,172 Division US9903009B2 (en) 2004-03-31 2012-01-17 Rare earth magnet and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2005096326A1 true WO2005096326A1 (ja) 2005-10-13

Family

ID=35064051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006404 WO2005096326A1 (ja) 2004-03-31 2005-03-31 希土類磁石及びその製造方法

Country Status (5)

Country Link
US (2) US20080050581A1 (ja)
EP (1) EP1744331B1 (ja)
KR (2) KR100841545B1 (ja)
CN (1) CN1938795B (ja)
WO (1) WO2005096326A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273831A (ja) * 2006-03-31 2007-10-18 Tdk Corp 希土類磁石及びその製造方法
JP2007329331A (ja) * 2006-06-08 2007-12-20 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石およびその製造方法
WO2009041639A1 (ja) * 2007-09-27 2009-04-02 Hitachi Metals, Ltd. 表面改質された希土類系焼結磁石の製造方法および表面改質された希土類系焼結磁石
JP2011101043A (ja) * 2011-01-20 2011-05-19 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石およびその製造方法
WO2011122577A1 (ja) * 2010-03-30 2011-10-06 Tdk株式会社 希土類焼結磁石及びその製造方法、並びにモータ及び自動車
CN111799052A (zh) * 2020-06-29 2020-10-20 浙江中杭新材料科技有限公司 一种具有表面功能膜层的烧结钕铁硼磁体

