WO2011122577A1 - 希土類焼結磁石及びその製造方法、並びにモータ及び自動車 - Google Patents

希土類焼結磁石及びその製造方法、並びにモータ及び自動車 Download PDF

Info

Publication number
WO2011122577A1
WO2011122577A1 PCT/JP2011/057684 JP2011057684W WO2011122577A1 WO 2011122577 A1 WO2011122577 A1 WO 2011122577A1 JP 2011057684 W JP2011057684 W JP 2011057684W WO 2011122577 A1 WO2011122577 A1 WO 2011122577A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
layer
magnet
magnet body
sintered magnet
Prior art date
Application number
PCT/JP2011/057684
Other languages
English (en)
French (fr)
Inventor
田中 哲
文崇 馬場
信 岩崎
石坂 力
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2012508322A priority Critical patent/JP5408340B2/ja
Priority to EP11762801.6A priority patent/EP2555206B1/en
Priority to US13/637,424 priority patent/US8823478B2/en
Priority to CN201180017480.7A priority patent/CN102822912B/zh
Publication of WO2011122577A1 publication Critical patent/WO2011122577A1/ja
Priority to US14/340,957 priority patent/US20140335268A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer

Definitions

  • the present invention relates to a rare earth sintered magnet and a method for manufacturing the same, a motor including the rare earth sintered magnet, and an automobile including the motor.
  • the rare earth sintered magnet has a property that the rare earth compound as a main component is relatively easily corroded. For this reason, a rare earth sintered magnet is provided with a coating layer for the purpose of suppressing a decrease in magnetic properties due to corrosion.
  • a coating layer various materials such as a plating film and a resin film are used according to the use of the rare earth sintered magnet and the required characteristics.
  • Patent Document 1 proposes that a rare earth sintered magnet is heat treated to form an oxide protective layer on the surface to improve the corrosion resistance of the rare earth sintered magnet.
  • rare earth sintered magnets have excellent magnetic properties
  • the use of rare earth sintered magnets is becoming increasingly widespread. Accordingly, the number of rare earth sintered magnets used in harsh environments is increasing. For this reason, rare earth sintered magnets are required to have better corrosion resistance than before.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a rare earth sintered magnet having high magnetic characteristics and excellent corrosion resistance. It is another object of the present invention to provide a method for producing a rare earth sintered magnet having high magnetic properties and excellent corrosion resistance. Furthermore, it aims at providing the motor and motor vehicle which are excellent in reliability by providing such a rare earth sintered magnet.
  • the present inventors have studied various means for improving the magnetic properties and corrosion resistance of rare earth sintered magnets. As a result, it has been found that it is effective to provide a protective layer composed of a plurality of layers having different compositions on the magnet body and to control the composition of the magnet body, and the present invention has been completed.
  • the present invention is a rare earth sintered magnet comprising a magnet body containing a rare earth compound, and a protective layer having a first layer and a second layer from the magnet body side on the magnet body.
  • the surface part of the magnet element body has a higher content of heavy rare earth elements than the inside of the magnet element body surrounded by the surface part, and the first layer contains a rare earth oxide and is heavy with respect to the light rare earth elements.
  • the mass ratio of the rare earth element is 1 or more
  • the second layer contains an oxide having iron and / or boron different from the rare earth oxide, and the second layer is more rarely oxidized than the first layer.
  • a rare earth sintered magnet having a low content.
  • the rare earth sintered magnet of the present invention includes the first layer having a higher content of heavy rare earth elements than that of light rare earth elements, and the surface of the magnet element is also made of heavy rare earth elements than the inside.
  • the content rate is high. Because heavy rare earth elements are less likely to corrode than light rare earth elements, they have better corrosion resistance than rare earth sintered magnets that have a magnet body that contains almost no heavy rare earth elements or layers that are mainly composed of light rare earth elements. Have Moreover, since the content rate of the heavy rare earth element in the surface part of a magnet element body is higher than the content rate of the heavy rare earth element in the inside of a magnet element body, a magnet element body and a 1st layer are excellent in adhesiveness. Such excellent adhesion contributes to improvement of corrosion resistance. Furthermore, since the content rate of the rare earth oxide is lower than that of the first layer and the second layer containing an oxide having iron and / or boron is provided outside the first layer, it has excellent corrosion resistance. .
  • the second layer in the rare earth sintered magnet of the present invention does not substantially contain a rare earth oxide. Thereby, the corrosion resistance can be further improved.
  • the heavy rare earth compound is attached to the surface of the magnet body containing the rare earth compound and heated to diffuse the heavy rare earth element contained in the heavy rare earth compound to the surface portion of the magnet body.
  • the first layer contains a rare earth oxide
  • the first layer has a mass ratio of heavy rare earth elements to light rare earth elements of 1 or more, and contains an oxide having iron and / or boron
  • a second layer having a rare earth oxide content lower than that of the first layer, and an oxidation treatment step for forming a protective layer.
  • a protective layer having a two-layer structure having excellent corrosion resistance can be formed on the magnet body.
  • the protective layer has a second layer having excellent corrosion resistance on the outer side, and has a first layer having characteristics of being relatively excellent in corrosion resistance and not easily peeling from the magnet body on the inner side. For this reason, the rare earth sintered magnet obtained by the said manufacturing method has the outstanding corrosion resistance.
  • the diffusion step in the method for producing a rare earth sintered magnet of the present invention it is preferable to heat the magnet body to which the heavy rare earth compound is adhered at 600 to 1000 ° C. By heating in such a temperature range, it is possible to sufficiently diffuse the heavy rare earth element to the surface portion of the magnet body while suppressing deterioration of the magnet body. As a result, generation of microcracks near the magnet surface due to hydrogen generated during acid cleaning performed immediately before the film forming process can be suppressed, and the adhesion between the magnet body and the protective layer (first layer) can be further improved. it can.
  • the surface treatment step in the method for producing a rare earth sintered magnet of the present invention it is preferable to remove at least a part of the surface portion of the coating layer so that the arithmetic average roughness Ra of the coating layer is 2 ⁇ m or less. This makes it possible to easily form the second layer having a uniform thickness and further improve the corrosion resistance.
  • the heavy rare earth compound used in the surface treatment step in the method for producing a rare earth sintered magnet of the present invention is preferably a hydride of heavy rare earth elements. Since the heavy rare earth element hydride has a high mass ratio of the heavy rare earth element, the heavy rare earth element can be efficiently diffused in the surface portion of the magnet body. Thereby, a rare earth sintered magnet having both high magnetic properties and an excellent protective layer can be easily manufactured.
  • the present invention also provides a motor including the rare earth sintered magnet described above. Since this motor includes the rare earth sintered magnet having the above-described characteristics, the magnetic characteristics of the rare earth sintered magnet can be maintained over a long period of time even when used in a corrosive environment. For this reason, it is excellent in reliability.
  • the present invention also provides an automobile equipped with the motor described above. Since the automobile includes the motor having the above-described features, the automobile is excellent in reliability.
  • a rare earth sintered magnet having high magnetic properties and excellent corrosion resistance can be provided.
  • FIG. 1 is a schematic perspective view showing an embodiment of the rare earth sintered magnet of the present embodiment.
  • 2 is a cross-sectional view of the rare earth sintered magnet of FIG. 1 taken along the line II-II.
  • the rare earth sintered magnet 10 according to the present embodiment includes a magnet body 40 and a protective layer 50 that covers the entire surface of the magnet body 40.
  • the protective layer 50 includes a first layer 52 and a second layer 54 having a composition different from that of the first layer 52 from the magnet body 40 side.
  • the second layer 54 is the outermost layer of the rare earth sintered magnet 10.
  • Other layers such as a resin layer may be provided on the second layer 54.
  • the magnet body 40 is a permanent magnet containing a rare earth compound having a rare earth element as a main component.
  • the rare earth element is at least one element selected from scandium (Sc), yttrium (Y), and a lanthanoid element belonging to Group 3 of the long-period periodic table.
  • lanthanoid elements include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dis Prosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) and the like are included.
  • La lanthanum
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • Sm samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dis Prosium
  • Ho holmium
  • Er erbium
  • Tm thulium
  • Yb ytterbium
  • Lu lutetium
  • the rare earth elements described above are classified into heavy rare earth elements (R H ) and light rare earth elements (R L ).
  • Heavy rare earth elements include Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • light rare earth elements include La, Ce, Pr, Nd, Sm, and Eu.
  • Examples of the rare earth compound that is the main component of the magnet body 40 include compounds having the rare earth element and elements other than the rare earth element as constituent elements.
  • the rare earth compound preferably has at least one element selected from the group consisting of Nd, Sm, Dy, Pr, Ho and Tb as a constituent element. More preferably, as a constituent element, these elements and at least one element selected from the group consisting of La, Ce, Gd, Er, Eu, Tm, Yb, and Y are included.
  • the rare earth compound is preferably a transition element, preferably iron (Fe), cobalt (Co), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu). , Zirconium (Zr), niobium (Nb), molybdenum (Mo), hafnium (Hf), tantalum (Ta), and at least one element selected from the group consisting of tungsten (W), more preferably Fe and / or Co is included.
  • the rare earth compound may contain both a transition element and boron as constituent elements.
  • the magnet body 40 includes aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), bismuth (Bi), niobium (Nb), and tantalum.
  • Ti molybdenum
  • Mo molybdenum
  • tungsten W
  • antimony Sb
  • germanium Ge
  • tin Sn
  • zirconium Zr
  • nickel Ni
  • silicon Si
  • Ga gallium
  • Cu an element such as (Cu) or hafnium (Hf) or a compound containing these elements may be included.
  • the magnet body 40 contains, for example, an RTB-based compound as a rare earth compound (rare earth alloy).
  • R is preferably a rare earth element mainly containing Nd
  • T is preferably a transition metal element mainly containing Fe and / or Co.
  • a preferred RTB-based compound is R 2 T 14 B.
  • the magnet body 40 includes a main phase (main crystal phase) of a tetragonal crystal structure composed of an RTB system compound, and a rare earth-rich phase having a high rare earth element content in the grain boundary portion of the main phase. And the boron rich phase with a high content rate of a boron atom may be included. These rare earth-rich phase and boron-rich phase are nonmagnetic phases that do not have magnetism.
  • the ratio of the main phase in the magnet body 40 is preferably 50% by volume or more, more preferably 60% by volume or more, and still more preferably 70% by volume or more.
  • the particle size of the main phase is, for example, 1 to 100 ⁇ m.
  • a preferred RTB-based compound is R 2 T 14 B.
  • the mass ratio of the heavy rare earth element (R H ) is higher in the surface portion 44 covering the inside 42 than in the inside 42 of the magnet body 40.
  • the magnet body 40 contains an RTB-based compound as a rare earth compound
  • the amount of RH dissolved in the compound or the grain boundary phase is higher in the surface portion 44 than in the interior 42. ing.
  • the surface portion 44 of the magnet body 40 is, for example, a region from the surface of the magnet body 40 to a depth of 100 ⁇ m, and the interior 42 is a region having a depth exceeding 100 ⁇ m from the surface of the magnet body 40.
  • the inside 42 may be, for example, a region that contains a light rare earth element as a rare earth element but substantially does not contain a heavy rare earth element.
  • the rare earth sintered magnet 10 having high magnetic properties can be obtained at low cost.
  • substantially free means that it may contain an amount that can normally be contained as an impurity. From the viewpoint of improving the adhesion between the magnet body 40 and the protective layer 50, the mass ratio of the heavy rare earth element content of the surface portion 44 to the interior 42 is preferably 3 or more, more preferably 4 or more. .
  • the surface portion 44 has a higher content of heavy rare earth elements than the inside 42.
  • the surface portion 44 contains, as a main crystal phase (main phase), particles containing an RTB-based compound in which a heavy rare earth element is dissolved, and a heavy rare earth compound is present between the particles (grain boundary phase). It is preferable that the structure contains.
  • the surface portion 44 may not substantially contain a light rare earth element, but preferably includes an RTB-based compound in which both the light rare earth element and the heavy rare earth element are dissolved.
  • the proportion of the light rare earth elements and heavy rare-earth element contained in the surface portion 44 for example, the molar ratio of R H for R L (R H / R L ) is preferably 0.1 to 2, more preferably Is between 0.2 and 1. By setting it in such a range, the magnetic properties and corrosion resistance can be further improved while reducing the amount of expensive heavy rare earth elements used.
  • the ratio of RH with respect to the entire rare earth element is preferably 1 to 40% by mass, more preferably 1.5 to 30% by mass, from the viewpoint of improving the magnetic properties.
  • the composition of the magnet body 40 is obtained by changing the cross section of the magnet body 40 as shown in FIG. 2 into EPMA (X-ray microanalyzer method), XPS (X-ray photoelectron spectroscopy), AES (Auger electron spectroscopy) or EDS (energy). It can be confirmed by a known analysis method such as dispersive fluorescent X-ray spectroscopy.
  • the compositions of the surface portion 44 and the interior 42 need not be uniform. For example, as the surface portion 44 comes closer to the surface of the magnet body 40, the content of heavy rare earth elements present in solid solution in the main phase or grain boundary phase may increase. With such a structure, the adhesion between the magnet body 40 and the protective layer 50 can be further improved.
  • FIG. 3 is a scanning electron micrograph (magnification: 10000 times) showing the vicinity of the surface of the cross section of the rare earth sintered magnet 10 in an enlarged manner.
  • the protective layer 50 is a layer provided on the surface of the magnet element body 40, and includes a first layer 52 and a second layer 54 covering the entire surface of the first layer 52 from the magnet element body 40 side.
  • the first layer 52 has, as a main component, a rare earth oxide having a rare earth element and oxygen as constituent elements. Examples of the rare earth oxide include those obtained by oxidizing the RTB-based compound contained in the magnet body 40. Specific examples of the rare earth oxide include composite oxides containing T and B in addition to R 2 O 3 and the like.
  • the oxygen content in the first layer 52 is preferably 10 to 30% by mass, and more preferably 15 to 25% by mass.
  • the first layer 52 may contain a small amount of an RTB-based compound or a rare earth compound different from the RTB-based compound.
  • the content of RH is higher than the content of RL .
  • the mass ratio of RH to RL in the first layer 52 is 1 or more, preferably 1.5 or more, and more preferably 1.8 or more.
  • Such a first layer 52 has higher corrosion resistance than a layer having a mass ratio of RH to RL of less than 1.
  • the surface portion 44 is excellent in adhesion to the magnet body 40 having a higher RH content than the inside 42. That is, the corrosion resistance of the rare earth sintered magnet 10 can be improved by a synergistic effect of RH itself having better corrosion resistance than RL and improved adhesion.
  • the content ratio of RH in the first layer 52 is preferably 5 to 10% by mass, more preferably 5 to 9% by mass, and further preferably 5 to 8% by mass. By containing RH in such a range, the adhesiveness with the magnet body 40 and the adhesiveness with the second layer 54 can be compatible at a high level.
  • the first layer 52 may contain RL . However, from the viewpoint of achieving both excellent corrosion resistance and high adhesion between the first layer 52 and the magnet body 40, the content of RL is preferably less than 5% by mass, more preferably less than 4% by mass. is there.
  • the thickness of the first layer 52 is preferably 0.5 to 20 ⁇ m, more preferably 1 to 10 ⁇ m. If the thickness of the first layer 52 is too large, the sufficiently excellent magnetic properties of the rare earth sintered magnet 10 tend to be impaired. On the other hand, if the thickness of the first layer 52 is too small, the corrosion resistance tends to be impaired when an impact is applied.
  • the second layer 54 includes an oxide having iron and / or boron as a constituent element. This oxide is different from the rare earth oxide contained in the first layer 52.
  • the second layer 54 is a layer having a lower rare earth oxide content than the first layer 52. From the viewpoint of sufficiently increasing the corrosion resistance of the rare earth sintered magnet 10, the second layer 54 preferably does not substantially contain a rare earth oxide.
  • substantially free as used herein means that it may contain an amount that can normally be contained as an impurity.
  • Examples of the oxide having iron and / or boron contained in the second layer 54 include iron oxide and boron oxide.
  • the second layer 54 preferably contains iron oxide as a main component.
  • the content of oxygen element in the second layer 54 is preferably 20 to 40% by mass, and the content of iron element is preferably 60 to 80% by mass.
  • the second layer may contain another nonmetallic element such as nitrogen.
  • the thickness of the second layer 54 is preferably 0.05 to 1 ⁇ m, more preferably 0.08 to 0.5 ⁇ m. If the thickness of the second layer 54 is too large, the sufficiently excellent magnetic properties of the rare earth sintered magnet 10 tend to be impaired. On the other hand, if the thickness of the second layer 54 is too small, the corrosion resistance tends to be impaired when an impact is applied.
  • the total thickness of the first layer 52 and the second layer 54 is preferably 0.1 to 20 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the rare earth sintered magnet 10 may have another layer between the first layer 52 and the second layer 54.
  • the content of each element in the first layer 52 and the second layer 54 is EPMA (X-ray microanalyzer method), XPS (X-ray photoelectron spectroscopy), AES (Auger electron spectroscopy) or EDS (energy dispersive type). It can be confirmed by a known analysis method such as fluorescent X-ray spectroscopy.
  • the manufacturing method of this embodiment is (1) Preparatory process for producing a magnet body containing a light rare earth compound, (2) A heavy rare earth compound is attached to the surface of the magnet body and heated to diffuse the heavy rare earth element contained in the heavy rare earth compound to the surface of the magnet body, and the heavy rare earth compound is applied to the surface of the magnet body.
  • the coating layer is oxidized in an oxidizing atmosphere containing an oxidizing gas, contains a heavy rare earth oxide on the magnet body, and the mass ratio of the heavy rare earth element to the light rare earth element is 1 or more.
  • a protective layer is formed that includes a certain first layer and a second layer containing an oxide having iron and / or boron as a constituent element and having a rare earth oxide content lower than that of the first layer. And an oxidation treatment step.
  • a magnet body containing a light rare earth compound is produced.
  • the magnet body can be manufactured by powder metallurgy. Specifically, first, an alloy having a desired composition is manufactured by a known alloy manufacturing process such as a casting method or a strip casting method. Next, this alloy was pulverized to a particle size of 10 to 100 ⁇ m using a coarse pulverizer such as a jaw crusher, brown mill, stamp mill, etc., and further 0.1 ⁇ m by a fine pulverizer such as a jet mill or attritor. The particle size is 5-5 ⁇ m.
  • the powder thus obtained is molded at a pressure of 0.5 to 5 ton / cm 2 (about 49 to 490 MPa) in a magnetic field having a magnetic field strength of preferably 600 kA / m or more to produce a molded body. .
  • the produced molded body is heated and sintered at 1000 to 1200 ° C. for 0.5 to 10 hours, preferably in an inert gas atmosphere or vacuum, and then rapidly cooled. Further, the sintered body is subjected to heat treatment (aging treatment) at 500 to 900 ° C. for 1 to 5 hours in an inert gas atmosphere or vacuum, and the sintered body is formed into a desired shape (practical shape) as necessary.
  • the magnet body can be obtained by processing. The magnet body thus obtained may be further subjected to acid cleaning with nitric acid or the like.
  • the heavy rare earth element is diffused on the surface of the magnet body produced as described above, and a coating layer containing the heavy rare earth compound is formed on the surface of the magnet body.
  • a hydride or fluoride of heavy rare earth element can be used as the heavy rare earth element source.
  • the heavy rare earth compound preferably contains a hydride of heavy rare earth element.
  • the heavy rare earth compound can be prepared by a known method.
  • the method of attaching the heavy rare earth compound to the magnet body is not particularly limited.
  • the method of immersing the magnet body in a slurry in which a powdered heavy rare earth compound is dispersed, or the powdered heavy rare earth The method of apply
  • a method of immersing the magnet body in a slurry in which the powdered heavy rare earth compound is dispersed is preferable.
  • the content of the heavy rare earth compound in the slurry is preferably 30 to 50% by mass, more preferably 35 to 45% by mass, from the viewpoint of setting the amount of the heavy rare earth compound to adhere to the magnet body 40 in a suitable range. It is.
  • the average particle size of the heavy rare earth compound powder dispersed in the slurry is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 10 ⁇ m. If the average particle size is too large, the thickness of the coating layer formed on the magnet element tends to vary.
  • a solvent used for the slurry an organic solvent such as alcohol or acetone can be used.
  • the average particle diameter of the powder in this specification is a volume average particle diameter measured using a commercially available laser diffraction particle size distribution meter.
  • the amount of the heavy rare earth compound attached to the magnet body is preferably 0.1 to 5% by mass, more preferably 0.2 to 3% by mass in terms of heavy rare earth elements, based on the magnet body. More preferably, it is 0.3 to 2% by mass. If the amount of heavy rare earth element to be attached to the magnet body is too large, the variation in the thickness of the coating layer tends to increase. On the other hand, if the amount of heavy rare earth element attached to the magnet body is too small, it tends to be difficult to form a coating layer having a sufficient thickness.
  • the heavy rare earth compound contained in the heavy rare earth compound is heated by heating the magnet body to which the heavy rare earth compound is attached in an inert gas atmosphere such as argon gas or nitrogen gas.
  • a coating layer is formed to diffuse the surface 44 of the magnet body and cover the magnet body.
  • the heating temperature of the magnet body is preferably 600 to 1000 ° C., more preferably 800 to 900 ° C.
  • the heating time of the magnet body is preferably 0.5 to 10 hours, more preferably 1 to 5 hours. If the heating temperature of the magnet body is too high, the magnet body deteriorates and it tends to be difficult to obtain high magnetic properties.
  • the heating temperature of the magnet body is too low, heavy rare earth elements tend not to diffuse sufficiently into the magnet body.
  • the content of heavy rare earth elements having a lower affinity for hydrogen than light rare earth elements is reduced.
  • acid cleaning is performed to clean the magnet surface, but the hydrogen generated at that time reacts with the magnet body, generating microcracks and reducing the adhesion between the magnet body and the film. To do. Therefore, when the heat treatment temperature is too low and the heavy rare earth element is not sufficiently diffused, the amount of microcracks increases, and good adhesion to the magnet body tends to be difficult to obtain.
  • the magnet body 40 having the interior 42 and the surface portion 44 provided around the interior 42 and having a higher content of heavy rare earth elements than the interior 42 and the coating layer covering the magnet body 40 are formed. Is done.
  • the coating layer has a thickness of 0.1 to 20 ⁇ m, for example, and contains a heavy rare earth compound. Moreover, you may contain the light rare earth compound produced
  • the surface treatment step at least a part of the surface portion of the coating layer formed on the magnet body 40 is removed. Thereby, the surface of the coating layer becomes smooth, and a protective layer having a two-layer structure can be formed in a later step.
  • the method for removing the surface portion of the coating layer include known methods such as barrel polishing, shot blasting, and acid cleaning.
  • acid cleaning a nitric acid aqueous solution having a nitric acid concentration of about 1 to 5% by mass is preferably used.
  • the arithmetic average roughness Ra of the coating layer after removal of the surface portion of the coating layer is preferably 2 ⁇ m or less, and more preferably 1.5 ⁇ m or less.
  • the maximum height Ry of the coating layer is preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less. If Ra or Ry becomes too large, formation of the second layer tends to be difficult.
  • the magnet body 40 having the coating layer is heated in an oxidizing atmosphere containing an oxidizing gas to oxidize the coating layer.
  • the covering layer becomes the protective layer 50 in which the first layer 52 and the second layer 54 are sequentially laminated from the magnet body 40 side.
  • the thickness and composition of the first layer 52 and the second layer 54 in the protective layer 50 can be adjusted by changing at least one of the partial pressure of the oxidizing gas, the processing temperature, and the processing time.
  • the oxidizing atmosphere in the oxidation treatment step is not particularly limited as long as it contains an oxidizing gas.
  • the oxidizing gas is not particularly limited, and for example, oxygen and water vapor can be used.
  • the oxygen atmosphere is an atmosphere having an oxygen concentration of 0.1% or more, and an inert gas such as nitrogen coexists with oxygen in the atmosphere. That is, the oxygen atmosphere may be an atmosphere composed of oxygen and an inert gas.
  • the water vapor atmosphere is an atmosphere having a water vapor partial pressure of 1 kPa or more, and an inert gas such as nitrogen coexists with the water vapor.
  • the oxidizing atmosphere may be an atmosphere containing oxygen, water vapor, and an inert gas.
  • the heating temperature in the oxidation treatment step is preferably 200 to 550 ° C, more preferably 250 to 500 ° C.
  • the heating time is preferably 1 minute to 10 hours.
  • the rare earth sintered magnet 10 having the magnet body 40 and the protective layer 50 having a two-layer structure covering the magnet body 40 can be obtained.
  • the rare earth sintered magnet 10 of this invention and its manufacturing method were demonstrated, the rare earth sintered magnet of this invention and its manufacturing method are not limited to embodiment mentioned above. Moreover, the rare earth sintered magnet 10 is not limited to that obtained by the above-described manufacturing method.
  • the magnet element body and the coating layer provided on the magnet element body may be formed at the same timing by attaching a heavy rare earth compound to the molded body to be the magnet element body and heating.
  • FIG. 4 is an explanatory diagram showing an example of the internal structure of the motor of this embodiment.
  • the motor 100 is a permanent magnet synchronous motor (IPM motor), and includes a cylindrical rotor 20 and a stator 30 disposed outside the rotor 20.
  • the rotor 20 is housed in a cylindrical rotor core 22, a plurality of magnet housing portions 24 that house the rare earth sintered magnet 10 at predetermined intervals along the outer peripheral surface of the cylindrical rotor core 22, and the magnet housing portion 24.
  • the rare earth sintered magnets 10 adjacent to each other in the circumferential direction of the rotor 20 are accommodated in the magnet accommodating portion 24 so that the positions of the N pole and the S pole are opposite to each other. Thereby, the rare earth sintered magnets 10 adjacent along the circumferential direction generate lines of magnetic force in opposite directions along the radial direction of the rotor 20.
  • the stator 30 has a plurality of coil portions 32 provided at predetermined intervals along the outer peripheral surface of the rotor 20.
  • the coil portion 32 and the rare earth sintered magnet 10 are disposed so as to face each other.
  • the stator 30 applies torque to the rotor 20 by electromagnetic action, and the rotor 20 rotates in the circumferential direction.
  • the IPM motor 100 includes the rare earth sintered magnet 10 according to the above embodiment in the rotor 20.
  • the rare earth sintered magnet 10 has an excellent magnetic property and a plating film that does not easily peel off. For this reason, the IPM motor 100 is excellent in reliability.
  • the IPM motor 100 can maintain a high output for a longer period than before.
  • the IPM motor 100 can be manufactured by an ordinary method using ordinary motor parts except for the rare earth sintered magnet 10.
  • the motor of the present invention is not limited to an IPM motor, but may be an SPM, and may be a permanent magnet DC motor, a linear synchronous motor, a voice coil motor, or a vibration motor as well as a permanent magnet synchronous motor.
  • FIG. 5 is a conceptual diagram showing a power generation mechanism, a power storage mechanism, and a drive mechanism of an automobile according to a preferred embodiment of the present invention.
  • the automobile 200 of the present embodiment includes the motor 100, the wheels 68, the storage battery 64, the generator 62, and the engine 60 of the above-described embodiment.
  • the mechanical energy generated by the engine 60 is converted into electric energy by the generator 62.
  • This electrical energy is stored in the storage battery 64.
  • the stored electrical energy is converted into mechanical energy by the motor 100.
  • the mechanical energy from the motor 100 rotates the wheels 68 and drives the automobile 200.
  • the automobile of the present invention is not limited to that shown in FIG.
  • Example 1 Preparation process (production of magnet body)> Two types of raw material alloys were prepared: a main phase alloy that mainly forms crystal grains (main phase) of the magnet body and a grain boundary alloy that mainly forms grain boundaries (grain boundary phase) of the magnet body. Each of these raw material alloys was roughly pulverized by hydrogen pulverization and then jet milled by high-pressure N 2 gas to prepare fine powders A and B having an average particle diameter of 4 ⁇ m.
  • the obtained compact was fired at 1060 ° C. for 4 hours to obtain a magnet body (sintered body) having the following composition.
  • the obtained magnet body was cut to a predetermined size (20 mm ⁇ 10 mm ⁇ 2 mm), and then immersed in a nitric acid ethanol solution (nitric acid concentration: 3 mass%) for 3 minutes. Thereafter, the magnet body was taken out from the nitrate ethanol solution and subjected to ultrasonic cleaning in ethanol.
  • DyH 2 powder was prepared by the following procedure.
  • the metal Dy lump was heated at 360 ° C. for 1 hour in a hydrogen atmosphere under atmospheric pressure to occlude hydrogen.
  • the hydrogen occluded powder was heat-treated at 600 ° C. for 1 hour in an argon gas atmosphere at atmospheric pressure to obtain a Dy hydride.
  • the obtained Dy hydride was confirmed to be DyH 2 by X-ray diffraction.
  • the obtained DyH 2 is pulverized to a particle size of 100 ⁇ m or less using a stamp mill, and then mixed with ethanol and wet pulverized using a ball mill to obtain a slurry containing DyH 2 powder having an average particle size of 3 ⁇ m. It was. Thereafter, this slurry was diluted with ethanol to obtain a slurry having a solid content of 40% by mass.
  • the magnet body was immersed in a slurry having a solid content of 40% by mass. Thereafter, the sintered body was taken out of the slurry and dried, and DyH 2 powder, which is a heavy rare earth compound, was adhered to the surface of the magnet body.
  • the adhesion amount of the DyH 2 powder was 0.5% by mass in terms of Dy based on the magnet body.
  • heat treatment diffusion treatment of heavy rare earth elements
  • heat treatment was performed by heating at 900 ° C. for 3 hours in an argon gas atmosphere to form a coating layer on the magnet body.
  • heavy rare earth elements diffused on the surface of the magnet body.
  • an aging treatment was performed by heating at 540 ° C. for 1 hour in an argon gas atmosphere under atmospheric pressure.
  • ⁇ Surface treatment process> the surface of the coating layer formed on the magnet body was barrel-polished to partially remove the surface portion of the coating layer and smooth the surface.
  • a stainless steel ball mill pot with a diameter of 1/4 inch is filled with a magnet body having a coating layer, ZrO 2 media with a diameter of 10 mm and pure water, and the stainless steel ball mill pot is rolled at a rotation speed of 108 rpm for 2 hours. Made by letting. Thereafter, the magnet body having the coating layer was immersed in an aqueous nitric acid solution having a nitric acid concentration of 3% by mass for 2 minutes. And the magnet body was ultrasonically washed.
  • the magnet body having the coating layer was heated at 450 ° C. for 10 minutes (oxidation treatment) in a nitrogen gas atmosphere containing water vapor (water vapor partial pressure: 47.5 kPa).
  • the covering layer of the magnet body has a two-layer structure including a first layer and a second layer.
  • the rare earth sintered magnet of Example 1 provided with the protective layer which has a 1st layer and a 2nd layer from the magnet element body side on the magnet element body by the above process was obtained.
  • the obtained rare earth sintered magnet was cut using a focused ion beam processing apparatus, and the protective layer on the cut surface was observed with a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • the elements contained in the first and second layers were quantified using EDS (energy dispersive X-ray fluorescence spectrometer). The results are shown in Table 1.
  • the first layer contained Dy, Nd, Fe, and O, and the Dy content was higher than the Nd content.
  • the second layer contained Fe and O, Dy and Nd were not detected.
  • the content of heavy rare earth elements in the surface of the magnet body was measured. The results were as shown in Table 1.
  • the content of heavy rare earth elements has changed from the initial content of the magnet body (0.5 mass%). There wasn't.
  • the magnetic flux was measured.
  • This rare earth sintered magnet was immersed in a commercially available automatic transmission fluid (ATF) for hybrid vehicles to which 0.2% by mass of water was added, and held at 150 ° C. for 1000 hours (ATF immersion test). Thereafter, the rare earth sintered magnet was taken out from the ATF and magnetized again to measure the magnetic flux. From the magnetic flux values before and after the ATF immersion test, the demagnetization factor was obtained in the same manner as PCT. The results are shown in Table 1.
  • Example 2 In the diffusion step, the rare earth sintering of Example 2 was performed in the same manner as in Example 1 except that TbH 2 powder was used instead of DyH 2 powder as the heavy rare earth compound powder to be adhered to the surface of the magnet body. A magnet was produced. Then, in the same manner as in Example 1, the composition analysis of the protective layer and the corrosion resistance evaluation of the rare earth sintered magnet were performed. The results of the composition analysis and the evaluation results are summarized in Table 1.
  • TbH 2 was prepared by the following procedure. The metal Tb lump was heated at 360 ° C. for 1 hour in a hydrogen atmosphere under atmospheric pressure to occlude hydrogen.
  • the adhesion amount of the TbH 2 powder to the magnet body was set to 0.5% by mass in terms of Tb based on the magnet body.
  • Example 3 In the diffusion step, the rare earth sintering of Example 3 is performed in the same manner as in Example 1 except that HoH 2 powder is used instead of DyH 2 powder as the heavy rare earth compound powder to be adhered to the surface of the magnet body. A magnet was produced. Then, in the same manner as in Example 1, the composition analysis of the protective layer and the corrosion resistance evaluation of the rare earth sintered magnet were performed. The results of the composition analysis and the evaluation results are summarized in Table 1.
  • HoH 2 was prepared by the following procedure. The metal Ho mass was heated at 360 ° C. for 1 hour in a hydrogen atmosphere under atmospheric pressure to occlude hydrogen.
  • the adhesion amount of the HoH 2 powder to the magnet body was set to 0.5 mass% in terms of Ho based on the magnet body.
  • Example 4 In the diffusion step, the rare earth sintering of Example 4 was performed in the same manner as in Example 1 except that ErH 2 powder was used instead of DyH 2 powder as the heavy rare earth compound powder to be adhered to the surface of the magnet body. A magnet was produced. Then, in the same manner as in Example 1, the composition analysis of the protective layer and the corrosion resistance evaluation of the rare earth sintered magnet were performed. The results of the composition analysis and the evaluation results are summarized in Table 1. ErH 2 was prepared by the following procedure. The metal Er lump was heated at 360 ° C. for 1 hour in a hydrogen atmosphere under atmospheric pressure to occlude hydrogen. Then, heat treatment was performed at 600 ° C. for 1 hour in an argon gas atmosphere under atmospheric pressure to obtain ErH 2 . Further, the amount of ErH 2 powder attached to the magnet body was 0.5 mass% in terms of Er based on the magnet body.
  • Example 5 In the diffusion step, the rare earth sintering of Example 5 was performed in the same manner as in Example 1 except that TmH 2 powder was used instead of DyH 2 powder as the heavy rare earth compound powder to be adhered to the surface of the magnet body. A magnet was produced. Then, in the same manner as in Example 1, the composition analysis of the protective layer and the corrosion resistance evaluation of the rare earth sintered magnet were performed. The results of the composition analysis and the evaluation results are summarized in Table 1. TmH 2 was prepared by the following procedure. The metal Tm mass was heated at 360 ° C. for 1 hour in a hydrogen atmosphere under atmospheric pressure to occlude hydrogen.
  • the adhesion amount of the TmH 2 powder to the magnet body was 0.5% by mass in terms of Tm based on the magnet body.
  • Example 6 In the oxidation process, the magnet body is oxidized in a mixed gas atmosphere of oxygen and nitrogen (oxygen concentration: 21% by volume) and heated at 290 ° C. for 10 minutes to form a protective layer on the surface of the magnet body.
  • a rare earth sintered magnet was produced in the same manner as in Example 1 except that it was formed. Then, in the same manner as in Example 1, the composition analysis of the protective layer and the corrosion resistance evaluation of the rare earth sintered magnet were performed. The results of the composition analysis and the evaluation results are summarized in Table 1.
  • Example 7 to 10 In the oxidation process, the magnet body is oxidized in a mixed gas atmosphere of oxygen and nitrogen (oxygen concentration: 21% by volume) and heated at 290 ° C. for 10 minutes to form a protective layer on the surface of the magnet body. Except for the formation, the rare-earth sintered magnets of Examples 7 to 10 were produced in the same manner as in Examples 2 to 5, respectively. Then, in the same manner as in Examples 2 to 5, the composition analysis of the protective layer and the corrosion resistance evaluation of the rare earth sintered magnet were performed. The results of the composition analysis and the evaluation results are summarized in Table 1.
  • Example 11 In the surface treatment step, the same procedure as in Example 1 was conducted except that barrel polishing was not performed and the immersion time in the nitric acid aqueous solution having a nitric acid concentration of 2% by mass was extended from 2 minutes to 4 minutes. A rare earth sintered magnet of Example 11 was produced. That is, the surface treatment process was performed only by acid cleaning. Then, in the same manner as in Example 1, the composition analysis of the protective layer and the corrosion resistance evaluation of the rare earth sintered magnet were performed. The results of the composition analysis and the evaluation results are summarized in Table 1.
  • Example 12 A rare earth sintered magnet of Example 12 was produced in the same manner as in Example 1 except that shot blasting was performed instead of barrel polishing in the surface treatment step. Shot blasting was performed using a shot blasting apparatus manufactured by Fuji Seisakusho at a set pressure of 0.3 MPa for 10 seconds per surface of the coating layer on the magnet body. Then, in the same manner as in Example 1, the composition analysis of the protective layer and the corrosion resistance evaluation of the rare earth sintered magnet were performed. The results of the composition analysis and the evaluation results are summarized in Table 1.
  • Example 13 As in Example 1, except that DyF 3 powder (manufactured by Japan Yttrium Co., Ltd., average particle size: 300 nm) was used instead of DyH 2 powder as the powder of the heavy rare earth compound adhered to the surface of the magnet body. Thus, a rare earth sintered magnet of Example 13 was produced. Then, in the same manner as in Example 1, the composition analysis of the protective layer and the corrosion resistance evaluation of the rare earth sintered magnet were performed. The results of the composition analysis and the evaluation results are summarized in Table 1. The amount of DyF 3 powder adhering to the magnet body was 0.5% by mass in terms of Dy based on the magnet body.
  • Comparative Example 1 A rare earth sintered magnet of Comparative Example 1 was produced in the same manner as Example 1 except that the diffusion step was not performed. That is, the surface treatment was performed directly on the magnet body (sintered body) obtained in the preparation step without using the heavy rare earth compound. Then, in the same manner as in Example 1, the composition analysis of the protective layer and the corrosion resistance evaluation of the rare earth sintered magnet were performed. The results of the composition analysis and the evaluation results are summarized in Table 1.
  • Example 2 A rare earth sintered magnet of Comparative Example 2 was produced in the same manner as in Example 1 except that the magnet body was not barrel-polished. Then, in the same manner as in Example 2, the composition analysis of the protective layer and the corrosion resistance evaluation of the rare earth sintered magnet were performed. The results of the composition analysis and the evaluation results are summarized in Table 1.
  • the rare earth sintered magnet of Comparative Example 2 did not have a two-layer protective layer, and an island-shaped product was formed on the first layer. This is considered to be due to the fact that the heavy rare earth compound powder remained on the surface of the coating layer and the surface of the coating layer had irregularities because treatment such as barrel polishing was not performed. .
  • Examples 1 to 13 were confirmed to have a low demagnetization rate by the PCT and ATF tests and to have excellent corrosion resistance.
  • the adhesion strength of the rare earth sintered magnets of Examples 1, 11, 12 and Comparative Examples 1, 2 was evaluated. Specifically, first, a rare earth sintered magnet was bonded to a clean flat iron plate using an epoxy adhesive (manufactured by 3M, trade name: SW2214). Then, it heated at 120 degreeC for 40 minute (s), the adhesive agent was hardened, and the laminated body was obtained. Using a hand press, a shear force was applied to calculate the strength (adhesive strength) from the load when the laminate was broken (compression shear test). Table 2 shows the calculation results of the strength.
  • an epoxy adhesive manufactured by 3M, trade name: SW2214
  • a rare earth sintered magnet having high magnetic properties and excellent corrosion resistance can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

希土類化合物を含む磁石素体と、磁石素体の上に、磁石素体側から第1の層及び第2の層を有する保護層と、を備える希土類焼結磁石10であって、磁石素体の表面部の方が、表面部に囲まれた磁石素体の内部よりも重希土類元素の含有率が高く、第1の層は、希土類酸化物を含有し、軽希土類元素に対する重希土類元素の質量比率が1以上であり、第2の層は、希土類酸化物とは異なる、鉄及び/又はホウ素を有する酸化物を含有し、第2の層は、第1の層よりも希土類酸化物の含有率が低い、希土類焼結磁石10。

Description

希土類焼結磁石及びその製造方法、並びにモータ及び自動車
 本発明は、希土類焼結磁石及びその製造方法、並びに希土類焼結磁石を備えるモータ及び当該モータを備える自動車に関する。
 希土類焼結磁石は、主成分である希土類化合物が比較的腐食され易い性質を有する。このため、腐食に伴う磁気特性の低下を抑制することを目的として、希土類焼結磁石には被覆層が設けられる。被覆層としては、希土類焼結磁石の用途や求められる特性に応じて、めっき皮膜や樹脂皮膜など様々な材質のものが用いられている。
 例えば、特許文献1では、希土類焼結磁石を熱処理して、表面に酸化物の保護層を形成し、希土類焼結磁石の耐食性を改善することが提案されている。
特許第4029095号明細書
 希土類焼結磁石は優れた磁気特性を有することから、希土類焼結磁石の用途は益々広範になっている。それに伴って、苛酷な環境下で使用される希土類焼結磁石も増えている。このため、希土類焼結磁石は、従来よりも優れた耐食性を有することが求められている。
 本発明は、そのような事情に鑑みてなされたものであり、高い磁気特性を有するとともに、優れた耐食性を有する希土類焼結磁石を提供することを目的とする。また、高い磁気特性と優れた耐食性を有する希土類焼結磁石の製造方法を提供することを目的とする。さらに、そのような希土類焼結磁石を備えることによって、信頼性に優れるモータ及び自動車を提供することを目的とする。
 本発明者らは、希土類焼結磁石の磁気特性及び耐食性を向上する手段を種々検討した。その結果、磁石素体上に組成の異なる複数の層からなる保護層を設けるとともに、磁石素体の組成を制御することが有効であることを見出し、本発明を完成するに至った。
 すなわち、本発明は、希土類化合物を含む磁石素体と、磁石素体の上に、磁石素体側から第1の層及び第2の層を有する保護層と、を備える希土類焼結磁石であって、磁石素体の表面部の方が表面部に囲まれた磁石素体の内部よりも重希土類元素の含有率が高く、第1の層は、希土類酸化物を含有し、軽希土類元素に対する重希土類元素の質量比率が1以上であり、第2の層は、希土類酸化物とは異なる鉄及び/又はホウ素を有する酸化物を含有し、第2の層は第1の層よりも前記希土類酸化物の含有率が低い、希土類焼結磁石を提供する。
 上記本発明の希土類焼結磁石は、軽希土類元素よりも重希土類元素の含有率の方が高い第1の層を備えるとともに、磁石素体においても表面部の方が内部よりも重希土類元素の含有率が高くなっている。軽希土類元素よりも重希土類元素の方が腐食し難いため、表面近傍に重希土類元素を殆ど含有しない磁石素体や軽希土類元素を主体とした層を備える希土類焼結磁石よりも、優れた耐食性を有する。また、磁石素体の表面部における重希土類元素の含有率が磁石素体の内部における重希土類元素の含有率よりも高くなっているため、磁石素体と第1の層は密着性に優れる。このような優れた密着性は耐食性の向上に寄与する。さらに、第1の層の外側に、第1の層よりも希土類酸化物の含有率が低く、鉄及び/又はホウ素を有する酸化物を含む第2の層を備えることから、優れた耐食性を有する。
 本発明の希土類焼結磁石における第2の層は希土類酸化物を実質的に含有しないことが好ましい。これによって、耐食性を一層向上することができる。
 本発明ではまた、希土類化合物を含む磁石素体の表面に重希土類化合物を付着させて加熱し、重希土類化合物に含まれる重希土類元素を磁石素体の表面部に拡散させるとともに、磁石素体の上に重希土類化合物を含有する被覆層を形成する拡散工程と、被覆層の表面部分の少なくとも一部を除去する表面処理工程と、被覆層を酸化性ガスを含有する酸化性雰囲気中で酸化して、磁石素体側から、希土類酸化物を含有し、軽希土類元素に対する重希土類元素の質量比率が1以上である第1の層と、鉄及び/又はホウ素を有する酸化物を含有し、第1の層よりも希土類酸化物の含有率が低い第2の層と、からなる保護層を形成する酸化処理工程と、を有する、希土類焼結磁石の製造方法を提供する。
 このような製造方法によれば、磁石素体上に耐食性に優れた2層構造からなる保護層を形成することができる。当該保護層は、外側に耐食性に優れる第2の層を有し、内側に耐食性に比較的優れるとともに、磁石素体から容易に剥離しない特性を有する第1の層を有する。このため、上記製造方法によって得られる希土類焼結磁石は、優れた耐食性を有する。
 本発明の希土類焼結磁石の製造方法における拡散工程では、重希土類化合物を付着させた磁石素体を600~1000℃で加熱することが好ましい。このような温度範囲で加熱することによって、磁石素体の劣化を抑制しつつ重希土類元素を磁石素体の表面部に十分に拡散させることができる。これによって、製膜工程の直前に行う酸洗浄時に発生した水素による磁石表面付近のマイクロクラックの発生を抑え、磁石素体と保護層(第1の層)との密着性を一層向上することができる。
 本発明の希土類焼結磁石の製造方法における表面処理工程では、被覆層の表面部分の少なくとも一部を除去して、被覆層の算術平均粗さRaを2μm以下にすることが好ましい。これによって、厚みの揃った第2の層を容易に形成することが可能になり、耐食性を一層向上させることができる。
 本発明の希土類焼結磁石の製造方法における表面処理工程で用いる重希土類化合物は重希土類元素の水素化物であることが好ましい。重希土類元素の水素化物は、重希土類元素の質量割合が高いために、磁石素体の表面部に、重希土類元素を効率的に拡散させることができる。これによって、高い磁気特性と優れた保護層とを兼ね備える希土類焼結磁石を容易に製造することができる。
 本発明ではまた、上述の希土類焼結磁石を備えるモータを提供する。このモータは、上述の特徴を有する希土類焼結磁石を備えるため、腐食環境下で使用しても、希土類焼結磁石の磁気特性を長期間に亘って維持することができる。このため信頼性に優れる。
 本発明ではまた、上述のモータを備える自動車を提供する。この自動車は、上述の特徴を有するモータを備えるため、信頼性に優れる。
 本発明によれば、高い磁気特性を有するとともに、優れた耐食性を有する希土類焼結磁石を提供することができる。また、高い磁気特性を有するとともに、優れた耐食性を有する希土類焼結磁石の製造方法を提供することができる。さらに、そのような希土類焼結磁石を備えることによって、信頼性に優れるモータ及び自動車を提供することができる。
本発明の希土類焼結磁石の一実施形態を示す概略斜視図である。 本発明の希土類焼結磁石の一実施形態を模式的に示す断面図である。 図2に示す希土類焼結磁石の断面の表面近傍を拡大して示す走査型電子顕微鏡写真である。 本発明のモータの一実施形態の内部構造を示す説明図である。 本発明の自動車の一実施形態を示す概念図である。
 以下、場合により図面を参照して、本発明の好適な実施形態について説明する。なお、各図面において、同一又は同等の要素には同一の符号を付与し、重複する説明を省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
 図1は本実施形態の希土類焼結磁石の一実施形態を示す概略斜視図である。図2は図1の希土類焼結磁石のII-II線断面図である。図1及び図2に示すように、本実施形態の希土類焼結磁石10は磁石素体40と、磁石素体40の表面全体を被覆する保護層50とを有する。保護層50は、磁石素体40側から第1の層52と、第1の層52とは異なる組成を有する第2の層54と、を有する。本実施形態では、第2の層54が希土類焼結磁石10の最外層となっている。この第2の層54の上に、樹脂層などの他の層を設けてもよい。
 磁石素体40は、希土類元素を有する希土類化合物を主成分として含有する永久磁石である。希土類元素は、長周期型周期表の第3族に属するスカンジウム(Sc)、イットリウム(Y)及びランタノイド元素から選ばれる少なくとも一種の元素である。なお、ランタノイド元素には、例えば、ランタン(La)、セリウム(Ce)、プラセオジウム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ディスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)等が含まれる。
 上述の希土類元素は、重希土類元素(R)と軽希土類元素(R)に分類される。重希土類元素には、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luが含まれる。一方、軽希土類元素には、La、Ce、Pr、Nd、Sm、Euが含まれる。
 磁石素体40の主成分である希土類化合物としては、構成元素として、上記希土類元素と、希土類元素以外の元素と、を有する化合物が挙げられる。希土類化合物は、構成元素として、好ましくはNd、Sm、Dy、Pr、Ho及びTbからなる群より選ばれる少なくとも一種の元素を有する。また、より好ましくは、構成元素として、これらの元素と、La、Ce、Gd、Er、Eu、Tm、Yb及びYからなる群より選ばれる少なくとも一種の元素と、を有する。
 希土類元素以外の元素としては、遷移元素及びホウ素(B)元素が挙げられる。希土類化合物は、遷移元素として、好ましくは、鉄(Fe)、コバルト(Co)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)からなる群より選ばれる少なくとも一種の元素を含み、より好ましくはFe及び/又はCoを含む。また、希土類化合物は、構成元素として遷移元素とホウ素の両方を含んでもよい。
 磁石素体40は、上述の希土類化合物の他に、アルミニウム(Al)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ビスマス(Bi)、ニオブ(Nb)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、アンチモン(Sb)、ゲルマニウム(Ge)、スズ(Sn)、ジルコニウム(Zr)、ニッケル(Ni)、ケイ素(Si)、ガリウム(Ga)、銅(Cu)、ハフニウム(Hf)等の元素、又はこれらの元素を含む化合物を含んでいてもよい。
 磁石素体40は、希土類化合物(希土類合金)として、例えばR-T-B系化合物を含有する。R-T-B系化合物の場合、Rは、好ましくはNdを主成分とする希土類元素であり、Tは、好ましくはFe及び/又はCoを主成分とする遷移金属元素である。好ましいR-T-B系化合物としては、R14Bが挙げられる。
 磁石素体40は、R-T-B系化合物からなる正方晶系の結晶構造の主相(主な結晶相)と、主相の粒界部分に希土類元素の含有割合が高い希土類リッチ相、及び、ホウ素原子の含有割合が高いホウ素リッチ相を含んでいてもよい。これらの希土類リッチ相及びホウ素リッチ相は磁性を有していない非磁性相である。磁石素体40における主相の割合は、好ましくは50体積%以上であり、より好ましくは60体積%以上であり、さらに好ましくは70体積%以上である。また、主相の粒径は、例えば1~100μmである。好ましいR-T-B系化合物としては、R14Bが挙げられる。
 磁石素体40は、磁石素体40の内部42よりも、内部42を覆う表面部44の方が重希土類元素(R)の質量比率が高くなっている。例えば、磁石素体40が希土類化合物としてR-T-B系化合物を含有する場合、当該化合物や粒界相に固溶するRの量は、表面部44の方が内部42よりも高くなっている。このような構造にすることによって、磁石素体40と保護層50との密着性が向上し、高い磁気特性と耐食性とを兼ね備えた希土類焼結磁石10とすることができる。
 磁石素体40の表面部44は、例えば、磁石素体40の表面から深さ100μmまでの領域であり、内部42は、磁石素体40の表面から深さが100μmを超える領域である。内部42は、例えば、希土類元素として軽希土類元素を含むが、重希土類元素を実質的に含まない領域であってもよい。これによって、低コストで高い磁気特性を有する希土類焼結磁石10とすることができる。ここでいう「実質的に含まない」とは、通常不純物として含まれ得る程度の量を含んでもよいことを意味する。磁石素体40と保護層50との密着性を向上させる観点から、内部42に対する表面部44の重希土類元素の含有率の質量比率は、好ましくは3以上であり、より好ましくは4以上である。
 表面部44は、内部42よりも重希土類元素の含有率が高い。表面部44は、主な結晶相(主相)として、重希土類元素が固溶したR-T-B系化合物を含む粒子を含有し、当該粒子の間(粒界相)に、重希土類化合物を含有する構造であることが好ましい。表面部44は、軽希土類元素を実質的に含んでいなくてもよいが、軽希土類元素と重希土類元素の両方が固溶したR-T-B系化合物を含むことが好ましい。
 表面部44に含まれる軽希土類元素と重希土類元素の割合に制限はなく、例えば、Rに対するRのモル比(R/R)が好ましくは0.1~2であり、より好ましくは0.2~1である。このような範囲にすることによって、コストの高い重希土類元素の使用量を少なくしつつ、磁気特性と耐食性を一層向上することができる。磁石素体40全体において、希土類元素全体に対するRの割合は、磁気特性を向上させる観点から、好ましくは1~40質量%であり、より好ましくは1.5~30質量%である。
 磁石素体40の組成は、図2に示すような磁石素体40の断面をEPMA(X線マイクロアナライザー法)、XPS(X線光電子分光法)、AES(オージェ電子分光法)又はEDS(エネルギー分散型蛍光X線分光法)等の公知の分析法で確認することができる。表面部44及び内部42の組成は、それぞれ均一である必要はない。例えば、表面部44は、磁石素体40の表面に近接するにつれて、主相や粒界相に固溶して存在する重希土類元素の含有率が高くなっていてもよい。このような構造にすれば、磁石素体40と保護層50との密着性を一層向上することができる。
 図3は、希土類焼結磁石10の断面の表面近傍を拡大して示す走査型電子顕微鏡写真(倍率:10000倍)である。保護層50は、磁石素体40の表面上に設けられる層であり、磁石素体40側から第1の層52と、第1の層52の表面全体を覆う第2の層54と、を有する。第1の層52は、構成元素として希土類元素と酸素とを有する希土類酸化物を主成分として有する。希土類酸化物としては、磁石素体40に含まれるR-T-B系化合物を酸化して得られるものを例示することができる。具体的な希土類酸化物としては、Rなどの他に、さらにTやBを含む複合酸化物が挙げられる。第1の層52における酸素の含有率は、好ましくは10~30質量%であり、より好ましくは15~25質量%である。第1の層52は、希土類酸化物の他に、少量のR-T-B系化合物や、R-T-B系化合物とは異なる希土類化合物を含有してもよい。
 第1の層52では、Rの含有率よりもRの含有率の方が高い。第1の層52におけるRに対するRの質量比率は、1以上であり、好ましくは1.5以上であり、より好ましくは1.8以上である。このような第1の層52は、Rに対するRの質量比率が1未満の層に比べて、高い耐食性を有する。また、表面部44の方が内部42よりもRの含有率が高くなっている磁石素体40との密着性にも優れる。すなわち、R自体がRよりも耐食性に優れていることと、密着性の向上との相乗効果によって、希土類焼結磁石10の耐食性を向上することができる。
 第1の層52におけるRの含有比率は、好ましくは5~10質量%であり、より好ましくは5~9質量%であり、さらに好ましくは5~8質量%である。このような範囲でRを含有することによって、磁石素体40との密着性と第2の層54との密着性を高水準で両立することができる。第1の層52は、Rを含有してもよい。ただし、優れた耐食性及び第1の層52と磁石素体40との高い密着性を両立する観点から、Rの含有率は好ましくは5質量%未満であり、より好ましくは4質量%未満である。
 第1の層52の厚みは、好ましくは0.5~20μmであり、より好ましくは1~10μmである。第1の層52の厚みが大き過ぎると、希土類焼結磁石10の十分に優れた磁気特性が損なわれる傾向にある。一方、第1の層52の厚みが小さ過ぎると、衝撃が加わった場合に、耐食性が損なわれやすくなる傾向にある。
 第2の層54は、構成元素として鉄及び/又はホウ素を有する酸化物を含む。この酸化物は、第1の層52に含まれる希土類酸化物とは異なるものである。第2の層54は、第1の層52よりも希土類酸化物の含有率が低い層である。第2の層54は、希土類焼結磁石10の耐食性を十分に高くする観点から、実質的に希土類酸化物を含有しないことが好ましい。ここでいう「実質的に含まない」とは、通常不純物として含まれ得る程度の量を含んでもよいことを意味する。
 第2の層54に含まれる鉄及び/又はホウ素を有する酸化物としては、酸化鉄、酸化ホウ素などが挙げられる。第2の層54は、酸化鉄を主成分として含有することが好ましい。第2の層54における酸素元素の含有率は、好ましくは20~40質量%であり、鉄元素の含有率は、好ましくは60~80質量%である。なお、第2の層は、窒素などの他の非金属元素を含んでいてもよい。
 第2の層54の厚みは、好ましくは0.05~1μmであり、より好ましくは0.08~0.5μmである。第2の層54の厚みが大き過ぎると、希土類焼結磁石10の十分に優れた磁気特性が損なわれる傾向にある。一方、第2の層54の厚みが小さ過ぎると、衝撃が加わった場合に、耐食性が損なわれやすくなる傾向にある。
 第1の層52と第2の層54の厚みの合計は、好ましくは0.1~20μmであり、より好ましくは1~10μmである。なお、希土類焼結磁石10は、第1の層52と第2の層54との間にさらに別の層を有していてもよい。
 第1の層52及び第2の層54の各元素の含有率は、EPMA(X線マイクロアナライザー法)、XPS(X線光電子分光法)、AES(オージェ電子分光法)又はEDS(エネルギー分散型蛍光X線分光法)等の公知の分析法で確認することができる。
 次に、本発明の希土類焼結磁石の製造方法の好適な実施形態を、希土類焼結磁石10を例にして説明する。本実施形態の製造方法は、
(1)軽希土類化合物を含有する磁石素体を作製する準備工程、
(2)磁石素体の表面に重希土類化合物を付着させて加熱し、重希土類化合物に含まれる重希土類元素を磁石素体の表面部に拡散させるとともに、磁石素体の表面に重希土類化合物を含有する被覆層を形成する拡散工程、
(3)被覆層の表面部分の少なくとも一部を除去する表面処理工程、
(4)被覆層を、酸化性ガスを含有する酸化性雰囲気中で酸化して、磁石素体上に、重希土類酸化物を含有し、軽希土類元素に対する重希土類元素の質量比率が1以上である第1の層と、構成元素として鉄及び/又はホウ素を有する酸化物を含有し、第1の層よりも希土類酸化物の含有率が低い第2の層と、からなる保護層を形成する酸化処理工程と、を有する。以下、各工程の詳細を説明する。
 準備工程では、軽希土類化合物を含有する磁石素体を作製する。磁石素体は、粉末冶金法によって製造することができる。具体的には、まず、鋳造法やストリップキャスト法等の公知の合金製造プロセスにより所望の組成を有する合金を作製する。次に、この合金をジョークラッシャー、ブラウンミル、スタンプミル等の粗粉砕機を用いて10~100μmの粒径となるように粉砕した後、更にジェットミル、アトライター等の微粉砕機により0.5~5μmの粒径にする。こうして得られた粉末を、好ましくは600kA/m以上の磁場強度を有する磁場の中で、0.5~5トン/cm (約49~490MPa)の圧力で成形して、成形体を作製する。
 作製した成形体を、好ましくは不活性ガス雰囲気又は真空中、1000~1200℃で0.5~10時間加熱して焼結し、その後急冷する。さらに、この焼結体に、不活性ガス雰囲気又は真空中、500~900℃で1~5時間の熱処理(時効処理)を施し、必要に応じて焼結体を所望の形状(実用形状)に加工して、磁石素体を得ることができる。このようにして得られた磁石素体には、さらに硝酸等による酸洗浄を施してもよい。
 拡散工程では、重希土類元素を上述の通り作製した磁石素体の表面部に拡散させるとともに、磁石素体の表面に重希土類化合物を含有する被覆層を形成する。重希土類元素源としては、重希土類元素の水素化物やフッ化物等を用いることができる。重希土類元素を円滑に磁石素体中に拡散させる観点から、重希土類化合物は、好ましくは重希土類元素の水素化物を含む。重希土類化合物は、公知の方法で調製することができる。
 磁石素体に重希土類化合物を付着させる方法は、特に限定されるものではなく、例えば、粉末状の重希土類化合物を分散させたスラリー中に磁石素体を浸漬する方法、又は粉末状の重希土類化合物を含むペーストを磁石素体の表面に塗布する方法が挙げられる。これらの方法のうち、磁石素体に重希土類化合物をできるだけ均一に付着させる観点から、粉末状の重希土類化合物を分散させたスラリー中に磁石素体を浸漬する方法が好ましい。
 スラリー中の重希土類化合物の含有量は、磁石素体40に付着させる重希土類化合物の量を好適な範囲とする観点から、好ましくは30~50質量%であり、より好ましくは35~45質量%である。スラリー中に分散させる重希土類化合物の粉末の平均粒径は、好ましくは0.1~50μmであり、より好ましくは0.1~10μmである。平均粒径が大き過ぎると、磁石素体上に形成される被覆層の厚みがばらつき易くなる傾向にある。スラリーに用いる溶媒としては、アルコール、アセトンなどの有機溶媒を用いることができる。なお、本明細書における粉末の平均粒径は、市販のレーザー回折式の粒度分布計を用いて測定される体積平均粒子径である。
 磁石素体に付着させる重希土類化合物の量は、磁石素体を基準として、重希土類元素換算で好ましくは0.1~5質量%であり、より好ましくは0.2~3質量%であり、さらに好ましくは、0.3~2質量%である。磁石素体に付着させる重希土類元素の量が多過ぎると、被覆層の厚みのばらつきが大きくなる傾向にある。一方、磁石素体に付着させる重希土類元素の量が少な過ぎると、十分な厚みを有する被覆層を形成することが困難になる傾向にある。
 磁石素体に重希土類化合物を付着させた後、アルゴンガスや窒素ガスなどの不活性ガス雰囲気中で重希土類化合物が付着した磁石素体を加熱して、重希土類化合物に含まれる重希土類元素を磁石素体の表面部44に拡散させるとともに、磁石素体を覆う被覆層を形成する。磁石素体の加熱温度は、好ましくは600~1000℃であり、より好ましくは800~900℃である。磁石素体の加熱時間は、好ましくは0.5~10時間であり、より好ましくは1~5時間である。磁石素体の加熱温度が高過ぎると、磁石素体が劣化して高い磁気特性が得られ難くなる傾向にある。一方、磁石素体の加熱温度が低すぎると、重希土類元素が十分に磁石素体中に拡散しない傾向にある。その結果、磁石表面付近において、軽希土類元素よりも水素との親和性が低い重希土類元素の含有率が低下してしまう。後の製膜工程では磁石表面の清浄化のため酸洗浄を実施するが、その際に発生する水素が磁石素体と反応し、マイクロクラックが発生して磁石素体と皮膜の密着性が低下する。したがって、熱処理温度が低すぎて重希土類元素を十分に拡散しなかった場合、マイクロクラックの発生量が増大し、磁石素体との良好な密着性が得られ難くなる傾向にある。
 以上の工程によって、内部42と内部42の周囲に設けられ内部42よりも、重希土類元素の含有率が高い表面部44とを有する磁石素体40と磁石素体40を覆う被覆層とが形成される。被覆層は、例えば0.1~20μmの厚みを有しており、重希土類化合物を含有する。また、磁石素体40から拡散してきた軽希土類元素によって生成した軽希土類化合物を含有してもよい。なお、拡散処理後、磁石素体40に、不活性ガス雰囲気又は真空中、500~900℃で1~5時間加熱する時効処理を施してもよい。
 表面処理工程では、磁石素体40上に形成された被覆層の表面部分の少なくとも一部を除去する。これによって、被覆層の表面が平滑になり、後の工程で2層構造からなる保護層を形成することができる。被覆層の表面部分の除去方法としては、バレル研磨、ショットブラスト、酸洗浄など公知の方法が挙げられる。酸洗浄の場合、硝酸濃度1~5質量%程度の硝酸水溶液を用いることが好ましい。被覆層の表面部分の除去後における、被覆層の算術平均粗さRaは、好ましくは2μm以下であり、より好ましくは1.5μm以下である。また、被覆層の最大高さRyは、好ましくは15μm以下であり、より好ましくは10μm以下である。Ra又はRyが大きくなり過ぎると、第2の層の形成が困難になる傾向にある。
 酸化処理工程では、被覆層を有する磁石素体40を、酸化性ガスを含有する酸化性雰囲気中で加熱して被覆層を酸化させる。これによって、被覆層が、磁石素体40側から第1の層52と第2の層54とが順次積層した保護層50になる。保護層50における第1の層52及び第2の層54の厚みや組成は、酸化性ガスの分圧、処理温度及び処理時間のうちの少なくとも1つを変えることによって調整することができる。
 酸化処理工程における酸化性雰囲気とは、酸化性ガスを含有する雰囲気であれば特に限定されず、例えば、大気、酸素雰囲気、水蒸気雰囲気等の酸化が促進される雰囲気である。酸化性ガスは、特に限定されず、例えば、酸素及び水蒸気等を用いることができる。例えば、酸素雰囲気とは、酸素濃度が0.1%以上の雰囲気であり、その雰囲気には、酸素と共に窒素などの不活性ガスが共存している。つまり、酸素雰囲気は酸素と不活性ガスとからなる雰囲気であってもよい。また、例えば、水蒸気雰囲気とは水蒸気分圧が1kPa以上の雰囲気であり、その雰囲気には、水蒸気と共に窒素などの不活性ガスが共存している。水蒸気雰囲気の態様としては水蒸気と不活性ガスとからなる雰囲気がある。酸化性雰囲気を水蒸気雰囲気とすることで、より簡易に保護層50を形成することができる。酸化性雰囲気は、酸素、水蒸気及び不活性ガスを含む雰囲気であってもよい。
 酸化処理工程における加熱温度は、好ましくは200~550℃であり、より好ましくは250~500℃である。加熱温度が上記上限値を超えると、磁気特性が劣化する傾向にある。一方、加熱温度が上記下限値未満であると、第2の層54を形成することが困難となる傾向がある。また、加熱時間は、好ましくは1分~10時間である。
 以上の工程によって、磁石素体40と、磁石素体40を覆う2層構造の保護層50と、を有する希土類焼結磁石10を得ることができる。
 以上、本発明の希土類焼結磁石10及びその製造方法について説明したが、本発明の希土類焼結磁石及びその製造方法は、上述した実施形態に限定されるものではない。また、希土類焼結磁石10は、上述の製造方法によって得られるものに限定されない。例えば、磁石素体となる成形体に重希土類化合物を付着させ、加熱することによって、磁石素体と、磁石素体上に設けられる被覆層とを同じタイミングで形成してもよい。
 次に、本発明のモータの好適な実施形態について以下に説明する。図4は、本実施形態のモータの内部構造の一例を示す説明図である。本実施形態のモータ100は、永久磁石同期モータ(IPMモータ)であり、円筒状のロータ20と該ロータ20の外側に配置されるステータ30とを備えている。ロータ20は、円筒状のロータコア22と、円筒状のロータコア22の外周面に沿って所定の間隔で希土類焼結磁石10を収容する複数の磁石収容部24と、磁石収容部24に収容された複数の希土類焼結磁石10とを有する。
 ロータ20の円周方向に沿って隣り合う希土類焼結磁石10は、N極とS極の位置が互いに逆になるように磁石収容部24に収容されている。これによって、円周方向に沿って隣り合う希土類焼結磁石10は、ロータ20の径方向に沿って互いに逆の方向の磁力線を発生する。
 ステータ30は、ロータ20の外周面に沿って、所定の間隔で設けられた複数のコイル部32を有している。このコイル部32と希土類焼結磁石10とは互いに対向するように配置されている。ステータ30は、電磁気的作用によってロータ20にトルクを与え、ロータ20は円周方向に回転する。
 IPMモータ100は、ロータ20に、上記実施形態に係る希土類焼結磁石10を備える。希土類焼結磁石10は、優れた磁気特性を有するとともに、容易に剥離しないめっき膜を有する。このため、IPMモータ100は信頼性に優れる。IPMモータ100は、従来よりも長い期間に亘って高出力を維持することができる。IPMモータ100は、希土類焼結磁石10以外の点について、通常のモータ部品を用いて通常の方法によって製造することができる。
 本発明のモータは、IPMモータに限定されるものではなく、SPMでもよく、また永久磁石同期モータだけでなく、永久磁石直流モータ、リニア同期モータ、ボイスコイルモータ、振動モータであってもよい。
 図5は、本発明の好適な実施形態である自動車の発電機構、蓄電機構及び駆動機構を示す概念図である。本実施形態の自動車200は、上記実施形態のモータ100、車輪68、蓄電池64、発電機62及びエンジン60を備える。
 エンジン60で発生した機械的エネルギーは、発電機62によって電気エネルギーに変換される。この電気エネルギーは蓄電池64に蓄電される。蓄電された電気エネルギーは、モータ100によって機械的エネルギーに変換される。モータ100からの機械的エネルギーによって、車輪68が回転し、自動車200が駆動される。なお、本発明の自動車は、図5に示すものに限定されない。
 本発明の内容を、実施例及び比較例を用いて以下に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
<準備工程(磁石素体の作製)>
 主として磁石素体の結晶粒(主相)を形成する主相系合金と、主として磁石素体の粒界(粒界相)を形成する粒界系合金の2種類の原料合金を準備した。これらの原料合金をそれぞれ水素粉砕により粗粉砕した後、高圧Nガスによるジェットミル粉砕を行い、平均粒径が4μmである微粉末A,Bをそれぞれ調製した。
 調製した主相系合金の微粉末Aと、粒界系合金の微粉末Bとを、微粉末A:微粉末B=95:5の質量割合で混合して、磁石素体の原料粉末を調製した。次いで、この原料粉末を用いて、成形圧1.2トン/cm(約117.7MPa)、配向磁界20kOeの条件で磁場中成形を行い、直方体形状の成形体(縦×横×長さ=50mm×33mm×33mm)を得た。得られた成形体を、1060℃、4時間の条件で焼成して、下記の組成を有する磁石素体(焼結体)を得た。
  Nd:24.50質量%
  Dy:0.50質量%
  Pr:5.30質量%
  Co:0.45質量%
  Al:0.18質量%
  Cu:0.06質量%
  B:1.00質量%
  Fe:残部(この中には、0.1質量%未満の不可避的不純物が含まれる。)
 得られた磁石素体を所定の寸法(20mm×10mm×2mm)になるように切断した後、硝酸エタノール溶液(硝酸濃度:3質量%)に3分間浸漬した。その後、磁石素体を硝酸エタノール溶液から取り出して、エタノール中で超音波洗浄した。
<重希土類化合物の調製>
 次に、以下の手順でDyH粉末を調製した。金属Dy塊を、大気圧下、水素雰囲気中、360℃で1時間加熱して、水素を吸蔵させた。水素を吸蔵させた粉末に、大気圧下、アルゴンガス雰囲気中、600℃で1時間の熱処理を施して、Dy水素化物を得た。得られたDy水素化物は、X線回折法によってDyHであることを確認した。
 得られたDyHを、スタンプミルを用いて粒径100μm以下まで粉砕した後、エタノールを配合し、ボールミルを用いて湿式粉砕を行って、平均粒径3μmのDyH粉末を含有するスラリーを得た。その後、このスラリーをエタノールで希釈して、固形分40質量%のスラリーを得た。
<拡散工程>
 固形分40質量%のスラリーに、磁石素体を浸漬した。その後、焼結体をスラリーから取り出して乾燥し、磁石素体の表面に重希土類化合物であるDyH粉末を付着させた。DyH粉末の付着量は、磁石素体を基準として、Dy換算で0.5質量%とした。
 続いて、アルゴンガス雰囲気中、900℃で3時間加熱する熱処理(重希土類元素の拡散処理)を行って、磁石素体上に被覆層を形成した。この際、磁石素体の表面部に重希土類元素が拡散した。これによって、磁石素体の表面部の方が、磁石素体の内部よりも、軽希土類元素に対する重希土類元素の割合が高くなった。その後、大気圧下、アルゴンガス雰囲気中、540℃で1時間加熱する時効処理を行った。
<表面処理工程>
 次に、磁石素体上に形成された被覆層の表面にバレル研磨を施して、被覆層の表面部分を一部除去して表面を平滑化した。バレル研磨は、直径1/4インチのステンレス製ボールミルポットに被覆層を有する磁石素体、直径10mmのZrOメディア及び純水を封入し、ステンレス製ボールミルポットを108rpmの回転数で2時間転動させることによって行った。その後、被覆層を有する磁石素体を、硝酸濃度が3質量%である硝酸水溶液に2分間浸漬した。そして、磁石素体の超音波水洗を行った。
<酸化処理工程>
 次に、被覆層を有する磁石素体を、水蒸気を含有する窒素ガス雰囲気中(水蒸気分圧:47.5kPa)、450℃で10分間加熱した(酸化処理)。この酸化処理によって、磁石素体の被覆層が第1の層と第2の層からなる2層構造になった。以上の工程によって、磁石素体上に、磁石素体側から第1の層及び第2の層を有する保護層を備える実施例1の希土類焼結磁石を得た。
<保護層及び磁石素体の組成分析>
 得られた希土類焼結磁石を、集束イオンビーム加工装置を用いて切断し、切断面における保護層を電界放射型走査電子顕微鏡(FE-SEM)で観察した。その結果、保護層は、磁石素体側から互いに組成の異なる第1の層と第2の層とを有しており、第1及び第2の層の厚みは、それぞれ3μm及び100nmであった。
 EDS(エネルギー分散型蛍光X線分光分析装置)を用いて、第1及び第2の層に含まれる元素を定量した。その結果は表1に示すとおりであった。第1の層にはDy,Nd,Fe,Oが含まれており、Dyの含有率の方がNdの含有率よりも高かった。第2の層にはFe及びOが含まれていたものの、Dy及びNdは検出されなかった。
 電子線マイクロアナライザ(EPMA)を用いて、磁石素体の表面部(磁石素体表面から深さ10μmの位置)の重希土類元素の含有率を測定した。その結果は表1に示す通りであった。なお、磁石素体の内部(磁石素体の表面から深さ100μm以上の領域)においては、重希土類元素の含有率は当初の磁石素体の含有率(0.5質量%)から変化していなかった。
<希土類焼結磁石の耐食性評価>
 希土類焼結磁石の磁束を測定した(磁束=Aとする)。その後、以下の手順でプレッシャー・クッカー・テスト(PCT)を行った。具体的には、120℃、0.2MPa、100%RHの環境下に、希土類焼結磁石を300時間保持した。保持後、希土類焼結磁石の磁束を再び測定した(磁束=Bとする)。磁束の測定値から、減磁率=(A-B)/A×100の値を算出した。その結果を表1に示す。
 作製した希土類焼結磁石を着磁した後、磁束を測定した。この希土類焼結磁石を0.2質量%の水を添加した市販のハイブリッド自動車用オートマティック・トランスミッション・フルード(ATF)に浸漬し、150℃で1000時間保持した(ATF浸漬試験)。その後、希土類焼結磁石をATFから取り出し、再度着磁して磁束を測定した。ATF浸漬試験前後の磁束の値から、PCTと同様にして減磁率を求めた。その結果を表1に示す。
(実施例2)
 拡散工程において、磁石素体の表面に付着させる重希土類化合物の粉末として、DyH粉末に代えてTbH粉末を用いたこと以外は、実施例1と同様にして、実施例2の希土類焼結磁石を作製した。そして、実施例1と同様にして、保護層の組成分析及び希土類焼結磁石の耐食性評価を行った。組成分析の結果及び評価結果を纏めて表1に示す。なお、TbHは、次の手順で調製した。金属Tb塊を、大気圧下、水素雰囲気中、360℃で1時間加熱して、水素を吸蔵させた。そして、大気圧下、アルゴンガス雰囲気中、600℃で1時間の熱処理を施して、TbHを得た。また、TbH粉末の磁石素体への付着量は、磁石素体を基準として、Tb換算で0.5質量%とした。
(実施例3)
 拡散工程において、磁石素体の表面に付着させる重希土類化合物の粉末として、DyH粉末に代えてHoH粉末を用いたこと以外は、実施例1と同様にして、実施例3の希土類焼結磁石を作製した。そして、実施例1と同様にして、保護層の組成分析及び希土類焼結磁石の耐食性評価を行った。組成分析の結果及び評価結果を纏めて表1に示す。なお、HoHは、次の手順で調製した。金属Ho塊を、大気圧下、水素雰囲気中、360℃で1時間加熱して、水素を吸蔵させた。そして、大気圧下、アルゴンガス雰囲気中、600℃で1時間の熱処理を施して、HoHを得た。また、HoH粉末の磁石素体への付着量は、磁石素体を基準として、Ho換算で0.5質量%とした。
(実施例4)
 拡散工程において、磁石素体の表面に付着させる重希土類化合物の粉末として、DyH粉末に代えてErH粉末を用いたこと以外は、実施例1と同様にして、実施例4の希土類焼結磁石を作製した。そして、実施例1と同様にして、保護層の組成分析及び希土類焼結磁石の耐食性評価を行った。組成分析の結果及び評価結果を纏めて表1に示す。なお、ErHは、次の手順で調製した。金属Er塊を、大気圧下、水素雰囲気中、360℃で1時間加熱して、水素を吸蔵させた。そして、大気圧下、アルゴンガス雰囲気中、600℃で1時間の熱処理を施して、ErHを得た。また、ErH粉末の磁石素体への付着量は、磁石素体を基準として、Er換算で0.5質量%とした。
(実施例5)
 拡散工程において、磁石素体の表面に付着させる重希土類化合物の粉末として、DyH粉末に代えてTmH粉末を用いたこと以外は、実施例1と同様にして、実施例5の希土類焼結磁石を作製した。そして、実施例1と同様にして、保護層の組成分析及び希土類焼結磁石の耐食性評価を行った。組成分析の結果及び評価結果を纏めて表1に示す。なお、TmHは、次の手順で調製した。金属Tm塊を、大気圧下、水素雰囲気中、360℃で1時間加熱して、水素を吸蔵させた。そして、大気圧下、アルゴンガス雰囲気中、600℃で1時間の熱処理を施して、TmHを得た。また、TmH粉末の磁石素体への付着量は、磁石素体を基準として、Tm換算で0.5質量%とした。
(実施例6)
 酸化処理工程において、磁石素体の酸化処理を、酸素と窒素の混合ガス雰囲気中(酸素濃度:21体積%)、290℃で10分間加熱して行い、磁石素体の表面上に保護層を形成したこと以外は、実施例1と同様にして希土類焼結磁石を作製した。そして、実施例1と同様にして、保護層の組成分析及び希土類焼結磁石の耐食性評価を行った。組成分析の結果及び評価結果を纏めて表1に示す。
(実施例7~10)
 酸化処理工程において、磁石素体の酸化処理を、酸素と窒素の混合ガス雰囲気中(酸素濃度:21体積%)、290℃で10分間加熱して行い、磁石素体の表面上に保護層を形成したこと以外は、実施例2~5と同様にして、実施例7~10の希土類焼結磁石をそれぞれ作製した。そして、実施例2~5と同様にして、保護層の組成分析及び希土類焼結磁石の耐食性評価を行った。組成分析の結果及び評価結果を纏めて表1に示す。
(実施例11)
 表面処理工程において、バレル研磨を行わなかったこと、及び磁石素体の硝酸濃度2質量%の硝酸水溶液への浸漬時間を2分間から4分間に延長したこと以外は、実施例1と同様にして、実施例11の希土類焼結磁石を作製した。つまり、表面処理工程を酸洗浄のみによって行った。そして、実施例1と同様にして、保護層の組成分析及び希土類焼結磁石の耐食性評価を行った。組成分析の結果及び評価結果を纏めて表1に示す。
(実施例12)
 表面処理工程において、バレル研磨に代えてショットブラストを行ったこと以外は、実施例1と同様にして実施例12の希土類焼結磁石を作製した。ショットブラストは、不二製作所製のショットブラスト装置を用いて、設定圧力を0.3MPaとし、磁石素体上の被覆層の1表面につき10秒間行った。そして、実施例1と同様にして、保護層の組成分析及び希土類焼結磁石の耐食性評価を行った。組成分析の結果及び評価結果を纏めて表1に示す。
(実施例13)
 磁石素体の表面に付着させる重希土類化合物の粉末として、DyH粉末に代えてDyF粉末(日本イットリウム株式会社製、平均粒径:300nm)を用いたこと以外は、実施例1と同様にして、実施例13の希土類焼結磁石を作製した。そして、実施例1と同様にして、保護層の組成分析及び希土類焼結磁石の耐食性評価を行った。組成分析の結果及び評価結果を纏めて表1に示す。なお、DyF粉末の磁石素体への付着量は、磁石素体を基準として、Dy換算で0.5質量%とした。
(比較例1)
 拡散工程を行わなかったこと以外は、実施例1と同様にして、比較例1の希土類焼結磁石を作製した。つまり、重希土類化合物を用いずに、準備工程で得られた磁石素体(焼結体)に直接表面処理を施した。そして、実施例1と同様にして、保護層の組成分析及び希土類焼結磁石の耐食性評価を行った。組成分析の結果及び評価結果を纏めて表1に示す。
(比較例2)
 磁石素体のバレル研磨を行わなかったこと以外は、実施例1と同様にして、比較例2の希土類焼結磁石を作製した。そして、実施例2と同様にして、保護層の組成分析及び希土類焼結磁石の耐食性評価を行った。組成分析の結果及び評価結果を纏めて表1に示す。比較例2の希土類焼結磁石は、2層構造の保護層を有しておらず、第1の層上に、島状の生成物が形成されていた。これは、バレル研磨等の処理を行わなかったために、被覆層の表面上に重希土類化合物の粉末が残留していたこと、及び被覆層の表面に凹凸があったことが原因であると考えられる。
Figure JPOXMLDOC01-appb-T000001
 実施例1~13は、PCT及びATF試験による減磁率が小さく、優れた耐食性を有することが確認された。
<表面粗さ及び密着性の評価>
 実施例1,11,12及び比較例1,2の希土類焼結磁石を製造する際に、酸化処理前の被覆層表面の表面粗さ測定を行った。具体的には、JIS B0601-1994(表面粗さ-定義及び表示)に準拠して、ミツトヨ社製の接触式表面粗さ計で、算術平均粗さRa及び最大高さRyを測定した。測定結果を表2に示す。
 次に、実施例1,11,12及び比較例1,2の希土類焼結磁石の接着強度の評価を行った。具体的には、まず、清浄な平板状の鉄板に、エポキシ系接着剤(3M製、商品名:SW2214)を用いて、希土類焼結磁石を接着した。その後、120℃で40分間加熱して接着剤を硬化させて積層体を得た。ハンドプレスを用いて、せん断力をかけて、積層体が破壊した時の荷重から強度(接着強度)を算出した(圧縮せん断試験)。強度の算出結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果によれば、実施例1,11,12の希土類焼結磁石の製造時における表面処理後の被覆層の表面は、表面粗さが小さくなっており、平滑化されていることが確認された。一方、比較例2では、被覆層の表面粗さが大きくなっていた。このために、酸化処理を行っても、2層構造を有する保護層が形成できなかったと考えられる。
 密着性の評価では、いずれも磁石素体と保護層との間の剥離によって、積層体が破壊した。実施例1と比較例1との対比から、磁石素体の表面部において重希土類元素の含有率を高くすることによって、密着力が高くなることが確認された。
 本発明によれば、高い磁気特性を有するとともに、優れた耐食性を有する希土類焼結磁石を提供することができる。また、高い磁気特性を有するとともに、優れた耐食性を有する希土類焼結磁石の製造方法を提供することができる。さらに、そのような希土類焼結磁石を備えることによって、信頼性に優れるモータ及び自動車を提供することができる。
 10…希土類焼結磁石、20…ロータ、22…ロータコア、24…磁石収容部、30…ステータ、32…コイル部、40…磁石素体、42…内部、44…表面部、50…保護層、52…第1の層、54…第2の層、60…エンジン、62…発電機、64…蓄電池、68…車輪、100…モータ、200…自動車。

Claims (8)

  1.  希土類化合物を含む磁石素体と、前記磁石素体の上に、前記磁石素体側から第1の層及び第2の層を有する保護層と、を備える希土類焼結磁石であって、
     前記磁石素体の表面部の方が、前記表面部に囲まれた前記磁石素体の内部よりも重希土類元素の含有率が高く、
     前記第1の層は、希土類酸化物を含有し、軽希土類元素に対する重希土類元素の質量比率が1以上であり、
     前記第2の層は、前記希土類酸化物とは異なる、鉄及び/又はホウ素を有する酸化物を含有し、
     前記第2の層は、前記第1の層よりも前記希土類酸化物の含有率が低い、希土類焼結磁石。
  2.  前記第2の層は前記希土類酸化物を実質的に含有しない、請求項1に記載の希土類焼結磁石。
  3.  希土類化合物を含む磁石素体の表面に重希土類化合物を付着させて加熱し、前記重希土類化合物に含まれる重希土類元素を前記磁石素体の表面部に拡散させるとともに、前記磁石素体の上に前記重希土類化合物を含有する被覆層を形成する拡散工程と、
     前記被覆層の表面部分の少なくとも一部を除去する表面処理工程と、
     前記被覆層を、酸化性ガスを含有する酸化性雰囲気中で酸化して、前記磁石素体側から、希土類酸化物を含有し、軽希土類元素に対する重希土類元素の質量比率が1以上である第1の層と、鉄及び/又はホウ素を有する酸化物を含有し、前記第1の層よりも前記希土類酸化物の含有率が低い第2の層と、からなる保護層を形成する酸化処理工程と、を有する、希土類焼結磁石の製造方法。
  4.  前記拡散工程では、前記重希土類化合物を付着させた前記磁石素体を600~1000℃で加熱する、請求項3に記載の希土類焼結磁石の製造方法。
  5.  前記表面処理工程では、前記被覆層の表面部分の少なくとも一部を除去して、前記被覆層の算術平均粗さRaを2μm以下にする、請求項3又は4に記載の希土類焼結磁石の製造方法。
  6.  前記重希土類化合物が重希土類元素の水素化物である、請求項3~5のいずれか一項に記載の希土類焼結磁石の製造方法。
  7.  請求項1又は2に記載の希土類焼結磁石を備えるモータ。
  8.  請求項7に記載のモータを備える自動車。
PCT/JP2011/057684 2010-03-30 2011-03-28 希土類焼結磁石及びその製造方法、並びにモータ及び自動車 WO2011122577A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012508322A JP5408340B2 (ja) 2010-03-30 2011-03-28 希土類焼結磁石及びその製造方法、並びにモータ及び自動車
EP11762801.6A EP2555206B1 (en) 2010-03-30 2011-03-28 Rare earth sintered magnet, method for producing same, motor and automobile
US13/637,424 US8823478B2 (en) 2010-03-30 2011-03-28 Rare earth sintered magnet, method for producing same, motor and automobile
CN201180017480.7A CN102822912B (zh) 2010-03-30 2011-03-28 稀土类烧结磁铁以及其制造方法、马达以及汽车
US14/340,957 US20140335268A1 (en) 2010-03-30 2014-07-25 Rare earth sintered magnet, method for producing same, motor and automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-079249 2010-03-30
JP2010079249 2010-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/637,424 A-371-Of-International US8823478B2 (en) 2010-03-30 2011-03-28 Rare earth sintered magnet, method for producing same, motor and automobile
US14/340,957 Division US20140335268A1 (en) 2010-03-30 2014-07-25 Rare earth sintered magnet, method for producing same, motor and automobile

Publications (1)

Publication Number Publication Date
WO2011122577A1 true WO2011122577A1 (ja) 2011-10-06

Family

ID=44712272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057684 WO2011122577A1 (ja) 2010-03-30 2011-03-28 希土類焼結磁石及びその製造方法、並びにモータ及び自動車

Country Status (5)

Country Link
US (2) US8823478B2 (ja)
EP (1) EP2555206B1 (ja)
JP (1) JP5408340B2 (ja)
CN (1) CN102822912B (ja)
WO (1) WO2011122577A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101529435B1 (ko) * 2013-11-21 2015-06-16 얀타이 정하이 마그네틱 머티리얼 컴퍼니 리미티드 R-Fe-B류 소결 자성체 제조방법
JPWO2014148356A1 (ja) * 2013-03-18 2017-02-16 インターメタリックス株式会社 RFeB系焼結磁石製造方法及びRFeB系焼結磁石
JPWO2014148355A1 (ja) * 2013-03-18 2017-02-16 インターメタリックス株式会社 RFeB系焼結磁石製造方法及びRFeB系焼結磁石
JP2017174962A (ja) * 2016-03-23 2017-09-28 Tdk株式会社 希土類磁石及びモーター
WO2018138841A1 (ja) * 2017-01-26 2018-08-02 日産自動車株式会社 焼結磁石の製造方法
JP2020102551A (ja) * 2018-12-21 2020-07-02 株式会社ダイドー電子 RFeB系焼結磁石及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2458039B (en) * 2007-02-12 2012-07-25 Vacuumschmelze Gmbh & Co Kg Article for magnetic heat exchange and method of manufacturing the same
WO2014092957A2 (en) 2012-12-14 2014-06-19 Abb Research Ltd. Permanent magnet machine with hybrid cage and methods for operating same
DE102013225396A1 (de) * 2013-12-10 2015-06-11 Bayerische Motoren Werke Aktiengesellschaft Elektrische Maschine mit optimierter Permanentmagnetverteilung
KR101548684B1 (ko) * 2014-04-18 2015-09-11 고려대학교 산학협력단 희토류계 소결 자석의 제조방법
WO2015183379A1 (en) * 2014-05-29 2015-12-03 Abb Technology Ag Layered permanent magnet with conductive cage rotor construction
CN104480475A (zh) 2014-11-04 2015-04-01 烟台首钢磁性材料股份有限公司 钕铁硼磁体表面硬质铝膜层的制备方法
CN104651783B (zh) 2015-02-12 2017-09-01 烟台首钢磁性材料股份有限公司 一种永磁钕铁硼磁钢表面镀铝的方法
JP7110662B2 (ja) * 2018-03-28 2022-08-02 Tdk株式会社 R‐t‐b系焼結磁石
US11657934B2 (en) * 2018-03-29 2023-05-23 Tdk Corporation R-T-B based permanent magnet
CN114381206B (zh) * 2022-01-07 2023-04-14 甘肃金阳高科技材料有限公司 一种用玻璃抛光废渣再生制备稀土抛光粉的方法
CN114420439B (zh) * 2022-03-02 2022-12-27 浙江大学 高温氧化处理提高高丰度稀土永磁抗蚀性的方法
CN114823118B (zh) * 2022-06-27 2022-10-25 宁波科宁达工业有限公司 一种稀土永磁体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429095B2 (ja) 1982-10-13 1992-05-18
JP2005011973A (ja) * 2003-06-18 2005-01-13 Japan Science & Technology Agency 希土類−鉄−ホウ素系磁石及びその製造方法
WO2005096326A1 (ja) * 2004-03-31 2005-10-13 Tdk Corporation 希土類磁石及びその製造方法
JP2008135563A (ja) * 2006-11-28 2008-06-12 Tdk Corp 希土類磁石及びその製造方法
WO2008120784A1 (ja) * 2007-03-30 2008-10-09 Tdk Corporation 磁石の製造方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261579B1 (en) * 1986-09-16 1993-01-07 Tokin Corporation A method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
JP2581605B2 (ja) 1990-05-24 1997-02-12 株式会社日立製作所 中性子束モニタハウジングの熱処理装置
US5641363A (en) * 1993-12-27 1997-06-24 Tdk Corporation Sintered magnet and method for making
JP2000223306A (ja) * 1998-11-25 2000-08-11 Hitachi Metals Ltd 角形比を向上したr―t―b系希土類焼結磁石およびその製造方法
US6340857B2 (en) * 1998-12-25 2002-01-22 Matsushita Electric Industrial Co., Ltd. Motor having a rotor with interior split-permanent-magnet
WO2002079530A2 (en) * 2001-03-30 2002-10-10 Sumitomo Special Metals Co., Ltd. Rare earth alloy sintered compact and method of making the same
US7018485B2 (en) * 2001-06-29 2006-03-28 Neomax Co., Ltd. Apparatus for subjecting rare earth alloy to hydrogenation process and method for producing rare earth sintered magnet using the apparatus
US7622010B2 (en) * 2001-11-28 2009-11-24 Hitachi Metals, Ltd. Method and apparatus for producing granulated powder of rare earth alloy and method for producing rare earth alloy sintered compact
US7208056B2 (en) * 2004-02-10 2007-04-24 Tdk Corporation Rare earth sintered magnet, and method for improving mechanical strength and corrosion resistance thereof
WO2005093766A1 (ja) * 2004-03-26 2005-10-06 Tdk Corporation 希土類磁石、その製造方法、及び多層体の製造方法
JP4029095B2 (ja) 2004-03-31 2008-01-09 Tdk株式会社 希土類磁石及びその製造方法
TWI364765B (en) 2005-03-23 2012-05-21 Shinetsu Chemical Co Rare earth permanent magnet
JP4702546B2 (ja) 2005-03-23 2011-06-15 信越化学工業株式会社 希土類永久磁石
JP4702547B2 (ja) 2005-03-23 2011-06-15 信越化学工業株式会社 傾斜機能性希土類永久磁石
JP4702549B2 (ja) 2005-03-23 2011-06-15 信越化学工業株式会社 希土類永久磁石
MY141999A (en) 2005-03-23 2010-08-16 Shinetsu Chemical Co Functionally graded rare earth permanent magnet
MY142131A (en) 2005-03-23 2010-09-30 Shinetsu Chemical Co Functionally graded rare earth permanent magnet
JP4702548B2 (ja) 2005-03-23 2011-06-15 信越化学工業株式会社 傾斜機能性希土類永久磁石
TWI413136B (zh) 2005-03-23 2013-10-21 Shinetsu Chemical Co 稀土族永久磁體
JP2007207936A (ja) * 2006-01-31 2007-08-16 Tdk Corp 希土類磁石
JP4811143B2 (ja) 2006-06-08 2011-11-09 日立金属株式会社 R−Fe−B系希土類焼結磁石およびその製造方法
JP4840606B2 (ja) 2006-11-17 2011-12-21 信越化学工業株式会社 希土類永久磁石の製造方法
JP5098390B2 (ja) * 2007-03-27 2012-12-12 Tdk株式会社 希土類磁石
US8299661B2 (en) * 2007-05-11 2012-10-30 Sntech Inc. Rotor of brushless motor
CN101652821B (zh) * 2007-07-02 2013-06-12 日立金属株式会社 R-Fe-B系稀土类烧结磁铁及其制造方法
JP5256851B2 (ja) * 2008-05-29 2013-08-07 Tdk株式会社 磁石の製造方法
JP4961454B2 (ja) * 2009-05-12 2012-06-27 株式会社日立製作所 希土類磁石及びこれを用いたモータ
CN102483980B (zh) * 2010-03-04 2016-09-07 Tdk株式会社 稀土烧结磁体和电动机
WO2011122638A1 (ja) * 2010-03-30 2011-10-06 Tdk株式会社 焼結磁石、モーター、自動車、及び焼結磁石の製造方法
US8500921B2 (en) * 2010-03-31 2013-08-06 Nitto Denko Corporation Permanent magnet and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429095B2 (ja) 1982-10-13 1992-05-18
JP2005011973A (ja) * 2003-06-18 2005-01-13 Japan Science & Technology Agency 希土類−鉄−ホウ素系磁石及びその製造方法
WO2005096326A1 (ja) * 2004-03-31 2005-10-13 Tdk Corporation 希土類磁石及びその製造方法
JP2008135563A (ja) * 2006-11-28 2008-06-12 Tdk Corp 希土類磁石及びその製造方法
WO2008120784A1 (ja) * 2007-03-30 2008-10-09 Tdk Corporation 磁石の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014148356A1 (ja) * 2013-03-18 2017-02-16 インターメタリックス株式会社 RFeB系焼結磁石製造方法及びRFeB系焼結磁石
JPWO2014148355A1 (ja) * 2013-03-18 2017-02-16 インターメタリックス株式会社 RFeB系焼結磁石製造方法及びRFeB系焼結磁石
KR101529435B1 (ko) * 2013-11-21 2015-06-16 얀타이 정하이 마그네틱 머티리얼 컴퍼니 리미티드 R-Fe-B류 소결 자성체 제조방법
JP2017174962A (ja) * 2016-03-23 2017-09-28 Tdk株式会社 希土類磁石及びモーター
WO2018138841A1 (ja) * 2017-01-26 2018-08-02 日産自動車株式会社 焼結磁石の製造方法
JPWO2018138841A1 (ja) * 2017-01-26 2019-11-21 日産自動車株式会社 焼結磁石の製造方法
JP2020102551A (ja) * 2018-12-21 2020-07-02 株式会社ダイドー電子 RFeB系焼結磁石及びその製造方法
JP7198075B2 (ja) 2018-12-21 2022-12-28 株式会社ダイドー電子 RFeB系焼結磁石及びその製造方法

Also Published As

Publication number Publication date
JPWO2011122577A1 (ja) 2013-07-08
EP2555206A1 (en) 2013-02-06
US20140335268A1 (en) 2014-11-13
EP2555206A4 (en) 2015-09-23
US20130049910A1 (en) 2013-02-28
CN102822912A (zh) 2012-12-12
US8823478B2 (en) 2014-09-02
CN102822912B (zh) 2015-07-22
EP2555206B1 (en) 2019-11-20
JP5408340B2 (ja) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5408340B2 (ja) 希土類焼結磁石及びその製造方法、並びにモータ及び自動車
JP5392400B2 (ja) 希土類焼結磁石、その製造方法、モーター、及び自動車
JP4737431B2 (ja) 永久磁石回転機
JP4656325B2 (ja) 希土類永久磁石、その製造方法、並びに永久磁石回転機
TWI408705B (zh) A rare earth permanent magnet, a method for manufacturing the same, and a permanent magnet rotating machine
TWI497541B (zh) 釹系燒結磁石之製造方法
WO2011122638A1 (ja) 焼結磁石、モーター、自動車、及び焼結磁石の製造方法
JP5429002B2 (ja) 焼結磁石、モーター及び自動車
JP5552868B2 (ja) 焼結磁石、モーター及び自動車
JP2011211071A (ja) 焼結磁石、モーター、自動車、及び焼結磁石の製造方法
JP2006303197A (ja) R−t−b系焼結磁石の製造方法
JP2011211056A (ja) 希土類焼結磁石、モーター及び自動車
JP2019075493A (ja) 磁石接合体
JP4919109B2 (ja) 永久磁石回転機及び永久磁石回転機用永久磁石セグメントの製造方法
JP5885907B2 (ja) 希土類焼結磁石及びその製造方法、並びにモータ及び自動車
JP5348110B2 (ja) 希土類磁石、希土類磁石の製造方法及び回転機
CN107231044B (zh) 稀土类磁铁及电动机
JP2012212782A (ja) 希土類磁石及びその製造方法、並びに回転機
JP5471678B2 (ja) 希土類磁石及び回転機
JP4457726B2 (ja) 希土類磁石の製造方法及び希土類磁石
JP2011019401A (ja) 永久磁石回転機用永久磁石セグメントの製造方法
JP2006156853A (ja) 希土類磁石
JP5348109B2 (ja) 希土類磁石、希土類磁石の製造方法及び回転機
JP5012942B2 (ja) 希土類焼結磁石及びその製造方法、並びに回転機
JP5672798B2 (ja) 希土類磁石

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017480.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508322

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011762801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13637424

Country of ref document: US