WO2000047888A1 - Pompe d'alimentation en combustible a haute pression faisant partie d'un moteur a combustion interne - Google Patents

Pompe d'alimentation en combustible a haute pression faisant partie d'un moteur a combustion interne Download PDF

Info

Publication number
WO2000047888A1
WO2000047888A1 PCT/JP1999/003257 JP9903257W WO0047888A1 WO 2000047888 A1 WO2000047888 A1 WO 2000047888A1 JP 9903257 W JP9903257 W JP 9903257W WO 0047888 A1 WO0047888 A1 WO 0047888A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
valve
pressure
passage
supply pump
Prior art date
Application number
PCT/JP1999/003257
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Yamada
Shigenori Tahara
Atsuji Saito
Yukio Takahashi
Masami Abe
Original Assignee
Hitachi, Ltd.
Hitachi Car Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Car Engineering Co., Ltd. filed Critical Hitachi, Ltd.
Priority to EP99973678A priority Critical patent/EP1162365A4/en
Priority to US09/463,659 priority patent/US6631706B1/en
Publication of WO2000047888A1 publication Critical patent/WO2000047888A1/ja
Priority to US10/643,925 priority patent/US7540274B2/en
Priority to US12/412,071 priority patent/US7707996B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/442Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston means preventing fuel leakage around pump plunger, e.g. fluid barriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/367Pump inlet valves of the check valve type being open when actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0033Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat
    • F02M63/0035Poppet valves, i.e. having a mushroom-shaped valve member that moves perpendicularly to the plane of the valve seat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0421Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/24Bypassing
    • F04B49/243Bypassing by keeping open the inlet valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders
    • F04B53/166Cylinder liners

Definitions

  • the present invention relates to a high-pressure fuel supply pump, and more particularly to a high-pressure fuel supply pump suitable for pumping high-pressure fuel to a fuel injection valve of an internal combustion engine.
  • the present invention also relates to a high-pressure fuel supply pump provided with a variable displacement mechanism for adjusting the amount of discharged fuel.
  • the suction passage is formed at the intermediate side wall or the upper end surface of the pressurizing chamber.
  • the discharge passage communicates with the upper end surface of the pressurizing chamber.
  • the suction passage in the high-pressure pump is provided on the upper end surface of the pressurizing chamber, and the discharge passage is provided on the intermediate side wall of the pressurizing chamber.
  • the vapor is unlikely to be discharged to the suction passage by the intake fuel, and in the discharge process, it is likely to remain in the pressurized chamber above the discharge passage, and the fuel supply performance is reduced. There was a problem.
  • the discharge passage in the high-pressure pump is provided at the upper end of the pressurizing chamber, so that the vapor in the pressurizing chamber is
  • the fuel sent from the low-pressure pump communicates with the pressurized chamber, which changes its volume due to biston motion in the high-pressure pump, so that the low-pressure pump
  • a fuel reservoir is provided in the sliding portion of the plunger, which is connected to the fuel inlet, which is a low-pressure portion.
  • a fuel reservoir (a sliding hole 11 a of a cylinder 11 in FIG. 1) communicating with a low-pressure fuel chamber is provided. Since the distance from the plunger to the sealing material is increased, the amount of fuel that flows out when the sealing material breaks or falls can be reduced. However, since the plunger sliding distance between the pressurizing chamber and the fuel reservoir cannot be increased, fuel leaks from the clearance of the plunger sliding section to the low-pressure section during pressurization, resulting in poor discharge efficiency. There was a problem.
  • the distance from the pressurization chamber to the fuel reservoir is increased by increasing the distance.
  • it is possible to prevent fuel leakage it is necessary to increase the length of the sliding part, which causes a problem that the entire pump becomes large.
  • a solenoid valve is provided in the suction passage, and the return amount to the suction side is controlled by opening and closing the solenoid valve.
  • the discharge amount is adjusted by and.
  • a check valve is provided in the suction passage, and a spill (overflow) valve is provided in the fuel spill (overflow) passage communicating with the pressurizing chamber.
  • a configuration is known in which the discharge amount is adjusted by controlling the amount of spill (overflow) to the fuel tank by opening and closing the spill valve.
  • the first object of the present invention is to supply fuel to the common rail immediately after starting the engine. It is an object of the present invention to provide a high-pressure fuel supply pump capable of improving supplyability.
  • a second object of the present invention is to provide a high-pressure fuel supply pump capable of improving the pressure rise to the common rail immediately after the start of the engine.
  • a third object of the present invention is to provide a small-sized and inexpensive high-pressure fuel supply pump while suppressing external leakage of fuel to a small amount even when a sealing material of a sliding portion is broken or dropped.
  • a fourth object of the present invention is to provide a high-pressure fuel supply pump having a variable displacement mechanism with good open / close response.
  • the present invention provides a high-pressure fuel having a pressurized chamber which pressurizes a fuel supplied from a fuel intake passage by a pressurizing member and feeds the fuel to a discharge passage.
  • a pressurized chamber which pressurizes a fuel supplied from a fuel intake passage by a pressurizing member and feeds the fuel to a discharge passage.
  • an auxiliary pressurizing chamber communicating the suction passage and the discharge passage is provided in addition to the main pressurizing chamber in which the pressurizing member is disposed.
  • the fuel supplied from the suction passage by the low-pressure pump can be supplied to the common rail via the discharge passage without being hindered by the resistance due to the movement of the pressurizing member of the high-pressure pump. This can improve the performance.
  • the suction passage and the discharge passage communicate with an upper end of the pressurizing chamber.
  • the sub-pressurizing chamber is arranged in a substantially annular shape around the outer periphery of the main pressurizing chamber.
  • the present invention provides a high-pressure high-pressure chamber having a pressurizing chamber for pressurizing a fuel supplied from a fuel intake passage by a pressurizing member and feeding the fuel to a discharge passage.
  • the fuel supply pump has a taper surface at an end and a pressurizing chamber forming member formed by a member separate from the pump body.
  • the pressurizing chamber is formed by shrink-fitting the surface with a fixing member.
  • the pressurizing chamber forming member can be fixed without providing an elastic member such as rubber, so that the pressurizing property to the common rail can be improved.
  • the present invention provides a pressurizing chamber communicating with a fuel intake passage and a discharge passage, and a pressurizing member for pumping fuel in the pressurized chamber to the discharge passage.
  • a high-pressure fuel supply pump having a seal member disposed in a sliding portion of the pressurizing member, a connecting passage communicating the fuel chamber side of the seal member with a fuel suction passage, and being disposed in the connecting passage; And a check valve for preventing fuel from flowing from the fuel suction passage side to the seal material side.
  • the check valve can prevent fuel leakage, and since there is no portion communicating with the atmospheric pressure, miniaturization and cost reduction can be achieved. The reduction can be achieved.
  • the check valve is opened when the pump operation is stopped.
  • the check valve is formed of an elastic member.
  • a fourth object of the present invention is to provide a fuel tank provided between a cylinder and a low-pressure side passage.
  • a valve body that opens and closes the material through hole, a spring that urges the valve body in the closing direction with respect to the hole, and adjusts the opening and closing timing of the valve body by contacting or separating from the valve body. This is achieved by configuring a high-pressure pump with an operating stick to be operated and an electromagnetic mechanism for electromagnetically driving the operating stick in relation to the operating state of the internal combustion engine.
  • the responsiveness of the displacement control mechanism is improved because the mass of the valve body does not load the electromagnetic drive mechanism.
  • this electromagnetic drive mechanism can be shared with the suction valve mechanism.
  • the electromagnetic drive mechanism can be configured as a spill (overflow) valve mechanism.
  • a suction valve is provided in the suction passage, and a slight urging force in the closing direction is applied to the suction valve such that it automatically opens when fuel flows into the pressurizing chamber. Further, an engaging member having a biasing force to be held in the opening direction is engaged with the suction valve, and the opening and closing of the suction valve is controlled by the operation timing of the actuator.
  • the suction valve can be opened regardless of the operation of the actuator.
  • the intake valve will be kept open so that excess fuel in the pressurized chamber, which has been reduced by compression, will be returned to the suction side. Therefore, fuel is not pumped into the discharge passage because the pressure in the pressurizing chamber does not rise.
  • the actuator is operated (ON)
  • the suction valve is closed by the self-closing force, the pressure in the pressurizing chamber increases, and the pressure is sent to the discharge passage.
  • the suction valve is automatically opened and closed in synchronization with the pressure of the pressurizing chamber by keeping the actuator ON, so that it depends on the responsiveness of the actuator.
  • the maximum discharge can be performed.
  • the actuator only needs to turn ON from the latter half of the compression process and turn it off by the end of the suction process, so high response is not required.
  • the actuator an electromagnetic type, it can be easily controlled by the engine control unit, and the fuel can be supplied to the actuator. Injection valves can also be used.
  • the engaging portion between the suction valve and the engaging member is formed into a concave-convex engagement, so that the engaging portion can be prevented from slipping or slipping off. A reliable operation can be performed.
  • the machining accuracy of the seat portion can be easily improved. Further, by engaging a cylindrical member with the pole valve and holding the outer periphery of the cylindrical member so as to be able to reciprocate in the suction passage, oscillation of the pole valve can be prevented. Further, since the cylindrical member and the pole valve are separate bodies, both can be manufactured by an easy method.
  • the sliding part of the plunger is a cylindrical member separate from the pump body, so that only the sliding part is provided.
  • the material can be made suitable for sliding.
  • the inner wall of this cylindrical member is expanded with the sliding hole of the plunger and the inner diameter is made larger.
  • a clearance is provided in a portion other than the portion where the cylindrical member and the pump body are fitted, and an annular passage is formed on the outer peripheral portion of the cylindrical member.
  • FIG. 1 is a horizontal sectional view of a high-pressure fuel supply pump according to one embodiment of the present invention.
  • FIG. 2 is a vertical sectional view of a high-pressure fuel supply pump according to one embodiment of the present invention.
  • FIG. 3 is a system configuration diagram of a fuel injection system using a high-pressure fuel supply pump according to one embodiment of the present invention.
  • FIG. 4 is a vertical sectional view of a high-pressure fuel supply pump according to a second embodiment of the present invention.
  • FIG. 5 is a partially enlarged view of FIG.
  • FIG. 6 is a partially enlarged view showing a vertical cross section of a high-pressure fuel supply pump according to a third embodiment of the present invention.
  • FIG. 7 is a system configuration diagram showing an overall configuration of a fuel injection system using a high-pressure fuel supply pump according to a fourth embodiment of the present invention.
  • FIG. 8 is a longitudinal sectional view showing a configuration of a high-pressure fuel supply pump according to a fourth embodiment of the present invention.
  • FIG. 9 is a sectional view of the check valve used in the high-pressure fuel supply pump according to the fourth embodiment when the check valve is opened.
  • FIG. 10 is a sectional view of a high-pressure fuel supply pump according to a fourth embodiment of the present invention when a check valve is closed.
  • FIG. 11 is a drawing for explaining the concept of the variable displacement mechanism of the present invention, and is a drawing conceptually showing FIG. 2 and FIG.
  • FIGS. 12 to 14 are drawings showing another embodiment of a spill valve (overflow valve) or a suction valve.
  • FIG. 15 is a specific enlarged sectional view of a portion corresponding to the suction valve and the solenoid drive unit in FIGS. 2 and 8.
  • FIG. 16 is an enlarged sectional view of a portion P in FIG.
  • FIG. 17 is a side view of the holder.
  • FIG. 18 is a cross-sectional view of the holder.
  • Fig. 19 (a) is a cross-sectional view of the suction valve, and (b) is a right side view of (a).
  • FIG. 1 is a horizontal cross-sectional view of the high-pressure fuel supply pump according to the present embodiment.
  • FIG. 2 is a vertical cross-sectional view of the high-pressure fuel supply pump according to the present embodiment.
  • Fuel injection system using feed pump It is a system configuration diagram of a system. The same reference numerals in the drawings indicate the same parts.
  • the pump body 1 includes a fuel suction passage 10, a discharge passage 11, and a pressurizing chamber 12.
  • the suction passage 10 is provided with a suction valve 5, which is held in one direction by a spring 5 a, and restricts the flow direction of fuel from the fuel suction passage 10 to the fuel suction passage 5 b.
  • the c discharge passage 1 1 has a valve, and the discharge valve 6 is provided, is held by spring 6 a in one direction, the flow direction of the fuel from the fuel discharge passage 6 b to the fuel discharge passage 1 1 It is a check valve that restricts
  • the pressurizing chamber 12 is divided into a main pressurizing chamber 12a and an annular sub-pressurizing chamber 12b located on the outer periphery thereof, and each is communicated with a communication hole 12c. Configuration.
  • the sub-pressurizing chamber 12b communicates with the fuel suction passage 5b and the fuel discharge passage 6b.
  • a plunger 2 as a pressure member is slidably held in the main pressure chamber 12 a of the pressure chamber 12.
  • a lifter 3 provided at the lower end of the plunger 2 is pressed against a cam 100 by a spring 4.
  • the plunger 2 reciprocates by a cam 100 rotated by an engine cam shaft or the like to change the volume in the pressurizing chamber 12.
  • the pump body 1 is provided with a solenoid 200.
  • the solenoid 200 is provided with an engaging member 201 and a spring 202. You. When the solenoid 200 is in the OFF position, the engaging member 201 is biased by the spring 202 in a direction to open the suction valve 5. Since the urging force of the spring 202 is larger than the urging force of the suction valve spring 5a, when the solenoid 200 is turned off, as shown in FIGS. 1 and 2, The suction valve 5 is open.
  • the solenoid 200 When the Takasho fuel is supplied from the pump body 1, the solenoid 200 is turned on (energized), and when the fuel supply is stopped, the solenoid 200 is turned off (no power). The power supply to the solenoid 200 is controlled so as to be in the “power-on” state.
  • the solenoid 200 When the solenoid 200 maintains the 0 N (energized) state, an electromagnetic force greater than the biasing force of the spring 202 is generated, and the engaging member 201 is moved to the solenoid 202 side.
  • the engagement member 201 and the suction valve 5 are separated from each other.
  • the suction valve 5 is an automatic valve that opens and closes in synchronization with the reciprocation of the plunger 2. Therefore, during the compression process, the suction valve 5 is closed, and the fuel corresponding to the reduced volume of the pressurizing chamber 12 is pushed to open the discharge valve 6 and is fed to the common rail 53.
  • the solenoid 2 When 0 0 holds 0 FF (non-energized), the engaging member 201 is engaged with the suction valve 5 by the urging force of the spring 202, and the suction valve 5 is kept open. I do. Therefore, even during the compression process, the pressure in the pressurizing chamber 12 is kept at a low pressure almost equal to that of the fuel inlet port, so that the discharge valve 6 cannot be opened, and the volume of the pressurizing chamber 12 decreases. The fuel is returned to the fuel inlet side through the suction valve 5.
  • the fuel in the tank 50 is guided to the fuel supply port 10 of the pump body 1 by the low-pressure pump 51.
  • the pressure of the fuel guided to the fuel supply port 10 is regulated by the pressure regulator 52 so as to be a constant pressure.
  • the fuel supplied to the pump body 1 is pressurized by the pump body 1 and sent from the fuel outlet 11 to the common rail 53.
  • the common rail 53 is provided with an injector 54, a relief valve 55, and a pressure sensor 56.
  • the injectors 54 are mounted in accordance with the number of cylinders of the engine, and inject at a timing and an injection amount according to the fuel injection control signal of the engine control unit ECU.
  • the relief valve 55 opens when the pressure in the common rail 53 exceeds a predetermined value to prevent damage to the piping system.
  • the fuel pipe (including the high-pressure pump and the common rail) contains air and fuel vapor. It is necessary to fill the area with fuel immediately.
  • the pressurizing chamber 12 includes the main pressurizing chamber 12 a for pressurizing the fuel by the reciprocating motion of the plunger 2, and the fuel suction passage 5. and a sub-carrying chamber 12b which communicates with the fuel discharge passage 6b.
  • the low pressure pump 51 having a large discharge capacity supplies the fuel in the piping to the common rail 53, and at the same time, air and vapor etc. to the common rail 53 together. it can.
  • the pressurizing chamber 12 is provided with a fuel suction passage 5b and a fuel discharge passage 6b communicating with the upper end side wall, thereby forming a vapor reservoir. Is eliminated. Therefore, the paper or the like is pressure-fed from the discharge passage 6 b to the common rail 53 side, and does not stay in the pressurizing chamber 12. Therefore, the pressurized chamber is instantly filled with fuel, and high-pressure pumping is possible, so that air and fuel particles in the pressurized chamber can be reliably discharged.
  • the low-pressure fuel when starting the engine, the low-pressure fuel can be supplied to the common rail without hindering the biston movement of the high-pressure pump.
  • the fuel supply of the fuel cell can be improved.
  • FIG. 4 is a vertical sectional view of the high-pressure fuel supply pump according to the present embodiment
  • FIG. 5 is a partially enlarged view of FIG.
  • the same reference numerals as those in FIGS. 1 to 3 indicate the same parts.
  • the pressurizing chamber 12 includes a main pressurizing chamber 12a and a sub-pressurizing chamber 12b. Further, a feature of the present embodiment lies in the method of forming the pressurized chamber 12.
  • the pressurizing chamber 12 is formed by a cylinder 20 having a sliding portion of the plunger 2 and also serving as a pressurizing chamber forming member, and a fixing member 30 for fixing the cylinder 20. ing.
  • the inner surface of the upper end portion 20a of the cylinder 20 is tapered, and this portion is compressed and held by the fixing member 30 so that the upper end portion 20a is formed as shown in FIG.
  • the pressurizing chamber 12, the suction passage 5b, and the discharge passage 6b are isolated from the outside of the pump by the upper end portion 20a of the cylinder, so that an elastic member such as rubber is not used.
  • a pressure chamber can be formed.
  • the 0 ring is provided on the outer periphery of the fixing member 30 as a seal backup, the gap between the outer periphery of the upper end 20a of the cylinder and the pump body 1 is very small, so pressurization is performed. Since the pressure fluctuation in the chamber does not directly affect the 0 ring, the 0 ring does not wear or break.
  • body 1 and cylinder 20 are made of members with different linear expansion coefficients.
  • the upper end of the cylinder is held by the fixing member 30 and has high rigidity, the amount of deformation is small even when the upper end of the cylinder is tightened by heat shrinkage, and the plunger 2 slides. There is no galling due to deformation of the moving hole.
  • the low-pressure fuel can be supplied to the common rail without hindering the biston movement of the high-pressure pump.
  • the fuel supply performance of the high-pressure fuel supply pump can be improved and the boosting characteristics of the high-pressure fuel supply pump can be improved.
  • FIG. 6 is a partially enlarged view of a vertical cross section of the high-pressure fuel supply pump according to the present embodiment.
  • the overall configuration of the high-pressure fuel supply pump is the same as that shown in FIG.
  • the same reference numerals as those in FIGS. 1 to 5 denote the same parts.
  • the pressurizing chamber 12 includes a main pressurizing chamber 12a and a sub-pressurizing chamber 12b. Furthermore, a feature of the present embodiment lies in the method of forming the pressurizing chamber 12, which is another example of the example shown in FIGS. 4 and 5.
  • the periphery of the pressurizing chamber is formed as a pressurizing chamber forming member 21 which is a separate member from the cylinder 20.
  • the upper end 21 a of the pressurizing chamber forming member 21 has the same function as the upper end 20 a of the cylinder shown in FIG.
  • the outer periphery of the fixing member 30 is a screw, and by screwing this, a compressive force is applied to the cylinder 20. It is intended to be used, but is not limited to screws.
  • the low-pressure fuel when starting the engine, the low-pressure fuel can be supplied to the common rail without disturbing the biston movement of the high-pressure pump.
  • the fuel supply to the fuel supply can be improved, and the boosting characteristics of the high-pressure fuel supply pump can be improved.
  • the present embodiment it is possible to improve the ability of the high-pressure fuel supply pump to supply fuel to the common rail immediately after the start of the engine.
  • the high-pressure fuel supply pump can be improved in boosting pressure to the common rail immediately after the start of the engine.
  • the fuel in the tank 50 is guided to the fuel suction passage 110 of the pump main body 100 by the low-pressure pump 51.
  • the pressure of the fuel guided to the fuel suction passage 110 is regulated to a constant low pressure by the plenum regulator 52.
  • the fuel pressure at this time is adjusted to a relative pressure based on the atmospheric pressure, for example, 0.3 MPa.
  • the fuel guided to the pump main body 100 is pressurized by the pump main body 100 and is fed from the fuel discharge passage 111 to the common rail 53.
  • the pressure of the fuel discharged from the fuel discharge passage 111 is a relative pressure based on the atmospheric pressure, for example, 7 to 1 OMPa.
  • An injector 54, a relief valve 55, and a pressure sensor 56 are mounted on the common rail 53.
  • the number of injectors 54 depends on the number of cylinders in the engine. It is also installed and injects a predetermined amount of fuel at a predetermined timing according to a signal from an engine outlet unit (ECU) 60.
  • the relief valve 55 opens when the pressure in the common rail 53 exceeds a predetermined value to prevent damage to the piping system.
  • the pump body 100 includes a fuel suction passage 110, a fuel discharge passage 111, and a pressurizing chamber 112.
  • the fuel intake passage 110 and the fuel discharge passage 111 are provided with a suction valve 105 and a discharge valve 106, respectively, which are provided by springs 105a and 106a, respectively. It is held in one direction and is a check valve that restricts the fuel flow direction.
  • a plunger 102 is supported inside the cylinder 108 so as to be capable of reciprocating sliding.
  • the pressurizing chamber 112 is formed between the upper part inside the cylinder 108 and the end of the plunger 102.
  • An outer peripheral portion of the plunger 102 is provided with a sealing material 120 made of an elastic body in order to prevent the fuel in the pump from flowing out.
  • the outer periphery of the sealing material 120 is fixed to the cylinder 108.
  • the inner periphery of the seal material 120 holds the plunger 102 in a slidable manner, and the plunger 102 reciprocates to reduce the volume in the pressurizing chamber 112. Change. If the suction valve 105 closes during the compression process of the plunger 102, the pressure in the pressurizing chamber 112 rises, which causes the discharge valve 106 to open automatically, and the fuel To the common rail 53.
  • the intake valve 105 automatically opens when the pressure in the pressurizing chamber 112 becomes lower than the fuel inlet, but the solenoid valve 1 controlled by the ECU 60 controls the valve closing. It is determined by the operation of 30.
  • the solenoid 130 is attached to the pump body 100.
  • the solenoid 130 includes an engagement member 131 and a spring 132.
  • the engaging member 1331 is biased by the spring 1332 in the direction to open the suction valve 105. Since the biasing force of the spring 13 is greater than the biasing force of the suction valve spring 105a, when the solenoid 130 is OFF, the suction valve 105 is open. It has become.
  • the solenoid 130 When high pressure fuel is supplied from the pump body 100, the solenoid 130 is set to the 0 N (energized) state. When the fuel supply is stopped, the solenoid 130 is turned off ( The power to the solenoid 130 is limited so that the power is turned off.
  • the solenoid 13 0 maintains the 0 N (energized) state, an electromagnetic force greater than the biasing force of the spring 13 2 is generated, and the engaging member 13 1 is moved to the solenoid 13 2 side.
  • the engagement member 13 1 and the suction valve 105 are separated from each other. In this state, the suction valve 105 becomes an automatic valve that opens and closes in synchronization with the reciprocation of the plunger 102. Accordingly, during the compression process, the suction valve 105 is closed, and the fuel corresponding to the reduced volume of the pressurizing chamber 112 pushes the discharge valve 106 open and is fed to the common rail 53.
  • the solenoid 130 is turned on during the compression process, the fuel is fed to the common rail 53 from this time. Also, once the pumping starts, the pressure in the pressurizing chamber 1 1 2 rises. Even if 130 is turned off, the suction valve 105 remains closed, and the suction process automatically opens in synchronization with the start.
  • the fuel chamber side space 107 of the sealing material 120 is connected to the fuel suction passage 110 via the connection passage 109 and the check valve 113.
  • the check valve 300 is provided so as to regulate the flow direction from the fuel suction passage 110 side to the fuel chamber side space 107.
  • the check valve 113 is open, the fuel chamber side space 107 of the sealing material 120 is provided with a low pressure (for example, 0 bar or more than the atmospheric pressure) supplied to the fuel suction passage 110. (3MPa higher pressure) is applied.
  • the sealing material 120 breaks and falls off and the fuel starts to leak to the outside, the pressure in the fuel chamber side space 107 becomes lower than the fuel suction passage 110, so the check is made.
  • the valve 113 is closed, and the flow of fuel from the fuel intake passage 110 can be prevented. Therefore, only the fuel flowing from the pressurized chamber 112 through the gap between the cylinder 108 and the plunger 102 flows into the sealing material 120.
  • This flow rate is inversely proportional to the length of the sliding portion between the cylinder 108 and the plunger 102, and secures the distance that the plunger 102 can slide properly as in the present embodiment. Then, it can be reduced to a small amount. Therefore, even when the sealing material 120 is broken or dropped, a large amount of fuel can be prevented from flowing out to the outside in a short time.
  • the pressurizing chamber 1 12 from the gap of the plunger sliding part During the normal operation, the discharge efficiency of the pump can be improved because the outflow of the fuel can be minimized.
  • FIG. 8 is a longitudinal sectional view showing a configuration of a high-pressure fuel supply pump according to one embodiment of the present invention.
  • the same reference numerals as those in FIG. 7 denote the same parts.
  • the pump main body 100 includes a fuel suction passage 110, a fuel discharge passage 111, and a pressurizing chamber 111. .
  • the fuel intake passage 110 and the fuel discharge passage 111 are provided with a suction valve 105 and a discharge valve 106, respectively, which are provided by springs 105a and 106a, respectively. It is held in one direction and is a check valve that restricts the direction of fuel flow.
  • a plunger 102 serving as a pressure member is slidably held in a pressure chamber 112 formed inside the cylinder 108.
  • the pressurizing chamber 112 is formed by a cylinder 108 having a sliding hole 108a for supporting the plunger 102 in a reciprocating manner.
  • the inner diameter of the cylinder 108 has a sliding gap of 1 Om or less in order to minimize fuel leakage from the pressurized chamber.