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700166B2 (en) * 2005-06-06 2010-04-20 Createc Fischer & Co. Gmbh Process for evaporating high-melting materials
JP4614148B2 (ja) * 2006-05-25 2011-01-19 富士電機ホールディングス株式会社 酸化物半導体及び薄膜トランジスタの製造方法
DE102009008209A1 (de) * 2009-02-10 2010-08-19 Carl Zeiss Smt Ag Aktuator mit mindestens einem Magneten für eine Projektionsbelichtungsanlage sowie Projektionsbelichtungsanlage mit einem Magneten und Herstellungsverfahren hierfür
JP5439888B2 (ja) * 2009-03-25 2014-03-12 パナソニック株式会社 複合磁性材料およびその製造方法
KR102036635B1 (ko) 2011-03-28 2019-10-28 삼성디스플레이 주식회사 금속배선 구조체, 이를 이용한 유기발광표시장치 및 그 제조방법
JP5724767B2 (ja) * 2011-09-01 2015-05-27 住友金属鉱山株式会社 スピーカ用外磁型磁気回路ユニット及びその製造方法
EP2833375A4 (en) * 2012-03-26 2015-11-11 Hitachi Ltd rare earth
JP6298237B2 (ja) * 2013-02-22 2018-03-20 株式会社荏原製作所 真空ポンプ用モータロータ及びこれを備えるモータ並びに真空ポンプ
JP5565497B1 (ja) * 2013-04-25 2014-08-06 Tdk株式会社 R−t−b系永久磁石
JP5565498B1 (ja) 2013-04-25 2014-08-06 Tdk株式会社 R−t−b系永久磁石
JP5565499B1 (ja) * 2013-04-25 2014-08-06 Tdk株式会社 R−t−b系永久磁石
JP5370609B1 (ja) * 2013-04-25 2013-12-18 Tdk株式会社 R−t−b系永久磁石
JP6203531B2 (ja) * 2013-04-26 2017-09-27 株式会社五合 希土類磁石及びその製造方法
DE102014102273A1 (de) * 2014-02-21 2015-08-27 Pfeiffer Vacuum Gmbh Vakuumpumpe
KR102326934B1 (ko) * 2014-11-13 2021-11-15 현대모비스 주식회사 자성소재 표면처리용 코팅제 조성물 및 이를 이용한 표면처리 방법
US9931493B2 (en) * 2015-01-22 2018-04-03 Medtronic Xomed, Inc. Corrosion-resistant magnetic article
US9775974B2 (en) * 2015-01-22 2017-10-03 Medtronic Xomed, Inc. Corrosion-resistant magnetic article
CN104959618B (zh) * 2015-07-06 2017-05-17 浙江大学 一种高电阻率高磁性能核壳结构NdFeB磁粉及用途
KR102229282B1 (ko) * 2015-11-09 2021-03-18 현대모비스 주식회사 희토류 소결자석의 표면 처리방법
KR101704298B1 (ko) * 2015-12-01 2017-02-08 현대자동차주식회사 희토류 영구자석 제조방법
KR102617340B1 (ko) * 2017-02-06 2023-12-26 엘지이노텍 주식회사 희토류 자석 및 이를 제조하는 방법
KR102016615B1 (ko) * 2017-09-14 2019-08-30 (주)코미코 내플라즈마 특성이 향상된 플라즈마 에칭 장치용 부재 및 그 제조 방법
JP2019096868A (ja) 2017-11-24 2019-06-20 Tdk株式会社 磁石及びこれを用いたモータ
JP7110662B2 (ja) 2018-03-28 2022-08-02 Tdk株式会社 R‐t‐b系焼結磁石
CN112259359B (zh) * 2020-12-22 2021-03-19 北京中科三环高技术股份有限公司 烧结钕铁硼磁体及其防腐蚀处理方法
JP7548043B2 (ja) * 2021-02-09 2024-09-10 信越化学工業株式会社 希土類磁石接合体の製造方法及び希土類磁石接合体
KR102577316B1 (ko) * 2021-10-14 2023-09-12 한국생산기술연구원 폐 NdFeB 자석 재활용을 위한 선택적 산화 열처리 방법 및 그 장치
CN113667968B (zh) * 2021-10-25 2022-02-18 天津三环乐喜新材料有限公司 一种钕铁硼永磁体镀锌产品无铬钝化的方法
CN114420439B (zh) * 2022-03-02 2022-12-27 浙江大学 高温氧化处理提高高丰度稀土永磁抗蚀性的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328804A (ja) * 1991-04-26 1992-11-17 Sumitomo Special Metals Co Ltd 耐食性永久磁石及びその製造方法
JPH0669011A (ja) * 1992-08-21 1994-03-11 Kao Corp 金属磁性粉末の製造方法
JPH0945567A (ja) * 1995-07-27 1997-02-14 Hitachi Metals Ltd 希土類−鉄−ボロン系永久磁石の製造方法
JP2001076914A (ja) * 1998-12-17 2001-03-23 Sumitomo Special Metals Co Ltd 希土類系永久磁石およびその製造方法
JP2001176711A (ja) * 1999-12-16 2001-06-29 Ishizuka Glass Co Ltd ボンド磁石の製造方法、ボンド磁石粉末の製造方法、ボンド磁石及びボンド磁石粉末
JP2001230108A (ja) * 2000-02-15 2001-08-24 Shin Etsu Chem Co Ltd 耐食性希土類磁石の製造方法
JP2003086413A (ja) * 2001-06-28 2003-03-20 Sumitomo Special Metals Co Ltd 鉄基永久磁石およびその製造方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589518B2 (ja) 1975-08-22 1983-02-21 三菱電機株式会社 半導体メモリ装置
JPS5946008A (ja) 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd 永久磁石
DE3379131D1 (en) * 1982-09-03 1989-03-09 Gen Motors Corp Re-tm-b alloys, method for their production and permanent magnets containing such alloys
JPS609852A (ja) 1983-06-24 1985-01-18 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン 高エネルギ−積の稀土類−鉄磁石合金
JPS6054406A (ja) 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd 耐酸化性のすぐれた永久磁石
JPS6063902A (ja) 1983-09-17 1985-04-12 Sumitomo Special Metals Co Ltd 耐酸化性のすぐれた永久磁石
JPS6063901A (ja) 1983-09-17 1985-04-12 Sumitomo Special Metals Co Ltd 耐酸化性のすぐれた永久磁石
JPS6069011A (ja) 1983-09-26 1985-04-19 Miyoshi Kasei:Kk 金属セッケンによる顔料の処理方法
JPS61130453A (ja) 1984-11-28 1986-06-18 Sumitomo Special Metals Co Ltd 耐食性のすぐれた永久磁石の製造方法
CN1007847B (zh) * 1984-12-24 1990-05-02 住友特殊金属株式会社 制造具有改进耐蚀性磁铁的方法
JPS6362204A (ja) 1986-09-03 1988-03-18 Tdk Corp 耐食性が改良された永久磁石およびその製造方法
JP2791659B2 (ja) 1987-03-06 1998-08-27 住友特殊金属 株式会社 耐食性永久磁石の製造方法
JPH0324044A (ja) 1989-06-19 1991-02-01 Seiko Instr Inc タンパク質あるいはペプチドを加水分解する装置
US5162064A (en) * 1990-04-10 1992-11-10 Crucible Materials Corporation Permanent magnet having improved corrosion resistance and method for producing the same
JP2844270B2 (ja) 1991-05-11 1999-01-06 住友特殊金属株式会社 耐食性のすぐれた永久磁石
US5876518A (en) * 1995-02-23 1999-03-02 Hitachi Metals, Ltd. R-T-B-based, permanent magnet, method for producing same, and permanent magnet-type motor and actuator comprising same
JP3726926B2 (ja) 1996-08-19 2005-12-14 味の素株式会社 磁性材料
AU8399198A (en) * 1997-07-11 1999-02-08 Aura Systems, Inc. High temperature passivation of rare earth magnets
JP4221089B2 (ja) 1998-05-27 2009-02-12 東レ・ダウコーニング株式会社 シロキサンを含有する組成物
JP2001035509A (ja) 1999-07-19 2001-02-09 Agency Of Ind Science & Technol イオン伝導性膜
JP2001172782A (ja) 1999-12-16 2001-06-26 Ishizuka Glass Co Ltd 磁性素材用処理剤、コーティング被膜付き磁性部材及びその製造方法
DE10025458B4 (de) 2000-05-23 2005-05-12 Vacuumschmelze Gmbh Magnet und Verfahren zu dessen Herstellung
US6506265B2 (en) * 2000-06-13 2003-01-14 Shin-Etsu Chemical Co., Ltd. R-Fe-B base permanent magnet materials
CN1386145A (zh) * 2000-07-17 2002-12-18 日立金属株式会社 被覆的r-t-b系磁铁及其制造方法
JP4040850B2 (ja) 2000-07-24 2008-01-30 Tdk株式会社 発光素子
US6623541B2 (en) * 2000-07-31 2003-09-23 Shin-Etsu Chemical Co., Ltd. Sintered rare earth magnet and making method
EP1180771B1 (en) * 2000-08-11 2004-10-27 Neomax Co., Ltd. Rare earth metal-based permanent magnet having corrosion-resistant film and method for producing the same
JP2002105655A (ja) 2000-10-04 2002-04-10 Ishizuka Glass Co Ltd コーティング被膜付き金属部材の製造方法
JP4161169B2 (ja) 2001-06-14 2008-10-08 信越化学工業株式会社 耐食性希土類磁石の製造方法
JP3904062B2 (ja) * 2001-12-28 2007-04-11 信越化学工業株式会社 希土類焼結磁石
JP2003261826A (ja) 2002-03-07 2003-09-19 Bridgestone Corp コーティング剤組成液、及び、磁石の防錆方法
JP4365067B2 (ja) 2002-05-14 2009-11-18 東レ・ダウコーニング株式会社 複合軟磁性体形成用硬化性シリコーン組成物および複合軟磁性体
JP4073881B2 (ja) 2004-03-12 2008-04-09 Tdk株式会社 希土類磁石およびその製造方法
JP4424030B2 (ja) 2004-03-26 2010-03-03 Tdk株式会社 希土類磁石、その製造方法、及び多層体の製造方法
JP4457726B2 (ja) 2004-03-29 2010-04-28 Tdk株式会社 希土類磁石の製造方法及び希土類磁石
JP4029095B2 (ja) 2004-03-31 2008-01-09 Tdk株式会社 希土類磁石及びその製造方法
JP3911514B2 (ja) 2004-06-04 2007-05-09 Tdk株式会社 希土類磁石及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328804A (ja) * 1991-04-26 1992-11-17 Sumitomo Special Metals Co Ltd 耐食性永久磁石及びその製造方法
JPH0669011A (ja) * 1992-08-21 1994-03-11 Kao Corp 金属磁性粉末の製造方法
JPH0945567A (ja) * 1995-07-27 1997-02-14 Hitachi Metals Ltd 希土類−鉄−ボロン系永久磁石の製造方法
JP2001076914A (ja) * 1998-12-17 2001-03-23 Sumitomo Special Metals Co Ltd 希土類系永久磁石およびその製造方法
JP2001176711A (ja) * 1999-12-16 2001-06-29 Ishizuka Glass Co Ltd ボンド磁石の製造方法、ボンド磁石粉末の製造方法、ボンド磁石及びボンド磁石粉末
JP2001230108A (ja) * 2000-02-15 2001-08-24 Shin Etsu Chem Co Ltd 耐食性希土類磁石の製造方法
JP2003086413A (ja) * 2001-06-28 2003-03-20 Sumitomo Special Metals Co Ltd 鉄基永久磁石およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1744331A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273831A (ja) * 2006-03-31 2007-10-18 Tdk Corp 希土類磁石及びその製造方法
JP4506708B2 (ja) * 2006-03-31 2010-07-21 Tdk株式会社 希土類磁石の製造方法
JP2007329331A (ja) * 2006-06-08 2007-12-20 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石およびその製造方法
WO2009041639A1 (ja) * 2007-09-27 2009-04-02 Hitachi Metals, Ltd. 表面改質された希土類系焼結磁石の製造方法および表面改質された希土類系焼結磁石
JPWO2009041639A1 (ja) * 2007-09-27 2011-01-27 日立金属株式会社 表面改質された希土類系焼結磁石の製造方法および表面改質された希土類系焼結磁石
JP4636207B2 (ja) * 2007-09-27 2011-02-23 日立金属株式会社 表面改質された希土類系焼結磁石の製造方法および表面改質された希土類系焼結磁石
US9175376B2 (en) 2007-09-27 2015-11-03 Hitachi Metals, Ltd. Method for producing surface-modified rare earth metal-based sintered magnet and surface-modified rare earth metal-based sintered magnet
WO2011122577A1 (ja) * 2010-03-30 2011-10-06 Tdk株式会社 希土類焼結磁石及びその製造方法、並びにモータ及び自動車
JP5408340B2 (ja) * 2010-03-30 2014-02-05 Tdk株式会社 希土類焼結磁石及びその製造方法、並びにモータ及び自動車
US8823478B2 (en) 2010-03-30 2014-09-02 Tdk Corporation Rare earth sintered magnet, method for producing same, motor and automobile
JP2011101043A (ja) * 2011-01-20 2011-05-19 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石およびその製造方法
CN111799052A (zh) * 2020-06-29 2020-10-20 浙江中杭新材料科技有限公司 一种具有表面功能膜层的烧结钕铁硼磁体

Also Published As

Publication number Publication date
KR20080007689A (ko) 2008-01-22
CN1938795B (zh) 2012-05-02
KR100841545B1 (ko) 2008-06-26
KR100866018B1 (ko) 2008-10-31
EP1744331A4 (en) 2010-06-02
CN1938795A (zh) 2007-03-28
EP1744331B1 (en) 2016-06-29
US9903009B2 (en) 2018-02-27
KR20060133076A (ko) 2006-12-22
EP1744331A1 (en) 2007-01-17
US20080050581A1 (en) 2008-02-28
US20120112862A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
WO2005096326A1 (ja) 希土類磁石及びその製造方法
EP1455368B1 (en) Corrosion-resistant rare earth element magnet
US20110234346A1 (en) Bonded rare earth magnet
TWI363098B (en) Corrosion resistant rare earth magnets and making methods
JP6799196B2 (ja) 希土類ボンド磁性粉末、その作製方法及びボンド磁石
JP4276631B2 (ja) 希土類磁石及びその製造方法
JP3911514B2 (ja) 希土類磁石及びその製造方法
KR20000017659A (ko) 내식성 피막을 갖는 Fe-B-R 계 영구자석 및 그의 제조방법
JP4678118B2 (ja) 被覆r−t−b系磁石及びその製造方法
JP2007207936A (ja) 希土類磁石
JP4276635B2 (ja) 磁石
JP3993613B2 (ja) 磁石及びその製造方法
JP4276553B2 (ja) 希土類磁石及びその製造方法
JP4276636B2 (ja) 磁石及び複合体
WO2023119908A1 (ja) 希土類磁石粉末、その製造方法およびボンド磁石
JPH09289108A (ja) 密着性のすぐれた電気絶縁性被膜を有するR−Fe−B系永久磁石とその製造方法
JP4276098B2 (ja) 希土類磁石及びその製造方法
JP4899928B2 (ja) 希土類磁石の製造方法
JP2007273825A (ja) 希土類磁石
JPH0757912A (ja) 高耐食性焼結永久磁石
JP2007273831A (ja) 希土類磁石及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580010772.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005728033

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067022841

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10594338

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067022841

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005728033

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10594338

Country of ref document: US