CN114420439B - 高温氧化处理提高高丰度稀土永磁抗蚀性的方法 - Google Patents

高温氧化处理提高高丰度稀土永磁抗蚀性的方法 Download PDF

Info

Publication number
CN114420439B
CN114420439B CN202210199186.2A CN202210199186A CN114420439B CN 114420439 B CN114420439 B CN 114420439B CN 202210199186 A CN202210199186 A CN 202210199186A CN 114420439 B CN114420439 B CN 114420439B
Authority
CN
China
Prior art keywords
rare earth
permanent magnet
earth permanent
equal
temperature oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210199186.2A
Other languages
English (en)
Other versions
CN114420439A (zh
Inventor
严密
金佳莹
陈望
吴琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210199186.2A priority Critical patent/CN114420439B/zh
Priority to JP2022062187A priority patent/JP2023129176A/ja
Priority to US17/712,163 priority patent/US20230282415A1/en
Publication of CN114420439A publication Critical patent/CN114420439A/zh
Priority to EP22175983.0A priority patent/EP4239655A1/en
Application granted granted Critical
Publication of CN114420439B publication Critical patent/CN114420439B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开一种高温氧化处理提高高丰度稀土永磁抗蚀性的方法,其通过700~1000℃的高温氧化处理,在高丰度稀土永磁表面原位生长稀土氧化物薄层,大幅提高高丰度稀土永磁的抗蚀性。本方法适用于高丰度稀土永磁体系,充分利用了高丰度稀土元素La/Ce/Y不同于Nd/Pr/Dy/Tb等其他稀土元素的成相规律和扩散动力学行为,原位生成一层与基体结合力强的稀土氧化物薄层,薄层厚度在10nm~100μm间连续可调,大幅提高磁体抗蚀性的同时还能提高磁性能和力学性能,具有绿色环保、寿命长、工艺简单等优点,可大批量推广应用。

Description

高温氧化处理提高高丰度稀土永磁抗蚀性的方法
技术领域
本发明涉及腐蚀防护领域,具体涉及高温氧化处理提高高丰度稀土永磁抗蚀性的方法。
背景技术
自20世纪80年代至今,钕铁硼永磁材料因其优异的综合磁性能,广泛应用于能源、信息、交通、医疗和国防等领域,是最重要的稀土功能材料和国民经济的关键基础材料。钕铁硼产业也是稀土应用领域发展最快、规模最大的产业,消耗了稀土应用总量的近一半。伴随着钕铁硼需求量的快速上涨,资源紧缺的Nd、Pr、Dy、Tb等稀土元素被大量消耗,而La、Ce、Y等高丰度稀土元素,在地壳中储量高,却长期很少使用在稀土永磁领域。因此,开发高丰度稀土永磁材料,实现La、Ce、Y等高丰度稀土元素的大量应用,是近年来稀土永磁领域的研究热点。
相较于钕铁硼,高丰度稀土永磁的主相和晶界相均存在成分和结构差异,呈现不同的理化特性,决定了磁体的磁性能和抗腐蚀性能。已经发现,高丰度稀土永磁晶界相的化学成分、结构及分布具有更复杂的局域性特征,呈现新的腐蚀机理,对抗蚀性的影响甚至比传统钕铁硼磁体更大。目前,提高钕铁硼磁体抗蚀性的常用方法包括:一是合金化提高晶界相电极电位,降低其与主相的电位差,但效果十分有限;二是表面防护,通过表面涂覆防护层,隔绝环境中可能对磁体产生侵蚀的水及其他腐蚀性溶液等,但表面防护工艺易产生废液污染环境,且防护层与钕铁硼基体间的结合力大多较弱,导致无法长期防护。而对于高丰度稀土永磁,大量研究聚焦于磁性能的提升,较少关注抗蚀性的提升。如何提高高丰度稀土永磁的抗蚀性,有可能会超越磁性能,成为限制应用的难点,亟需新的技术突破。
发明内容
本发明的目的是克服现有技术的不足,提供一种高温氧化处理提高高丰度稀土永磁抗蚀性的方法.
本发明使用高温氧化方法,在高丰度稀土永磁表面原位生长稀土氧化物薄层,大幅提高高丰度稀土永磁的抗蚀性。其特征在于:在热处理炉中进行高温氧化反应,温度控制在700~1000℃,反应时间控制在0.2~5h,反应过程氧分压小于104Pa。
所述稀土氧化物薄层厚度在10nm~100μm间连续可调。
所述高丰度稀土永磁的成分,以原子百分数计,为(REaRE’1-a)x(FebM1-b)100-x-y-zM’yBz,RE为La、Ce、Y元素中的一种或几种,RE’为除La、Ce、Y以外的其它镧系元素中的一种或几种;Fe为铁元素,M为Co或Ni中的一种或两种;M’为Nb、Zr、Ta、V、Al、Cu、Ga、Ti、Cr、Mo、Mn、Ag、Au、Pb、Si元素中的一种或几种,B为硼元素;a、b、x、y、z满足以下关系:0.25≤a≤1、0.8≤b≤1、12≤x≤18、0≤y≤2、5.5≤z≤6.5。
本发明与现有技术相比的有益效果:
1)本发明针对的是高丰度稀土永磁,基于其腐蚀失效的根源,充分利用了高丰度稀土元素La/Ce/Y不同于传统Nd/Pr/Dy/Tb等其他稀土元素的成相规律和扩散动力学行为,充分利用晶界富稀土相易于氧化的特点,通过高温氧化方法原位生长高化学稳定性的稀土氧化物薄层,制备具有高抗蚀性的高丰度稀土永磁材料;与此同时,高温热处理还能改善基体的组织结构,同时提高磁性能;氧化物薄层为原位生成,与基体结合力较强,同时提高力学性能。因此,本发明提供了一种高温氧化处理提高高丰度稀土永磁抗蚀性的方法,同时提高磁性能和力学性能。该方法区别于传统钕铁硼的防腐方法(合金化和表面防护处理),不以牺牲磁性能和力学性能为代价。
2)根据不同成分的高丰度稀土永磁,基于其合金成分设计与晶界组织结构、分布形态、理化特性、形变行为以及主相/晶界相界面状态的不同状态,结合高温氧化过程中组织结构的演变规律,通过针对性设计氧化工艺,调控氧分压、氧化温度和反应时间,厚度在几十纳米到几十微米间连续可调,建立一种适用于高丰度稀土永磁的高温氧化新技术,制备出兼具高抗蚀性、良好磁性能和和较好力学性能的高丰度稀土永磁新材料。
3)本发明呈现的技术在国内外没有其它报道,具有实质性创新,将解决抗蚀性差这一长期影响高丰度稀土永磁发展和应用的关键问题,且仅需一步高温氧化处理(700~1000℃),工艺流程简单,成本较低,适合批量应用。
4)高丰度稀土永磁高温氧化后表面原位生长的稀土氧化物薄层,具有致密、连续、疏水的优点,对氧分压、氧化温度和反应时间的要求高,其产物不同于低温氧化后的钕铁硼磁体,不包括Fe氧化物等产物。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明并不仅仅局限于以下实施例:
实施例1:
高丰度稀土永磁的成分,以原子百分数计,为[(Pr0.2Nd0.8)0.5Ce0.5]13.9(Fe0.98Co0.02)78.6(Cu0.2Co0.2Al0.3Ga0.1Zr0.2)1.5B6,通过在热处理炉中进行高温氧化反应,温度控制在900℃,反应时间控制在4h,氧分压为10Pa。磁体表面原位生成的稀土氧化物薄层厚度为~7μm。AMT-4永磁特性测量仪测试结果显示,表面氧化处理后磁体的剩磁为12.4kG,矫顽力为9.0kOe。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,表面氧化处理后磁体的腐蚀电流为7μA/cm2
对比例1:
与实施例1的不同之处在于,高丰度稀土永磁高温氧化的氧分压为105Pa。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为12.3kG,矫顽力为8.5kOe,较实施例1均下降。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电流为50μA/cm2,大于实施例1。
对比例2:
与实施例1的不同之处在于,高丰度稀土永磁高温氧化的反应时间为10h。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为12.2kG,矫顽力为7.9kOe,较实施例1均下降。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电流为41μA/cm2,大于实施例1。
对比例3:
与实施例1的不同之处在于,高丰度稀土永磁未经高温氧化处理。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为12.3kG,矫顽力为8.6kOe,较实施例1均下降。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电流为82μA/cm2,较实施例1增大了一个数量级以上。
对比例4:
与实施例1的不同之处在于,提高Cu和Co元素含量,高丰度稀土永磁的成分,以原子百分数计,为[(Pr0.2Nd0.8)0.5Ce0.5]13.9(Fe0.98Co0.02)77.1(Cu0.4Co0.3Al0.15Ga0.05Zr0.1)3B6,且未经低温氧化处理。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为11.8kG,矫顽力为5.7kOe,较实施例1均大幅下降。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电流为73μA/cm2,较实施例1增大了一个数量级以上。
对比例5:
与实施例1的不同之处在于,高丰度稀土永磁未经高温氧化处理,经表面镀层处理,为暗银色镍镀层,镀层厚度~7μm。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为12.1kG,矫顽力为8.1kOe,较实施例1均下降。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电流为18μA/cm2,大于实施例1。
实施例2:
高丰度稀土永磁的成分,以原子百分数计,为[(Pr0.2Nd0.8)0.55(La0.15Ce0.85)0.45]15Fe77.8(Ga0.6Cu0.2Al0.25Nb0.32)1B5.83,通过在热处理炉中进行高温氧化反应,温度控制在850℃,反应时间控制在5h,氧分压为0.5Pa。磁体表面原位生成的稀土氧化物薄层厚度为~3μm。AMT-4永磁特性测量仪测试结果显示,表面氧化处理后磁体的剩磁为12.4kG,矫顽力为7.2kOe。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,表面氧化处理后磁体的腐蚀电流为12μA/cm2
对比例6:
与实施例2的不同之处在于,高丰度稀土永磁未经高温氧化处理。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为12.4kG,矫顽力为5.6kOe,较实施例2下降。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电流为135μA/cm2,较实施例2增大了一个数量级以上。
实施例3:
高丰度稀土永磁的成分,以原子百分数计,为[Nd0.75(Y0.1Ce0.9)0.25]15.5(Fe0.92Co0.08)76.9(Cu0.2Ga0.1Al0.35Si0.2Nb0.15)1.5B6.1,通过在热处理炉中进行高温氧化反应,温度控制在700℃,反应时间控制在5h,氧分压为0.5Pa。磁体表面原位生成的稀土氧化物薄层厚度为~800nm。AMT-4永磁特性测量仪测试结果显示,表面氧化处理后磁体的剩磁为12.6kG,矫顽力为12.2kOe。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,表面氧化处理后磁体的腐蚀电流为20μA/cm2
对比例7:
与实施例3的不同之处在于,高丰度稀土永磁未经高温氧化处理。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为12.3kG,矫顽力为10.1kOe,较实施例3均下降。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电流为250μA/cm2,较实施例3增大了一个数量级以上。
实施例4:
高丰度稀土永磁的成分,以原子百分数计,为[Nd0.35(Y0.3Ce0.7)0.65]16.0(Fe0.87Co0.13)75.9(Cu0.3Ga0.1Al0.35Si0.35Zr0.05Nb0.15)1.5B6.15,通过在热处理炉中进行高温氧化反应,温度控制在900℃,反应时间控制在3h,氧分压为0.01Pa。磁体表面原位生成的稀土氧化物薄层厚度为~1μm。AMT-4永磁特性测量仪测试结果显示,表面氧化处理后磁体的剩磁为11.5kG,矫顽力为7.1kOe。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,表面氧化处理后磁体的腐蚀电流为35μA/cm2
对比例8:
与实施例4的不同之处在于,高丰度稀土永磁未经高温氧化处理。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为11.2kG,矫顽力为6.1kOe,较实施例4均下降。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电流为580μA/cm2,较实施例4增大了一个数量级以上。

Claims (2)

1.高温氧化处理提高高丰度稀土永磁抗蚀性的方法,其特征在于:通过高温氧化处理,在高丰度稀土永磁表面原位生长稀土氧化物薄层;
在热处理炉中进行高温氧化反应,温度控制在700~900℃,反应时间控制在3~5h,反应过程氧分压为0.01-10Pa;
所述高丰度稀土永磁的成分,以原子百分数计,为(REaRE’1-a)x(FebM1-b)100-x-y-zM’yBz,RE为La、Ce、Y元素中的一种或几种,RE’为除La、Ce、Y以外的其它镧系元素中的一种或几种;Fe为铁元素,M为Co或Ni中的一种或两种;M’为Nb、Zr、Ta、V、Al、Cu、Ga、Ti、Cr、Mo、Mn、Ag、Au、Pb、Si元素中的一种或几种,B为硼元素;a、b、x、y、z满足以下关系:0.25≤a≤1、0.8≤b≤1、12≤x≤18、0≤y≤2、5.5≤z≤6.5。
2.根据权利要求1所述的方法,其特征在于:所述稀土氧化物薄层厚度在10nm~100μm间连续可调。
CN202210199186.2A 2022-03-02 2022-03-02 高温氧化处理提高高丰度稀土永磁抗蚀性的方法 Active CN114420439B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202210199186.2A CN114420439B (zh) 2022-03-02 2022-03-02 高温氧化处理提高高丰度稀土永磁抗蚀性的方法
JP2022062187A JP2023129176A (ja) 2022-03-02 2022-04-02 高温酸化処理により高濃縮の希土類永久磁石の耐腐食性を増加させる方法
US17/712,163 US20230282415A1 (en) 2022-03-02 2022-04-03 Method for improving corrosion resistance of high abundance rare earth permanent magnet
EP22175983.0A EP4239655A1 (en) 2022-03-02 2022-05-30 Method for improving corrosion resistance of high abundance rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210199186.2A CN114420439B (zh) 2022-03-02 2022-03-02 高温氧化处理提高高丰度稀土永磁抗蚀性的方法

Publications (2)

Publication Number Publication Date
CN114420439A CN114420439A (zh) 2022-04-29
CN114420439B true CN114420439B (zh) 2022-12-27

Family

ID=81261956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210199186.2A Active CN114420439B (zh) 2022-03-02 2022-03-02 高温氧化处理提高高丰度稀土永磁抗蚀性的方法

Country Status (4)

Country Link
US (1) US20230282415A1 (zh)
EP (1) EP4239655A1 (zh)
JP (1) JP2023129176A (zh)
CN (1) CN114420439B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574806A (zh) * 2022-03-02 2022-06-03 浙江大学 一种稀土永磁材料表面耐蚀涂层及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120014A (ja) * 1992-10-05 1994-04-28 Tokin Corp 希土類コバルト系磁石合金の表面処理方法
WO1999002337A1 (en) * 1997-07-11 1999-01-21 Aura Systems, Inc. High temperature passivation of rare earth magnets
CN101589445A (zh) * 2007-05-30 2009-11-25 信越化学工业株式会社 高耐蚀性稀土永磁体的制造方法及其使用方法
CN103123839A (zh) * 2013-01-30 2013-05-29 浙江大学 一种应用高丰度稀土Ce生产的稀土永磁体及其制备方法
CN111063536A (zh) * 2019-12-31 2020-04-24 浙江大学 一种适用于大块稀土永磁材料的晶界扩散方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362204A (ja) * 1986-09-03 1988-03-18 Tdk Corp 耐食性が改良された永久磁石およびその製造方法
JP4190743B2 (ja) * 2000-05-31 2008-12-03 信越化学工業株式会社 希土類永久磁石の製造方法
JP5408340B2 (ja) * 2010-03-30 2014-02-05 Tdk株式会社 希土類焼結磁石及びその製造方法、並びにモータ及び自動車
JP5501829B2 (ja) * 2010-03-31 2014-05-28 日東電工株式会社 希土類永久磁石の製造方法
JP5146552B2 (ja) * 2011-01-20 2013-02-20 日立金属株式会社 R−Fe−B系希土類焼結磁石およびその製造方法
JP5565499B1 (ja) * 2013-04-25 2014-08-06 Tdk株式会社 R−t−b系永久磁石
JP2016186990A (ja) * 2015-03-27 2016-10-27 Tdk株式会社 R−t−b系薄膜永久磁石
CN107871602A (zh) * 2016-09-26 2018-04-03 厦门钨业股份有限公司 一种R‑Fe‑B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法
CN109841367B (zh) * 2017-11-29 2020-12-25 有研稀土新材料股份有限公司 稀土粘结磁粉及其制备方法和粘结磁体
CN113130200B (zh) * 2021-04-26 2022-06-17 浙江大学 一种提高富Ce-Y稀土永磁体磁性能的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120014A (ja) * 1992-10-05 1994-04-28 Tokin Corp 希土類コバルト系磁石合金の表面処理方法
WO1999002337A1 (en) * 1997-07-11 1999-01-21 Aura Systems, Inc. High temperature passivation of rare earth magnets
CN101589445A (zh) * 2007-05-30 2009-11-25 信越化学工业株式会社 高耐蚀性稀土永磁体的制造方法及其使用方法
CN103123839A (zh) * 2013-01-30 2013-05-29 浙江大学 一种应用高丰度稀土Ce生产的稀土永磁体及其制备方法
CN111063536A (zh) * 2019-12-31 2020-04-24 浙江大学 一种适用于大块稀土永磁材料的晶界扩散方法

Also Published As

Publication number Publication date
CN114420439A (zh) 2022-04-29
US20230282415A1 (en) 2023-09-07
JP2023129176A (ja) 2023-09-14
EP4239655A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
CN103106991B (zh) 基于晶界重构的高矫顽力高稳定性钕铁硼磁体及制备方法
CN101055779A (zh) 晶界添加氧化物或氮化物提高钕铁硼永磁材料性能的方法
EP3355319B1 (en) Corrosion-resistant sintered neodymium-iron-boron magnet rich in lanthanum and cerium, and manufacturing method
CN101499346A (zh) 一种高工作温度和高耐蚀性烧结钕铁硼永磁体
WO2016086397A1 (zh) 镝氢化合物添加提高烧结钕铁硼磁体矫顽力的方法及产品
CN111063536B (zh) 一种适用于大块稀土永磁材料的晶界扩散方法
CN114420439B (zh) 高温氧化处理提高高丰度稀土永磁抗蚀性的方法
CN102610346B (zh) 一种新型无稀土纳米复合永磁材料及其制备方法
CN112017832B (zh) 一种低重稀土高性能烧结钕铁硼磁体及其制备方法
CN100554530C (zh) 稀土类磁铁的制造方法及电镀液
CN110060833B (zh) 一种高剩磁、高矫顽力r-t-b永磁材料及其制备方法
CN103060657B (zh) 一种制备高矫顽力和高耐蚀性烧结钕铁硼永磁材料的方法
JP2005150503A (ja) 焼結磁石の製造方法
Huang et al. Production of anisotropic hot deformed Nd-Fe-B magnets with the addition of Pr-Cu-Al alloy based on nanocomposite ribbon
CN101719405A (zh) 低能耗耐腐蚀铝合金与钕铁硼型稀土永磁的双相复合材料
CN113593873A (zh) 一种高矫顽力混合稀土永磁材料及其制备方法
CN108597710A (zh) 一种钐铁氮磁纳米阵列的制备方法
JP2023177262A (ja) 希土類磁性体及びその製造方法
Shimotomai et al. Corrosion-resistance Nd-TM-B magnet
US20220005637A1 (en) Method for preparing high-performance sintered NdFeB magnets and sintered NdFeB magnets
CN114464443B (zh) 一种同时提高多主相LaCe基烧结永磁材料矫顽力和耐腐蚀性的方法
CN111748783A (zh) 一种用于磁性材料镀膜的多元系重稀土金属靶材
CN112735718A (zh) 一种高耐蚀高矫顽力烧结钕铁硼磁体的制备方法
CN112259314A (zh) 一种R(Fe,M)12型的稀土永磁材料及其制备方法
CN112216463A (zh) 一种提高钕铁硼废料回收磁体抗腐蚀性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant