CN117373809A - 稀土永磁体及其制备方法 - Google Patents

稀土永磁体及其制备方法 Download PDF

Info

Publication number
CN117373809A
CN117373809A CN202210764659.9A CN202210764659A CN117373809A CN 117373809 A CN117373809 A CN 117373809A CN 202210764659 A CN202210764659 A CN 202210764659A CN 117373809 A CN117373809 A CN 117373809A
Authority
CN
China
Prior art keywords
treatment
rare earth
carrying
steps
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210764659.9A
Other languages
English (en)
Inventor
安小鑫
郝忠彬
洪群峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Dongyang Dmegc Rare Earth Magnet Co ltd
Original Assignee
Zhejiang Dongyang Dmegc Rare Earth Magnet Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Dongyang Dmegc Rare Earth Magnet Co ltd filed Critical Zhejiang Dongyang Dmegc Rare Earth Magnet Co ltd
Priority to CN202210764659.9A priority Critical patent/CN117373809A/zh
Publication of CN117373809A publication Critical patent/CN117373809A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明提供了一种稀土永磁体及其制备方法。该制备方法包括:按合金的成分进行配料;采用粉末冶金工艺将配料后的合金进行铸片,形成铸片前驱体;依次对铸片前驱体进行氢破碎处理和气流磨,制成粉末;将粉末混合搅拌后,在磁场中取向成型和等静压处理,得到预成型体;对预成型体依次进行烧结、回火处理,得到稀土永磁体;其中,合金的成分按重量比为(Pr0.25Nd0.75)a(LRE)bTMcFe(100%‑a‑b‑c‑d)Bd,其中LRE为稀土元素Gd、Y、La、Ce中的至少两种,且LRE必含Gd,TM为Al、Cu、Co、Ga、Nb、Zr、Ti中的一种或多种。本发明解决了稀土永磁体低成本和高温磁性能难以兼顾的问题。

Description

稀土永磁体及其制备方法
技术领域
本发明涉及稀土永磁材料技术领域,具体而言,涉及一种稀土永磁体及其制备方法。
背景技术
钕铁硼作为第三代稀土永磁材料,具有高磁能积(BH)max和高矫顽力Hcj的特点,且不含战略金属Co,因而自发现后便迅速替代第二代SmCo系稀土永磁材料成为计算机、信息、通讯、家电、交通运输、办公自动化等现代科学技术领域的关键材料之一。在高性能应用领域中,与第二代SmCo系磁体相比,钕铁硼系磁体具有较大的性能和成本优势,因此得到了广泛的应用。但在低性能领域,与永磁铁氧体相比,钕铁硼的成本仍然很高,限制了其在低性能领域的大量推广应用。随着全球稀土永磁体产量的不断增加,使金属钕的使用量大幅增加,同时金属钕的价格波动较大,给磁性材料剩磁企业及用户造成了很大压力。因此,很多学者和企业纷纷投入精力研制低钕、无重稀土永磁体,以期降低金属钕用量,同时降低材料成本。
目前研究人员针对储量丰富且价格低廉的高丰度稀土La、Ce、Y等部分替代金属钕方面开展了大量工作,例如专利CN104103393A、CN102436892A、CN110218931A等分别提出了高丰度稀土替代PrNd的方法。其中专利CN104103393A采用其它稀土元素替代较多的Nd,虽然Nd含量降低,但为了提升矫顽力,又使用了较多的Dy、Tb等重稀土元素来保证高温性能,综合成本较高。专利CN102436892A采用Ce替代PrNd,Ce对PrNd的替代量最高到20%,成本下降有限,且常温矫顽力只达到10kOe以上,不能保证在高于80℃的温度下使用。专利CN110218931A采用高丰度稀土完全替代PrNd,制备出纯高丰度稀土钕铁硼磁体,大幅降低了材料成本,但磁体矫顽力仅有5kOe左右,只可在箱包扣、玩具等低端领域替代永磁铁氧体,不具备高温使用特性。由此可见,现有技术中以高丰度稀土La、Ce、Y等部分替代金属钕,由于La2Fe14B/Ce2F14B的磁矩Js和各项异性场HA远低于Nd2Fe14B,因此随着高丰度稀土替代量的增加,稀土永磁体的矫顽力会出现明显下降,并且矫顽力的大幅下降会使得磁体的高温温度系数下降,导致永磁体的高温磁性能较低,限制了永磁体在高温下的使用。而通常提升稀土永磁体高温温度系数和磁性能的主要途径使在合金制备环节添加Dy、Tb等重稀土元素,然而,Dy、Tb等重稀土元素的引入会造成产品成本大幅上升,使产品失去竞争力。
因此如何在不添加重稀土,且少加镨钕。从而降低稀土永磁体成本的情况下,提升烧结钕铁硼永磁体的高温特性,使其在高温下得到应用,将变得非常有意义。
发明内容
本发明的主要目的在于提供一种稀土永磁体及其制备方法,以解决现有技术中稀土永磁体低成本和优秀的高温磁性能难以兼顾的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种稀土永磁体的制备方法,其制备方法包括以下步骤:按合金的成分进行配料;采用粉末冶金工艺将配料后的合金进行铸片,形成铸片前驱体;依次对铸片前驱体进行氢破碎处理和气流磨,制成粉末;将粉末混合搅拌后,在磁场中取向成型和等静压处理,得到预成型体;对预成型体依次进行烧结、回火处理,得到稀土永磁体;其中,合金的成分按重量比为(Pr0.25Nd0.75)a(LRE)bTMcFe(100%-a-b-c-d)Bd,其中LRE为稀土元素Gd、Y、La、Ce中的至少两种,且LRE必含Gd,TM为Al、Cu、Co、Ga、Nb、Zr、Ti中的一种或多种,其中3%≤a≤10%,23%≤b≤30%,0.5%≤c≤6%,0.9%≤d≤1%。
进一步地,LRE必含有Gd和Ce,优选TM为Co、Cu、Al、Zr、B的组合。
进一步地,LRE为Gd和Ce的组合,且二者重量比为(17~19):10;或者,LRE为Gd、Ce和Y的组合,且三者重量比为(9~16.2):10:(1~5)。
进一步地,合金的成分按重量比,3%≤a≤6%,23%≤b≤30%,0.5%≤c≤6%,0.9%≤d≤1%;优选地,合金的成分按重量比,18%≤Gd≤30%;更优选地,合金的成分按重量比为:(Pr0.25Nd0.75)5Gd11Ce10Y5Fe66.09Co0.2Cu0.1Al1.5Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd13.6Ce10Y3Fe65.49Co0.2Cu0.1Al1.5Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd16.2Ce10Y1Fe64.89Co0.2Cu0.1Al1.5Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd18Ce10Fe63.59Co0.2Cu0.1Al2Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd18Ce10Fe64.09Co0.2Cu0.1Al1.5Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd18Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,(Pr0.25Nd0.75)6Gd17Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,(Pr0.25Nd0.75)4Gd19Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,(Pr0.25Nd0.75)3Gd20Ce10Fe64.59Co0. 2Cu0.1Al1Zr0.15B0.96;或者,(Pr0.25Nd0.75)10Gd13Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd11Ce10Y5Fe64.29Co0.4Cu0.2Al3Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd18La10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96
进一步地,铸片前驱体粉末的平均粒度为2.5~4μm。
进一步地,烧结处理过程中,烧结温度为1000~1060℃,真空度低于10-2Pa,烧结时间为2~8h。
进一步地,回火处理包括依次进行的一段回火处理及二段回火处理;优选地,第一段回火温度为850~950℃,回火时间为1~3h;第二段的回火温度为480~600℃,回火时间为3~6h。
进一步地,铸片步骤中,采用真空氩气熔炼,熔炼浇注温度为1450~1520℃,控制铸片前驱体的厚度为0.2~0.4mm。
进一步地,取向成型过程在充有惰性气体的手套箱中进行,优选手套箱中氧含量低于100ppm;磁场的中心磁场强度大于1.4T;等静压处理过程中,压力为180~200MPa。
根据本发明的另一方面,提供了一种稀土永磁体,其由上述的制备方法制备得到。
应用本发明的技术方案,利用添加部分特定的价格低廉的稀土元素替代了烧结钕铁硼中的60~90%的钕达到以下效果:其一,通过形成高居里温度的稀土永磁相(Re-Fe-B),提升了永磁体的温度系数和耐温特性,从而提高永磁体的使用温度;特别是本发明的LRE为稀土元素Gd、Y、La、Ce中的至少两种,且LRE必含Gd,TM为Al、Cu、Co、Ga、Nb、Zr、Ti中的一种或多种,特定类型的稀土元素和TM元素相互配合,出于预料地克服了常规高丰度稀土La、Ce、Y代替金属钕容易导致的缺陷,在耐温特性方面取得了长足的进步;与此同时,本发明通过添加资源丰富、价格低廉的稀土金属替代镨钕金属,亦大幅降低了产品的制造成本。因此,本发明有效解决了稀土永磁体低成本和优秀的高温磁性能难以兼顾的问题。除此之外,如前文所述,本发明制备的稀土永磁体高温特性良好,但常温磁性能低于常规烧结钕铁硼的低钕磁体,这也弥补了永磁铁氧体与烧结钕铁硼之间的性能空白,在低性能领域(Hcj+BH<56)具有很强的市场竞争力。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
正如本发明背景技术中,现有技术中稀土永磁体低成本和优秀的高温磁性能难以兼顾的问题。为了解决上述问题,根据本发明的一个方面,提供了一种烧结钕铁硼磁体的制备方法,包括以下步骤:按合金的成分进行配料;采用粉末冶金工艺将配料后的合金进行铸片,形成铸片前驱体;依次对铸片前驱体进行氢破碎处理和气流磨,制成粉末;将粉末混合搅拌后,在磁场中取向成型和等静压处理,得到预成型体;对预成型体依次进行烧结、回火处理,得到稀土永磁体;其中,合金的成分按重量比为(Pr0.25Nd0.75)a(LRE)bTMcFe(100%-a-b-c-d)Bd,其中LRE为稀土元素Gd、Y、La、Ce中的至少两种,且LRE必含Gd,TM为Al、Cu、Co、Ga、Nb、Zr、Ti中的一种或多种,其中3%≤a≤10%,23%≤b≤30%,0.5%≤c≤6%,0.9%≤d≤1%。
应用本发明的技术方案,利用添加部分特定的价格低廉的稀土元素替代了烧结钕铁硼中的60~90%的钕达到以下效果:其一,通过形成高居里温度的稀土永磁相(Re-Fe-B),提升了永磁体的温度系数和耐温特性,从而提高永磁体的使用温度;特别是本发明的LRE为稀土元素Gd、Y、La、Ce中的至少两种,且LRE必含Gd,TM为Al、Cu、Co、Ga、Nb、Zr、Ti中的一种或多种,特定类型的稀土元素和TM元素相互配合,出于预料地克服了常规高丰度稀土La、Ce、Y代替金属钕容易导致的缺陷,在耐温特性方面取得了长足的进步;与此同时,本发明通过添加资源丰富、价格低廉的稀土金属替代镨钕金属,亦大幅降低了产品的制造成本。因此,本发明有效解决了稀土永磁体低成本和优秀的高温磁性能难以兼顾的问题。
除此之外,由于Gd-Fe-B材料的饱和磁化强度为0.88T,远低于Nd-Fe-B的1.61T,因此烧结钕铁硼永磁体中Gd元素的引入往往会影响永磁体的剩磁(Br)。但Gd-Fe-B材料的居里温度在RE-Fe-B材料中是最高的,Gd元素的引入有利于提升稀土永磁体的温度系数。本发明中,针对低磁能积(BH≤25MGOe)低成本稀土永磁体的应用,通过大量引入Gd元素,使磁体的温度系数得到了大幅优化,既可以保证剩磁和磁能积满足使用,又提高了磁体的使用温度。该稀土永磁体尽管常温磁性能低于常规烧结钕铁硼,但在烧结钕铁硼磁体在钕被大量高丰度稀土替代的情况下,常温剩磁也能够达到不低于7.66kGs,满足了低性能领域的需求。
优选地,LRE必含有Gd和Ce。采用至少包含上述两种稀土元素的LRE代替部分钕,能够进一步改善稀土永磁体的上述性能。更优选TM为Co、Cu、Al、Zr、B的组合,以这几种元素组合形成的TM元素配合LRE元素,具有更好的协同增效作用,对于稀土永磁体的高温特性具有更好的促进作用。
出于进一步提高稀土永磁体的高温磁性能,降低稀土永磁体的温度敏感性的目的,在一种优选的实施方式中,LRE为Gd、Ce和Y的组合,且三者重量比为(9~16.2):10:(1~5);或者,LRE为Gd和Ce的组合,且二者重量比为(17~19):10。使用上述元素的组合作为LRE,对于改善稀土永磁体高温特性具有更好的促进作用。
在实际的操作中,更优选地,合金的成分按重量比,3%≤a≤6%,23%≤b≤30%,0.5%≤c≤6%,0.9%≤d≤1%;进一步优选地,合金的成分按重量比,3%≤a≤6%,23%≤b≤30%,1.45%≤c≤3.75%,d=0.96%;进一步优选地,合金的成分按重量比,18%≤Gd≤30%。
优选上述合金成分重量比,能够更好地在大量代替稀土永磁体中的钕,从而降低稀土永磁体成本的情况下,兼顾更加优异的高温磁性能。
更优选地,合金的成分按重量比为:(Pr0.25Nd0.75)5Gd11Ce10Y5Fe66.09Co0.2Cu0.1Al1.5Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd13.6Ce10Y3Fe65.49Co0.2Cu0.1Al1.5Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd16.2Ce10Y1Fe64.89Co0.2Cu0.1Al1.5Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd18Ce10Fe63.5 9Co0.2Cu0.1Al2Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd18Ce10Fe64.09Co0.2Cu0.1Al1.5Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd18Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,(Pr0.25Nd0.75)6Gd17Ce10Fe64.59Co0. 2Cu0.1Al1Zr0.15B0.96;或者,(Pr0.25Nd0.75)4Gd19Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,(Pr0.25Nd0.75)3Gd20Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,(Pr0.25Nd0.75)10Gd13Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd11Ce10Y5Fe64.29Co0.4Cu0.2Al3Zr0.15B0.96;或者,(Pr0.25Nd0.75)5Gd18La10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96
最优选地,合金成分为(Pr0.25Nd0.75)5Gd18Ce10Fe64.09Co0.2Cu0.1Al1.5Zr0.15B0.96或(Pr0.25Nd0.75)5Gd18Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96。在钕铁硼永磁体中,N、H、SH、UH、EH牌号的工作的最高温度均不超过80℃,且若实际温度接近最高工作温度,则磁体易发生较大程度的退磁,增加成本。而优选上述合金组成,使用本发明的制备方法得到的稀土永磁体在钕被大量高丰度稀土替代的情况下,具有更加优秀的高温剩磁和矫顽力温度系数,更好地满足了稀土永磁体在高温领域的使用需求。
粉末冶金工艺可为本领域常规的熔融工艺,在一种优选的实施方式中,本发明中技术方案采用真空氩气熔炼,熔炼浇注温度为1450~1520℃,控制铸片前驱体的厚度为0.2~0.4mm,例如0.3mm。
合金铸片制成粉末的步骤可采用本领域常规的氢破碎处理和气流磨。氢破碎的时间和条件可为本领域常规。经氢破碎和气流磨后制得的粉末平均粒度为2.5~4μm。通过氢破碎和气流磨处理,可以减少粉末表面杂质,从而更好地提高稀土永磁体的矫顽力。
在一种优选的实施方式中,取向成型过程在充有惰性气体的手套箱中进行,优选手套箱中氧含量低于100ppm。在低含氧的环境下进行取向成型有利于防止永磁体氧化、降低磁性能。更优选地,上述磁场的中心磁场强度大于1.4T。进一步优选地,等静压处理过程中,压力为180~200MPa。合理地平衡磁场强度与成型压力的关系,有利于获得尽量高的取向度。经过上述处理的钕铁硼磁体制品更加紧密,且制品中合金成分的混合更加均匀。
为了进一步限制晶粒的成长,保持良好的磁体性能,同时降低磁体的生产成本,在一种优选的实施方式中,烧结温度为1000~1060℃,真空度低于10-2Pa,烧结时间为2~8h。
在一种优选的实施方式中,回火处理包括依次进行的一段回火处理及二段回火处理;优选地,第一段回火温度为850~950℃,回火时间为1~3h;第二段的回火温度为480~600℃,回火时间为3~6h。通过两段的回火处理,可以有效提高组织稳定性,并减小永磁体内部的内应力。
本发明还提供了一种稀土永磁体,由上述制备方法制备得到。通过利用LRE大量替代镨钕,在保持低成本的情况下同时兼顾了高温磁性能。本发明中的技术方案中大量特定的稀土元素替代镨钕,配合特定的TM元素,降低了稀土永磁体的温度敏感性,拓宽了烧结钕铁硼永磁体的应用范围,剩磁温度系数绝对值低至0.1028%,矫顽力温度系数绝对值低至0.4457%,工作温度可达到120℃。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
实施例1:
按成分(Pr0.25Nd0.75)5Gd11Ce10Y5Fe66.09Co0.2Cu0.1Al1.5Zr0.15B0.96进行配料,经过真空充氩熔炼制得平均厚度为0.3mm的铸片,铸片经氢破碎处理、加一定比例防氧化剂搅拌、气流磨制粉后得到平均粒度为3.3μm的粉末,将制得粉末加入一定一定比例的润滑剂并搅拌均匀后,在1.8T的磁场中取向、压制成型,并进行等静压。将所得生坯放入真空烧结炉(真空度低于5×10-2Pa)中分别在1030℃×4.5h烧结,890℃×2h+500℃×4h回火处理。所得磁体磁性能为Br=9.18kGs,Hcj=4.06kOe,(BH)max=18.78MOe。
实施例2:
按成分(Pr0.25Nd0.75)5Gd13.6Ce10Y3Fe65.49Co0.2Cu0.1Al1.5Zr0.15B0.96进行配料,经过实施例1中的步骤处理,得到磁体磁性能为Br=8.67kGs,Hcj=5.64kOe,(BH)max=17.89MOe。
实施例3:
按成分(Pr0.25Nd0.75)5Gd16.2Ce10Y1Fe64.89Co0.2Cu0.1Al1.5Zr0.15B0.96进行配料,经过实施例1中的步骤处理,得到磁体磁性能为Br=8.16kGs,Hcj=7.01kOe,(BH)max=15.91MOe。
实施例4:
按成分(Pr0.25Nd0.75)5Gd18Ce10Fe63.59Co0.2Cu0.1Al2Zr0.15B0.96进行配料,经过实施例1中的步骤处理,得到磁体磁性能为Br=7.66kGs,Hcj=9.74kOe,(BH)max=13.91MOe。
实施例5:
按成分(Pr0.25Nd0.75)5Gd18Ce10Fe64.09Co0.2Cu0.1Al1.5Zr0.15B0.96进行配料,经过实施例1中的步骤处理,得到磁体磁性能为Br=7.84kGs,Hcj=8.33kOe,(BH)max=14.45MOe。
实施例6:
按成分(Pr0.25Nd0.75)5Gd18Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96进行配料,经过实施例1中的步骤处理,得到磁体磁性能为Br=8.3kGs,Hcj=8.53kOe,(BH)max=16.13MOe。
实施例7:
按成分(Pr0.25Nd0.75)6Gd17Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96进行配料,经过实施例1中的步骤处理,得到磁体磁性能为Br=8.57kGs,Hcj=8.92kOe,(BH)max=17.93MOe。
实施例8:
按成分(Pr0.25Nd0.75)4Gd19Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96进行配料,经过实施例1中的步骤处理,得到磁体磁性能为Br=8.08kGs,Hcj=7.42kOe,(BH)max=15.26MOe。
实施例9:
按成分(Pr0.25Nd0.75)3Gd20Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96进行配料,经过实施例1中的步骤处理,得到磁体磁性能为Br=7.92kGs,Hcj=6.03kOe,(BH)max=14.48MOe。
实施例10:
按成分(Pr0.25Nd0.75)10Gd13Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96进行配料,经过实施例1中的步骤处理,得到磁体磁性能为Br=9.06kGs,Hcj=9.75kOe,(BH)max=19.36MOe。
实施例11:
按成分(Pr0.25Nd0.75)5Gd11Ce10Y5Fe64.29Co0.4Cu0.2Al3Zr0.15B0.96进行配料,经过实施例1中的步骤处理,得到磁体磁性能为Br=7.71kGs,Hcj=5.35kOe,(BH)max=14.13MOe。
实施例12:
按成分(Pr0.25Nd0.75)5Gd18La10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96进行配料,经过实施例一中的步骤处理,得到磁体磁性能为Br=8.67kGs,Hcj=4.86kOe,(BH)max=17.89MOe。
对比例1:
按成分(Pr0.25Nd0.75)10Ce23Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96进行配料,经过实施例1中的步骤处理,得到磁体磁性能为Br=9.63kGs,Hcj=6.53kOe,(BH)max=22.48MOe。
对比例2:
与实施例6的区别在于:采用传统的烧结钕铁硼材料,按成分为(PrNd)32Fe65.59Co0.2Cu0.1Al1Zr0.15B0.96进行配料,经过实施例1的步骤处理,然后在1075℃×4.5h烧结,900℃×2h+500℃×4h回火处理。得到磁体磁性能为Br=13.25kGs,Hcj=14.56kOe,(BH)max=42.76MOe。磁性能属于烧结钕铁硼N42M牌号。
对比例3:
常规烧结钕铁硼永磁材料的制备方法与对比例2相同。与对比例2的区别在于:烧结钕铁硼材料成分为(PrNd)29.5Dy2Fe66.09Co0.2Cu0.1Al1Zr0.15B0.96进行配料,经过对比例2的步骤处理,得到磁体磁性能为Br=12.85kGs,Hcj=20.76kOe,(BH)max=39.66MOe。磁性能属于烧结钕铁硼N40SH牌号。
对比例4:
常规烧结钕铁硼永磁材料的制备方法与对比例2相同。与对比例2的区别在于:烧结钕铁硼材料成分为(Pr0.25Nd0.75)27Dy4Fe65.76Co1Cu0.2Ga0.2Al0.8Zr0.13B0.91。经过对比例2的步骤处理,得到磁体磁性能为Br=12.44kGs,Hcj=25.76kOe,(BH)max=37.20MOe。磁性能属于烧结钕铁硼N38UH牌号。
对上述实施例所得永磁体的高温温度系数进行了对比,测试方法如下:
Br温度系数测试方法:剩磁温度系数α=(Br1-Br0)/Br0/(T-20)×100%,其中Br1为温度为T℃条件下测得的改性烧结钕铁硼永磁材料的剩磁,Br0为20℃条件下测得的剩磁。
Hcj温度系数测试方法:内禀矫顽力Hcj温度系数β=(Hcj1-Hcj0)/Hcj0/(T-20)×100%,其中Hcj1为T℃条件下测得的改性烧结钕铁硼永磁材料的内禀矫顽力,Hcj0为20℃条件下测得的内禀矫顽力。
结果参照表1。
表1
从以上的描述中,可以看出,本发明上述的实施例通过调节磁体成分,使得所得磁体的剩磁和矫顽力温度系数优于烧结钕铁硼的N、M、H、SH牌号,实施例5至10得到的磁体温度系数甚至优于烧结钕铁硼的UH牌号。优异的温度系数保证了磁体的高温磁性能,使这些磁体的工作温度大幅改善,分别可满足在80℃、100℃和120℃等高温下的使用。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种稀土永磁体的制备方法,其特征在于,所述制备方法包括以下步骤:
按合金的成分进行配料;
采用粉末冶金工艺将配料后的所述合金进行铸片,形成铸片前驱体;
依次对所述铸片前驱体进行氢破碎处理和气流磨,制成粉末;
将所述粉末混合搅拌后,在磁场中取向成型和等静压处理,得到预成型体;
对所述预成型体依次进行烧结、回火处理,得到所述稀土永磁体;
其中,所述合金的成分按重量比为(Pr0.25Nd0.75)a(LRE)bTMcFe(100%-a-b-c-d)Bd,其中LRE为稀土元素Gd、Y、La、Ce中的至少两种,且所述LRE必含Gd,TM为Al、Cu、Co、Ga、Nb、Zr、Ti中的一种或多种,其中3%≤a≤10%,23%≤b≤30%,0.5%≤c≤6%,0.9%≤d≤1%。
2.根据权利要求1所述的制备方法,其特征在于,所述LRE必含有Gd和Ce,优选所述TM为Co、Cu、Al、Zr、B的组合。
3.根据权利要求1或2所述的制备方法,其特征在于,
所述LRE为Gd和Ce的组合,且二者重量比为(17~19):10;或者,
所述LRE为Gd、Ce和Y的组合,且三者重量比为(9~16.2):10:(1~5)。
4.根据权利要求1至3中任一项所述的制备方法,其特征在于,所述合金的成分按重量比,3%≤a≤6%,23%≤b≤30%,0.5%≤c≤6%,0.9%≤d≤1%;优选地,所述合金的成分按重量比,18%≤Gd≤30%;
更优选地,所述合金的成分按重量比为:
(Pr0.25Nd0.75)5Gd11Ce10Y5Fe66.09Co0.2Cu0.1Al1.5Zr0.15B0.96;或者,
(Pr0.25Nd0.75)5Gd13.6Ce10Y3Fe65.49Co0.2Cu0.1Al1.5Zr0.15B0.96;或者,
(Pr0.25Nd0.75)5Gd16.2Ce10Y1Fe64.89Co0.2Cu0.1Al1.5Zr0.15B0.96;或者,
(Pr0.25Nd0.75)5Gd18Ce10Fe63.59Co0.2Cu0.1Al2Zr0.15B0.96;或者,
(Pr0.25Nd0.75)5Gd18Ce10Fe64.09Co0.2Cu0.1Al1.5Zr0.15B0.96;或者,
(Pr0.25Nd0.75)5Gd18Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,
(Pr0.25Nd0.75)6Gd17Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,
(Pr0.25Nd0.75)4Gd19Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,
(Pr0.25Nd0.75)3Gd20Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,
(Pr0.25Nd0.75)10Gd13Ce10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96;或者,
(Pr0.25Nd0.75)5Gd11Ce10Y5Fe64.29Co0.4Cu0.2Al3Zr0.15B0.96;或者,
(Pr0.25Nd0.75)5Gd18La10Fe64.59Co0.2Cu0.1Al1Zr0.15B0.96
5.根据权利要求1至4中任一项所述的制备方法,其特征在于,所述铸片前驱体粉末的平均粒度为2.5~4μm。
6.根据权利要求1至5中任一项所述的制备方法,其特征在于,所述烧结处理过程中,烧结温度为1000~1060℃,真空度低于10-2Pa,烧结时间为2~8h。
7.根据权利要求1至6中任一项所述的制备方法,其特征在于,所述回火处理包括依次进行的一段回火处理及二段回火处理;优选地,所述第一段回火温度为850~950℃,回火时间为1~3h;所述第二段的回火温度为480~600℃,回火时间为3~6h。
8.根据权利要求1至7中任一项所述的制备方法,其特征在于,所述铸片步骤中,采用真空氩气熔炼,熔炼浇注温度为1450~1520℃,控制所述铸片前驱体的厚度为0.2~0.4mm。
9.根据权利要求1至8中任一项所述的制备方法,其特征在于,所述取向成型过程在充有惰性气体的手套箱中进行,优选所述手套箱中氧含量低于100ppm;所述磁场的中心磁场强度大于1.4T;所述等静压处理过程中,压力为180~200MPa。
10.一种稀土永磁体,其特征在于,所述稀土永磁体由权利要求1至9中任一项所述的制备方法制备得到。
CN202210764659.9A 2022-06-30 2022-06-30 稀土永磁体及其制备方法 Pending CN117373809A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210764659.9A CN117373809A (zh) 2022-06-30 2022-06-30 稀土永磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210764659.9A CN117373809A (zh) 2022-06-30 2022-06-30 稀土永磁体及其制备方法

Publications (1)

Publication Number Publication Date
CN117373809A true CN117373809A (zh) 2024-01-09

Family

ID=89389732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210764659.9A Pending CN117373809A (zh) 2022-06-30 2022-06-30 稀土永磁体及其制备方法

Country Status (1)

Country Link
CN (1) CN117373809A (zh)

Similar Documents

Publication Publication Date Title
JP6366666B2 (ja) 重希土類元素を含まない焼結Nd−Fe−B磁性体の製造方法
CN101266855B (zh) 稀土永磁材料及其制造方法
CN107275027B (zh) 应用钇的富铈稀土永磁体及其制备方法
CN112863848B (zh) 高矫顽力烧结钕铁硼磁体的制备方法
US20130335179A1 (en) High-corrosion resistant sintered ndfeb magnet and preparation method therefor
JP2023509225A (ja) 重希土類合金、ネオジム鉄ホウ素永久磁石材料、原料及び製造方法
CN109732046B (zh) 一种烧结钕铁硼磁体及其制备方法
CN110895985A (zh) 混合稀土烧结钕铁硼永磁体及其制备方法
CN111378907A (zh) 一种提高钕铁硼永磁材料矫顽力的辅助合金及应用方法
CN112086255A (zh) 一种高矫顽力、耐高温烧结钕铁硼磁体及其制备方法
CN110060833B (zh) 一种高剩磁、高矫顽力r-t-b永磁材料及其制备方法
CN101256861A (zh) 用钬代替镝烧结钕铁硼永磁材料
CN113838622A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN113593873A (zh) 一种高矫顽力混合稀土永磁材料及其制备方法
CN110033914B (zh) 提高烧结钕铁硼磁体的矫顽力的方法
CN112712986B (zh) 一种低温度系数Sm2Co17型烧结磁体及其制备方法
CN108364739B (zh) 钕铁硼磁体及其制备方法
CN111477446A (zh) 一种钕铁硼系烧结磁体及其制备方法
CN107146672A (zh) 一种超高磁性能烧结钕铁硼永磁材料及制备方法
CN111341515A (zh) 一种含铈的钕铁硼磁钢及其制备方法
CN116612956A (zh) 一种具有核壳结构的含铈钕铁硼磁体及其制备方法和应用
JP7146029B1 (ja) ネオジム鉄ホウ素永久磁石及びその製造方法と使用
CN101552063A (zh) 钛锆复合添加的高性能钕铁硼磁体
CN112259314B (zh) 一种R(Fe,M)12型的稀土永磁材料及其制备方法
CN114678182A (zh) 一种低成本高性能多主相稀土永磁材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination