WO2005043622A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2005043622A1
WO2005043622A1 PCT/JP2004/011454 JP2004011454W WO2005043622A1 WO 2005043622 A1 WO2005043622 A1 WO 2005043622A1 JP 2004011454 W JP2004011454 W JP 2004011454W WO 2005043622 A1 WO2005043622 A1 WO 2005043622A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
electrode
insulating layer
semiconductor substrate
post
Prior art date
Application number
PCT/JP2004/011454
Other languages
English (en)
French (fr)
Inventor
Masamichi Ishihara
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to CN2004800324876A priority Critical patent/CN1875481B/zh
Priority to EP04771441.5A priority patent/EP1686623B1/en
Publication of WO2005043622A1 publication Critical patent/WO2005043622A1/ja
Priority to US10/577,863 priority patent/US7944058B2/en
Priority to US13/093,220 priority patent/US8664666B2/en
Priority to US14/157,093 priority patent/US9093431B2/en
Priority to US14/743,103 priority patent/US9559041B2/en
Priority to US15/384,658 priority patent/US9887147B2/en
Priority to US15/852,388 priority patent/US10199310B2/en
Priority to US16/224,846 priority patent/US10559521B2/en
Priority to US16/748,020 priority patent/US11127657B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05666Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05684Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0616Random array, i.e. array with no symmetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13025Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16146Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16148Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a bonding area protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to a semiconductor device capable of achieving a reduction in thickness and a high-speed operation and a method for manufacturing the same, and more particularly to a technology effective when applied to a manufacturing technology for a stacked semiconductor device in which a plurality of semiconductor devices are sequentially stacked.
  • a semiconductor device capable of achieving a reduction in thickness and a high-speed operation and a method for manufacturing the same, and more particularly to a technology effective when applied to a manufacturing technology for a stacked semiconductor device in which a plurality of semiconductor devices are sequentially stacked.
  • a three-dimensional semiconductor device in which first to third semiconductor substrates on which an integrated circuit is formed is laminated is known.
  • the third semiconductor device uses an S ⁇ I substrate (for example, Patent Document 2).
  • a technique for forming a through electrode in a semiconductor substrate is an essential technique for manufacturing a three-dimensional stacked LSI.
  • the current process of forming through electrodes on silicon (Si) wafers still involves many steps (eg, Non-Patent Document 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-46057
  • Patent Document 2 JP 2001-250913 A
  • Non-patent document 1 Materials of the Institute of Electrical Engineers of Japan, VOL.EFM-02-6, No. l-8, P31_35
  • Non-patent document 2 Surface technology, VO, 52, No. 7, 2001, P479-483
  • the conventional three-dimensional stacked semiconductor device has the following problems.
  • connection using bonding wires instead of flip chips can be made up to about three or four layers.
  • the number of steps increases as the number of wires increases.
  • the connection path becomes longer due to the wire, which leads to characteristic deterioration (high-speed operation) due to an increase in impedance.
  • there is a problem in handling thin bare chips and there is a limit to the overall thickness reduction.
  • SiP system 'in' package
  • SoC system-on-chip
  • One object of the present invention is to provide a stacked semiconductor device having excellent characteristics capable of shortening a connection path between semiconductor devices.
  • One object of the present invention is to provide a thin stacked semiconductor device in which various types of semiconductor devices having different configurations can be stacked in a plurality of stages.
  • An object of the present invention is to provide a method of manufacturing a semiconductor device capable of inexpensively manufacturing a thin stacked semiconductor device having good productivity and high reliability.
  • One object of the present invention is to provide a method of manufacturing a stacked semiconductor device in which electronic components including various types of semiconductor devices having different configurations can be easily stacked in a plurality of stages.
  • One object of the present invention is to provide a semiconductor device which can be shortened in connection with the outside, is thin, and has a low manufacturing cost.
  • the stacked semiconductor device of the present invention includes a first semiconductor device having an external electrode terminal on a lower surface, and a first semiconductor device electrically connected to the first semiconductor device via a joined body.
  • a stacked semiconductor device having a second semiconductor device fixed on the device, and a third semiconductor device sequentially stacked and fixed between the first semiconductor device and the second semiconductor device via a joint body
  • the first semiconductor device includes:
  • a multilayer wiring portion including a plurality of circuit elements formed on the first main surface side of the semiconductor substrate and wirings connected to the circuit elements;
  • a second insulating layer covering a second main surface opposite to the first main surface of the semiconductor substrate; and a second insulating layer formed on predetermined wirings of the multilayer wiring portion and provided on a surface of the first insulating layer.
  • a predetermined wiring is provided from a predetermined depth of the multilayer wiring portion so as to penetrate the semiconductor substrate and the second insulating layer, contacts the semiconductor substrate via an insulating film, and a predetermined wiring of the multilayer wiring portion.
  • the second semiconductor device includes:
  • a multilayer wiring portion including a plurality of circuit elements formed on the first main surface side of the semiconductor substrate and wirings connected to the circuit elements;
  • a first insulating layer covering the multilayer wiring portion A second insulating layer covering a second main surface opposite to the first main surface of the semiconductor substrate; and a second insulating layer formed on predetermined wirings of the multilayer wiring portion and provided on a surface of the first insulating layer.
  • An exposed post electrode, or a predetermined depth of the multilayer wiring portion penetrating the semiconductor substrate and the second insulating layer, contacting the semiconductor substrate via an insulating film, and And at least a plurality of through electrodes connected to predetermined wirings, respectively.
  • the third semiconductor device includes:
  • a multilayer wiring portion including a plurality of circuit elements formed on the first main surface side of the semiconductor substrate and wirings connected to the circuit elements;
  • a second insulating layer covering a second main surface opposite to the first main surface of the semiconductor substrate; and a second insulating layer formed on predetermined wirings of the multilayer wiring portion and provided on a surface of the first insulating layer.
  • a predetermined wiring is provided from a predetermined depth of the multilayer wiring portion so as to penetrate the semiconductor substrate and the second insulating layer, contacts the semiconductor substrate via an insulating film, and a predetermined wiring of the multilayer wiring portion.
  • the post electrode or the through electrode is a lower surface, and the post electrode or the through electrode on the lower surface is provided with the external electrode terminal,
  • the post electrode or the post electrode on the lower surface of the third semiconductor device is electrically connected to the post electrode or the through electrode on the upper surface of the first semiconductor device via the joined body,
  • the post electrode or the through electrode on the lower surface of the second semiconductor device is electrically connected to the post electrode or the through electrode on the upper surface of the third semiconductor device via the through electrode.
  • Such a stacked semiconductor device is
  • the first semiconductor device is configured such that the through electrode or the post electrode is on the lower surface, and the lower electrode is used as the external electrode terminal. Thereafter, the through electrode on the lower surface of the third semiconductor device is used. Or, the post electrode is placed on the top surface of the first semiconductor device. Connected to the through electrode or the post electrode by temporarily heating the protruding electrode,
  • the penetrating electrode or the post electrode on the lower surface of the second semiconductor device is overlapped with the penetrating electrode or the post electrode on the upper surface of the third semiconductor device and connected by temporary heating of the protruding electrode.
  • the second semiconductor device having only the through electrode
  • a step of forming a multilayer wiring portion by sequentially laminating a wiring and an insulating layer electrically connected to the circuit element in the respective product forming portions in a predetermined pattern;
  • an insulating film is provided from a predetermined depth of the multilayer wiring portion toward a second main surface opposite to the first main surface of the semiconductor substrate, and has a surface.
  • the second semiconductor device having only the post electrode
  • the first, third, and second semiconductor devices are manufactured by forming a first insulating layer on a first main surface side of a semiconductor substrate in the manufacture thereof; Although the second main surface of the semiconductor substrate is removed by a predetermined thickness, the semiconductor substrate can be made as thin as about 550 xm because the first insulating layer acts as a strength member.
  • the thickness of the insulating layer can be made as thin as about 20 to 100 zm, each semiconductor device can be made to have a thickness of, for example, about 40 to 100 zm without considering the thickness of the protruding electrodes. The thickness of the semiconductor device can be reduced. If the thicknesses of the semiconductor substrate and the insulating layer are set to the lower limits, the thickness can be further reduced.
  • connection between the lower semiconductor device and the upper semiconductor device is made by a post-electrode having a columnar shape provided through the first insulating layer. Connections are made using pole-shaped through electrodes that penetrate through the poles and the semiconductor substrate, shortening the current path, reducing inductance, and improving the electrical characteristics of the stacked semiconductor device. .
  • the length of the post electrode and through electrode provided on the first insulating layer and the semiconductor substrate is about 5 to 50 zm, which is sufficiently short compared to the length of several hundred zm or more of the bonding wire by short wire connection. Become. This enables high-speed operation of the stacked semiconductor device.
  • the through-electrode provided on the semiconductor substrate is restricted to be formed in a region outside the region where the circuit element is formed, the through-electrode can be relatively freely selected in a wiring region or the like.
  • the position of the post electrode connected to a predetermined wiring in the multilayer wiring portion can be relatively freely determined by wiring. Therefore, by selecting the positions where the through electrodes and the post electrodes are provided, the integration density in the two-dimensional direction can be improved.
  • the stacked semiconductor device of the present invention enables electrical connection between the lower semiconductor device and the upper semiconductor device without using an interposer. As a result, the number of assembly parts can be reduced, and the thickness of the stacked semiconductor device can be reduced.
  • the use of an interposer lengthens the connection path (current path) between semiconductor chips or semiconductor devices. However, the elimination of the interposer allows the current path to be shortened and improves electrical characteristics. Become.
  • the first, third, and second semiconductor devices are manufactured using a semiconductor wafer in the manufacture thereof, and the insulating layer is formed in the final stage. And the first and third and second semiconductor devices are manufactured. Therefore, since necessary processes other than the lamination and fixing of the first, third and second semiconductor devices are performed at the wafer level, the handling is good throughout the process and unnecessary work is reduced. As a result, production costs can be reduced.
  • FIG. 1 is a schematic cross-sectional view of a stacked semiconductor device that is Embodiment 1 of the present invention.
  • FIG. 2 is a schematic perspective view showing the appearance of the stacked semiconductor device.
  • FIG. 3 is a schematic bottom view of the stacked semiconductor device.
  • FIG. 6 is a schematic enlarged cross-sectional view of a part of the semiconductor substrate showing a lower layer portion of the filling electrode and a multilayer wiring portion.
  • FIG. 7 is a schematic enlarged cross-sectional view of a part showing the filling electrode, a multilayer wiring portion, and the like.
  • FIG. 8 is a schematic cross-sectional view showing a state where a post electrode and a first insulating layer are formed on a first main surface of the semiconductor substrate.
  • Garden 9 is a schematic enlarged sectional view of a part of the semiconductor substrate on which the post electrode and the first insulating layer are formed.
  • FIG. 10 is a partially enlarged schematic cross-sectional view showing a charged electrode structure which is a modification of the first embodiment.
  • FIG. 11 is a partially enlarged schematic cross-sectional view showing a charged electrode structure which is another modification of the first embodiment.
  • Garden 12 is a schematic sectional view showing a state where a surface of the first insulating layer is removed by a predetermined thickness to expose a post electrode.
  • FIG. 15 is a schematic cross-sectional view showing a state where a second insulating layer is formed on the second main surface of the semiconductor substrate so as to expose the tip of a through electrode.
  • FIG. 18 is a schematic plan view in which the stacked semiconductor device according to the first embodiment is placed and accommodated in a tray.
  • FIG. 19 is a schematic diagram showing three types of semiconductor devices (first semiconductor device, third semiconductor device, and second semiconductor device) formed in Example 1 separated from each other in the stacking order.
  • FIG. 20 is a schematic cross-sectional view showing a state in which the stacked semiconductor device according to the first embodiment is mounted on a daughter board.
  • FIG. 21 is a schematic sectional view of a stacked semiconductor device which is Embodiment 2 of the present invention.
  • FIG. 22 is a schematic cross-sectional view of a two-layer stacked semiconductor device that is Embodiment 3 of the present invention.
  • FIG. 23 is a cross-sectional view of each step showing a part of the method for manufacturing a stacked semiconductor device which is Embodiment 4 of the present invention.
  • FIG. 24 is a cross-sectional view of each step showing a part of the method for manufacturing a stacked semiconductor device which is Embodiment 4 of the present invention.
  • FIG. 25 is a cross-sectional view of each step showing a part of the method for manufacturing a stacked semiconductor device which is Embodiment 5 of the present invention.
  • FIG. 26 is a schematic cross-sectional view showing a state in which the stacked semiconductor device according to the sixth embodiment of the present invention is mounted on a daughter board.
  • FIG. 27 is a schematic cross-sectional view showing a state in which the stacked semiconductor device according to the seventh embodiment of the present invention is mounted on a daughter board.
  • FIG. 28 is a schematic cross-sectional view showing a state in which the stacked semiconductor device according to the eighth embodiment of the present invention is mounted on a daughter board.
  • FIG. 29 is a schematic cross-sectional view showing a state in which the stacked semiconductor device according to Embodiment 9 of the present invention is mounted on a daughter board.
  • Penetration Electrode 13a, 13b, 13c "'protruding electrode, 21 ⁇ first wenore, 22 ⁇ second wenore, 23 ⁇ source region, 24... drain region, 25... insulated gate film, 26 ... gate electrode, 27, 28 ... electrode, 29 ... thick oxide film, 30 ... insulating layer, 31 ... wiring layer (wiring), 32 ... electrode pad, 33 ... hole, 34 ... insulating film, 40 ... tray, 41 ... Housing recess, 45: Daughter board, 46: Bump electrode, 50, 51, 80, 81: Under finole layer, 60, 70: Metal plate, 61, 71: Insulation hole.
  • FIGS. 1 to 20 are diagrams relating to the stacked semiconductor device according to the first embodiment of the present invention.
  • 1 to 3 are diagrams related to the structure of the stacked semiconductor device
  • FIGS. 4 to 19 are diagrams related to the manufacture of the stacked semiconductor device
  • FIG. 20 is a diagram illustrating a mounting state of the stacked semiconductor device. It is.
  • the stacked semiconductor device 1 manufactured by the manufacturing method of the present invention includes a first semiconductor device 2 having a rectangular shape as a lower stage, and an upper surface of the first semiconductor device 2.
  • the third semiconductor device 4 includes a middle third semiconductor device 4 that is stacked and fixed, and an upper second semiconductor device 3 that is stacked and fixed on the upper surface of the third semiconductor device 4.
  • the first, second, and third semiconductor devices 2, 3, and 4 have the same planar dimension and coincide with each other.
  • FIG. 3 is a diagram showing the bottom surface of the stacked semiconductor device 1.
  • the external electrode terminals 5 are formed by projecting electrodes provided on the lower surface of the first semiconductor device 2.
  • each of the semiconductor devices determines whether there is a through electrode or a post electrode on the surface to be stacked and fixed. Since there is a difference as to whether or not there is a joint for connection, the names of each part are the same, and the reference numerals are affixed to the end of the numbers in the first semiconductor device 2 and the second semiconductor device. In FIG. 3, a description will be made by adding a b to the end of the number, and in the third semiconductor device 4, a description will be given by adding a c to the end of the number.
  • the joined body is formed by temporarily heating a protruding electrode (bump electrode) provided at the exposed end of the through electrode or the post electrode.
  • the first semiconductor device 2 has a square semiconductor substrate 6a.
  • the semiconductor substrate 6a is made of, for example, silicon (Si), and a multilayer wiring portion 7a is formed on a first main surface thereof (a surface on which a circuit such as an IC is formed, and an upper surface in FIG. 1).
  • a first insulating layer 8a made of insulating resin is provided on the multilayer wiring portion 7a.
  • the insulating layer is formed of a resin generally used in the manufacture of semiconductor devices, for example, an insulating organic resin such as a polyimide resin or an epoxy resin.
  • the semiconductor substrate 6a has a thickness of, for example, about 20 ⁇ m.
  • the semiconductor substrate 6a may have a thickness of about 5-50 zm. Since the insulating layer becomes a strength member when manufacturing a semiconductor device, it is relatively thick, for example, about 50 ⁇ m.
  • the thickness of the insulating layer may be about 20 to 100 ⁇ m.
  • a post electrode 9a made of columnar copper (Cu) penetrating the first insulating layer 8a and electrically connected to a predetermined wiring of the multilayer wiring portion 7a is provided.
  • the post electrode 9a is exposed on the surface of the first insulating layer 8a.
  • a protruding electrode 10a is provided on an exposed portion of the post electrode 9a.
  • the protruding electrode 10a is a bump electrode made of, for example, a solder ball, a gold ball, a copper ball whose surface is plated with gold, or the like.
  • the diameter of the post electrode 9a is about 10 ⁇ , and the thickness is 50 ⁇ .
  • the post electrode 9a may have a diameter of about 10-50 / im and a thickness of about 20-100 / im.
  • the projection electrode 10a has a size before connection, and is formed of, for example, a ball having a diameter of about 60 / im and a thickness of about 40 ⁇ m.
  • the protruding electrode 10a may be formed using a ball having a diameter of about 40 to 80 ⁇ m.
  • a second insulating layer 11a made of an insulating resin is provided on a second main surface (the lower surface in FIG. 1) on the back side of the first main surface of the semiconductor substrate 6a.
  • the second insulating layer 11a is formed of, for example, a polyimide resin.
  • the second insulating layer 11a has a thickness as long as electrical insulation can be ensured, and is, for example, about several zm 10 x m. In this embodiment, it is about.
  • a through electrode 12a penetrating the semiconductor substrate 6a and the second insulating layer 11a from a predetermined depth of the multilayer wiring portion 7a is provided.
  • This through electrode 12a is provided at a predetermined position of the multilayer wiring portion 7a. It is electrically connected to the wiring.
  • the through electrode 12a is formed of a columnar copper plating.
  • the through electrode 12a has, for example, a diameter of about 10 ⁇ .
  • the diameter of the through electrode 12a may be about the number of diameters / im ⁇ 30 / im.
  • the penetrating electrode 12a has a force S described later, and its peripheral surface is in contact with the semiconductor substrate 6a via an insulating film, and is electrically independent from the semiconductor substrate 6a.
  • the through electrode 12a is exposed on the surface of the second insulating layer 11a.
  • a projecting electrode 13a is provided on an exposed portion of the through electrode 12a.
  • the protruding electrode 13a is, for example, a gold bump, a ball bump electrode composed of a gold-plated copper ball, a solder ball, or the like.
  • the projecting electrode 13a is also a ball of the same degree as the projecting electrode 10a.
  • the bump electrodes may be formed by plating or printing (screen printing). In this case, the thickness of the protruding electrode can be about 10 x m.
  • the first, second, and third semiconductor devices 2, 3, and 4 all have the first insulating layers 8a, 8b, and 8c on top, and The structure is such that the substrates 6a, 6b, 6c face down.
  • the pattern of the post electrode 9 c and the through electrode 12 c is different from that of the first semiconductor device 2, but the other portions have substantially the same structure as the first semiconductor device 2. It has become.
  • the third semiconductor device 4 has no protruding electrode. This is because, in the stacking and fixing, the bump electrodes of the mating semiconductor device to be stacked are used for connection. It is also possible to adopt a method in which a protruding electrode is provided on each of the post electrode 9c and the through electrode 12c, and the protruding electrodes are connected and fixed by lamination.
  • the third semiconductor device 4 at the middle stage has a multilayer wiring portion 7c and a first insulating layer 8c on a first main surface (upper surface) of a semiconductor substrate 6c, and has a second main surface on a second main surface. Insulating layer 11a.
  • the first insulating layer 8c is provided with a plurality of boost electrodes 9c that are electrically connected to predetermined wirings of the multilayer wiring section 7c.
  • the semiconductor substrate 6c has a plurality of through electrodes 12c which penetrate the second insulating layer 11c and are electrically connected to predetermined wirings of the multilayer wiring section 7c.
  • the through electrode 12c also has an insulating film on its peripheral surface, and is insulated and separated from the semiconductor substrate 6c.
  • the protruding electrode 10a becomes a joined body by the temporary heat treatment, and connects the connecting portions. With this connection, the third semiconductor device 4 is stacked and fixed on the first semiconductor device 2.
  • the second semiconductor device 3 in the upper stage has a configuration in which the post electrode on the upper surface is not provided in the first semiconductor device 2. That is, the second semiconductor device 3 has the multilayer wiring portion 7b and the first insulating layer 8b on the first main surface (upper surface) of the semiconductor substrate 6b, and has the second insulating layer 1 lb on the second main surface. It has a structure having. In addition, it has a through electrode 12b penetrating from the semiconductor substrate 6b to the second insulating layer lib. The through electrode 12b is electrically connected to a predetermined wiring of the multilayer wiring section 7b. A projecting electrode 13b is provided on the through electrode 12b exposed on the surface of the second insulating layer lib.
  • the through electrode 12b on the lower surface of the second semiconductor device 3 in the upper stage and the post electrode 9c on the upper surface of the third semiconductor device 4 in the middle stage face each other and are electrically connected via the protruding electrodes 13b. Have been. By this connection, the second semiconductor device 3 is stacked and fixed on the third semiconductor device 4.
  • the protruding electrode 10a connecting the first semiconductor device 2 and the third semiconductor device 4 forms a joined body
  • the protruding electrode 13b connecting the third semiconductor device 4 and the second semiconductor device 3 forms a joined body.
  • a protruding electrode is formed with a ball having a diameter of about 60 ⁇ m
  • a protruding electrode having a thickness of about 40 ⁇ m can be formed.
  • the thickness of the joined body becomes about 20 / im.
  • a desired plating film should be formed on the exposed surface of the penetrating electrode or the protruding electrode.
  • the thickness of each semiconductor device can be set to about 40 to 100 xm by selecting a predetermined dimension in the dimension area shown in the embodiment, and thus, the semiconductor devices are stacked and fixed in three steps.
  • the stacked semiconductor device 1 has a thickness of about 200 to 380 ⁇ m in the case of a ball bump electrode, and has an extremely small thickness of about 150 330 xm in the case of a bump electrode formed by printing.
  • the height of the stacked semiconductor device 1 varies depending on the size (thickness) of a ball bump electrode or a projected electrode formed by printing.
  • the lower surface of the semiconductor substrate 6a is The provided protruding electrode 13a becomes the external electrode terminal 5.
  • the protruding electrode 10a becomes the external electrode terminal 5.
  • FIG. 4 is a flowchart showing a method for manufacturing the stacked semiconductor device 1.
  • the steps from step 11 (S11) to step 21 (S21) include the steps of manufacturing the lower first semiconductor device 2, the middle third semiconductor device 4, and the upper second semiconductor device 3.
  • the steps from step 11 (S11) to step 21 (S21) include the steps of manufacturing the lower first semiconductor device 2, the middle third semiconductor device 4, and the upper second semiconductor device 3.
  • the steps from step 11 (S11) to step 21 (S21) include the steps of manufacturing the lower first semiconductor device 2, the middle third semiconductor device 4, and the upper second semiconductor device 3.
  • the contents of stacking and fixing the lower, middle, and upper semiconductor devices in step S22 are described.
  • the lower first semiconductor device 2 includes a circuit element formed on a semiconductor substrate (S11), a filling electrode and an electrode pad formed at a stage of forming a multilayer wiring portion (S12), a post electrode formed (S13), a first Insulation layer formation (post electrode embedding: S14), first insulation layer surface removal (post electrode exposure: S15), substrate surface removal (through electrode formation: S16), substrate surface etching (through electrode protrusion: S17) ), Second insulating layer formation (through-electrode exposure: S18), protruding electrode formation (through-electrode 'post electrode: S19), division (individualization: S20), and characteristic inspection (S21). You.
  • the third semiconductor device 4 in the middle stage is manufactured through the same steps as those for manufacturing the first semiconductor device 2 in the lower stage. It is formed in a pattern facing the upper post electrode 9a.
  • the first, third, and second semiconductor devices 2, 4, and 3 formed in the step S21 are sequentially stacked, for example, stacked and fixed through a reflow furnace, and FIG. Then, the stacked semiconductor device 1 shown in FIG. 3 is manufactured.
  • Each of the semiconductor devices of the stacked semiconductor device 1 of the first embodiment is a semiconductor device using a silicon substrate.
  • a combination of a semiconductor device using a compound semiconductor such as GaAs or InP and a semiconductor device using a silicon substrate may be used.
  • a circuit element suitable for the material is formed in the semiconductor portion.
  • FIG. 5 is a schematic cross-sectional view in which a filling electrode is formed on a semiconductor substrate (silicon substrate) on which ICs and the like are formed in the manufacture of the stacked semiconductor device 1.
  • a semiconductor wafer having a large area is generally prepared, and thereafter, a unit circuit including a predetermined circuit element is formed on a first main surface of the wafer.
  • the unit circuits are vertically and horizontally aligned on the first main surface of the wafer.
  • the semiconductor device is finally cut and separated vertically and horizontally to form a large number of semiconductor elements (semiconductor chips).
  • the rectangular area (portion) in which the unit circuit is formed is referred to as a product forming section in this specification.
  • a scribe line for division or a dicing area to be cut is located between the product forming sections. Finally, it is cut at this dicing area.
  • FIG. 5 and subsequent figures only a single product forming unit is shown. Therefore, unless otherwise specified, most of the names will be described in the name of the finished product.
  • a circuit (circuit element) is formed on the first main surface of the semiconductor substrate 6a (S11). Further, a multilayer wiring portion 7a is formed on the first main surface of the semiconductor substrate 6a. At the stage of forming the multilayer wiring portion 7a, a hole is formed in the first main surface of the semiconductor substrate 6a. Thereafter, the surface of the hole is oxidized, and then a filling film is filled and formed in the hole.
  • the filling electrode 12 is formed by filling the plating film.
  • the pores have a diameter of, for example, about several ⁇ m-30 ⁇ m and a depth of about 5-50 ⁇ m.
  • the diameter is about 10 ⁇ and the depth is about 30 / m.
  • the semiconductor substrate 6a is thinned to reduce the thickness of the first semiconductor device 2. Therefore, when the thickness is further reduced, the hole can be made shallower, and the hole can be easily eroded.
  • the plating film is formed of, for example, copper.
  • the method for forming the filling electrode 12 may be another method. For example, a method may be used in which conductive particles are sprayed into the holes by an inkjet method to fill the holes, and then cured by heat treatment to form the filled electrodes 12.
  • tungsten, titanium, nickele, anorenium, or an alloy thereof may be filled by CVD (vapor phase chemical growth).
  • FIG. 6 is a schematic enlarged cross-sectional view of a part of the semiconductor substrate showing a lower part of the filling electrode and the multilayer wiring portion.
  • the semiconductor substrate 6a is a substrate of the first conductivity type and has a first main type.
  • a first well 21 of the second conductivity type and a second well 22 of the first conductivity type are formed on the surface layer on the surface side.
  • a source region 23, a drain region 24 and an insulated gate film 25 are formed, and a gate electrode 26 is formed on the insulated gate film 25 to form a field effect transistor (FET).
  • FET field effect transistor
  • Electrodes 27 and 28 are also formed on the surfaces of the first and second wells 22, respectively.
  • a thick oxide film 29 is selectively provided on the first main surface of the semiconductor substrate 6a.
  • FIG. 7 is a partial enlarged cross-sectional view showing the filling electrode, the multilayer wiring portion, and the like.
  • a multilayer wiring portion 7a is formed by alternately laminating insulating layers 30 and wiring layers (wiring) 31 in a predetermined pattern.
  • the electrode pad 32 is formed by the uppermost wiring layer. Part of the electrode pad 32 is exposed. A post electrode 9a is formed on the exposed portion. Therefore, the exposed part is a hole with a diameter of about 10 zm.
  • FIG. 6 shows a lowermost insulating layer 30 and a wiring layer (wiring) 31 of the multilayer wiring section 7a.
  • the filling electrode 12 is formed on the semiconductor substrate 6a.
  • the above-mentioned hole 33 is formed on the first main surface side of the semiconductor substrate 6a by a usual photolithography technique and photoetching. After that, an oxidation process is performed to form an insulating film 34 on the surface of the hole 33. Further, copper plating is performed to fill the holes 33 with a copper plating film to form the filling electrode 12.
  • the diameter of the filling electrode 12 is about 10 / im, and the depth is about 30 ⁇ . Thereby, a filling electrode and an electrode pad are formed (S12).
  • the filling electrode 12 is electrically insulated because it contacts the semiconductor substrate 6a via the insulating film.
  • the filling electrode 12 may be formed by spraying a conductive liquid by an ink jet method so as to cover the hole 33. In this case, after spraying, the filled conductive liquid is cured (baked). Further, a CVD film made of another metal, for example, tungsten, titanium, nickel, aluminum or an alloy thereof may be formed by CVD (vapor phase chemical growth).
  • the filling electrode 12 is electrically separated (independent) from the semiconductor substrate 6a.
  • the insulating layer 30 and the wiring layer (wiring) 31 are alternately formed in a predetermined pattern on the first main surface of the semiconductor substrate 6a, the filling electrode 12 is formed in the multilayer wiring portion 7a. Make electrical connection to the wiring.
  • a predetermined position on the first main surface of the semiconductor substrate 6a is plated to form a plurality of columnar post electrodes 9a (S13).
  • the post electrode 9a may form a CVD film of copper, tungsten, titanium, nickel, aluminum or an alloy thereof.
  • a first insulating layer 8a is formed on the first main surface of the semiconductor substrate 6a (S14).
  • the post electrode 9a is covered with the first insulating layer 8a.
  • an insulating organic resin such as an epoxy resin or a polyimide resin is used.
  • the first insulating layer 8a is formed by, for example, a transfer molding method or a squeegee printing method.
  • FIG. 9 is a schematic enlarged sectional view of a part of the semiconductor substrate on which the post electrode and the first insulating layer are formed.
  • a post electrode 9a is formed on the upper surface of the electrode pad 32, and the post electrode 9a is covered with a first insulating layer 8a.
  • the post electrode 9a is formed to be much thinner than the electrode pad 32. This assumes that the manufacturing process for ICs and the like that have electrode pads for connecting wires will be used as is. In ICs and the like, the electrode pads are square with a side force of about 0-100 / im to connect conductive wires. Therefore, in the embodiment, the post electrode 9a is provided on the electrode pad 32.
  • One method is to use the electrode pad 32 formed by the established IC process as a wiring portion for forming the post electrode 9a.
  • the present invention is not limited to this, and the post electrode 9a may be formed on a wiring portion having a small area.
  • FIG. 10 and FIG. 11 show examples (modifications) in which a post electrode 9 a having the same diameter as the electrode pad 32 is formed on the electrode pad 32.
  • the structure of FIG. 10 is an example in which the filling electrode 12 is formed at a relatively early stage of forming the multilayer wiring portion 7a. After forming the first and second insulating layers 30 on the first surface side of the semiconductor substrate 6a, holes 33 are formed in these two insulating layers 30 and the semiconductor substrate 6a, and then a plating film is formed in the holes 33. To form a filling electrode 12.
  • the structure shown in FIG. 11 is an example in which the filling electrode 12 is formed at a relatively late stage of forming the multilayer wiring portion 7a.
  • the formation of the hole 33 can be freely selected at a desired formation stage of the multilayer wiring portion 7a, and the predetermined wiring (wiring layer 31) of the multilayer wiring portion 7a Electrical connection with In FIGS. 9 to 10, some reference numerals are omitted because the structure is described in detail in FIGS.
  • the surface of the first insulating layer 8a is removed by a predetermined thickness (S15).
  • the surface of the first insulating layer 8a is polished so that the tip of the post electrode 9a is exposed. If the polishing amount is large, the thickness of the post electrode 9a is reduced, and the thickness of the first insulating layer 8a is also reduced.
  • the first insulating layer 8a is used as a strength member for supporting the semiconductor substrate 6a after the thickness of the semiconductor substrate 6a to be described later is reduced, so that, for example, the thickness of the first insulating layer 8a is reduced. To a thickness of about 50 ⁇ . If there is no problem in handling the semiconductor substrate 6a, the first insulating layer 8a may be further thinned. This leads to a reduction in the thickness of the first semiconductor device 2 and a reduction in the thickness of the stacked semiconductor device 1.
  • the semiconductor substrate 6a has a thickness of about 25 / m. Even if the semiconductor substrate 6a becomes thinner in this way, the first insulating layer 8a is thicker, so that the semiconductor substrate 6a can be prevented from being cracked or broken during handling.
  • the second main surface side of the semiconductor substrate 6a is etched by a predetermined thickness. Etching is performed by wet etching using a hydrofluoric acid-based etchant, and etching is not performed on the through electrode 12a. As a result, the tip of the through electrode 12a protrudes about 5 ⁇ m from the surface of the semiconductor substrate 6a having a thickness of about 20 ⁇ m (S17).
  • a second insulating layer 11a is formed on the silicon surface on the second main surface side of the semiconductor substrate 6a.
  • the second insulating layer 11a is formed so as to expose the tip of the through electrode 12a (S18).
  • the second insulating layer 11a is formed, for example, by spinner coating. Alternatively, it is formed by applying a squeegee print or a film-like material by heat treatment or by applying an insulating adhesive.
  • the thickness of the second insulating layer 11a is set so as to at least achieve electrical insulation.
  • the second insulating layer 11a it is possible to form the second insulating layer 11a by applying an insulating material that is hydrophobic for the through electrode 12a made of Cu and hydrophilic for Si. . That is, the tip of the through electrode 12a is exposed from the second insulating layer 11a by providing the second insulating layer 11a at about the height of the protrusion of the through electrode 12a.
  • Protrusion electrodes 10a and 13a are formed on the tips, respectively (S19).
  • the protruding electrodes 10a and 13a are, for example, bump electrodes made of solder holes, gold balls, gold-plated copper balls, or protruding electrodes formed by screen printing and heating.
  • a plating film for improving the connection may be formed on the exposed surfaces of the post electrodes and the through electrodes.
  • the semiconductor wafer is divided vertically and horizontally into individual pieces (S20).
  • the description has been made in the state of a single product forming unit instead of the state of the semiconductor wafer. Therefore, the divided first semiconductor device 2 also has the cross-sectional structure shown in FIG.
  • the individualization is performed after the formation of the bump electrodes.
  • the bump electrodes may be formed after the individualization.
  • FIG. 16 shows the semiconductor substrate 6a on the upper surface and the first insulating layer 8a on the lower surface.
  • FIG. 17 shows the semiconductor substrate 6a on the lower surface and the first insulating layer 8a on the upper surface. It is a side.
  • the first semiconductor device 2 is used as the lowermost semiconductor device in stacking and fixing. In this case, when the protruding electrode 10a is used as an external electrode terminal as shown in FIG. As shown in FIG. 7, the protruding electrode 13a is used as an external electrode terminal.
  • a normal test electrical characteristic inspection
  • the chips (first semiconductor devices 2) are housed in housing recesses 41 provided in a matrix on the upper surface of the tray 40, respectively.
  • First semi-conductor Since the upper surface and the rear surface of the body device 2 are each coated with an insulating material, tests can be performed simultaneously and in parallel by probe inspection. Defective products are excluded.
  • the protruding electrodes 13a of the first semiconductor device 2 are schematically shown.
  • an electrical characteristic test of a product (circuit) of each product forming portion of a semiconductor wafer is performed in a state of the semiconductor wafer. That is, the electrical characteristics inspection is performed by bringing the probe needle into contact with the exposed electrode of each product forming portion of the semiconductor wafer. In this embodiment, the same probe inspection is performed before the division, and each product forming portion is also inspected. It is also possible to measure and inspect the quality of products (circuits).
  • the first semiconductor device 2 is manufactured by the above method.
  • the third semiconductor device 4 stacked and fixed on the first semiconductor device 2 is manufactured by the same steps as those of the first semiconductor device 2, that is, by steps S11 to S21 shown in FIG. Manufactured. At this time, the third semiconductor device 4 should also be used in the form as shown in FIG. 16 or FIG. 17, that is, with the protruding electrode 10a positioned on the lower surface or the protruding electrode 13a positioned on the lower surface. Power S can. The choice is arbitrary, but it is necessary that the protruding electrode 10a or the protruding electrode 13a on the lower surface of the third semiconductor device 4 can be connected to the protruding electrode 10a or the protruding electrode 13a on the upper surface of the first semiconductor device 2. Must be formed.
  • the bump electrodes involved in the connection are provided on the first semiconductor device 2 on the lower side and the second semiconductor device 3 on the upper side. Need not be provided. Therefore, the third semiconductor device 4 may be stacked and fixed without a bump electrode as shown in the middle part of FIG. Further, a protruding electrode may be provided on one of the upper surface and the lower surface of the third semiconductor device 4 in the middle stage. In this case, the protruding electrode provided in the middle third semiconductor device 4, which does not need to be provided with the protruding electrode on the surface of the semiconductor device facing the surface provided with the protruding electrode, acts as a joined body.
  • the second semiconductor device 3 laminated and fixed on the upper surface of the third semiconductor device 4 has a structure in which either the through electrode 12a or the post electrode 9a is formed in the manufacture of the first semiconductor device 2. It is. That is, since it is the uppermost stage, external electrode terminals are not required on the upper surface.
  • a post electrode is not formed and a through electrode 12a is formed.
  • the formation of circuit elements on the semiconductor substrate (S11) is the same, but in (S12), only the filling electrodes are formed at the stage of forming the multilayer wiring portion. Then, the process proceeds to (S14). In this (S14), only the first insulating layer 8a is formed. Further, in (S15), since there is no post electrode, the thickness of the first insulating layer 8a is secured so that the relation with the post electrode does not need to be considered. Subsequent (S16), (S17) and (S18) are the same processing. In (S19), the protruding electrode 13b is formed only at the tip of the through electrode 12a. Then, the division of (S20) and the characteristic inspection of (S21) are performed to form the second semiconductor device 3 shown at the top in FIG.
  • FIG. 19 is a diagram showing three types of semiconductor devices (first semiconductor device 2, third semiconductor device 4, and second semiconductor device 3) formed in Example 1 separated from each other in the stacking order. It is.
  • the three semiconductor devices 2, 4, and 3 are aligned so that the connection portions overlap, and the protruding electrodes at the connection portions are temporarily heated and melted through a furnace to be joined.
  • the connection of the connection portions may be performed by locally heating the connection portions.
  • the connection between the first semiconductor device 2 and the third semiconductor device 4 is the protruding electrode 10a and the penetrating electrode 12c, and the connection between the third semiconductor device 4 and the second semiconductor device 3
  • the connection part is a post electrode 9c and a protruding electrode 13b. These form a conjugate.
  • the laminated semiconductor device 1 shown in FIGS. 1 to 3 can be manufactured.
  • the protruding electrode 13a on the lower surface of the lowermost first semiconductor device 2 becomes the external electrode terminal 5 (see FIG. 1).
  • FIG. 20 is a schematic cross-sectional view showing a mounting state of the stacked semiconductor device 1 manufactured by the method for manufacturing a stacked semiconductor device of the first embodiment.
  • the stacked semiconductor device 1 is mounted on the upper surface of a daughter board 45 composed of a multilayer wiring board.
  • the daughter board 45 has a plurality of bump electrodes 46 on the lower surface, and lands (not shown) are formed on the upper surface.
  • the layout pattern of the external electrode terminals 5 of the stacked semiconductor device 1 matches the layout pattern of the lands. Therefore, the stacked semiconductor device 1 can be mounted on the daughter board 45 by reflowing the external electrode terminals 5.
  • the manufacturing technique of the stacked semiconductor device 1 has been described.
  • the first semiconductor device 2 and the third semiconductor device 4 can be shipped as single products, respectively.
  • these semiconductor devices 2 and 4 are characterized in that a through electrode and a post electrode serving as electrodes respectively protrude from the upper and lower surfaces of the semiconductor device.
  • the stacked semiconductor device 1 formed by stacking and fixing the first, second, and third semiconductor devices 2, 3, and 4 includes a semiconductor substrate 2, 3, and 4, which is a semiconductor substrate.
  • the first insulating layers 8a, 8b, 8c are formed on the first main surface side of 6a, 6b, 6c, the second main surfaces of the semiconductor substrates 6a, 6b, 6c are removed by a predetermined thickness. Since the first insulating layers 8a, 8b, 8c function as strength members, the semiconductor substrates 6a, 6b, 6c can be made as thin as about 5-50 xm. Also, the thickness of the insulating layers 8a, 8b, 8c can be reduced to about 20 100 zm.
  • the stacked semiconductor device 1 having the stacked and fixed structure has a height (thickness) of about 200 to 380 ⁇ m in the case of the ball bump electrode, and has a height (thickness) of about 200 to 380 ⁇ m in the case of the bump electrode formed by printing. It can be as thin as 150-330 / m. Therefore, the thickness of a semiconductor device (integrated circuit device: three-dimensional integrated circuit device) having a multilayer laminated structure can be reduced.
  • connection between the lower semiconductor device and the upper semiconductor device is a columnar shape provided through the first insulating layer. Since the connection is made by using a post electrode or a through-hole electrode formed in a column shape penetrating through the semiconductor substrate, the current path is shortened, the inductance can be reduced, and the electrical characteristics of the stacked semiconductor device 1 are good. become.
  • the length of the post electrode and the penetrating electrode provided on the first insulating layer and the semiconductor substrate is as short as about 20-100 / im or 5-50 ⁇ ⁇ . It is much shorter than the length of ⁇ m or more. As a result, the stacked semiconductor device 1 can operate at high speed.
  • the stacked semiconductor device 1 of the first embodiment enables electrical connection between the lower semiconductor device and the upper semiconductor device without using an interposer. As a result, the number of assembly parts can be reduced, and the thickness of the stacked semiconductor device can be reduced.
  • an interposer lengthens the connection path (current path) between semiconductor chips or semiconductor devices, the use of an interposer allows the current path to be shortened and improves electrical characteristics. become.
  • the first, third, and second semiconductor devices 2, 4, and 3 are manufactured using the semiconductor substrates 6a, 6c, and 6b. Then, in the final stage, the semiconductor substrates 6a, 6c, and 6b are cut together with the insulating layer to manufacture the first, third, and second semiconductor devices 2, 4, and 3. Therefore, necessary processes other than the lamination and fixing of the first, third, and second semiconductor devices 2, 4, and 3 are performed at the wafer level, and the handling is good throughout the process, and unnecessary work is reduced. As a result, production costs can be reduced.
  • the stacked semiconductor device of the first embodiment it is possible to stack the semiconductor device in further multiple layers simply by matching the connection portions of the semiconductor devices stacked one on top of the other. Therefore, the stacked semiconductor device 1 with higher integration can be manufactured.
  • the stacked semiconductor device 1 of the first embodiment is different from the semiconductor devices of the first embodiment in that, as described in (7) above, except for the constraint of matching the connection portions of the semiconductor devices stacked one above the other.
  • the circuit to be formed can be designed freely. That is, if the above constraint is one of the design tools, the stacked semiconductor device 1 can be designed as if it were a single chip. At present, there is only a design tool that assumes one chip LSI (corresponding to each semiconductor device of the first embodiment).
  • the first semiconductor device 2 and the third semiconductor device 4 which are single products, have a structure in which a through electrode and a post electrode that serve as electrodes protrude from the upper and lower surfaces of the semiconductor device, respectively. And, due to the above (1) to (3), (5) and (6) derived from this feature, and simplification of the process, even a single semiconductor device can be made thinner, faster, The integration density in the two-dimensional direction can be improved, and the cost can be reduced because the manufacturing is performed in a wafer state.
  • FIG. 21 is a schematic cross-sectional view of a stacked semiconductor device according to a second embodiment of the present invention.
  • An underfill layer 50, 51 is formed by filling an insulating resin in a gap between the device 3 and the device. Since the gaps are filled by the underfill layers 50 and 51, short-circuit failure due to foreign matter mixing or the like can be prevented.
  • the insulating resin for example, a polyimide resin is filled in the gap in a vacuum atmosphere, and then cured by beta treatment.
  • FIGS. 22 (a) and 22 (b) are schematic cross-sectional views of a two-layer fixed type stacked semiconductor device 1 according to a third embodiment of the present invention.
  • FIGS. 22 (a) and 22 (b) both show a case where the semiconductor substrates 6a and 6b are turned up and the first insulating layers 8a and 8b are turned down and fixed. In each case, the protruding electrode 10a on the lower surface of the first semiconductor device 2 becomes the external electrode terminal 5.
  • the second semiconductor device 3 is stacked and fixed with the projection electrode 13a on the upper surface of the first semiconductor device 2 serving as a joined body. That is, the structure is such that the protruding electrode 13a attached to the through electrode 12a on the upper surface side of the first semiconductor device 2 is connected to the post electrode 9b on the lower surface of the second semiconductor device 3.
  • the electrode is not exposed on the upper surface side of the second semiconductor device 3, that is, the semiconductor substrate 6b is not provided with the through electrode 12b.
  • a through electrode 12b is provided on the semiconductor substrate 6b on the upper surface side of the second semiconductor device 3.
  • the through electrode 12b has a diameter similar to that of the through electrode 12b as in the case of the first embodiment, and has a thick through electrode 12b shown at both ends of the drawing.
  • the structure is
  • the thick through electrode 12b has the same diameter as the electrode pad as described with reference to FIG. 10, and can connect a wire, for example. That is, it is possible to connect between the pad of the dough turbocharger and the conductive wire.
  • the plurality of thin through electrodes 12b are connected to one end of the electrode plate 55 connected to the ground of the dough board, for example, as in the first embodiment.
  • the structure in which the through electrode 12b is exposed on the upper surface of the second semiconductor device 3 in the upper stage increases the margin of circuit design (mounting design) including the daughter board.
  • an active element such as a chip resistor, a chip capacitor, or a chip inductor may be mounted on the upper surface of the second semiconductor device 3.
  • the electrode of each active element is electrically connected to the through electrode 12b.
  • FIG. 23 and FIG. 24 are diagrams related to the method of manufacturing the stacked semiconductor device according to the fourth embodiment of the present invention.
  • the stacked semiconductor device 1 is manufactured through steps S11 to S22 in substantially the same manner as in the first embodiment, but the connection between the first semiconductor device 2 and the third semiconductor device 4 is performed. Is based on metal-to-metal bonding by ultrasonic vibration without using protruding electrodes. Therefore, their manufacture differs in some parts.
  • the surface of the first insulating layer 8a is polished and removed to a predetermined thickness to expose the post electrode 9a.
  • a second hardening treatment (curing) is performed so that the first insulating layer 8a is accompanied by curing shrinkage.
  • the tip of the post electrode 9a protrudes from the surface of.
  • the protrusion length is about 10 / m. This protruding length is a length necessary for effective bonding between metals by ultrasonic vibration.
  • FIG. 24 (a) shows the stacking order, in which the first semiconductor device 2 is located at the lowermost layer.
  • FIG. 3 is a diagram in which a third semiconductor device 4 is located on the second semiconductor device 3 and the second semiconductor device 3 is located on the third semiconductor device 3 at a distance therefrom.
  • the third semiconductor device 4 is positioned and placed on the first semiconductor device 2, and the post electrode 9a made of Cu on the upper surface of the first semiconductor device 2 is placed. Ultrasonic vibration is applied relatively to the through-electrode 12c made of Cu on the lower surface of the third semiconductor device 4 to rub them, and the rubbed surfaces of the post electrode 9a and the through-electrode 12c are bonded by metal-to-metal bonding (metal bonding). Connect.
  • the second semiconductor device 3 is stacked and fixed on the third semiconductor device 4 by the same method as in the first embodiment, and the stacked semiconductor device 1 as shown in FIG.
  • the gap between the first semiconductor device 2 and the third semiconductor device 4 is filled with an insulating underfill layer 50
  • the third semiconductor device 4 and the second A gap between the semiconductor device 3 and the semiconductor device 3 is filled with an insulating underfill layer 51.
  • the first semiconductor device 2 and the third semiconductor device 4 are stacked and fixed without using protruding electrodes, so that there is a feature that the thickness can be further reduced.
  • FIGS. 25 (a) and (b) are cross-sectional views of each step showing a part of the method for manufacturing a stacked semiconductor device which is Embodiment 5 of the present invention.
  • the fifth embodiment is an example in which the layers are fixed by metal bonding similarly to the fourth embodiment.
  • the third semiconductor device 4 is bonded on the third semiconductor device 4 by metal bonding. It is to be fixed by lamination.
  • the post electrodes 9a and 9c of the first semiconductor device 2 and the third semiconductor device 4 are formed.
  • the tip protrudes about 10 ⁇ m from the surface of the first insulating layers 8a and 8c.
  • FIG. 25 (a) shows the stacking order, in which the first semiconductor device 2 is located at the lowermost layer, the third semiconductor device 4 is located thereon, and the second semiconductor device 4 is located thereover.
  • FIG. 3 is a diagram in which a semiconductor device 3 is positioned apart.
  • the third semiconductor device 4 is positioned and mounted on the first semiconductor device 2, and the post electrode 9 a made of Cu on the upper surface of the first semiconductor device 2 is placed. Ultrasonic vibration is applied to the through electrode 12c made of Cu on the lower surface of the third semiconductor device 4 to rub it. Then, the rubbed surfaces of the post electrode 9a and the through electrode 12c are connected by metal-to-metal bonding (metal bonding).
  • the second semiconductor device 3 is positioned and mounted on the third semiconductor device 4, and a post made of Cu on the upper surface of the third semiconductor device 4 is formed.
  • the electrode 9c is rubbed against the through electrode 12b made of Cu on the lower surface of the second semiconductor device 3 by ultrasonic vibration, and the rubbed surfaces of the post electrode 9c and the through electrode 12b are bonded between metals (metal bonding). Is connected by.
  • the gap between the first semiconductor device 2 and the third semiconductor device 4 is filled with an insulating underfill layer 50, and the third semiconductor device 4 A gap with the second semiconductor device 3 is filled with an insulating underfill layer 51.
  • the thickness can be further reduced.
  • FIG. 26 is a schematic cross-sectional view showing a state where the stacked semiconductor device according to the sixth embodiment of the present invention is mounted on a daughter board.
  • the semiconductor substrates 6a, 6b, and 6c are all located on the upper surface side.
  • the first insulating layers 8a, 8b, 8c are stacked and fixed in a state where they are located on the lower surface side. Then, the protruding electrode 10a of the first semiconductor device 2 is connected to and mounted on a land (not shown) of the daughter board 45.
  • FIG. 27 is a schematic sectional view showing a state in which the stacked semiconductor device according to the seventh embodiment of the present invention is mounted on a daughter board.
  • the semiconductor substrates 6a and 6b are located on the upper surface side, and the first insulating layers 8a and 8b are located on the lower surface side.
  • the third semiconductor device 4 is of a mixed type in which the semiconductor substrate 6c is located on the lower surface side and the first insulating layer 8c is located and fixed on the upper surface side. ing. Then, the protruding electrode 10a of the first semiconductor device 2 is connected to a land (not shown) of the daughter board 45 and mounted.
  • FIG. 28 is a schematic sectional view showing a state in which the stacked semiconductor device according to the eighth embodiment of the present invention is mounted on a daughter board.
  • semiconductor devices 4A and 4B which are third semiconductor devices 4 in the middle stage, which are smaller than the first semiconductor device 2, are arranged in parallel on the first semiconductor device 2 and fixed.
  • the semiconductor devices 3A and 3B to be the second semiconductor device 3 are stacked and fixed on the semiconductor devices 4A and 4B, respectively. That is, in the eighth embodiment, a plurality of middle-stage third semiconductor devices 4 are arranged in parallel on the first semiconductor device 2 having the largest area, and the upper-stage third semiconductor device 4 is further arranged on these third semiconductor devices 4.
  • the second semiconductor devices 3 are stacked and fixed.
  • the third semiconductor device in the middle stage may be stacked and fixed over a plurality of stages between the first semiconductor device in the lower stage and the second semiconductor device in the upper stage to further improve the degree of integration. .
  • the semiconductor substrate of one of the first to third semiconductor devices is a silicon substrate, and the semiconductor substrate of another semiconductor device is a compound semiconductor substrate. It is. Then, a circuit element suitable for each semiconductor substrate is formed.
  • the semiconductor substrate 6a of the first semiconductor device 2 is a silicon substrate
  • the semiconductor substrate 6cA of the semiconductor device 3A is a compound semiconductor (for example, a GaAs substrate).
  • the third semiconductor devices 4A and 4B in the middle stage are indicated with A or B at the end. In the upper second semiconductor devices 3A and 3B, A or B is added at the end.
  • all the components to be incorporated in the stacked semiconductor device 1 may be a semiconductor device and may be a stack of electronic components and other components.
  • chip components such as resistors and capacitors, MEMS (Micro electro Mechanical System), biochips, etc. may be stacked and fixed.
  • the semiconductor substrate may be a silicon substrate, and the semiconductor substrate may be a compound semiconductor substrate.
  • FIG. 29 shows a state where the stacked semiconductor device according to the ninth embodiment of the present invention is mounted on a daughter board. It is a typical sectional view of a state.
  • a metal plate 60 is interposed between the first semiconductor device 2 and the semiconductor device 4B thereon, and a metal plate 70 is interposed between the semiconductor device 4B and the semiconductor device 3B. This is an example of sandwiching.
  • the metal plate 70 is configured to be at the ground potential
  • the metal plate 60 is configured to be at the power supply potential (reference potential) such as Vcc.
  • a metal plate 60 having an insulating hole 61 is interposed between the first semiconductor device 2 and the semiconductor device 4B.
  • the penetrating electrode 12a on the upper surface of the first semiconductor device 2 and the post electrode 9cB on the lower surface of the semiconductor device 4B are connected to the protruding electrode 13a and the protruding electrode without contacting the metal plate 60. It is electrically connected via 10cB.
  • the through electrode 12a facing the metal plate 60 of the first semiconductor device 2 and the semiconductor device 4B and the post electrode 9cB on the lower surface of the semiconductor device 4B are electrically connected to each other via the protruding electrodes 13a and the protruding electrodes 10cB. Connected. Since the distance between the through electrode 12a and the post electrode 9cB increases due to the interposition of the metal plate 60, the protruding electrode 13a and the protruding electrode 10cB used for connection at the insulating hole 61 are connected to the metal plate 60. The projection electrode 13a and the projection electrode 10cB are larger.
  • a metal plate 70 having an insulating hole 71 is also interposed between the semiconductor device 4B and the semiconductor device 3B.
  • the contact electrode 12bB on the upper surface of the semiconductor device 4B and the post electrode 9bB on the lower surface of the semiconductor device 3B are electrically connected to the metal plate 70 without contact with the metal plate 70 via the projection electrode 13cB and the projection electrode 10bB.
  • the through electrode 12cB and the post electrode 9bB facing the metal plate 70 of the semiconductor device 4B and the semiconductor device 3B are electrically connected via the protruding electrode 13cB and the protruding electrode 10bB.
  • the protruding electrodes 13cB and the protruding electrodes 10bB used for connection at the insulating hole 71 are connected to the metal plate 70. It is larger than the protruding electrodes 13cB and the protruding electrodes 10bB.
  • the gap between the first semiconductor device 2 and the semiconductor device 4B is closed by the underfill layer 80, and the gap between the semiconductor device 4B and the semiconductor device 3B is closed by the underfill layer 81. It is broken.
  • the power supply and the ground of the stacked semiconductor device 1 are stabilized by the presence of the metal plate 70 serving as the ground potential and the metal plate 60 serving as the power supply potential (reference potential) such as Vcc.
  • the operation is stable and good electrical characteristics can be obtained.
  • the post electrode may be formed by a force stud bump formed by plating.
  • a gold wire is connected to an electrode pad by a thermocompression bonding method (ball bonding method) to form a nail head, and then a protruding electrode formed by cutting the wire at the base of the nail head is formed in several steps. It is a method of forming by overlapping.
  • the stacked semiconductor device according to the present invention can be used as a thin three-dimensional integrated circuit device suitable for high-speed operation.
  • the stacked semiconductor device according to the present invention can simulate each of the semiconductor devices in the stacked semiconductor device by simulating the design of the system “in” package on the basis of performance, cost, ease of test, and the like. Equipment can be allocated. Therefore, according to the present invention, it is possible to provide a small-sized, thin, and inexpensive stacked semiconductor device having excellent electrical characteristics and high-speed operability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Ceramic Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 薄型でかつ高速動作に適した積層型半導体装置である。  半導体基板の一面に所定回路を複数整列配置形成し、回路に電気的に繋がる配線及び絶縁層を順次所定パターンに積層形成して多層配線部を形成し、多層配線部を形成する段階で半導体基板に表面が絶縁膜で覆われる充填電極を形成し、多層配線部の所定の配線上にポスト電極を形成し、半導体基板の一面に第1の絶縁層を形成し、第1の絶縁層の表面を所定厚さ除去してポスト電極を露出させ、半導体基板の他の一面を研削して充填電極を露出させて貫通電極を形成し、半導体基板の一面をエッチングして貫通電極を先端を突出させ、貫通電極の先端を露出させる状態で半導体基板の一面に第2の絶縁層を形成し、両電極に突起電極を形成し、半導体基板を分割して半導体装置を形成する。この方法で得た複数の半導体装置を突起電極で積層固定して積層型半導体装置を製造する。

Description

明 細 書
半導体装置及びその製造方法
技術分野
[0001] 本発明は、薄型化及び高速動作化が図れる半導体装置及びその製造方法に係わ り、特に、複数の半導体装置を順次積層する積層型半導体装置の製造技術に適用 して有効な技術に関する。
背景技術
[0002] 各種電子装置の多機能'小型化に伴い、電子装置に組み込まれる半導体装置も 小型のうちにも多くの回路素子を内蔵する構造になってきている。半導体装置 (集積 回路装置)の集積密度を向上させる方法として、三次元積層型半導体装置が知られ ている。
[0003] 例えば、インターポーザ上に複数段に亘つて貫通電極を有する LSIチップを積層 固定して高集積化を図る構造が提案されている (例えば、特許文献 1、非特許文献 1
) 0
[0004] また、集積回路を形成した第 1乃至第 3の半導体基板を積層した 3次元半導体装置 が知られている。この 3次元半導体装置においては、第 3の半導体装置は S〇I基板 を使用している(例えば、特許文献 2)。
[0005] また、 3次元積層 LSIの製造に必須な技術として、半導体基板に貫通電極を形成 する技術がある。シリコン(Si)ウェハに貫通電極を形成する現状のプロセスはまだェ 程数が多レ、(例えば、非特許文献 2)。
[0006] 特許文献 1 :特開 2003— 46057号公報
特許文献 2 :特開 2001 - 250913号公報
非特許文献 1 :電気学会電子材料研究会資料、 VOL.EFM-02-6,No. l-8 ,P31_35 非特許文献 2:表面技術、 VOし 52,No.7,2001,P479-483
発明の開示
発明が解決しょうとする課題
[0007] 従来の 3次元積層型半導体装置では以下のような問題がある。 [0008] (1) LSIチップを多層に積層(例えば 3チップ以上)する構造では、主に個別にイン ターポーザを設けて、そのインターポーザを介して積層することが多レ、。この場合、特 性面から個別フリップチップ工法が採用されることが多レ、。フリップチップ実装はコスト が高くなる。また、個別にインターポーザを介するためにチップ間の接続経路が長く なり特性面でも劣化する。
[0009] (2)フリップチップに代えるボンディングワイヤによる接続は 3層もしくは 4層くらいま で可能である。しかし、ワイヤ本数の増加と共に工程数が長くなる。また、ワイヤ故に 接続経路が長くなりインピーダンスの増加によって特性劣化(高速動作化)に繋がる 。さらに、薄型ベアチップのハンドリングに問題があり、全体の薄型化には限界がある
[0010] (3)完成品の歩留まりを上げるためには、実装 (積層)前にベアチップで最終テスト を実施しておかなければならなレ、が、ベアチップでの最終テスト、所謂 KGD (Known Good Die)での最終テストのコストは現状ではハンドリングの難しさで非常に高い。
[0011] (4) 1チップ上に複数箇所で積層する場合は精々 2段までが限界であり、またこの 場合でも接続経路が長くなり特性に影響を与え易い。
[0012] システム'イン'パッケージ(SiP)は、システム.オン.チップ(SoC)に比べ開発コスト 、開発期間が圧倒的に小さぐこれ力 の高性能半導体の一角を担う技術である。 Si Pはすでに携帯電話やデジタルカメラ等で使われているが、さらに高集積化の要求 が高まっている。このため近い将来は 4層、 5層の積層の要求も出てくると予想され、 さらにその組み合わせはフレキシビリティが要求されるものと想定される。
[0013] 本発明の一つの目的は、半導体装置間の接続経路が短くできる特性の優れた積 層型半導体装置を提供することにある。
[0014] 本発明の一つの目的は、構成の異なる多種の半導体装置を複数段に亘つて積層 できる薄型の積層型半導体装置を提供することにある。
[0015] 本発明の一つの目的は、生産性が良好で信頼性が高い薄型の積層型半導体装置 を安価に製造できる半導体装置の製造方法を提供することにある。
[0016] 本発明の一つの目的は、構成の異なる多種の半導体装置を含む電子部品を複数 段に亘つて容易に積層できる積層型半導体装置の製造方法を提供することにある。 [0017] 本発明の一つの目的は、外部との接続経路が短くでき、薄型でかつ製造コストが安 価になる半導体装置を提供することにある。
本発明の前記ならびにそのほかの目的と新規な特徴は、本明細書の記述および添 付図面からあきらかになるであろう。
課題を解決するための手段
[0018] 本願において開示される発明のうち代表的なものの概要を簡単に説明すれば、下 記のとおりである。
(1)本発明の積層型半導体装置は、下面に外部電極端子を有する第 1の半導体 装置と、前記第 1の半導体装置と接合体を介して電気的に接続され前記第 1の半導 体装置上に固定される第 2の半導体装置と、前記第 1の半導体装置と第 2の半導体 装置との間に接合体を介して順次積層固定される第 3の半導体装置を有する積層型 半導体装置であって、
前記第 1の半導体装置は、
半導体基板と、
前記半導体基板の第 1の主面側に形成された複数の回路素子及び前記回路素子 に接続する配線を含む多層配線部と、
前記多層配線部を覆う第 1の絶縁層と、
前記半導体基板の第 1の主面の反対面になる第 2の主面を覆う第 2の絶縁層と、 前記多層配線部のそれぞれ所定の配線上に形成され前記第 1の絶縁層の表面に露 出する複数のポスト電極と、
前記多層配線部の所定深さから前記半導体基板及び前記第 2の絶縁層を貫通して 設けられ、前記半導体基板に絶縁膜を介して接触し、かつ前記多層配線部のそれ ぞれ所定の配線に接続される複数の貫通電極とを有し、
前記第 2の半導体装置は、
半導体基板と、
前記半導体基板の第 1の主面側に形成された複数の回路素子及び前記回路素子 に接続する配線を含む多層配線部と、
前記多層配線部を覆う第 1の絶縁層と、 前記半導体基板の第 1の主面の反対面になる第 2の主面を覆う第 2の絶縁層と、 前記多層配線部のそれぞれ所定の配線上に形成され前記第 1の絶縁層の表面に露 出するポスト電極、または前記多層配線部の所定深さから前記半導体基板及び前記 第 2の絶縁層を貫通して設けられ、前記半導体基板に絶縁膜を介して接触し、かつ 前記多層配線部のそれぞれ所定の配線に接続される複数の貫通電極とを少なくとも 有し、
前記第 3の半導体装置は、
半導体基板と、
前記半導体基板の第 1の主面側に形成された複数の回路素子及び前記回路素子 に接続する配線を含む多層配線部と、
前記多層配線部を覆う第 1の絶縁層と、
前記半導体基板の第 1の主面の反対面になる第 2の主面を覆う第 2の絶縁層と、 前記多層配線部のそれぞれ所定の配線上に形成され前記第 1の絶縁層の表面に露 出する複数のポスト電極と、
前記多層配線部の所定深さから前記半導体基板及び前記第 2の絶縁層を貫通して 設けられ、前記半導体基板に絶縁膜を介して接触し、かつ前記多層配線部のそれ ぞれ所定の配線に接続される複数の貫通電極とを有し、
前記第 1の半導体装置は前記ポスト電極または前記貫通電極が下面になり、該下面 のポスト電極または貫通電極には前記外部電極端子が設けられ、
前記第 1の半導体装置の上面の前記ポスト電極または前記貫通電極に、前記第 3の 半導体装置の下面の前記貫通電極または前記ポスト電極が前記接合体を介して電 気的に接続され、
前記第 3の半導体装置の上面の前記ポスト電極または前記貫通電極上に、前記第 2 の半導体装置の下面の前記ポスト電極または前記貫通電極が前記貫通電極を介し て電気的に接続されている。
このような積層型半導体装置は、
(a)半導体基板の第 1の主面に所定回路素子を含む製品形成部を複数整列配置形 成する工程と、 (b)前記各製品形成部に前記回路素子に電気的に繋がる配線及び絶縁層を順次 所定パターンに積層形成して多層配線部を形成する工程と、
(c)前記多層配線部を形成する段階において、前記多層配線部の所定深さから前 記半導体基板の前記第 1の主面の反対面になる第 2の主面に向かい、かつ表面に 絶縁膜を有する孔を複数形成するとともに、この孔に導体を充填して前記多層配線 部の所定の配線に電気的に接続される充填電極を形成する工程と、
(d)前記多層配線部のそれぞれ所定の配線上にポスト電極を形成する工程と、
(e)前記半導体基板の第 1の主面に前記ポスト電極を覆う第 1の絶縁層を形成する 工程と、
(f)前記第 1の絶縁層の表面を所定厚さ除去して前記ポスト電極を露出させる工程と
(g)前記半導体基板の第 2の主面をその表面から所定厚さ除去して前記充填電極を 露出させて貫通電極を形成する工程と、
(h)前記半導体基板の第 2の主面を所定厚さエッチング除去して前記貫通電極を所 定の長さ突出させる工程と、
(i)前記貫通電極の先端を露出させる状態で前記半導体基板の第 2の主面に所定 の厚さの第 2の絶縁層を形成する工程と、
(j)前記半導体基板を前記第 1及び第 2の絶縁層を含めて縦横に切断して前記各製 品形成部を分割する工程とを有し、
(k)前記工程 (i)の後、または前記工程 (j)の後に、前記貫通電極及び前記ポスト電 極のうちの所定の露出端に突起電極を形成する工程とを有し、
前記工程 (a)乃至工程 (k)によって、前記第 1の半導体装置及び第 3の半導体装置 を形成し、
前記工程 (a)乃至工程 (k)における工程の選択によって、前記貫通電極のみまたは 前記ポスト電極のみを下面に有する第 2の半導体装置を形成し、
つぎに、前記第 1の半導体装置を前記貫通電極または前記ポスト電極が下面になる ようにして下面の前記電極を前記外部電極端子とし、その後、前記第 3の半導体装 置の下面の前記貫通電極または前記ポスト電極を前記第 1の半導体装置の上面の 前記貫通電極または前記ポスト電極に重ねて前記突起電極の一時的加熱処理によ つて接続し、
つぎに、前記第 2の半導体装置の下面の前記貫通電極または前記ポスト電極を前記 第 3の半導体装置の上面の前記貫通電極または前記ポスト電極に重ねて前記突起 電極の一時的加熱処理によって接続して積層型半導体装置を製造する。
前記貫通電極のみを有する前記第 2の半導体装置は、
前記半導体基板の第 1の主面に所定回路素子を含む製品形成部を複数整列配置 形成する工程と、
前記各製品形成部に前記回路素子に電気的に繋がる配線及び絶縁層を順次所定 パターンに積層形成して多層配線部を形成する工程と、
前記多層配線部を形成する段階において、前記多層配線部の所定深さから前記半 導体基板の前記第 1の主面の反対面になる第 2の主面に向かい、かつ表面に絶縁 膜を有する孔を複数形成するとともに、この孔に導体を充填して前記多層配線部の 所定の配線に電気的に接続される充填電極を形成する工程と、
前記半導体基板の第 1の主面に第 1の絶縁層を形成する工程と、
前記半導体基板の第 2の主面をその表面から所定厚さ除去して前記充填電極を露 出させて貫通電極を形成する工程と、
前記半導体基板の第 2の主面を所定厚さエッチング除去して前記貫通電極を所定 の長さ突出させる工程と、
前記半導体基板の第 2の主面に所定の厚さの第 2の絶縁層を形成して前記貫通電 極の先端を露出させる工程と、
前記半導体基板を前記第 1及び第 2の絶縁層を含めて縦横に切断して前記各製品 形成部を分割する工程と、
前記分割する工程の前後に前記貫通電極の露出部分に突起電極を形成する工程と によって形成する。
前記ポスト電極のみを有する前記第 2の半導体装置は、
半導体基板の第 1の主面に所定回路素子を含む製品形成部を複数整列配置形成 する工程と、 前記各製品形成部に前記回路素子に電気的に繋がる配線及び絶縁層を順次所定 パターンに積層形成して多層配線部を形成する工程と、
前記多層配線部のそれぞれ所定の配線上にポスト電極を形成する工程と、 前記半導体基板の第 1の主面に前記ポスト電極を覆う第 1の絶縁層を形成する工程 と、
前記第 1の絶縁層の表面を所定厚さ除去して前記ポスト電極を露出させる工程と、 前記半導体基板の第 2の主面をその表面から所定厚さ除去して前記半導体基板を 薄くする工程と、
前記半導体基板の第 2の主面に所定の厚さの第 2の絶縁層を形成する工程と、 前記半導体基板を前記第 1及び第 2の絶縁層を含めて縦横に切断して前記各製品 形成部を分割する工程と、
前記分割する工程の前後に前記ポスト電極の露出部分に突起電極を形成する工程 とによって形成する。
[0020] (2)上記(1)の構成において、前記第 1の半導体装置上に前記第 1の半導体装置 よりも小さい第 2の半導体装置が複数個並列配置固定されていることを特徴とする。 発明の効果
[0021] 本願において開示される発明のうち代表的なものによって得られる効果を簡単に説 明すれば、下記のとおりである。
前記(1)の手段によれば、 (a)第 1及び第 3並びに第 2の半導体装置は、その製造 において、半導体基板の第 1の主面側に第 1の絶縁層を形成した後、半導体基板の 第 2の主面を所定厚さ除去するが、前記第 1の絶縁層が強度部材として作用すること から、半導体基板を 5 50 x m程度と薄くすることができる。また、絶縁層の厚さも 20 一 100 z m程度と薄くできることから、突起電極の厚さを考慮しない状態では、各半 導体装置は、例えば、 40 100 z m程度の厚さにすることができ、積層型半導体装 置の薄型化が達成できる。半導体基板及び絶縁層の厚さを下限の数値とすれば、さ らに薄型化が図れる。
[0022] (b)第 1及び第 3並びに第 2の半導体装置において、下段側の半導体装置と上段 側の半導体装置の接続は、第 1の絶縁層に貫通して設けられる柱状になるポスト電 極や半導体基板に貫通して設けられる柱状になる貫通電極を利用して接続されるた め、電流経路が短くなり、インダクタンスの低減が達成でき、積層型半導体装置の電 気特性が良好になる。第 1の絶縁層や半導体基板に設けられるポスト電極や貫通電 極は、その長さが 5— 50 z m程度と短ぐワイヤ接続によるボンディングワイヤの数百 z m以上の長さに比較して充分短くなる。これにより、積層型半導体装置の高速動作 が可能になる。
[0023] (c)半導体基板に設ける貫通電極は、回路素子を形成する領域から外れた領域に 形成する制約はあるものの配線領域等比較的自由に配置位置を選択することができ る。また、多層配線部の所定の配線に接続するポスト電極は、配線の引き回しによつ て比較的自由に配置位置を決定できる。従って、貫通電極及びポスト電極を設ける 位置を選択することによって、 2次元方向の集積密度向上を図ることができる。
[0024] (d)本発明の積層型半導体装置は、インターポーザを使用することなく下段側の半 導体装置と上段側の半導体装置の電気的接続が可能になる。この結果、組立部品 点数の低減を図ることができるとともに、積層型半導体装置の薄型化が図れる。イン ターポーザの使用は、半導体チップ間または半導体装置間の接続経路 (電流経路) を長くしてしまうが、インターポーザを使用しないことで電流経路の短縮が可能になり 、電気特性の向上が図れるようになる。
[0025] (e)本発明の積層型半導体装置の製造において、第 1及び第 3並びに第 2の半導 体装置は、その製造において、半導体ウェハを使用して製造し、最終段階で絶縁層 と共に切断して第 1及び第 3並びに第 2の半導体装置を製造する。従って、第 1及び 第 3並びに第 2の半導体装置の積層固定以外の必要なプロセスはウェハレベルで実 施されるため、工程を通してハンドリング性がよく無駄な作業が少なくなる。この結果 、生産コストの低減を図ることができる。
(2)上記構成(1)によれば、前記第 1の半導体装置上に前記第 1の半導体装置よりも 小さい第 2の半導体装置を複数個並列配置固定することから、更なる集積度向上を 図ること力 Sできる。
図面の簡単な説明
[0026] [図 1]本発明の実施例 1である積層型半導体装置の模式的断面図である。 [図 2]前記積層型半導体装置の外観を示す模式的斜視図である。
[図 3]前記積層型半導体装置の模式的底面図である。
園 4]実施例 1の積層型半導体装置の製造方法を示すフローチャートである。
園 5]前記製造方法において、 IC等を形成した半導体基板に充填電極を形成した模 式的断面図である。
[図 6]前記充填電極及び多層配線部の下層部分を示す半導体基板の一部の模式的 拡大断面図である。
[図 7]前記充填電極及び多層配線部等を示す一部の模式的拡大断面図である。
[図 8]前記半導体基板の第 1の主面にポスト電極及び第 1の絶縁層を形成した状態を 示す模式的断面図である。
園 9]前記ポスト電極及び第 1の絶縁層を形成した半導体基板の一部の模式的拡大 断面図である。
園 10]実施例 1の変形例である充填電極構造を示す一部の模式的拡大断面図であ る。
園 11]実施例 1の他の変形例である充填電極構造を示す一部の模式的拡大断面図 である。
園 12]前記第 1の絶縁層の表面を所定厚さ除去してポスト電極を露出させた状態を 示す模式的断面図である。
園 13]前記半導体基板の第 2の主面を所定厚さ除去して充填電極を露出させて貫 通電極とした状態を示す模式的断面図である。
園 14]前記半導体基板の第 2の主面を所定厚さエッチングして貫通電極の先端を突 出させた状態を示す模式的断面図である。
[図 15]前記半導体基板の第 2の主面に貫通電極の先端を露出させるように第 2の絶 縁層を形成した状態を示す模式的断面図である。
園 16]前記貫通電極及びポスト電極の先端に突起電極を形成した状態を示す模式 的断面図である。
園 17]前記半導体基板を下面側にし、第 1の絶縁層が上面側なるようにした半導体 基板(半導体ウェハ)の模式的断面図である。 [図 18]実施例 1による積層型半導体装置をトレイに載置収容した模式的平面図であ る。
[図 19]実施例 1で形成した 3種類の半導体装置 (第 1の半導体装置,第 3の半導体装 置及び第 2の半導体装置)を積層順にそれぞれ離して示した模式図である。
[図 20]実施例 1による積層型半導体装置をドウターボードに実装した状態の模式的 断面図である。
[図 21]本発明の実施例 2である積層型半導体装置の模式的断面図である。
[図 22]本発明の実施例 3である 2層積層の積層型半導体装置の模式的断面図であ る。
[図 23]本発明の実施例 4である積層型半導体装置の製造方法の一部を示す各工程 の断面図である。
[図 24]本発明の実施例 4である積層型半導体装置の製造方法の一部を示す各工程 の断面図である。
[図 25]本発明の実施例 5である積層型半導体装置の製造方法の一部を示す各工程 の断面図である。
[図 26]本発明の実施例 6である積層型半導体装置をドウターボードに実装した状態 の模式的断面図である。
[図 27]本発明の実施例 7である積層型半導体装置をドウターボードに実装した状態 の模式的断面図である。
[図 28]本発明の実施例 8である積層型半導体装置をドウターボードに実装した状態 の模式的断面図である。
[図 29]本発明の実施例 9である積層型半導体装置をドウターボードに実装した状態 の模式的断面図である。
符号の説明
1…積層型半導体装置、 2…第 1の半導体装置、 3…第 2の半導体装置、 4…第 3の 半導体装置、 5…外部電極端子、 6a, 6b, 6c…半導体基板、 7a, 7b, 7c…多層配 線部、 8a, 8b, 8c…第 1の絶縁層、 9a, 9b, 9c…ポスト電極、 10a, 10b, 10c…突 起電極、 11a, l ib, 11c…第 2の絶縁層、 12…充填電極、 12a, 12b, 12c…貫通 電極、 13a, 13b, 13c" '突起電極、 21 · · ·第 1のウエノレ、 22· · ·第 2のウエノレ、 23· · ·ソ ース領域、 24…ドレイン領域、 25…絶縁ゲート膜、 26…ゲート電極、 27, 28…電極 、 29…厚い酸化膜、 30…絶縁層、 31…配線層(配線)、 32…電極パッド、 33…孔、 34…絶縁膜、 40…トレイ、 41…収容窪、 45…ドウターボード、 46…バンプ電極、 50 , 51 , 80, 81…アンダーフィノレ層、 60, 70…金属板、 61, 71…絶縁用穴。
発明を実施するための最良の形態
[0028] 以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、発明の実施 の形態を説明するための全図において、同一機能を有するものは同一符号を付け、 その繰り返しの説明は省略する。
実施例 1
[0029] 図 1乃至図 20は本発明の実施例 1である積層型半導体装置に係わる図である。図 1乃至図 3は積層型半導体装置の構造に係わる図であり、図 4乃至図 19は積層型半 導体装置の製造に係わる図であり、図 20は積層型半導体装置の実装状態を示す図 である。
[0030] 本発明の製造方法によって製造された積層型半導体装置 1は、図 2に示すように、 下段となる四角形状の第 1の半導体装置 2と、この第 1の半導体装置 2の上面に積層 固定される中段の第 3の半導体装置 4と、この第 3の半導体装置 4の上面に積層固定 される上段の第 2の半導体装置 3とからなっている。実施例 1の積層型半導体装置 1 は、第 1 ·第 2 ·第 3の半導体装置 2, 3, 4は平面的な寸法が同一となり、かつ一致し て重なっている。図 3は積層型半導体装置 1の底面を示す図である力 第 1の半導体 装置 2の下面に設けられた突起電極によって外部電極端子 5が形成されている。
[0031] 第 1 ·第 2 ·第 3の半導体装置 2, 3, 4において、各半導体装置は積層固定される面 側に貫通電極やポスト電極があるか否力、また貫通電極とポスト電極を接続するため の接合体があるか否かの違いであることから、各部の名称は同じ名称とし、符号は、 第 1の半導体装置 2では数字の末尾に aを付し、第 2の半導体装置 3では数字の末尾 に bを付し、第 3の半導体装置 4では数字の末尾に cを付して説明することにする。前 記接合体は貫通電極やポスト電極の露出端に設けた突起電極 (バンプ電極)を一時 的に加熱処理して形成されるものである。 [0032] 第 1の半導体装置 2は、四角形状の半導体基板 6aを有している。半導体基板 6aは 、例えば、シリコン (Si)からなり、その第 1の主面 (IC等の回路が形成される面であり、 図 1では上面)側には多層配線部 7aが形成され、かっこの多層配線部 7a上には絶 縁性樹脂からなる第 1の絶縁層 8aが設けられている。絶縁層は、一般に半導体装置 の製造に使用される樹脂、例えば、ポリイミド樹脂,エポキシ樹脂等の絶縁性の有機 樹脂で形成されている。半導体基板 6aは、例えば 20 x m程度の厚さになっている。 半導体基板 6aは 5— 50 z m程度の厚さとしてもよい。絶縁層は半導体装置を製造す るときの強度部材となることから、比較的厚ぐ例えば 50 x m程度である。なお、絶縁 層は 20 100 μ m程度であってもよレヽ。
[0033] また、第 1の絶縁層 8aを貫通し、多層配線部 7aの所定の配線に電気的に接続され る柱状の銅(Cu)からなるポスト電極 9aが設けられている。ポスト電極 9aは第 1の絶縁 層 8aの表面に露出している。ポスト電極 9aの露出部分には突起電極 10aが設けられ ている。突起電極 10aは、例えば、半田ボール,金ボール,表面が金メッキされた銅 ボール等からなるバンプ電極である。
[0034] 半導体基板 6aの第 1の主面には、各種構造のトランジスタやダイオード等の能動素 子や、抵抗素子,容量素子,インダクタ層等の受動素子が必要に応じて形成されて レ、る。ポスト電極 9aの直径は 10 μ ΐη程度であり、厚さは 50 μ ΐηである。ポスト電極 9a は直径が 10— 50 /i m程度とし、厚さが 20— 100 /i m程度としてもよレ、。また、突起 電極 10aは接続前の大きさで、例えば、 60 /i m程度の直径のボールで形成され、厚 さは 40 μ m程度となる。突起電極 10aは直径が 40— 80 μ m程度のボールを使用し て形成してもよい。
[0035] 半導体基板 6aの前記第 1の主面の裏側になる第 2の主面(図 1では下面)には絶縁 性樹脂からなる第 2の絶縁層 11aが設けられている。第 2の絶縁層 11aは、例えば、 ポリイミド樹脂で形成されている。第 2の絶縁層 11 aは、電気的絶縁性を確保できれ ばよい厚さであり、例えば、数 z m 10 x m程度である。本実施例では 程度に なっている。
[0036] また、多層配線部 7aの所定深さから半導体基板 6a及び第 2の絶縁層 11aを貫通 する貫通電極 12aが設けられている。この貫通電極 12aは多層配線部 7aの所定の 配線に電気的に接続されている。貫通電極 12aは、柱状の銅メツキで形成されている 。貫通電極 12aは、例えば直径 10 μ ΐη程度である。貫通電極 12aは直径数/ i m— 3 0 /i m程度であってもよレ、。貫通電極 12aは後述する力 S、その周面を絶縁膜を介して 半導体基板 6aに接し、半導体基板 6aから電気的に独立している。
[0037] また、貫通電極 12aは第 2の絶縁層 11aの表面に露出している。この貫通電極 12a の露出部分には突起電極 13aが設けられている。突起電極 13aは、例えば、金ボー ノレ、表面が金メッキされた銅ボール、半田ボール等からなるボールバンプ電極である 。突起電極 13aも突起電極 10aと同じ程度のボールである。なお、メツキや印刷(スク リーン印刷)で突起電極を形成してもよい。この場合、突起電極の厚さを 10 x m前後 にすることができる。
[0038] 実施例 1の積層型半導体装置 1では、第 1 ·第 2 ·第 3の半導体装置 2, 3, 4はいず れも第 1の絶縁層 8a, 8b, 8cが上になり、半導体基板 6a, 6b, 6cが下になる構造に なっている。
[0039] 中段の第 3の半導体装置 4においては、ポスト電極 9c及び貫通電極 12cのパター ンは第 1の半導体装置 2とは異なるが、他の部分は第 1の半導体装置 2と略同じ構造 になっている。なお、第 3の半導体装置 4では突起電極は設けていなレ、。これは積層 固定において、積層される相手側の半導体装置の突起電極を接続に使用することに よるものである。し力し、突起電極をポスト電極 9c,貫通電極 12cにそれぞれ設け、突 起電極同士の接続によって積層固定する方法を採用することもできる。
[0040] 中段の第 3の半導体装置 4は、半導体基板 6cの第 1の主面(上面)に多層配線部 7 c及び第 1の絶縁層 8cを有し、第 2の主面に第 2の絶縁層 11aを有している。そして、 第 1の絶縁層 8cには多層配線部 7cの所定の配線に電気的に接続される複数のボス ト電極 9cが設けられている。また、半導体基板 6cから第 2の絶縁層 11cを貫通し多層 配線部 7cの所定配線に電気的に接続される複数の貫通電極 12cを有している。この 貫通電極 12cもその周面に絶縁膜を有し、半導体基板 6cに対して絶縁分離されて いる。
[0041] 中段の第 3の半導体装置 4の下面側の貫通電極 12cと、下段の第 1の半導体装置 2の上面側のポスト電極 9aはそれぞれ対面し、突起電極 10aを介して電気的に接続 されている。突起電極 10aは一時的加熱処理によって接合体となり、接続部分を接 続するようになる。この接続によって第 1の半導体装置 2上に第 3の半導体装置 4が 積層固定されることになる。
[0042] 上段の第 2の半導体装置 3は、第 1の半導体装置 2において、上面のポスト電極を 設けない構成になっている。即ち、第 2の半導体装置 3は半導体基板 6bの第 1の主 面(上面)に多層配線部 7b及び第 1の絶縁層 8bを有し、第 2の主面に第 2の絶縁層 1 lbを有する構造になっている。また、半導体基板 6bから第 2の絶縁層 l ibを貫通す る貫通電極 12bを有している。貫通電極 12bは多層配線部 7bの所定配線に電気的 に接続されている。第 2の絶縁層 l ibの表面に露出する貫通電極 12bには突起電極 13bが設けられている。
[0043] 上段の第 2の半導体装置 3の下面側の貫通電極 12bと、中段の第 3の半導体装置 4の上面側のポスト電極 9cはそれぞれ対面し、突起電極 13bを介して電気的に接続 されている。この接続によって第 3の半導体装置 4上に第 2の半導体装置 3が積層固 定されることになる。
[0044] 第 1の半導体装置 2と第 3の半導体装置 4を接続する突起電極 10aが接合体となり 、第 3の半導体装置 4と第 2の半導体装置 3を接続する突起電極 13bが接合体となる 。直径 60 μ m程度のボールで突起電極を形成すると、厚さ 40 μ m程度の突起電極 を形成することができる。また突起電極で前記接合体を形成すると、接合体の厚さは 20 /i m程度の厚さになる。なお、ポスト電極や貫通電極に突起電極を形成する場合 、直接突起電極を形成し難いときは、貫通電極や突起電極の露出する面に所望のメ ツキ膜を形成しておけばょレ、。
[0045] 各半導体装置は、実施例で示した寸法域の所定の寸法をそれぞれ選択することに よって、その厚さを 40— 100 x m程度とすることができることから、 3段に積層固定し た積層型半導体装置 1は、ボールバンプ電極の場合では 200— 380 μ m程度になり 、印刷による突起電極の場合では 150 330 x m程度と極めて薄くなる。この積層型 半導体装置 1の高さはボールバンプ電極や印刷による突起電極の大きさ(厚さ)によ つて変化するものである。
[0046] 積層固定によって製造された積層型半導体装置 1では、半導体基板 6aの下面に 設けられた突起電極 13aが外部電極端子 5になる。第 1の絶縁層 8aを下面とするよう に第 1の半導体装置 2を使用する場合には、突起電極 10aが外部電極端子 5になる
[0047] つぎに、本実施例 1の積層型半導体装置 1の製造方法について説明する。図 4は 積層型半導体装置 1の製造方法を示すフローチャートである。このフローチャートは 、ステップ 11 (S11)からステップ 21 (S21)に至る段階では、下段の第 1の半導体装 置 2, 中段の第 3の半導体装置 4及び上段の第 2の半導体装置 3の製造段階を別々 のフローチャートで示し、 S22の段階で下段, 中段及び上段の半導体装置を積層固 定する内容になっている。
[0048] 下段の第 1の半導体装置 2は、半導体基板への回路素子形成(S11)、多層配線 部形成段階での充填電極及び電極パッド形成(S12)、ポスト電極形成(S13)、第 1 の絶縁層形成(ポスト電極坦め込み: S 14)、第 1の絶縁層表面除去(ポスト電極露出 : S15)、基板表面除去(貫通電極形成: S16)、基板表面エッチング(貫通電極突出 : S17)、第 2の絶縁層形成(貫通電極露出: S18)、突起電極形成(貫通電極'ポスト 電極: S19)、分割(個片化: S20)、特性検査(S21)の各工程を経て形成される。
[0049] 中段の第 3の半導体装置 4は、前記下段の第 1の半導体装置 2の製造段階と同じ 段階を経て製造するが、下面になる貫通電極 12cが下段の第 1の半導体装置 2の上 面のポスト電極 9aと対面するパターンで形成される。
[0050] 上段の第 2の半導体装置 3は、ポスト電極を形成しないことから、 S13の段階が不要 になる。また、ポスト電極を設けないことから、 S 14では第 1の絶縁層形成、 S15では 第 1の絶縁層表面除去となり、ポスト電極との係わりは考えなくともよくなる。
[0051] S21の段階で形成された第 1 ·第 3 ·第 2の半導体装置 2, 4, 3を、積層固定段階 (S 22)では順次重ね、例えばリフロー炉を通して積層固定して、図 1乃至図 3に示す積 層型半導体装置 1を製造する。
[0052] 実施例 1の積層型半導体装置 1のいずれの半導体装置もシリコン基板を使用した 半導体装置である。しかし、 GaAsや InP等の化合物半導体を使用した半導体装置と シリコン基板を使用した半導体装置の組み合わせであってもよい。この場合、半導体 部分には材料に適した回路素子が形成される。 [0053] つぎに、下段の第 1の半導体装置 2の製造について説明する。図 5は積層型半導 体装置 1の製造において、 IC等を形成した半導体基板 (シリコン基板)に充填電極を 形成した模式的断面図である。
[0054] 半導体装置の製造においては、一般に、面積が広い半導体ウェハが用意され、そ の後このウェハの第 1の主面に所定の回路素子を含む単位回路が形成される。この 単位回路はウェハの第 1の主面に縦横に整列配置形成される。その後、各処理を経 て、最終的には縦横に切断分離して多数の半導体素子(半導体チップ)を形成する 。この単位回路が形成される四角形状の領域 (部分)を本明細書では製品形成部と 呼称する。製品形成部と製品形成部との間には分割するためのスクライブラインある いは切断されるダイシング領域が位置してレ、る。最終的にはこのダイシング領域で切 断される。図 5以降では、単一の製品形成部のみを示すことにする。従って、特に支 障がない限り、名称の多くは完成品状態の名称で説明することにする。
[0055] 図 5に示すように、厚さ数 100 / mの半導体基板 6aを用意した後、この半導体基板 6aの第 1の主面に回路(回路素子)を形成する(S l l)。また、半導体基板 6aの第 1の 主面上には多層配線部 7aが形成される。この多層配線部 7aの形成の段階で半導体 基板 6aの第 1の主面に孔を形成する。その後孔の表面を酸化させ、ついでこの孔内 にメツキ膜を充填形成する。このメツキ膜の充填によって充填電極 12が形成される。 孔は、例えば、数 μ m— 30 μ m程度の直径で 5— 50 μ m程度の深さである。実施例 では、例えば、 10 μ ΐη程度の直径で 30 / m程度の深さとする。本実施例では、半導 体装置となった時点で、半導体基板 6aを薄くして第 1の半導体装置 2の薄型化を図 る。従って、薄型化をさらに進める場合は、前記孔をさらに浅くすることができ、孔カロ ェが容易になる。メツキ膜は、例えば、銅で形成する。充填電極 12を形成する方法 は他の方法でもよい。例えば、インクジェット方式で導電性粒子を孔内に吹き付けて 充填させ、その後熱処理によって硬化させて充填電極 12を形成する方法でもよい。 また、 CVD (気相化学成長法)によって、例えば、タングステン、チタン、ニッケノレ、ァ ノレミニゥムあるいはそれらの合金を充填させてもよい。
[0056] 図 6は前記充填電極及び多層配線部の下層部分を示す半導体基板の一部の模式 的拡大断面図である。半導体基板 6aは、第 1導電型の基板になっていて、第 1の主 面側の表層部分には第 2導電型の第 1のゥエル 21及び第 1導電型の第 2のゥエル 2 2が形成されている。第 1のゥエル 21には、例えば、ソース領域 23,ドレイン領域 24 及び絶縁ゲート膜 25が形成され、また絶縁ゲート膜 25上にゲート電極 26が形成さ れて電界効果トランジスタ(FET)が形成されている。また、第 1及び第 2のゥエル 22 の表面にもそれぞれ電極 27, 28が形成されている。半導体基板 6aの第 1の主面に は厚い酸化膜 29が選択的に設けられている。
[0057] 図 7は前記充填電極及び多層配線部等を示す一部の模式的拡大断面図である。
図 7に示すように、半導体基板 6aの第 1の主面には、絶縁層 30と配線層(配線) 31 が所定パターンで交互に積層形成されて多層配線部 7aが形成されている。そして、 最上層の配線層によって電極パッド 32が形成されている。この電極パッド 32の一部 は露出する。露出する部分にはポスト電極 9aが形成されることになる。従って、露出 する部分は直径 10 z m程度の孔となっている。なお、図 6は多層配線部 7aの最下層 の絶縁層 30と配線層(配線) 31を示すものである。
[0058] また、多層配線部 7aの形成の段階で、前記充填電極 12が半導体基板 6aに形成さ れる。実施例では、回路素子を形成し、厚い酸化膜 29を形成した段階で、常用のホ トリソグラフィ技術とホトエッチングによって、半導体基板 6aの第 1の主面側に前述の 孔 33を形成する。その後、酸化処理を行って孔 33の表面に絶縁膜 34を形成する。 さらに銅メツキを行って孔 33を銅メツキ膜によって充填して充填電極 12を形成する。 例えば、充填電極 12の直径は 10 /i m程度になり、深さは 30 μ ΐη程度になる。これに より、充填電極及び電極パッドが形成される(S 12)。充填電極 12は、半導体基板 6a に絶縁膜 34を介して接触するため電気的に絶縁されることになる。
[0059] また、前記充填電極 12は、インクジェット方式で導電性液体を吹き付けて孔 33を坦 めて形成してもよい。この場合、吹き付け後、充填された導電性液体を硬化処理 (ベ ーク)する。また、 CVD (気相化学成長法)によって他の金属、例えばタングステン, チタン,ニッケル,アルミニウムあるいはそれらの合金等による CVD膜を形成するよう にしてもよい。
[0060] 前述のように、充填電極 12と半導体基板 6aとの間には絶縁膜 34が介在されるため 、充填電極 12は半導体基板 6aから電気的に分離 (独立)されることになる。 [0061] なお、半導体基板 6aの第 1の主面上に順次絶縁層 30と配線層(配線) 31を所定パ ターンで交互に積層形成する際、充填電極 12を多層配線部 7aの所定の配線に電 気的に接続させる。
[0062] つぎに、図 8に示すように、半導体基板 6aの第 1の主面の所定位置にメツキを施し て柱状のポスト電極 9aを複数形成する(S13)。このポスト電極 9aも前記充填電極 12 と同様に銅,タングステン,チタン,ニッケル,アルミニウムあるいはそれらの合金等に よる CVD膜を形成するようにしてもよレ、。
[0063] つぎに、半導体基板 6aの第 1の主面に第 1の絶縁層 8aを形成する(S14)。ポスト 電極 9aは第 1の絶縁層 8aに覆われる。第 1の絶縁層 8aは、エポキシ樹脂やポリイミド 樹脂等絶縁性の有機樹脂が使用される。第 1の絶縁層 8aは、例えば、トランスファモ 一ルディング法あるいはスキージ印刷法によって形成する。
[0064] 図 9は前記ポスト電極及び第 1の絶縁層を形成した半導体基板の一部の模式的拡 大断面図である。電極パッド 32の上面にはポスト電極 9aが形成され、かつ第 1の絶 縁層 8aでポスト電極 9aが覆われている。図 9ではポスト電極 9aが電極パッド 32に比 較して大幅に細く形成した図になっている。これは、ワイヤを接続をする電極パッドを 有する IC等の製造プロセスをそのまま使用することを想定したものである。 IC等にお いては、導電性のワイヤを接続するために電極パッドは、 1辺力 ¾0— 100 /i m程度の 四角形になっている。そこで、実施例では、この電極パッド 32上にポスト電極 9aを設 けたものである。確立した ICプロセスによる電極パッド 32をポスト電極 9aを形成する ための配線部分として使用するのも一手法である。しかし、本発明においてはこれに 限定されるものではなぐ面積の小さい配線部分にポスト電極 9aを形成するようにし てもよい。
[0065] 図 10及び図 11は、電極パッド 32上に電極パッド 32と同程度の直径のポスト電極 9 aを形成した例 (変形例)である。
[0066] 図 10の構造は、多層配線部 7aを形成する比較的初期の段階で充填電極 12を形 成した例である。半導体基板 6aの第 1の面側に 1層目及び 2層目の絶縁層 30を形成 した後、これら 2層の絶縁層 30及び半導体基板 6aに孔 33を形成し、ついで孔 33に メツキ膜を充填して充填電極 12を形成する。 [0067] 図 11の構造は、多層配線部 7aを形成する比較的後期の段階で充填電極 12を形 成した例である。半導体基板 6aの第 1の面側に 1層目乃至 4層目の絶縁層 30を形成 した後、これら 4層の絶縁層 30及び半導体基板 6aに孔 33を形成し、ついで孔 33に メツキ膜を充填して充填電極 12を形成する。
[0068] 図 7、図 10及び図 11に示すように、孔 33の形成は、多層配線部 7aの所望形成段 階で自由に選択でき、多層配線部 7aの所定の配線 (配線層 31)との電気的接続が 可能である。なお、図 9乃至図 10においては、図 7及び図 9で構造を詳細に説明して あることから一部の符号は省略する。
[0069] つぎに、図 12に示すように、第 1の絶縁層 8aの表面を所定厚さ除去する(S 15)。
例えば、第 1の絶縁層 8aの表面をポスト電極 9aの先端が露出するように研磨する。 研磨量が多ければ、ポスト電極 9aの厚さが短くなり、第 1の絶縁層 8aの厚さも薄くな る。本実施例では、後述する半導体基板 6aの薄型化の後、第 1の絶縁層 8aは半導 体基板 6aを支持する強度部材として使用することから、例えば、第 1の絶縁層 8aの 厚さを 50 μ ΐη程度の厚さとする。半導体基板 6aのハンドリングにおいて、強度的に 支障がない場合には、第 1の絶縁層 8aはさらに薄くしてもよい。これは第 1の半導体 装置 2の薄型化、積層型半導体装置 1の薄型化に繋がる。
[0070] つぎに、図 13に示すように、半導体基板 6aの第 2の主面を研削し、充填電極 12の 先端が顔を出すようにし、充填電極 12によって貫通電極 12aを形成する(S 16)。こ れにより、半導体基板 6aは 25 / m程度の厚さになる。半導体基板 6aがこのように薄 くなつても第 1の絶縁層 8aが厚ぐこれによつて半導体基板 6aはハンドリング時にクラ ックが入ったり、割れたりする損傷が防止できる。
[0071] つぎに、図 14に示すように、半導体基板 6aの第 2の主面側を所定厚さエッチング する。エッチングはふつ酸系のエッチング液によるウエットエッチングで行レ、、貫通電 極 12aはエッチングしなレ、。これにより、厚さ 20 x m程度の半導体基板 6aの表面から 貫通電極 12aの先端が 5 x m程度突出することになる(S 17)。
[0072] つぎに、図 15に示すように、半導体基板 6aの第 2の主面側のシリコン表面上に第 2 の絶縁層 11aを形成する。この際、貫通電極 12aの先端を露出させるように第 2の絶 縁層 11 aを形成する(S 18)。第 2の絶縁層 11 aの形成は、例えば、スピンナー塗布で もよレ、し、スキージ印刷、あるいはフィルム状のものを熱処理により貼り付けたり、絶縁 性の接着剤で貼り付けたりして形成する。第 2の絶縁層 11aの厚さは、最低でも電気 的絶縁を図ることができる厚さにする。また、この第 2の絶縁層 11aの形成においては 、 Cuである貫通電極 12a対しては疎水性で Siに対しては親水性の絶縁材料を塗布 することによつても形成すること力 Sできる。即ち、第 2の絶縁層 11aを貫通電極 12aの 突出高さ程度に設けることにより、貫通電極 12aの先端は第 2の絶縁層 11aから露出 する。
[0073] つぎに、図 16に示すように、第 2の絶縁層 11 aの表面側に露出するポスト電極 9aの 先端、及び半導体基板 6aの第 2の主面側に露出する貫通電極 12aの先端にそれぞ れ突起電極 10a, 13aを形成する(S 19)。突起電極 10a, 13aは、例えば、半田ボー ノレ,金ボール,表面が金メッキされた銅ボール等によるバンプ電極、またはスクリーン 印刷と加熱による突起電極である。ポスト電極及び貫通電極に直接突起電極を形成 し難いときは、ポスト電極や貫通電極の露出面に接続を良好にするためのメツキ膜を 形成しておけばよい。
[0074] つぎに、半導体ウェハを縦横に分割して個片化する(S20)。図では、半導体ゥェ ハの状態ではなぐ単一の製品形成部の状態で説明してきた。従って、分割されて 形成された第 1の半導体装置 2も図 16に示す断面構造になる。実施例では、バンプ 電極の形成後に個片化を行ったが、個辺化後にバンプ電極を形成するようにしても よい。
[0075] 図 16は半導体基板 6aを上面側にし、第 1の絶縁層 8aが下面側なるようにしたもの であり、図 17は半導体基板 6aを下面側にし、第 1の絶縁層 8aが上面側なるようにし たものである。第 1の半導体装置 2は、積層固定の際、最下段の半導体装置として使 用されるが、この際、図 16に示すように突起電極 10aが外部電極端子として使用され る場合、あるいは図 17に示すように突起電極 13aが外部電極端子として使用される ようになる。
[0076] つぎに、個片チップ、即ち、第 1の半導体装置 2を形成した後、通常のテスト(電気 特性検查)を実施する。この際、図 18に示すように、トレイ 40の上面にマトリックス状 に設けた収容窪 41にそれぞれチップ (第 1の半導体装置 2)を収容する。第 1の半導 体装置 2の上面、裏面はそれぞれ絶縁材料で被覆されているため、プローブ検査に よって同時並列的にテストが実施できる。不良とされた製品は排除される。図 18では 第 1の半導体装置 2の突起電極 13aは模式的に表示してある。このようなトレイ 40の 使用によって製品をアレイ状に並べることができ、一括テストが可能となるとともに製 品のハンドリングがし易くなりテスト効率が向上する。
[0077] なお、一般に半導体装置の製造においては、半導体ウェハの各製品形成部の製 品(回路)の電気特性検査を、半導体ウェハの状態で行う。即ち、半導体ウェハの各 製品形成部の露出する電極にプローブ針を接触させて電気特性検査を行うが、本実 施例においても、分割前に同様のプローブ検查を行って、各製品形成部の製品(回 路)の良否を測定検査するようにしてもょレ、。
以上の方法によって第 1の半導体装置 2が製造される。
[0078] 第 1の半導体装置 2の上に積層固定される第 3の半導体装置 4は、第 1の半導体装 置 2と同様の工程、即ち、図 4で示す S 11— S21の各工程によって製造される。この 際、第 3の半導体装置 4も、図 16または図 17に示すような形態、即ち、突起電極 10a が下面に位置するように、または突起電極 13aが下面に位置するようにして使用する こと力 Sできる。その選択は自由であるが、第 3の半導体装置 4の下面の突起電極 10a または突起電極 13aが、第 1の半導体装置 2の上面の突起電極 10aまたは突起電極 13aに対面して接続ができるように形成する必要がある。なお、中段となる第 3の半導 体装置 4は接続に関与するバンプ電極が下段側の第 1の半導体装置 2及び上段側 第 2の半導体装置 3に設けられていることから、敢えてバンプ電極は設けなくともよい 。従って、第 3の半導体装置 4は、図 19の中段に示すようにバンプ電極を設けない状 態で積層固定するようにしてもよい。さらに中段の第 3の半導体装置 4の上面または 下面の一方に突起電極を設けてもよい。この場合、突起電極を設けた面に対面する 半導体装置の面には敢えて突起電極を設けて置かなくともよぐ中段の第 3の半導体 装置 4に設けた突起電極が接合体として作用する。
[0079] また、第 3の半導体装置 4の上面に積層固定する第 2の半導体装置 3は、前記第 1 の半導体装置 2の製造において、貫通電極 12a及びポスト電極 9aのどちらかを形成 する構造である。即ち、最上段になるため、その上面には外部電極端子は不要であ る。
[0080] 本実施例 1では図 4に示すように、第 2の半導体装置 3では、ポスト電極は形成せず 、貫通電極 12aを形成する例で説明する。第 2の半導体装置 3の製造においては、 半導体基板への回路素子形成(S11)は同じであるが、(S12)では多層配線部形成 段階での充填電極だけを形成する。その後、(S14)に進む。この(S14)では第 1の 絶縁層 8aのみを形成する。また、(S15)ではポスト電極が存在しないことからポスト 電極との係わりは考慮する必要がなぐ第 1の絶縁層 8aの厚さを確保するようにする 。その後の(S16), (S17) , (S18)は同じ処理加工となる。 (S19)では貫通電極 12 aの先端にのみ突起電極 13bを形成する。そして、(S20)の分割及び(S21)の特性 検查を行い、図 19の最上段に示す第 2の半導体装置 3を形成する。
[0081] 図 19は、実施例 1で形成した 3種類の半導体装置(第 1の半導体装置 2,第 3の半 導体装置 4,第 2の半導体装置 3)を積層順にそれぞれ離して示した図である。これら 三者の半導体装置 2, 4, 3をァライメントを行って接続部分が重なるようにし、炉体を 通して接続部分の突起電極を一時的に加熱溶融して接合させる。なお、接続部分の 接続は、接続部分を局所的に熱をカ卩えることによって接続してもよい。実施例 1では、 第 1の半導体装置 2と第 3の半導体装置 4との間の接続部分は突起電極 10aと貫通 電極 12cであり、第 3の半導体装置 4と第 2の半導体装置 3との接続部分はポスト電極 9cと突起電極 13bである。これらが接合体を形成する。この積層固定によって、図 1 乃至図 3に示す積層型半導体装置 1を製造することができる。最下段の第 1の半導体 装置 2の下面の突起電極 13aが外部電極端子 5となる(図 1参照)。
[0082] 図 20は本実施例 1の積層型半導体装置の製造方法で製造した積層型半導体装 置 1の実装状態を示す模式的断面図である。多層配線基板からなるドウターボード 4 5の上面に積層型半導体装置 1を搭載したものである。ドウターボード 45は、下面に 複数のバンプ電極 46を有し、上面に特に図示しないがランドが形成されている。積 層型半導体装置 1の外部電極端子 5の配置パターンと前記ランドの配置パターンは 一致している。従って、外部電極端子 5のリフローによって、積層型半導体装置 1をド ウタ一ボード 45に搭載することができる。
[0083] 本実施例 1では積層型半導体装置 1の製造技術について説明したが、単一製品と して考えた場合、第 1の半導体装置 2及び第 3の半導体装置 4は、それぞれ単一の製 品として出荷することが可能である。本発明によれば、これら半導体装置 2, 4は半導 体装置の上下面からそれぞれ電極となる貫通電極及びポスト電極を突出させることを 特徴とする。
[0084] 本実施例 1によれば以下の効果を有する。
(1)第 1 ·第 2 ·第 3の半導体装置 2, 3, 4の積層固定によって形成された積層型半 導体装置 1は、その製造において、各半導体装置 2, 3, 4は、半導体基板 6a, 6b, 6 cの第 1の主面側に第 1の絶縁層 8a, 8b, 8cを形成した後、半導体基板 6a, 6b, 6c の第 2の主面を所定厚さ除去するが、前記第 1の絶縁層 8a, 8b, 8cが強度部材とし て作用することから、半導体基板 6a, 6b, 6cを 5— 50 x m程度と薄くすることができ る。また、絶縁層 8a, 8b, 8cの厚さも 20 100 z m程度と薄くできる。従って、積層 固定した積層型半導体装置 1は、ボールバンプ電極の場合ではその高さ(厚さ)が 2 00— 380 μ m程度となり、印刷による突起電極の場合ではその高さ(厚さ)が 150— 330 / m程度と薄くすることができる。従って、多層積層構造の半導体装置 (集積回 路装置:三次元集積回路装置)の薄型化を図ることができる。
[0085] (2)第 1及び第 3並びに第 2の積層型半導体装置において、下段側の半導体装置 と上段側の半導体装置の接続は、第 1の絶縁層に貫通して設けられる柱状になるポ スト電極や半導体基板に貫通して設けられる柱状になる貫通電極を利用して接続さ れるため、電流経路が短くなり、インダクタンスの低減が達成でき、積層型半導体装 置 1の電気特性が良好になる。第 1の絶縁層や半導体基板に設けられるポスト電極 や貫通電極は、その長さ(厚さ)力 20— 100 /i mあるいは 5— 50 μ ΐη程度と短く、ワイ ャ接続によるボンディングワイヤの数百 μ m以上の長さに比較して充分短くなる。こ れにより、積層型半導体装置 1の高速動作が可能になる。
[0086] (3)半導体基板に設ける貫通電極は、回路素子を形成する領域から外れた領域に 形成する制約はあるものの配線領域等比較的自由に配置位置を選択することができ る。また、多層配線部の所定の配線に接続するポスト電極は、配線の引き回しによつ て比較的自由に配置位置を決定できる。従って、貫通電極及びポスト電極を設ける 位置を選択することによって、 2次元方向の集積密度向上を図ることができる。 [0087] (4)本実施例 1の積層型半導体装置 1は、インターポーザを使用することなく下段 側の半導体装置と上段側の半導体装置の電気的接続が可能になる。この結果、組 立部品点数の低減を図ることができるとともに、積層型半導体装置の薄型化が図れ る。インターポーザの使用は、半導体チップ間または半導体装置間の接続経路 (電 流経路)を長くしてしまうが、インターポーザを使用しないことで電流経路の短縮が可 能になり、電気特性の向上が図れるようになる。
[0088] (5)本実施例 1の積層型半導体装置 1の製造において、第 1及び第 3並びに第 2の 半導体装置 2, 4, 3は、半導体基板 6a, 6c, 6bを使用して製造し、最終段階で絶縁 層と共に半導体基板 6a, 6c, 6bを切断して第 1及び第 3並びに第 2の半導体装置 2 , 4, 3を製造する。従って、第 1及び第 3並びに第 2の半導体装置 2, 4, 3の積層固 定以外の必要なプロセスはウェハレベルで実施されるため、工程を通してハンドリン グ性がよく無駄な作業が少なくなる。この結果、生産コストの低減を図ることができる。
[0089] (6)本実施例 1の積層型半導体装置 1の製造においては、 3個の半導体装置 2, 4 , 3を積層固定する前の段階では、全てウェハレベルで処理加工を行うことから、プロ セスが簡素化され、生産性を高くすることができ、積層型半導体装置 1の製造コストの 低減を達成することができる。
[0090] (7)本実施例 1の積層型半導体装置の製造方法によれば、上下に重ね合う半導体 装置の接続部分の一致を図るようにするだけで、更なる多層に半導体装置を積層可 能になることから、より高集積化される積層型半導体装置 1を製造することができる。
[0091] (8)本実施例 1の積層型半導体装置 1は、その構造上、上記(7)のように、上下に 重ね合う半導体装置の接続部分の一致を図る制約を除けば、各半導体装置に形成 する回路は自由に設計できる。即ち、前記制約を設計ツールの一つとすれば、積層 型半導体装置 1をあた力、も 1チップの如く設計できる。現在の設計ツールは 1チップ L SI (本実施例 1の各半導体装置に対応するもの)を前提とした設計ツールしかない。
[0092] そこで、システム'イン'パッケージの設計に当たって、性能、コスト、テストの容易性 等から判断して、各半導体装置にどのような回路を形成するのかが適しているかをシ ミュレートし、そのシミュレート結果に基づいて各半導体装置の割り振りを行えば、電 気特性、高速動作性に優れた積層型半導体装置 1を小型かつ薄型にかつ安価に製 造すること力 Sできる。
[0093] (9)単一製品である第 1の半導体装置 2及び第 3の半導体装置 4は、半導体装置の 上下面からそれぞれ電極となる貫通電極及びポスト電極を突出させる構造となって いる。そして、この特徴から派生する上記(1)乃至(3)、(5)及び(6)により、またプロ セスの簡素化により、単一の半導体装置であっても、薄型化、高速動作化、 2次元方 向の集積密度向上を図ることができるとともに、その製造においてはウェハ状態での 製造によるためコストの低減を図ることができる。
実施例 2
[0094] 図 21は本発明の実施例 2である積層型半導体装置の模式的断面図である。本実 施例 2は、実施例 1の積層型半導体装置 1において、第 1の半導体装置 2と第 3の半 導体装置 4との間の隙間、及び第 3の半導体装置 4と第 2の半導体装置 3との間の隙 間に絶縁性の樹脂を充填させてアンダーフィル層 50, 51を形成する構成になってい る。このアンダーフィル層 50, 51によって隙間が坦まるため、異物混入等によるショ ート不良を防止することができる。絶縁性樹脂としては、例えば、ポリイミド榭脂を真空 雰囲気で隙間に充填させ、その後ベータ処理して硬化させる。
実施例 3
[0095] 図 22 (a) , (b)は本発明の実施例 3である 2段積層固定型の積層型半導体装置 1 の模式的断面図である。図 22 (a) , (b)は共に半導体基板 6a, 6bを上にし、第 1の 絶縁層 8a、 8bを下にして積層固定したものである。いずれも第 1の半導体装置 2の 下面の突起電極 10aが外部電極端子 5になる。また、第 1の半導体装置 2の上面の 突起電極 13aが接合体になって第 2の半導体装置 3が積層固定されている。即ち、 第 1の半導体装置 2の上面側の貫通電極 12aに取り付けられた突起電極 13aが第 2 の半導体装置 3の下面のポスト電極 9bに接続される構造になっている。
[0096] そして、図 22 (a)では、第 2の半導体装置 3の上面側には電極は露出しない構造、 即ち、半導体基板 6bに貫通電極 12bが設けられない構造になっている。
[0097] これに対して、図 22 (b)では、第 2の半導体装置 3の上面側の半導体基板 6bには 貫通電極 12bが設けられている。貫通電極 12bは、実施例 1の場合と同様に貫通電 極 12bと同程度の直径のものと、図の両端側に示される太レ、貫通電極 12bとを有す る構造になっている。太い貫通電極 12bは、図 10で説明したように電極パッドと同じ 程度の直径のものであり、例えば、ワイヤを接続できるものである。即ち、ドウターボ一 ドのパッドとの間を導電性のワイヤで接続することができる。
[0098] これに対して、実施例 1と同様に細い複数の貫通電極 12bは、例えば、ドウターボ ードのグランドに接続される電極板 55の一端が接続されるようになっている。本実施 例によれば、上段の第 2の半導体装置 3の上面に貫通電極 12bが露出する構造から 、ドウターボードを含めての回路設計 (実装設計)の余裕度が増大する。
[0099] また、本実施例では、第 2の半導体装置 3の上面側にチップ抵抗,チップコンデン サ、チップインダクタ等の能動素子 (能動部品)を搭載してもよい。そして、各能動素 子の電極は貫通電極 12bに電気的に接続される。このような構成にすることによって 更に集積度が高くなる。 実施例 4
[0100] 図 23及び図 24は本発明の実施例 4である積層型半導体装置の製造方法に係わる 図である。本実施例 4では、実施例 1の場合と略同様に S 11— S22の段階を経て積 層型半導体装置 1を製造するが、第 1の半導体装置 2と第 3の半導体装置 4との接続 は、突起電極を用いることなぐ超音波振動による金属間接合によるものである。従つ て、一部でその製造が異なる。
[0101] 図 23 (a)に示すように、第 1の半導体装置 2の製造において、半導体基板 6aの第 1 の主面側に設けたポスト電極 9aを第 1の絶縁層 8aで覆つた後、第 1の絶縁層 8aの硬 化処理 (キュア一)時、樹脂の硬化処理を不十分にする第 1次硬化処理を行う。
[0102] つぎに、図 23 (b)に示すように、第 1の絶縁層 8aの表面を所定厚さ研磨して除去し 、ポスト電極 9aを露出させる。
[0103] つぎに、図 23 (c)に示すように、第 1の絶縁層 8aが硬化収縮を伴うような第 2次硬 化処理(キュア一)を行レ、、第 1の絶縁層 8aの表面にポスト電極 9aの先端を突出させ る。例えば、突出長さは 10 / m程度である。この突出長さは、超音波振動による金属 間の接合を効果的に行うに必要の長さである。
[0104] つぎに、第 1の半導体装置 2,第 3の半導体装置 4,第 2の半導体装置 3を位置決め して重ねる。図 24 (a)は積層順序を示すものであり、最下層に第 1の半導体装置 2が 位置し、その上に第 3の半導体装置 4が位置し、その上に第 2の半導体装置 3が離れ て位置させた図である。
[0105] そこで、特に図示はしないが、第 1の半導体装置 2上に第 3の半導体装置 4を位置 決めして載置し、第 1の半導体装置 2の上面の Cuからなるポスト電極 9aを第 3の半導 体装置 4の下面の Cuからなる貫通電極 12cに相対的に超音波振動を加えて擦りつ け、ポスト電極 9aと貫通電極 12cの擦り付け面を金属間接合 (金属接合)によって接 続させる。その後、第 3の半導体装置 4の上に第 2の半導体装置 3を実施例 1と同様 な方法によって積層固定し、図 24 (b)に示すような積層型半導体装置 1を製造する。
[0106] この例では、実施例 2と同様に第 1の半導体装置 2と第 3の半導体装置 4との隙間に 絶縁性のアンダーフィル層 50を充填し、第 3の半導体装置 4と第 2の半導体装置 3と の隙間に絶縁性のアンダーフィル層 51を充填してレ、る。
[0107] 本実施例によれば、第 1の半導体装置 2と第 3の半導体装置 4との積層固定におい て、突起電極を用いないことから、さらに薄型化が図れる特徴がある。
実施例 5
[0108] 図 25 (a) , (b)は本発明の実施例 5である積層型半導体装置の製造方法の一部を 示す各工程の断面図である。本実施例 5は、実施例 4と同様に金属接合で積層固定 する例である。この例では、第 1の半導体装置 2の上に金属接合によって第 3の半導 体装置 4を積層固定した後、第 3の半導体装置 4の上に金属接合によって第 3の半 導体装置 4を積層固定するものである。本実施例では、実施例 4と同様に第 1の半導 体装置 2及び第 3の半導体装置 4の製造時、第 1の半導体装置 2及び第 3の半導体 装置 4のポスト電極 9a, 9cの先端を第 1の絶縁層 8a, 8cの表面から 10 μ m程度突 出させる。
[0109] 図 25 (a)は積層順序を示すものであり、最下層に第 1の半導体装置 2が位置し、そ の上に第 3の半導体装置 4が位置し、その上に第 2の半導体装置 3が離れて位置さ せた図である。
[0110] そこで、特に図示はしないが、第 1の半導体装置 2上に第 3の半導体装置 4を位置 決めして載置し、第 1の半導体装置 2の上面の Cuからなるポスト電極 9aを第 3の半導 体装置 4の下面の Cuからなる貫通電極 12cに相対的に超音波振動を加えて擦りつ け、ポスト電極 9aと貫通電極 12cの擦り付け面を金属間接合 (金属接合)によって接 続させる。
[0111] つぎに、同様に、特に図示はしないが、第 3の半導体装置 4上に第 2の半導体装置 3を位置決めして載置し、第 3の半導体装置 4の上面の Cuからなるポスト電極 9cを第 2の半導体装置 3の下面の Cuからなる貫通電極 12bに相対的に超音波振動をカロえ て擦りつけ、ポスト電極 9cと貫通電極 12bの擦り付け面を金属間接合 (金属接合)に よって接続させる。
[0112] また、この例では、実施例 2と同様に第 1の半導体装置 2と第 3の半導体装置 4との 隙間に絶縁性のアンダーフィル層 50を充填し、第 3の半導体装置 4と第 2の半導体 装置 3との隙間に絶縁性のアンダーフィル層 51を充填している。
[0113] 本実施例によれば、第 1の半導体装置 2と第 3の半導体装置 4との積層固定、及び 第 3の半導体装置 4と第 2の半導体装置 3との積層固定において、突起電極を用いな レ、ことから、さらに薄型化が図れる特徴がある。
実施例 6
[0114] 図 26は本発明の実施例 6である積層型半導体装置をドウターボードに実装した状 態の模式的断面図である。本実施例 6では、積層型半導体装置 1の第 1の半導体装 置 2,第 2の半導体装置 3,第 3の半導体装置 4は、いずれも半導体基板 6a, 6b, 6c が上面側に位置し、第 1の絶縁層 8a, 8b, 8cが下面側に位置する状態で積層固定 されている。そして、第 1の半導体装置 2の突起電極 10aをドウターボード 45の図示 しないランドに接続して搭載している。
実施例 7
[0115] 図 27は本発明の実施例 7である積層型半導体装置をドウターボードに実装した状 態の模式的断面図である。本実施例 6では、積層型半導体装置 1の第 1の半導体装 置 2と第 2の半導体装置 3は半導体基板 6a, 6bが上面側に位置し、第 1の絶縁層 8a , 8bが下面側に位置する状態で積層固定され、第 3の半導体装置 4は半導体基板 6 cが下面側に位置し、第 1の絶縁層 8cが上面側に位置する状態で積層固定された混 在型になっている。そして、第 1の半導体装置 2の突起電極 10aをドウターボード 45 の図示しないランドに接続して搭載している。 実施例 8
[0116] 図 28は本発明の実施例 8である積層型半導体装置をドウターボードに実装した状 態の模式的断面図である。本実施例 8では、第 1の半導体装置 2の上に第 1の半導 体装置 2よりも小さい中段の第 3の半導体装置 4である半導体装置 4A, 4Bを個並列 配置固定し、かつこれら半導体装置 4A, 4B上にそれぞれ第 2の半導体装置 3となる 半導体装置 3A, 3Bを積層固定する構造になっている。即ち、本実施例 8は、最も面 積の大きい第 1の半導体装置 2上に多数の中段の第 3の半導体装置 4を複数並列配 置し、さらにこれら第 3の半導体装置 4上に上段の第 2の半導体装置 3をそれぞれ積 層固定するものである。中段の第 3の半導体装置は、下段の第 1の半導体装置と上 段の第 2の半導体装置との間に複数段に亘つて積層固定してさらに集積度を向上さ せるようにしてもよい。
[0117] 本実施例 8において、前記第 1乃至第 3の半導体装置のうち、一つの半導体装置 の前記半導体基板はシリコン基板であり、他の一つの半導体装置の前記半導体基 板は化合物半導体基板である。そして、それぞれの半導体基板に適した回路素子が 形成されている。例えば、第 1の半導体装置 2の半導体基板 6aはシリコン基板であり 、半導体装置 3Aの半導体基板 6cAは化合物半導体 (例えば、 GaAs基板)である。 中段及び上段の半導体装置において、その符号の殆どは省略する。しかし、説明で 必要となった場合には、中段の第 3の半導体装置 4A, 4Bにあっては末尾に Aまたは Bを付けて示す。また、上段の第 2の半導体装置 3A, 3Bにあっては末尾に Aまたは Bを付けて示す。
[0118] なお、実施例 8では、積層型半導体装置 1に組み込む部品は全て半導体装置とし た力 他の電子部品の積層固定であってもよい。例えば、抵抗,容量等のチップ部 品、 MEMS (Micro electro Mechanical System)、バイオチップ等を積層固定してもよ レ、。また、半導体基板がシリコン基板であるもの、また半導体基板が化合物半導体基 板であるものはさらに多くてもよい。
本実施例 8によれば、更なる高集積化が達成される。
実施例 9
[0119] 図 29は本発明の実施例 9である積層型半導体装置をドウターボードに実装した状 態の模式的断面図である。本実施例 9では、実施例 8において、第 1の半導体装置 2 とその上の半導体装置 4Bとの間に金属板 60を挟み、また半導体装置 4Bと半導体 装置 3Bとの間に金属板 70を挟んだ例である。回路上、例えば、金属板 70はグランド 電位になり、金属板 60は Vcc等の電源電位(基準電位)となるように構成されている。
[0120] 即ち、第 1の半導体装置 2と半導体装置 4Bの間に絶縁用穴 61を有する金属板 60 が介在されている。絶縁用穴 61の部分では、金属板 60に非接触の状態で第 1の半 導体装置 2の上面の貫通電極 12aと、半導体装置 4Bの下面のポスト電極 9cBが、突 起電極 13a及び突起電極 10cBを介して電気的に接続されている。
[0121] また、第 1の半導体装置 2及び半導体装置 4Bの金属板 60に対面する貫通電極 12 aと、半導体装置 4Bの下面のポスト電極 9cBが、突起電極 13a及び突起電極 10cB を介して電気的に接続されている。金属板 60の介在によって貫通電極 12aとポスト 電極 9cBとの距離が長くなることから、絶縁用穴 61の部分での接続に使用される突 起電極 13a及び突起電極 10cBは金属板 60に接続される突起電極 13a及び突起電 極 10cBよりも大きくなつている。
[0122] また、半導体装置 4Bと半導体装置 3Bの間にも絶縁用穴 71を有する金属板 70が 介在されている。絶縁用穴 71の部分では、金属板 70に非接触の状態で半導体装置 4Bの上面の貫通電極 12bBと、半導体装置 3Bの下面のポスト電極 9bB力 突起電 極 13cB及び突起電極 10bBを介して電気的に接続されている。また、半導体装置 4 B及び半導体装置 3Bの金属板 70に対面する貫通電極 12cBとポスト電極 9bBが、 突起電極 13cB及び突起電極 10bBを介して電気的に接続されている。金属板 70の 介在によって貫通電極 12cBとポスト電極 9bBとの距離が長くなることから、絶縁用穴 71の部分での接続に使用される突起電極 13cB及び突起電極 10bBは金属板 70に 接続される突起電極 13cB及び突起電極 10bBよりも大きくなつている。
[0123] また、第 1の半導体装置 2と半導体装置 4Bとの間の隙間はアンダーフィル層 80に よって塞がれ、半導体装置 4Bと半導体装置 3Bとの間の隙間はアンダーフィル層 81 によって塞がれている。
[0124] 本実施例 9によれば、グランド電位になる金属板 70、 Vcc等の電源電位 (基準電位 )となる金属板 60の存在によって、積層型半導体装置 1の電源及びグランドが安定し 、この結果、動作が安定し良好な電気特性を得ることができる。
以上本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発 明は上記実施例に限定されるものではなぐその要旨を逸脱しない範囲で種々変更 可能であることはいうまでもなレ、。実施例では、ポスト電極をメツキで形成した力 スタ ッドバンプで形成してもよレ、。スタッドバンプ法は、金ワイヤを熱圧着法(ボールボン デイング法)で電極パッドに接続してネイルヘッドを形成し、その後このネイルヘッドの 付け根部分でワイヤを切断して形成する突起電極を幾段も重ねて形成する方式であ る。
産業上の利用可能性
以上のように、本発明に係る積層型半導体装置は、薄型でかつ高速動作に適した 三次元集積回路装置として使用できる。また、本発明に係る積層型半導体装置は、 システム'イン'パッケージの設計に当たって、性能、コスト、テストの容易性等の判断 をもとにしてシミュレートすることによって、積層型半導体装置における各半導体装置 の割り振りを行うことができる。従って、本発明によれば、電気特性及び高速動作性 が優れ、かつ小型 ·薄型でかつ安価となる積層型半導体装置を提供することができる

Claims

請求の範囲
下面に外部電極端子を有する第 1の半導体装置と、前記第 1の半導体装置と電気的 に接続され前記第 1の半導体装置上に固定される第 2の半導体装置とからなる積層 型半導体装置であって、
前記第 1の半導体装置は、
半導体基板と、
前記半導体基板の第 1の主面側に形成された複数の回路素子及び前記回路素子 に接続する配線を含む多層配線部と、
前記多層配線部を覆う第 1の絶縁層と、
前記半導体基板の第 1の主面の反対面になる第 2の主面を覆う第 2の絶縁層と、 前記多層配線部のそれぞれ所定の配線上に形成され前記第 1の絶縁層の表面に露 出する複数のポスト電極と、
前記多層配線部の所定深さから前記半導体基板及び前記第 2の絶縁層を貫通して 設けられ、前記半導体基板に絶縁膜を介して接触し、かつ前記多層配線部のそれ ぞれ所定の配線に接続される複数の貫通電極と、
前記貫通電極に接続される前記外部電極端子を有し、
前記第 2の半導体装置は、
半導体基板と、
前記半導体基板の第 1の主面側に形成された複数の回路素子及び前記回路素子 に接続する配線を含む多層配線部と、
前記多層配線部を覆う第 1の絶縁層と、
前記半導体基板の第 1の主面の反対面になる第 2の主面を覆う第 2の絶縁層と、 前記多層配線部のそれぞれ所定の配線上に形成され前記第 1の絶縁層の表面に露 出するポスト電極、または前記多層配線部の所定深さから前記半導体基板及び前記 第 2の絶縁層を貫通して設けられ、前記半導体基板に絶縁膜を介して接触し、かつ 前記多層配線部のそれぞれ所定の配線に接続される複数の貫通電極とを少なくとも 有し、
前記第 1の半導体装置は前記ポスト電極または前記貫通電極が下面になり、該下面 の前記ポスト電極または前記貫通電極には前記外部電極端子が設けられ、前記第 1 の半導体装置の上面の前記ポスト電極または前記貫通電極に前記第 2の半導体装 置の下面の前記貫通電極または前記ポスト電極が接合体を介して電気的に接続さ れてレ、ることを特徴とする積層型半導体装置。
[2] 前記第 1の半導体装置と前記第 2の半導体装置との間に 1乃至複数段に亘つて積層 固定される第 3の半導体装置を有し、
前記第 3の半導体装置は、
半導体基板と、
前記半導体基板の第 1の主面側に形成された複数の回路素子及び前記回路素子 に接続する配線を含む多層配線部と、
前記多層配線部を覆う第 1の絶縁層と、
前記半導体基板の第 1の主面の反対面になる第 2の主面を覆う第 2の絶縁層と、 前記多層配線部のそれぞれ所定の配線上に形成され前記第 1の絶縁層の表面に露 出する複数のポスト電極と、
前記多層配線部の所定深さから前記半導体基板及び前記第 2の絶縁層を貫通して 設けられ、前記半導体基板に絶縁膜を介して接触し、かつ前記多層配線部のそれ ぞれ所定の配線に接続される複数の貫通電極とを有し、
前記第 3の半導体装置の上下面のポスト電極または貫通電極は、上段側の半導体 装置及び下段側の半導体装置のポスト電極または貫通電極に接合体を介して電気 的に接続されていることを特徴とする請求項 1に記載の積層型半導体装置。
[3] 前記各段の半導体装置は単体となり、各半導体装置は同一寸法になって一致して 重なりあっていることを特徴とする請求項 1に記載の積層型半導体装置。
[4] 前記第 1の半導体装置上に前記第 1の半導体装置よりも小さい第 2の半導体装置が 複数個並列配置固定されていることを特徴とする請求項 1に記載の積層型半導体装 置。
[5] 前記第 1の半導体装置の上面の各貫通電極または各ポスト電極は、前記第 2の半導 体装置の下面の各貫通電極または各ポスト電極に対応し、前記接合体を介してそれ ぞれ電気的に接続されていることを特徴とする請求項 1に記載の積層型半導体装置 [6] 前記第 1の半導体装置の上面の各貫通電極または各ポスト電極と、前記第 2の半導 体装置の下面の各貫通電極または各ポスト電極との接合は前記接合体は使用され ず、
前記一方の半導体装置の前記接合に関与する前記ポスト電極または前記貫通電極 が突出し、この突出部分が金属接合によって対面する半導体装置の前記ポスト電極 または前記貫通電極に接続されていることを特徴とする請求項 1に記載の積層型半 導体装置。
[7] 前記ポスト電極はメツキ膜またはスタッドバンプ電極もしくは CVD膜で形成されてレ、る ことを特徴とする請求項 1に記載の積層型半導体装置。
[8] 前記第 1の半導体装置と前記第 2の半導体装置の間に絶縁用穴を有する金属板が 介在され、前記絶縁用穴部分では、前記金属板に非接触の状態で前記第 1の半導 体装置の上面の前記貫通電極または前記ポスト電極と、前記第 2の半導体装置の下 面の前記貫通電極または前記ポスト電極が前記接合体を介して電気的に接続され、 前記第 1の半導体装置及び前記第 2の半導体装置の前記金属板に対面する前記貫 通電極及び前記ポスト電極が前記金属板に前記接合体を介して電気的に接続され ていることを特徴とする請求項 1に記載の積層型半導体装置。
[9] 前記金属板に前記半導体装置の電源電位またはグランド電位になる前記貫通電極 または前記ポスト電極が接続されていることを特徴とする請求項 8に記載の積層型半 導体装置。
[10] 前記第 1及び第 2の半導体装置のうち、一つの半導体装置の前記半導体基板はシリ コン基板であり、他の一つの半導体装置の前記半導体基板は化合物半導体基板で あることを特徴とする請求項 1に記載の積層型半導体装置。
[11] 前記貫通電極及び前記ポスト電極は銅,タングステン,チタン,ニッケル,アルミユウ ムあるいはそれらの合金で形成されていることを特徴とする請求項 1に記載の積層型 半導体装置。
[12] 前記第 1の半導体装置と前記第 2の半導体装置との間の隙間には絶縁性樹脂が充 填されていることを特徴とする請求項 1に記載の積層型半導体装置。 [13] 前記第 2の半導体装置は、前記第 1の半導体装置と同様に前記第 1の絶縁層の表面 に露出する複数のポスト電極と、前記第 2の絶縁層の表面に露出する複数の貫通電 極を有し、上面に位置する所定の前記ポスト電極または前記貫通電極の露出端には 突起電極が形成されてレ、ることを特徴とする請求項 1に記載の積層型半導体装置。
[14] 前記ポスト電極は、前記貫通電極よりも直径が大きいことを特徴とする請求項 1に記 載の積層型半導体装置。
[15] 前記回路素子は能動素子及び受動素子であることを特徴とする請求項 1に記載の積 層型半導体装置。
[16] 前記各半導体装置の前記半導体基板は 5 50 μ m程度の厚さであり、前記第 1の 絶縁層の厚さは 20 100 x m程度の厚さであることを特徴とする請求項 1に記載の 積層型半導体装置。
[17] 半導体基板と、
前記半導体基板の第 1の主面側に形成された複数の回路素子及び前記回路素子 に接続する配線を含む多層配線部と、
前記多層配線部を覆う第 1の絶縁層と、
前記半導体基板の第 1の主面の反対面になる第 2の主面を覆う第 2の絶縁層と、 前記多層配線部のそれぞれ所定の配線上に形成され前記第 1の絶縁層の表面に露 出する複数のポスト電極と、
前記多層配線部の所定深さから前記半導体基板及び前記第 2の絶縁層を貫通して 設けられ、前記半導体基板に絶縁膜を介して接触し、かつ前記多層配線部のそれ ぞれ所定の配線に接続される複数の貫通電極とを有することを特徴とする半導体装 置。
[18] 所定の前記ポスト電極及び前記貫通電極の露出端には突起電極が形成されてレ、る ことを特徴とする請求項 17に記載の半導体装置。
[19] 前記ポスト電極は前記貫通電極の直径よりも大きいことを特徴とする請求項 17に記 載の半導体装置。
[20] 前記ポスト電極はメツキ膜またはスタッドバンプ電極もしくは CVD膜で形成されてレ、る ことを特徴とする請求項 17に記載の半導体装置。 [21] 前記貫通電極及び前記ポスト電極は銅,タングステン,チタン,ニッケル,アルミニゥ ムあるいはそれらの合金で形成されていることを特徴とする請求項 17に記載の半導 体装置。
[22] 前記回路素子は能動素子及び受動素子であることを特徴とする請求項 17に記載の 半導体装置。
[23] 前記各半導体装置の前記半導体基板は 5 50 μ m程度の厚さであり、前記第 1の 絶縁層の厚さは 20 100 x m程度の厚さであることを特徴とする請求項 17に記載の 半導体装置。
[24] 下面に外部電極端子を有する第 1の半導体装置と、前記第 1の半導体装置上に積 層固定される第 2の半導体装置を有し、前記両半導体装置が電気的に接続される積 層型半導体装置の製造方法であって、
(a)半導体基板の第 1の主面に所定回路素子を含む製品形成部を複数整列配置形 成する工程と、
(b)前記各製品形成部に前記回路素子に電気的に繋がる配線及び絶縁層を順次 所定パターンに積層形成して多層配線部を形成する工程と、
(c)前記多層配線部を形成する段階において、前記多層配線部の所定深さから前 記半導体基板の前記第 1の主面の反対面になる第 2の主面に向かい、かつ表面に 絶縁膜を有する孔を複数形成するとともに、この孔に導体を充填して前記多層配線 部の所定の配線に電気的に接続される充填電極を形成する工程と、
(d)前記多層配線部のそれぞれ所定の配線上にポスト電極を形成する工程と、
(e)前記半導体基板の第 1の主面に前記ポスト電極を覆う第 1の絶縁層を形成する 工程と、
(f)前記第 1の絶縁層の表面を所定厚さ除去して前記ポスト電極を露出させる工程と 、(g)前記半導体基板の第 2の主面をその表面から所定厚さ除去して前記充填電極 を露出させて貫通電極を形成する工程と、
(h)前記半導体基板の第 2の主面を所定厚さエッチング除去して前記貫通電極を所 定の長さ突出させる工程と、
(i)前記貫通電極の先端を露出させる状態で前記半導体基板の第 2の主面に所定 の厚さの第 2の絶縁層を形成する工程と、
(j)前記半導体基板を前記第 1及び第 2の絶縁層を含めて縦横に切断して前記各製 品形成部を分割する工程と、
(k)前記工程 (i)の後、または前記工程 (j)の後に、前記貫通電極及び前記ポスト電 極のうちの所定の露出端に突起電極を形成する工程とを有し、
前記工程 (a)乃至工程 (k)によって前記第 1の半導体装置を形成し、
前記工程 (a)乃至工程 (k)における工程の選択によって、前記貫通電極または前記 ポスト電極を少なくとも有する前記第 2の半導体装置を形成し、
つぎに、前記第 1の半導体装置を前記貫通電極または前記ポスト電極が下面になる ようにして前記外部電極端子とした後、前記第 2の半導体装置の下面の前記貫通電 極または前記ポスト電極と、前記第 1の半導体装置の上面の前記貫通電極または前 記ポスト電極を前記突起電極の一時的溶融処理によって電気的に接続して積層型 半導体装置を製造することを特徴とする積層型半導体装置の製造方法。
前記貫通電極のみを有する前記第 2の半導体装置は、
前記半導体基板の第 1の主面に所定回路素子を含む製品形成部を複数整列配置 形成する工程と、
前記各製品形成部に前記回路素子に電気的に繋がる配線及び絶縁層を順次所定 パターンに積層形成して多層配線部を形成する工程と、
前記多層配線部を形成する段階にぉレ、て、前記多層配線部の所定深さから前記半 導体基板の前記第 1の主面の反対面になる第 2の主面に向かい、かつ表面に絶縁 膜を有する孔を複数形成するとともに、この孔に導体を充填して前記多層配線部の 所定の配線に電気的に接続される充填電極を形成する工程と、
前記半導体基板の第 1の主面に第 1の絶縁層を形成する工程と、
前記半導体基板の第 2の主面をその表面から所定厚さ除去して前記充填電極を露 出させて貫通電極を形成する工程と、
前記半導体基板の第 2の主面を所定厚さエッチング除去して前記貫通電極を所定 の長さ突出させる工程と、
前記貫通電極の先端を露出させる状態で前記半導体基板の第 2の主面に所定の厚 さに第 2の絶縁層を形成する工程と、
前記貫通電極の露出部分に突起電極を形成する工程と、
前記半導体基板を前記第 1及び第 2の絶縁層を含めて縦横に切断して前記各製品 形成部を分割する工程とによって形成することを特徴とする請求項 24に記載の積層 型半導体装置の製造方法。
[26] 前記ポスト電極のみを有する前記第 2の半導体装置は、
半導体基板の第 1の主面に所定回路素子を含む製品形成部を複数整列配置形成 する工程と、
前記各製品形成部に前記回路素子に電気的に繋がる配線及び絶縁層を順次所定 パターンに積層形成して多層配線部を形成する工程と、
前記多層配線部のそれぞれ所定の配線上にポスト電極を形成する工程と、 前記半導体基板の第 1の主面に前記ポスト電極を覆う第 1の絶縁層を形成する工程 と、
前記第 1の絶縁層の表面を所定厚さ除去して前記ポスト電極を露出させる工程と、 前記半導体基板の第 2の主面をその表面から所定厚さ除去して前記半導体基板を 薄くする工程と、
前記半導体基板の第 2の主面に所定の厚さの第 2の絶縁層を形成する工程と、 前記ポスト電極の露出部分に突起電極を形成する工程と、
前記半導体基板を前記第 1及び第 2の絶縁層を含めて縦横に切断して前記各製品 形成部を分割する工程とによって形成することを特徴とする請求項 24に記載の積層 型半導体装置の製造方法。
[27] 前記工程 (a)乃至工程 (k)によって前記第 1の半導体装置と前記第 2の半導体装置 との間に積層固定される 1乃至複数の第 3の半導体装置を積層固定する工程を有し 前記第 3の半導体装置の一面に設けられる充填電極は対面する半導体装置の充填 電極またはポスト電極に対応するように形成し、
前記第 3の半導体装置の他面に設けられるポスト電極は対面する半導体装置の充 填電極またはポスト電極に対応するように形成することを特徴とする請求項 24に記載 の積層型半導体装置の製造方法。
[28] 前記第 1の半導体装置上に前記第 1の半導体装置よりも小さい第 2の半導体装置を 複数個並列配置固定することを特徴とする請求項 24に記載の積層型半導体装置の 製造方法。
[29] 前記第 1の半導体装置の上面の各充填電極または各ポスト電極力 前記第 2の半導 体装置の下面の各充填電極または各ポスト電極に対応するように形成することを特 徴とする請求項 24に記載の積層型半導体装置の製造方法。
[30] 前記工程 (e)において、前記第 1の絶縁層を形成する際、樹脂の硬化処理を不十分 な第 1次硬化処理とし、
前記工程 (f)において、前記第 1の絶縁層の表面に前記ポスト電極を露出させた後、 前記第 1の絶縁層の硬化収縮を伴う第 2次硬化処理を行い、前記第 1の絶縁層の表 面に前記ポスト電極の先端を突出させ、
前記第 1の半導体装置上に前記第 2の半導体装置を積層固定する際、前記ポスト電 極の突出部分に超音波振動をカ卩え、対面する前記充填電極または前記ポスト電極 に金属接合によって接続させることを特徴とする請求項 24に記載の積層型半導体装 置の製造方法。
[31] 前記ポスト電極をメツキ膜またはスタッドバンプ電極もしくは CVD膜で形成することを 特徴とする請求項 24に記載の積層型半導体装置の製造方法。
[32] 前記第 1の半導体装置と前記第 2の半導体装置の間に絶縁用穴を有する金属板を 介在させ、
前記絶縁用穴部分では、前記金属板に非接触の状態で前記第 1の半導体装置の上 面の前記充填電極または前記ポスト電極と、前記第 2の半導体装置の下面の前記充 填電極または前記ポスト電極を前記突起電極の一時的溶融処理によって電気的に 接続し、前記第 1の半導体装置及び前記第 2の半導体装置の前記金属板に対面す る前記貫通電極及び前記ポスト電極を前記突起電極の一時的溶融処理によって前 記金属板に電気的に接続することを特徴とする請求項 24に記載の積層型半導体装 置の製造方法。
[33] 前記金属板に前記半導体装置の電源電位またはグランド電位になる前記充填電極 または前記ポスト電極を接続することを特徴とする請求項 32に記載の積層型半導体 装置の製造方法。
[34] 前記第 1の半導体装置と前記第 2の半導体装置との間の隙間に絶縁性樹脂を充填 しかつ硬化させることを特徴とする請求項 24に記載の積層型半導体装置の製造方 法。
[35] 前記第 1及び第 2の半導体装置のうち、一つの半導体装置は前記半導体基板として シリコン基板を使用して前記回路素子を形成し、他の一つの半導体装置は前記半導 体基板として化合物半導体基板を使用して前記回路素子を形成することを特徴とす る請求項 24に記載の積層型半導体装置の製造方法。
[36] 前記第 2の半導体装置の製造においては、前記第 1の半導体装置と同様に前記第 1 の絶縁層の表面に露出する複数のポスト電極と、前記第 2の絶縁層の表面に露出す る複数の貫通電極を形成し、上面となる前記ポスト電極または前記貫通電極の所定 の露出端に突起電極を設けることを特徴とする請求項 24に記載の積層型半導体装 置の製造方法。
[37] 前記ポスト電極を前記貫通電極よりも直径が大きくなるように形成することを特徴とす る請求項 24に記載の積層型半導体装置の製造方法。
[38] 前記回路素子として、能動素子及び受動素子を形成することを特徴とする請求項 24 に記載の積層型半導体装置の製造方法。
[39] 前記工程(e)において、 20— 100 μ ΐη程度の厚さに前記第 1の絶縁層を形成し、 前記工程(c)において、 5— 50 /i m程度の深さの前記孔を形成し、
前記工程(f)において、 20— 100 /i m程度の厚さの前記ポスト電極を形成し、 前記工程 (g)において、 5— 50 μ m程度の厚さの貫通電極を形成することを特徴と する請求項 24に記載の積層型半導体装置の製造方法。
[40] (a)半導体基板の第 1の主面に所定回路素子を含む製品形成部を複数整列配置形 成する工程と、
(b)前記各製品形成部に前記回路素子に電気的に繋がる配線及び絶縁層を順次 所定パターンに積層形成して多層配線部を形成する工程と、
(c)前記多層配線部を形成する段階において、前記多層配線部の所定深さから前 記半導体基板の前記第 1の主面の反対面になる第 2の主面に向かい、かつ表面に 絶縁膜を有する孔を複数形成するとともに、この孔に導体を充填して前記多層配線 部の所定の配線に電気的に接続される充填電極を形成する工程と、
(d)前記多層配線部のそれぞれ所定の配線上にポスト電極を形成する工程と、
(e)前記半導体基板の第 1の主面に前記ポスト電極を覆う第 1の絶縁層を形成する 工程と、
(f)前記第 1の絶縁層の表面を所定厚さ除去して前記ポスト電極を露出させる工程と 、(g)前記半導体基板の第 2の主面をその表面から所定厚さ除去して前記充填電極 を露出させて貫通電極を形成する工程と、
(h)前記半導体基板の第 2の主面を所定厚さエッチング除去して前記貫通電極を所 定の長さ突出させる工程と、
(i)前記半導体基板の第 2の主面に所定の厚さの第 2の絶縁層を形成して前記貫通 電極の先端を露出させる工程と、
(j)前記半導体基板を前記第 1及び第 2の絶縁層を含めて縦横に切断して前記各製 品形成部を分割する工程とを有することを特徴とする半導体装置の製造方法。
[41] 前記工程 (e)において、前記第 1の絶縁層を形成する際、樹脂の硬化処理を不十分 な第 1次硬化処理とし、
前記工程 (f)において、前記第 1の絶縁層の表面に前記ポスト電極を露出させた後、 前記第 1の絶縁層の硬化収縮を伴う第 2次硬化処理を行い、前記第 1の絶縁層の表 面に前記ポスト電極の先端を突出させることを特徴とする請求項 40に記載の半導体 装置の製造方法。
[42] 前記工程 (i)の後、または前記工程 (j)の後、前記貫通電極及び前記ポスト電極の所 定の露出部分に突起電極を形成することを特徴とする請求項 40に記載の半導体装 置の製造方法。
[43] 前記ポスト電極を前記貫通電極よりも直径が大きくなるように形成することを特徴とす る請求項 40に記載の半導体装置の製造方法。
[44] 前記ポスト電極をメツキ膜またはスタッドバンプ電極もしくは CVD膜で形成することを 特徴とする請求項 40に記載の半導体装置の製造方法。 [45] 前記回路素子は能動素子及び受動素子であることを特徴とする請求項 40に記載の 半導体装置の製造方法。
[46] 前記工程(e)において、 20— 100 μ ΐη程度の厚さに前記第 1の絶縁層を形成し、 前記工程(c)において、 5— 50 z m程度の深さの前記孔を形成し、
前記工程(f)において、 20 100 z m程度の厚さの前記ポスト電極を形成し、 前記工程 (g)において、 5— 50 μ m程度の厚さの貫通電極を形成することを特徴と する請求項 40に記載の半導体装置の製造方法。
PCT/JP2004/011454 2003-10-30 2004-08-10 半導体装置及びその製造方法 WO2005043622A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN2004800324876A CN1875481B (zh) 2003-10-30 2004-08-10 半导体装置及其制造方法
EP04771441.5A EP1686623B1 (en) 2003-10-30 2004-08-10 Semiconductor device and process for fabricating the same
US10/577,863 US7944058B2 (en) 2003-10-30 2005-11-21 Semiconductor device and process for fabricating the same
US13/093,220 US8664666B2 (en) 2003-10-30 2011-04-25 Semiconductor device and process for fabricating the same
US14/157,093 US9093431B2 (en) 2003-10-30 2014-01-16 Semiconductor device and process for fabricating the same
US14/743,103 US9559041B2 (en) 2003-10-30 2015-06-18 Semiconductor device and process for fabricating the same
US15/384,658 US9887147B2 (en) 2003-10-30 2016-12-20 Semiconductor device and process for fabricating the same
US15/852,388 US10199310B2 (en) 2003-10-30 2017-12-22 Semiconductor device and process for fabricating the same
US16/224,846 US10559521B2 (en) 2003-10-30 2018-12-19 Semiconductor device and process for fabricating the same
US16/748,020 US11127657B2 (en) 2003-10-30 2020-01-21 Semiconductor device and process for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-370651 2003-10-30
JP2003370651A JP4340517B2 (ja) 2003-10-30 2003-10-30 半導体装置及びその製造方法

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/577,863 A-371-Of-International US7944058B2 (en) 2003-10-30 2005-11-21 Semiconductor device and process for fabricating the same
US57786306A Continuation 2003-10-30 2006-04-28
US13/093,220 Division US8664666B2 (en) 2003-10-30 2011-04-25 Semiconductor device and process for fabricating the same

Publications (1)

Publication Number Publication Date
WO2005043622A1 true WO2005043622A1 (ja) 2005-05-12

Family

ID=34543886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011454 WO2005043622A1 (ja) 2003-10-30 2004-08-10 半導体装置及びその製造方法

Country Status (7)

Country Link
US (8) US7944058B2 (ja)
EP (1) EP1686623B1 (ja)
JP (1) JP4340517B2 (ja)
KR (1) KR100814177B1 (ja)
CN (1) CN1875481B (ja)
TW (1) TWI408795B (ja)
WO (1) WO2005043622A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227348A (ja) * 2007-03-15 2008-09-25 Sanyo Electric Co Ltd 半導体装置及びその製造方法
WO2010035379A1 (ja) * 2008-09-26 2010-04-01 パナソニック株式会社 半導体装置及びその製造方法
JP2010232661A (ja) * 2009-03-27 2010-10-14 Taiwan Semiconductor Manufacturing Co Ltd ビア構造とそれを形成するビアエッチングプロセス
US7816264B2 (en) * 2007-07-13 2010-10-19 Disco Corporation Wafer processing method
JP2012522398A (ja) * 2009-03-30 2012-09-20 メギカ・コーポレイション 上部ポストパッシベーション技術および底部構造技術を使用する集積回路チップ
JP2013501356A (ja) * 2009-07-30 2013-01-10 メギカ・コーポレイション システムインパッケージ
JP2021141239A (ja) * 2020-03-06 2021-09-16 本田技研工業株式会社 半導体装置の製造方法

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059589A1 (ja) * 2004-11-30 2006-06-08 Kyushu Institute Of Technology パッケージングされた積層型半導体装置及びその製造方法
KR100818088B1 (ko) * 2006-06-29 2008-03-31 주식회사 하이닉스반도체 반도체 패키지 및 그 제조 방법
KR100761468B1 (ko) * 2006-07-13 2007-09-27 삼성전자주식회사 반도체 장치 및 그 형성 방법
US7544605B2 (en) * 2006-11-21 2009-06-09 Freescale Semiconductor, Inc. Method of making a contact on a backside of a die
WO2008083284A2 (en) * 2006-12-29 2008-07-10 Cufer Asset Ltd. L.L.C. Front-end processed wafer having through-chip connections
US8367471B2 (en) 2007-06-15 2013-02-05 Micron Technology, Inc. Semiconductor assemblies, stacked semiconductor devices, and methods of manufacturing semiconductor assemblies and stacked semiconductor devices
JP2009010178A (ja) 2007-06-28 2009-01-15 Disco Abrasive Syst Ltd ウェーハの加工方法
JP2009049051A (ja) 2007-08-14 2009-03-05 Elpida Memory Inc 半導体基板の接合方法及びそれにより製造された積層体
JP2009071095A (ja) 2007-09-14 2009-04-02 Spansion Llc 半導体装置の製造方法
JP5044353B2 (ja) * 2007-10-10 2012-10-10 株式会社テラミクロス 半導体装置の製造方法
JP2008113045A (ja) * 2008-02-04 2008-05-15 Texas Instr Japan Ltd 半導体装置の製造方法
EP2096115A1 (en) * 2008-02-26 2009-09-02 Nestec S.A. Oligosaccharide ingredient
US7791174B2 (en) * 2008-03-07 2010-09-07 Advanced Inquiry Systems, Inc. Wafer translator having a silicon core isolated from signal paths by a ground plane
US20090224410A1 (en) * 2008-03-07 2009-09-10 Advanced Inquiry Systems, Inc. Wafer translator having a silicon core fabricated with printed circuit board manufacturing techniques
CN102017133B (zh) 2008-05-09 2012-10-10 国立大学法人九州工业大学 芯片尺寸两面连接封装件及其制造方法
US8298914B2 (en) * 2008-08-19 2012-10-30 International Business Machines Corporation 3D integrated circuit device fabrication using interface wafer as permanent carrier
JP4766143B2 (ja) 2008-09-15 2011-09-07 株式会社デンソー 半導体装置およびその製造方法
JP5331427B2 (ja) * 2008-09-29 2013-10-30 株式会社日立製作所 半導体装置
US7998860B2 (en) * 2009-03-12 2011-08-16 Micron Technology, Inc. Method for fabricating semiconductor components using maskless back side alignment to conductive vias
JP2011040511A (ja) * 2009-08-10 2011-02-24 Disco Abrasive Syst Ltd ウエーハの研削方法
JP2011043377A (ja) * 2009-08-20 2011-03-03 Tokyo Electron Ltd 検査用接触構造体
US8252665B2 (en) * 2009-09-14 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Protection layer for adhesive material at wafer edge
US8907457B2 (en) * 2010-02-08 2014-12-09 Micron Technology, Inc. Microelectronic devices with through-substrate interconnects and associated methods of manufacturing
ES2928766T3 (es) * 2010-02-22 2022-11-22 Swiss Tech Enterprise Gmbh Procedimiento para producir un módulo semiconductor
JP5601079B2 (ja) 2010-08-09 2014-10-08 三菱電機株式会社 半導体装置、半導体回路基板および半導体回路基板の製造方法
JP2012064891A (ja) * 2010-09-17 2012-03-29 Toshiba Corp 半導体装置及びその製造方法
US8441112B2 (en) * 2010-10-01 2013-05-14 Headway Technologies, Inc. Method of manufacturing layered chip package
JP2012209497A (ja) 2011-03-30 2012-10-25 Elpida Memory Inc 半導体装置
KR101243304B1 (ko) * 2011-07-20 2013-03-13 전자부품연구원 인터포저 및 그의 제조 방법
JP2013065835A (ja) * 2011-08-24 2013-04-11 Sumitomo Bakelite Co Ltd 半導体装置の製造方法、ブロック積層体及び逐次積層体
JP5912616B2 (ja) * 2012-02-08 2016-04-27 株式会社ジェイデバイス 半導体装置及びその製造方法
JP2013183120A (ja) 2012-03-05 2013-09-12 Elpida Memory Inc 半導体装置
JP5874481B2 (ja) * 2012-03-22 2016-03-02 富士通株式会社 貫通電極の形成方法
JP2014022652A (ja) 2012-07-20 2014-02-03 Elpida Memory Inc 半導体装置及びそのテスト装置、並びに、半導体装置のテスト方法
USD759022S1 (en) * 2013-03-13 2016-06-14 Nagrastar Llc Smart card interface
USD758372S1 (en) 2013-03-13 2016-06-07 Nagrastar Llc Smart card interface
JP5827277B2 (ja) * 2013-08-02 2015-12-02 株式会社岡本工作機械製作所 半導体装置の製造方法
US9443758B2 (en) 2013-12-11 2016-09-13 Taiwan Semiconductor Manufacturing Co., Ltd. Connecting techniques for stacked CMOS devices
JP6304377B2 (ja) * 2014-06-23 2018-04-04 株式会社村田製作所 樹脂基板組合せ構造体
KR102298728B1 (ko) 2014-08-19 2021-09-08 삼성전자주식회사 반도체 패키지
KR102254104B1 (ko) * 2014-09-29 2021-05-20 삼성전자주식회사 반도체 패키지
TWI806814B (zh) 2015-01-13 2023-07-01 日商迪睿合股份有限公司 多層基板
JP2016131245A (ja) 2015-01-13 2016-07-21 デクセリアルズ株式会社 多層基板
USD864968S1 (en) 2015-04-30 2019-10-29 Echostar Technologies L.L.C. Smart card interface
WO2017039275A1 (ko) * 2015-08-31 2017-03-09 한양대학교 산학협력단 반도체 패키지 구조체, 및 그 제조 방법
KR102497205B1 (ko) * 2016-03-03 2023-02-09 삼성전자주식회사 관통전극을 갖는 반도체 소자 및 그 제조방법
EP3290399B1 (en) 2016-08-29 2022-03-02 Infineon Technologies AG Method for producing a metal-ceramic substrate with a least one via
JP6707291B2 (ja) 2016-10-14 2020-06-10 株式会社ディスコ ウェーハの加工方法
CN108123142B (zh) 2016-11-28 2022-01-04 财团法人工业技术研究院 抗腐蚀结构及包含其抗腐蚀结构的燃料电池
JP6862820B2 (ja) * 2016-12-26 2021-04-21 セイコーエプソン株式会社 超音波デバイス及び超音波装置
US10181447B2 (en) 2017-04-21 2019-01-15 Invensas Corporation 3D-interconnect
CN112164688B (zh) * 2017-07-21 2023-06-13 联华电子股份有限公司 芯片堆叠结构及管芯堆叠结构的制造方法
US11183765B2 (en) 2020-02-05 2021-11-23 Samsung Electro-Mechanics Co., Ltd. Chip radio frequency package and radio frequency module
US11101840B1 (en) * 2020-02-05 2021-08-24 Samsung Electro-Mechanics Co., Ltd. Chip radio frequency package and radio frequency module
TWI733331B (zh) * 2020-02-11 2021-07-11 華邦電子股份有限公司 半導體元件及其製造方法
JP2021136514A (ja) * 2020-02-25 2021-09-13 株式会社村田製作所 高周波モジュール及び通信装置
US11309267B2 (en) 2020-07-15 2022-04-19 Winbond Electronics Corp. Semiconductor device including uneven contact in passivation layer and method of manufacturing the same
US12040284B2 (en) 2021-11-12 2024-07-16 Invensas Llc 3D-interconnect with electromagnetic interference (“EMI”) shield and/or antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027824A (ja) * 1996-02-23 1998-01-27 Matsushita Electric Ind Co Ltd 突起電極を有する半導体装置及びその製造方法
JPH10223833A (ja) * 1996-12-02 1998-08-21 Toshiba Corp マルチチップ半導体装置、ならびにマルチチップ半導体装置用チップおよびその形成方法
JP2001250913A (ja) 1999-12-28 2001-09-14 Mitsumasa Koyanagi 3次元半導体集積回路装置及びその製造方法
JP2003046057A (ja) 2001-07-27 2003-02-14 Toshiba Corp 半導体装置
JP2003110084A (ja) * 2001-09-28 2003-04-11 Rohm Co Ltd 半導体装置
JP2003309221A (ja) * 2002-04-15 2003-10-31 Sanyo Electric Co Ltd 半導体装置の製造方法

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746934A (en) * 1971-05-06 1973-07-17 Siemens Ag Stack arrangement of semiconductor chips
US4661202A (en) * 1984-02-14 1987-04-28 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device
US5382827A (en) * 1992-08-07 1995-01-17 Fujitsu Limited Functional substrates for packaging semiconductor chips
DE4314907C1 (de) * 1993-05-05 1994-08-25 Siemens Ag Verfahren zur Herstellung von vertikal miteinander elektrisch leitend kontaktierten Halbleiterbauelementen
US5627106A (en) * 1994-05-06 1997-05-06 United Microelectronics Corporation Trench method for three dimensional chip connecting during IC fabrication
US5783870A (en) * 1995-03-16 1998-07-21 National Semiconductor Corporation Method for connecting packages of a stacked ball grid array structure
EP0821407A3 (en) * 1996-02-23 1998-03-04 Matsushita Electric Industrial Co., Ltd. Semiconductor devices having protruding contacts and method for making the same
US6809421B1 (en) * 1996-12-02 2004-10-26 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
JP3920399B2 (ja) * 1997-04-25 2007-05-30 株式会社東芝 マルチチップ半導体装置用チップの位置合わせ方法、およびマルチチップ半導体装置の製造方法・製造装置
JPH11307689A (ja) * 1998-02-17 1999-11-05 Seiko Epson Corp 半導体装置、半導体装置用基板及びこれらの製造方法並びに電子機器
JP3563604B2 (ja) * 1998-07-29 2004-09-08 株式会社東芝 マルチチップ半導体装置及びメモリカード
DE19853703A1 (de) * 1998-11-20 2000-05-25 Giesecke & Devrient Gmbh Verfahren zur Herstellung eines beidseitig prozessierten integrierten Schaltkreises
EP1041624A1 (en) * 1999-04-02 2000-10-04 Interuniversitair Microelektronica Centrum Vzw Method of transferring ultra-thin substrates and application of the method to the manufacture of a multilayer thin film device
JP2001102523A (ja) 1999-09-28 2001-04-13 Sony Corp 薄膜デバイスおよびその製造方法
JP2001127243A (ja) * 1999-10-26 2001-05-11 Sharp Corp 積層半導体装置
JP2001177051A (ja) * 1999-12-20 2001-06-29 Toshiba Corp 半導体装置及びシステム装置
JP3548082B2 (ja) * 2000-03-30 2004-07-28 三洋電機株式会社 半導体装置及びその製造方法
JP3736789B2 (ja) * 2000-04-10 2006-01-18 Necトーキン栃木株式会社 密閉型電池
KR100364635B1 (ko) * 2001-02-09 2002-12-16 삼성전자 주식회사 칩-레벨에 형성된 칩 선택용 패드를 포함하는 칩-레벨3차원 멀티-칩 패키지 및 그 제조 방법
JP2002305282A (ja) * 2001-04-06 2002-10-18 Shinko Electric Ind Co Ltd 半導体素子とその接続構造及び半導体素子を積層した半導体装置
JP2003004657A (ja) 2001-06-25 2003-01-08 Hitachi Ltd 観察作業支援システム
CN1308113C (zh) * 2001-07-02 2007-04-04 维蒂克激光系统公司 在坚硬的非金属基底内烧蚀开口的方法和装置
JP3655242B2 (ja) * 2002-01-04 2005-06-02 株式会社東芝 半導体パッケージ及び半導体実装装置
TW200302685A (en) * 2002-01-23 2003-08-01 Matsushita Electric Ind Co Ltd Circuit component built-in module and method of manufacturing the same
JP4005813B2 (ja) * 2002-01-28 2007-11-14 株式会社東芝 半導体装置
US20030183943A1 (en) * 2002-03-28 2003-10-02 Swan Johanna M. Integrated circuit die and an electronic assembly having a three-dimensional interconnection scheme
JP2003297956A (ja) * 2002-04-04 2003-10-17 Toshiba Corp 半導体記憶装置及びその製造方法
JP2003318178A (ja) * 2002-04-24 2003-11-07 Seiko Epson Corp 半導体装置及びその製造方法、回路基板並びに電子機器
JP3908147B2 (ja) * 2002-10-28 2007-04-25 シャープ株式会社 積層型半導体装置及びその製造方法
JP4035034B2 (ja) * 2002-11-29 2008-01-16 株式会社ルネサステクノロジ 半導体装置およびその製造方法
JP4181893B2 (ja) 2003-02-24 2008-11-19 株式会社神戸製鋼所 溶銑の精錬方法
JP4248928B2 (ja) * 2003-05-13 2009-04-02 ローム株式会社 半導体チップの製造方法、半導体装置の製造方法、半導体チップ、および半導体装置
KR100537892B1 (ko) * 2003-08-26 2005-12-21 삼성전자주식회사 칩 스택 패키지와 그 제조 방법
JP4120562B2 (ja) * 2003-10-31 2008-07-16 沖電気工業株式会社 受動素子チップ、高集積モジュール、受動素子チップの製造方法、及び高集積モジュールの製造方法。
KR100621992B1 (ko) * 2003-11-19 2006-09-13 삼성전자주식회사 이종 소자들의 웨이퍼 레벨 적층 구조와 방법 및 이를이용한 시스템-인-패키지
JP3990347B2 (ja) * 2003-12-04 2007-10-10 ローム株式会社 半導体チップおよびその製造方法、ならびに半導体装置
JP4074862B2 (ja) * 2004-03-24 2008-04-16 ローム株式会社 半導体装置の製造方法、半導体装置、および半導体チップ
JP4441328B2 (ja) * 2004-05-25 2010-03-31 株式会社ルネサステクノロジ 半導体装置及びその製造方法
US7825026B2 (en) * 2004-06-07 2010-11-02 Kyushu Institute Of Technology Method for processing copper surface, method for forming copper pattern wiring and semiconductor device manufactured using such method
JP4365750B2 (ja) * 2004-08-20 2009-11-18 ローム株式会社 半導体チップの製造方法、および半導体装置の製造方法
JP4813035B2 (ja) * 2004-10-01 2011-11-09 新光電気工業株式会社 貫通電極付基板の製造方法
JPWO2006043388A1 (ja) * 2004-10-21 2008-05-22 松下電器産業株式会社 半導体内蔵モジュール及びその製造方法
WO2006059589A1 (ja) * 2004-11-30 2006-06-08 Kyushu Institute Of Technology パッケージングされた積層型半導体装置及びその製造方法
JP4504798B2 (ja) * 2004-12-16 2010-07-14 パナソニック株式会社 多段構成半導体モジュール
JP4507101B2 (ja) * 2005-06-30 2010-07-21 エルピーダメモリ株式会社 半導体記憶装置及びその製造方法
JP4553813B2 (ja) * 2005-08-29 2010-09-29 Okiセミコンダクタ株式会社 半導体装置の製造方法
KR100621438B1 (ko) * 2005-08-31 2006-09-08 삼성전자주식회사 감광성 폴리머를 이용한 적층 칩 패키지 및 그의 제조 방법
JP2007123524A (ja) * 2005-10-27 2007-05-17 Shinko Electric Ind Co Ltd 電子部品内蔵基板
US20070126085A1 (en) * 2005-12-02 2007-06-07 Nec Electronics Corporation Semiconductor device and method of manufacturing the same
JP4753725B2 (ja) * 2006-01-20 2011-08-24 エルピーダメモリ株式会社 積層型半導体装置
JP2007234881A (ja) * 2006-03-01 2007-09-13 Oki Electric Ind Co Ltd 半導体チップを積層した半導体装置及びその製造方法
KR100753415B1 (ko) * 2006-03-17 2007-08-30 주식회사 하이닉스반도체 스택 패키지
US8124429B2 (en) * 2006-12-15 2012-02-28 Richard Norman Reprogrammable circuit board with alignment-insensitive support for multiple component contact types
JP5143451B2 (ja) * 2007-03-15 2013-02-13 オンセミコンダクター・トレーディング・リミテッド 半導体装置及びその製造方法
KR100874926B1 (ko) * 2007-06-07 2008-12-19 삼성전자주식회사 스택 모듈, 이를 포함하는 카드 및 이를 포함하는 시스템
TWI422009B (zh) * 2010-07-08 2014-01-01 Nat Univ Tsing Hua 多晶片堆疊結構

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027824A (ja) * 1996-02-23 1998-01-27 Matsushita Electric Ind Co Ltd 突起電極を有する半導体装置及びその製造方法
JPH10223833A (ja) * 1996-12-02 1998-08-21 Toshiba Corp マルチチップ半導体装置、ならびにマルチチップ半導体装置用チップおよびその形成方法
JP2001250913A (ja) 1999-12-28 2001-09-14 Mitsumasa Koyanagi 3次元半導体集積回路装置及びその製造方法
JP2003046057A (ja) 2001-07-27 2003-02-14 Toshiba Corp 半導体装置
JP2003110084A (ja) * 2001-09-28 2003-04-11 Rohm Co Ltd 半導体装置
JP2003309221A (ja) * 2002-04-15 2003-10-31 Sanyo Electric Co Ltd 半導体装置の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE SURFACE FINISHING SOCIETY OF JAPAN, vol. EFM-02-6, no. 7, 2001, pages 479 - 483
See also references of EP1686623A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227348A (ja) * 2007-03-15 2008-09-25 Sanyo Electric Co Ltd 半導体装置及びその製造方法
US7816264B2 (en) * 2007-07-13 2010-10-19 Disco Corporation Wafer processing method
WO2010035379A1 (ja) * 2008-09-26 2010-04-01 パナソニック株式会社 半導体装置及びその製造方法
US8338958B2 (en) 2008-09-26 2012-12-25 Panasonic Corporation Semiconductor device and manufacturing method thereof
US8896127B2 (en) 2009-03-27 2014-11-25 Taiwan Semiconductor Manufacturing Company, Ltd. Via structure and via etching process of forming the same
JP2010232661A (ja) * 2009-03-27 2010-10-14 Taiwan Semiconductor Manufacturing Co Ltd ビア構造とそれを形成するビアエッチングプロセス
JP2015073107A (ja) * 2009-03-30 2015-04-16 クゥアルコム・インコーポレイテッドQualcomm Incorporated 上部ポストパッシベーション技術および底部構造技術を使用する集積回路チップ
JP2012522398A (ja) * 2009-03-30 2012-09-20 メギカ・コーポレイション 上部ポストパッシベーション技術および底部構造技術を使用する集積回路チップ
US9612615B2 (en) 2009-03-30 2017-04-04 Qualcomm Incorporated Integrated circuit chip using top post-passivation technology and bottom structure technology
US8804360B2 (en) 2009-07-30 2014-08-12 Megit Acquisition Corp. System-in packages
JP2013501356A (ja) * 2009-07-30 2013-01-10 メギカ・コーポレイション システムインパッケージ
JP2021141239A (ja) * 2020-03-06 2021-09-16 本田技研工業株式会社 半導体装置の製造方法
JP7357288B2 (ja) 2020-03-06 2023-10-06 本田技研工業株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
US9887147B2 (en) 2018-02-06
CN1875481B (zh) 2010-04-28
US20140131891A1 (en) 2014-05-15
US7944058B2 (en) 2011-05-17
EP1686623A1 (en) 2006-08-02
US20080265430A1 (en) 2008-10-30
US20180122722A1 (en) 2018-05-03
EP1686623A4 (en) 2007-07-11
JP4340517B2 (ja) 2009-10-07
US20200161223A1 (en) 2020-05-21
US20170103938A1 (en) 2017-04-13
US9093431B2 (en) 2015-07-28
US20110201178A1 (en) 2011-08-18
US20190122961A1 (en) 2019-04-25
US10559521B2 (en) 2020-02-11
KR20060069525A (ko) 2006-06-21
US10199310B2 (en) 2019-02-05
TWI408795B (zh) 2013-09-11
US11127657B2 (en) 2021-09-21
US9559041B2 (en) 2017-01-31
CN1875481A (zh) 2006-12-06
US20150287663A1 (en) 2015-10-08
KR100814177B1 (ko) 2008-03-14
JP2005136187A (ja) 2005-05-26
TW200515586A (en) 2005-05-01
US8664666B2 (en) 2014-03-04
EP1686623B1 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP4340517B2 (ja) 半導体装置及びその製造方法
JP6263573B2 (ja) 積層電子デバイスとその製造方法
JP4551255B2 (ja) 半導体装置
JP4409455B2 (ja) 半導体装置の製造方法
JP4505983B2 (ja) 半導体装置
US8293574B2 (en) Semiconductor device having a plurality of semiconductor constructs
WO2010029668A1 (ja) 集積回路装置
JP2005294451A (ja) 半導体集積回路の製造方法および半導体集積回路ならびに半導体集積回路装置
TW201115661A (en) Semiconductor device and method of manufacturing the same
JP3356122B2 (ja) システム半導体装置及びシステム半導体装置の製造方法
JP2020136629A (ja) 電子装置および電子装置の製造方法
JP2000299432A (ja) 半導体装置の製造方法
US11183483B2 (en) Multichip module and electronic device
JP4324768B2 (ja) 半導体装置及びその製造方法、回路基板並びに電子機器
JP4168494B2 (ja) 半導体装置の製造方法
JP4465884B2 (ja) 半導体装置およびその製造方法
JP5191688B2 (ja) 半導体装置の製造方法
JP2000243906A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480032487.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10577863

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067008477

Country of ref document: KR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004771441

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067008477

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004771441

Country of ref document: EP