CN109594023B - 一种短流程Ce-Fe基烧结永磁体及其制备方法 - Google Patents

一种短流程Ce-Fe基烧结永磁体及其制备方法 Download PDF

Info

Publication number
CN109594023B
CN109594023B CN201811549211.5A CN201811549211A CN109594023B CN 109594023 B CN109594023 B CN 109594023B CN 201811549211 A CN201811549211 A CN 201811549211A CN 109594023 B CN109594023 B CN 109594023B
Authority
CN
China
Prior art keywords
equal
permanent magnet
less
alloy
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811549211.5A
Other languages
English (en)
Other versions
CN109594023A (zh
Inventor
邹宁
李安华
李卫
冯海波
吕忠山
邹永博
靳朝相
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Funeng rare earth new material Co.,Ltd.
NINGBO SHUOTENG NEW MATERIAL Co.,Ltd.
Original Assignee
Ningbo Funeng New Material Co ltd
Ningbo Shuoteng New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Funeng New Material Co ltd, Ningbo Shuoteng New Material Co ltd filed Critical Ningbo Funeng New Material Co ltd
Priority to CN201811549211.5A priority Critical patent/CN109594023B/zh
Publication of CN109594023A publication Critical patent/CN109594023A/zh
Application granted granted Critical
Publication of CN109594023B publication Critical patent/CN109594023B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明涉及一种短流程Ce‑Fe基烧结永磁体及其制备方法,属于稀土永磁材料技术领域。该磁体化学式通式按质量百分比为:[Ce1‑x‑y‑z(Nd,Pr)xReyLaz]aFe100%‑a‑b‑cBbTMc,其中:0.15≤x≤0.25,0.05≤y≤0.15,0.0≤z≤0.05;31%≤a≤33%,1.0%≤b≤1.2%,0.5%≤c≤2.0%;Re为Gd,Ho,Y中的一种或者几种;TM为Co,Al,Cu,Nb,Zr中的一种或者几种。本发明磁体中Ce在各稀土元素中所占的权重最大,不含重稀土元素Dy和Tb。本发明可采用单合金烧结工艺,也可以采用双主相或多主相烧结工艺制备。本发明采用超低温烧结技术,烧结温度在930℃~980℃,且无需回火处理,大幅度简化生产工艺流程,节约制造时间和节约能源。

Description

一种短流程Ce-Fe基烧结永磁体及其制备方法
技术领域
本发明属于稀土永磁材料技术领域,特别是涉及一种短流程Ce-Fe基烧结永磁体及其制备方法。
背景技术
以Nd-Fe-B为代表的第三代稀土永磁材料具备优异的磁性能和良好的性能价格比,已广泛应用于国防军工、智能机器人、风力发电、新能源汽车以及消费电子等各个领域。由于传统的烧结钕铁硼材料,过多的依赖于稀土金属Nd和Pr,同时为了提高磁体的矫顽力和居里温度,在磁体中添加Dy、Tb等重稀土元素及战略金属Co,而稀土储量最为丰富、价格低廉的稀土Ce长期积压得不到有效利用。用Ce取代Nd制备高丰度稀土永磁体,不仅能够大幅度降低稀土永磁体的原材料成本、而且对于缓解我国日益突出的稀土资源严重浪费与环境污染问题,及实现稀土资源高效平衡利用,有着极为重要的战略意义。
众所周知,Ce2Fe14B化合物的饱和磁矩和各向异性场均远低于Nd2Fe14B,因此导致磁性能显著降低。文献[Journal of Applied Physics,1985,57:4146]和[Journal ofApplied Physics,1994,75:6268]报道,当使用5%Ce-15%Pr-Nd时,内禀矫顽力为10.2kOe、磁能积为40MGOe,而使用40%Ce-10%Pr-50%Nd时,内禀矫顽力为9.2kOe、磁能积为28.2MGOe。麦格昆磁(天津)有限公司的中国专利CN101694797提出了Ce替代量为10~40%的Nd的一种新型钕铁硼磁性材料,其总稀土含量(Ce+Nd)的质量百分比为27%,用于快淬粘结钕铁硼磁粉的生产。中国专利CN102800454所述(Cex,Re1-x)Fe100-a-b-cBbTMc中Ce成分的含量达到40~80%之间,Re为Nd、Pr、Dy、Tb、Ho元素中的一种或几种,并且其采用双主相工艺,制备的Ce永磁合金磁体由低HA的(Ce,Re)-Fe-B相和高HA的Nd-Fe-B相组成,需要在750~900℃和450~550℃进行1-4小时的二级回火处理,制备工艺较为复杂。CN105321644所述高矫顽力烧结态Ce磁体,具有Ce-Fe-B和Nd-Fe-B双硬磁主相结构,磁体中包含有Dy、Tb等储量少、价格高的稀土元素;CN105321644所述烧结态磁体虽然不需要进行后续的回火处理,但是毛坯磁体需要在300~900℃范围分级升温,每100~200℃保温2~3h,在950~1050℃进行分级烧结,该磁体在升温和烧结过程中的时间明显增加,对于缩短磁体制备流程和时间效果不显著。
发明内容
本发明的目的在于提供一种Ce-Fe基烧结永磁体及其短流程制备方法,本发明磁体中Ce在各稀土元素中所占的权重最大,不含重稀土元素Dy和Tb。本发明可采用单合金烧结工艺,也可以采用双主相或多主相烧结工艺制备。本发明采用超低温烧结技术,烧结温度≤980℃,且无需回火处理,大幅度简化生产工艺流程,节约制造时间和节约能源。
采用本发明制备的Ce-Fe基烧结永磁体无需进行回火处理。该磁体经过传统的800~900℃和400~600℃两级回火后处理(或只在400~600℃热处理)以后,磁体的磁性能明显变差。
为了实现上述目的,本发明采用如下技术方案:
本发明提供一种短流程Ce-Fe基烧结永磁体及其制备方法,其特征在于:该稀土永磁体的化学式通式按质量百分比为:[Ce1-x-y-z(Nd,Pr)xReyLaz]aFe100%-a-b-cBbTMc,其中:0.15≤x≤0.25,0.05≤y≤0.15,0.0≤z≤0.05;31%≤a≤33%,1.0%≤b≤1.2%,0.5%≤c≤2.0%;Re为Gd,Ho,Y中的一种或者几种;TM为Co,Al,Cu,Nb,Zr中的一种或者几种。
所述TM的质量百分比优选为0.5%-1.8%或0.6%-1.6%或0.7%-1.5%或0.8%-1.4%或0.9%-1.2%或1.0%-1.1%。
该成分配比的永磁合金不需要回火处理即可制备得到性能优异的永磁体。
所述的短流程Ce-Fe基烧结永磁体,其特征在于:由以下方法制备:
(1)原料准备:按照稀土永磁合金质量百分比为[Ce1-x-y-z(Nd,Pr)xReyLaz]aFe100%-a-b-cBbTMc,其中:0.15≤x≤0.25,0.05≤y≤0.15,0.0≤z≤0.05;31%≤a≤33%,1.0%≤b≤1.2%,0.5%≤c≤2.0%;Re为Gd,Ho,DY,Y中的一种或者几种;TM为Co,Al,Cu,Nb,Zr中的一种或者几种。或者配置不同Ce含量的两种或两种以上合金,分别制备速凝合金片,将不同成分的速凝合金片(或速凝片制成的粉末)按比例混合,使得其名义成分达到上述单合金的设计值;
(2)制备速凝片:将步骤(1)配置好的原料放入速凝炉坩埚内,在氩气保护下进行真空感应熔炼,待原料充分融化后,保持1350~1450℃,将合金液浇注到线速度为1.0~3.0米/秒的水冷铜辊上,制备平均厚度为0.20~0.3mm的速凝薄片;
(3)破碎:将步骤(2)中制得的速凝片装入氢破炉中,进行氢破碎,在室温0.1~0.5MPa压力下吸氢,然后进行脱氢处理,脱氢温度为500~600℃;将脱氢的粉末添加适量防氧化剂,经气流磨制成平均粒度2.5~3.5μm的磁粉;
(4)取向成型和压制:将步骤(3)中制得的磁粉在磁场压机中取向成型,再进行冷等静压制成毛坯,其密度为3.8~5.0g/cm3
(5)烧结:将将步骤(4)中制得的毛坯放入高真空的烧结炉中,抽真空到小于10-1Pa开始升温;分别在400℃,650℃,和880℃保温0.5~1小时进行脱气处理,脱去吸附的气体及防氧化剂、润滑剂;然后在930~980℃真空烧结,烧结时间2~5小时。获得具有良好磁性能的Ce-Fe基烧结磁体。
所述制备方法得到的Ce-Fe基烧结永磁体,可以是单主相,也可以是双主相或多主相,各主相合金的成分配比都含有Ce,每种合金中的铈含量与总稀土含量的比值大于等于25%。
所述永磁体制备方法,双主相或多主相合金的混合可以在氢破碎之前,或氢破碎之后进行,也可以在气流磨之后进行混合。
所述永磁体制备方法,Ce-Fe基磁体的烧结温为930~980℃,且不需要回火热处理。
与现有技术相比,本发明的有益效果在于:
Ce-Fe-B磁体的晶界相为CeFe2相,CeFe2相的熔点较高(925℃左右),且不能与主相形成低熔点共晶相,我们发现在(Ce,R)-Fe-B磁体中,当Ce含量达到一定比例时,在一定成分范围内,烧结态磁体的磁性能明显优于回火态磁体的磁性能。
对于稀土永磁合金质量百分比为[Ce1-x-y-z(Nd,Pr)xReyLaz]aFe100%-a-b-cBbTMc,其中:0.15≤x≤0.25,0.05≤y≤0.15,0.0≤z≤0.05;31%≤a≤33%,1.0%≤b≤1.2%,0.5%≤c≤2.0%;Re为Gd,Ho,Y中的一种或者几种;TM为Co,Al,Cu,Nb,Zr中的一种或者几种,本发明采用超低温烧结技术,烧结温度在980度以下,且无需回火处理,大幅度简化生产工艺流程,节约制造时间和生产成本。本发明制备的Ce-Fe基烧结磁体,其最大磁能积(BH)max≥15MGOe,填补中低端钕铁硼磁体与铁氧体之间的磁性能空白。
附图说明
图1:[Ce1-x-y-z(Nd,Pr)xReyLaz]aFe100-a-b-cBbTMc单合金磁体微观结构示意图。其中:1为磁性主相,2为富稀土相。
图2:[Ce1-x-y-z(Nd,Pr)xReyLaz]aFe100-a-b-cBbTMc双合金磁体微观结构示意图。其中:1为含铈磁性主相1,2为含铈磁性主相2,3为富稀土相。
图3:本发明制备的Ce-Fe基烧结永磁体的退磁曲线图。
具体实施方式
下面对以本发明技术方案为前提下的实施例作详细说明,可以更好地理解本发明。但是需要注意的是,以下实施例只为说明目的,本发明的保护范围不限于下述的实施例。
实施例1
步骤1:按设计成分为质量百分比[Ce0.65(Nd,Pr)0.25Gd0.05La0.05]31%FeB1.1%TM0.8%配制原料,TM为Co,Al,Cu,Nb中的一种或者几种。
步骤2:将步骤1配好的原料熔炼制备速凝带。将原材料放入速凝炉坩埚内,在氩气保护下进行真空感应熔炼,待原料充分融化形成合金后,保持1350~1450℃,将合金液浇注到线速度为1.0~2.0米/秒的水冷铜辊上,制备平均厚度为0.25~0.30mm的速凝薄片。
步骤3:破碎制粉:将步骤2中制得的速凝片装入氢破炉中,进行氢破碎,在室温0.1~0.2MPa压力下吸氢,然后进行脱氢处理,脱氢温度为500~600℃;将脱氢的粉末添加适量防氧化剂,经气流磨制成平均粒度2.5~3.5μm的磁粉。
步骤4:将步骤3中制得的磁粉在2T的磁场压机中取向成型,再进行冷等静压制成毛坯,其密度为4.5~5.0g/cm3
步骤5:烧结:将毛坯放入高真空的烧结炉中进行烧结,烧结温度为980℃,保温2~5小时,得到烧结稀土永磁体(实施例1),其磁性能见表1。
为了进行对比,对上述烧结态磁体分别在800~900℃和400~600℃进行2~5小时的回火热处理,得到对比例1,其磁性能见表1。
说明:通过对比例1和实施例1的对比可以发现,实施例1不仅制备流程短,而且各项磁性能指标更佳,进一步说明本发明不仅简化了生产工艺流程,而且使得磁体获得更好磁性能。
表1
Figure GDA0001956373350000041
实施例2
步骤1:按设计成分为质量百分比[Ce0.72(Nd,Pr)0.18(Gd,Ho)0.10]32%FeB1.2%TM1.5%配制原料,TM为Co,Al,Cu,Zr中的一种或者几种。
步骤2:将步骤1配好的原料熔炼制备速凝带。将原材料放入速凝炉坩埚内,在氩气保护下进行真空感应熔炼,待原料充分融化形成合金后,保持1350~1450℃,将合金液浇注到线速度为1.0~2.0米/秒的水冷铜辊上,制备平均厚度为0.25~0.30mm的速凝薄片。
步骤3:破碎制粉:将步骤2中制得的速凝片装入氢破炉中,进行氢破碎,在室温0.1~0.2MPa压力下吸氢,然后进行脱氢处理,脱氢温度为500~600℃;将脱氢的粉末添加适量防氧化剂,经气流磨制成平均粒度2.5~3.5μm的磁粉。
步骤4:将步骤3中制得的磁粉在2T的磁场压机中取向成型,再进行冷等静压制成毛坯,其密度为4.5~5.0g/cm3
步骤5:烧结:将毛坯放入高真空的烧结炉中进行烧结,烧结温度为960℃,保温2~5小时,得到烧结稀土永磁体(实施例2),其磁性能见表2。
为了进行对比,对上述烧结态磁体分别在800~900℃和400~600℃进行2~5小时的回火热处理,得到对比例2,其磁性能见表2。
表2
Figure GDA0001956373350000051
实施例3
步骤1:按设计成分为质量百分比[Ce0.80(Nd,Pr)0.05(Gd,Y)0.15]33%FeB1.2%TM2.0%配制原料,TM为Co,Al,Cu,Zr中的一种或者几种。
步骤2:将步骤1配好的原料熔炼制备速凝带。将原材料放入速凝炉坩埚内,在氩气保护下进行真空感应熔炼,待原料充分融化形成合金后,保持1350~1450℃,将合金液浇注到线速度为1.0~2.0米/秒的水冷铜辊上,制备平均厚度为0.25~0.30mm的速凝薄片。
步骤3:破碎制粉:将步骤2中制得的速凝片装入氢破炉中,进行氢破碎,在室温0.1~0.2MPa压力下吸氢,然后进行脱氢处理,脱氢温度为500~600℃;将脱氢的粉末添加适量防氧化剂,经气流磨制成平均粒度2.5~3.5μm的磁粉。
步骤4:将步骤3中制得的磁粉在2T的磁场压机中取向成型,再进行冷等静压制成毛坯,其密度为4.5~5.0g/cm3
步骤5:烧结:将毛坯放入高真空的烧结炉中进行烧结,烧结温度为930℃,保温2~5小时,得到烧结稀土永磁体(实施例3),其磁性能见表3。
为了进行对比,对上述烧结态磁体分别在800~900℃和400~600℃进行2~5小时的回火热处理,得到对比例3,其磁性能见表3。
表3
Figure GDA0001956373350000061
对比例4
步骤1:按设计成分为质量百分比(Ce0.9RE0.10)31%FeB1.35%TM2%(RE=Gd,Y,Er;TM=Al,Co,Cu,Nb,Ni)(wt.%)配制原料。
步骤2:将配好的原料熔炼制备速凝带。首先将原材料放入速凝炉坩埚内,在氩气保护下进行真空感应熔炼,待原料充分融化形成合金后,保持1350~1450℃温度,将合金液浇注到线速度为1.0~2.0米/秒的水冷铜辊上,制备平均厚度为0.28~0.30mm的速凝片。
步骤3:破碎制粉:所述步骤2中制得的速凝片装入氢破炉中,进行氢破碎,在室温0.1~0.2MPa压力下吸氢,然后进行脱氢处理,脱氢温度为500~600℃,时间2~6小时。将脱氢的粉末添加适量防氧化剂,分别经气流磨制成平均粒度2.5~3.0μm的磁粉。
步骤4:磁粉在2T的磁场压机中取向成型,再进行冷等静压制成毛坯,其密度为4.5~5.0g/cm3
步骤5:烧结和热处理:将毛坯放入高真空的烧结炉中进行烧结,烧结温度为930℃,保温2~5小时,得到烧结稀土永磁体(对比例4),其磁性能见表4。
为了进行对比,对上述烧结态磁体分别在800~900℃和400~600℃进行2~5小时的回火热处理,得到对比例5,其磁性能见表4。
表4
Figure GDA0001956373350000062
Figure GDA0001956373350000071
分析实施例1-3和对比例1-5,本发明的短流程Ce-Fe基烧结永磁合金适合采用直接烧结法制备,回火反而使其磁性能降低;对照对比例4和5,本发明短流程Ce-Fe基烧结永磁合金磁体的磁性能优于对比例的烧结态磁体,与对比例中回火态磁体的矫顽力Hcj相当,磁能积(BH)m略高于对比态磁体。
以上,仅为本发明较佳的具体实施方式,但发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (4)

1.一种短流程Ce-Fe基烧结永磁体的制备方法,其特征在于:所述的永磁体由以下方法制备得到:
(1) 原料准备:按照稀土永磁合金质量百分比为[Ce1-x-y-z(Nd,Pr)xReyLaz]aFe100%-a-b- cBbTMc,其中:0.15≤x≤0.25, 0.05≤y<0.15,0.0<z≤0.05;31%≤a<33%,1.0%≤b≤1.2%,1.0%≤c≤1.1%;Re为Gd,Ho,Y中的一种或者几种;TM为Co,Al,Cu,Nb,Zr中的一种或者几种,或者配置不同Ce含量的两种或两种以上合金,分别制备速凝合金片,将不同成分的速凝合金片或速凝合金片制成的粉末按比例混合,使得其名义成分达到上述单合金的设计值;
(2) 制备速凝片:将步骤1的原材料放入速凝炉坩埚内,在氩气保护下进行真空感应熔炼,待原料充分融化后,保持1300-1500℃,将合金液浇注到线速度为1 .0-3 .0米/秒的水冷铜辊上,制备平均厚度为0 .20~0 .3mm的速凝薄片;
(3) 破碎制粉:所步骤(2)中制得的速凝片装入氢破炉中,进行氢破碎,在室温0 .1- 0.5MPa压力下吸氢,然后进行脱氢处理,脱氢温度为500-600℃;将脱氢的粉末添加适量防氧化剂,经气流磨制成平均粒度2.5-3 .5μm的磁粉;
(4) 取向成型和压制:将步骤(3)中制得的磁粉在磁场压机中取向成型,再进行冷等静压制成毛坯,其密度为3 .8-5 .0g/cm3;
(5) 烧结:将将步骤(4)中制得的毛坯放入高真空的烧结炉中,抽真空到小于10-1Pa开始升温;分别在400℃,650℃,和880℃保温0.5-1小时进行脱气处理,脱去吸附的气体及防氧化剂、润滑剂;然后在930℃-980℃真空烧结,且无需回火处理,烧结时间2-5小时,最终获得具有良好磁性能的Ce-Fe基烧结磁体。
2.根据权利要求1所述的制备方法, 其特征在于,步骤(1)中每种合金的成分配比中都含有铈,且其铈质量含量与总稀土质量含量的比值≥25%。
3.根据权利要求1所述永磁体制备方法,其特征在于,双主相或多主相合金的混合在氢破碎之前,或在氢破碎之后进行,或者在气流磨之后进行混合。
4.按照权利要求1的方法所制备的Ce-Fe基烧结永磁体,其特征在于,该永磁体是单主相,或双主相或多主相。
CN201811549211.5A 2018-12-18 2018-12-18 一种短流程Ce-Fe基烧结永磁体及其制备方法 Active CN109594023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811549211.5A CN109594023B (zh) 2018-12-18 2018-12-18 一种短流程Ce-Fe基烧结永磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811549211.5A CN109594023B (zh) 2018-12-18 2018-12-18 一种短流程Ce-Fe基烧结永磁体及其制备方法

Publications (2)

Publication Number Publication Date
CN109594023A CN109594023A (zh) 2019-04-09
CN109594023B true CN109594023B (zh) 2020-09-11

Family

ID=65962984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811549211.5A Active CN109594023B (zh) 2018-12-18 2018-12-18 一种短流程Ce-Fe基烧结永磁体及其制备方法

Country Status (1)

Country Link
CN (1) CN109594023B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180158A (zh) * 2019-12-30 2020-05-19 宁波韵升股份有限公司 一种r-t-b系烧结永磁体及其制备方法
CN113549813A (zh) * 2021-07-22 2021-10-26 江西理工大学 一种主辅相纳米晶高丰度稀土永磁材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0427227A2 (en) * 1989-11-07 1991-05-15 Unitika Ltd. Fibrous anisotropic permanent magnet and production process thereof
CN108922710A (zh) * 2018-07-18 2018-11-30 钢铁研究总院 一种高韧性、高矫顽力含Ce烧结稀土永磁体及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0427227A2 (en) * 1989-11-07 1991-05-15 Unitika Ltd. Fibrous anisotropic permanent magnet and production process thereof
CN108922710A (zh) * 2018-07-18 2018-11-30 钢铁研究总院 一种高韧性、高矫顽力含Ce烧结稀土永磁体及其制备方法

Also Published As

Publication number Publication date
CN109594023A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN108922710B (zh) 一种高韧性、高矫顽力含Ce烧结稀土永磁体及其制备方法
CN102903472B (zh) 一种烧结钕铁硼磁体及其制备方法
CN103276284B (zh) 一种低镝耐热烧结钕铁硼制备方法
CN108063045B (zh) 一种无重稀土钕铁硼永磁材料及其制备方法
CN107275027B (zh) 应用钇的富铈稀土永磁体及其制备方法
WO2019223431A1 (zh) 一种低成本扩散源合金和晶界扩散磁体及其制备方法
CN101266856A (zh) 耐蚀性优异的高性能R-Fe-B系烧结磁体及其制造方法
CN108154986B (zh) 一种含y高丰度稀土永磁体及其制备方法
CN107958760B (zh) 一种稀土永磁材料及其制备方法
CN104900360A (zh) 一种添加复合低价稀土的新型永磁合金及其制备方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
CN110931197B (zh) 一种用于高丰度稀土永磁体的扩散源
CN103545079A (zh) 双主相含钇永磁磁体及其制备方法
CN111378907A (zh) 一种提高钕铁硼永磁材料矫顽力的辅助合金及应用方法
CN109594023B (zh) 一种短流程Ce-Fe基烧结永磁体及其制备方法
CN107799256A (zh) 一种永磁复合材料及制备方法
CN113593873A (zh) 一种高矫顽力混合稀土永磁材料及其制备方法
CN113838622A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN110033914B (zh) 提高烧结钕铁硼磁体的矫顽力的方法
CN111477446A (zh) 一种钕铁硼系烧结磁体及其制备方法
CN108666064B (zh) 一种添加vc的烧结稀土永磁材料及其制备方法
CN108597707B (zh) 一种含Ce烧结磁体及制备方法
CN111952032A (zh) 一种低硼低重稀土高矫顽力烧结钕铁硼系永磁体的制备方法
CN111180190A (zh) 一种提升烧结钕铁硼磁体磁性能的方法
CN102208238B (zh) 一种无钕无铽高矫顽力烧结稀土永磁体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 315301 No.8, Xinxing Road, Zonghan street, Xinxing Industrial Cluster District, Cixi City, Ningbo City, Zhejiang Province

Patentee after: NINGBO SHUOTENG NEW MATERIAL Co.,Ltd.

Patentee after: Ningbo Funeng rare earth new material Co.,Ltd.

Address before: 315301 No.8, Xinxing Road, Zonghan street, Xinxing Industrial Cluster District, Cixi City, Ningbo City, Zhejiang Province

Patentee before: NINGBO SHUOTENG NEW MATERIAL Co.,Ltd.

Patentee before: NINGBO FUNENG NEW MATERIAL Co.,Ltd.

CP01 Change in the name or title of a patent holder