CN104651783B - 一种永磁钕铁硼磁钢表面镀铝的方法 - Google Patents

一种永磁钕铁硼磁钢表面镀铝的方法 Download PDF

Info

Publication number
CN104651783B
CN104651783B CN201510078215.XA CN201510078215A CN104651783B CN 104651783 B CN104651783 B CN 104651783B CN 201510078215 A CN201510078215 A CN 201510078215A CN 104651783 B CN104651783 B CN 104651783B
Authority
CN
China
Prior art keywords
magnet steel
permanent magnet
arc
plating
ion plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510078215.XA
Other languages
English (en)
Other versions
CN104651783A (zh
Inventor
贾道宁
彭众杰
杨昆昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Dongxing magnetic material Co.,Ltd.
Original Assignee
Yantai Shougang Magnetic Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Shougang Magnetic Materials Inc filed Critical Yantai Shougang Magnetic Materials Inc
Priority to CN201510078215.XA priority Critical patent/CN104651783B/zh
Publication of CN104651783A publication Critical patent/CN104651783A/zh
Priority to JP2016011221A priority patent/JP2016149536A/ja
Priority to EP16154789.8A priority patent/EP3056585B1/en
Priority to US15/041,186 priority patent/US9783883B2/en
Application granted granted Critical
Publication of CN104651783B publication Critical patent/CN104651783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

本发明公开了一种永磁钕铁硼磁钢表面镀铝的方法,其特点是,采用多弧离子镀镀铝,铝的纯度为99%以上;采用0℃~5℃的水进行设备水冷,降低弧源处离子团簇,减少大液体、大颗粒的产生;多弧离子镀膜机弧源头内控制电弧旋转磁钢采用N50牌号,将该磁钢和铝靶的距离调整在2~10cm,加速电弧的运动速度;将电流控制在50~70A;电镀完成后降温20℃~100℃打开炉门;并对镀铝完成的永磁钕铁硼磁钢进行钝化处理,得到表面细致,防腐良好的表面镀铝。

Description

一种永磁钕铁硼磁钢表面镀铝的方法
技术领域:
本发明涉及永磁钕铁硼磁钢表面防腐技术领域,具体地讲是一种永磁钕铁硼磁钢表面镀铝的方法。
背景技术:
永磁钕铁硼磁钢因为含有大量的稀土,在空气中或者潮湿环境中很容易产生氧化,从而导致性能降低,不能正常使用;为了防止氧化,磁钢厂家在钕铁硼磁钢表面电镀一层防腐涂层。因为铝的防腐特性在金属中非常好,所以镀铝是一直在开发的镀层,现在一种采用真空蒸镀的方式进行电镀,优点是表面光滑,缺点是镀层结合力比较差;另一种采用多弧离子镀和磁控溅射结合,优点是多弧离子镀产生大颗粒比较多,磁控溅射可以修补表面的颗粒,使表面变得细致,但是电镀效率降低,比单纯使用多弧离子镀效率降低。
通过对多弧离子镀的研究,发现因为铝的熔点比较低,并且电弧的温度过高,导致大液滴、大颗粒的出现,从而导致防腐效果不良,而磁控溅射电镀表面光滑细致,但是效率非常低,通常需要电镀5h以上才能达到目标要求。
发明内容:
本发明的目的是克服上述已有技术的不足,而提供一种永磁钕铁硼磁钢表面镀铝的方法;主要解决现有的钕铁硼磁钢表面镀铝镀层结合力比较差及电镀效率低等问题。
本发明的技术方案:一种永磁钕铁硼磁钢表面镀铝的方法,其特殊之处在于,包括以下的工艺步骤:
a永磁钕铁硼磁钢进行表面脱脂,先采用纯水清洗,然后用质量分数为3%~5%的硝酸清洗,再使用纯水清洗,超声波去灰,然后放入质量分数99%以上的酒精脱水,并吹干;
b将清洗后的永磁钕铁硼磁钢放入烘箱进行烘干,温度50℃-60℃,时间30分钟;
c将永磁钕铁硼磁钢挂在夹具上面,放入多弧离子镀膜机,开启多弧离子镀膜机,通入0℃~5℃的冷水,将永磁钕铁硼磁钢在多弧离子镀膜机里面进行公转和自转;
d将多弧离子镀膜机抽真空至1×10-2pa~3×10-2pa,然后通入氩气,关闭光栅阀,控制氩气流量,将炉内真空调节在1×10-1pa~5×10-1pa,使用800V~1000V偏压电源清洗1~10min;
e开启光栅阀,关闭偏压电源和氩气,重新将真空抽至1×10-3pa~8×10-3pa,再次通入氩气,关闭光栅阀,将多弧离子镀膜机内真空维持在3×10-1pa~5×10-1pa,开启弧源头电源,并且将电流维持在50A~70A,偏压电源电压维持在100-200V,电镀0.5-5小时;
f电镀完成,多弧离子镀膜机的镀炉腔内的温度降至20℃~100℃打开炉门,取出永磁钕铁硼磁钢;
g将永磁钕铁硼磁钢放入铝钝化液中钝化1~20分钟,使用纯净水清洗,再次放入电镀封闭液1~20秒,取出烘干。
进一步的,a步骤所述的永磁钕铁硼磁钢为常规烧结的磁钢或经过Dy或Tb扩散处理后的磁钢。
进一步的,c步骤所述的通入0℃~5℃的冷水,冷水直接通入弧源头和整个多弧离子镀膜机炉壁,多弧离子镀膜机弧源头内控制电弧旋转磁钢采用N50牌号,将该磁钢和铝靶的距离调整在1~10cm,,加速电弧的运动速度。
进一步的,d步骤所述的氩气的纯度为质量分数99.7%以上。
进一步的,e步骤所述的电镀0.5-5小时,电镀后镀层的厚度2-40μm。
进一步的,g步骤所述的铝钝化液的浓度为15~25%。
本发明所述的一种永磁钕铁硼磁钢表面镀铝的方法与已有技术相比具有突出的实质性特点和显著进步,1、采用多弧离子镀镀铝,铝的纯度为99%以上;2、采用0℃~5℃的水进行设备水冷,降低弧源处离子团簇,减少大液体、大颗粒的产生,使磁钢表面细致;3、多弧离子镀膜机弧源头内控制电弧旋转磁钢采用N50牌号,将该磁钢和铝靶的距离调整在1~10cm,加速电弧的运动速度,电镀效率提高;4、将电流控制在50~70A,电镀完成后降温20℃~100℃打开炉门,从而在不降低电镀效率的情况下,得到结合力良好并且表面细致的电镀铝镀层。
具体实施方式:
为了更好地理解与实施,下面结合实施例对本发明进行详细说明;所举实施例只用于解释本发明,并非用于限制本发明的范围。
实施例1,采用常规烧结的磁钢,表面镀铝方法如下:
a将永磁钕铁硼磁钢进行表面脱脂,先使用纯水清洗,然后用质量分数4%的硝酸清洗,再使用纯水清洗,超声波去灰,再放入质量分数99.8%的酒精脱水,并使用鼓风机吹干;
b将清洗后的永磁钕铁硼磁钢放入烘箱进行烘干,温度55℃,时间30分钟;
c将永磁钕铁硼磁钢挂在夹具上面,放入多弧离子镀膜机,开启多弧离子镀膜机,通入3℃的冷水,冷水直接通入弧源头和整个多弧离子镀膜机炉壁,将永磁钕铁硼磁钢在多弧离子镀膜机里面进行公转和自转,多弧离子镀膜机弧源头内控制电弧旋转磁钢采用N50牌号,将该磁钢和铝靶的距离调整在5cm,加速电弧的运动速度;
d将多弧离子镀膜机抽真空至2×10-2pa,然后通入质量分数99.8%氩气,关闭光栅阀,控制氩气流量,将炉内真空调节在2×10-1pa,使用900V偏压电源清洗5min;
e开启光栅阀,关闭偏压电源和氩气,重新将真空抽至6×10-3pa,再次通入氩气,关闭光栅阀,将多弧离子镀膜机内真空维持在4×10-1pa,开启弧源头电源,并且将电流维持在60A,偏压电源电压维持在150V,电镀1.5h,电镀后镀层的厚度10μm;
f电镀完成,多弧离子镀膜机的镀炉腔内的温度降至80℃打开炉门,取出永磁钕铁硼磁钢;
g将永磁钕铁硼磁钢放入浓度20%的铝钝化液中钝化10分钟,使用纯净水清洗,再次放入电镀封闭液10秒,取出烘干。
所得到的镀层呈银白色,无颗粒表面光滑细致,无黑点气泡起皮现象。
实施例2,采用经过Dy扩散处理后的磁钢,表面镀铝方法如下:
a将永磁钕铁硼磁钢进行表面脱脂,先使用纯水清洗,然后用质量分数3%的硝酸清洗,再使用纯水清洗,超声波去灰,再放入质量分数99.1%的酒精脱水,并使用鼓风机吹干;
b将清洗后的永磁钕铁硼磁钢放入烘箱进行烘干,温度50℃,时间30分钟;
c将永磁钕铁硼磁钢挂在夹具上面,放入多弧离子镀膜机,开启多弧离子镀膜机,通入0℃的冷水,冷水直接通入弧源头和整个多弧离子镀膜机炉壁,将永磁钕铁硼磁钢在多弧离子镀膜机里面进行公转和自转,多弧离子镀膜机弧源头内控制电弧旋转磁钢采用N50牌号,将该磁钢和铝靶的距离调整在1cm,加速电弧的运动速度;
d将多弧离子镀膜机抽真空至1×10-2pa,然后通入质量分数99.71%氩气,关闭光栅阀,控制氩气流量,将炉内真空调节在1×10-1pa,使用800V偏压电源清洗1min;
e开始光栅阀,关闭偏压电源和氩气,重新将真空抽至1×10-3pa,再次通入氩气,关闭光栅阀,将多弧离子镀膜机内真空维持在3×10-1pa,开启弧源头电源,并且将电流维持在50A,偏压电源电压维持在100V,电镀0.5小时,电镀后镀层的厚度2μm;
f电镀完成,等多弧离子镀膜机的镀炉腔内的温度降至20℃打开炉门,取出永磁钕铁硼磁钢;
g将永磁钕铁硼磁钢放入15%的铝钝化液中钝化1分钟,使用纯净水清洗,再次放入电镀封闭液1秒,取出烘干。
所得到的镀层呈银白色,无颗粒表面光滑细致,无黑点气泡起皮现象。
实施例3,采用Tb扩散处理后的磁钢,表面镀铝方法如下:
a将永磁钕铁硼磁钢进行表面脱脂,先使用纯水清洗,然后用质量分数5%的硝酸清洗,再使用纯水清洗,超声波去灰,再放入质量分数99.9%的酒精脱水,并使用鼓风机吹干;
b将清洗后的永磁钕铁硼磁钢放入烘箱进行烘干,温度60℃,时间30分钟;
c将永磁钕铁硼磁钢挂在夹具上面,放入多弧离子镀膜机,开启多弧离子镀膜机,通入5℃的冷水,冷水直接通入弧源头和整个多弧离子镀膜机炉壁,将永磁钕铁硼磁钢在多弧离子镀膜机里面进行公转和自转,多弧离子镀膜机弧源头内控制电弧旋转磁钢采用N50牌号,将该磁钢和铝靶的距离调整在10cm,加速电弧的运动速度;
d将多弧离子镀膜机抽真空至3×10-2pa,然后通入质量分数99.9%氩气,关闭光栅阀,控制氩气流量,将炉内真空调节在5×10-1pa,使用1000V偏压电源清洗10min;
e开启光栅阀,关闭偏压电源和氩气,重新将真空抽至8×10-3pa,再次通入氩气,关闭光栅阀,将多弧离子镀膜机内真空维持在5×10-1pa,开启弧源头电源,并且将电流维持在70A,偏压电源电压维持在200V,电镀5小时,电镀后镀层的厚度40μm;
f电镀完成,等多弧离子镀膜机的镀炉腔内的温度降至100℃打开炉门,取出永磁钕铁硼磁钢;
g将永磁钕铁硼磁钢浸入浓度为25%铝钝化液中钝化20分钟,使用纯净水清洗,再次放入电镀封闭液20秒,取出烘干。
所得到的镀层呈银白色,无颗粒表面光滑细致,无黑点气泡起皮现象。
将实施例1得到的铝镀层和对比例2、3、4得到的铝镀层进行中性喷雾试验和剪切力对比,结果见表1;其中,对比例2采用现有的多弧离子镀;对比例3采用多弧磁控;对比例4采用的磁控溅射;镀层在相同的电镀时间下完成。
中性盐雾试验采用ISO 9227-2006标准,质量分数5% NaCl溶液连续喷涂,35℃。
剪切力测试采用乐泰3342胶,双面使用7380固化剂,90℃固化一小时,使用万能试验机测试剪切力,速度0.5mm/s。
将实施例2得到的铝镀层和对比例5、6、7得到的铝镀层进行中性喷雾试验和剪切力对比,结果见表2;其中,对比例5采用现有的多弧离子镀;对比例6采用多弧磁控;对比例7采用的磁控溅射;镀层在相同的电镀时间下完成。
将实施例3得到的铝镀层和对比例8、9、10得到的铝镀层进行中性喷雾试验和剪切力对比,结果见表3;其中,对比例8采用现有的多弧离子镀;对比例9采用多弧磁控;对比例10采用的磁控溅射;镀层在相同的电镀时间下完成。
从表1、表2、表3来看,本发明的在永磁钕铁硼磁钢上面多弧离子镀镀铝无论从表面细致程度,还是效率来说,都很占优势,并且具有良好的耐腐蚀特性。

Claims (5)

1.一种永磁钕铁硼磁钢表面镀铝的方法,其特征在于,包括以下的工艺步骤:
a永磁钕铁硼磁钢进行表面脱脂,先采用纯水清洗,然后用质量分数为3%~5%的硝酸清洗,再使用纯水清洗,超声波去灰,然后放入质量分数99%以上的酒精脱水,并吹干;
b将清洗后的永磁钕铁硼磁钢放入烘箱进行烘干,温度50℃-60℃,时间30分钟;
c将永磁钕铁硼磁钢挂在夹具上面,放入多弧离子镀膜机,开启多弧离子镀膜机,通入0℃~5℃的冷水,将永磁钕铁硼磁钢在多弧离子镀膜机里面进行公转和自转;所述的通入0℃~5℃的冷水,冷水直接通入弧源头和整个多弧离子镀膜机炉壁,多弧离子镀膜机弧源头内控制电弧旋转磁钢采用N50牌号,将该磁钢和铝靶的距离调整在1~10cm,加速电弧的运动速度;
d将多弧离子镀膜机抽真空至1×10-2Pa~3×10-2Pa,然后通入氩气,关闭光栅阀,控制氩气流量,将炉内真空调节在1×10-1Pa~5×10-1Pa,使用800V~1000V偏压电源清洗1~10min;
e开启光栅阀,关闭偏压电源和氩气,重新将真空抽至1×10-3Pa~8×10-3Pa,再次通入氩气,关闭光栅阀,将多弧离子镀膜机内真空维持在3×10-1Pa~5×10-1Pa,开启弧源头电源,并且将电流维持在50A~70A,偏压电源电压维持在100-200V,电镀0.5-5小时;
f电镀完成,多弧离子镀膜机的镀炉腔内的温度降至20℃~100℃打开炉门,取出永磁钕铁硼磁钢;
g将永磁钕铁硼磁钢放入铝钝化液中钝化1~20分钟,使用纯净水清洗,再次放入电镀封闭液1~20秒,取出烘干。
2.根据权利要求1所述的一种永磁钕铁硼磁钢表面镀铝的方法,其特征在于,a步骤所述的永磁钕铁硼磁钢为常规烧结的磁钢或经过Dy或Tb扩散处理后的磁钢。
3.根据权利要求1所述的一种永磁钕铁硼磁钢表面镀铝的方法,其特征在于,d步骤所述的氩气的纯度为质量分数99.7%以上。
4.根据权利要求1所述的一种永磁钕铁硼磁钢表面镀铝的方法,其特征在于,e步骤所述的电镀0.5-5小时,电镀后镀层的厚度2-40μm。
5.根据权利要求1所述的一种永磁钕铁硼磁钢表面镀铝的方法,其特征在于,g步骤所述的铝钝化液的浓度为15~25%。
CN201510078215.XA 2015-02-12 2015-02-12 一种永磁钕铁硼磁钢表面镀铝的方法 Active CN104651783B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201510078215.XA CN104651783B (zh) 2015-02-12 2015-02-12 一种永磁钕铁硼磁钢表面镀铝的方法
JP2016011221A JP2016149536A (ja) 2015-02-12 2016-01-25 Nd−Fe−B系永久磁石表面のアルミニウムめっき方法
EP16154789.8A EP3056585B1 (en) 2015-02-12 2016-02-09 A method of disposing an aluminum coating on nd-fe-b permanent magnets
US15/041,186 US9783883B2 (en) 2015-02-12 2016-02-11 Method for depositing aluminum on a permanent Nd—Fe—B magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510078215.XA CN104651783B (zh) 2015-02-12 2015-02-12 一种永磁钕铁硼磁钢表面镀铝的方法

Publications (2)

Publication Number Publication Date
CN104651783A CN104651783A (zh) 2015-05-27
CN104651783B true CN104651783B (zh) 2017-09-01

Family

ID=53243417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510078215.XA Active CN104651783B (zh) 2015-02-12 2015-02-12 一种永磁钕铁硼磁钢表面镀铝的方法

Country Status (4)

Country Link
US (1) US9783883B2 (zh)
EP (1) EP3056585B1 (zh)
JP (1) JP2016149536A (zh)
CN (1) CN104651783B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9151175B2 (en) * 2014-02-25 2015-10-06 Siemens Aktiengesellschaft Turbine abradable layer with progressive wear zone multi level ridge arrays
CN105185498B (zh) 2015-08-28 2017-09-01 包头天和磁材技术有限责任公司 稀土永磁材料及其制造方法
CN106119844A (zh) * 2016-08-24 2016-11-16 烟台首钢磁性材料股份有限公司 一种永磁钕铁硼磁钢表面电镀铜镍合金镀层的方法
CN107653440A (zh) * 2017-09-26 2018-02-02 湖北汽车工业学院 一种烧结钕铁硼永磁体表面制备铝或铝锡合金镀层的方法
CN107675134A (zh) * 2017-09-26 2018-02-09 湖北汽车工业学院 一种烧结钕铁硼永磁体表面氮化物复合镀层及制备方法
CN107937879B (zh) * 2017-11-30 2020-08-25 金力永磁(宁波)科技有限公司 一种钕铁硼磁体及钕铁硼磁体表面镀层的方法
CN108823537B (zh) * 2018-07-16 2020-03-24 安康学院 一种磁性材料真空镀膜设备
CN110629182A (zh) * 2019-10-22 2019-12-31 包头中科泰磁涂层科技有限责任公司 一种高强耐蚀物理气相沉积涂层制造方法及深海电机

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663086B2 (ja) * 1985-09-27 1994-08-17 住友特殊金属株式会社 永久磁石材料及びその製造方法
JP2968605B2 (ja) * 1991-03-12 1999-10-25 ティーディーケイ株式会社 永久磁石の製造方法
JPH11307328A (ja) * 1998-04-16 1999-11-05 Sumitomo Special Metals Co Ltd 耐食性永久磁石およびその製造方法
JP3351768B2 (ja) * 1998-08-31 2002-12-03 住友特殊金属株式会社 耐食性皮膜を有するFe−B−R系永久磁石の製造方法
EP0984460B1 (en) 1998-08-31 2004-03-17 Sumitomo Special Metals Co., Ltd. Fe-B-R based permanent magnet having corrosion-resistant film, and process for producing the same
JP2001076914A (ja) 1998-12-17 2001-03-23 Sumitomo Special Metals Co Ltd 希土類系永久磁石およびその製造方法
JP3917348B2 (ja) * 1999-05-26 2007-05-23 株式会社神戸製鋼所 アーク蒸発源、真空蒸着装置及び真空蒸着方法
US6281774B1 (en) 1999-09-10 2001-08-28 Sumitomo Special Metals Co., Ltd. Corrosion-resistant permanent magnet and method for producing the same
JP4495287B2 (ja) * 1999-12-27 2010-06-30 日立金属株式会社 ポリイミド樹脂被膜を有する希土類系永久磁石の製造方法
JP2004022762A (ja) * 2002-06-14 2004-01-22 Seiko Epson Corp 永久磁石の製造方法および永久磁石
JP2004064895A (ja) * 2002-07-29 2004-02-26 Seiko Epson Corp 永久磁石の製造方法、永久磁石、モータ用部品およびモータ
JP2004111516A (ja) * 2002-09-17 2004-04-08 Hitachi Metals Ltd 高耐蝕性r−t−b系希土類磁石
JP3897724B2 (ja) 2003-03-31 2007-03-28 独立行政法人科学技術振興機構 超小型製品用の微小、高性能焼結希土類磁石の製造方法
JP4054287B2 (ja) * 2003-06-19 2008-02-27 日本パーカライジング株式会社 アルミニウム及びアルミニウム合金の表面処理方法
CN1556246A (zh) * 2004-01-08 2004-12-22 中国国际海运集装箱(集团)股份有限 无铬钝化液
JP4583048B2 (ja) 2004-02-26 2010-11-17 信越化学工業株式会社 希土類磁石密封体およびipmモータの製造方法
JP2006152320A (ja) * 2004-11-25 2006-06-15 Shinko Electric Ind Co Ltd Al2O3から成る不動態皮膜の形成方法
EP1981043B1 (en) 2006-01-31 2015-08-12 Hitachi Metals, Limited R-Fe-B RARE-EARTH SINTERED MAGNET AND PROCESS FOR PRODUCING THE SAME
JP5226520B2 (ja) * 2006-09-15 2013-07-03 インターメタリックス株式会社 NdFeB焼結磁石の製造方法
JP5263153B2 (ja) 2007-05-09 2013-08-14 日立金属株式会社 表面にアルミニウムまたはその合金の蒸着被膜を有するR−Fe−B系焼結磁石およびその製造方法
JP2009144236A (ja) * 2007-11-21 2009-07-02 Kobe Steel Ltd アークイオンプレーティング装置用の蒸発源及びアークイオンプレーティング装置
CN101469428B (zh) * 2007-12-24 2012-05-30 北京中科三环高技术股份有限公司 一种具有耐腐蚀膜的稀土永磁体的制造方法
JP4660570B2 (ja) * 2008-04-15 2011-03-30 キヤノンアネルバ株式会社 真空成膜装置及び成膜方法
JP5118599B2 (ja) * 2008-09-30 2013-01-16 新明和工業株式会社 荷電粒子流収束機構、荷電粒子流収束機構の使用方法および真空成膜装置
CN102041506A (zh) * 2009-10-13 2011-05-04 北京中科三环高技术股份有限公司 永磁材料的表面处理方法
CN101736304B (zh) * 2009-12-17 2012-07-04 烟台正海磁性材料股份有限公司 钕铁硼永磁体表面真空镀铝方法
JP2011184779A (ja) * 2010-03-10 2011-09-22 Mitsubishi Materials Corp アークイオンプレーティング装置
JP5408340B2 (ja) 2010-03-30 2014-02-05 Tdk株式会社 希土類焼結磁石及びその製造方法、並びにモータ及び自動車
JP5630747B2 (ja) * 2010-05-14 2014-11-26 リンテック株式会社 酸化亜鉛系導電性積層体及びその製造方法並びに電子デバイス
CN102400189A (zh) * 2010-09-10 2012-04-04 北京中科三环高技术股份有限公司 一种钕铁硼永磁材料的有机镀铝的表面处理方法
CN102002671A (zh) * 2010-09-16 2011-04-06 耿学红 一种NdFeB永磁体防蚀方法
JP5348110B2 (ja) * 2010-10-28 2013-11-20 Tdk株式会社 希土類磁石、希土類磁石の製造方法及び回転機
CN102031522B (zh) * 2010-12-15 2012-10-17 白雪铠 铝或铝合金复合涂层的钕铁硼磁体的制备方法
JP5708116B2 (ja) * 2011-03-24 2015-04-30 Tdk株式会社 希土類磁石
JP5847054B2 (ja) * 2012-10-11 2016-01-20 株式会社神戸製鋼所 成膜装置

Also Published As

Publication number Publication date
EP3056585A1 (en) 2016-08-17
JP2016149536A (ja) 2016-08-18
US20160237553A1 (en) 2016-08-18
EP3056585B1 (en) 2018-04-04
CN104651783A (zh) 2015-05-27
US9783883B2 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
CN104651783B (zh) 一种永磁钕铁硼磁钢表面镀铝的方法
CN104674169A (zh) 一种永磁钕铁硼磁钢表面电镀复合镀层的方法
CN107653440A (zh) 一种烧结钕铁硼永磁体表面制备铝或铝锡合金镀层的方法
CN105603424B (zh) 一种Si改性的β‑(Ni,Pt)Al涂层及其制备方法
JP2014236221A (ja) R−Fe−B系焼結磁石の調製方法
CN104404454B (zh) 一种用于多弧离子镀设备沉积涂层工装及其使用方法
Lee et al. Microstructural characteristics of oxide layers formed on Mg–9 wt% Al–1 wt% Zn alloy via two-step plasma electrolytic oxidation
US20200161047A1 (en) Method for preparing rare earth permanent magnet material
CN104599829A (zh) 一种提高烧结钕铁硼磁体磁性能的方法
JP6295329B2 (ja) マグネシウム−アルミニウムコーティング鋼板およびその製造方法
CN103741088A (zh) 一种适用于钢材热浸镀锌铝合金镀层的电解助镀剂及其工艺方法
CN103866227B (zh) 一种工件表面制备防腐涂层用共渗剂及共渗工艺
CN104480440A (zh) 小尺寸钕铁硼磁体表面真空镀膜方法及专用镀膜设备
CN110211797A (zh) 一种提升烧结钕铁硼磁体磁性能的方法
CN101691649B (zh) 对生产海绵钛的反应器进行渗钛和渗铝的方法
CN106048519A (zh) 一种聚变堆氚增殖包层用Fe‑Al/Al2O3 阻氚涂层及其制备方法
CN103114267A (zh) 一种钢基体表面氧化铝涂层的制备方法
CN106283135A (zh) 一种在涂层中引入稀有金属Hf元素的方法
CN102925851B (zh) 铝及铝合金表面二段气体氮化方法
CN104651779A (zh) 一种用于钕铁硼磁体的镀膜设备及镀膜工艺
CN109554677A (zh) 一种烧结钕铁硼永磁体表面锌锡合金镀层及其制备方法
CN111876727A (zh) 一种碳钢表面无渗剂的渗铝方法
CN103789722B (zh) 一种显著提高齿轮耐蚀性的化学热处理方法
CN106756668B (zh) 一种钨铝复合材料的表面改性方法
CN109136850A (zh) 一种NiCrAlYSc涂层及其制备工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Fushan District, Shandong city of Yantai province Yongda Street 265500 No. 888

Patentee after: Yantai Dongxing magnetic material Co.,Ltd.

Address before: Fushan District, Shandong city of Yantai province Yongda Street 265500 No. 888

Patentee before: YANTAI SHOUGANG MAGNETIC MATERIALS Inc.