  • the cylinder 108 is held by press-fitting a part of the outer wall 108 c corresponding to the large-diameter inner wall 108 b portion into the main body 1.
  • dimensional deformation of the inner diameter of the cylinder due to press-fitting occurs only in the large-diameter inner wall 108b, and the sliding hole 108a has a pre-processed dimensional state. Can be maintained. Therefore, it is not necessary to finish the sliding hole 108a after press-fitting, and a material having good wear resistance can be selected only for the sliding part. Therefore, it can be inexpensive.
  • annular passage 109 is provided between the cylinder 108 and the pump body 1 so that the annular passage 109 communicates with the sliding hole 108a and the fuel inlet 110
  • a suction passage 110b communicating with 0a and an annular passage 109 are communicated through a passage 109b.
  • the pressure in the annular passage 109 becomes substantially the same as the pressure in the inlet 110a (atmospheric pressure + 0.3 MPa), so that the pressure in the pressurized chamber 112 is reduced.
  • the pressure difference is reduced, and fuel leakage from the press-fit portion 108 c and the sliding hole 108 a can be reduced.
  • the heat generated by the sliding portion can be cooled by fuel, and the burning of the sliding portion can be prevented.
  • the outer periphery of the plunger 102 prevents the fuel in the pump from flowing out and the oil for lubricating the cam 140 from flowing into the pump.
  • a sealing material 120 made of an elastic material is provided.
  • the sealing material 120 is formed integrally with the metal pipe 120a and is press-fitted into the pump body 100.
  • the sealing method of the sealing material 120 is as follows. The method is not limited. The end of the metal tube 120a integrally formed with the sealing material 120 is fitted to the pump body 100. Fuel leakage from the sliding portion between the plunger 102 and the sealing material 120 can be reduced by increasing the length of the sealing material 120.
  • the pressure on the fuel chamber side of the sealing material 120 is the pressure of the low-pressure fuel (for example, 0.3 MPa higher than the atmospheric pressure), and the pressure on the other side of the sealing material 120 is high. Since the pressure is atmospheric pressure, the pressure difference between both end surfaces of the seal material 120 is small, for example, 0.3 MPa, so that the entire seal material 120 Even if the length is not so long, the sealing performance can be improved.
  • a lifter 103 provided at the lower end of the plunger 102 is pressed against the cam 140 by a spring 104.
  • the plunger 102 reciprocates by a cam 140 which is rotated by an engine or the like to change the volume in the pressurizing chamber 112.
  • the suction valve 105 closes during the compression process of the plunger 102, the internal pressure of the pressurizing chamber 112 rises, which causes the discharge valve 106 to open automatically, and the fuel To the common rail 53.
  • the suction valve 105 automatically opens when the pressure in the pressurizing chamber 112 becomes lower than the fuel inlet, but the closing is determined by the operation of the solenoid 130.
  • a solenoid 130 is attached to the c- hump main body 100.
  • the solenoid 130 includes an engaging member 13 1 and a spring 13 2.
  • the engaging member 1331 is biased by the spring 1332 in the direction to open the suction valve 105. Since the biasing force of the spring 13 is greater than the biasing force of the suction valve spring 105a, when the solenoid 130 is OFF, as shown in the drawing, the suction valve 105 is open.
  • the solenoid 130 When high-pressure fuel is supplied from the pump body 100, the solenoid 130 is set to 0 N (energized), and when the fuel supply is stopped, the solenoid 130 is turned off. (De-energized) power is limited to solenoid 130.
  • a vertical passage 109b connected to the fuel chamber side space 107 of the sealing material 120, and a horizontal passage connected to the vertical passage 109b.
  • the passage 109a is formed, and constitutes the connection passage 109 shown in FIG.
  • the vertical passage 109 b is formed by inserting and fixing the cylinder 108 into a hole formed in the pump body 100, so that the outer periphery of the cylinder 108 and the pump body 10 are formed. Since it is formed between the holes formed in 0, it is easy to form.
  • a check valve 113 is provided at the end of the lateral passage 109a.
  • the check valve 1 13 uses a pole-shaped elastic body.
  • check valve 113 As the material of the check valve 113, for example, a material having gasoline resistance, such as fluorine rubber or nitrile rubber, is used.
  • the check valve 113 is normally in an open state, and details thereof will be described later with reference to FIGS. 9 and 10.
  • the fuel chamber side space 107 of the sealing material 120 is connected to the connecting passage. It is connected to the fuel intake passage 110 via a passage 109 and a check valve 113.
  • the check valve 113 is provided so as to regulate the flow direction from the fuel suction passage 110 side to the fuel chamber side space 107.
  • the check valve 113 is open, the fuel chamber side space 107 of the sealing member 120 is filled with the low pressure (for example, even if the atmospheric pressure is supplied) to the fuel suction passage 110. , 0.3 MPa higher pressure).
  • the sealing material 120 breaks and falls off and the fuel starts to leak to the outside, the pressure in the fuel chamber side space 107 becomes lower than the fuel suction passage 110, so the check is made.
  • the valve 300 is closed, and the flow of fuel from the fuel suction passage 110 can be prevented. Therefore, only the fuel flowing from the pressurized chamber 112 through the gap between the cylinder 108 and the plunger 102 flows into the sealing material 120.
  • This flow rate is inversely proportional to the length of the sliding portion between the cylinder 108 and the plunger 102, and as shown in this embodiment, the distance that the plunger 102 can slide properly is secured. Then, it can be reduced to a small amount. Therefore, even when the sealing material 120 is broken or dropped, a large amount of fuel can be prevented from flowing out to the outside in a short time.
  • the flow of fuel into the pressurizing chamber 112 from the gap in the sliding portion of the plunger can be minimized, so that the pump discharge efficiency is improved during normal operation. can do.
  • FIG. 9 is a sectional view of a high-pressure fuel supply pump according to one embodiment of the present invention when the check valve is opened.
  • FIG. 10 is a cross-sectional view of the high-pressure fuel supply pump according to one embodiment of the present invention. It is sectional drawing at the time of valve closing of the check valve used.
  • the check valve 113 made of a pole-shaped elastic body is connected to the tip of the solenoid 130 so as not to fall out of the lateral passage 109a. Therefore, movement to the right in the figure is restricted. Further, a seat surface 113a for engaging the check valve 113 to close the valve is formed at the right end of the lateral passage 109a in the figure. However, since it is formed so as to be orthogonal to the horizontal passage 109 a extending in the horizontal direction, it is substantially vertical. The vertical direction of the pump main body 100 in FIG. Therefore, when the pump body 100 is mounted in the up-down direction, the pole-shaped check valve 113 does not contact the sheet surface 113a, so that it is located before and after the check valve 113. When the pressures are equal, the valve can be opened.
  • the means for preventing the non-return valve 113 from falling off is not limited to the one using the tip end of the solenoid 130. It may be possible to prevent falling off.
  • the lateral passage 109a may be inclined such that the seat surface 113a is directed downward.
  • the sheet surface 113a may not only be substantially vertical but may be inclined.
  • the check valve 113 may be provided not in the outlet of the lateral passage 109a but in the passage.
  • the check valve 113 is not closed when the front-rear pressure of the check valve 113 is equal.
  • a spring or the like may be interposed between the stop valve 113 and the sheet surface 113a.
  • the check valve 1 13 is opened even when the pump is stopped. As a result, it is possible to prevent the check valve 113 from sticking to the seat surface 113a. Also, even during operation, since the valve opening pressure of the check valve 113 is zero, the pressure on the fuel chamber side of the sealing material 120 can be made equal to that of the fuel suction passage 110.
  • the check valve 113 by forming the check valve 113 with an elastic body, it is not necessary to increase the hardness of the seat surface 113a, and the check valve 113 can be manufactured at low cost.
  • the fuel chamber side space 107 of the sealing material 120 is connected to the fuel suction passage 110 and is supplied to the fuel suction passage 110.
  • the low pressure (for example, 0.3 MPa higher than the atmospheric pressure) is applied to the fuel reservoir. That is, unlike the conventional case, the fuel reservoir is not provided in the sliding portion of the plunger.
  • the high-pressure pressurizing chamber 112 is formed at the upper end of the cylinder 108 in the figure, whereas the low-pressure fuel chamber side space 107 (fuel reservoir section) is formed. Since it is formed at the lower end of the cylinder 108 in the figure, the distance from the pressurizing chamber 112 to the fuel chamber side space 107 (fuel reservoir) can be increased. Leakage of the high-pressure fuel in the pressurizing chamber 112 into the fuel chamber side space 107 can be easily reduced. Therefore, it is possible to reduce the size of the pump, reduce leakage during pressurization, and improve discharge efficiency.
  • a passage having a substantially atmospheric pressure as in the conventional example is not provided on the fuel chamber side of the sealing material, it is difficult to process such a passage.
  • the piping connecting the pump to the fuel tank can be eliminated. Therefore, it can be manufactured at low cost.
  • the seal material 120 has a structure in which the integrally molded metal pipe 120a is fixed to the pump body 100, the length of the seal material 120 is increased, and the plunger is increased. Since the sliding distance between the sealing member 120 and the seal member 120 is large, the sealing property can be improved, and the pressure applied to both ends of the sealing material 120 is low, so that the sealing property can be improved.
  • the check valve 1 13 provided in the connection passage 109 connecting the fuel intake passage 110 and the fuel chamber side space 107 is operated. By doing so, it is possible to promptly prevent the fuel from leaking from the fuel suction passage 110 to the atmosphere.
  • the check valves 113 are open, so that the check valves can be easily prevented from sticking to the sheet surface.
  • the sealing material of the sliding portion is broken or dropped, the external leakage of the fuel can be suppressed to a small amount, and the fuel cell can be made small and inexpensive.
  • the pump body 1 has a fuel intake passage 10, a discharge passage 11, and a pressurizing chamber 12.
  • a plunger 2 as a pressure member is slidably held in the pressure chamber 12.
  • the suction passage 10 and the discharge passage 11 are formed with a suction chamber 5A and a discharge chamber 6A, respectively, which are connected to the suction hole 5b and the discharge hole 6b of the pressurized chamber 12, respectively.
  • a suction valve 5 and a discharge valve 6 are provided.
  • the suction valve 5 and the discharge valve 6 are held in one direction by springs 5a and 5a, respectively, and serve as check valves for restricting a fuel flow direction.
  • the suction valve 5 The inside of the entrance hole 5Aa of the entrance 5A is urged by a spring 5a so as to close the hole 5Aa.
  • a solenoid 200 as an electromagnetic drive is press-fitted and held in a cylindrical case portion 1A formed integrally with the pump body 1, and the solenoid 200 is An engagement member 201 and a spring 202 are formed as a plunger rod.
  • the solenoid 200 is turned off, the engaging member 201 is guided to the protruding position by the spring 202, and as a result, engages with the suction valve 5 and opens it. Bias in the direction.
  • the suction valve 5 Since the biasing force of the spring 200 is larger than the biasing force of the spring 5a for biasing the suction valve 5 in the closing direction, when the solenoid 200 is turned off, as shown in FIG. Thus, the suction valve 5 is pushed open by the engagement member 201, and is in a valve-open state.
  • the fuel is guided from the tank 50 to the fuel inlet of the pump body 1 by the low-pressure pump 51, and is regulated to a constant pressure by the plenum regulator 52. Then, it is pressurized by the pump body 1 and sent from the fuel discharge port 11 to the common rail 53 in FIG.
  • a lifter 3 provided at the lower end of the plunger 2 is pressed against the cam 100 by a spring 4.
  • the plunger 2 reciprocates by a cam 100 rotated by an engine camshaft or the like to change the volume in the pressurizing chamber 12.
  • the suction valve 5 automatically opens when the pressure in the pressurizing chamber 12 becomes lower than the fuel introduction port, but with respect to closing, the operation of the engaging member 201 of the solenoid 200 is performed. Is determined by When the solenoid 200 maintains the 0 N (energized) state, an electromagnetic force greater than the biasing force of the spring 202 is generated, and the engaging member 201 is moved to the solenoid 202 side. At this point, the engaging member 201 and the suction valve 5 are separated from each other in order to reach the pull-back position. In this state, the suction valve 5 is an automatic valve that opens and closes in synchronization with the reciprocation of the plunger 2 by a pressure difference between the upstream and downstream sides of the suction valve 5.
  • the suction valve 5 is closed, and the fuel corresponding to the reduced volume of the pressurizing chamber 12 pushes the discharge valve 6 open and is fed to the common rail 53. Therefore, the maximum discharge of the pump can be performed irrespective of the response of the solenoid 200.
  • the pump discharge amount was t or can be zero, in the middle of the compression process, if the source leno Lee de 2 0 0 ON state, by engaging members 2 0 1 in the opening direction
  • the suction valve 5 that has lost the urging force instantly closes the through hole 5Aa by the spring 5a and the pressure of the pressurized fuel. Accordingly, at this time, the discharge valve 6 is opened, and fuel is pumped from the discharge hole 11 to the common rail 53. Also, once the pumping starts, the pressure in the pressurizing chamber 12 increases until the next suction process, so even if the solenoid 200 is turned off, Until the beginning, the suction valve 5 remains closed.
  • the suction valve 5 automatically opens. Therefore, the discharge amount is adjusted by turning ON the solenoid 200 (that is, pulling in the engaging member). It can be. Also, the engagement member of the solenoid 200 may be returned to the protruding position (ie, the position at which the solenoid is turned off) before the compression process starts. High-speed response is not required. As a result, the biasing force of the spring 202 can be reduced, and as a result, the OFF-ON responsiveness of the solenoid 200 (that is, the engagement member protrudes and retracts). Responsiveness) can be improved.
  • the solenoid unlike a conventional electromagnetically driven valve, the solenoid only needs to pull in the blanc rod, so the movable part is lighter and the response is better in this respect. Also, it can be driven by a small solenoid.
  • the discharge amount to the common rail 53 can be variably controlled by controlling the 0 N time or the 0 N timing of the solenoid 200 in the compression step. . Also, based on the signal of the pressure sensor 56, the ECU calculates the appropriate discharge timing and controls the solenoid 200 to control the pressure of the common rail 53. Can be maintained at a substantially constant value. In addition, the OFF-ON response can be improved without increasing the size of the solenoid 200.
  • one of the suction valve 5 and the engaging member 201 is concave and the other is convex, so that the concave and convex are engaged.
  • the engagement portion can be prevented from slipping and sliding down, and the suction valve 5 and the engagement member 201 can be reliably operated.
  • the shape of the suction valve 5 is a pole valve or a cylindrical valve.
  • a conical valve, a lead valve, or the like may be used.
  • FIGS. 12 and 13 the position of the suction valve 5 when the valve is opened is determined by the flange 210 a provided on the engagement member 201. I have.
  • the set load of the spring 202 can be kept constant, so that the suction speed (valve closing response) of the engagement member 201 can be stabilized. Therefore, control of the valve closing timing becomes easy.
  • the position of the suction valve 5 when the valve is opened is determined by a flange 5 b provided on the suction valve 5.
  • the positional relationship between the suction valve 5 and the seat portion can be made constant, so that the passage resistance when the valve is opened can be made constant. Therefore, the valve opening stroke of the suction valve 5 does not need to be made larger than necessary, and the size can be reduced.
  • the discharge valve 106 is used.
  • a pawl valve is used for this, and a cylindrical member 106 c held in the discharge passage 111 so as to be able to slide back and forth is engaged by a spring 106 a.
  • Each member can be easily manufactured, the pole valve 106 can be securely held, and the pole valve can be prevented from oscillating due to the fuel flow when the valve is opened.
  • the cylindrical member 106c and the pole valve 106 can be solidified by welding, etc. These structures are used for a suction valve. This is also possible.
  • An annular concave portion 5B is formed in a portion of the pump body 1 upstream of the suction hole 5b.
  • a holder 5C for accommodating the suction valve 5 is fitted into the annular recess 5B, and both are press-fitted and fixed.
  • On the suction hole 5 b side of the holder 5 C As shown in Figs. 17 and 18, five through-holes 5D are drilled.
  • a spring 105a (5a) is held in the center of the holder 5.
  • a cup-shaped valve 105 (5) shown in Figs. 19 (a) and (b) is provided with a spring 105a. (5a) is mounted so that it wraps around.
  • the pump body 1 is further provided with an annular chamber 110A having a diameter larger than that of the annular recess 5B.
  • the chamber 111OA forms a suction chamber communicating with the low-pressure fuel passage 110.
  • the pump body 1 is further formed with an annular cavity 130B having a thread groove 130A having a diameter larger than that of the annular chamber 110A.
  • a solenoid 200 (130) constituting an electromagnetic drive mechanism is attached to the annular cavity 13OA.
  • An adapter 20 OA on which a screw 200 a is threaded is attached to the outer periphery of the solenoid 200 (130), and this screw is inserted into the thread groove of the cavity 13 OA. Attach the solenoid to the cavity 13 OA by screwing in.
  • a hollow cylindrical inner fixed core 200C is passed through the center of the annular electromagnetic coil 200B.
  • a disk-shaped radial core portion 200 E is formed in a body, and the outer periphery of the radial core is a force-shaped outer surface. It is fixed to the inner peripheral wall on the open end side of core 200D by a tension bond.
  • the electromagnetic coil 200B is made of an annular pobin 200c through which the inner fixed core 200C passes, a coil 200d wound therearound, and an outer periphery of the coil 200d made of resin. It consists of a molded resin outer layer 200 f molded.
  • the annular electromagnetic coil 200 OB is housed in a state pressed in the axial direction between the inner bottom portion of the cuff-shaped outer core 200 D and the disc-shaped radial core portion 200 E.
  • a sealing ring 200 g is sandwiched in the cavity facing the pobin 200 c, the resin outer layer 200 f, and the inner fixed core 200 c.
  • a sealing ring 200 h is sandwiched in the cavity facing the resin outer layer 200 f, the radial core 200 E, and the cup-shaped outer core 200 D.
  • the open end side of the cup-shaped outer core 200D is sealed with a resin mold so as to cover the outer side of the radial core portion 200E.
  • the terminals are also molded together to form connectors 200F.
  • FIG. 15 The P-circle in FIG. 15 is enlarged to FIG. 16 for further explanation.
  • the bottom portion 230 of the bottomed cup-shaped outer core 200D has a through hole 231 at the center.
  • the diameter of the c- shaped recess 2 32 in which an annular recess 2 32 is continuously formed outside the through-hole 2 31 is larger than the diameter of the through-hole 2 31.
  • the movable core 13a is passed through the through hole 231.
  • An engaging member 201 having a plunger rod shape is formed on the movable core 13a.
  • annular movable towel 210c is integrally formed.
  • a C-ring-shaped fixed stopper member 233 is provided between the stopper 201 and the movable core 131a by using a notch to load the engaging member 201 into the rod. The part is fitted from the radial direction.
  • the movable core 1 3 1 a is passed through the through hole 2 3 1, and the fixed stopper member 2 3 3 is press-fitted and fixed in the annular recess 2 3 2, and the movable core 1 3 1 a,
  • the engaging member 201 is formed so as to penetrate the bottom 230 of the outer fixed core 200D. Attached to.
  • a guide member 230 is press-fitted into the annular recess 232 so as to clamp a C-ring-shaped fixed stopper 233 therebetween.
  • a guide hole 220b is formed at the center of the guide 220.
  • the engaging member 201 passes through the guide hole 22 Ob, whereby the movement in the radial direction is restricted, and the engaging member 200 can reciprocate along the central axis of the solenoid 200. .
  • the guide 2 2 0, c the through hole 2 2 0 C multiple holes 2 2 0 C is bored radially communicates with the low pressure fuel passage around the guide 2 2 0 c
  • These through holes 220 C are connected to the center hole 22 OA of the guide 220.
  • the center hole 22 OA has an opening (220B) at the axial end of the guide 220, and the end face 220a around the opening 220B has a suction valve 105 ( 5) The sheet surface is formed.
  • the engagement member 201 further has a metal pole fixed to the tip of the plunger rod portion by welding.
  • the cup-shaped movable core 13 1 a has a spring 20 2 (13 2) housed inside, and the spring 20 2 (13 2) has a center-side fixed core 200 C. One end abuts the end face of 200 G screw screwed to the center The adjust screw 200 G adjusts the set load of the spring 202 (1 32) to adjust the characteristics of the movable core 13 1a and the engaging member 201 to move forward and backward. I do.
  • the spring 20 (1 32) urges the movable core 13 1a and the engaging member 201 (1 31) in the direction opposite to the adjuster 200G, resulting in a stopper.
  • the stopper surface 210a of 210c contacts the stopper surface 222 of the guide member 220.
  • the opening 222B is connected to the suction hole 5b of the cylinder through the five holes 5D of the holder 5C by floating only the clone.
  • the axial end surface of the movable core 1311a faces away from the axial end surface of the inner fixed core 200C by a gap Ga.
  • the outer peripheral surface of the movable core 13a faces the inner peripheral surface of the through hole 231 of the outer fixed core 200D with a slight radial gap.
  • the gap Ga between the movable core 13a and the end face of the inner fixed core 200C is 6 microns.
  • a non-magnetic ring 13 3 is fixed to the inner periphery of the movable core 13 1 a, and a portion of the non-magnetic ring 13 3 protruding from the movable core 13 1 a is an inner fixed core 200. Guided to the inner circumference of C. As a result, the movement of the movable core 13a in the radial direction is restricted.
  • the engaging member 201 and the movable core 131a are guided at two points separated from each other in the axial direction, so that a stable forward / backward movement is possible.
  • the suction valve 105 (5) is disengaged from the pawl member 210, and the resilient force of the spring 105a (5a) causes the seat surface of the guide member 220 to return. Pressed to 2 2 0 a. As a result, the suction valve 105 (5) closes the center opening 222B of the guide member 220 and shuts off between the low-pressure fuel passage and the holder 5C.
  • the suction valve 105 (5) is formed in a cup shape as shown in FIGS. 19 (a) and (b), and is put over the spring 105a (5a). It is held in the state where it was set.
  • the axial end face serving as the sheet surface has a circular convex portion 105A at the center of which the pole member 210 abuts, and an annular shape abutting the guide surface 220a of the guide 220. It has a convex portion 105B. An annular groove 105 is formed between the two convex portions. Both projections are cut so that their heights are the same.
  • the sheet surface is constituted by the annular convex portion 105B, the contact with the sheet surface on the guide member side is reduced, and the contact is made dense, so that the sheet property is improved.
  • the intake valve 105 (5), the guide member 220, and the pole member 210 collide with each other. The number of times reaches 100,000 times in the life of the internal combustion engine. Under these conditions, these parts can be worn in only 10 microclones. In particular, when the contact portion between the suction valve 105 (5) and the pole member 210 wears by 35 micron, the movable core 1331a and the engaging member 201 (1311) become 45 Even after microstroke, suction valve 105 (5) cannot be lifted off the seat surface.
  • the plunger rod portion of the movable core 13 1 a and the engaging member 201 (13 1) needs to be made of a magnetic material because it constitutes a magnetic path. It has been found that magnetic stainless steel SUS420J2 specified by the industrial standard (JIS) is advantageous.
  • the pole member 210 is separate from the plunger rod. Therefore, it is possible to use materials that match each function.
  • the movable core 13 1a and the plunger rod part of the engaging member 201 (13 1) are formed separately and integrated by post-processing using a method such as welding or tight coupling.
  • a method such as welding or tight coupling.
  • the plunger rod part and the pole member it is also possible to integrally mold them. In this case, the pole part and the plunger rod part are sharpened from the same member by cutting.
  • the pole member does not necessarily need to be spherical.
  • the joining surface with the engaging member 201 (133) may be flat. Therefore, the pole member may be a hemisphere.
  • annular recess is formed at the tip of the engaging member, and a part of the spherical member is held and held there, and the contact surfaces of both are welded and joined.
  • the joining operation is very easy, and the axes of the ball member and the engaging member are easily matched.
  • valve holder 5 C is press-fitted into the recess 5 B of the pump body 1, and the separately assembled solenoid 200 (130) is screwed into the threaded recess 130. Simply screwing it into B completes the assembly of the suction valve mechanism with the variable capacity function, so workability is good.
  • the entire structure including the movable core, the plunger rod portion, and the pole member is referred to as an engagement member, but the movable core may be formed of another member. In some cases, it is necessary to functionally distinguish the movable core from the movable core. In consideration of this, the plunger rod and the pole member are taken into consideration. Some parts are described as the engaging members.
  • valve body is completely separated from the electromagnetic drive mechanism, the configuration and operation of the conventional variable displacement mechanism using the conventional electromagnetic valve (the valve is fixed to the drive mechanism) are complete. different.
  • the present embodiment has a variable displacement mechanism composed of a valve element and an electromagnetic plunger independent of the valve element. They are distinguished.
  • a further characteristic configuration is that a suction opening (220a) opened and closed by the suction valve 105 (5) is formed on the electromagnetic drive mechanism side.
  • the relationship between the seat surface of the suction valve and the stroke of the engagement member is No change after installing the electromagnetic drive mechanism in the pump body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

明 細 書
内燃機関の高圧燃料供給ポンプ 技術分野
本発明は、 高圧燃料供給ポンプに係り 、 特に、 内燃機関の燃料噴射弁 に高圧燃料を圧送するに好適な高圧燃料供給ポンプに関する。
ま た、 吐出される燃料の量を調節する可変容量機構を備えた高圧燃料 供給ポンプに関する。 背景技術
①従来の高圧燃料供給ポンプは、 例えば、 特許第 2690734 号明細書に記 載のよ う に、 燃料は、 タ ンクから低圧ポンプにて高圧ポンプに供給され、 高圧に昇圧されて、 コモンレールに供給されている。 この高圧ポンプ内 において、 吸入通路は加圧室の上端面に、 吐出通路は、 加圧室の中間側 壁に連通されている。
ま た、 従来の他の高圧燃料供給ポンプと しては、 例えば、 特開平 1 0— 3 1809 1号公報に記載されているよ う に、 吸入通路は加圧室の中間側壁又 は上端面に、 吐出通路は加圧室の上端面に連通されている。
と ころで、 エンジンを始めて始動する際や、 長期の停止後再始動する 際には、 燃料配管内に、 空気や燃料のぺ一パが存在している。 このため 始動直後においては、 高圧ポンプの昇圧特性が悪化しやすいものである これを防止するためには、 高圧ポンプの加圧室内の空気や燃料べーパを 早急に加圧室から排出する こ と によ り高圧ポンプの昇圧性を確保すると ともに、 吐出容量の大きい低圧ポンプにてコモンレール内に早急に燃料 を供給する必要がある。 しかしながら、 従来の特許番号 2690734 号明細書に記載されているも のでは、 高圧ポンプ内の吸入通路は加圧室の上端面に、 吐出通路は加圧 室の中間側壁に設けられているため、 吸入工程では、 吸入燃料によ りべ ーパ等が吸入通路側に排出されにく く 、 吐出工程では、 吐出通路よ り 上 部の加圧室内に残留 しやすく 、 燃料の供給性が低下するという 問題があ つ た。
ま た、 従来の特開平 1 0— 3 1809 1号公報の図 5 に記載の構成においても、 高圧ポンプ内の吐出通路は加圧室の上端に設けられているため、 加圧室 内のベーパは排出 しやすいが、 上記従来技術の両者ともに、 低圧ポンプ から送付された燃料は高圧ポンプ内のビス トン運動によ り体積変化する 加圧室に連通しているため、 エンジン始動直後に低圧ポンプにて、 コモ ンレールまで燃料を供給しょ う と しても、 加圧室内のビス トン運動が抵 抗にな り 、 燃料供給が遅れるという問題があっ た。
さ らに、 従来の特開平 1 0— 3 1809 1号公報の図 1 に記載の構成において は、 シリ ンダ固定部の上端平面を圧縮嵌合しているため、 吸入通路を加 圧室中間側壁に連通させた際に、 燃料がシ リ ンダ外周を通ってデリ バリ バルブ外周に流れ込むため、 0 リ ングを用いて外部とのシールを行って いる。 しかしながら、 0 リ ングが弾性部材の際は、 加圧室の圧力変動に よ り動いて しま う ので、 加圧室の圧力上昇が低減した り 、 0 リ ングのこ すれ摩耗 · 破断が発生する問題があった。
②ま た、 高圧燃料の漏洩に対するシール機構においては、
従来の高圧燃料供給ポンプは、 プラ ンジャの往復動によ リ加圧室内の 燃料を高圧に昇圧する よ う に している。 こ こで、 加圧された燃料圧は、 かなり の高圧となるため、 プラ ンジャ とシ リ ンダの間隙から燃料が漏れ 出る恐れがある。 そこで、 燃料漏れを防止するため、 従来の高圧燃料供給ポンプにおい ては、 特開平 1 0— 3 18068号公報や、 特開平 8— 68370号公報に記載されて いるよ う に、 プラ ンジャの摺動部端部に弾性部材のシール材を配してい る。 そ して、 シール材の燃料室側には、 略大気圧となる燃料タ ンク に連 通する通路が設けられている。 ま た、 さ らに、 プラ ンジャの摺動部内に、 低圧部である燃料吸入口につながる燃料溜り部を設けている。 これらの 構成を備える ことによ リ 、 シール材の一方の端部が大気圧に接している と き、 他方の端部にも、 燃料タ ンク に連通して略大気圧とする こと によ り 、 加圧室の高圧が直接シール材にかからないよ う にする こと によ り 、 シール材からの燃料漏れを防止している。
しかしながら、 特開平 1 0— 3 18068号公報の図 1 に記載された高圧燃料 供給ポンプにおいては、 低圧燃料室に連通している燃料溜り部 (図 1 の 脈動低減空間) からプラ ンジャの摺動端までの距離が短いため、 シール 材が破損 · 脱落した際に、 プラ ンジャ摺動部のすき まから多量の燃料が 外部に流出する恐れがあるという 問題があった。
一方、 特開平 8— 68370号公報の図 1 に記載された高圧燃料供給ポンプ においては、 低圧燃料室に連通している燃料溜り部 (図 1 のシ リ ンダ 1 1 の摺動孔 1 1 a ) からシール材までのプラ ンジャ摺動端までの距離 を大き く しているため、 シール材が破損 · 脱落した際に流出する燃料を 少量におさ える ことはできる。 しかしながら、 加圧室と燃料溜り までの プランジャ摺動距離を大き く する こ とができないため、 加圧時に燃料が プラ ンジャ摺動部のすきまから低圧部に漏れて しまい、 吐出効率が悪く なるという 問題があった。
ま た、 特開平 8— 68370号公報の図 1 に記載された高圧燃料供給ポンプ においては、 加圧室から燃料溜り 部までの距離を長く する こ と によ リ 、 燃料漏れを防止する こ とも可能ではあるが、 そのためには、 摺動部の全 長を長く する必要があるため、 ポンプ全体が大型化するという問題が生 じて く る。
さ らに、 特開平 1 0— 3 18068号公報や、 特開平 8— 68370号公報に記載さ れている従来の高圧燃料供給ポンプにおいては、 シール材の両端部を略 大気圧とするために、 シール材の燃料室側には、 略大気圧となる燃料タ ンク に連通する通路を設ける必要があるため、 ポンプから燃料タ ンク に つな ぐ通路が必要となる。 その結果、 ポンプの加工が複雑になるととも に、 ポンプとタ ンク をつなぐ配管が必要とな り 、 コス トが高く なるとい う問題があった。
③次に可変容量機構に関しては、
従来の装置は、 例えば、 特許番号 2690734 号に記載のよ う に、 吸入通 路内に電磁弁を設けてお り 、 電磁弁の開閉動作によ って吸入側への戻し 量を制御する こ と によ り 吐出量を調節する構成のものが知られている。
ま た、 例えば、 特開平 1 0— 1 53 157号では、 吸入通路内に逆止弁を設け、 かつ加圧室に連通する燃料スピル (溢流) 通路にスピル (溢流) 弁を設 け、 スピル弁の開閉動作によ って燃料タ ンクへのスピル (溢流) 量を制 御する こと によ り 吐出量を調節する構成のものが知られている。
ポンプの回転はエンジンの回転数に対してポンプのカム山の倍数だけ 増加するので、 m s e c ( ミ リ秒) のオーダで吸入弁ゃスピル弁を開閉する 必要があるが、 このよ う な高速開閉の状態では、 電磁弁の弁の質量が、 応答性に影響を与える。 発明の開示
本発明の第 1 の目的は、 エンジンの始動直後のコモンレールへの燃料 供給性を向上できる高圧燃料供給ポンプを提供する ことにある。
本発明の第 2 の目的は、 エンジンの始動直後のコモンレールへの昇圧 性を向上できる高圧燃料供給ポンプを提供する ことにある。
本発明の第 3 の目的は、 摺動部のシール材が破損 · 脱落した際におい ても、 燃料の外部漏れを少量に抑えるとともに、 小型で安価な高圧燃料 供給ポンプを提供する ことにある。
本発明の第 4の目的は、 開閉応答性の良好な可変容量機構を有する高 圧燃料供給ポンプを提供する こ とにある。
( 1 ) 上記第 1 の目的を達成するために、 本発明は、 燃料の吸入通路か ら供給された燃料を加圧部材によ り加圧して吐出通路に圧送する加圧室 を有する高圧燃料供給ポンプにおいて、 上記加圧部材が配置された主加 圧室の他に、 上記吸入通路と上記吐出通路を連通する副加圧室を備える よ う に したものである。
かかる構成によ り 、 低圧ポンプによって吸入通路から供給された燃料 を高圧ポンプの加圧部材の運動による抵抗に阻害される こ となく 、 吐出 通路を経てコモンレールに供給できるため、 コモンレールへの燃料供給 性を向上し得るものとなる。
( 2 ) 上記 ( 1 ) において、 好ま し く は、 上記吸入通路と上記吐出通路 を、 上記加圧室の上端部に連通させるよ う に したものである。
かかる構成によ り 、 吐出工程において、 加圧室内の空気や燃料ぺーパ の排出を確実に行えるとともに、 加圧室への燃料供給を妨げずに加圧室 のデッ ドボリ ューム (上死点時の加圧室容積) を最小化する こ とができ るため、 高圧ポンプを小型化し得るものとなる。
( 3 ) 上記 ( 1 ) において、 好ま し く は、 上記副加圧室は、 上記主加圧 室の外周に略環状に配置するよ う に したものである。 ( 4 ) 上記第 2 の目的を達成するために、 本発明は、 燃料の吸入通路か ら供給された燃料を加圧部材によ り加圧して吐出通路に庄送する加圧室 を有する高圧燃料供給ポンプにおいて、 端部にテ一パ面を有するととも に、 ポンプ本体とは別部材によ り形成された加圧室形成部材を備え、 こ の加圧室形成部材の上記テ一パ面を固定部材によ リ庄縮嵌合させる こと によ り 、 上記加圧室を形成するよ う に したものである。
かかる構成によ リ 、 加圧室形成部材をゴム等の弾性部材を設けずに固 定し得るものとな り 、 コモンレールへの昇圧性を向上し得るものとなる。
( 5 ) 上記第 3 の目的を達成するために、 本発明は、 燃料の吸入通路と 吐出通路に連通する加圧室と、 この加圧室内の燃料を上記吐出通路に圧 送する加圧部材を有する高圧燃料供給ポンプにおいて、 上記加圧部材の 摺動部に配置されたシール材と、 このシール材の燃料室側を燃料吸入通 路に連通する連結通路と、 この連結通路に配置され、 上記燃料吸入通路 側から上記シール材側への燃料の流入を阻止する逆止弁と を備えるよ う に したものである。
かかる構成によ り 、 シール材が破損等した場合でも、 逆止弁によ り燃 料漏れを防止でき、 ま た、 大気圧と連通する部分を設けないこと によ り 、 小型化, コス ト低減を図り得るものとなる。
( 6 ) 上記 ( 5 ) において、 好ま し く は、 上記逆止弁は、 ポンプ運転停 止時に開弁している よ う に したものである。
かかる構成によ リ 、 ポンプ停止時の逆止弁のシー ト面に対する固着を 防止し得るものとなる。
( 7 ) 上記 ( 6 ) において、 好ま し く は、 上記逆止弁を弾性部材で形成 したものである。
( 8 ) 本発明の第 4 の目的は、 シリ ンダと低圧側通路との間に設けた燃 料通孔を開閉する弁体と、 この弁体を前記通孔に対して閉塞方向に付勢 するばねと、 前記弁体と接触ま たは離間して前記弁体の開閉タイ ミ ング を調整する操作捍と、 この操作捍を内燃機関の運転状態に関連して電磁 的に駆動する電磁機構によ って高圧ポンプを構成する ことによって達成 される。
このよ う に構成した本発明では電磁駆動機構に対して弁体の質量が負 荷とならないので吐出容量制御機構の応答性が改善される。
( 9 ) ( 8 ) において、 この電磁駆動機構は吸入弁機構と共用する こと ができる。
( 1 0 ) ( 8 ) において、 この電磁駆動機構はスピル (溢流) 弁機構と して構成する ことができる。
( 1 1 ) さ らに、 本発明の好ま しい実施態様は次の通り である。
吸入通路に吸入弁を設け、 この吸入弁には、 加圧室に燃料が流入する 際に自動的に開口する程度の閉じ方向のわずかな付勢力をかける。 更に . この吸入弁に開口方向に保持する付勢力をもつた係合部材を係合し、 こ の係合部材をァクチユエ一タの動作タイ ミ ングによ り 、 吸入弁を開閉制 御する。
これによ り 、 ポンプの吸入工程では、 ァクチユエータの動作に関係せ ずに、 吸入弁は開口する こ とができる。 ま た、 圧縮工程においても、 ァ クチユエ一タ を動作 ( O N ) しなければ、 吸入弁は開口状態を維持する ため、 圧縮によ り減少 した加圧室の過剰燃料は吸入側にもどされる。 従 つて、 加圧室の圧力は上昇しないため、 燃料は吐出通路には圧送されな い。 この状態で、 ァクチユエ一タ を動作 ( O N ) させると、 吸入弁は自 己閉弁力にょ リ 閉弁し、 加圧室の圧力が上昇し、 吐出通路に圧送される このよ う に、 ァクチユエータの動作タイ ミ ングを制御する ことによ り 、 吐出量を調節する ことができる。
また、 最大吐出時では、 ァクチユエータ の O N状態を保持させる こと によ り 、 吸入弁は加圧室の圧力に同期して自動的に開閉するため、 ァク チユエ一タ の応答性に依存する こ となく 最大吐出を行う ことができる。
ま た、 低吐出時では、 ァクチユエータは圧縮工程の後半から O N して 吸入工程の終わ り までに O F Fすればよいため、 高応答性は必要と され ない。
更に、 吐出時は、 吸入弁のみが閉弁すればよいため、 燃料のシー ト漏 れを少な く おさ える ことができる。
( 1 2 ) ま た、 好ま し く は、 ァクチユエ一タ を電磁式にする ことによ り 、 エンジンコ ン トロールユニッ トで簡単に制御する ことができ、 ま た、 こ のァクチユエ一タ に燃料噴射弁を流用する こ ともできる。
( 1 3 ) ま た、 好ま し く は、 吸入弁と係合部材の係合部を凹凸係合にす る こ と によ り 、 係合部のずれ · 滑り落ち等を防止する ことができ、 確実 な動作を行う ことができる。
( 1 ) ま た、 好ま し く は、 吸入弁又は吐出弁にポール弁を用いる こと によ り 、 シ一 卜部の加工精度を容易に向上する こ とができる。 また、 こ のポール弁に円筒部材を係合させ、 この円筒部材の外周を吸入通路内で 往復摺動可能に保持する こと によ り 、 ポール弁の発振を防止できる。 更 に円筒部材とポール弁が別体のため、 両者とも容易な方法で製作可能で ある。
( 1 5 ) ま た、 この好ま し く は、 プラ ンジャ往復摺動式ポンプにおいて は、 プランジャの摺動部分をポンプ本体と別体の円筒部材とする こ とに よ り 、 摺動部のみを摺動に適した材料とする こ とができる。 更に、 この 円筒部材の内壁をプランジャの摺動孔と これよ り 内径を大き く した拡張 内壁部を形成し、 拡散内壁の外周部のみでポンプ本体に圧入嵌合する こ と によ り 、 摺動孔の変形を防止できる。 従って、 円筒部材嵌合後に、 摺 動孔を再加工する必要がないため、 安価に製作する ことができる。
( 1 6 ) ま た、 好ま し く は、 円筒部材とポンプ本体の嵌合した部分以外 にすきま を設け、 円筒部材の外周部に円環状通路を構成し、 この円環状 通路をプラ ンジャ摺動孔の一端と燃料導入通路に連通されるこ とによ り 、 燃料導入圧が円環状通路に導かれ加圧室との圧力差が低減し、 加圧室か ら嵌合部及び摺動部を通る燃料漏れ量が低減できる。 ま た、 摺動部外周 を燃料が覆う ため摺動部の冷却を行う ことができる。
( 1 7 ) ま た、 更に好ま し く は、 燃料通路内にポンプ本体と円筒部材に 係合する部材を設ける こ とによ り 、 係合部からポンプ外部への燃料漏れ や発生を防止しつつ、 円筒部材の抜け止めをはかる こ とができる。 図面の簡単な説明
第 1 図は本発明の一実施形態による高圧燃料供給ポンプの水平断面図 である。
第 2 図は本発明の一実施形態による高圧燃料供給ポンプの垂直断面図 である。
第 3 図は本発明の一実施形態による高圧燃料供給ポンプを用いた燃料 噴射システムのシステム構成図である。
第 4図は本発明の第 2 の実施形態本実施形態による高圧燃料供給ボン プの垂直断面図である。
第 5図は第 4図の部分拡大図である。
第 6 図は本発明の第 3 の実施形態本実施形態によ る高圧燃料供給ポン プの垂直断面を示す部分拡大図である。 第 7図は本発明の第 4の実施形態による高圧燃料供給ポンプを用いた 燃料噴射システムの.全体構成を示すシステム構成図である。
第 8図は本発明の第 4の実施形態による高圧燃料供給ポンプの構成を 示す縦断面図である。
第 9図は本発明の第 4の実施形態による高圧燃料供給ポンプに用いる 逆止弁の開弁時の断面図である。
第 1 0図は本発明の第 4の実施形態による高圧燃料供給ポンプに用い る逆止弁の閉弁時の断面図である。
第 1 1 図は本発明の可変容量機構の概念を説明するための図面であり、 第 2図, 第 8図を概念的に示した図面である。
第 1 2図乃至第 1 4図は、 スピル弁 (溢流弁) も しく は吸入弁の他の 実施例を示す図面である。
第 1 5図は第 2図, 第 8図の吸入弁及びソレノィ ド駆動部に対応する 部分の具体的拡大断面図である。
第 1 6図は第 1 5図の P部分の拡大断面図である。
第 1 7図はホルダの側面図である。
第 1 8図はホルダの横断面図である。
第 1 9図 ( a ) は吸入弁の断面図、 ( b ) は ( a ) の右側面図である , 発明を実施するための最良の形態
以下、 第 1 図〜第 3図を用いて、 本発明の一実施形態による高圧燃料 供給ポンプの構成について説明する。
第 1 図は、 本実施形態による高圧燃料供給ポンプの水平断面図であり 第 2図は、 本実施形態による高圧燃料供給ポンプの垂直断面図であり、 第 3図は、 本実施形態による高圧燃料供給ポンプを用いた燃料噴射シス テムのシステム構成図である。 なお、 図中同一符号は、 同一部分を示し ている。
第 1 図に示すよ う に、 ポンプ本体 1 は、 燃料吸入通路 1 0 と、 吐出通 路 1 1 と、 加圧室 1 2 と を備えている。 吸入通路 1 0 には、 吸入弁 5 が 設けられており 、 ばね 5 aにて一方向に保持され、 燃料吸入通路 1 0か ら燃料吸入通路 5 b への燃料の流通方向を制限する逆止弁となっている c 吐出通路 1 1 には、 吐出弁 6 が設けられており 、 ばね 6 a にて一方向に 保持され、 燃料吐出通路 6 b から燃料吐出通路 1 1 への燃料の流通方向 を制限する逆止弁となっている。
加圧室 1 2 は、 本実施形態においては、 主加圧室 1 2 a と、 その外周 に位置する環状の副加圧室 1 2 b に分割 し、 それぞれを連通穴 1 2 c で 連通された構成となっている。 副加圧室 1 2 b は、 燃料吸入通路 5 b と 燃料吐出通路 6 b を連通している。
こ こで、 第 2 図に示すよ う に、 加圧室 1 2 の主加圧室 1 2 a には、 加 圧部材であるプラ ンジャ 2 が摺動可能に保持されている。 プラ ンジャ 2 の下端に設けられたリ フ タ 3 は、 ばね 4 にてカム 1 0 0 に圧接されてい る。 プラ ンジャ 2 は、 エンジンカムシャ フ ト等によ り 回転されるカム 1 0 0 によ り 、 往復運動して加圧室 1 2 内の容積を変化させる。 プラ ン ジャ 2 の圧縮工程中に吸入弁 5 が閉弁すると、 加圧室 1 2 内の圧力が上 昇し、 これによ り 吐出弁 6 が自動的に開弁し、 燃料をコモンレール 5 3 に圧送する。 吸入弁 5 は、 加圧室 1 2 の圧力が燃料導入口よ り低く なる と 自動的に開弁するが、 閉弁に関しては、 ソ レノ イ ド 2 0 0 の動作によ リ決定される。
ま た、 ポンプ本体 1 には、 ソ レノ イ ド 2 0 0 が取り付けられている。 ソ レノ イ ド 2 0 0 には、 係合部材 2 0 1 と、 ばね 2 0 2 が設けられてい る。 係合部材 2 0 1 は、 ソ レノ イ ド 2 0 0 が 0 F F時は、 ばね 2 0 2 に よって、 吸入弁 5 を開弁する方向に付勢力がかけられている。 ばね 202 の付勢力は、 吸入弁ばね 5 aの付勢力よ り大き く なつているため、 ソ レ ノ イ ド 2 0 0 の O F F時は、 第 1 図及び第 2 図に示すよ う に、 吸入弁 5 は開弁状態となっている。
ポンプ本体 1 から高庄燃料を供給する場合には、 ソ レノイ ド 2 0 0 が O N (通電) 状態とな り 、 燃料供給を停止する場合には、 ソ レノ イ ド 2 0 0 が O F F (無通電) 状態となる よ う に、 ソ レノ イ ド 2 0 0への通 電が制御される。
ソ レノ ィ ド 2 0 0 が 0 N (通電) 状態を保持した際は、 ばね 2 0 2 の 付勢力以上の電磁力を発生させ、 係合部材 2 0 1 をソ レノ ィ ド 2 0 2側 に引 き寄せるため、 係合部材 2 0 1 と吸入弁 5 は分離される。 この状態 であれば、 吸入弁 5 はプラ ンジャ 2 の往復運動に同期して開閉する自動 弁となる。 従って、 圧縮工程中は、 吸入弁 5 は閉塞し、 加圧室 1 2 の容 積減少分の燃料は、 吐出弁 6 を押 し開きコモンレール 5 3 へ圧送される < 一方、 ソ レノ イ ド 2 0 0 が 0 F F (無通電) を保持した際は、 ばね 2 0 2 の付勢力によ り 、 係合部材 2 0 1 は吸入弁 5 に係合し、 吸入弁 5 を開弁状態に保持する。 従って、 圧縮工程時においても、 加圧室 1 2 の 圧力は燃料導入口部とほぼ同等の低圧状態を保っため、 吐出弁 6 を開弁 する ことができず、 加圧室 1 2 の容積減少分の燃料は、 吸入弁 5 を通リ 燃料導入口側へ戻される。
ま た、 圧縮工程の途中で、 ソ レ ノ イ ド 2 0 0 を O N状態とすれば、 こ のと きから、 コモンレール 5 3 へ燃料圧送される。 ま た、 一度圧送が始 まれば、 加圧室 1 2 内の圧力は上昇するため、 その後、 ソ レノィ ド 200 を O F F状態に しても、 吸入弁 5 は閉塞状態を維持し、 吸入工程は始ま り と同期して自動開弁する。
次に、 第 3 図を用いて、 本実施形態による高圧燃料供給ポンプを用い た燃料供給システムのシステム構成について説明する。
タ ンク 5 0 内の燃料は、 低圧ポンプ 5 1 によって、 ポンプ本体 1 の燃 料供給口 1 0 に導かれる。 こ こで、 燃料供給口 1 0 に導かれる燃料の圧 力は、 プレ ツシャ レギユレータ 5 2 によ って、 一定の圧力となるよ う に 調圧されている。 ポンプ本体 1 に供給された燃料は、 ポンプ本体 1 によ つて加圧され、 燃料吐出口 1 1 からコモンレール 5 3 に圧送される。 コ モンレール 5 3 には、 イ ンジェクタ 5 4 と、 リ リ ーフ弁 5 5 と、 圧力セ ンサ 5 6 とが装着されている。 イ ンジェクタ 5 4 は、 ェンジンの気筒数 にあわせて装着されており 、 エンジンコ ン トロールュニッ ト E C Uの燃 料噴射制御信号に応じたタ イ ミ ング及び噴射量にて噴射する。 ま た、 リ リ ーフ弁 5 5 は、 コモンレール 5 3 内の圧力が所定値を超えた際開弁し , 配管系の破損を防止する。
エンジンを初めて始動する際や長時間停止した際には、 燃料配管中 (高圧ポンプ及びコモンレール内も含む) には、 空気や燃料べ一パが存 在するため、 エンジンを始動する際に、 コモンレール 5 3 内を早急に燃 料で満たす必要がある。
この点に関し、 本実施形態においては、 加圧室 1 2 は、 上述したよ う に、 プラ ンジャ 2 の往復動によ って燃料を加圧する主加圧室 1 2 a と、 燃料吸入通路 5 b と燃料吐出通路 6 b と を連通する副加庄室 1 2 b とか ら構成されている。
従って、 プランジャ 2 が上死点にて停止時及び摺動していても、 吸入 通路 5 b と吐出通路 6 b の間に副加圧室 1 2 b によ って十分な通路を構 成できるため、 高圧ポンプが高圧圧送を開始する前から、 低圧ポンプ 5 1 にてコモンレール 5 3 に燃料を低圧圧送する ことができ、 コモンレ ール 5 3 内も瞬時に燃料を満たすこ とができる。 なお、 上述のよ う なェ ンジンの始動時においては、 コモンレール 5 3 内の圧力は大気圧に近い ため、 燃料吐出口 6 b の燃料圧が低圧燃料ポンプ 5 1 の吐出圧の状態で も、 吐出弁 6 は開弁するため、 燃料吐出口 6 b から燃料吐出口 1 1 に燃 料が流れ、 コモンレール 5 3 に燃料を供給する ことができる。
さ らに、 吐出容量の大きい低圧ポンプ 5 1 にて、 配管中の燃料をコモ ンレール 5 3 に供給すると ともに、 そのと き、 一緒に空気やべ一パ等を コモンレール 5 3 に圧送する ことができる。
ま た、 本実施形態においては、 第 2 図に示すよ う に、 加圧室 1 2 には、 燃料吸入通路 5 b と燃料吐出通路 6 b を上端側壁部に連通させて、 ベー パ溜り部をな く している。 このため、 ぺーパ等は、 吐出通路 6 b からコ モンレール 5 3側に圧送されて、 加圧室 1 2 内にとどま らないものとな る。 従って、 加圧室内は瞬時に燃料に満たされ、 高圧圧送が可能となる ので、 加圧室内の空気や燃料ぺ一パーの排出を確実に行える。
ま た、 プラ ンジャ 2 が上死点に位置した際において、 プランジャ 2 の 上端と加圧室 1 2 の上面に干渉防止のための適度なク リ アランス ( 1 〜 2 mm ) をとるだけで、 吸入通路 5 b及び吐出通路 6 b を塞がないよ う に できるため、 加圧室への燃料供給を妨げる ことな く 、 加圧室のデッ ドポ リ ューム (上死点時の加圧室容積) を最小にする ことができ、 ポンプの 小型化を図る ことができる。
以上説明 したよ う に、 本実施形態によれば、 エンジン始動時等に、 高 圧ポンプのビス トン運動に阻害する ことな く 、 低圧燃料をコモンレール に供給できるため、 エンジンの始動直後のコモンレールへの燃料供給性 を向上する ことができる。 次に、 第 4図及び第 5 図を用いて、 本発明の第 2 の実施形態による高 圧燃料供給ポンプの構成について説明する。
第 4図は、 本実施形態による高圧燃料供給ポンプの垂直断面図であ り 、 第 5 図は、 第 4図の部分拡大図である。 なお、 第 4図及び第 5 図におい て、 第 1 図〜第 3 図と同一符号は、 同一部分を示している。
本実施形態においても、 加圧室 1 2 は、 主加圧室 1 2 a と、 副加圧室 1 2 b と を備えている。 さ らに、 本実施形態において特徴的なこ とは、 加圧室 1 2 の形成方法にある。
加圧室 1 2 は、 プラ ンジャ 2 の摺動部を有するとともに加圧室形成部 材でもあるシリ ンダ 2 0 と、 シ リ ンダ 2 0 を固定する固定部材 3 0 とに よ って形成されている。 シ リ ンダ 2 0 の上端部 2 0 aの内面はテーパ形 状となってお り 、 この部分を固定部材 3 0 にて圧縮保持する こと によ り , 上端部 2 0 aは、 第 5 図に (変形前) の状態から (変更後) の状態と し て示すよ う に、 外側に変形し、 ポンプ本体 1 に嵌合する。 これによ り 、 加圧室 1 2 と吸入通路 5 b と吐出通路 6 b は、 シ リ ンダ上端部 2 0 a に よってポンプ外部と隔離されるため、 ゴム等の弾性部材を用いる ことな く 、 加圧室を形成できる。
従って、 加圧室の圧力が変動しても、 従来のよ う な弾性部材は使用 し ていないため、 この弾性部材の動きによる加圧室の体積変化が起こ らず ポンプの昇圧特性の低下が発生しないよ う にする こ とができる。
また、 シールのバックア ップと して、 0 リ ングを固定部材 3 0 の外周 に配してもシ リ ンダ上端部 2 0 aの外周とポンプ本体 1 の隙間は非常に 小さいため、 加圧室の圧力変動は直接 0 リ ングにかからないため、 0 リ ングのこすれ摩耗 · 破断する こ とはないものである。
さ らに、 本体 1 と シ リ ンダ 2 0 を線膨張係数の違う部材を用いたと し ても、 シリ ンダ上端部は固定部材 3 0 にて保持されており 、 剛性が高い ため、 熱収縮によ リ シリ ンダ上端部が締め上げられても変形量は少な く 、 プラ ンジャ 2 の摺動孔の変形によるかじ り等の発生はないものである。 以上説明 したよ う に、 本実施形態によれば、 エンジン始動時等に、 高 圧ポンプのビス トン運動に阻害する ことな く 、 低圧燃料をコモンレール に供給できるため、 エンジンの始動直後のコモンレールへの燃料供給性 を向上する こ とができるととも に、 高圧燃料供給ポンプの昇圧特性向上 をはかる ことができる。
次に、 第 6 図を用いて、 本発明の第 3 の実施形態による高圧燃料供給 ポンプの構成について説明する。
第 6 図は、 本実施形態による高圧燃料供給ポンプの垂直断面の部分拡 大図である。 なお、 高圧燃料供給ポンプの全体構成は、 第 4図に示した ものと同様である。 ま た、 第 1 図〜第 5 図と同一符号は、 同一部分を示 している。
本実施形態においても、 加圧室 1 2 は、 主加圧室 1 2 a と、 副加圧室 1 2 b と を備えている。 さ らに、 本実施形態において特徴的なことは、 加圧室 1 2 の形成方法にあ り 、 第 4図及び第 5 図に示す例の他の例であ る。
本実施形態においては、 加圧室周辺をシリ ンダ 2 0 とは別部材の加圧 室形成部材 2 1 と している。 加圧室形成部材 2 1 の上端部 2 1 aは、 第 5 図に示した例のシ リ ンダ上端部 2 0 a と同様の働き をする。
本実施形態によれば、 さ らに、 シ リ ンダ 2 0 のプラ ンジャ摺動孔部変 形を抑える ことができる。
なお、 第 4図〜第 6 図に示す例において、 固定部材 3 0 の外周はねじ となってお り 、 これを螺着する ことによ り 、 シ リ ンダ 2 0 に圧縮力を作 用するよ う に してあるが、 ね じに限定するものではない。
以上説明 したよ う に、 本実施形態によれば、 エンジン始動時等に、 高 圧ポンプのビス トン運動に阻害する こ とな く 、 低圧燃料をコモンレール に供給できるため、 エンジンの始動直後のコモンレールへの燃料供給性 を向上する ことができると ともに、 高圧燃料供給ポンプの昇圧特性向上 をはかる ことができる。
本実施例によれば、 高圧燃料供給ポンプにおけるエンジンの始動直後 のコモンレールへの燃料供給性を向上できる。
ま た、 高圧燃料供給ポンプにおけるエンジンの始動直後のコモンレー ルへの昇圧性を向上できる。
以下、 第 7 図〜第 1 0 図を用いて、 本発明の一実施形態による高圧燃 料供給ポンプのシール機構の構成について説明する。
最初に、 第 7 図を用いて、 本実施形態による高圧燃料供給ポンプを用 いた燃料噴射システムの全体構成について説明する。
タ ンク 5 0 内の燃料は、 低圧ポンプ 5 1 によ って、 ポンプ本体 1 0 0 の燃料吸入通路 1 1 0 に導かれる。 このと き、 燃料吸入通路 1 1 0 に導 かれる燃料は、 プレ ツ シャ レギユ レータ 5 2 によ って、 一定の低圧力に 調圧されている。 このと きの燃圧は、 大気圧を基準とする相対圧で、 例 えば、 0 . 3 M P a に調圧されている。 ポンプ本体 1 0 0 に導かれた燃 料は、 ポンプ本体 1 0 0 によ って加圧され、 燃料吐出通路 1 1 1 からコ モンレール 5 3 に圧送される。 燃料吐出通路 1 1 1 から吐出される燃料 の圧力は、 大気圧を基準とする相対圧で、 例えば、 7 ~ 1 O M P a に加 圧されている。
コモンレール 5 3 には、 イ ンジェクタ 5 4 , リ リ ーフ弁 5 5 , 圧力セ ンサ 5 6 が装着されている。 イ ンジェクタ 5 4は、 エンジンの気筒数に あわせて装着されてお り 、 エンジンコ ン ト口一ルユニッ ト ( E C U ) 6 0 の信号によ って所定のタイ ミ ングで所定量の燃料を噴射する。 ま た、 リ リ ーフ弁 5 5 は、 コモンレール 5 3 内の圧力が所定値を超えた際に開 弁し、 配管系の破損を防止する。
次に、 ポンプ本体 1 0 0 の概略構成について説明する。 なお、 ポンプ 本体 1 0 0 の詳細な構成については、 第 8 図を用いて後述する。
ポンプ本体 1 0 0 は、 燃料吸入通路 1 1 0 と、 燃料吐出通路 1 1 1 と、 加圧室 1 1 2 とを備えている。 燃料吸入通路 1 1 0及び燃料吐出通路 1 1 1 には、 吸入弁 1 0 5 , 吐出弁 1 0 6 が設けられてお り 、 それぞれ、 ばね 1 0 5 a , 1 0 6 a によ って一方向に保持され、 燃料の流通方向を 制限する逆止弁となっている。
シ リ ンダ 1 0 8 の内部には、 プラ ンジャ 1 0 2 が往復摺動可能に支持 されている。 加圧室 1 1 2 は、 シ リ ンダ 1 0 8 の内部の上部と、 プラン ジャ 1 0 2 の端部の間に形成されている。
プラ ンジャ 1 0 2 の外周部には、 ポンプ内の燃料が外部に流出する こ と を防止するため、 弾性体で製作されたシール材 1 2 0 が設けられてい る。 シール材 1 2 0 の外周部は、 シリ ンダ 1 0 8 に固定されている。 シ —ル材 1 2 0 の内周部は、 プランジャ 1 0 2 を摺動可能に保持している , プランジャ 1 0 2 が往復運動する ことによ り 、 加圧室 1 1 2 内の容積 が変化する。 プランジャ 1 0 2 の圧縮工程中に吸入弁 1 0 5 が閉弁する と、 加圧室 1 1 2 内圧力が上昇し、 これによ り 吐出弁 1 0 6 が自動的に 開弁し、 燃料をコモンレ一ル 5 3 に圧送する。 吸入弁 1 0 5 は、 加圧室 1 1 2 の圧力が燃料導入口よ り低く なると 自動的に開弁するが、 閉弁に 関しては、 E C U 6 0 によって制御されるソ レノ ィ ド 1 3 0 の動作によ リ決定される。 ソ レノ イ ド 1 3 0 は、 ホンプ本体 1 0 0 に取り付けられている。 ソ レ ノ ィ ド 1 3 0 は、 係合部材 1 3 1 と、 ばね 1 3 2 と を備えている。 係合 部材 1 3 1 は、 ソ レノ イ ド 1 3 0 が 0 F F時は、 ばね 1 3 2 によ って、 吸入弁 1 0 5 を開弁する方向に付勢力がかけられている。 ばね 1 3 2 の 付勢力は、 吸入弁ばね 1 0 5 aの付勢力よ り大き く なつているため、 ソ レノ ィ ド 1 3 0 が O F Fの時は、 吸入弁 1 0 5 は開弁状態となっている。 ポンプ本体 1 0 0 から高圧燃料を供給する場合には、 ソ レノ ィ ド 130 が 0 N (通電) 状態とな リ 、 燃料供給を停止する場合には、 ソ レノ ィ ド 1 3 0 が O F F (無通電) 状態となるよ う に、 ソ レノ ィ ド 1 3 0への通 電が制限される。 ソ レノ イ ド 1 3 0 が 0 N (通電) 状態を保持した際は、 ばね 1 3 2 の付勢力以上の電磁力を発生させ、 係合部材 1 3 1 をソ レノ ィ ド 1 3 2側に引き寄せるため、 係合部材 1 3 1 と吸入弁 1 0 5 は分離 される。 この状態であれば、 吸入弁 1 0 5 はプラ ンジャ 1 0 2 の往復運 動に同期して開閉する 自動弁となる。 従って、 圧縮工程中は、 吸入弁 1 0 5 は閉塞し、 加圧室 1 1 2 の容積減少分の燃料は、 吐出弁 1 0 6 を 押 し開きコモンレール 5 3 へ圧送される。
一方、 ソ レノ イ ド 1 3 0 が 0 F F (無通電) を保持した際は、 ばね 1 3 2 の付勢力によ り 、 係合部材 1 3 1 は吸入弁 1 0 5 に係合し、 吸入 弁 1 0 5 を開弁状態に保持する。 従って、 圧縮工程時においても、 加圧 室 1 1 2 の圧力は燃料導入口部とほぼ同等の低圧状態を保っため、 吐出 弁 1 0 6 を開弁する こ とができず、 加圧室 1 1 2 の容積減少分の燃料は 吸入弁 1 0 5 を通り燃料導入口側へ戻される。
ま た、 圧縮工程の途中で、 ソ レノ イ ド 1 3 0 を O N状態とすれば、 こ のと きから、 コモンレール 5 3 へ燃料圧送される。 ま た、 一度圧送が始 まれば、 加圧室 1 1 2 内の圧力は上昇するため、 その後、 ソ レノ ィ ド 1 3 0 を O F F状態に しても、 吸入弁 1 0 5 は閉塞状態を維持し、 吸入 工程は始ま り と同期して自動開弁する。
さ らに、 本実施形態においては、 シール材 1 2 0 の燃料室側空間 1 07 は、 連結通路 1 0 9及び逆止弁 1 1 3 を介して、 燃料吸入通路 1 1 0 に 連結されている。 逆止弁 3 0 0 は、 燃料吸入通路 1 1 0側から燃料室側 空間 1 0 7 への流通方向を規制するよ う に設けられている。 逆止弁 1 13 が開いている状態では、 シール材 1 2 0 の燃料室側空間 1 0 7 には、 燃 料吸入通路 1 1 0 に供給される低圧 (例えば、 大気圧よ り も、 0 . 3 M P a高い圧力) が印加されている。
これによ り 、 加圧工程時に加圧室 1 1 2 からシリ ンダ 1 0 8 とプラン ジャ 1 0 2 とのギャ ップを通って く る燃料は、 低圧部である燃料吸入通 路 1 1 0側に流れる こ とができるため、 シール材 1 2 0 の燃料室側の圧 力は燃料吸入通路 1 1 0 と同等とな り 、 シール材 1 2 0 の剛性を大幅に 増加する必要な しに、 燃料の外部漏れを抑える こ とができる。
一方、 シール材 1 2 0 が破損 · 脱落して燃料が外部に漏れ始めた際に は、 燃料室側空間 1 0 7 の圧力は、 燃料吸入通路 1 1 0 よ り低く なるた め、 逆止弁 1 1 3 は閉弁し、 燃料吸入通路 1 1 0側からの燃料の流入を 阻止する こ とができる。 このため、 シール材 1 2 0部には、 加圧室 1 12 からシリ ンダ 1 0 8 とプラ ンジャ 1 0 2 とのギャ ップを通って く る燃料 のみ流入する。 この流量は、 シ リ ンダ 1 0 8 とプラ ンジャ 1 0 2 の摺動 部の長さ に反比例するもので、 本実施形態のよ う にプラ ンジャ 1 0 2 が 適切に摺動できる距離を確保すれば、 少量に抑える こ とができる。 従つ て、 シール材 1 2 0 の破損 · 脱落時においても、 短期間に多量の燃料が 外部に流出する こ と を防止できる。
ま た、 上述のよ う に、 プランジャ摺動部のギャ ップからの加圧室 1 12 の燃料の流出を最小限に抑え られるため、 通常運転時においては、 ボン プの吐出効率を向上する ことができる。
次に、 第 8 図を用いて、 本実施形態による高圧燃料供給ポンプの構成 について説明する。
第 8 図は、 本発明の一実施形態による高圧燃料供給ポンプの構成を示 す縦断面図である。 なお、 第 7 図と同一符号は、 同一部分を示している ポンプ本体 1 0 0 は、 燃料吸入通路 1 1 0 と、 燃料吐出通路 1 1 1 と、 加圧室 1 1 2 と を備えている。 燃料吸入通路 1 1 0及び燃料吐出通路 1 1 1 には、 それぞれ、 吸入弁 1 0 5及び吐出弁 1 0 6 が設けられてお リ 、 それぞれ、 ばね 1 0 5 a , 1 0 6 a にて一方向に保持され、 燃料の 流通方向を制限する逆止弁となっている。
シ リ ンダ 1 0 8 の内部に形成される加圧室 1 1 2 には、 加圧部材であ るプラ ンジャ 1 0 2 が摺動可能に保持されている。 加圧室 1 1 2 は、 プ ラ ンジャ 1 0 2 を往復摺動可能に支持する摺動孔 1 0 8 a を有するシリ ンダ 1 0 8 によって形成されている。 シ リ ンダ 1 0 8 の内径部は、 ブラ ンジャ 1 0 2 との径ギャ ップを、 加圧室からの燃料漏れを最低限とする ため、 1 O m以下と している摺動孔 1 0 8 a と、 加圧室を形成するた めに大径に形成された大径内壁 1 0 8 b からなつている。
ま た、 シ リ ンダ 1 0 8 は、 大径内壁 1 0 8 b 部に対応する外壁 1 08 c の一部を本体 1 に圧入嵌合する こ とによ り保持されている。 これによ り 圧入嵌合によ るシ リ ンダ内径の寸法変形は大径内壁 1 0 8 b部のみに発 生し、 摺動孔 1 0 8 aは、 あ らかじめ加工した寸法状態を維持する こ と ができる。 従って、 圧入嵌合後の、 摺動孔 1 0 8 aの仕上げ加工が不要 となると ともに、 摺動部のみに耐摩耗性の良い材料を選択すればよいた め、 安価なものとする ことができる。 ま た、 本体 1 とシ リ ンダ 1 0 8 に 線膨張係数の異なる材料を用いても、 温度変化によるシ リ ンダ内径変形 は、 大径内壁 1 0 8 b部のみとなリ 、 プラ ンジャ 2 の摺動性に悪影響を 与える ことがない。
ま た、 シ リ ンダ 1 0 8 とポンプ本体 1 の間に円環状通路 1 0 9 を設け、 この円環状通路 1 0 9 を摺動孔 1 0 8 a に連通させるとともに、 燃料導 入口 1 1 0 a に通じる吸入通路 1 1 0 と円環状通路 1 0 9 とを通路 109b にて連通させている。 これによ り 、 円環状通路 1 0 9 内の圧力が、 導入 口 1 1 0 a とほぼ同圧カ状態(大気圧 + 0 . 3 M P a ) となるため、 加圧 室 1 1 2 との圧力差が低減し、 圧入部 1 0 8 c と摺動孔 1 0 8 aからの 燃料漏れを低減する ことができる。 また、 摺動部の発熱を燃料冷却する こ とができ、 摺動部の焼き付き等の防止をはかれる。
プラ ンジャ 1 0 2 の外周部には、 ポンプ内の燃料が外部に流出する こ と を防止するとともに、 カム 1 4 0 を潤滑するためのオイルがポンプ内 に流入する こ とを防止するために、 弾性体で製作されたシール材 1 2 0 が設けられている。 本実施形態では、 シール材 1 2 0 は、 金属管 120 a と一体成形されてお り 、 ポンプ本体 1 0 0 に圧入嵌合されているが、 シ —ル材 1 2 0 の固定方法はこの方法に限定されない。 シール材 1 2 0 と 一体成形された金属管 1 2 0 aの端部は、 ポンプ本体 1 0 0 に嵌合され ている。 プラ ンジャ 1 0 2 とシール材 1 2 0 との摺動部からの燃料漏れ については、 シール材 1 2 0 の長さ を長く する こ とによ り低減する こ と ができる。 このと き、 シール材 1 2 0 の燃料室側の圧力は、 低圧燃料の 圧力 (例えば、 大気圧よ り 0 . 3 M P a 高い) ものであ り 、 シール材 1 2 0 の他方の側の圧力は大気圧であるため、 シ一ル材 1 2 0 の両端面 の圧力差は、 例えば、 0 . 3 M P a と小さいため、 シール材 1 2 0 の全 長をそれほど長く しな く てもシール性を高く する こ とができる。
プラ ンジャ 1 0 2 の下端に設けられたリ フタ 1 0 3 は、 ばね 1 0 4 に よ ってカム 1 4 0 に圧接されている。 プランジャ 1 0 2 は、 エンジン力 ムシャフ ト等によ り 回転されるカム 1 4 0 によ り 、 往復運動して加圧室 1 1 2 内の容積を変化させる。 プラ ンジャ 1 0 2 の圧縮工程中に吸入弁 1 0 5 が閉弁すると、 加圧室 1 1 2 内圧力が上昇し、 これによ り 吐出弁 1 0 6 が自動的に開弁し、 燃料をコモンレール 5 3 に圧送する。 吸入弁 1 0 5 は、 加圧室 1 1 2 の圧力が燃料導入口よ り低く なると 自動的に開 弁するが、 閉弁に関しては、 ソ レノ イ ド 1 3 0 の動作によ り決定される c ホンプ本体 1 0 0 には、 ソ レノ ィ ド 1 3 0 が取り付けられている。 ソ レノ ィ ド 1 3 0 は、 係合部材 1 3 1 とばね 1 3 2 を備えている。 係合部 材 1 3 1 は、 ソ レノ イ ド 1 3 0 が 0 F F時は、 ばね 1 3 2 によって、 吸 入弁 1 0 5 を開弁する方向に付勢力がかけられている。 ばね 1 3 2 の付 勢力は、 吸入弁ばね 1 0 5 aの付勢力よ り 大き く なつているため、 ソ レ ノ イ ド 1 3 0 が O F Fの時は、 図示するよ う に、 吸入弁 1 0 5 は開弁状 態となつている。
ポンプ本体 1 0 0 から高圧燃料を供給する場合には、 ソ レノ ィ ド 1 30 が 0 N (通電) 状態とな り 、 燃料供給を停止する場合には、 ソ レノ イ ド 1 3 0が O F F (無通電) 状態となるよ う に、 ソ レノ イ ド 1 3 0への通 電が制限される。
ソ レノ ィ ド 1 3 0 が 0 N (通電) 状態を保持した際は、 ばね 1 3 2 の 付勢力以上の電磁力を発生させ、 係合部材 1 3 1 をソ レノ ィ ド 1 3 2側 に引き寄せるため、 係合部材 1 3 1 と吸入弁 1 0 5 は分離される。 この 状態であれば、 吸入弁 1 0 5 はプランジャ 1 0 2 の往復運動に同期して 開閉する自動弁となる。 従って、 圧縮工程中は、 吸入弁 1 0 5 は閉塞し 加圧室 1 1 2の容積減少分の燃料は、 吐出弁 1 0 6 を押し開きコモンレ ール 5 3へ圧送される。
一方、 ソ レノ イ ド 1 3 0が 0 F F (無通電) を保持した際は、 ばね 1 3 2の付勢力によ り 、 係合部材 1 3 1 は吸入弁 1 0 5 に係合し、 吸入 弁 1 0 5 を開弁状態に保持する。 従って、 圧縮工程時においても、 加圧 室 1 1 2の圧力は燃料導入口部とほぼ同等の低圧状態を保っため、 吐出 弁 1 0 6 を開弁する ことができず、 加圧室 1 1 2の容積減少分の燃料は、 吸入弁 1 0 5 と通り燃料導入口側へ戻される。
ま た、 圧縮工程の途中で、 ソ レノ イ ド 1 3 0 を O N状態とすれば、 こ のと きから、 コモンレール 5 3へ燃料圧送される。 ま た、 一度圧送が始 まれば、 加圧室 1 1 2内の圧力は上昇するため、 その後、 ソ レ ノ イ ド 1 3 0 を O F F状態に しても、 吸入弁 1 0 5は閉塞状態を維持し、 吸入 工程は始ま リ と同期して自動開弁する。
さ らに、 ポンプ本体 1 0 0の内部には、 シール材 1 2 0の燃料室側空 間 1 0 7 に接続した縦通路 1 0 9 b と、 この縦通路 1 0 9 b に連結した 横通路 1 0 9 aが形成されてお り 、 第 7図に示した連結通路 1 0 9 を構 成している。 縦通路 1 0 9 bは、 シ リ ンダ 1 0 8がポンプ本体 1 0 0 に 形成された穴に揷入固定される こと によ り 、 シ リ ンダ 1 0 8の外周部と ポンプ本体 1 0 0 に形成された穴との間に形成されるため、 形成するの が容易である。 横通路 1 0 9 aの端部には、 逆止弁 1 1 3が設けられて いる。 逆止弁 1 1 3は、 ポール状の弾性体を用いている。 逆止弁 1 1 3 の材料と しては、 例えば、 フ ッ素ゴムや二 卜 リ ルゴム等の耐ガソ リ ン性 を有するものが用いられる。 逆止弁 1 1 3は、 通常は開弁状態にあ り 、 その詳細については、 第 9図及び第 1 0図を用いて後述する。
以上のよ う に して、 シール材 1 2 0の燃料室側空間 1 0 7は、 連結通 路 1 0 9及び逆止弁 1 1 3 を介して、 燃料吸入通路 1 1 0 に連結されて いる。 逆止弁 1 1 3 は、 燃料吸入通路 1 1 0側から燃料室側空間 1 0 7 への流通方向を規制するよ う に設けられている。 逆止弁 1 1 3 が開いて いる状態では、 シール材 1 2 0 の燃料室側空間 1 0 7 には、 燃料吸入通 路 1 1 0 に供給される低圧 (例えば、 大気圧によ り も、 0 . 3 M P a 高 い圧力) が印加されている。
これによ り 、 加圧工程時に加圧室 1 1 2 からシリ ンダ 1 0 8 とプラ ン ジャ 1 0 2 とのギャ ップを通って く る燃料は、 低圧部である燃料吸入通 路 1 1 0側に流れる ことができるため、 シール材 1 2 0 の燃料室側の圧 力は燃料吸入通路 1 1 0 と同等とな り 、 シール材 1 2 0 の剛性を大幅に 増加する必要な しに、 燃料の外部漏れを抑える こ とができる。
一方、 シール材 1 2 0 が破損 · 脱落して燃料が外部に漏れ始めた際に は、 燃料室側空間 1 0 7 の圧力は、 燃料吸入通路 1 1 0 よ り低く なるた め、 逆止弁 3 0 0 は閉弁し、 燃料吸入通路 1 1 0側からの燃料の流入を 阻止する こ とができる。 このため、 シール材 1 2 0部には、 加圧室 1 12 からシリ ンダ 1 0 8 とプラ ンジャ 1 0 2 とのギャ ップを通って く る燃料 のみ流入する。 この流量は、 シ リ ンダ 1 0 8 とプラ ンジャ 1 0 2 の摺動 部の長さ に反比例するもので、 本実施形態のよ う にプラ ンジャ 1 0 2が 適切に摺動できる距離を確保すれば、 少量に抑える こ とができる。 従つ て、 シール材 1 2 0 の破損 · 脱落時においても、 短期間に多量の燃料が 外部に流出する こ と を防止できる。
ま た、 上述のよ う に、 プラ ンジャ摺動部のギャ ップからの加圧室 1 12 の燃料の流出を最小限に抑え られるため、 通常運転時においては、 ボン プの吐出効率を向上する こ とができる。
次に、 第 9 図及び第 1 0 図を用いて、 本実施形態による高圧燃料供給 ポンプに用いる逆止弁の構造について説明する。
第 9 図は、 本発明の一実施形態による高圧燃料供給ポンプに用いる逆 止弁の開弁時の断面図であ り 、 第 1 0 図は、 本発明の一実施形態による 高圧燃料供給ポンプに用いる逆止弁の閉弁時の断面図である。
第 9 図に示すよ う に、 ポール状の弾性体からなる逆止弁 1 1 3 は、 横 通路 1 0 9 aから脱落しないよ う に、 ソ レノ ィ ド 1 3 0 の先端部によつ て、 図中右方向への移動を規制されている。 ま た、 逆止弁 1 1 3 が係合 して弁を閉 じるためのシ一 ト面 1 1 3 a は、 横通路 1 0 9 aの図中の右 側端部に形成されているが、 水平方向に延在する横通路 1 0 9 a に対し て、 直交する よ う に形成されているため、 略垂直面となっている。 なお、 ポンプ本体 1 0 0 は、 図示の上下方向が天地方向である。 従って、 ボン プ本体 1 0 0 を天地方向に取り付けた状態では、 ポール状の逆止弁 1 13 は、 シー ト面 1 1 3 a には接触していないため、 逆止弁 1 1 3 の前後圧 力が同等のと きは、 開弁状態とする ことができる。
なお、 逆止弁 1 1 3 の脱落防止手段と しては、 ソ レノ ィ ド 1 3 0 の先 端部を用いるものに限らず、 例えば、 別部材を用いて、 逆止弁 1 1 3 の 脱落を防止する よ う に しても よいものである。 ま た、 横通路 1 0 9 a を シー ト面 1 1 3 aが下方向となるよ う に傾斜させてもよい。 さ らに、 シ ー ト面 1 1 3 a についても、 略垂直面とするだけでなく 、 傾斜させるよ う に しても よい。 ま た、 逆止弁 1 1 3 は、 横通路 1 0 9 aの出口部でな く 、 通路内に設置しても よい。 さ らに、 シー ト面 1 1 3 a を水平面とす ると きは、 逆止弁 1 1 3 の前後圧が等しいと き逆止弁 1 1 3 が閉 じない よ う にするため、 逆止弁 1 1 3 とシー ト面 1 1 3 a との間に、 ばね等を 介在させるよ う に しても よい。
以上説明 したよ う に、 ポンプ停止時においても、 逆止弁 1 1 3 は開弁 しているため、 逆止弁 1 1 3 がシー ト面 1 1 3 a に固着する こ と を防止 する ことができる。 ま た、 運転時においても、 逆止弁 1 1 3 の開弁圧は ゼロのため、 シール材 1 2 0 の燃料室側の圧力を燃料吸入通路 1 1 0部 と同等とする ことができる。
一方、 第 1 0 図に示すよ う に、 シール材 1 2 0 の脱落等によ り 、 シー ル材 1 2 0 の燃料室側圧力が低下 した際には、 横通路 1 0 9 aの圧力が、 燃料吸入通路 1 1 0 の圧力よ り も低下するため、 逆止弁 1 1 3 はシー ト 面 1 1 3 a に押しつけられ、 すみやかに逆止弁 1 1 3 が閉弁して、 燃料 吸入通路 1 1 0側からの燃料流出を阻止する こ とができる。
ま た、 逆止弁 1 1 3 を弾性体で形成する ことによ り 、 シー ト面 1 13 a の硬度を増加させる必要がな く 、 安価に製作する こ とができる。
以上説明 したよ う に、 本実施形態においては、 シール材 1 2 0 の燃料 室側空間 1 0 7 は、 燃料吸入通路 1 1 0 に連結されてお り 、 燃料吸入通 路 1 1 0 に供給される低圧 (例えば、 大気圧よ り も、 0 . 3 M P a 高い 圧力) が印加されている燃料溜リ部となっている。 即ち、 従来のよ う に , 燃料溜リ 部が、 プラ ンジャの摺動部内には設けられていない構造と して いる。 即ち、 高圧である加圧室 1 1 2 は、 シリ ンダ 1 0 8 の図中の上端 部に形成されるのに対して、 低圧である燃料室側空間 1 0 7 (燃料溜リ 部) は、 シ リ ンダ 1 0 8 の図中の下端部に形成されるので、 加圧室 1 12 から燃料室側空間 1 0 7 (燃料溜リ部) までの距離を長く とる こ とがで き、 加圧室 1 1 2 の高圧燃料が、 燃料室側空間 1 0 7 へ漏れる こ と を容 易に低減できる。 従って、 ポンプを小型化する こ とができると ともに、 加圧時の漏れを低減して、 吐出効率を向上する こ とができる。
ま た、 本実施形態においては、 従来例のよ う な略大気圧となる通路は シール材の燃料室側には設けていないので、 このよ う な通路の加工が不 要となると ともに、 ま た、 ポンプから燃料タ ンク に接続する配管も不要 とする ことができる。 従って、 安価に製造できる。
さ らに、 シール材 1 2 0 は一体成型された金属管 1 2 0 a をポンプ本 体 1 0 0 に固定する構造であるため、 シール材 1 2 0 の長さ を長く して、 プラ ンジャ 1 0 2 との摺動距離を大き く しゃすいため、 シール性が向上 できるとともに、 シール材 1 2 0 の両端にかかる圧力は低圧であるので、 シール性を向上する ことができる。
ま た、 シール材 1 2 0 の破損時等においては、 燃料吸入通路 1 1 0 と 燃料室側空間 1 0 7 と を連通する連結通路 1 0 9 に設けられた逆止弁 1 1 3 を動作させる こ とによ り 、 燃料吸入通路 1 1 0 から大気側への燃 料の漏れを速やかに防止する こ とができる。
さ らに、 ポンプ運転時は、 逆止弁 1 1 3 は、 開弁状態と しているので、 逆止弁がシー ト面に固着する こ と を容易に防止する こ とができる。
本実施例によれば、 摺動部のシール材が破損 · 脱落した際においても、 燃料の外部漏れを少量に抑えると ともに、 小型で安価にする ことができ る。
以上い く つかの実施例を説明 したが以下にこれら実施例に共通する特 徴的な構成について、 第 1 1 図を参照して更に詳し く 説明する。
ポンプ本体 1 には、 燃料吸入通路 1 0 , 吐出通路 1 1 , 加圧室 1 2 が 形成されている。 加圧室 1 2 には、 加圧部材であるプランジャ 2 が摺動 可能に保持されている。 吸入通路 1 0及び吐出通路 1 1 には、 加圧室 1 2 の吸入孔 5 b , 吐出孔 6 b につながるそれぞれ吸入室 5 A, 吐出室 6 Aが形成されてお り 、 各室には吸入弁 5 , 吐出弁 6 が設けられている 吸入弁 5 , 吐出弁 6 は各々ばね 5 a , 5 a にて一方向に保持され、 燃料 の流通方向を制限する逆止弁となっている。 具体的には、 吸入弁 5 は吸 入室 5 Aの入口孔 5 A aの内側から この孔 5 A a を閉 じる様にばね 5 a で付勢されている。 ま た、 電磁駆動装置と してのソ レノ イ ド 2 0 0 がポ ンプ本体 1 に一体に形成された筒状ケース部 1 Aに圧入保持されており 、 ソ レノ ィ ド 2 0 0 には、 プランジャ ロ ッ ドと して形成される係合部材 2 0 1 , ばね 2 0 2 が配されている。 係合部材 2 0 1 は、 ソ レノ イ ド 2 0 0 が O F F時は、 ばね 2 0 2 によ って、 突出位置に案内され、 その 結果吸入弁 5 に係合し、 これを開弁する方向に付勢する。 ばね 2 0 2 の 付勢力は、 吸入弁 5 を閉方向に付勢するばね 5 aの付勢力よ り大き く な つているため、 ソ レノ イ ド 2 0 0 の O F F時は、 第 1 図のよ う に、 吸入 弁 5 は係合部材 2 0 1 で押し開かれ、 開弁状態となっている。 燃料は、 タ ンク 5 0 から低圧ポンプ 5 1 にてポンプ本体 1 の燃料導入口に導かれ、 プレ ツ シャ レギユ レータ 5 2 にて一定の圧力に調圧されている。 その後、 ポンプ本体 1 にて加圧され、 燃料吐出口 1 1 から第 7 図のコモンレール 5 3 に圧送される。
以上のよ う に構成された高圧ポンプの動作を以下説明する。
プラ ンジャ 2 の下端に設けられたリ フタ 3 は、 ばね 4 にてカム 1 0 0 に圧接されている。 プラ ンジャ 2 は、 エンジンカムシャフ ト等によ り 回 転されるカム 1 0 0 によ り 、 往復運動して加圧室 1 2 内の容積を変化さ せる。
プラ ンジャ 2 の圧縮工程中に吸入弁 5 が閉弁すると、 加圧室 1 2 内圧 力が上昇し、 これによ り 吐出弁 6 が自動的に開弁 し、 燃料をコモンレー ル 5 3 に圧送する。
吸入弁 5 は、 加圧室 1 2 の圧力が燃料導入口 よ り低く なると 自動的に 開弁するが、 閉弁に関しては、 ソ レノ イ ド 2 0 0 の係合部材 2 0 1 の動 作によ リ決定される。 ソ レノィ ド 2 0 0 が 0 N (通電) 状態を保持した際は、 ばね 2 0 2 の 付勢力以上の電磁力を発生させ、 係合部材 2 0 1 をソ レノ ィ ド 2 0 2側 に引き寄せ引き戻し位置に至ら しめるため、 この時点で係合部材 2 0 1 と吸入弁 5 は分離される。 この状態であれば、 吸入弁 5 はプラ ンジャ 2 の往復運動に同期して当該吸入弁 5 の上下流側の圧力差によ って開閉す る 自動弁となる。 従って、 圧縮工程中は、 吸入弁 5 は閉塞し、 加圧室 1 2 の容積減少分の燃料は、 吐出弁 6 を押し開きコモンレール 5 3 へ圧 送される。 よ って、 ソ レノ イ ド 2 0 0 の応答性に関係せずに、 ポンプの 最大吐出を行う ことができる。
これに対し、 ソ レノ イ ド 2 0 0 が 0 F F (無通電) 状態の時には、 ば ね 2 0 2 の付勢力によ り 、 係合部材 2 0 1 は吸入弁 5 に係合し、 吸入弁 5 を開弁状態に保持する。 従って、 圧縮工程時に開放された通孔 5 A a を介してシ リ ンダ内 (加圧室内) の燃料が低圧側に戻され、 加圧室 1 2 の圧力は燃料導入口部とほぼ同等の低圧状態を保っため、 吐出弁 6 を開 弁する こ とができない。 よ って、 ポンプ吐出量を 0 とする ことができる t ま た、 圧縮工程の途中で、 ソ レノ イ ド 2 0 0 を O N状態とすれば、 係 合部材 2 0 1 による開弁方向への付勢力を失った吸入弁 5 は、 ばね 5 a と加圧燃料の庄力と によ って、 瞬時に通孔 5 A a を閉弁する。 したがつ て このと きから、 吐出弁 6 が開き、 吐出孔 1 1 からコモンレール 5 3 へ 燃料が圧送される。 ま た、 一度圧送が始まれば、 次の吸入工程までは加 圧室 1 2 内の圧力は上昇するため、 その後、 ソ レノ イ ド 2 0 0 を O F F 状態に しても、 次の吸入工程のは じま り まで吸入弁 5 は閉塞状態を維持 する。 吸入工程が始ま ると加圧室の圧力が低圧通路よ リ低下するので吸 入弁 5 は自動開弁する。 よ って、 ソ レノ イ ド 2 0 0 の O Nタイ ミ ング (すなわち、 係合部材の引 き込みタイ ミ ング) によ り 、 吐出量を調節す る ことができる。 ま た、 ソ レノ イ ド 2 0 0 の係合部材は圧縮工程の始ま る前までに、 突出位置 (すなわちソ レノイ ドの O F F時の位置) まで戻 れば良いため、 係合部材 2 0 1 の高速応答が要求される ことはない。 こ れによ り 、 ばね 2 0 2 の付勢力を小さ く する ことができ、 結果的にソ レ ノ ィ ド 2 0 0 の O F F— O N応答性 (すなわち係合部材の突出—引 き込 み応答性) をよ く する ことができる。
ま た重要なことは、 従来の様な電磁駆動弁と違い、 ソ レノ イ ドはブラ ンジャ ロ ッ ドだけを引き寄せれば良いので可動部が軽く な り この点でも 応答性が良く なる。 ま た小さなソ レノ ィ ドで駆動できる。
更に電磁弁と違って電磁吸引力で弁体がシー トに強く 打ちつけられる よ う なこともないので損傷の虞れがない。
以上によ り 、 圧縮工程におけるソ レノ ィ ド 2 0 0 の 0 N時間又は 0 N タイ ミ ングをコ ン トロールする こと によ り 、 コモンレール 5 3 への吐出 量を可変制御する こ とができる。 ま た、 圧力センサ 5 6 の信号に基づき . E C Uにて適切な吐出タイ ミ ングを演算しソ レノ ィ ド 2 0 0 をコ ン ト口 ールする こ と によ り 、 コモンレール 5 3 の圧力を略一定値に保つことが できる。 ま た、 ソ レノ イ ド 2 0 0 を大型化する ことな く 、 O F F— O N 応答性を向上する ことができる。
次に、 第 1 2 図から第 1 4図によ り 、 吸入弁 5 と係合部材 2 0 1 と弁 体の変形例を説明する。 これらの実施例は、 吸入弁 5 と係合部材 2 0 1 のいずれか一方を凹形, 他方を凸形と して、 凹凸係合させている。 これ によ り 、 係合部のずれ · 滑り 落ちを防止でき、 吸入弁 5 , 係合部材 201 の確実な動作を行う ことができる。 本実施例では、 吸入弁 5 の形状を、 ポール弁, 円筒弁と しているが、 円錐形状弁, リ ー ド弁等とする こ とも 可能である。 ま た、 第 1 2 図, 第 1 3 図においては、 吸入弁 5 の開弁時の位置は、 係合部材 2 0 1 に設けられたス ト ツバ 2 0 1 a部によ り決定されている。 これによ り 、 ばね 2 0 2 のセ ッ ト荷重を一定に保つことができるため、 係合部材 2 0 1 の吸引スピー ド (閉弁応答性) が安定させる ことができ る。 従って、 閉弁タイ ミ ングの制御が容易となる。
ま た、 第 1 4図においては、 吸入弁 5 の開弁時の位置は、 吸入弁 5 に 設けられたス ト ツバ 5 b部によ り決定される。 これによ り 、 吸入弁 5 と シー ト部の位置関係を一定にできるため、 開弁時の通路抵抗を一定とす る ことができる。 従って、 吸入弁 5 の開弁ス トローク を必要以上に大き く する必要がなく 、 小型化がはかれる。
これら、 ス ト ツバの位置は、 ポンプの要求内容によ り選択可能である( 次に、 第 8 図に戻って更に詳細な一実施例について説明する。 本実施 例では、 吐出弁 1 0 6 にポール弁を用い、 これに吐出通路 1 1 1 内に往 復摺動可能に保持されている円筒部材 1 0 6 c をばね 1 0 6 a にて係合 させている。 これによ り 、 それぞれの部材を容易に製作可能と し、 ポー ル弁 1 0 6 を確実に保持する こ とができ、 開弁時の燃料流によるポール 弁の発振時を押さえる こ とができる。 ま た、 更に、 ポール弁の保持をよ リ確実にするため、 円筒部材 1 0 6 c とポール弁 1 0 6 と を溶接等によ リー体化する こ とも可能である。 これらの構造は、 吸入弁に用いる こ と も可能である。
第 1 5図, 第 1 6 図によ り更に具体的に容量可変機構の部分について 説明する。 ポンプ本体 1 の吸入孔 5 b の上流側部位には環状の凹部 5 B が形成されている。
環状凹部 5 B には吸入弁 5 を収納するホルダ 5 Cの一端外周部がいん ろ う嵌合され、 両者は圧入固定される。 ホルダ 5 Cの吸入孔 5 b側には 第 1 7図, 第 1 8図に示すよ う に 5個の貫通孔 5 Dが穿孔されている。 ホルダ 5の中央に.はばね 1 0 5 a ( 5 a )が保持される。 ばね 1 0 5 d ( 5 a ) の反吸入孔 5 b側には、 第 1 9図 ( a), ( b ) に示すカ ップ状 のバルブ 1 0 5 ( 5 ) がばね 1 0 5 a ( 5 a ) を包むよ う に装着されて レヽる。
ポンプ本体 1 には更に、 環状凹部 5 Bよ り径の大きい環状の室 1 1 0 Aが形成されている。 結果的にこの室 1 1 O Aは低圧燃料通路 1 1 0に 連通する吸入室を形成している。
ポンプ本体 1 には、 更に環状の室 1 1 0 Aよ り も大径のねじ溝 130 A 付きの環状空胴 1 3 0 Bが形成されている。
環状空胴 1 3 O Aには、 電磁駆動機構を構成するソ レノ ィ ド 2 0 0 ( 1 3 0 ) が取り付けられる。
ソ レノ イ ド 2 0 0 ( 1 3 0 ) の外周にはねじ 2 0 0 aが螺刻されたァ ダプタ 2 0 O Aが取り付けられてお り 、 このねじを空胴 1 3 O Aのねじ 溝に螺入する こと によってソ レノ ィ ドを空胴 1 3 O Aに取り付ける。
2 0 0 bはシールリ ングで、 燃料吸入室 1 1 O Aと外気と を隔絶する c 有底カ ップ状の外側コア 2 0 0 Dには環状の電磁コイル 2 0 0 Bが収 納されている。 環状電磁コイル 2 0 0 Bの中心には中空筒状の内側固定 コア 2 0 0 Cが揷通されている。 中空筒状の内側固定コア 2 0 0 Cの片 側端には円板状の半径方向コア部 2 0 0 Eがー体に形成されてお り 、 径 方向コァの外周が力 ップ状外側コァ 2 0 0 Dの開放端側内周壁に緊迫結 合によ って固定されている。 電磁コ ィル 2 0 0 Bは、 内側固定コァ 200C が揷通する環状ポビン 2 0 0 c と、 そこに巻回されたコイル 2 0 0 dと コイル 2 0 0 dの外周を樹脂によ り モール ド成形した、 成形樹脂外層 2 0 0 f からなる。 環状の電磁コイル 2 0 O Bはカ ツフ状外側コア 2 0 0 Dの内底部と円 板状の半径方向コア部 2 0 0 E との間に軸方向に押圧された状態で収納 されている。 ポビン 2 0 0 c と樹脂外層 2 0 0 f と内側固定コア 200 C との対面する空胴部にはシ一ルリ ング 2 0 0 gがはさみ込まれている。 樹脂外層 2 0 0 f と半径方向コァ部 2 0 0 E とカ ツプ状外側コァ 200 D の対面する空胴部にはシ一ルリ ング 2 0 0 hがはさみ込まれている。 力 ップ状外側コァ 2 0 0 Dの開放端側は、 半径方向コァ部 2 0 0 Eの 外側を被よ う に樹脂モール ドによ って封止され、 その際電磁コイル 200B の外部取出 し端子も一緒にモール ド成形し、 コネク タ 2 0 0 F を形成し ている。
第 1 5 図の P円部を第 1 6 図に拡大して更に詳し く 説明する。
有底カ ップ状外側コア 2 0 0 Dの底の部分 2 3 0 は中心に貫通孔 231 を有する。
貫通孔 2 3 1 の外側に引 き続いて環状の凹所 2 3 2 が形成されている c 環状の凹所 2 3 2 の径は貫通孔 2 3 1 の径よ り 大きい。
貫通孔 2 3 1 には可動コア 1 3 1 aが揷通される。 可動コア 1 3 1 a にはプラ ンジャーロ ッ ドの形体を呈する係合部材 2 0 1 がー体に成形さ れている。
係合部材 2 0 1 の長手方向中間位置には環状の可動ス ト ツバ 2 0 1 c がやは リ 一体に形成されている。 このス ト ッノ 2 0 1 じ と可動コァ 131 a との間には、 C リ ング状の固定ス ト ツバ部材 2 3 3 が、 切り溝を用いて 係合部材 2 0 1 のロ ッ ド部に半径方向から嵌め込まれる。 この状態で可 動コア 1 3 1 a を貫通孔 2 3 1 に揷通し、 ま た固定ス ト ツバ部材 2 3 3 を環状凹所 2 3 2 に圧入固定して、 可動コア 1 3 1 a , 係合部材 2 0 1 は外側固定コア 2 0 0 Dの底部 2 3 0 を貫通する形でソ レノ ィ ド 2 0 0 に装着される。
更に環状凹所 2 3 2 には、 C リ ング状の固定ス ト ヅパ 2 3 3 をはさみ 付けるよ う に して、 ガイ ド部材 2 2 0 が圧入嵌合される。
ガイ ド部材 2 2 0 には固定ス ト 2 3 3 のス ト ッパ面 2 3 3 a に対 面するス ト ッパ面 2 2 1 が形成されており 、 可動ス ト 2 0 1 c がこ れら 2 つのス ト ッパ面の間でス ト ローク S s = 4 5 ミ ク ロ ンだけ往復で きる様に構成される。
ガイ ド 2 2 0 の中心には、 ガイ ド孔 2 2 0 b が貫設されている。 係合 部材 2 0 1 はこのガイ ド孔 2 2 O b を揷通してお り 、 これによつて半径 方向の動きが規制され、 ソ レノ ィ ド 2 0 0 の中心軸線に沿って往復でき る。
ガイ ド 2 2 0 には、 放射方向に複数の通孔 2 2 0 Cが穿設されている c この通孔 2 2 0 Cはガイ ド 2 2 0 の周囲の低圧燃料通路に連通している c これら通孔 2 2 0 Cはガイ ド 2 2 0 の中心孔 2 2 O Aに接続されてい る。 中心孔 2 2 O Aはガイ ド 2 2 0 の軸方向端部に開口 ( 2 2 0 B ) し ており 、 その開口 2 2 0 Bのまわ り の端面 2 2 0 aは吸入弁 1 0 5 ( 5 ) のシー ト面を形成している。
結果的に第 1 5 図に示す様に、 ソ レノ イ ド 2 0 0 ( 1 3 0 ) がポンプ 本体 1 に組付けられた状態では、 ガイ ド 2 2 0 の軸方向端面の外周がホ ルダ 5 Cの端面に圧接して、 両者で吸入弁機構を形成する。
係合部材 2 0 1 は更に、 プラ ンジャ ロ ッ ド部の先端に金属ポールが溶 接によ り 固定されている。
カ ップ状の可動コア 1 3 1 aは内側にばね 2 0 2 ( 1 3 2 ) が収納さ れてお り 、 ばね 2 0 2 ( 1 3 2 ) は中心側固定コア 2 0 0 Cの中心に螺 合されたアジヤ ス トスク リ ュ一 2 0 0 Gの端面に片側端が当接 している アジャス トスク リ ユー 2 0 0 Gは、 このばね 2 0 2 ( 1 3 2 ) のセッ ト荷重を調整して、 可動コア 1 3 1 a , 係合部材 2 0 1 の進退動作の特 性を調整する。
ばね 2 0 2 ( 1 3 2 ) が可動コア 1 3 1 a , 係合部材 2 0 1 ( 1 3 1 ) をアジヤスター 2 0 0 Gとは反対方向に向って付勢する結果、 ス ト ツパ 2 0 1 cのス ト ッパ面 2 0 1 aがガイ ド部材 2 2 0のス ト ッパ面 2 2 1 に当接する。
その結果、 係合部材 2 0 1 ( 1 3 1 ) の先端のポール部材 2 1 0はガ ィ ド 2 2 0の端面 2 2 0 aから寸法 S g = 3 5 ミ ク ロ ンだけ突出する。 その際ポール部材 2 1 0は弁体 1 0 5 ( 5 ) をばね 1 0 5 a ( 5 a ) の 力に杭してガイ ド部材 2 2 0のシー ト面から寸法 S g = 3 5 ミ ク ロ ンだ け浮かせて、 開口 2 2 0 Bをホルダ 5 Cの 5個の孔 5 Dを介してシリ ン ダの吸入孔 5 b に接続する。
可動コア 1 3 1 aの軸方向端面は、 内側固定コア 2 0 0 Cの軸方向端 面からギャ ップ G aだけ離れて対面している。 一方可動コア 1 3 1 aの 外周面は、 外側固定コア 2 0 0 Dの貫通孔 2 3 1 の内周面に対しわずか な径方向キヤ ップを隔てて対面している。
その結果、 コネクタ 2 0 O Fからコイル 2 0 0 Bに電力が供給 (つま リ通電) されると、 外側固定コア 2 0 0 D—可動コア 1 3 1 a—内側固 定コア 2 0 0 C—円板部材 2 0 0 Eを通る閉磁路が形成される。
その結果、 可動コア 1 3 1 aと内側固定コア 2 0 0 Cの向い合った端 面間に磁気吸引力が発生する。
この磁気吸引力は、 可動コア 1 3 1 aをばね 1 3 2の力に抗して内側 固定コア 2 0 0 Cの方へ引き付ける。
可動コア 1 3 1 aのス ト ロークは係合部材 2 0 1 のス ト ッ ノ 2 0 1 c が固定ス ト ッパ 2 3 3のス ト ッパ面 2 3 3 aに当接したと ころで終わる。 その距離 S s = 4 5 ミ ク ロ ンである。
可動コア 1 3 1 aのス トローク終わ り において、 可動コア 1 3 1 aと 内側固定コア 2 0 0 Cの端面間のギャ ップ G aは 6 ミ ク ロ ンである。 可動コア 1 3 1 aの内周には非磁性リ ング 1 3 3が固定されており 、 非磁性リ ング 1 3 3の可動コア 1 3 1 aから突出する部分は内側固定コ ァ 2 0 0 Cの内周面に案内される。 その結果、 可動コア 1 3 1 aの半径 方向の動きが規制される。
かく して、 係合部材 2 0 1 , 可動コア 1 3 1 aは軸方向にはなれた 2 箇所でガイ ドされ、 安定した進退運動が可能となる。
結局、 可動コア 1 3 1 aのス トロークの結果、 係合部材 2 0 1 (131) の先端のポ一ル部材 2 1 0はガイ ド部材 2 2 0のシー ト面 2 2 0 aから 寸法 S a = 1 0 ミ ク ロ ンだけ引き込まれた位置に保持される。
この時、 吸入弁 1 0 5 ( 5 ) は、 ポール部材 2 1 0 との係合が解かれ、 ばね 1 0 5 a ( 5 a ) の弾発力でガイ ド部材 2 2 0のシー ト面 2 2 0 a に押し付けられる。 その結果、 吸入弁 1 0 5 ( 5 ) はガイ ド部材 2 2 0 の中心開口 2 2 0 Bを、 閉塞し低圧燃料通路とホルダ 5 Cとの間を遮断 する。
吸入弁 1 0 5 ( 5 ) は、 第 1 9図 ( a), ( b ) に示す如く 、 カ ップ状 に形成されてお り 、 ばね 1 0 5 a ( 5 a ) のまわ り に被せられた状態で 保持されている。
シー ト面となる軸方向端面は、 中心にポール部材 2 1 0が当接する円 形の凸部 1 0 5 Aと、 ガイ ド 2 2 0のシ一 卜面 2 2 0 aに当接する環状 の凸部 1 0 5 Bを有する。 両凸部の間には環状溝 1 0 5が形成されてい る。 両凸部は、 その高さ寸法が同 じになるよ う切削加工される。
環状凸部 1 0 5 Bでシー 卜面を構成するので、 ガイ ド部材側のシー ト 面との片当 り が少な く な リ 、 接触が密になってシー ト性が向上する。 吸 入弁 1 0 5 ( 5 ) , ガイ ド部材 2 2 0 , ポール部材 2 1 0は互いに衝突 する。 その回数は、 内燃機関の生涯において 1 0 0万回にも及ぶ。 これ ら部材はこの様な条件の下で、 許される摩耗量はわずか 1 0 ミ ク ロ ンォ ーダである。 特に吸入弁 1 0 5 ( 5 ) とポール部材 2 1 0との当接部が 3 5 ミ ク ロ ン摩耗すると可動コア 1 3 1 a , 係合部材 2 0 1 ( 1 3 1 ) が 4 5 ミ ク ロ ンス トローク しても、 吸入弁 1 0 5 ( 5 ) をシー ト面から 浮かせる こ とができない。 つま り 、 この様な状態では吸入弁 1 0 5 ( 5 ) の開弁状態を維持できな く な り 、 容量の制御ができなく なる。 そこで、 摩耗の少ない条件と して、 種々検討した結果、 これら 3つの部材にピッ カース硬度 HRCが 3 0以上の材料を用いる こ とが好ま しいこと を見出 し た。 そ して この条件を満足する材料と して具体的には、 日本工業規格 ( J I S ) で規定されるステンレス鋼 SUS440C が有利である ことを見出 した。
一方、 可動コア 1 3 1 a , 係合部材 2 0 1 ( 1 3 1 ) のプランジャ ロ ッ ド部は、 磁路を構成するため、 磁性材である必要があ り 、 その観点か ら、 日本工業規格 ( J I S ) で規定される磁性ステンレス鋼 SUS420J2 が有利である こ と を見出 した。
かく して、 ソ レノ イ ド 2 0 0 ( 1 3 0 ) のコイルに無通電状態ではば ね 1 3 2の力がばね 1 0 5 a ( 5 a)の力に打ち勝って、 係合部材 2 0 1 ( 1 3 1 ) が 4 5 ミ ク ロ ンス トローク し、 吸入弁 1 0 5 ( 5 ) をシー ト 面から 3 5 ミ ク ロ ンだけ浮かせる様に設定する こ とができた。
本実施例では、 ポール部材 2 1 0 をプラ ンジャ ロ ッ ド部と別体と した のでそれぞれの機能に合致した材料を用いる こ とが可能である。
可動コァ 1 3 1 a と係合部材 2 0 1 ( 1 3 1 ) のプラ ンジャロ ッ ド部 と を別体で形成して溶接や緊迫結合のよ う な方法で後加工で一体にする 場合には、 プラ ンジャ ロ ッ ド部とポール部材とは一体成形する ことも可 能である。 この場合は、 同一の部材からポール部とプラ ンジャロ ッ ド部 ス ト ツバ部を切削加工によ って削り 出すこ と になる。
尚、 ポール部材は必ずしも球状である必要はない。 係合部材 2 0 1 ( 1 3 1 ) との接合面は平坦であっても良い。 そのためにポール部材は 半球であっても良い。
本実施例では、 係合部材の先端に環状の凹所を形成し、 そこ に球状部 材の一部が没するよ う に して、 保持し、 両者の当接面を溶接接合したの で、 接合作業が非常に楽である し、 ボール部材と係合部材との軸芯を一 致させ易い。
この実施例では、 ボンプ本体 1 の凹所 5 B にバルブホルダ 5 C を圧入 嵌合し、 別途組立てた、 ソ レノ イ ド 2 0 0 ( 1 3 0 ) を、 ねじ溝付き凹 部 1 3 0 Bにねじ込むだけで、 可変容量機能を持っ た吸入弁機構の組付 けが完了するので、 作業性が良い。
尚、 2 0 0 e は、 気泡抜きの孔であるエンジンの熱で低圧燃料通路に ベ一パーが発生した場合、 この気泡抜き孔 2 0 0 e を通って、 環状空所 2 0 0 i に気泡が一時保護され、 ベ一パーが吸入弁 1 0 5 ( 5 ) を通つ てシ リ ンダ 8 内の加圧室に入るのを防ぐ。
ま た、 実施例の説明では、 マク ロ的には可動コア, プランジャ ロ ッ ド 部, ポール部材を含めて全体を係合部材と呼んでいるが、 可動コアは別 部材で形成する こ ともあ り得る し、 機能的に可動コアと区別する必要が ある場合もあ り 、 そのことも考慮してプランジャ ロ ヅ ド部とポール部材 の部分を係合部材と説明 している箇所もある。
本実施例では弁体が電磁駆動機構から完全に切離されている点で、 従 来の電磁弁 (駆動機構に弁が固定されている。 ) による可変容量機構と ま ったく構成, 作用が異なる。
弁体がシー トに当接した後の駆動機構の余分な吸引力は弁体には作用 しないので、 弁体とシー ト面との摩耗が少ない し、 弁体と駆動機構のプ ラ ンジャとの間に機械的な応力が作用する ことがない。 ま た、 弁体の上 流下流の圧力差で弁体が開弁する際弁体の開弁動作に関与する力は、 閉 弁力発生用のばね力だけであ り 、 動きが速く なる。
電磁弁方式の従来技術では、 弁体だけでな く 、 駆動機構のプラ ンジャ や可動コアまで、 一緒に動く 必要があ り 、 その分電磁駆動機構側のばね の (開弁方向へ作用する) 力を大き く する必要があ り 、 その結果、 閉じ 側へ駆動する際に大きな力を必要とするので、 電磁機構が大き く なる。
また弁体自体の動きもにぶく なる。
ま た、 以上のよ う な理由で、 本実施例は、 弁体と これとは独立した電 磁プラ ンジャ とで可変容量機構が構成されていると言え、 電磁弁方式の 従来技術とははつ き リ 区別されるものである。
更に特徴ある構成は、 吸入弁 1 0 5 ( 5 ) で開閉される吸入開口 ( 2 2 0 a ) が電磁駆動機構側に形成されている こ とである。
これは、 係合部材 2 0 1 ( 1 3 1 ) と してのプラ ンジャ ロ ッ ドのス ト ローク を、 吸入弁が着座するシー ト面を基準に管理する上で、 非常に重 要な構成である。
つま り 、 ポンプ本体に組み込む前にシー ト面と係合部材のス トローク を独立に調整, 検査できる利点がある。
本実施例では、 吸入弁のシー ト面と係合部材のス トローク との関係は 電磁駆動機構をポンプ本体に組み込んだ後も ま った く 変化しない。

Claims

請 求 の 範 囲
1 . 燃料の吸入通路から供給された燃料を加圧部材によ り加圧して吐出 通路に圧送する加圧室を有する高圧燃料供給ポンプにおいて、
上記加圧部材が配置された主加圧室の他に、 上記吸入通路と上記吐出 通路を連通する副加圧室を備えたこと を特徴とする高圧燃料供給ポンプ。
2 . 請求項 1 記載の高圧燃料供給ポンプにおいて、
上記吸入通路と上記吐出通路を、 上記加圧室の上端部に連通させたこ と を特徴とする高圧燃料供給ポンプ。
3 . 請求項 1 記載の高圧燃料供給ポンプにおいて、
上記副加圧室は、 上記主加圧室の外周に略環状に配置されたこと を特 徴とする高圧燃料供給ポンプ。
4 . 燃料の吸入通路から供給された燃料を加圧部材によ リ加圧して吐出 通路に圧送する加圧室を有する高圧燃料供給ポンプにおいて、
端部にテーパ面を有するとともに、 ポンプ本体とは別部材によ リ形成 された加圧室形成部材を備え、
この加圧室形成部材の上記テーパ面を固定部材によ リ庄縮嵌合させる ことによ り 、 上記加圧室を形成する こと を特徴とする高圧燃料供給ボン プ。
5 . 燃料の吸入通路と吐出通路に連通する加圧室と、 この加圧室内の燃 料を上記吐出通路に圧送する加圧部材を有する高圧燃料供給ポンプにお いて、
上記加圧部材の摺動部に配置されたシール材と、
このシール材の燃料室側を燃料吸入通路に連通する連結通路と、 この連結通路に配置され、 上記燃料吸入通路側から上記シール材側へ の燃料の流入を阻止する逆止弁と を備えたこと を特徴とするに高圧燃料 供給ポンプ。
6 . 請求項 1 記載の高圧燃料供給ポンプにおいて、
上記逆止弁は、 ポンプ運転停止時に開弁している ことを特徴とする高 圧燃料供給ポンプ。
7 . 請求項 2 記載の高圧燃料供給ポンプにおいて、
上記逆止弁を弾性部材で形成したこと を特徴とする高圧燃料供給ボン プ。
8 . 低圧側燃料通路とポンプのシリ ンダと を連通する通孔を開閉する弁 体と、
この弁体に作用 してこの弁体が前記通孔を閉塞する方向に付勢するば ね要素と、
前記弁体と係合ま たは離間 して前記弁体の開閉を補助する係合部材と - この係合部材を内燃機関の運転状態に関連して電磁的に駆動する電磁 駆動装置と を有する内燃機関の高圧燃料供給ポンプ。
9 . 内燃機関のコ ン トロールュニッ 卜からの信号によって制御される電 磁操作機構と、
前記電磁操作機構に設けられ、 前記コ ン トロールュニッ 卜からの制御 信号によ って進出 した第 1 の位置と退去した第 2 の位置を与え られる係 合部材と、
ポンプのシ リ ンダと低圧側燃料通路と を連通する燃料導入口を開閉す る弁体と、
この弁体を前記燃料導入口 を閉塞する方向に付勢するばねと を有し、 前記係合部材が第 1 の位置にあると き、 前記弁体が前記燃料導入口を 開放する位置に保持され、
前記係合部材が第 2 の位置にあると き前記弁体が当該弁体の上下流の 圧力差によって開閉するよう構成された内燃機関の高圧燃料供給ポンプ。
1 0 . 9項において、 前記弁体の閉弁後に前記ポンプシリンダ内の燃料 圧力が所定値以上になると、 前記弁体は前記係合部材が第 1 の位置に変 化するのを阻止するよう構成された内燃機関の高圧燃料供給ポンプ。
1 1 . シリンダと、
このシリンダ内を往復してシリンダ内の容積を変化させるプランジャ と、
このシリンダ内と低圧燃料通路とを接続する通孔を開閉すべく、 この 通孔の下流側に設けられた弁体と、
この弁体を閉弁方向に付勢する第 1 のばねと、
前記低圧燃料通路側に設 gされ、 前記弁体を前記笫 1 のばねの力に抗 して開放位置に操作する係合部材と、
この係合部材に前記第 1 のばねの力に対抗する力を与える第 2のばね と、
前記第 2のばねの力に杭して前記係合部材を前記弁体との係合状態か ら開放する電磁駆動装置と
をィ ίする内燃機閲の ι¾ II燃料供給ポンプ。
1 2 . 1 1項において、 前記通孔が燃料吸人孔である内燃機関の高圧燃 料供給ポンプ。
1 3 . 1 1項において、 前記通孔が燃料スピル (溢流) 孔である内燃機 関の高圧燃料供給ポンプ。
1 4 . 1 1項において、 前記電磁駆動装置の動作タイ ミングは、 前記プ ランジャが前記シリンダ内で圧縮動作中の所定のタイ ミングに選ばれて いる
内燃機関の高圧燃料供給ポ
1 5. 8 , 9, 1 1 項のいずれかにおいて、
前記係合部材は、 細長いロ ッ ド部を有し、
当該ロ ッ ド部の前記弁体側端部にはボール部材が取り付けられている 内燃機関の高圧燃料ポンプ。
1 6 . 1 5項において、
前記ポール部材がロ ッ ク ウエル硬度 HRC 3 0以上の材料からなる内燃 機関の高圧燃料供給ポンプ。
1 7 . 1 5項において、
前記ポール部材が、 J I S規格のステレンス鋼 SUS440C で形成されて いる
内燃機関の高圧燃料供給ポンプ。
1 8 . 8, 9, 1 1項のいずれかにおいて、
前記弁体が、 ロ ック ウェル硬度 HRC 3 0以上の材料で形成されている 内燃機関の高燃料供給ポンプ。
1 9. 8 , 9, 1 1項のいずれかにおいて、
前記弁体が、 J I S規格のステレンス鋼 SUS440C で形成されている 内燃機関の高圧燃料供給ポンプ。
2 0. 1 5項において、
前記ロ ッ ド部が、 磁性材で形成されている
内燃機関の高圧燃料供給ポンプ。
2 1 . 1 5項において、
前記ロ ッ ド部が、 J I S規格の磁性ステレンス鋼 SUS420J2で形成され ている
内燃機関の高圧燃料供給ポンプ。
2 2. 8, 9, 1 1項のいずれかにおいて、 前記通孔が形成された部材が J I S規格のステンレス鋼 SUS440C で形 成されている
内燃機関の高庄燃料ポンプ。
2 3 . 1 5項において、
前記弁体とポール部材が J I S規格のステンレス鋼 SUS440C で形成さ れており 、 ロ ッ ド部が J I S規格の磁性ステレンス鋼 SUS420J 2で形成さ れている
内燃機関の高圧燃料供給ポンプ。
2 4 . 燃料を受け入れるシリ ンダに通じる燃料通路に設けられた弁部材、 この弁部材に前記燃料通路を閉じも し く は閉 く 力を付与するばね、 このばねの作分力の軸線に沿った方向において前記弁体を押しも し く は引いて前記弁部材を開き位置も し く は閉 じ位置に変化させる弁操作部 材 ,
この弁操作部材と前記弁部材と を分離した状態と係合した状態に操作 して、 前記弁操作部材を介して前記弁部材を開き位置も し く は閉 じ位置 に操作する電磁機構と を有する高圧燃料供給ポンプ。
2 5 . シリ ンダの燃料入口部に設けた吸入チェ ック弁と、
この吸入チェ ック弁に当接 して強制的に開き位置に操作する操作部材 と、
この操作部材を前記吸入チェ ック弁から引き離して当該吸入チェ ック 弁を非接触位置に移動させる電磁機構と、
を有する高圧燃料供給ポンプ。
2 6 . ばねによ って飛び出 し位置に付勢されるプラ ンジャ と、 このブラ ンジャ を引き込み位置に操作する電磁ソ レノ イ ドと を有する電磁機構、 ポンプの燃料吸入口に設けた吸入チェ ック弁、 前記プランジャが飛出 し位置にあると き前記チェ ック弁に当接して当該チェ ック弁を開位置に 操作し、 引き込み位置にあると き前記チェ ック弁から離れて当該チェ ッ ク弁を閉 じ位置に操作する様ポンプボディ に前記電磁機構を一体に取り 付けた高圧燃料供給ポンプ。
2 7 . シ リ ンダの燃料導入口をシリ ンダの圧縮室側から閉塞する様にば ね負荷された弁体と、
上記弁体が前記燃料導入口を閉塞する工程ではこの弁体から離れ、 開口する工程ではこの弁体に接触して前記ばね力に対抗する力を付与 する開閉操作機構と、
を有する高圧燃料供給ポンプ。
2 8 . 燃料の吸入通路と吐出通路に連通する加圧室、 該加圧室内の燃料 を該吐出通路に圧送する ビス トン、 前記吸入通路内に設けられた吸入弁 を有し、 該吸入弁の下流側の圧力が上流側の圧力に対して同等又はそれ 以上の時に前記吸入弁に閉弁力が発生するよ う に したものにおいて、 前 記吸入弁が閉弁方向に移動する際に対抗するよ う に第 1 の付勢力を与え られた係合部材, 外部入力によ り前記第 1 の付勢力と逆方向の第 2 の付 勢力を係合部材に作用させるァクチユエータ を設け、 前記第 2 の付勢力 によって第 1 の付勢力が相殺されていると き前記係合部材を前記吸入弁 から引離すよ う構成した高圧燃料供給ポンプ。
2 9 . 2 8項において、 前記吸入弁の上下流の圧力が同等の時に発生す る吸入弁の閉弁力と前記ァクチユエ一タ による第 2 の付勢力の合力は、 前記第 1 の付勢力よ リ 大き く した高圧燃料供給ポンプ。
3 0 . 2 8項において、 前記ァクチユエータ は電磁力によ り第 2 の付勢 力を発生する こと を特徴とする高圧燃料供給ポンプ。
3 1 . 2 8項において、 前記吸入弁と前記係合部材の係合部を凹凸係合 と したことを特徴とする高圧燃料供給ポンプ。
3 2 . 燃料の吸入通路と吐出通路に連通する加圧室、 該加圧室内の燃料 を該吐出通路に圧送する加圧部材、 前記吸入通路又は前記吐出通路内の 少なく とも一方の加圧室に対し燃料の流通方向を規制する逆止弁を設け たものにおいて、 前記逆止弁の少なく とも一箇所に球状の弁体を設け、 該球状弁体に略円筒形部材を当接させ、 該円筒形部材を通路内壁に摺動 可能に支持したこ と を特徴とする高圧燃料供給ポンプ。
3 3 . 燃料の吸入通路と吐出通路に連通する加圧室、 該加圧室の一部を 形成しプラ ンジャ形ピス ト ンを往復摺動可能に支持する摺動孔を有する 円筒部材、 該円筒部材を保持して該加圧室の一部を形成するポンプ本体 を有するものにおいて、 前記円筒部材は摺動孔の一端部に内径が拡張さ れた大径部を有し、 該拡張内壁の外壁にてポンプ本体に保持されている こと を特徴とする高圧燃料供給ポンプ。
3 4 . 3 3項において、 前記円筒部材の摺動孔と拡張内壁の双方の外側 に摺動孔の加圧室側と反対側の一端と連通する略円環状通路を設け、 該 円環状通路と燃料導入通路を連通させたこ と を特徴とする高圧燃料供給 ポンプ。
3 5 . 加圧室に連通する吸入通路部に吸入弁機構が収納されたホルダが 設けられてお り 、 前記吸入弁と同じ軸線に沿って進退するプラ ンジャ ロ ッ ドと これに取り付けられた可動コアを有する電磁駆動機構を備え、 前記電磁駆動機構の前記ホルダと当接する部位に前記吸入弁で開閉さ れる吸入開口を形成した
内燃機関の高圧燃料供給ポンプ。
PCT/JP1999/003257 1999-02-09 1999-06-18 Pompe d'alimentation en combustible a haute pression faisant partie d'un moteur a combustion interne WO2000047888A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99973678A EP1162365A4 (en) 1999-02-09 1999-06-18 HIGH PRESSURE FUEL PUMP FOR AN INTERNAL COMBUSTION ENGINE
US09/463,659 US6631706B1 (en) 1999-02-09 1999-06-19 High pressure fuel supply pump for internal combustion engine
US10/643,925 US7540274B2 (en) 1999-02-09 2003-08-20 High pressure fuel supply pump for internal combustion engine
US12/412,071 US7707996B2 (en) 1999-02-09 2009-03-26 High pressure fuel supply pump for internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/31619 1999-02-09
JP3161999 1999-02-09
JP11/129903 1999-05-11
JP12990399 1999-05-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09463659 A-371-Of-International 1999-06-18
US10/643,925 Continuation US7540274B2 (en) 1999-02-09 2003-08-20 High pressure fuel supply pump for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2000047888A1 true WO2000047888A1 (fr) 2000-08-17

Family

ID=26370118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003257 WO2000047888A1 (fr) 1999-02-09 1999-06-18 Pompe d'alimentation en combustible a haute pression faisant partie d'un moteur a combustion interne

Country Status (5)

Country Link
US (3) US6631706B1 (ja)
EP (6) EP1477665B1 (ja)
JP (9) JP4474428B2 (ja)
DE (4) DE69938615T2 (ja)
WO (1) WO2000047888A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079698A1 (fr) * 2000-04-18 2001-10-25 Toyota Jidosha Kabushiki Kaisha Pompe carburant haute pression
WO2002055870A1 (fr) * 2001-01-05 2002-07-18 Hitachi, Ltd. Pompe d'alimentation en carburant haute pression
WO2002055881A1 (fr) * 2001-01-05 2002-07-18 Hitachi, Ltd. Pompe a liquide et pompe d'alimentation en carburant haute pression
EP1241349A2 (en) 2001-03-15 2002-09-18 Hitachi, Ltd. Fuel supply apparatus and method of control thereof
EP1275848A1 (de) * 2001-07-13 2003-01-15 Robert Bosch Gmbh Kraftstoffpumpe für ein Kraftstoffsystem einer Brennkraftmaschine
EP1306553A2 (de) * 2001-10-27 2003-05-02 Robert Bosch Gmbh Kraftstoffpumpe, Kraftstoffsystem, Verfahren zum Betreiben eines Kraftstoffsystems sowie Brennkraftmaschine
US6651630B2 (en) 2001-09-21 2003-11-25 Hitachi, Ltd. High pressure fuel pump
EP1717446A2 (en) 2005-04-26 2006-11-02 Denso Corporation High pressure pump having solenoid actuator
CN100374698C (zh) * 2001-09-28 2008-03-12 洋马株式会社 燃料喷射泵的起动辅助装置
JP2008248788A (ja) * 2007-03-30 2008-10-16 Denso Corp 高圧燃料ポンプ
DE102008000658A1 (de) 2007-03-29 2008-10-16 Denso Corp., Kariya-shi Hydraulische Pumpe
JP2008267373A (ja) * 2007-03-29 2008-11-06 Denso Corp 高圧燃料ポンプ
JP2009209838A (ja) * 2008-03-05 2009-09-17 Denso Corp 高圧燃料ポンプ
EP2282044A1 (en) 2005-03-11 2011-02-09 Hitachi Ltd. High-pressure fuel supply pump
DE102012201035A1 (de) 2011-01-28 2012-08-02 Denso Corporation Hochdruckpumpe
JP2012163111A (ja) * 2012-06-04 2012-08-30 Hitachi Automotive Systems Ltd 高圧燃料ポンプ
DE102012205114A1 (de) 2011-03-31 2012-10-04 Denso Corporation Hochdruckpumpe
JP2012211583A (ja) * 2011-03-30 2012-11-01 Denso Corp ポンプ
JP2014088838A (ja) * 2012-10-31 2014-05-15 Hitachi Automotive Systems Ltd 高圧燃料供給ポンプ
JP2014148981A (ja) * 1999-02-09 2014-08-21 Hitachi Automotive Systems Ltd 内燃機関の高圧燃料供給ポンプ
JP2016191367A (ja) * 2015-03-31 2016-11-10 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ及び高圧燃料供給ポンプの組立て方法
JP2019007390A (ja) * 2017-06-22 2019-01-17 株式会社Soken 電磁調量弁
US10584700B1 (en) 2013-06-27 2020-03-10 Toyota Jidosha Kabushiki Kaisha High-pressure fuel pump
DE102006000010B4 (de) * 2005-01-17 2020-08-20 Denso Corporation Hochdruckpumpe mit verkleinertem Aufbau
WO2022004431A1 (ja) * 2020-06-30 2022-01-06 株式会社デンソー 高圧ポンプ
JP7415985B2 (ja) 2020-06-30 2024-01-17 株式会社デンソー 高圧ポンプ

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20207106U1 (de) * 2002-05-04 2002-08-22 Wepuko Hydraulik Gmbh & Co Pum Vorrichtung zur Ansteuerung von Saugventilen
ITBO20020498A1 (it) * 2002-07-30 2004-01-30 Magneti Marelli Powertrain Spa Impianto di iniezione di carburante di tipo common rail con pompa a portata variabile
DE10249688A1 (de) * 2002-10-25 2004-05-06 Robert Bosch Gmbh Kraftstoff-Hochdruckpumpe für eine Kraftstoffeinspritzanlage, insbesondere eine Common-Rail-Kraftstoffeinspritzanlage, von Brennkraftmaschinen
DE10322595B4 (de) * 2003-05-20 2013-02-28 Robert Bosch Gmbh Kolbenpumpe, sowie Verfahren zu ihrer Herstellung
DE10362370B3 (de) * 2003-05-20 2014-09-04 Robert Bosch Gmbh Kolbenpumpe, sowie Verfahren zu ihrer Herstellung
DE10322603B4 (de) * 2003-05-20 2013-04-25 Robert Bosch Gmbh Kolbenpumpe, insbesondere Hochdruck-Kolbenpumpe für Brennkraftmaschinen mit Direkteinspritzung
DE10362375B3 (de) * 2003-05-20 2016-11-17 Robert Bosch Gmbh Hochdruck-Kolbenpumpe für Brennkraftmaschinen mit Direkteinspritzung
DE10344459B4 (de) * 2003-09-25 2012-06-14 Robert Bosch Gmbh Kolbenpumpe, insbesondere Hochdruck-Kolbenpumpe
JP4078320B2 (ja) 2004-02-27 2008-04-23 三菱重工業株式会社 ポペット弁装置及びそれを備えた電子制御燃料噴射装置
AT504393B1 (de) * 2004-02-27 2009-03-15 Mitsubishi Heavy Ind Ltd Auf- und abgehende ventilvorrichtung und mit der vorrichtung ausgerüstete, elektronisch gesteuerte brennstoff-einspritzvorrichtung
DE602004007394T2 (de) * 2004-10-26 2008-03-06 Ford Global Technologies, LLC, Dearborn Einspritzventilleckstrombegrenzung
US7819637B2 (en) * 2004-12-17 2010-10-26 Denso Corporation Solenoid valve, flow-metering valve, high-pressure fuel pump and fuel injection pump
JP2007120492A (ja) * 2005-09-29 2007-05-17 Denso Corp 高圧燃料ポンプ
JP4415929B2 (ja) * 2005-11-16 2010-02-17 株式会社日立製作所 高圧燃料供給ポンプ
JP4535024B2 (ja) * 2006-04-27 2010-09-01 株式会社デンソー 燃圧制御装置
EP1921307B1 (en) * 2006-11-08 2012-08-15 Delphi Technologies Holding S.à.r.l. Fuel injection system
DE102007002445A1 (de) * 2007-01-17 2008-07-24 Robert Bosch Gmbh Rückschlagventil und Injektor mit hydraulischem Übersetzer und Rückschlagventil
US20080203347A1 (en) * 2007-02-28 2008-08-28 Santos Burrola Control valve for a gas direct injection fuel system
DE102007034038A1 (de) * 2007-07-20 2009-01-22 Robert Bosch Gmbh Hochdruckpumpe für ein Kraftstoffsystem einer Brennkraftmaschine
DE102007050297A1 (de) * 2007-10-22 2009-04-23 Robert Bosch Gmbh Verfahren zur Steuerung eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
EP2055953B1 (en) * 2007-11-01 2018-08-15 Danfoss Power Solutions Aps Fluid working machine
EP2055942B1 (en) * 2007-11-01 2012-06-06 Sauer-Danfoss ApS Hydraulic system with supplement pump
JP4632105B2 (ja) * 2008-06-16 2011-02-16 株式会社デンソー 固定部材およびそれを用いた高圧ポンプ
JP4866893B2 (ja) * 2008-10-30 2012-02-01 日立オートモティブシステムズ株式会社 電磁駆動型弁機構及びこれを用いた高圧燃料供給ポンプ
JP5158513B2 (ja) * 2008-12-19 2013-03-06 株式会社デンソー 燃料性状センサ
JP5126603B2 (ja) * 2008-12-26 2013-01-23 株式会社デンソー 高圧ポンプ
JP5126605B2 (ja) * 2008-12-26 2013-01-23 株式会社デンソー 高圧ポンプ
JP4678064B2 (ja) * 2008-12-26 2011-04-27 株式会社デンソー 高圧ポンプ
US8308450B2 (en) * 2009-03-05 2012-11-13 Cummins Intellectual Properties, Inc. High pressure fuel pump with parallel cooling fuel flow
JP5182265B2 (ja) * 2009-10-22 2013-04-17 トヨタ自動車株式会社 燃料ポンプ
DE102009046088B4 (de) 2009-10-28 2021-07-29 Robert Bosch Gmbh Mengensteuerventil, insbesondere in einer Kraftstoff-Hochdruckpumpe, zur Zumessung eines fluiden Mediums
DE102009046082A1 (de) 2009-10-28 2011-05-12 Robert Bosch Gmbh Elektromagnetisch betätigtes Mengensteuerventil, insbesondere zur Steuerung der Fördermenge einer Kraftstoff-Hochdruckpumpe
DE102009046079A1 (de) 2009-10-28 2011-05-12 Robert Bosch Gmbh Mengensteuerventil, insbesondere zur Mengensteuerung einer Kraftstoff-Hochdruckpumpe
US8483932B2 (en) * 2009-10-30 2013-07-09 Ford Global Technologies, Llc Fuel delivery system control strategy
DE102009046813A1 (de) 2009-11-18 2011-05-19 Robert Bosch Gmbh Elektromagnetisches Schaltventil mit einer Magnetspule
DE102009046822A1 (de) 2009-11-18 2011-05-19 Robert Bosch Gmbh Schaltventil mit einem in einem Gehäuse bewegbaren Ventilelement
DE102010039691A1 (de) 2009-12-01 2011-06-09 Robert Bosch Gmbh Schaltvenitl, insbesondere zur Zumessung eines Fluids für eine stromabwärts angeordnete Förderpumpe
JP5012922B2 (ja) 2010-02-03 2012-08-29 株式会社デンソー 高圧ポンプ
JP5136919B2 (ja) 2010-04-08 2013-02-06 株式会社デンソー 高圧ポンプ
US8677977B2 (en) 2010-04-30 2014-03-25 Denso International America, Inc. Direct injection pump control strategy for noise reduction
JP5702984B2 (ja) 2010-10-15 2015-04-15 日立オートモティブシステムズ株式会社 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ
JP5658968B2 (ja) 2010-10-15 2015-01-28 日立オートモティブシステムズ株式会社 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ
DE102010062077A1 (de) 2010-11-26 2012-05-31 Robert Bosch Gmbh Ventileinrichtung mit einem wenigstens abschnittsweise zylindrischen Bewegungselement
JP5316969B2 (ja) * 2011-03-31 2013-10-16 株式会社デンソー 高圧ポンプ
DE102011004993A1 (de) * 2011-03-02 2012-09-06 Robert Bosch Gmbh Ventileinrichtung zum Schalten oder Zumessen eines Fluids
DE102011005485A1 (de) * 2011-03-14 2012-09-20 Robert Bosch Gmbh Ventileinrichtung zum Schalten oder Zumessen eines Fluids
JP5382548B2 (ja) * 2011-03-31 2014-01-08 株式会社デンソー 高圧ポンプ
JP5699767B2 (ja) * 2011-04-12 2015-04-15 トヨタ自動車株式会社 内燃機関の燃料供給装置
JP5724661B2 (ja) * 2011-06-15 2015-05-27 株式会社デンソー 高圧ポンプおよびその制御方法
JP5639970B2 (ja) * 2011-08-03 2014-12-10 日立オートモティブシステムズ株式会社 電磁弁の制御方法、高圧燃料供給ポンプの電磁吸入弁の制御方法および電磁吸入弁の電磁駆動機構の制御装置
CN103857900B (zh) * 2011-10-06 2017-09-08 丰田自动车株式会社 内燃机的控制装置
JP5909502B2 (ja) * 2011-11-30 2016-04-26 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
DE102011090006B4 (de) * 2011-12-28 2015-03-26 Continental Automotive Gmbh Ventil
JP5677329B2 (ja) 2012-01-20 2015-02-25 日立オートモティブシステムズ株式会社 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ
US20130340861A1 (en) * 2012-06-20 2013-12-26 Caterpillar Inc Check valve of fuel system
JP5731562B2 (ja) 2012-07-04 2015-06-10 株式会社デンソー 高圧ポンプ
US9464631B2 (en) 2013-01-08 2016-10-11 Cummins Inc. Fuel pump for an internal combustion engine
US9599082B2 (en) * 2013-02-12 2017-03-21 Ford Global Technologies, Llc Direct injection fuel pump
WO2014137900A1 (en) * 2013-03-05 2014-09-12 Stanadyne Corporation Electronically controlled inlet metered single piston fuel pump
DE102013210861A1 (de) * 2013-06-11 2014-12-11 Robert Bosch Gmbh Pumpe
JP6135437B2 (ja) 2013-10-07 2017-05-31 トヨタ自動車株式会社 高圧燃料ポンプ
ITMI20132109A1 (it) * 2013-12-17 2015-06-18 Bosch Gmbh Robert Gruppo pompa per alimentare combustibile, preferibilmente gasolio, ad un motore a combustione interna
GB201401372D0 (en) * 2014-01-27 2014-03-12 Delphi Automotive Systems Lux Fuel injector
DE102014207194A1 (de) * 2014-04-15 2015-10-15 Robert Bosch Gmbh Kraftstoff-Hochdruckpumpe, mit einem Auslassventil mit einer Ventilkugel und einem Ventilkörper
JP6300956B2 (ja) 2014-04-21 2018-03-28 スタナダイン エルエルシー シングルプランジャ型燃料ポンプの圧力解放弁
RU2578058C1 (ru) * 2014-09-18 2016-03-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Топливный насос высокого давления для двигателя внутреннего сгорания
JP5913510B1 (ja) * 2014-09-26 2016-04-27 株式会社小金井精機製作所 ディーゼルポンプ
GB201418661D0 (en) * 2014-10-21 2014-12-03 Delphi International Operations Luxembourg S.�.R.L. Pumping Mechanism
JP6118790B2 (ja) * 2014-12-25 2017-04-19 日立オートモティブシステムズ株式会社 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ
JP5989075B2 (ja) * 2014-12-26 2016-09-07 日立オートモティブシステムズ株式会社 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ
JP6461203B2 (ja) 2015-01-21 2019-01-30 日立オートモティブシステムズ株式会社 内燃機関の高圧燃料供給装置
JP6327164B2 (ja) * 2015-01-28 2018-05-23 株式会社デンソー 高圧ポンプ
JP6406035B2 (ja) 2015-01-29 2018-10-17 株式会社デンソー 高圧燃料ポンプ
JP6317701B2 (ja) * 2015-04-10 2018-04-25 株式会社デンソー 高圧ポンプ
US10330065B2 (en) * 2016-03-07 2019-06-25 Stanadyne Llc Direct magnetically controlled inlet valve for fuel pump
JP6569589B2 (ja) * 2016-04-28 2019-09-04 株式会社デンソー 高圧ポンプ
JP6438920B2 (ja) * 2016-08-09 2018-12-19 日立オートモティブシステムズ株式会社 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ
GB2562497A (en) * 2017-05-16 2018-11-21 Perkins Engines Co Ltd Fluid pump
JP6754902B2 (ja) * 2017-07-14 2020-09-16 日立オートモティブシステムズ株式会社 電磁吸入弁、及びこれを備えた高圧燃料ポンプ
WO2019065998A1 (ja) * 2017-09-29 2019-04-04 株式会社デンソー 高圧ポンプ
JP6708238B2 (ja) * 2017-09-29 2020-06-10 株式会社デンソー 高圧ポンプ
WO2019230064A1 (ja) * 2018-05-30 2019-12-05 日立オートモティブシステムズ株式会社 燃料供給ポンプ
US10871136B2 (en) 2018-07-05 2020-12-22 Delphi Technologies Ip Limited Fuel pump and inlet valve assembly thereof
JP7116970B2 (ja) 2018-07-19 2022-08-12 東京ライト工業株式会社 キャップ
US10683825B1 (en) * 2018-12-04 2020-06-16 Delphi Technologies Ip Limited Fuel pump and inlet valve assembly thereof
WO2020117310A1 (en) 2018-12-07 2020-06-11 Stanadyne Llc Integrated outlet check valve and pressure relief valve
US11499515B2 (en) 2019-02-08 2022-11-15 Delphi Technologies Ip Limited Fuel pump and inlet valve assembly thereof
JP2019148262A (ja) * 2019-05-10 2019-09-05 日立オートモティブシステムズ株式会社 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ
EP3767104A1 (en) * 2019-07-15 2021-01-20 ODE (HK) Company Limited A fluid pump
US10907600B1 (en) 2019-12-16 2021-02-02 Delphi Technologies Ip Limited Fuel pump and outlet valve seat thereof
DE112021003764T5 (de) * 2020-09-10 2023-05-11 Cummins Inc. Kraftstoffpumpenvorrichtung, -systeme und -verfahren
US11661913B2 (en) * 2021-05-17 2023-05-30 Delphi Technologies Ip Limited Fuel pump with inlet valve assembly
WO2024022668A1 (de) * 2022-07-27 2024-02-01 Robert Bosch Gmbh Kraftstoffpumpe

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935426U (ja) * 1972-06-30 1974-03-28
JPS5254028U (ja) * 1975-10-17 1977-04-18
JPS57193756A (en) * 1981-02-23 1982-11-29 Cummins Engine Co Inc Fuel injector operated by solenoid and control valve
JPH0272279A (ja) * 1988-09-02 1990-03-12 Mitsubishi Electric Corp 電磁弁
JPH02118282A (ja) * 1988-10-25 1990-05-02 Kanbishi Denki Seizo Kk 電磁弁
JPH0389085A (ja) * 1989-08-16 1991-04-15 Robert Bosch Gmbh チエツク弁
JPH05172268A (ja) * 1991-12-26 1993-07-09 Hitachi Metals Ltd ガス流量制御装置用バルブ
JPH0712029A (ja) * 1993-06-24 1995-01-17 Mitsubishi Electric Corp 高圧燃料ポンプ
JPH10122414A (ja) * 1996-10-14 1998-05-15 Ckd Corp 電磁弁シール構造
JPH10141177A (ja) * 1996-10-29 1998-05-26 Robert Bosch Gmbh 高圧ポンプ
JPH10318091A (ja) * 1997-05-16 1998-12-02 Mitsubishi Electric Corp 高圧燃料供給ポンプ

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885895A (en) * 1971-09-18 1975-05-27 Bosch Gmbh Robert Fuel injection pump for internal combustion engines
BE788979A (fr) * 1971-09-18 1973-01-15 Bosch Gmbh Robert Pompe d'injection pour moteurs a combustion interne
JPS584153B2 (ja) 1973-12-19 1983-01-25 サムソナイト コ−ポレ−シヨン ニモツケ−スノカケドメキコウ
DE2503345C2 (de) * 1975-01-28 1986-12-18 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE2651586B1 (de) * 1976-11-12 1978-04-27 Maschf Augsburg Nuernberg Ag Befestigung eines ringfoermigen Widerlagers fuer die Schliessfeder eines Ventils einer Kraftstoffeinspritzpumpe fuer Brennkraftmaschinen
FR2404119A2 (fr) * 1977-09-23 1979-04-20 Semt Procede et dispositif d'arret, en cas de survitesse, d'un moteur a combustion interne a injection de combustible
JPS54122214U (ja) * 1978-02-16 1979-08-27
FR2455680A1 (fr) * 1979-05-01 1980-11-28 Nissan Motor Dispositif de commande d'avance a l'injection pour moteur a combustion interne
JPS5690469U (ja) * 1979-12-13 1981-07-18
DE3112381A1 (de) * 1981-03-28 1982-11-11 Robert Bosch Gmbh, 7000 Stuttgart Elektrisch gesteuerte kraftstoffeinspritzeinrichtung fuer mehrzylinder-brennkraftmaschinen, insbesondere zur kraftstoffdirekteinspritzung bei fremdgezuendeten brennkraftmaschinen
IT1163413B (it) * 1982-07-15 1987-04-08 Lucas Ind Plc Valvola di erogazione
US4541004A (en) * 1982-11-24 1985-09-10 Burroughs Corporation Aerodynamically enhanced heat sink
DE3307826A1 (de) * 1983-03-05 1984-09-06 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen
JPS59192842A (ja) * 1983-04-15 1984-11-01 Toyota Motor Corp デイ−ゼルエンジンの分配型燃料噴射ポンプ
JPS6372978A (ja) * 1986-09-11 1988-04-02 Seiichi Ito 電磁弁
JPS6393467U (ja) * 1986-12-08 1988-06-16
JPS63154763U (ja) * 1987-03-30 1988-10-11
JP2690734B2 (ja) 1987-09-16 1997-12-17 株式会社デンソー 可変吐出量高圧ポンプ
JP2708470B2 (ja) * 1988-06-08 1998-02-04 株式会社日立製作所 電磁式燃料噴射弁
DE3820707A1 (de) * 1988-06-18 1989-12-21 Bosch Gmbh Robert Einspritzpumpe fuer brennkraftmaschinen
US5040559A (en) * 1989-02-06 1991-08-20 Mks Instruments, Inc. Modulating positive shutoff mechanism
US6394072B1 (en) * 1990-08-31 2002-05-28 Yamaha Hatsudoki Kabushiki Kaisha Fuel injection device for engine
JP2831137B2 (ja) * 1990-12-13 1998-12-02 三菱重工業株式会社 ディーゼル機関の燃料噴射装置
JPH04353262A (ja) * 1991-05-29 1992-12-08 Nippondenso Co Ltd 燃料噴射装置
JP2715752B2 (ja) * 1991-10-31 1998-02-18 住友金属工業株式会社 ヒートシンク放熱フィンとその製造方法
DE69320826T2 (de) * 1992-03-26 1999-01-21 Zexel Corp Kraftstoff-Einspritzvorrichtung
EP0588475B1 (en) * 1992-07-23 1996-04-03 Zexel Corporation Fuel injection device
JP3125162B2 (ja) * 1992-08-10 2001-01-15 株式会社日立製作所 燃料噴射装置のノズルボディ及び弁
JP3314436B2 (ja) * 1993-02-10 2002-08-12 株式会社デンソー 燃料噴射装置及びその気密検査方法
US5655503A (en) * 1993-03-11 1997-08-12 Motorenfabrik Hatz Gmbh & Co., Kg. Internal combustion engine with fuel injection, particularly, a single-cylinder diesel engine
DE4307651C2 (de) * 1993-03-11 1996-05-09 Hatz Motoren Verbrennungsmotor mit Kraftstoffeinspritzung, insbesondere Einzylinder-Dieselmotor
DE4323683A1 (de) * 1993-07-15 1995-01-19 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
US5460133A (en) * 1993-08-06 1995-10-24 Cummins Engine Company, Inc. Solenoid operated pump-line-nozzle fuel injection system and inline pump therefor
DE4401073A1 (de) * 1994-01-15 1995-07-20 Rexroth Mannesmann Gmbh Radialkolbenpumpe, insbesondere Kraftstoffpumpe für Verbrennungsmotoren
JPH07332198A (ja) * 1994-06-14 1995-12-22 Nippondenso Co Ltd 内燃機関用高圧燃料供給ポンプ
DE19522306B4 (de) * 1994-06-24 2004-08-26 Denso Corp., Kariya Hochdruck-Kraftstoffzuführungspumpe
JP3199105B2 (ja) 1994-06-24 2001-08-13 株式会社デンソー 高圧燃料供給ポンプ
JPH0827543A (ja) * 1994-07-14 1996-01-30 Honda Motor Co Ltd 気体燃料噴射弁装置用材料
JPH08193670A (ja) * 1995-01-17 1996-07-30 Kayaba Ind Co Ltd 電磁弁
JPH08291792A (ja) * 1995-04-21 1996-11-05 Hitachi Ltd 高圧液体ポンプ
JPH08303325A (ja) * 1995-05-01 1996-11-19 Aisan Ind Co Ltd 高圧燃料ポンプ用流量制御弁の制御方法
JP3598610B2 (ja) * 1995-10-17 2004-12-08 株式会社デンソー 電磁弁およびこれを用いた燃料ポンプ
JPH09250427A (ja) * 1996-03-15 1997-09-22 Zexel Corp 燃料噴射ポンプ
JP3304755B2 (ja) * 1996-04-17 2002-07-22 三菱電機株式会社 燃料噴射装置
JP3666693B2 (ja) * 1996-05-13 2005-06-29 株式会社デンソー 電磁式燃料噴射装置
JPH1018941A (ja) * 1996-07-01 1998-01-20 Mitsubishi Electric Corp 可変吐出量高圧ポンプ
JPH1030525A (ja) * 1996-07-16 1998-02-03 Denso Corp 高圧サプライポンプ
US5775600A (en) * 1996-07-31 1998-07-07 Wildeson; Ray Method and fuel injector enabling precision setting of valve lift
JP3655023B2 (ja) * 1996-08-29 2005-06-02 ヤンマー株式会社 燃料噴射ポンプのデリベリバルブケースにおける脈動圧力油のシール機構
JP3237549B2 (ja) 1996-11-25 2001-12-10 トヨタ自動車株式会社 内燃機関の高圧燃料供給装置
JPH10184483A (ja) * 1996-12-27 1998-07-14 Unisia Jecs Corp ポンプ装置
JPH10318068A (ja) 1997-03-14 1998-12-02 Zexel Corp 燃料供給ポンプ
US6171070B1 (en) * 1997-05-09 2001-01-09 Hakusu Tech Co., Ltd. High-pressure reciprocating pumps
JP3947596B2 (ja) * 1997-05-22 2007-07-25 株式会社日本自動車部品総合研究所 可変吐出量高圧ポンプ
EP0881380A1 (de) * 1997-05-30 1998-12-02 SIG Schweizerische Industrie-Gesellschaft Hochdruckförderpumpe
US5825107A (en) * 1997-06-13 1998-10-20 General Electric Company Drive package for a dynamoelectric machine
JPH1113590A (ja) * 1997-06-19 1999-01-19 Zexel Corp 燃料噴射ポンプのプリストローク調整機構
JPH1172014A (ja) * 1997-06-24 1999-03-16 Unisia Jecs Corp 燃料加圧用ポンプ
JPH1172061A (ja) * 1997-06-30 1999-03-16 Unisia Jecs Corp 燃料加圧用ポンプ
US6123059A (en) * 1997-09-05 2000-09-26 Denso Corporation Fuel supply apparatus
JP3879952B2 (ja) * 1997-09-05 2007-02-14 株式会社デンソー 燃料供給装置
JPH11200990A (ja) * 1998-01-07 1999-07-27 Unisia Jecs Corp 燃料噴射制御装置
JP2000045906A (ja) * 1998-07-29 2000-02-15 Mitsubishi Electric Corp 高圧燃料ポンプ装置
DE19834121A1 (de) * 1998-07-29 2000-02-03 Bosch Gmbh Robert Kraftstoffversorgungsanlage einer Brennkraftmaschine
DE19834120A1 (de) * 1998-07-29 2000-02-03 Bosch Gmbh Robert Kraftstoffversorgungsanlage einer Brennkraftmaschine
EP1477665B1 (en) * 1999-02-09 2008-04-23 Hitachi, Ltd. High pressure fuel supply pump for internal combustion engine
US6427663B1 (en) * 2000-12-08 2002-08-06 Robert H. Breeden Inlet throttle pump assembly for diesel engine and method
JP4529134B2 (ja) * 2005-04-26 2010-08-25 株式会社デンソー 高圧燃料ポンプ
JP4215000B2 (ja) * 2005-01-19 2009-01-28 株式会社デンソー 高圧ポンプ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935426U (ja) * 1972-06-30 1974-03-28
JPS5254028U (ja) * 1975-10-17 1977-04-18
JPS57193756A (en) * 1981-02-23 1982-11-29 Cummins Engine Co Inc Fuel injector operated by solenoid and control valve
JPH0272279A (ja) * 1988-09-02 1990-03-12 Mitsubishi Electric Corp 電磁弁
JPH02118282A (ja) * 1988-10-25 1990-05-02 Kanbishi Denki Seizo Kk 電磁弁
JPH0389085A (ja) * 1989-08-16 1991-04-15 Robert Bosch Gmbh チエツク弁
JPH05172268A (ja) * 1991-12-26 1993-07-09 Hitachi Metals Ltd ガス流量制御装置用バルブ
JPH0712029A (ja) * 1993-06-24 1995-01-17 Mitsubishi Electric Corp 高圧燃料ポンプ
JPH10122414A (ja) * 1996-10-14 1998-05-15 Ckd Corp 電磁弁シール構造
JPH10141177A (ja) * 1996-10-29 1998-05-26 Robert Bosch Gmbh 高圧ポンプ
JPH10318091A (ja) * 1997-05-16 1998-12-02 Mitsubishi Electric Corp 高圧燃料供給ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1162365A4 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148981A (ja) * 1999-02-09 2014-08-21 Hitachi Automotive Systems Ltd 内燃機関の高圧燃料供給ポンプ
US6789459B2 (en) 2000-04-18 2004-09-14 Toyota Jidosha Kabushiki Kaisha High-pressure fuel pump
WO2001079698A1 (fr) * 2000-04-18 2001-10-25 Toyota Jidosha Kabushiki Kaisha Pompe carburant haute pression
WO2002055870A1 (fr) * 2001-01-05 2002-07-18 Hitachi, Ltd. Pompe d'alimentation en carburant haute pression
WO2002055881A1 (fr) * 2001-01-05 2002-07-18 Hitachi, Ltd. Pompe a liquide et pompe d'alimentation en carburant haute pression
US7744353B2 (en) 2001-01-05 2010-06-29 Hitachi, Ltd. Fluid pump and high-pressure fuel feed pump
EP1241349A2 (en) 2001-03-15 2002-09-18 Hitachi, Ltd. Fuel supply apparatus and method of control thereof
EP1241349A3 (en) * 2001-03-15 2004-06-30 Hitachi, Ltd. Fuel supply apparatus and method of control thereof
EP1683954A1 (en) 2001-03-15 2006-07-26 Hitachi, Ltd. Fuel supply apparatus
EP1275848A1 (de) * 2001-07-13 2003-01-15 Robert Bosch Gmbh Kraftstoffpumpe für ein Kraftstoffsystem einer Brennkraftmaschine
US6651630B2 (en) 2001-09-21 2003-11-25 Hitachi, Ltd. High pressure fuel pump
CN100374698C (zh) * 2001-09-28 2008-03-12 洋马株式会社 燃料喷射泵的起动辅助装置
KR100847392B1 (ko) * 2001-09-28 2008-07-18 얀마 가부시키가이샤 연료분사펌프의 시동보조장치
EP1306553A2 (de) * 2001-10-27 2003-05-02 Robert Bosch Gmbh Kraftstoffpumpe, Kraftstoffsystem, Verfahren zum Betreiben eines Kraftstoffsystems sowie Brennkraftmaschine
EP1306553A3 (de) * 2001-10-27 2004-08-04 Robert Bosch Gmbh Kraftstoffpumpe, Kraftstoffsystem, Verfahren zum Betreiben eines Kraftstoffsystems sowie Brennkraftmaschine
DE102006000010B4 (de) * 2005-01-17 2020-08-20 Denso Corporation Hochdruckpumpe mit verkleinertem Aufbau
EP2282044A1 (en) 2005-03-11 2011-02-09 Hitachi Ltd. High-pressure fuel supply pump
JP2006329180A (ja) * 2005-04-26 2006-12-07 Denso Corp 高圧燃料ポンプ
EP1717446A2 (en) 2005-04-26 2006-11-02 Denso Corporation High pressure pump having solenoid actuator
JP4569825B2 (ja) * 2005-04-26 2010-10-27 株式会社デンソー 高圧燃料ポンプ
DE102008000658A1 (de) 2007-03-29 2008-10-16 Denso Corp., Kariya-shi Hydraulische Pumpe
JP2008267373A (ja) * 2007-03-29 2008-11-06 Denso Corp 高圧燃料ポンプ
DE102008064914B3 (de) 2007-03-29 2022-02-17 Denso Corporation Hydraulische Pumpe
DE102008000658B4 (de) 2007-03-29 2018-09-27 Denso Corporation Hydraulische Pumpe
JP2008248788A (ja) * 2007-03-30 2008-10-16 Denso Corp 高圧燃料ポンプ
JP2009209838A (ja) * 2008-03-05 2009-09-17 Denso Corp 高圧燃料ポンプ
DE102012201035A1 (de) 2011-01-28 2012-08-02 Denso Corporation Hochdruckpumpe
JP2012211583A (ja) * 2011-03-30 2012-11-01 Denso Corp ポンプ
DE102012205114A1 (de) 2011-03-31 2012-10-04 Denso Corporation Hochdruckpumpe
JP2012163111A (ja) * 2012-06-04 2012-08-30 Hitachi Automotive Systems Ltd 高圧燃料ポンプ
JP2014088838A (ja) * 2012-10-31 2014-05-15 Hitachi Automotive Systems Ltd 高圧燃料供給ポンプ
US10851767B2 (en) 2012-10-31 2020-12-01 Hitachi Automotive Systems, Ltd. Pump for supplying high-pressure fuel
US10584700B1 (en) 2013-06-27 2020-03-10 Toyota Jidosha Kabushiki Kaisha High-pressure fuel pump
JP2016191367A (ja) * 2015-03-31 2016-11-10 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ及び高圧燃料供給ポンプの組立て方法
JP2019007390A (ja) * 2017-06-22 2019-01-17 株式会社Soken 電磁調量弁
WO2022004431A1 (ja) * 2020-06-30 2022-01-06 株式会社デンソー 高圧ポンプ
JP7415985B2 (ja) 2020-06-30 2024-01-17 株式会社デンソー 高圧ポンプ

Also Published As

Publication number Publication date
US6631706B1 (en) 2003-10-14
JP2007146861A (ja) 2007-06-14
EP1657432A1 (en) 2006-05-17
DE69938613D1 (de) 2008-06-05
JP6038241B2 (ja) 2016-12-07
JP6298775B2 (ja) 2018-03-20
EP1950411B1 (en) 2012-09-12
DE69938615T2 (de) 2009-06-10
DE69933593D1 (de) 2006-11-23
EP1477665A2 (en) 2004-11-17
JP2015172373A (ja) 2015-10-01
JP5978249B2 (ja) 2016-08-24
EP1162365A4 (en) 2004-06-23
US7707996B2 (en) 2010-05-04
DE69933593T2 (de) 2007-09-13
JP5690867B2 (ja) 2015-03-25
EP1471247B1 (en) 2006-10-18
JP6244394B2 (ja) 2017-12-06
JP2017057859A (ja) 2017-03-23
JP2013164079A (ja) 2013-08-22
EP1950411A1 (en) 2008-07-30
US20040055580A1 (en) 2004-03-25
EP1477665A3 (en) 2005-02-23
DE69933714D1 (de) 2006-11-30
JP2011247273A (ja) 2011-12-08
JP2009203987A (ja) 2009-09-10
JP4474428B2 (ja) 2010-06-02
EP1477665B1 (en) 2008-04-23
JP6275885B2 (ja) 2018-02-07
JP4920060B2 (ja) 2012-04-18
EP1471248A1 (en) 2004-10-27
JP2016153652A (ja) 2016-08-25
US20090178652A1 (en) 2009-07-16
US7540274B2 (en) 2009-06-02
EP1162365A1 (en) 2001-12-12
DE69938615D1 (de) 2008-06-05
EP1471247A2 (en) 2004-10-27
EP1657432B1 (en) 2008-04-23
DE69938613T2 (de) 2009-07-09
JP5350451B2 (ja) 2013-11-27
JP2014148981A (ja) 2014-08-21
EP1471247A3 (en) 2004-11-03
DE69933714T2 (de) 2007-10-04
EP1471248B1 (en) 2006-10-11
JP2015078705A (ja) 2015-04-23

Similar Documents

Publication Publication Date Title
WO2000047888A1 (fr) Pompe d&#39;alimentation en combustible a haute pression faisant partie d&#39;un moteur a combustion interne
US8297941B2 (en) Fuel pump
JP2010019263A (ja) 高圧燃料ポンプ
WO2021054006A1 (ja) 電磁吸入弁及び高圧燃料供給ポンプ
US20090116987A1 (en) Pump
CN106321312B (zh) 高压泵
WO2022014150A1 (ja) 燃料ポンプ
JP4241611B2 (ja) 燃料噴射ポンプ用弁装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09463659

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999973678

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 598765

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999973678

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999973678

Country of ref document: EP