JP5731562B2 - 高圧ポンプ - Google Patents
高圧ポンプ Download PDFInfo
- Publication number
- JP5731562B2 JP5731562B2 JP2013063987A JP2013063987A JP5731562B2 JP 5731562 B2 JP5731562 B2 JP 5731562B2 JP 2013063987 A JP2013063987 A JP 2013063987A JP 2013063987 A JP2013063987 A JP 2013063987A JP 5731562 B2 JP5731562 B2 JP 5731562B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- needle
- movable core
- pressure pump
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 claims description 97
- 238000004891 communication Methods 0.000 claims description 61
- 230000003111 delayed effect Effects 0.000 claims description 12
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 11
- 230000003628 erosive effect Effects 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 9
- 238000003825 pressing Methods 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 1
- 238000000638 solvent extraction Methods 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 25
- 239000012530 fluid Substances 0.000 description 14
- 239000011800 void material Substances 0.000 description 10
- 230000001133 acceleration Effects 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000010349 pulsation Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000002828 fuel tank Substances 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B7/00—Piston machines or pumps characterised by having positively-driven valving
- F04B7/0076—Piston machines or pumps characterised by having positively-driven valving the members being actuated by electro-magnetic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B7/00—Piston machines or pumps characterised by having positively-driven valving
- F04B7/02—Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/04—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
- F04B1/0404—Details or component parts
- F04B1/0452—Distribution members, e.g. valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B19/00—Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
- F04B19/20—Other positive-displacement pumps
- F04B19/22—Other positive-displacement pumps of reciprocating-piston type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/10—Valves; Arrangement of valves
- F04B53/108—Valves characterised by the material
- F04B53/1082—Valves characterised by the material magnetic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
- F16K31/0686—Braking, pressure equilibration, shock absorbing
- F16K31/0693—Pressure equilibration of the armature
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fuel-Injection Apparatus (AREA)
Description
特許文献1に記載の高圧ポンプは、可動コアに固定されたニードル弁が、供給通路に設けられた弁座に着座または離座することで、供給通路を閉塞または開放する。ニードル弁は、可動コアが収容される可動コア室と供給通路との間に設けられたニードルガイドによって往復移動可能に支持されている。ニードルガイドは、可動コア室と供給通路と連通する連通孔を有している。これにより、可動コア室がダンパ室として機能し、ニードル弁と弁座との衝突による騒音が低減される。
そのため、高圧ポンプの吸入行程の際、スプリングの付勢力により可動コアとニードル弁がストッパへ衝突した後、その可動コアとニードル弁が固定コア側へバウンスするおそれがある。その場合、調量行程時に可動コアとニードル弁がバウンスしている途中で固定コア側へ磁気吸引されると、ニードル弁の閉弁時刻が早くなり、吐出行程が意図した時期よりも早く開始される。これにより、コイルへの通電時刻を遅くしても燃料吐出量が増加する関係が生じ、燃料吐出量の制御が困難になることが懸念される。
本発明は、上記課題に鑑みてなされたものであり、燃料吐出量を正確に制御することの可能な高圧ポンプを提供することを目的とする。
連通孔の開口断面積の設定により、供給通路から可動コア室への燃料の流れを調整し、可動コアの動作を制御することが可能である。これにより、吸入行程の際、付勢手段の付勢力によりニードルが吸入弁をストッパ側へ押圧した後、可動コアとニードルが固定コア側へバウンスすることが抑制される。したがって、コイルへの通電時刻と燃料吐出量との関係が維持され、高圧ポンプの燃料吐出量を正確に制御することができる。
また、連通孔の開口断面積は、可動コアの断面積からニードルの断面積を除いた面積に対し、0%より大きく、0.31%以下である。
吸入弁は、弁座に着座及び離座する弁本体、及びその弁本体の移動方向に延びる筒状の第1案内部を有する。
ストッパは、内周面が吸入弁の第1案内部の外周面に摺接する筒状の第2案内部、及び弁本体側の端面が弁本体の反弁座側の端面に当接する当接部を有する。
吸入弁およびストッパの少なくとも一方は、ストッパと吸入弁との間に形成されたバルブ室とポンプ室とを連通する通路を有する。
バルブ室とポンプ室とを連通する通路は、ストッパの当接部の弁本体側の端面及び弁本体の反弁座側の端面のいずれか一方に設けられてポンプ室に連通する径溝部と、第1案内部の外周面及び第2案内部の内周面のいずれか一方に設けられてバルブ室と径溝部とを連通する軸溝部とから構成される。
(第1実施形態)
本発明の第1実施形態を図1〜図14に示す。第1実施形態の高圧ポンプ1は、内燃機関に燃料を供給する燃料供給系統に設けられる。燃料タンクから汲み上げられた燃料は、高圧ポンプ1により加圧され、デリバリパイプに蓄圧される。そしてデリバリパイプに接続するインジェクタから内燃機関の各気筒に噴射供給される。
図1に示すように、高圧ポンプ1は、ポンプボディ40、プランジャ42、ダンパ室50、電磁弁10及び吐出弁部60などを備えている。
ポンプボディ40には、円筒状のシリンダ41が設けられている。シリンダ41には、プランジャ42が軸方向に往復移動可能に収容されている。プランジャ42のポンプボディ40から突出した端部に設けられるスプリング座43と、プランジャ42の外周のオイルシール44を保持するオイルシールホルダ45との間にスプリング46が設けられている。このスプリング46により、プランジャ42は図示しないエンジンのカムシャフト側へ付勢される。そのため、プランジャ42は、カムシャフトのカムプロファイルに従い軸方向に往復移動する。プランジャ42の往復移動により、ポンプ室47の容積が変化することで燃料が吸入、加圧される。
ポンプボディ40には、シリンダ41の反対側に突出する筒状の筒部51が設けられている。筒部51に有底筒状のカバー52が被さることで、ダンパ室50が形成される。
ダンパ室50には、パルセーションダンパ53、支持部材54及び波ばね55が収容されている。
パルセーションダンパ53は、2枚の金属ダイアフラムから構成され、内部に所定圧の気体が密封されている。パルセーションダンパ53は、2枚の金属ダイアフラムがダンパ室50の圧力変化に応じて弾性変形することで、ダンパ室50の燃圧脈動を低減する。
図2または図3に示すように、電磁弁10は、ポンプ室47とダンパ室50とを連通する供給通路48に設けられ、供給通路48の開放および遮断を制御する。電磁弁10は、固定コア11、可動コア12、コイル13、付勢手段としての第2スプリング14、コアハウジング15、ニードルガイド16などを備えている。
ストッパ17は、有底筒状に形成され、その内側に吸入弁20を往復移動可能に収容すると共に、吸入弁20のポンプ室側(開弁方向)の移動を規制する。
ストッパ17の底と吸入弁20との間には第1スプリング21が設けられている。第1スプリング21は、吸入弁20を弁座側(閉弁方向)へ付勢している。なお、ストッパ17は、燃料を流通可能な孔22を有している。
筒部材19は、供給通路48の内壁に設けられためねじ481に螺合している。これにより、供給通路内に、ストッパ17、弁座部材18および筒部材19が固定される。
連通孔25は、大径孔251、及びその大径孔251よりも内径の小さい小径孔252から構成されている。大径孔251はニードルガイド16の可動コア室側に設けられ、小径孔252はニードルガイド16の弁座側に設けられている。
第1実施形態において、小径孔252は、内径が1.2mm以下、好ましくは1.0mm以下の円筒状である。すなわち、小径孔252の開口断面積は、0.36πmm2以下であり、好ましくは0.25πmm2以下である。
ニードルガイド16は、ニードル26を軸方向に移動可能に支持している。
ニードル26には、ニードルガイド16よりも弁座側でニードル26の外壁から径外方向に延びる拡径部27が設けられている。ニードル26が固定コア側に移動するとき、拡径部27とニードルガイド16とが当接する。
また、ニードル26には、供給通路内でニードル26の外壁から径外方向に延びるフランジ28が設けられている。このフランジ28とニードルガイド16との間に第2スプリング14が設けられている。第2スプリング14は、第1スプリング21よりも強い力で、ニードル26をポンプ室側に付勢している。すなわち、第2スプリング14は、ニードル26が固定された可動コア12を、固定コア11から離れる方向へ付勢している。
第1実施形態において、ファイナルギャップにおける固定コア11と可動コア12と距離は、0.08〜0.16mmである。すなわち、可動コア12の外径が9.7mmのとき、ファイナルギャップの容積は、1.8818π〜3.7636πmm3である。ただし、ファイナルギャップの容積は、これに限られない。
コネクタ30の内側に設けられたボビン32にコイル13が巻回されている。コネクタ30の端子33を通じてコイル13に通電されると、コイル13は磁界を発生する。
コイル13に通電されると、固定コア11、可動コア12、ヨーク31及びコアハウジング15によって形成される磁気回路に磁束が流れ、可動コア12が第2スプリング14の弾性力に抗し、固定コア11側に磁気吸引される。これにより、ニードル26は、吸入弁20に対する押圧力を解除する。
図1に示すように、吐出弁部60は、吐出弁61、規制部材62、スプリング63などから構成されている。
ポンプボディ40には、シリンダ41の中心軸と略垂直に吐出通路64が形成されている。吐出弁61は、吐出通路64に往復移動可能に収容されている。吐出弁61は、弁座65に着座又は離座することで、吐出通路64を開閉する。
吐出弁61の燃料吐出口66側に設けられた規制部材62は、吐出弁61の燃料吐出口66側への移動を規制する。
スプリング63は、一端が規制部材62に当接し、他端が吐出弁61に当接し、吐出弁61を弁座側へ付勢している。
一方、ポンプ室47の燃料の圧力が低下し、ポンプ室側の燃料から吐出弁61が受ける力がスプリング63の弾性力と弁座65の下流側の燃料から受ける力との和よりも小さくなると、吐出弁61は弁座65に着座する。これにより、弁座65の下流側の燃料がポンプ室47へ逆流することが防がれる。
次に高圧ポンプ1の作動について説明する。
なお、ここでの説明は、コイル13への通電から可動コア12、ニードル26または吸入弁20が動作するまでの時間遅れを考慮しないものとする。
(1)吸入行程
カムシャフトの回転により、プランジャ42が上死点から下死点に向かって下降すると、ポンプ室47の容積が増加し、燃料が減圧される。吐出弁61は弁座65に着座し、吐出通路64を閉塞する。
一方、吸入弁20は、ポンプ室47と供給通路48との差圧により、第1スプリング21の付勢力に抗してポンプ室側へ移動し、開弁状態となる。このとき、コイル13への通電は停止されているので、可動コア12と一体のニードル26は、第2スプリング14の付勢力によりポンプ室側へ移動し、吸入弁20をポンプ室側へ押圧する。そのため、吸入弁20は開弁状態を維持する。これにより、ダンパ室50から供給通路48を経由し、ポンプ室47に燃料が吸入される。
カムシャフトの回転により、プランジャ42が下死点から上死点に向かって上昇すると、ポンプ室47の容積が減少する。このとき、所定の時期まではコイル13への通電が停止されているので、第2スプリング14の付勢力によりニードル26と吸入弁20は開弁位置にある。これにより、供給通路48は開放された状態が維持される。このため、一度ポンプ室47に吸入された低圧燃料が、供給通路48を経由し、ダンパ室50へ戻される。したがって、ポンプ室47の圧力は上昇しない。
プランジャ42が下死点から上死点に向かって上昇する途中の所定の時刻に、コイル13へ通電される。するとコイル13に発生する磁界により、固定コア11と可動コア12との間に磁気吸引力が発生する。この磁気吸引力が第2スプリング14の弾性力と第1スプリング21の弾性力との差よりも大きくなると、可動コア12とニードル26は固定コア側へ移動する。これにより、吸入弁20に対するニードル26の押圧力が解除される。吸入弁20は、第1スプリング21の弾性力、及びポンプ室47からダンパ室側へ排出される低圧燃料の流れによって生ずる力により、弁座側へ移動する。したがって、吸入弁20は弁座23に着座し、供給通路48が閉塞される。
なお、加圧行程の途中でコイル13への通電が停止される。ポンプ室47の燃料圧力が吸入弁20に作用する力は、第2スプリング14の付勢力よりも大きいので、吸入弁20は閉弁状態を維持する。
高圧ポンプ1は、(1)から(3)の行程を繰り返し、内燃機関に必要な量の燃料を加圧して吐出する。
次に、固定コア11と可動コア12との間のファイナルギャップのストレス状態について説明する。ストレス状態とは、キャビテーションにより生じるエロ−ジョンによって、可動12コアの固定コア側の端面、または固定コア11の可動コア側の端面が受けるストレスの状態をいうものとする。このストレスの状態は、キャビテーションの気泡崩壊強度が大きいほど大きいといえる。
気泡崩壊強度は、ボイド率と、それを潰す力との積であらわされる。ボイド率とは、ギャップの容積に対するギャップの気泡量の占める割合である。潰す力とは、流体加速度である。
すなわち、 (気泡崩壊強度)=(ボイド率(%))×(流体加速度(mm/s2)) である。
ギャップの圧力変動は、下記の式(1)によりあらわされる。
ΔP=(ΔV/Vo)×E ・・・式(1)
但し、ΔP:ギャップの圧力変動
ΔV:可動コアが固定コア側に移動したときのギャップの容積の変化量の絶対値
Vo:可動コアと固定コアとが最も離れたときのギャップの容積
E :ギャップに流れる液体の体積弾性率
この場合、ΔPが大きくなるほど、ギャップの気泡量が増大する。
比較例の高圧ポンプ2は、吸入弁20とニードル26とが弁ボディ3の内側で分離している。比較例のニードル26には、第1実施形態の拡径部27が設けられていない。そのため、比較例の高圧ポンプ2では、コイル13に通電すると、固定コア11と可動コア12とが当接する。したがって、比較例の高圧ポンプ2は、固定コア11と可動コア12との間の圧力変動が大きくなり、ボイド率の増加と共に気泡崩壊強度が大きくなる。その結果、可動コア12の固定コア側の端面、及び固定コア11の可動コア側の端面に加わるストレスが大きくなる。
これに対し、第1実施形態の電磁弁10は、固定コア11と可動コア12とが当接することのない所謂「エアギャップ式」であるので、固定コア11と可動コア12との間の圧力変動が小さくなり、ボイド率が減少すると共に気泡崩壊強度が小さくなる。
図4(A)は、ニードルの挙動を示す。なお、第1実施形態においてニードルと可動コアとは一体で動作する。カム角度が270(deg)を過ぎてから可動コアは固定コア側へ磁気吸引され、これとともにニードルも固定コア側へ移動する。カム角度290(deg)で拡径部27とニードルガイドとが当接し、ニードルは固定コア側へ最も近づく。その後、カム角度310〜330(deg)の間でコイルへの通電がオフされるので、ニードルは僅かにポンプ室側へ移動する。そしてカム角度330〜350(deg)の間で吸入弁が弁座から離座すると共に、ニードルは吸入弁と共にポンプ室側へ移動する。
ボイド率は、カム角度が290〜350(deg)の間、ニードルが固定コア側に移動している間に大きく変化し、増加および減少を繰り返している。
図4(C)は、可動コアの呼吸孔を流れる燃料の流体加速度を示す。
流体加速度は、ニードルが固定コア側へ最も近づくカム角度290(deg)で大きくなり、また、コイルへの通電がオフされるカム角度310〜330(deg)の間で大きくなる。
気泡崩壊強度は、ボイド率と流体加速度とが共に大きくなるカム角度290(deg)で最も大きくなる。また、気泡崩壊強度は、カム角度290(deg)のときよりも現象が小さいが、ボイド率と流体加速度とが共に大きくなるカム角度310〜330の間でも大きくなっている。
図4の結果から、可動コアと固定コアのギャップの気泡崩壊強度は、ボイド率と流体加速度とが共に大きくなるときに最も大きくなることが明らかとなった。
気泡崩壊強度の目標値を200未満とした場合、ファイナルギャップ量を0.8mm以上としたときにそれを達成することができる。ただし、ファイナルギャップ量を0.16mm以上とすると、可動コアと固定コアとの磁気吸引力が弱くなることが懸念される。そのため、ファイナルギャップ量は0.08〜0.16mmに設定される。このとき、可動コアの外径が例えば9.7mmのとき、ファイナルギャップの容積は、1.8818π〜3.7636πmm3である。ただし、可動コアの外径は、これに限られない。
図6の実線Aは、可動コアに内径1mmの呼吸孔が4個設けられており、その呼吸孔の断面積の合計が約3.14mm2の場合のグラフである。図6の実線Bは、可動コアに内径1mmの呼吸孔が6個設けられており、その呼吸孔の断面積の合計が約4.71mm2の場合のグラフである。
これらの結果から、気泡崩壊強度の目標値を200未満とした場合、可動コアの呼吸孔の断面積の合計が約4.71mm2であり、かつ、ニードルガイドの連通孔の断面積が0.36πmm2(約1.13mm2)以下としたときにその目標を達成することが可能である。なお、ニードルガイドの連通孔の断面積が0.36πmm2以下とは、ニードルガイドに内径が1.2mm以下の連通孔が1個のみ設けられたものである。
一方、可動コアの呼吸孔の断面積を大きくすると気泡崩壊強度は小さくなるが、ニードルガイドの連通孔の断面積の変化に比べて、その効果は小さいということが明らかとなった。
図7(A)は、ニードルガイドに内径1.2mmの連通孔を1個のみ設けたときの状態である。
図7(B)は、ニードルガイドに内径1.2mmの連通孔を3個設けたときの状態である。
この実験は、燃料圧力:20MPa、 燃料:ガソリン、 カム山:4山4mm、 回転数3500rpm、 高圧ポンプ吐出量:Full、 時間180H(3.7×108回)、 ファイナルギャップ0.1mm、 可動コアの呼吸孔:6個(合計4.71mm2) の条件において行ったものである。
この実験結果より、第1実施形態の所謂「エアギャップ式」の電磁弁10を備えた高圧ポンプ1において、ニードルガイドの連通孔の断面積を小さくすると、可動コアの固定コア側端面のエロ−ジョンが抑制されることが明らかとなった。
次に、高圧ポンプのノイズバイブレーションについて説明する。
図8に、第1実施形態の高圧ポンプから発生する音、及び比較例の高圧ポンプから発生する音の周波数特性を示す。上述の通り、第1実施形態の高圧ポンプは、所謂「エアギャップ式」であり、比較例の高圧ポンプは、所謂「ソリッドギャップ式」である。
なお、図8、図10〜図13に示す第1実施形態の高圧ポンプとしては、ニードルガイドに内径1.2mmの連通孔を3個設けたものを使用した。
一方、比較例の高圧ポンプは、図15に示した電磁弁を用いた高圧ポンプである。
図8では、第1実施形態の高圧ポンプから発生する音の周波数特性を破線Cに示し、比較例の高圧ポンプから発生する音の周波数特性を実線Dに示す。
第1実施形態の高圧ポンプは、比較例の高圧ポンプと比較して、3〜5kHz付近の周波数と、7〜9kHz付近の周波数が高いことが明らかとなった。
この結果、比較例の高圧ポンプの音圧レベルは図9の矢印Eに示すように減衰が早く、第1実施形態の高圧ポンプの音圧レベルは図10の矢印Fに示すように減衰が遅いことが明らかとなった。
この結果、衝突域において、比較例の高圧ポンプの周波数特性と、第1実施形態の高圧ポンプの周波数特性に大きな違いは見られなかった。
この結果、減衰域において、第1実施形態の高圧ポンプは、比較例の高圧ポンプと比較して、3〜5kHz付近の周波数、及び、7〜9kHz付近の周波数が高いことが明らかとなった。この結果、図8の解析結果で示された、比較例の高圧ポンプと比較した場合の第1実施形態の高圧ポンプの周波数特性の悪化は、吸入弁の閉弁音のうち、減衰域(0.012〜0.018sec)の周波数特性の悪化が原因であることが明らかとなった。
第1実施形態の高圧ポンプにおいて、ニードルガイドに内径1.2mmの連通孔を3個設けたときの閉弁音の減衰域(0.012〜0.018sec)の周波数特性を破線Kに示す。この破線Kは、図12に示した第1実施形態の高圧ポンプの閉弁音の減衰域の周波数特性を示した破線Iと同一のものである。
第1実施形態の高圧ポンプにおいて、ニードルガイドに内径1.2mmの連通孔を1個のみ設けたときの閉弁音の減衰域(0.012〜0.018sec)の周波数特性を破線Lに示す。
この結果、ニードルガイドに内径1.2mmの連通孔を1個のみ設けた場合、3〜5kHz付近の周波数と、6〜9kHz付近の周波数が低減することが明らかとなった。
ノイズバイブレーションのオーバーオール値の目標値をTとすると、ニードルガイドに内径1.2mmの連通孔を1個のみ設けた場合、その目標値以下とすることが可能であることが明らかとなった。また、好ましくは、ニードルガイドに内径1.0mm以下の連通孔を1個のみ設けた場合、さらにノイズバイブレーションのオーバーオール値が低下することが明らかとなった。
第1実施形態は、以下の作用効果を奏する。
(1)第1実施形態では、可動コア12または固定コア11の端面のエロ−ジョンを低減可能なようにニードルガイド16の有する連通孔25の開口断面積を設定している。具体的に、連通孔25の開口断面積は、0よりも大きく、0.36πmm2以下である。すなわち、連通孔25の開口断面積は、可動コア12の断面積からニードル26の断面積を除いた面積に対し、0%より大きく、1.69%以下である(小数点以下3桁を四捨五入した)。
これにより、弁座23が設けられた供給通路48からニードルガイド16の連通孔25を通り、可動コア12が収容される可動コア室24へ流入する燃料の流体加速度が低減される。そのため、可動コア室24から可動コア12の呼吸孔29を通り、可動コア12と固定コア11とのギャップへ流入する燃料の流体加速度が低減される。したがって、可動コア12と固定コア11とのギャップの気泡崩壊強度が小さくなるので、可動コア12の固定コア側の端面、および固定コア11の可動コア側の端面に生じるエロ−ジョンを抑制することができる。その結果、長期間の使用による可動コア12と固定コア11との磁気吸引力の低下が抑制され、高圧ポンプ1の吐出効率を維持することができる。
これにより、可動コア12の固定コア側の端面に生じるエロ−ジョンを抑制することができる。
これにより、コイル通電時に拡径部27とニードルガイド16とが当接するときに生じる所定周波数の音を低減することが可能になる。そのため、電磁弁10のノイズバイブレーションを低減することができる。
これにより、可動コア12の固定コア側の端面、および固定コア11の可動コア側の端面に生じるエロ−ジョンを抑制するとともに、電磁弁10のノイズバイブレーションを低減することができる。
例えば比較例の高圧ポンプ2のように、可動コア12と固定コア11との間に第2スプリング14を収容可能なスプリング収容室4を形成し、そこに第2スプリング14を設けた場合、スプリング収容室4の内壁にエロ−ジョンが発生するおそれがある。
そこで、第1実施形態では、第2スプリング14を供給通路48に設けることで、エロ−ジョンの発生を防ぐことができる。
一般に、小径の孔は精密加工が必要となるので、製造コストが高くなることが懸念される。そこで、連通孔25を大径孔251及び小径孔252から構成することで、ニードルガイド16に対する小径孔252の長さが短くなり、製造コストを低減することができる。
これにより、連通孔25を設けることによるニードルガイド16の弁座側の面積の減少を防ぎ、第2スプリング14とニードルガイド16とを確実に当接させることが可能になる。したがって、第2スプリング14の傾きなどを防ぐことができる。
本発明の第2実施形態を図16〜図20に示す。第2実施形態において、上述した第1実施形態と実質的に同一の構成には同一の符号を付して説明を省略する。
(第2実施形態の高圧ポンプの構成)
第2実施形態の高圧ポンプも、第1実施形態と同様、可動コア12と固定コア11とが当接することのない所謂「エアギャップ式」である。また、第2実施形態の可動コア12の外径は9.57mmであり、ニードル26の外径は3.3mmである。
吸入弁20は、弁本体201および第1案内部202を有する。
吸入弁20の弁本体201は、円板状に形成され、弁座部材18の弁座23に着座および離座可能である。吸入弁20は、弁本体201の反弁座側の端面が、ストッパ17の当接部171に当接する。これにより、吸入弁20は、開弁方向の移動を制限される。
ストッパ17の当接部171は、円板状に形成され、弁本体201の反弁座側の端面に当接する。
ストッパ17の第2案内部172は、当接部171から反弁座側へ筒状に延び、吸入弁20の第1案内部202の外周面と摺接する。
ストッパ17の固定部173は、当接部171から径外方向に延びて供給通路48の内壁に固定される。この固定部173は、ポンプ室47をプランジャ側のプランジャ室121と弁座側の弁座室122とに仕切っている。
ストッパ17の第2案内部172の内壁には、軸溝部70が周方向に例えば4個設けられている。
ストッパ17の当接部171の弁本体側の端面には、径溝部71が設けられている。径溝部71は、当接部171の周方向に例えば4個設けられている。径溝部71は、軸溝部70と孔22とを接続するように設けられている。
第2実施形態の「径溝部71」と「軸溝部70」は、特許請求の範囲に記載の「バルブ室とポンプ室とを連通する通路」に相当する。
ここで、4本の径溝部71の流路断面積を合せた面積は、第1案内部202と第2案内部172とのクリアランスの流路断面積と4本の軸溝部70の流路断面積とを合わせた面積よりも小さい。
そのため、吸入弁20が開弁状態のとき、バルブ室200とポンプ室47との間を流れる燃料の流量は、4本の径溝部71の流路断面積を合せた面積によって定まる。したがって、径溝部71の流路断面積を小さくすることで、高圧ポンプの調量行程時においてバルブ室200への燃料の流入が絞られるので、バルブ室200の燃料圧力の上昇が抑制され、自閉限界回転数を高くすることが可能になる。なお、自閉限界回転数とは、高圧ポンプの調量行程時において、バルブ室200の燃料圧力、またはポンプ室47から供給通路48へ流れる燃料の動圧などにより、吸入弁20が閉弁する現象が発生する時のカムシャフトの回転数をいう。
次に、ニードルガイド16の有する連通孔25の開口断面積について説明する。
第2実施形態の高圧ポンプでは、コイル13への通電時期と燃料吐出量との関係が維持されるように、ニードルガイド16の有する連通孔25の開口断面積が調節される。
図17は、第2実施形態の高圧ポンプにおいて、ニードルガイド16の連通孔25の内径を変えたときのコイル13への通電時期と燃料吐出量との関係を示すものである。なお、以下の説明において、連通孔25の内径とは、連通孔25の小径孔252の内径をいうものとする。
図17では、連通孔25の内径が0.4mmの場合の波形を破線Sに示し、内径が0.5mmの場合の波形を実線Tに示し、内径が0.6mmの場合の波形を一点鎖線Uに示し、内径が0.9mmの場合の波形を二点鎖線Vに示す。
しかしながら、一点鎖線Uと二点鎖線Vでは、コイル13への通電時刻がBTDCθ1〜θ2の間で、コイル13への通電時刻を遅くするに従い燃料吐出量が増加する関係が生じており、その波形にこぶが生じている。
一方、破線Sと実線Tでは、コイル13への通電時刻を遅くするに従い燃料吐出量が減少する関係が維持されている。
コイル13への通電時期がBTDC70〜θ1の間では、波形Vと波形Sのいずれも、コイル13への通電時刻を遅くするに従い燃料吐出量が減少する関係が維持されている。
コイル13への通電時期がBTDCθ1〜θ2の間では、波形Vにおいて、コイル13への通電時刻を遅くするに従い燃料吐出量が減少する関係が維持されていない。その理由を、図19を参照して説明する。なお、以下、図19を参照した説明において、図19(a)、図19(b)、図19(c)を、単に(a)、(b)、(c)ということとする。
(b)はコイル13への通電時期を示すタイムチャートであり、BTDCθ2にコイル13への通電をONした場合を示すものである。
(c)は、コイル13への通電時期がBTDCθ2の場合において、ニードル26の挙動を示すものである。実線Wは、ニードルガイド16の連通孔25の内径が0.9mmの場合のニードル26の挙動を示す。破線Xは、連通孔25の内径が0.4mmの場合のニードル26の挙動を示す。
時刻t1では、可動コア12が固定コア側へ磁気吸引され、ニードル26は固定コア側に位置している。このとき、(a)に示すように、カムリフトの上昇によりプランジャ42が上昇しており、高圧ポンプは吐出行程を開始する。
時刻t2で通電がOFFされると、磁気吸引力が消滅し、時刻t3以降、ニードル26はポンプ室側に移動して吸入弁20に当接する。なお、時刻t2から時刻t3までの時間は、通電OFFからニードル26が挙動するまでの時間遅れである。
時刻t4以降、カムリフトの下降によりプランジャ42が下降し、ポンプ室47が減圧される。そのため、吸入弁20とニードル26がポンプ室側へ移動する。
ニードルガイド16の連通孔25の内径が大きいと、可動コア室24と供給通路48との間を流れる燃料の流体抵抗が小さくなる。そのため、実線Wの場合、時刻t6で一旦ポンプ室側に移動したニードル26は、可動コア12と共に固定コア側へバウンスを開始する。時刻t7において、ニードル26は、最大ニードルリフト量の半分近くまでバウンスする。
時刻t8以降、カムリフトの上昇により、プランジャ42が上昇し、調量行程が開始される。
BTDCθ2、即ち、時刻t5でコイル13に通電がONされると、一定の時間遅れの後、可動コア12に磁気吸引力が作用する。その時、時刻t9では、ニードル26はポンプ室側に移動する途中、すなわちバウンスしている最中に固定コア側へ移動を開始する。そのため、ニードル26は、時刻t10で固定コア側に位置する。これにより、燃料吐出行程が開始される。
時刻t11において、ニードル26は固定コア側に位置する。これ以降、高圧ポンプは吐出行程を開始する。
時刻t2で通電がOFFされると、磁気吸引力が消滅し、時刻t3以降、ニードル26はポンプ室側に移動して吸入弁20に当接する。
カムリフトの下降によりポンプ室47が減圧されると、時刻t4以降、吸入弁20とニードル26がポンプ室側へ移動する。
ニードルガイド16の連通孔25の内径が小さいと、可動コア室24と供給通路48との間を流れる燃料の流体抵抗が大きくなる。そのため、破線Xの場合、時刻t12でポンプ室側に移動したニードル26は、固定コア側へバウンスするバウンス量が小さいものとなる。ニードル26は、時刻t13において、僅かにバウンスし、その後、ポンプ室側に位置し続ける。
時刻t8以降、カムリフトの上昇により、プランジャ42が上昇し、調量行程が開始される。
BTDCθ2、即ち、時刻t5でコイル13に通電がONされると、一定の時間遅れの後、可動コア12に磁気吸引力が作用する。すると、時刻t14以降、ニードル26は固定コア側へ移動を開始し、時刻t15で固定コア側に位置する。これにより、燃料吐出行程が開始される。
一方、ニードルガイド16の連通孔25の内径が0.4mmの場合、ポンプ室側に移動したニードル26は、僅かにバウンスし、その後、ポンプ室側に位置し続ける。そのため、BTDCθ2で通電がONになり、一定の時間遅れの後、可動コア12に磁気吸引力が作用すると、ニードル26はポンプ室側から固定コア側へ移動を開始する。したがって、正常な時刻に燃料吐出行程が開始されるので、燃料吐出量が増加することはない。
連通孔25の開口断面積を小さくすると、可動コア室24と供給通路48との間を流れる燃料の流体抵抗が大きくなるので、コイル13への通電ONからニードル26が移動を開始する時間遅れが大きくなる。
カムシャフトの回転数が例えば4000rpmのとき、閉弁応答時間が2.2ms以上になると、燃料ポンプの制御が困難になる。また、連通孔25の内径がφ0.4mmよりも小さいと、切削加工により連通孔25を形成することが困難になる。そのため、連通孔25の内径はφ0.4mm以上とする。
また、上記の図17で示したように、連通孔25の内径がφ0.5mm以下のとき、コイル13への通電時刻を遅くするに従い、燃料吐出量が減少する関係が維持される。したがって、連通孔25の内径はφ0.4〜0.5mmであることが好ましい。
このとき、連通孔25の開口断面積は、可動コア12の断面積からニードル26の断面積を除いた面積に対し、0.20〜0.31%である(小数点以下3桁を四捨五入した)。
(1)第2実施形態では、コイル13への通電時刻を遅くするに従い、調量行程から吐出行程が始まる時刻が遅くなり燃料吐出量が減少するという関係が維持される範囲にニードルガイド16の有する連通孔25の内径を設定している。第2実施形態の高圧ポンプは、連通孔25の内径を0.5mm以下とする。すなわち、可動コア12の断面積からニードル26の断面積を除いた面積に対し、連通孔25の開口断面積は、0より大きく、0.31%以下である。
これにより、吸入行程の際、第2スプリング14の付勢力によりニードル26が吸入弁20をストッパ側へ押圧した後、可動コア12とニードル26とが固定コア側へバウンスすることが抑制される。したがって、コイル13への通電時刻と燃料吐出量との関係が維持され、高圧ポンプの燃料吐出量を正確に制御することができる。
(3)また、第2実施形態では、連通孔25の開口断面積を0.4mm以上とする。これにより、ニードルガイド16の連通孔25を例えば放電加工などで形成することなく、切削加工により形成することが可能になり、製造コストを低減することができる。
これにより、高圧ポンプの吸入行程開始直後、吸入弁20が閉弁状態から開弁状態へ移動を開始するとき、バルブ室200からポンプ室47へ燃料が流れるので、バルブ室200の燃料が流体抵抗となることなく、吸入弁20の開弁速度が速くなる。この結果、供給通路48からポンプ室47への燃料の吸入効率を高めることができる。
一方、高圧ポンプの調量行程時、ポンプ室47からバルブ室200に流入する燃料が絞られるので、バルブ室200の燃料圧力の上昇が抑制され、自閉限界回転数を高くすることが可能になる。
したがって、高圧ポンプは、吸入効率の向上と自閉限界回転数の向上とを両立し、プランジャ42の往復移動速度が速くなる内燃機関の高回転時に、高圧ポンプの燃料吐出量を確実に制御することができる。
上述した実施形態では、高圧ポンプの電磁弁10は、コイル13に通電していないとき、可動コア12が吸入弁20を開弁するノーマリーオープン弁として説明した。これに対し、他の実施形態では、高圧ポンプの電磁弁は、コイルに通電していないとき、可動コアが吸入弁を閉弁するノーマリークローズ弁としてもよい。
上述した実施形態では、吸入弁20とニードル26とを別体で構成した。これに対し、他の実施形態では、吸入弁とニードルとを一体で構成してもよい。
上述した第2実施形態では、ストッパの当接部に径溝部を設け、ストッパの第2案内部に軸溝部を設けた。これに対し、他の実施形態では、吸入弁の反弁座側の端面またはストッパの当接部に径溝部を設け、吸入弁の第1案内部の外壁に軸溝部を設けてもよい。また、第1案内部と第2案内部との摺動箇所にオリフィスを設けてもよい。
本発明は、上記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の形態で実施することができる。
10・・・電磁弁
11・・・固定コア
12・・・可動コア
14・・・第2スプリング(付勢手段)
15・・・コアハウジング
16・・・ニードルガイド
25・・・連通孔
26・・・ニードル
Claims (12)
- プランジャ(42)と、
前記プランジャの往復移動により燃料が加圧されるポンプ室(47)、そのポンプ室に燃料を供給する供給通路(48)、及び前記ポンプ室で加圧された燃料を吐出する吐出通路(64)を有するポンプボディ(40)と、
前記供給通路の内壁に形成された弁座(23)に着座および離座し、前記ポンプ室と前記供給通路とを連通及び遮断する吸入弁(20)と、
前記吸入弁の開弁方向の移動を制限するストッパ(17)と、
前記吸入弁の反ポンプ室側に設けられ、前記吸入弁を開弁方向へ押圧可能なニードル(26)と、
前記ニードルの反吸入弁側の端部に固定され、前記ニードルの移動方向へ往復移動可能に可動コア室(24)に設けられた可動コア(12)と、
前記可動コアの反吸入弁側に設けられた固定コア(11)と、
通電により前記固定コアと前記可動コアとの間に磁気吸引力を発生させるコイル(13)と、
前記可動コアおよび前記ニードルを前記吸入弁の開弁方向へ付勢する付勢手段(14)と、
前記可動コア室と前記供給通路とを連通する連通孔(25)を有し、前記可動コア室と前記供給通路とを仕切ると共に前記ニードルを軸方向に往復移動可能に支持するニードルガイド(16)と、を備え、
前記コイルへ通電することにより前記プランジャの上昇中に前記ニードルによる前記吸入弁の押圧力を解除する際、前記コイルへの通電時刻を遅くするに従い燃料吐出量が減少する関係が維持される範囲に、前記連通孔の開口断面積が設定され、
前記連通孔の開口断面積は、前記可動コアの断面積から前記ニードルの断面積を除いた面積に対し、0%より大きく、0.31%以下であり、
前記吸入弁は、前記弁座に着座及び離座する弁本体(201)、及びその弁本体の移動方向に延びる筒状の第1案内部(202)を有し、
前記ストッパは、内周面が前記吸入弁の前記第1案内部の外周面に摺接する筒状の第2案内部(172)、及び前記弁本体側の端面が前記弁本体の反弁座側の端面に当接する当接部(171)を有し、
前記吸入弁および前記ストッパの少なくとも一方は、前記ストッパと前記吸入弁との間に形成されたバルブ室(200)と前記ポンプ室とを連通する通路(70,71)を有し、
前記バルブ室と前記ポンプ室とを連通する前記通路は、
前記ストッパの前記当接部の前記弁本体側の端面及び前記弁本体の反弁座側の端面のいずれか一方に設けられ、前記ポンプ室に連通する径溝部(71)と、
前記第1案内部の外周面及び前記第2案内部の内周面のいずれか一方に設けられ、前記バルブ室と前記径溝部とを連通する軸溝部(70)とから構成されることを特徴とする高圧ポンプ。 - 前記連通孔の内径は、0mmより大きく、0.5mm以下であることを特徴とする請求項1に記載の高圧ポンプ。
- 前記連通孔の内径は、0.4mm以上であることを特徴とする請求項1または2に記載の高圧ポンプ。
- 前記可動コアは、移動方向に通じる呼吸孔(29)を有しており、
前記可動コアの前記固定コア側の端面、および前記固定コアの前記可動コア側の端面のエロ−ジョンを低減可能に前記連通孔の開口断面積を設定したことを特徴とする請求項1〜3のいずれか一項に記載の高圧ポンプ。 - 前記ニードルガイドよりも弁座側で前記ニードルの外壁から径外方向に延びる拡径部(27)を備え、
前記可動コアが前記固定コア側に磁気吸引されたとき、前記拡径部と前記ニードルガイドとが当接し、前記可動コアと前記固定コアとの間にファイナルギャップが設けられることを特徴とする請求項1〜4のいずれか一項に記載の高圧ポンプ。 - 前記可動コアの前記固定コア側の端面、および前記固定コアの前記可動コア側の端面のエロ−ジョンを低減可能であり、かつ、前記可動コアと前記固定コアとの磁気吸引力が維持されるように、前記ファイナルギャップの容積を設定したことを特徴とする請求項5に記載の高圧ポンプ。
- 前記ニードルガイドの前記連通孔は、前記コイルへ断続的に通電したとき、前記拡径部と前記ニードルガイドとの当接によるノイズバイブレーションを低減可能な開口断面積に設定されることを特徴とする請求項5または6のいずれか一項に記載の高圧ポンプ。
- 前記供給通路内で前記ニードルの外壁から径外方向に延びるフランジ(28)を備え、
前記付勢手段は、前記フランジと前記ニードルガイドとの間に設けられることを特徴とする請求項1〜7のいずれか一項に記載の高圧ポンプ。 - 前記ニードルガイドは、前記連通孔を1個のみ有することを特徴とする請求項1〜8のいずれか一項に記載の高圧ポンプ。
- 前記ニードルガイドの前記連通孔は、大径孔(251)、及びその大径孔よりも内径の小さい小径孔(252)から構成されることを特徴とする請求項1〜9のいずれか一項に記載の高圧ポンプ。
- 前記小径孔の開口断面積は、前記可動コアの断面積から前記ニードルの断面積を除いた面積に対し、0%より大きく、1.69%以下であることを特徴とする請求項10に記載の高圧ポンプ。
- 前記可動コアが前記固定コア側に磁気吸引されたとき、前記可動コアと前記固定コアとの距離は、0.08〜0.16mmであることを特徴とする請求項1〜11のいずれか一項に記載の高圧ポンプ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013063987A JP5731562B2 (ja) | 2012-07-04 | 2013-03-26 | 高圧ポンプ |
US13/933,450 US9534589B2 (en) | 2012-07-04 | 2013-07-02 | High-pressure pump |
US14/943,108 US9404481B2 (en) | 2012-07-04 | 2015-11-17 | High-pressure pump |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012150697 | 2012-07-04 | ||
JP2012150697 | 2012-07-04 | ||
JP2013063987A JP5731562B2 (ja) | 2012-07-04 | 2013-03-26 | 高圧ポンプ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014029148A JP2014029148A (ja) | 2014-02-13 |
JP5731562B2 true JP5731562B2 (ja) | 2015-06-10 |
Family
ID=49878674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013063987A Active JP5731562B2 (ja) | 2012-07-04 | 2013-03-26 | 高圧ポンプ |
Country Status (2)
Country | Link |
---|---|
US (2) | US9534589B2 (ja) |
JP (1) | JP5731562B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5731562B2 (ja) | 2012-07-04 | 2015-06-10 | 株式会社デンソー | 高圧ポンプ |
KR101603656B1 (ko) * | 2014-07-15 | 2016-03-16 | (주)모토닉 | 직접분사식 가솔린 엔진용 고압연료펌프 |
GB201508608D0 (en) * | 2015-05-20 | 2015-07-01 | Delphi Int Operations Lux Srl | Fuel pump apparatus |
US10330065B2 (en) * | 2016-03-07 | 2019-06-25 | Stanadyne Llc | Direct magnetically controlled inlet valve for fuel pump |
JP2020026736A (ja) * | 2018-08-09 | 2020-02-20 | トヨタ自動車株式会社 | 高圧燃料ポンプ |
US11739748B2 (en) * | 2019-05-14 | 2023-08-29 | Halliburton Energy Services, Inc. | Pump fluid end with easy access suction valve |
US11965503B2 (en) | 2019-05-14 | 2024-04-23 | Halliburton Energy Services, Inc. | Flexible manifold for reciprocating pump |
JP2021011873A (ja) * | 2020-11-05 | 2021-02-04 | 株式会社デンソー | 高圧ポンプ |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5467963A (en) * | 1994-04-13 | 1995-11-21 | Cummins Engine Company, Inc. | Two-piece collet adjusting nut for a fuel injector solenoid valve |
JP3531334B2 (ja) * | 1995-05-23 | 2004-05-31 | 株式会社デンソー | 流体制御用電磁弁 |
JP3844092B2 (ja) * | 1997-01-23 | 2006-11-08 | 株式会社日本自動車部品総合研究所 | 蓄圧式燃料噴射装置 |
JP3932065B2 (ja) | 1997-09-12 | 2007-06-20 | 株式会社デンソー | 電磁弁及びその製造方法 |
EP1471248B1 (en) * | 1999-02-09 | 2006-10-11 | Hitachi, Ltd. | High pressure fuel supply pump for internal combustion engine |
US6345870B1 (en) * | 1999-10-28 | 2002-02-12 | Kelsey-Hayes Company | Control valve for a hydraulic control unit |
DE19956519B4 (de) * | 1999-11-24 | 2004-05-27 | Robert Bosch Gmbh | Vorrichtung zum Einspritzen eines Fluides mit variablem Einspritzdruck |
JP4122681B2 (ja) | 2000-04-19 | 2008-07-23 | 株式会社デンソー | 電磁弁 |
JP3823060B2 (ja) | 2002-03-04 | 2006-09-20 | 株式会社日立製作所 | 高圧燃料供給ポンプ |
JP4569825B2 (ja) * | 2005-04-26 | 2010-10-27 | 株式会社デンソー | 高圧燃料ポンプ |
DE102005048732B4 (de) * | 2005-10-12 | 2024-07-25 | Schaeffler Technologies AG & Co. KG | Elektromagnetische Stelleinheit eines hydraulischen Wegeventils |
JP4701227B2 (ja) * | 2007-10-29 | 2011-06-15 | 日立オートモティブシステムズ株式会社 | プランジャ式高圧燃料ポンプ |
EP2290241A1 (en) * | 2009-07-13 | 2011-03-02 | Siemens Aktiengesellschaft | Turbocompressor assembly with a cooling system |
JP5702984B2 (ja) | 2010-10-15 | 2015-04-15 | 日立オートモティブシステムズ株式会社 | 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ |
DE102010044119A1 (de) | 2010-11-18 | 2012-05-24 | Robert Bosch Gmbh | Mengensteuerventil eines Kraftstoffsystems |
JP5731562B2 (ja) | 2012-07-04 | 2015-06-10 | 株式会社デンソー | 高圧ポンプ |
-
2013
- 2013-03-26 JP JP2013063987A patent/JP5731562B2/ja active Active
- 2013-07-02 US US13/933,450 patent/US9534589B2/en active Active
-
2015
- 2015-11-17 US US14/943,108 patent/US9404481B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US9404481B2 (en) | 2016-08-02 |
US9534589B2 (en) | 2017-01-03 |
JP2014029148A (ja) | 2014-02-13 |
US20140010687A1 (en) | 2014-01-09 |
US20160069333A1 (en) | 2016-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5731562B2 (ja) | 高圧ポンプ | |
JP6462873B2 (ja) | 流量制御弁及び高圧燃料供給ポンプ | |
JP2011231758A (ja) | 高圧ポンプ | |
JP5517068B2 (ja) | 高圧ポンプ | |
JP2013002332A (ja) | 高圧ポンプおよびその制御方法 | |
JP5989948B2 (ja) | 高圧ポンプ | |
JP2014227961A (ja) | 高圧ポンプ | |
JP2010156263A (ja) | 高圧ポンプ | |
JP2016079895A (ja) | 高圧燃料供給ポンプ | |
JP2019173639A (ja) | プランジャポンプ | |
JP2014167264A (ja) | 電磁弁及びそれを用いた高圧ポンプ | |
JP2012154297A (ja) | 高圧ポンプ | |
JP5682335B2 (ja) | 高圧ポンプ | |
JP2012154296A (ja) | 高圧ポンプ | |
JP6791314B2 (ja) | 高圧ポンプ | |
JP5577269B2 (ja) | 高圧ポンプ | |
JP5991391B2 (ja) | 高圧ポンプ | |
JP5482855B2 (ja) | 高圧ポンプ | |
JP6560377B2 (ja) | 高圧ポンプ | |
WO2020100398A1 (ja) | ソレノイド機構及び高圧燃料ポンプ | |
JP6290330B2 (ja) | 高圧ポンプ | |
JP5491425B2 (ja) | 高圧ポンプ | |
JP7355190B2 (ja) | 高圧ポンプ | |
JP5481406B2 (ja) | 高圧ポンプ | |
JP5933382B2 (ja) | 電磁駆動装置およびそれを用いた高圧ポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141009 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150317 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150409 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5731562 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |