CN113130200B - 一种提高富Ce-Y稀土永磁体磁性能的方法 - Google Patents
一种提高富Ce-Y稀土永磁体磁性能的方法 Download PDFInfo
- Publication number
- CN113130200B CN113130200B CN202110451874.9A CN202110451874A CN113130200B CN 113130200 B CN113130200 B CN 113130200B CN 202110451874 A CN202110451874 A CN 202110451874A CN 113130200 B CN113130200 B CN 113130200B
- Authority
- CN
- China
- Prior art keywords
- magnet
- rare earth
- heat treatment
- rich
- equal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0293—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0557—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
本发明公开了一种提高富Ce‑Y稀土永磁体磁性能的方法。本发明对富Ce‑Y稀土永磁体进行加压热处理,改善磁体的磁性能。包括以下步骤:(1)通过烧结工艺制备得到初始磁体;(2)将初始磁体放入加压热处理装置,在氩气气氛保护下进行加压热处理,通过控制热处理过程中的压力、温度和保温时间等参数,促进富Ce‑Y永磁体内的元素扩散,提高富Ce‑Y永磁体的矫顽力、剩磁、磁能积及其温度稳定性。本方法工艺简单,能耗低,保证高丰度稀土Ce‑Y取代量最高达90wt%的同时具有优异的磁性能,提供了一种高效利用高丰度稀土Ce、Y的途径。
Description
技术领域
本发明涉及稀土永磁领域,具体来说,涉及一种提高富Ce-Y稀土永磁体磁性能的方法。
背景技术
钕铁硼被誉为“磁王”,具有其他永磁体无法比拟的综合磁性能,因而广泛应用于能源、信息、交通和国防等领域,是国民经济和国防建设的关键基础材料之一。随着社会发展和科技进步,钕铁硼需求逐年增加,稀土资源消耗过快,稀土价格上涨,全球稀土产业可持续发展面临严峻考验。此外,稀土资源利用也不平衡,地壳中储量较少的Nd/Pr/Dy/Tb等稀土资源被大量消耗,而高丰度稀土元素Ce和Y却很少被使用在稀土永磁领域。应用廉价的高丰度稀土Ce和Y,取代价格昂贵的Nd/Pr/Dy/Tb,能大幅降低稀土永磁的原材料成本,同时有利于平衡稀土资源利用。
在烧结磁体中,Ce和Y元素能形成稳定的2:14:1相,但在内禀磁性能方面,Ce2Fe14B(饱和磁极化强度JS=1.17T,磁晶各向异场HA=26kOe)和Y2Fe14B(饱和磁极化强度JS=1.41T,磁晶各向异场HA=26kOe)均低于Nd2Fe14B(饱和磁极化强度JS=1.60T,磁晶各向异场HA=73kOe)。因而Ce-Y取代Nd后,稀土永磁的磁稀释效应显著,磁性能明显恶化。如何提高富Ce-Y稀土永磁体的磁性能已成为限制其产业化的主要瓶颈。
CN107275027A公开了应用Y的富Ce稀土永磁体及其制备方法,设计了一种RE-Fe-B主相和一种或多种添加Y的富Ce主相,将两种主相合金粉末按照比例混合、压型、烧结和热处理,最终制备出多主相结构的稀土永磁体,缓解了Ce-Y取代导致的磁稀释效应。但高Ce-Y取代量烧结磁体中的磁稀释效应仍非常显著,难以满足商用需求。对于烧结磁体,往往需要热处理工艺进一步提升稀土永磁体的矫顽力。但在多种高丰度稀土共取代的烧结磁体中,Ce、Y、Nd等元素扩散更复杂,晶界相种类更多,对热处理的技术要求更高。
发明内容
本发明通过烧结工艺制备得到富Ce-Y的初始磁体,调控Ce、Y的比例及取代量,充分发挥多元稀土在热处理过程中的协同效应,促进Y、Nd等迁移至主相,而Ce迁移至晶界相。并在热处理过程中施加一定压力,从动力学上促进元素扩散迁移的同时可降低热处理温度,最终提高富Ce-Y稀土永磁体的矫顽力、剩磁、磁能积和温度稳定性。
为实现上述目的,本发明采用的技术解决方案为:一种提高富Ce-Y稀土永磁体磁性能的方法,包括以下步骤:
(1)通过烧结工艺制备得到初始磁体,所述的初始磁体富高丰度稀土Ce-Y,以质量百分数计,其成分为:[(YaCe1-a)bRE1-b]cFe100-c-d-eMdBe,其中Y为钇元素,Ce为铈元素,RE为Nd、Pr、Gd、Ho中的一种或几种,Fe为铁元素,M为Al、Co、Cr、Cu、Ga、Mn、Mo、Nb、Ni、Si、Ta、Ti、V、Zr元素中一种或几种,B为硼元素;a、b、c、d、e满足以下关系:0.3≤a≤0.7,0.4≤b≤0.9,26≤c≤34,0.5≤d≤2,0.85≤e≤1.15。
(2)将初始磁体放入加压热处理装置中,抽真空至真空度小于10-3Pa,然后通入氩气保护进行加压热处理,热处理温度为400~800℃,施加压力0.5~10MPa,保温时间3~10h,得到最终磁体。
本发明与现有技术相比具有的有益效果:
1)本发明调节Ce、Y的比例为7:3~3:7,调节Ce-Y占总稀土的质量百分比为40%~90%,通过不同稀土替代与合金元素M的优选,充分发挥Ce-Y在热处理过程中的协同效应,促进Y、Nd等迁移至主相,而Ce迁移至晶界相,缓解Ce-Y取代带来的磁稀释效应。
2)本发明采用加压热处理工艺,对于不同的稀土元素替代方案,通过调节压力、温度、保温时间控制元素扩散速度、迁移规律、晶粒生长、晶界磁性演变等,加压也可以进一步降低所需的热处理温度。
3)常规热处理仅能提升烧结磁体的矫顽力,而无法提高剩磁和磁能积。本发明中的加压热处理工艺通过调控稀土元素的迁移,可提高富Ce-Y永磁体主相中的Y、Nd等含量,降低Ce含量,大幅提高磁体的剩磁和磁能积。此外,Ce进入晶界相后也进一步调控晶界相的数量、形态、分布等,磁体的矫顽力也显著提升。同时主相中更高的Y含量,也增强了富Ce-Y永磁体的温度稳定性。
4)与其他增压扩散和热处理方法相比,本发明无需引入额外的扩散源,仅利用多种稀土元素的协同效应促进元素扩散来实现性能的提升。并且对于本发明中的富Ce-Y烧结磁体,仅需要更小的压力(0.5~10MPa)就能达到促进元素扩散迁移的目的,能耗更低。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明并不仅仅局限于以下实施例:
实施例1:
通过烧结工艺制备得到富Ce-Y的初始磁体[(Y0.3Ce0.7)0.5Nd0.5]30.5Fe67.11Co1.1Al0.2Zr0.09B1;将初始磁体放入加压热处理装置中,抽真空至真空度小于10- 3Pa,然后通入氩气保护进行加压热处理,热处理温度为800℃,施加压力0.5MPa,保温时间8h,得到最终磁体,磁性能为Br=12.9kGs,Hcj=11.4kOe,(BH)max=38.3MGOe.
对比例1:
通过烧结工艺制备得到富Ce-Y的初始磁体[(Y0.3Ce0.7)0.5Nd0.5]30.5Fe67.11Co1.1Al0.2Zr0.09B1;将初始磁体放入常压热处理装置中,抽真空至真空度小于10- 3Pa,然后通入氩气保护进行常压热处理,热处理温度为800℃,保温时间8h,得到最终磁体,磁性能为Br=12.6kGs,Hcj=8.9kOe,(BH)max=36.1MGOe.
实施例2:
通过烧结工艺制备得到富Ce-Y的初始磁体[(Y0.4Ce0.6)0.5Nd0.5]30.5Fe67.11Co0.8Cu0. 2Al0.25Zr0.14B1;将初始磁体放入加压热处理装置中,抽真空至真空度小于10-3Pa,然后通入氩气保护进行加压热处理,热处理温度500℃,施加压力3MPa,保温时间4h,得到最终磁体,磁性能为Br=13.1kGs,Hcj=11.6kOe,(BH)max=41.1MGOe。
对比例2:
通过烧结工艺制备得到富Ce-Y的初始磁体[(Y0.4Ce0.6)0.5Nd0.5]30.5Fe67.11Co0.8Cu0. 2Al0.25Zr0.14B1;将初始磁体放入常压热处理装置中,抽真空至真空度小于10-3Pa,然后通入氩气保护进行常压热处理,热处理温度500℃,保温时间4h,得到最终磁体,磁性能为Br=12.8kGs,Hcj=9.0kOe,(BH)max=38.3MGOe。
实施例3:
通过烧结工艺制备得到富Ce-Y的初始磁体[(Y0.4Ce0.6)0.7Nd0.3]31Fe66.45Co0.8Al0.2Ga0.25Cu0.25Nb0.1B0.95;将初始磁体放入加压热处理装置中,抽真空至真空度小于10-3Pa,然后通入氩气保护进行加压热处理,热处理温度为400℃,施加压力0.8MPa,保温时间10h,得到最终磁体,磁性能为Br=12.3kGs,Hcj=9.1kOe,(BH)max=35.8MGOe。
对比例3:
通过烧结工艺制备得到富Ce的初始磁体(Ce0.7Nd0.3)31Fe66.45Co0.8Al0.2Ga0.25Cu0.25Nb0.1B0.95;将初始磁体放入加压热处理装置中,抽真空至真空度小于10-3Pa,然后通入氩气保护进行加压热处理,热处理温度为400℃,施加压力0.8MPa,保温时间10h,得到最终磁体,磁性能为Br=12.0kGs,Hcj=6.7kOe,(BH)max=32.9MGOe。
实施例4:
通过烧结工艺制备得到富Ce-Y的初始磁体[(Y0.7Ce0.3)0.4Nd0.43Pr0.12Gd0.05]31.0Fe67.01Co0.39Cu0.15Al0.15Ga0.2Nb0.1B1;将初始磁体放入加压热处理装置中,抽真空至真空度小于10-3Pa,然后通入氩气保护进行加压热处理,热处理温度为650℃,施加压力10MPa,保温时间3h,得到最终磁体,磁性能为Br=13.4kGs,Hcj=12.8kOe,(BH)max=43.5MGOe。
对比例4:
通过烧结工艺制备得到富Ce-Y的初始磁体[(Y0.2Ce0.8)0.4Nd0.43Pr0.12Gd0.05]31.0Fe67.01Co0.39Cu0.15Al0.15Ga0.2Nb0.1B1;将初始磁体放入加压热处理装置中,抽真空至真空度小于10-3Pa,然后通入氩气保护进行加压热处理,热处理温度为650℃,施加压力10MPa,保温时间3h,得到最终磁体,磁性能为Br=13.0kGs,Hcj=10.8kOe,(BH)max=41.3MGOe。
实施例5:
通过烧结工艺制备得到富Ce-Y的初始磁体[(Y0.3Ce0.7)0.9Pr0.1]31Fe66.39Co0.5Zr0.15Al0.3Ga0.5Cu0.25B0.91;将初始磁体放入加压热处理装置中,抽真空至真空度小于10-3Pa,然后通入氩气保护进行加压热处理,热处理温度为480℃,施加压力3MPa,保温时间3.5h,得到最终磁体,磁性能为Br=11.6kGs,Hcj=6.1kOe,(BH)max=30.1MGOe。
对比例5:
通过烧结工艺制备得到富Ce的初始磁体(Ce0.9Pr0.1)31Fe66.39Co0.5Zr0.15Al0.3Ga0.5Cu0.25B0.91;将初始磁体放入加压热处理装置中,抽真空至真空度小于10-3Pa,然后通入氩气保护进行加压热处理,热处理温度为480℃,施加压力3MPa,保温时间3.5h,得到最终磁体,磁性能为Br=11.3kGs,Hcj=5.1kOe,(BH)max=27.1MGOe。
由上述实施例和对比例,不难得出,本发明通过对富Ce-Y稀土永磁体的加压热处理,充分发挥了Ce、Y、Nd等稀土元素在加压热处理过程中的协同扩散作用,提供了一种同时提高剩磁、矫顽力和磁能积的方法;这是发明人经过大量前期实验总结归纳及理论计算后得出的创造性发明,其前提条件需要满足:Ce、Y的比例满足本发明成分区间7:3~3:7,并要求Ce-Y占总稀土的质量百分比为40%~90%,热处理过程中施加压力0.5~10MPa,同时与加热温度、保温时间及成分相匹配,才能发挥提高磁性能的效用,制备得到的磁体性能远高于满足成分区间但常压热处理的富Ce-Y磁体,也高于满足加压热处理工艺条件但成分区间不匹配的磁体,其技术特点和效应明显区别于传统的富Ce-Y烧结或热压、热变形磁体,具有实质性创新和进步。
Claims (2)
1.一种提高富Ce-Y稀土永磁体磁性能的方法,所述的方法包括以下步骤:
(1)通过烧结工艺制备得到初始磁体,所述的初始磁体富高丰度稀土Ce-Y,以质量百分数计,其成分为:[(YaCe1-a)bRE1-b]cFe100-c-d-eMdBe,其中Y为钇元素,Ce为铈元素,RE为Nd、Pr、Gd、Ho中的一种或几种,Fe为铁元素,M为Al、Co、Cr、Cu、Ga、Mn、Mo、Nb、Ni、Si、Ta、Ti、V、Zr元素中一种或几种,B为硼元素;a、b、c、d、e满足以下关系:0.3≤a≤0.7,0.4≤b≤0.9,26≤c≤34,0.5≤d≤2,0.85≤e≤1.15。
(2)将初始磁体放入加压热处理装置中,抽真空至真空度小于10-3Pa,然后通入氩气保护进行加压热处理,热处理温度400~800℃,施加压力0.5~10MPa,保温时间3~10h,得到最终磁体。
2.根据权利要求1所述的方法,其特征在于,所述初始磁体中高丰度稀土Ce、Y占总稀土的质量百分比为40%~90%。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110451874.9A CN113130200B (zh) | 2021-04-26 | 2021-04-26 | 一种提高富Ce-Y稀土永磁体磁性能的方法 |
US17/728,149 US20220344081A1 (en) | 2021-04-26 | 2022-04-25 | Method for improving magnetic properties of cerium-yttrium-rich rare earth permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110451874.9A CN113130200B (zh) | 2021-04-26 | 2021-04-26 | 一种提高富Ce-Y稀土永磁体磁性能的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113130200A CN113130200A (zh) | 2021-07-16 |
CN113130200B true CN113130200B (zh) | 2022-06-17 |
Family
ID=76780357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110451874.9A Active CN113130200B (zh) | 2021-04-26 | 2021-04-26 | 一种提高富Ce-Y稀土永磁体磁性能的方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220344081A1 (zh) |
CN (1) | CN113130200B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114420439B (zh) * | 2022-03-02 | 2022-12-27 | 浙江大学 | 高温氧化处理提高高丰度稀土永磁抗蚀性的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102969141A (zh) * | 2012-11-14 | 2013-03-13 | 山西汇镪磁性材料制作有限公司 | 稀土-铁-硼系永磁体磁环的制作方法 |
CN108154986A (zh) * | 2016-12-06 | 2018-06-12 | 中国科学院宁波材料技术与工程研究所 | 一种含y高丰度稀土永磁体及其制备方法 |
CN110323053A (zh) * | 2018-03-30 | 2019-10-11 | 厦门钨业股份有限公司 | 一种R-Fe-B系烧结磁体及其制备方法 |
CN111029128A (zh) * | 2019-12-31 | 2020-04-17 | 浙江大学 | 一种稀土永磁的快速热处理方法 |
CN112071544A (zh) * | 2020-08-20 | 2020-12-11 | 钢铁研究总院 | 一种低密度含y永磁体及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104388951B (zh) * | 2014-11-24 | 2017-06-06 | 上海交通大学 | 一种提高烧结钕铁硼磁性能的晶界扩散方法 |
US10428408B2 (en) * | 2015-03-13 | 2019-10-01 | Tdk Corporation | R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet |
CN110133029B (zh) * | 2019-03-29 | 2021-06-18 | 杭州电子科技大学 | 一种钕铁硼磁体中高通量设计晶界扩散物成分的方法 |
CN111091944B (zh) * | 2019-12-31 | 2021-06-04 | 浙江大学 | 一种富镧铈钇多主相细晶稀土永磁材料及其制备方法 |
-
2021
- 2021-04-26 CN CN202110451874.9A patent/CN113130200B/zh active Active
-
2022
- 2022-04-25 US US17/728,149 patent/US20220344081A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102969141A (zh) * | 2012-11-14 | 2013-03-13 | 山西汇镪磁性材料制作有限公司 | 稀土-铁-硼系永磁体磁环的制作方法 |
CN108154986A (zh) * | 2016-12-06 | 2018-06-12 | 中国科学院宁波材料技术与工程研究所 | 一种含y高丰度稀土永磁体及其制备方法 |
CN110323053A (zh) * | 2018-03-30 | 2019-10-11 | 厦门钨业股份有限公司 | 一种R-Fe-B系烧结磁体及其制备方法 |
CN111029128A (zh) * | 2019-12-31 | 2020-04-17 | 浙江大学 | 一种稀土永磁的快速热处理方法 |
CN112071544A (zh) * | 2020-08-20 | 2020-12-11 | 钢铁研究总院 | 一种低密度含y永磁体及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Towards peculiar corrosion behavior of multi-main-phase Nd-Ce-Y-Fe-B permanent material with heterogeneous microstructure;Baixing Peng,et al;《Corrosion Science》;20200915(第177期);108972 * |
Also Published As
Publication number | Publication date |
---|---|
CN113130200A (zh) | 2021-07-16 |
US20220344081A1 (en) | 2022-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11195645B2 (en) | Ce-containing sintered rare-earth permanent magnet with having high toughness and high coercivity, and preparation method therefor | |
CN104700973B (zh) | 一种由白云鄂博共伴生原矿混合稀土制成的稀土永磁体及其制备方法 | |
CN107275027B (zh) | 应用钇的富铈稀土永磁体及其制备方法 | |
CN104637643B (zh) | 白云鄂博共伴生原矿混合稀土永磁材料及其制备方法 | |
US20230093584A1 (en) | Method for preparing NdFeB magnets including lanthanum or cerium | |
CN110060833B (zh) | 一种高剩磁、高矫顽力r-t-b永磁材料及其制备方法 | |
US20220319773A1 (en) | Grain boundary diffusion method for bulk rare earth permanent magnetic material | |
CN112017832B (zh) | 一种低重稀土高性能烧结钕铁硼磁体及其制备方法 | |
CN113130200B (zh) | 一种提高富Ce-Y稀土永磁体磁性能的方法 | |
CN111091944B (zh) | 一种富镧铈钇多主相细晶稀土永磁材料及其制备方法 | |
CN114210976B (zh) | 一种烧结钕铁硼双合金结合晶界扩散的方法 | |
CN111477449A (zh) | 一种含镧铈钕铁硼系磁体及其制备方法 | |
CN116612956A (zh) | 一种具有核壳结构的含铈钕铁硼磁体及其制备方法和应用 | |
CN111161949B (zh) | 一种YCe共掺的纳米晶稀土永磁体及其制备方法 | |
CN108364739B (zh) | 钕铁硼磁体及其制备方法 | |
CN102208238B (zh) | 一种无钕无铽高矫顽力烧结稀土永磁体及其制备方法 | |
CN114823113A (zh) | 一种高矫顽力富铈稀土永磁材料的制备方法 | |
CN114196864A (zh) | 一种Y-Gd基合金及包括该基合金的钕铈铁硼磁体与制备方法 | |
CN114464443A (zh) | 一种同时提高多主相LaCe基烧结永磁材料矫顽力和耐腐蚀性的方法 | |
CN116313352B (zh) | 一种低硼烧结钕铁硼磁材料及其制备方法 | |
CN114783754B (zh) | 通过1:2相同时提高混合稀土永磁材料抗蚀性和矫顽力的晶界扩散方法 | |
CN114678182B (zh) | 一种低成本高性能多主相稀土永磁材料及其制备方法 | |
CN117219388A (zh) | 一种基于白云鄂博共伴生混合稀土的高磁能积稀土永磁材料及其制备方法 | |
CN107146673B (zh) | 一种粘结磁粉及其制备方法 | |
CN117373809A (zh) | 稀土永磁体及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |