CN111477449A - 一种含镧铈钕铁硼系磁体及其制备方法 - Google Patents

一种含镧铈钕铁硼系磁体及其制备方法 Download PDF

Info

Publication number
CN111477449A
CN111477449A CN202010338734.6A CN202010338734A CN111477449A CN 111477449 A CN111477449 A CN 111477449A CN 202010338734 A CN202010338734 A CN 202010338734A CN 111477449 A CN111477449 A CN 111477449A
Authority
CN
China
Prior art keywords
cerium
neodymium
lanthanum
magnet
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010338734.6A
Other languages
English (en)
Inventor
林笑
马跃华
白馨元
罗阳
于敦波
崔学军
白有权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Youyan Rare Earth Qingdao Co ltd
Youyan Rare Earth Rongcheng Co ltd
Grirem Advanced Materials Co Ltd
Original Assignee
Youyan Rare Earth Qingdao Co ltd
Youyan Rare Earth Rongcheng Co ltd
Grirem Advanced Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youyan Rare Earth Qingdao Co ltd, Youyan Rare Earth Rongcheng Co ltd, Grirem Advanced Materials Co Ltd filed Critical Youyan Rare Earth Qingdao Co ltd
Priority to CN202010338734.6A priority Critical patent/CN111477449A/zh
Publication of CN111477449A publication Critical patent/CN111477449A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种含镧铈钕铁硼系磁体及其制备方法,该制备方法包括以下步骤:将钕铁硼系速凝薄片浸入到含镧铈的低熔点合金粉末悬浮液中,随后将附着含镧铈低熔点合金粉末的钕铁硼系速凝薄片烘干,然后进行热处理,再经过氢破、制粉、成型、烧结及回火处理过程制得含镧铈钕铁硼系磁体。本发明以低熔点高丰度稀土合金为扩散源,明显改善了矫顽力,同时通过采用速凝薄片浸入含镧铈的低熔点合金粉末悬浮液并进行热扩散处理,有助于低熔点相更均匀地分散包覆在每个主相晶粒周围,进而在烧结阶段形成连续晶界相,提高了扩散源利用率,扩散效果显著,简化了生产工艺,降低了生产成本。

Description

一种含镧铈钕铁硼系磁体及其制备方法
技术领域
本发明属于稀土永磁材料技术领域,具体地说涉及一种含镧铈钕铁硼系磁体及其制备方法。
背景技术
钕铁硼稀土永磁材料自发现以来,就以其优越的综合磁性能在电子产品、医疗器械、汽车工业、能源交通等多个领域得到广泛的应用,并且随着钕铁硼的产量和消费量逐年增加,作为原料的金属钕和常用添加剂金属铽镝消耗速度也越来越快,与此同时伴随着低成本高丰度稀土元素镧铈的大量囤积,因此提高高丰度稀土的利用率的同时保证磁性能成为当前技术难点。
晶界扩散是一种有效扩散重稀土提高矫顽力的方式,当前常见的晶界扩散方式有磁控溅射、气相沉积、蒸镀、涂覆等,通过热处理使得重稀土、重稀土合金及重稀土化合物沿晶界扩散到磁体内部。上述方法在有效提高矫顽力的同时,又能保证剩磁基本不变。但是溅射、涂覆、蒸镀等晶界扩散方式扩散源利用率低,一定程度上造成了重稀土资源的浪费,提高了生产成本。
因此,现有技术需要进一步改进和发展。
发明内容
针对以上问题,本发明提供了一种镧铈钕铁硼系磁体及其制备方法,以低熔点高丰度稀土合金为扩散源,改善矫顽力,提高高丰度稀土元素的利用率,简化生产工艺,降低生产成本。
为达到上述目的,本发明采用如下所述技术方案:
一种含镧铈钕铁硼系磁体的制备方法,包括以下步骤:将钕铁硼系速凝薄片浸入到含镧铈合金粉末悬浮液中,随后将附着含镧铈合金粉末的钕铁硼系速凝薄片烘干,然后高温热处理,再经过氢破、制粉、成型、烧结及回火处理过程制得含镧铈钕铁硼系磁体。
进一步地,所述钕铁硼系速凝薄片由R-(Fe,M)-B系磁体金属原料熔炼制得,所述R-(Fe,M)-B系磁体的分子式为RaFe100-a-b-cMbBc,其中,R由Nd和Pr、Sm、Y、Tb、Dy、Gd中的至少一种组成,Nd占R总含量的质量分数为70-90%,M由Hf和Co、Nb、Zr、Al、Cu、Zn中的一种或几种组成,a为R的质量分数且25≤a≤33,b为M的质量分数且1≤b≤10,c为B的质量分数且0.85≤c≤1。
进一步地,所述含镧铈的合金粉末悬浮液由(LaCe)-T合金经过熔炼、机械破碎、球磨后与有机溶剂混合制得,其中,(LaCe)-T的分子式为(LaCe)xT100-x,T由Ga和Cu、Al中的一种或几种组成,x为LaCe的质量分数且70≤x≤90。
优选的,所述(LaCe)-T中,La占LaCe总含量的质量分数为10%-50%,Ga占T总含量的质量分数为70%-100%。
进一步的,所述(LaCe)-T合金粉末悬浮液中(LaCe)-T合金粉末的质量分数为10%-30%。
优选的,所述(LaCe)-T合金粉末的粒度为30nm-5μm。
优选的,第一次热处理过程,气氛为在氩气,温度为600℃-750℃。
一种含镧铈钕铁硼系磁体,根据上述方法制备而成,所述含镧铈钕铁硼系磁体中,(LaCe)-T占R-(Fe,M)-B总量的质量分数为3%-10%。
进一步地,所述含镧铈钕铁硼系磁体中含有富La晶界相,La元素在晶界中的分布含量的质量分数为85%-100%。
进一步地,所述含镧铈钕铁硼系磁体中Ce元素富集在主相晶粒表层,形成含Ce主相的过渡壳层,所述过渡壳层的厚度为0.1-10nm。
有益效果
本发明提供了一种含镧铈钕铁硼系磁体及其制备方法,相比于现有技术具有如下有益效果:
1、本发明采用低熔点(LaCe)-T合金为扩散源,一方面在主相边缘形成含Ce壳层,抑制晶粒表面反磁化形核过程,另一方面La元素与Ga元素在晶界共同作用,有利于形成连续均匀的晶界相。制得的含镧铈钕铁硼系磁体矫顽力显著提高,改善了因La、Ce单独添加引起的磁性能恶化现象。
2、传统扩散方法如在毛坯磁体表面进行涂覆、溅射、气相沉积等方法,扩散源扩散后一般集中分布在磁体表层处,且呈过渡型分布,该方法会导致磁体整体方形度下降,而本发明将钕铁硼系速凝薄片浸入到低熔点(LaCe)-T合金粉末悬浊液并进行热扩散处理,有助于低熔点相更均匀地分散包覆在每个主相晶粒周围,进而在烧结阶段形成连续晶界相。本发明采用的方法扩散源利用率高,扩散效果显著,同时简化了生产工艺,适于大批量生产。
3、本发明所采用的扩散源不含重稀土元素,实现了高丰度稀土资源的高效及平衡利用,同时降低了生产成本。
4、本发明在LaCe中添加低熔点金属,使(LaCe)-T合金的熔点降低,降低了热处理温度,节约了能耗。
附图说明
图1为本发明具体实施方式中低熔点(LaCe)-T合金进入NdFeB主相的示意图。
具体实施方式
为了使本领域的人员更好地理解本发明的技术方案,下面结合本发明的附图,对本发明的技术方案进行清楚、完整的描述,基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它类同实施例,都应当属于本申请保护的范围。此外,以下实施例中提到的方向用词,例如“上”“下”“左”“右”等仅是参考附图的方向,因此,使用的方向用词是用来说明而非限制本发明创造。本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特性,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
一种含镧铈钕铁硼系磁体的制备方法,包括以下步骤:
(1)准备原材料:钕铁硼系速凝薄片、(LaCe)-T合金粉末悬浮液。所述钕铁硼系速凝薄片由R-(Fe,M)-B系磁体金属原料熔炼制得,所述R-(Fe,M)-B系磁体的分子式为RaFe100-a-b-cMbBc,其中,R由Nd和Pr、Sm、Y、Tb、Dy、Gd中的至少一种组成,Nd占R总含量的质量分数为70-90%,M由Hf和Co、Nb、Zr、Al、Cu、Zn中的一种或几种组成,a为R的质量分数且25≤a≤33,b为M的质量分数且1≤b≤10,c为B的质量分数且0.85≤c≤1。所述含镧铈的合金粉末悬浮液由(LaCe)-T合金经过熔炼、机械破碎、球磨后得到(LaCe)-T合金粉末,所述(LaCe)-T合金粉末的粒度为30nm-5μm,将(LaCe)-T合金粉末与有机溶剂混合制得(LaCe)-T合金粉末悬浮液,其中,(LaCe)-T的分子式为(LaCe)xT100-x,T由Ga、Cu、Al中的一种或几种组成,x为LaCe的质量分数且70≤x≤90。所述(LaCe)-T中,La占LaCe总含量的质量分数为10%-50%,Ga占T总含量的质量分数为70%-100%。所述(LaCe)-T合金粉末悬浮液中(LaCe)-T合金粉末的质量分数为10%-30%。
(2)将钕铁硼系速凝薄片全部浸入到(LaCe)-T合金粉末悬浮液中,(LaCe)-T合金粉末均匀附着在钕铁硼系速凝薄片表面。将表面附着(LaCe)-T合金粉末的钕铁硼系速凝薄片放入到可加热的旋转炉中,在600℃-750℃温度氩气氛围保护下下进行第一次热处理。
(3)将附着(LaCe)-T合金粉末的钕铁硼系速凝薄片烘干,然后高温热处理,再依次经过氢破、制粉、成型、烧结和第二次热处理过程,所述氢破过程脱氢温度为450℃-700℃,烧结后第二次热处理温度为700℃-900℃,制得含镧铈钕铁硼系磁体。制得的含镧铈钕铁硼系磁体中,(LaCe)-T占R-(Fe,M)-B总量的质量分数为3%-10%,低熔点(LaCe)-T合金进入NdFeB主相的示意图如图1所示,在含镧铈钕铁硼系磁体中含有富La晶界相,Ce元素富集在主相晶粒表层,形成含Ce主相的过渡壳层,La元素在晶界中的分布含量的质量分数为85%-100%,所述含镧铈钕铁硼系磁体中所述过渡壳层的厚度为0.1-10nm。
实施例1:
一种含镧铈钕铁硼系磁体的制备方法,包括以下步骤:
(1)按照质量百分比配置Nd28Pr2Dy0.5Fe66.5Hf0.5Zr0.5Nb0.7B1.0原料,经过真空熔炼制得厚度为100-400μm的速凝薄片。
(2)按照质量百分比配制(La0.5Ce0.5)85Ga10Cu5,将(La0.5Ce0.5)85Ga10Cu5依次进行真空熔炼、机械破碎、球磨得到粒度为1μm的(La0.5Ce0.5)85Ga10Cu5合金粉末,将(La0.5Ce0.5)85Ga10Cu5合金粉末与有机溶剂混合制得(La0.5Ce0.5)85Ga10Cu5合金粉末悬浮液,(La0.5Ce0.5)85Ga10Cu5合金粉末悬浮液中(La0.5Ce0.5)85Ga10Cu5合金粉末的质量分数优选为20%。
(3)称取1000g Nd28Pr2Dy0.5Fe66.5Hf0.5Zr0.5Nb0.7B1.0速凝薄片,将Nd28Pr2Dy0.5Fe66.5Hf0.5Zr0.5Nb0.7B1.0速凝薄片完全浸入(La0.5Ce0.5)85Ga10Cu5合金粉末悬浮液中30min,然后取出Nd28Pr2Dy0.5Fe66.5Hf0.5Zr0.5Nb0.7B1.0速凝薄片并进行烘干。
(4)将表面附着(La0.5Ce0.5)85Ga10Cu5合金粉末的Nd28Pr2Dy0.5Fe66.5Hf0.5Zr0.5Nb0. 7B1.0速凝薄片投入到可旋转管式炉中,进行第一次热处理,该过程气氛优选为氩气,温度为650℃,处理时间为4h。
(5)将扩散得到的速凝薄片放入氢破炉吸氢2h,然后随后在550℃下保温5h脱氢,水冷及空气冷却至室温得到颗粒尺寸为1500-3000μm的粗粉。
(6)向粗粉中添加0.05wt%比例的抗氧化剂后进行气流磨,分选轮轮速为5000r/min,最终获得的粉末粒度为1.5-3.2μm。
(7)在氮气氛围保护下对磁粉施加1.8T的磁场并压制成块,随后在170MPa压力下冷等静压15min。
(8)高真空环境下按10℃/min的速率升温,500、750℃分别保温1h,随后在1080℃保温5h,随后磁体随炉缓慢冷却,然后在850℃和500℃下分别进行回火处理,时间分别为4h和5h,最后冷却至室温得到含镧铈钕铁硼系磁体1。
实施例2-实施例5
实施例2-实施例5均在实施例1的方法基础上,对(La0.5Ce0.5)85Ga10Cu5中La与Ce的添加比例进行调整,具体调整情况参见下表1,并通过实施例1所述的制备方法分别制得含镧铈钕铁硼系磁体2、含镧铈钕铁硼系磁体3、含镧铈钕铁硼系磁体4、含镧铈钕铁硼系磁体5。
表1实施例1-5的(LaxCe1-x)85Ga10Cu5中La与Ce的添加比例表
Figure BDA0002467552460000051
对比例1
(1)按照质量百分比配制钕铁硼系磁体Nd28Pr2Dy0.5Fe66.5Hf0.5Zr0.5Nb0.7B1.0,将Nd2 8Pr2Dy0.5Fe66.5Hf0.5Zr0.5Nb0.7B1.0真空熔炼制得Nd28Pr2Dy0.5Fe66.5Hf0.5Zr0.5Nb0.7B1.0速凝薄片,制得Nd28Pr2Dy0.5Fe66.5Hf0.5Zr0.5Nb0.7B1.0速凝薄片厚度为100-400μm。
(3)称取1000g Nd28Pr2Dy0.5Fe66.5Hf0.5Zr0.5Nb0.7B1.0速凝薄片,放入氢破炉吸氢2h,然后随后在550℃下保温5h脱氢,水冷及空气冷却至室温得到颗粒尺寸为1500-3000μm的粗粉。
(6)向粗粉中添加0.05wt%比例的抗氧化剂后进行气流磨,分选轮轮速为5000r/min,最终获得的粉末粒度为1.5-3.2μm。
(7)在氮气氛围保护下对磁粉施加1.8T的磁场并压制成块,随后在170MPa压力下冷等静压15min。
(8)高真空环境下按10℃/min的速率升温,500、750℃分别保温1h,随后在1080℃保温5h,随后磁体随炉缓慢冷却,然后在850℃和500℃下分别进行回火处理,时间分别为4h和5h,最后冷却至室温得到对比磁体1。
对比例2
(1)按照质量百分比配置Nd28Pr2Dy0.5Fe66.5Hf0.5Zr0.5Nb0.7B1.0原料,经过真空熔炼制得厚度为100-400μm的速凝薄片。
(2)称取质量为1000g Nd28Pr2Dy0.5Fe66.5Hf0.5Zr0.5Nb0.7B1.0的速凝薄片,放入氢破炉吸氢2h,随后在550℃下保温5h脱氢,水冷及空气冷却至室温得到颗粒尺寸为1500-3000μ的粗粉。
(3)向粉末中添加0.05wt%比例的抗氧化剂,进行气流磨,分选轮轮速为5000r/min,最终粉末粒度为1.5-3.2μm。
(4)在氮气氛围保护下对磁粉施加1.8T的磁场并压制成块,随后在170MPa压力下冷等静压15min。
(5)在高真空环境下按10℃/min的速率升温,500、750℃分别保温1h,随后在1080℃保温5h,随后磁体随炉缓慢冷却。
(6)将烧结磁体在850℃和500℃进行回火处理,时间分别为4h和5h,随后随炉冷却至室温后取出并将烧结毛坯切成30*30*7mm的磁体;
(7)按照质量百分比配制(La0.4Ce0.6)85Ga10Cu5,将(La0.4Ce0.6)85Ga10Cu5依次进行真空熔炼、机械破碎、球磨得到粒度为1μm的(La0.4Ce0.6)85Ga10Cu5合金粉末,将(La0.4Ce0.6)85Ga10Cu5合金粉末与有机溶剂混合制得(La0.4Ce0.6)85Ga10Cu5合金粉末悬浮液,(La0.4Ce0.6)85Ga10Cu5合金粉末悬浮液中(La0.4Ce0.6)85Ga10Cu5合金粉末的质量分数优选为20%。
(8)将上述30*30*7mm的磁体在悬浮液中浸泡30min,随后烘干;
(9)将上述烘干磁体在700℃温度条件下热处理4h,最后冷却至室温得到对比磁体2。
将上述实施例1-5及对比例1-2制备的磁体按照相同条件分别进行磁性能测量,所得磁性能数据结果如表2所示。
表2实施例1-5及对比例1-2中各磁体的性能数据表
Figure BDA0002467552460000071
对表1数据进行结果分析:
(1)由实施例1-5制得的含镧铈钕铁硼系磁体,其矫顽力随着La添加比例的增加而增大,La与Ce比例为La0.4Ce0.6时,磁体的矫顽力最佳,这是因为当Ce含量过多时,主相有倾向于分解成TbCu7型CeFe9的趋势,同时实施例1-5制得的含镧铈钕铁硼系磁体其剩磁变化不大,这是因为扩散源主要在晶界相及晶粒边缘富集,因此扩散源中La与Ce的添加比例发生变化时对应的磁体剩磁变化不明显。
(2)对比例1制得了不含低熔点扩散的初始磁体,该初始磁体与实施例1-5制得的含镧铈钕铁硼系磁体进行磁性能对比可知,采用LaCe作为钕铁硼系磁体的扩散源可以在维持剩磁基本不变的前提下,显著提高磁体的矫顽力。
(3)对比例2将烧结毛坯浸泡到(La0.4Ce0.6)85Ga10Cu5合金粉末悬浮液中,进行热处理后制得含镧铈钕铁硼系磁体,而实施例1是将钕铁硼系速凝薄片浸入到(La0.4Ce0.6)85Ga10Cu5合金粉末悬浮液中,进行热扩散处理后再依次经过氢破、制粉、成型、烧结及回火处理过程,最终制得含镧铈钕铁硼系磁体1,相对于对比例2所采用的方法不同,实施例1采用的方法更有助于低熔点相均匀地分散包覆在每个主相晶粒周围,进而在烧结阶段形成连续晶界相,相对于对比例2其扩散源(La0.4Ce0.6)85Ga10Cu5合金利用率更高,扩散效果更显著,同时制得的含镧铈钕铁硼系磁体矫顽力也显著提高。
以上已将本发明做一详细说明,以上所述,仅为本发明之较佳实施例而已,当不能限定本发明实施范围,即凡依本申请范围所作均等变化与修饰,皆应仍属本发明涵盖范围内。

Claims (10)

1.一种含镧铈钕铁硼系磁体的制备方法,其特征在于,包括以下步骤:将钕铁硼系速凝薄片浸入到含镧铈合金粉末悬浮液中,随后将附着含镧铈合金粉末的钕铁硼系速凝薄片烘干,然后进行热处理,再经过氢破、制粉、成型、烧结及回火处理过程制得含镧铈钕铁硼系磁体。
2.根据权利要求1所述的含镧铈钕铁硼系磁体的制备方法,其特征在于,所述钕铁硼系速凝薄片由R-(Fe,M)-B系磁体金属原料熔炼制得,所述R-(Fe,M)-B系磁体的分子式为RaFe100-a-b-cMbBc,其中,R由Nd和Pr、Sm、Y、Tb、Dy、Gd中的至少一种组成,Nd占R总含量的质量分数为70-90%,M由Hf和Co、Nb、Zr、Al、Cu、Zn中的一种或几种组成,a为R的质量分数且25≤a≤33,b为M的质量分数且1≤b≤10,c为B的质量分数且0.85≤c≤1。
3.根据权利要求1所述的含镧铈钕铁硼系磁体的制备方法,其特征在于,所述含镧铈合金粉末悬浮液由(LaCe)-T合金经过熔炼、机械破碎、球磨后与有机溶剂混合制得,其中,(LaCe)-T的分子式为(LaCe)xT100-x,T由Ga和Cu、Al中的一种或几种组成,x为LaCe的质量分数且70≤x≤90。
4.根据权利要求3所述的含镧铈钕铁硼系磁体的制备方法,其特征在于,所述(LaCe)-T合金中,La占LaCe总含量的质量分数为10%-50%,Ga占T总含量的质量分数为70%-100%。
5.根据权利要求3所述的含镧铈钕铁硼系磁体的制备方法,其特征在于,所述(LaCe)-T合金粉末悬浮液中(LaCe)-T合金粉末的质量分数为10%-30%。
6.根据权利要求3所述的含镧铈钕铁硼系磁体的制备方法,其特征在于,所述(LaCe)-T合金粉末的粒度为30nm-5μm。
7.根据权利要求1所述的含镧铈钕铁硼系磁体的制备方法,其特征在于,热处理条件为:采用氩气保护气氛,温度为600℃-750℃。
8.一种含镧铈钕铁硼系磁体,其特征在于,所述含镧铈钕铁硼系磁体根据权利要求1-7任一项所述方法制备而成,所述含镧铈钕铁硼系磁体中,(LaCe)-T占R-(Fe,M)-B总量的质量分数为3%-10%。
9.根据权利要求8所述的所述含镧铈钕铁硼系磁体,其特征在于,所述含镧铈钕铁硼系磁体中含有富La晶界相,La元素在晶界中的分布含量的质量分数为85%-100%。
10.根据权利要求8所述的所述含镧铈钕铁硼系磁体,其特征在于,所述含镧铈钕铁硼系磁体中Ce元素富集在主相晶粒表层,形成含Ce主相的过渡壳层,所述过渡壳层的厚度为0.1-10nm。
CN202010338734.6A 2020-04-26 2020-04-26 一种含镧铈钕铁硼系磁体及其制备方法 Withdrawn CN111477449A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010338734.6A CN111477449A (zh) 2020-04-26 2020-04-26 一种含镧铈钕铁硼系磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010338734.6A CN111477449A (zh) 2020-04-26 2020-04-26 一种含镧铈钕铁硼系磁体及其制备方法

Publications (1)

Publication Number Publication Date
CN111477449A true CN111477449A (zh) 2020-07-31

Family

ID=71756089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010338734.6A Withdrawn CN111477449A (zh) 2020-04-26 2020-04-26 一种含镧铈钕铁硼系磁体及其制备方法

Country Status (1)

Country Link
CN (1) CN111477449A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112309662A (zh) * 2020-11-09 2021-02-02 金力永磁(包头)科技有限公司 一种含镧铈的钕铁硼磁体及其制备方法
CN113380528A (zh) * 2021-06-15 2021-09-10 中钢天源股份有限公司 一种烧结钕铁硼晶界重塑的方法
CN113764147A (zh) * 2021-09-18 2021-12-07 泮敏翔 一种低熔点混合扩散提升钕铁硼磁体矫顽力的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112309662A (zh) * 2020-11-09 2021-02-02 金力永磁(包头)科技有限公司 一种含镧铈的钕铁硼磁体及其制备方法
CN113380528A (zh) * 2021-06-15 2021-09-10 中钢天源股份有限公司 一种烧结钕铁硼晶界重塑的方法
CN113380528B (zh) * 2021-06-15 2022-08-19 中钢天源股份有限公司 一种烧结钕铁硼晶界重塑的方法
CN113764147A (zh) * 2021-09-18 2021-12-07 泮敏翔 一种低熔点混合扩散提升钕铁硼磁体矫顽力的方法

Similar Documents

Publication Publication Date Title
TW202121450A (zh) R-t-b系永磁材料及其製備方法和應用
EP3029689B1 (en) Method for increasing coercive force of magnets
KR102670670B1 (ko) NdFeB 자석 및 이의 제조 방법 및 응용
CN102103917B (zh) 一种钕铁硼磁体、制备方法及应用该磁体的器件
CN108022708B (zh) 一种烧结含银的富铈钇钕铁硼永磁体及其制备方法
CN109360728B (zh) 一种蒸发晶界扩散增强钕铁硼磁体矫顽力的方法
CN108154986B (zh) 一种含y高丰度稀土永磁体及其制备方法
CN107275027B (zh) 应用钇的富铈稀土永磁体及其制备方法
CN103187133A (zh) 一种稀土永磁合金及其磁性相复合制备方法
CN101552062A (zh) 钆钬复合添加的中高牌号钕铁硼磁体
CN111640549B (zh) 一种高温度稳定性烧结稀土永磁材料及其制备方法
CN111968819A (zh) 一种低重稀土高性能烧结钕铁硼磁体及其制备方法
CN111477449A (zh) 一种含镧铈钕铁硼系磁体及其制备方法
CN109065314A (zh) 高矫顽力磁体的制备方法
EP3955267B1 (en) Ndfeb alloy powder for forming high-coercivity sintered ndfeb magnets and use thereof
CN111477446A (zh) 一种钕铁硼系烧结磁体及其制备方法
CN113871122A (zh) 低重稀土磁体及制造方法
CN109594023B (zh) 一种短流程Ce-Fe基烧结永磁体及其制备方法
US20230386711A1 (en) Rare earth magnet and manufacturing method thereof
CN116612956A (zh) 一种具有核壳结构的含铈钕铁硼磁体及其制备方法和应用
CN108597707B (zh) 一种含Ce烧结磁体及制备方法
US20220005637A1 (en) Method for preparing high-performance sintered NdFeB magnets and sintered NdFeB magnets
CN114210976A (zh) 一种烧结钕铁硼双合金结合晶界扩散的方法
CN113571323A (zh) 一种2:17型烧结钐钴永磁体的制备方法
CN109637768A (zh) 一种含钇的稀土永磁材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200731