WO1998029515A1 - Composition for oxide cmp - Google Patents

Composition for oxide cmp Download PDF

Info

Publication number
WO1998029515A1
WO1998029515A1 PCT/US1997/023627 US9723627W WO9829515A1 WO 1998029515 A1 WO1998029515 A1 WO 1998029515A1 US 9723627 W US9723627 W US 9723627W WO 9829515 A1 WO9829515 A1 WO 9829515A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical mechanical
mechanical polishing
cerium
weight percent
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US1997/023627
Other languages
English (en)
French (fr)
Inventor
Gautam S. Grover
Brian L. Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Cabot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Corp filed Critical Cabot Corp
Priority to IL13072097A priority Critical patent/IL130720A0/xx
Priority to AU55328/98A priority patent/AU5532898A/en
Priority to JP53013898A priority patent/JP2001507739A/ja
Priority to DE69728691T priority patent/DE69728691T2/de
Priority to EP97951772A priority patent/EP0963419B1/en
Priority to AT97951772T priority patent/ATE264378T1/de
Publication of WO1998029515A1 publication Critical patent/WO1998029515A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to chemical mechanical polishing slurries for semiconductor integrated circuit substrates Specifically, this invention is a CMP slurry having a unique chemistry that is especially suitable for chemical mechanical planarization where a high silicon dioxide removal rate, and a low silicon nitride removal rate are required on the same substrate
  • Integrated circuits are made up of millions of active devices formed in or on a silicon substrate The active devices form functional circuits and components These devices are then connected by the use of multilevel metallized interconnects and vias Interconnection structures normally have a first layer metallization, an interconnect plug, a second layer of metallization, and sometimes a third or more layers of metallization with their respective interconnects Inter level dielectrics (ILDs), such as doped and undoped SiO2 are used to electrically isolate the different levels of interconnections.
  • ILDs Inter level dielectrics
  • Shallow trench isolation is a technology for device isolation in a give layer in the IC manufacturing process.
  • silicon nitride is deposited on thermally grown oxide After deposition of the nitride, a shallow trench is etched into the substrate using a mask A layer of oxide is then deposited into the trench so that the trench forms an area of insulated dielectric which acts to isolate the devices in a chip, and thus reduces the cross-talk between active devices The excess deposited oxide must be polished of and the trench planarized to prepare for the next level of metallization The silicon nitride is applied to the silicon to prevent polishing of the masked silicon oxide of the device
  • the substrate is placed in direct contact with a rotating polishing pad
  • a carrier applies pressure against the backside of the substrate
  • the pad and table are rotated while a downward force is maintained against the substrate back
  • An abrasive and chemically reactive solution commonly referred to as “a CMP slurry”
  • the chemicals and abrasive particles in the slurry initiate the polishing process by interacting with the wafer being polished
  • the polishing process is facilitated by the rotational movement of the pad relative to the substrate as slurry is provided to the wafer/pad interface Polishing is continued in this manner until the final desired film thickness is achieved by removal of the required amount of thin-film material
  • polishing oxides it is desirable of the slurry used to have a high removal rate towards the oxide layer and a low removal rate towards other layers which may be exposed during CMP, such as silicon nitride
  • the polishing slurry should be tailored to provide effective polishing at the desired polishing ranges selective to specific thin layer materials, while minimizing, at the same time, surface imperfections, defect, corrosion, erosion and the removal of silicon nitride and other stop layers
  • CMP slurries useful for polishing oxides typically contain an abrasive at an alkaline or high pH These slurries either rely on potassium hydroxide or ammonium hydroxide to effectively buffer the high pH While these slurries polish silica at high rates they also polish silicon nitride at high rates Typically, the ratio of these removal rates, t.e., the selectivity is, at most, about 5 to 1 silicon oxide to silicon nitride It is believed that the mechanism of silicon nitride polishing is oxidative hydrolysis of the
  • This invention is a chemical mechanical polishing composition that is capable of polishing a silicon dioxide layer at a high rate
  • This invention is also a chemical mechanical polishing composition that inhibits the polishing of a silicon nitride film
  • this invention is a method of using a chemical mechanical polishing composition that selectively removes silicon dioxide from a substrate while leaving a silicon nitride layer associated with the substrate essentially intact
  • this invention is a chemical mechanical polishing composition comprising carboxylic acid, a salt and a soluble cerium compound The composition has a pH from about 3 0 to about 11, and preferably from about 3 8 to about 5 5 and is useful for selectively removing silicon dioxide from layered substrates
  • this invention is a chemical mechanical polishing slurry comprising the chemical mechanical polishing composition described above and an abrasive The slurry is especially useful for silicon dioxide film polishing
  • the present invention is a method for using a chemical mechanical polishing composition comprising a carboxylic acid, a salt and a soluble cerium compound in an aqueous solution having a pH from about 3 0 to about 11 to selectively remove oxide overfill in preference to a silicon nitride film layer during the manufacture of integrated circuits and semiconductors
  • the present invention is directed to a chemical mechanical polishing composition that comprises, a carboxylic acid, a salt, and a soluble cerium compound, having a pH of from about 3.0 to about 1 1.0.
  • the chemical mechanical composition may be used alone or it may be combined with a metal oxide abrasive to form a slurry.
  • the compositions and slurries of this invention polish oxide layers such as silicon dioxide layers associated with substrates at high rates.
  • the compositions of this invention have been found to inhibit silicon nitride polishing.
  • the present invention is also directed to novel methods for using the compositions and slurries of this invention to polish oxide layers.
  • the "chemical mechanical composition” refers to the combination of at least one carboxylic acid, at least one salt, and at least one soluble cerium compound that may be used in conjunction with an abrasive pad to remove one or more layers of a substrate.
  • the term “slurry” or “chemical mechanical polishing slurry” refers to the combination of the chemical mechanical polishing composition and at least one abrasive.
  • Carboxylic acids useful in a CMP slurry of the present invention include monofunctional and di-functional carboxylic acids and their salts.
  • the carboxylic acid is selected from the group including acetic acid, adipic acid, butyric acid, capric acid, caproic acid, caprylic acid, citric acid, glutaric acid, glycolic acid, formic acid, fumaric acid, lactic acid, lauric acid, malic acid, maleic acid, malonic acid, myristic acid, oxalic acid, palmitic acid, phthalic acid, propionic acid, pyruvic acid, stearic acid, succinic acid, tartaric acid, valeric acid, 2-(2-methyoxyethoxy) acetic acid, 2-[2-(2- methyoxyethoxy)ethyoxy] acetic acid, poly(ethylene glycol)bis(carboxymethyl)ether, and derivatives, including salts thereof.
  • a most preferred carboxylic acid is acetic acid.
  • the carboxylic acid can comprise greater than 10% of the slurry.
  • the carboxylic acid is present in the composition of this invention in an amount ranging from about 0 05 to about 10% by weight In a more preferred embodiment, however, the carboxylic acid is present in the composition of this invention in an amount ranging from about 0 1 to about 3%
  • the chemical mechanical composition of the present invention may include a salt
  • salt refers to any water soluble salts including organic salts and inorganic salts such as nitrate, phosphate, and sulfate salts Soluble salts also refers to salts that are only partially or marginally soluble in water Preferred salts are nitrate salts
  • the salt may be present in the composition in the amount of from about 0 05 to about 6% by weight of the composition It is most preferred that the salt is present in the composition in the amount ranging from about 0 1 to about 4%> by weight
  • the chemical mechanical composition of the present invention includes at least one soluble cerium compound
  • soluble cerium includes, for purposes of this invention, both cerium added in soluble form and cerium dissolved from colloidal or ground particles
  • Non-limiting examples of soluble cerium compounds useful in a composition of the present invention include water soluble hydrated and non-hydrated salts of cerium hydroxide (Ce(OH) 4 ), ammonium cerium sulfate,
  • a preferred embodiment of the chemical mechanical composition of the present invention includes ammonium cerium nitrate as both the salt and as the soluble cerium compound
  • Other soluble cerium nitrate salts may be incorporated into the composition of this invention as both the soluble cerium compound and as the salt
  • Ammonium cerium nitrate may be present in composition of the present invention in an amount ranging from about 0 05 to about 6% weight percent of the overall composition weight
  • a more preferred range of ammonium cerium nitrate is from about 0 1 to about 4 0 weight percent
  • ceria typically contains a mixture of dissolved Ce 4* and Ce ,+ ions It is preferred that the dissolved ceria is in the form of Ce 3+ ions Adding an oxidizer to the composition of this invention that is capable of oxidizing Ce 4+ to Ce ⁇ * produces a product that exhibits high oxide selectivities and low nitride selectivities
  • the oxidizing agent used must have a higher oxidation potential than Ce 4 "
  • a preferred oxidizing agent is ammonium persulfate
  • the oxidizing agent is useful in an amount ranging from about 0 05 to about 5 0 weight percent
  • the oxidizing agent is preferably present in an amount ranging from about 0 1 to about 2 0 weight percent
  • the chemical mechanical composition of this invention may optionally include at least one chelating agent It has been found that the addition of a chelating agent to chemical mechanical compositions of this invention improves the cleanability of substrates polished with compositions of this invention It is believed that cleanability of substrates is enhanced because the chelating agent binds free ions in the composition that would otherwise deposit on the wafer
  • Useful chelating agents include any chelating agents that bind to free ions in the compositions of this invention
  • useful chelating agents include, but are not limited, to polycarboxylic acids such citric acid, EDTA, triethanolamine, and benzonitrile, adipic acid, malonic acid, oxalic acid, phoshonic acids, phosphoric acid and salts thereof
  • Chelating agents, if used, should be present in the composition in an amount ranging from about 0 05 to about 5 0 weight percent, and preferably from about 0 1 to about 1 5 weight percent
  • the chemical mechanical composition of this invention may be used alone or in conjunction with an abrasive to give a chemical mechanical polishing "slurry "
  • Abrasives useful in conjunction with the compositions of the present invention include metal oxide abrasives.
  • the metal oxide abrasive may be selected from the group including alumina, titania, zirconia, germania, silica, ceria and mixtures thereof.
  • useful abrasives may be the result of mixing precursors of two or more metal oxides to give a chemical admixture of a mixed metal oxide abrasive.
  • alumina can be co-formed with silica, or combined alumina/silica.
  • Useful metal oxide abrasives may be produced by any techniques known to those skilled in the art, including high temperature processes such as sol-gel, hydrothermal or, plasma process, or by processes for manufacturing fumed or precipitated metal oxides. Pulverized or crushed metal oxide abrasives are also useful in the CMP slurry of this invention and may be manufactured by milling or grinding using conventional manufacturing techniques such as jet-milling, ball milling, bead milling, and other milling and pulverization techniques and process know to one skilled in the art.
  • Preferred abrasives suitable for the CMP slurries of this invention are silica and cerium oxide (ceria) with fumed silica being most preferred
  • Other suitable silica abrasives can be made by methods such as sol-gel, hydrothermal, plasma process, flame pyrolysis or by other processes for manufacturing metal oxides
  • Pulverized abrasives are also suitable for this invention Any pulverized metal oxide abrasive may be used in a CMP slurry of this invention However, pulverized cerium oxide is preferred
  • the cerium oxide abrasive is ground in a media mill to give pulverized ceria
  • the original cerium oxide particle may be either mined cerium oxide or precipitated and calcined cerium oxide or a combination thereof
  • the grinding may be accomplished in an aqueous medium using any type of a grinding or milling apparatus such as by jet milling or ball milling
  • a preferred grinding mechanism is a medial mill with either yttria tetragonal zirconia (YTZ) or zirconium silicate media
  • the grinding process may use a dispersant or steric stabilizer
  • the preferred pulverized metal oxide abrasive will have a narrow particle size distribution with a median particle size (i e , aggregate particle or single particle) of less than about 0 5 microns
  • Precipitated cerium oxide is a suitable abrasive for oxide CMP
  • Precipitated cerium oxide particles are made from a variety of precursors including acetates, carbonates and hydroxide and nitrate salts of cerium
  • the median particle size of precipitated cerium oxide particles may range of from about 10 nm to about 500 nm, with the preferred size of precipitated cerium oxide particles being in the range of from about 30 to about 300 nm
  • fumed silica Another preferred abrasive is fumed silica
  • feed stock vapor such as silicon tetrachloride for a silica abrasive
  • molten particles of roughly spherical shape are formed in the combustion process
  • the diameters of the particles are varied through process parameters, and these molten spheres of silica or similar oxide, typically referred to as primary particles, fuse with one another by colliding at their contact points to form branched, three dimensional chain-like aggregates
  • the force necessary to break aggregates is considerable and often irreversible During cooling and collecting, the aggregates undergo further collisions that may result in some mechanical entanglement causing the formation of aggregates
  • a preferred metal oxide will have a surface area, as calculated from the method of S Brunauer, P H Emmet, and I Teller, J Am Chemical Society, Volume 60, Page 309 (1938) and commonly referred to a BET, ranging from about 5 m 2 /g to about 430 m 2 /g and preferably from about 30 m 2 /g to about 170 m 2 /g Due to stringent purity requirements in the IC industry the preferred metal oxide should be of a high purity High purity means that the total impurity content, from sources such as raw material impurities and trace processing contaminants, is typically less than 1% and preferably less than 0 01% (i e , 100 ppm)
  • the metal oxide abrasive consists of metal oxide aggregates having about 99 weight percent of the particles less than about 1 0 micron in diameter, a mean aggregate diameter less than about 0.4 micron and a force sufficient to repel and overcome the van der Waals forces between abrasive aggregates themselves.
  • Such metal oxide abrasives have been effective in minimizing or avoiding scratching, pit marks, divots and other surface imperfections during polishing.
  • the aggregate size distribution in the present invention may be determined using known techniques such as transmission electron microscopy (TEM).
  • the mean aggregate diameter refers to the average equivalent spherical diameter when using TEM image analysis, i.e., based on the cross-sectional area of the aggregate.
  • the surface potential or the hydration force of the metal oxide particles must be sufficient to repel and overcome the van der Waals attractive forces between the particles.
  • the metal oxide abrasive may consist of discrete metal oxide particles having a particle diameter less than 0.5 micron (500 nm) and a surface area ranging from about 10 m 2 /g to about 250 m 2 /g.
  • a CMP slurry of this invention will include from about 2 weight percent to about 25 weight percent metal oxide abrasive and preferably from about 2 weight percent to about 15 weight percent metal oxide abrasive.
  • Metal oxide abrasives useful in CMP slurries of the present invention are incorporated into the aqueous medium of the polishing slurry as a concentrated aqueous dispersion of metal oxides comprising from about 3% to about 55% solids, and preferably between 30% and 50% solids.
  • the aqueous dispersion of metal oxides may be produced using conventional techniques, such as slowly adding the metal oxide abrasive to an appropriate media, for example, de-ionized water, to form a colloidal dispersion.
  • the dispersions are typically completed by subjecting them to high shear mixing conditions known to those skilled in the art.
  • the abrasives useful in a CMP slurry of the present invention can be a mixture of the abrasives described above.
  • precipitated cerium oxide, pulverized cerium oxide (also referred to a ceria) and fumed silica could be incorporated into a CMP slurry of the present invention.
  • Other combinations of abrasives are also useful in the CMP slurry.
  • the mixture of abrasives could include any relative proportion of one abrasive to another. For example, a combination of from about 5 to
  • the CMP slurry of this invention must have a pH from about 3 0 to about 1 1 0 to be effective More preferably, the slurry pH will range from about 3 5 to about 6 0, and most preferably the pH is from about 3 8 to about 5 5 Slurry pH is adjusted by adding any base to the composition and preferably by adding a non-metal base such as ammonium hydroxide to the slurry
  • the chemical mechanical composition of this invention may contain one or more buffering agents
  • the purpose of the buffering agent is to help maintain the pH of the composition within the desired range, and most preferably from about 3 8 to about 5.5
  • buffering agent that is capable of maintaining the pH of the composition in the desired range may be used Most preferred buffers are ammonium formate or formic acid Buffering agent used in the composition will typically range from about
  • a variety of additional optional additives such as surfactants, polymeric stabilizers or other surface active dispersing agents, can be used.
  • the surfactant can be anionic, cationic, nonionic, amphoteric and combinations of two or more surfactants can be employed.
  • a surfactant may be useful to improve the within-wafer-non- uniformity (WIWNU) of the wafers, thereby improving the surface of the wafer and reducing wafer defects.
  • WIWNU within-wafer-non- uniformity
  • the amount of an additive used, such as a surfactant, in the present invention should be sufficient to achieve effective steric stabilization of the slurry and will typically vary depending on the particular surfactant selected and the nature of the surface of the metal oxide abrasive. For example, if not enough of a selected surfactant is used, it will have little or no effect on stabilization. On the other hand, too much of the surfactant may result in undesirable foaming and/or flocculation in the slurry. As a result, additives like surfactants should generally be present in a range between about 0.001 % and 10% by weight. Furthermore, the additive may be added directly to the slurry or treated onto the surface of the metal oxide abrasive utilizing known techniques. In either case, the amount of additive is adjusted to achieve the desired concentration in the polishing slurry.
  • the chemical mechanical polishing compositions and slurries of this invention are capable of selectively removing the silicon dioxide layer from layered substrates at very high rates. Furthermore, the compositions and slurries of this invention inhibit the polishing of silicon nitride from layered substrates.
  • One important application for the chemical mechanical polishing compositions and slurries of this invention is in the manufacture of integrated circuits and semiconductors. In such a polishing application, the compositions and slurries of this invention effectively remove silicon dioxide for shallow trench device isolation.
  • compositions and slurries of this invention preferably exhibit oxide removal rate of from about 1200 A/min to about 6000 A/min or more with an oxide to nitride removal selectivity of from about 5 to about 100 or more and preferably from about 15 to about 50 or more.
  • compositions and slurries of the present invention may be incorporated in a single package which includes an aqueous composition of at least one carboxylic acid, a soluble cerium compound, a salt, an optional abrasive, and optional additives at the requisite pH.
  • an aqueous composition of at least one carboxylic acid, a soluble cerium compound, a salt, an optional abrasive, and optional additives at the requisite pH may be preferable to use at least a two package system where the first package comprises at least one carboxylic acid, a salt and a soluble cerium compound at any pH and the second package comprises the optional abrasive at any pH.
  • the components in one container may be in dry form while the component in the other container are in the form of an aqueous dispersion.
  • Other two- container combinations of the ingredients of the CMP slurry of this invention are within the knowledge of one having ordinary skill in the area.
  • the compositions and slurries of the present invention do not significantly increase the silicon nitride removal rate.
  • the composition and slurry of this invention significantly increases the removal rate of silicon dioxide in comparison to known slurries.
  • the polishing slurry of the present invention may be used during the various stages of semiconductor integrated circuit manufacture to provide effective removal of silicon oxide layers at desired removal rates while minimizing surface imperfections and defects.
  • compositions of this invention were used in an STI polishing protocol as outlined below.
  • the CMP slurries were used to chemically-mechanically polish blanket PETEOS and silicon nitride using a ICIOOO/SUBA IV pad stack manufactured by Rodel, Inc.
  • the polishing was performed using an IPEC/WESTECH 472 CMP tool at a down force of 9 psi, a slurry flow rate of 140 ml/min., a platen speed of 35 rpm and a carrier speed of 24 rpm.
  • a pulverized ceria slurry was prepared in order to evaluate its ability to polish blanket silicon dioxide and nitride wafers.
  • Rhodite grade 400HS ceria, having particle sizes approximately 2-4 ⁇ m was purchased from Universal Photonics, Hicksville, New York and pulverized using an agitator bead mill to a primary median particle size of 150 nm Pulverizing was accomplish under wet conditions so that the resulting slurry, pH approximately 7 5 - 8 5, contained 20-30% solids after the pulverizing process
  • the slurry was then diluted and the pH adjusted to produce the slurries listed in Table 1
  • the slurries were used to polish substrates according to the method described in Example 1
  • the pulverized ceria slurries were used for polishing The data indicates that the pulverized ceria slurries yield very high PETEOS (silicon oxide layer) removal rates
  • a nitrate stabilized ceria slurry containing precipitated ceria particles, nitric acid, acetic acid, pH 1 8 and 20% solids, was purchased from Nyacol Products (Ashland, MA) The pH of the slurry was adjusted to from about 4 2 - 6 8 by adding ammonium hydroxide. The slurries were used to polish substrates according to the method described in Example 1 The polishing results are reported in Table 2 Table 2
  • the polishing data indicates that at the lowest pH (4 2) selectivity is high, but overall oxide removal rates are low
  • a colloidal cerium acetate slurry, including soluble Ce and Ce , and acetic acid, (pH 1 8 and 20% solids), was purchased from Nyacol Products (Ashland, MA)
  • the pH of the slurry was adjusted to 4 5 and the solids content to 15 %
  • the slurry was applied to substrate according to the methods described in Example 1 and the result showed an oxide layer removal rate of 117 A/min and a nitride layer removal rate of 10 5 A/min for an oxide to nitride selectivity of 11 1
  • a ceria slurry composed of varying weight percent amounts of the pulverized ceria manufactured as set forth in Example 2 and precipitated ceria purchased from Nyacol Products (Ashland, MA) was formulated as shown in Table 3 The slurries were used to polish substrates according to the methods described in Example 1 and the polishing results are set forth in Table 3, below Table 3
  • a slurry, composed of 4 weight percent CAB-O-SIL ® L-90 fumed silica, 1 8 weight percent ammonium cerium nitrate, and 0 6 weight percent acetic acid of varying percentages was formulated as shown in Table 5
  • the pH of the slurries varied from between 4 0 to 5 0
  • the slurries were applied to substrate according to the methods described in Example 1
  • a composition composed of 1 8 wt% ammonium cerium nitrate, 0 8 wt% acetic acid, and deionized water was used to polish PETEOS and silicon nitride wafers according to the method of Example 1
  • the pH of the slurry was adjusted to 4 5
  • a CMP slurry consisting of 4 Owt % cerium and 4 0wt% silica, having a pH of 4 5 was prepared by combining appropriate amounts of (1) the 20wt% colloidal cerium solution manufactured by Nyacol Products (Ashland, MA) and described in Example 4, (2) L-90 fumed silica manufactured by Cabot Corp and sold under the name CAB-O- SLL ® , and (3) deionized water
  • This Example evaluated the polishing effectiveness of compositions of this invention without and with an oxidizing agent Slurries, consisting of 4 0wt% colloidal ceria including Ce 4+ ions, and 4 0wt% silica and having a pH of 4 5 were formulated according to the method set forth in Example 9 The slurries were tested according to the method of Example 2 without and with the addition of 0 15 wt % ammonium persulfate The test results are reported in Table 7, below

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
PCT/US1997/023627 1996-12-30 1997-12-19 Composition for oxide cmp Ceased WO1998029515A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
IL13072097A IL130720A0 (en) 1996-12-30 1997-12-19 Composition for oxide CMP
AU55328/98A AU5532898A (en) 1996-12-30 1997-12-19 Composition for oxide cmp
JP53013898A JP2001507739A (ja) 1996-12-30 1997-12-19 酸化物cmpのための組成物
DE69728691T DE69728691T2 (de) 1996-12-30 1997-12-19 Zusammensetzung zum chemisch-mechanischen polieren von oxyden
EP97951772A EP0963419B1 (en) 1996-12-30 1997-12-19 Composition for oxide cmp
AT97951772T ATE264378T1 (de) 1996-12-30 1997-12-19 Zusammensetzung zum chemisch-mechanischen polieren von oxyden

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/774,488 US5759917A (en) 1996-12-30 1996-12-30 Composition for oxide CMP
US08/774,488 1996-12-30

Publications (1)

Publication Number Publication Date
WO1998029515A1 true WO1998029515A1 (en) 1998-07-09

Family

ID=25101406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/023627 Ceased WO1998029515A1 (en) 1996-12-30 1997-12-19 Composition for oxide cmp

Country Status (11)

Country Link
US (3) US5759917A (enExample)
EP (1) EP0963419B1 (enExample)
JP (2) JP2001507739A (enExample)
KR (1) KR20000069823A (enExample)
CN (1) CN1168794C (enExample)
AT (1) ATE264378T1 (enExample)
AU (1) AU5532898A (enExample)
DE (1) DE69728691T2 (enExample)
IL (1) IL130720A0 (enExample)
TW (1) TW505690B (enExample)
WO (1) WO1998029515A1 (enExample)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080296A1 (fr) * 2000-04-13 2001-10-25 Showa Denko K.K. Compose de polissage pour le polissage de dispositif a semiconducteur et procede de fabrication de dispositif a semiconducteur dans lesquel ledit compose est utilise
US6589100B2 (en) 2001-09-24 2003-07-08 Cabot Microelectronics Corporation Rare earth salt/oxidizer-based CMP method
JPWO2002067309A1 (ja) * 2001-02-20 2004-06-24 日立化成工業株式会社 研磨剤及び基板の研磨方法
KR100474540B1 (ko) * 2002-06-24 2005-03-10 주식회사 하이닉스반도체 반도체소자의 금속배선 콘택플러그 형성방법
US7253111B2 (en) 2004-04-21 2007-08-07 Rohm And Haas Electronic Materials Cmp Holding, Inc. Barrier polishing solution
EP3049216A4 (en) * 2013-09-24 2017-07-26 Cabot Microelectronics Corporation Chemical-mechanical planarization of polymer films

Families Citing this family (209)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3230986B2 (ja) * 1995-11-13 2001-11-19 株式会社東芝 ポリッシング方法、半導体装置の製造方法及び半導体製造装置。
AU1670597A (en) * 1996-02-07 1997-08-28 Hitachi Chemical Company, Ltd. Cerium oxide abrasive, semiconductor chip, semiconductor device, process for the production of them, and method for the polishing of substrates
US5827781A (en) * 1996-07-17 1998-10-27 Micron Technology, Inc. Planarization slurry including a dispersant and method of using same
US5916819A (en) 1996-07-17 1999-06-29 Micron Technology, Inc. Planarization fluid composition chelating agents and planarization method using same
US5738800A (en) * 1996-09-27 1998-04-14 Rodel, Inc. Composition and method for polishing a composite of silica and silicon nitride
US6132637A (en) * 1996-09-27 2000-10-17 Rodel Holdings, Inc. Composition and method for polishing a composite of silica and silicon nitride
US5759917A (en) * 1996-12-30 1998-06-02 Cabot Corporation Composition for oxide CMP
US20090075083A1 (en) * 1997-07-21 2009-03-19 Nanogram Corporation Nanoparticle production and corresponding structures
US7384680B2 (en) 1997-07-21 2008-06-10 Nanogram Corporation Nanoparticle-based power coatings and corresponding structures
US20060147369A1 (en) * 1997-07-21 2006-07-06 Neophotonics Corporation Nanoparticle production and corresponding structures
US20090255189A1 (en) * 1998-08-19 2009-10-15 Nanogram Corporation Aluminum oxide particles
US6592776B1 (en) 1997-07-28 2003-07-15 Cabot Microelectronics Corporation Polishing composition for metal CMP
JP3371775B2 (ja) * 1997-10-31 2003-01-27 株式会社日立製作所 研磨方法
US20040229468A1 (en) * 1997-10-31 2004-11-18 Seiichi Kondo Polishing method
US6190237B1 (en) * 1997-11-06 2001-02-20 International Business Machines Corporation pH-buffered slurry and use thereof for polishing
US6149696A (en) * 1997-11-06 2000-11-21 Komag, Inc. Colloidal silica slurry for NiP plated disk polishing
US6362101B2 (en) * 1997-11-24 2002-03-26 United Microelectronics Corp. Chemical mechanical polishing methods using low pH slurry mixtures
US6114248A (en) * 1998-01-15 2000-09-05 International Business Machines Corporation Process to reduce localized polish stop erosion
US5990012A (en) * 1998-01-27 1999-11-23 Micron Technology, Inc. Chemical-mechanical polishing of hydrophobic materials by use of incorporated-particle polishing pads
DE19805525C2 (de) * 1998-02-11 2002-06-13 Sez Semiconduct Equip Zubehoer Verfahren zum Naßätzen von Halbleiterscheiben zum Erzeugen eines definierten Randbereichs durch Unterätzen
TW419518B (en) * 1998-02-20 2001-01-21 Ind Tech Res Inst Non-Newtonian-fluid-behaviored formulation
US6159076A (en) * 1998-05-28 2000-12-12 Komag, Inc. Slurry comprising a ligand or chelating agent for polishing a surface
US5928962A (en) * 1998-06-01 1999-07-27 Motorola, Inc. Process for forming a semiconductor device
US6217416B1 (en) * 1998-06-26 2001-04-17 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrates
TW455626B (en) * 1998-07-23 2001-09-21 Eternal Chemical Co Ltd Chemical mechanical abrasive composition for use in semiconductor processing
US6124207A (en) * 1998-08-31 2000-09-26 Micron Technology, Inc. Slurries for mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies, and methods and apparatuses for making and using such slurries
US6468909B1 (en) 1998-09-03 2002-10-22 Micron Technology, Inc. Isolation and/or removal of ionic contaminants from planarization fluid compositions using macrocyclic polyethers and methods of using such compositions
US6143192A (en) * 1998-09-03 2000-11-07 Micron Technology, Inc. Ruthenium and ruthenium dioxide removal method and material
JP2000080350A (ja) * 1998-09-07 2000-03-21 Speedfam-Ipec Co Ltd 研磨用組成物及びそれによるポリッシング加工方法
US6270395B1 (en) 1998-09-24 2001-08-07 Alliedsignal, Inc. Oxidizing polishing slurries for low dielectric constant materials
US6069047A (en) * 1998-09-29 2000-05-30 Wanlass; Frank M. Method of making damascene completely self aligned ultra short channel MOS transistor
US6291349B1 (en) 1999-03-25 2001-09-18 Beaver Creek Concepts Inc Abrasive finishing with partial organic boundary layer
US6346202B1 (en) 1999-03-25 2002-02-12 Beaver Creek Concepts Inc Finishing with partial organic boundary layer
US7131890B1 (en) 1998-11-06 2006-11-07 Beaver Creek Concepts, Inc. In situ finishing control
US6739947B1 (en) 1998-11-06 2004-05-25 Beaver Creek Concepts Inc In situ friction detector method and apparatus
US6634927B1 (en) 1998-11-06 2003-10-21 Charles J Molnar Finishing element using finishing aids
US6293851B1 (en) 1998-11-06 2001-09-25 Beaver Creek Concepts Inc Fixed abrasive finishing method using lubricants
US6568989B1 (en) 1999-04-01 2003-05-27 Beaver Creek Concepts Inc Semiconductor wafer finishing control
US6656023B1 (en) * 1998-11-06 2003-12-02 Beaver Creek Concepts Inc In situ control with lubricant and tracking
US6541381B2 (en) 1998-11-06 2003-04-01 Beaver Creek Concepts Inc Finishing method for semiconductor wafers using a lubricating boundary layer
US6267644B1 (en) 1998-11-06 2001-07-31 Beaver Creek Concepts Inc Fixed abrasive finishing element having aids finishing method
US6283829B1 (en) 1998-11-06 2001-09-04 Beaver Creek Concepts, Inc In situ friction detector method for finishing semiconductor wafers
US6428388B2 (en) 1998-11-06 2002-08-06 Beaver Creek Concepts Inc. Finishing element with finishing aids
FR2785614B1 (fr) * 1998-11-09 2001-01-26 Clariant France Sa Nouveau procede de polissage mecano-chimique selectif entre une couche d'oxyde de silicium et une couche de nitrure de silicium
US6395635B1 (en) 1998-12-07 2002-05-28 Taiwan Semiconductor Manufacturing Company Reduction of tungsten damascene residue
US6200875B1 (en) 1998-12-21 2001-03-13 Taiwan Semiconductor Manufacturing Company Chemical mechanical polishing of polysilicon plug using a silicon nitride stop layer
EP1566421B1 (en) * 1998-12-25 2014-12-10 Hitachi Chemical Company, Ltd. CMP abrasive, liquid additive for CMP abrasive and method for polishing substrate.
KR100451499B1 (ko) * 1998-12-28 2004-12-13 주식회사 하이닉스반도체 반도체소자의소자분리막형성방법
US6426295B1 (en) * 1999-02-16 2002-07-30 Micron Technology, Inc. Reduction of surface roughness during chemical mechanical planarization(CMP)
US6409936B1 (en) * 1999-02-16 2002-06-25 Micron Technology, Inc. Composition and method of formation and use therefor in chemical-mechanical polishing
US6551933B1 (en) 1999-03-25 2003-04-22 Beaver Creek Concepts Inc Abrasive finishing with lubricant and tracking
US6752844B2 (en) * 1999-03-29 2004-06-22 Intel Corporation Ceric-ion slurry for use in chemical-mechanical polishing
KR100366619B1 (ko) * 1999-05-12 2003-01-09 삼성전자 주식회사 트랜치 소자분리방법, 트랜치를 포함하는 반도체소자의제조방법 및 그에 따라 제조된 반도체소자
US6251150B1 (en) * 1999-05-27 2001-06-26 Ekc Technology, Inc. Slurry composition and method of chemical mechanical polishing using same
US6153526A (en) * 1999-05-27 2000-11-28 Taiwan Semiconductor Manufacturing Company Method to remove residue in wolfram CMP
US6234875B1 (en) 1999-06-09 2001-05-22 3M Innovative Properties Company Method of modifying a surface
US6238450B1 (en) 1999-06-16 2001-05-29 Saint-Gobain Industrial Ceramics, Inc. Ceria powder
TW486514B (en) * 1999-06-16 2002-05-11 Eternal Chemical Co Ltd Chemical mechanical abrasive composition for use in semiconductor processing
JP4729834B2 (ja) * 1999-06-18 2011-07-20 日立化成工業株式会社 Cmp研磨剤、これを用いた基板の研磨方法及び半導体装置の製造方法並びにcmp研磨剤用添加剤
TWI227726B (en) 1999-07-08 2005-02-11 Eternal Chemical Co Ltd Chemical-mechanical abrasive composition and method
US6221119B1 (en) * 1999-07-14 2001-04-24 Komag, Inc. Slurry composition for polishing a glass ceramic substrate
US6602111B1 (en) * 1999-07-16 2003-08-05 Seimi Chemical Co., Ltd. Abrasive
CN1107097C (zh) * 1999-07-28 2003-04-30 长兴化学工业股份有限公司 化学机械研磨组合物及方法
US6429133B1 (en) * 1999-08-31 2002-08-06 Micron Technology, Inc. Composition compatible with aluminum planarization and methods therefore
CN1125862C (zh) * 1999-09-20 2003-10-29 长兴化学工业股份有限公司 半导体加工用化学机械研磨组合物
US6491843B1 (en) 1999-12-08 2002-12-10 Eastman Kodak Company Slurry for chemical mechanical polishing silicon dioxide
US6468910B1 (en) 1999-12-08 2002-10-22 Ramanathan Srinivasan Slurry for chemical mechanical polishing silicon dioxide
EP1242557B8 (en) * 1999-12-17 2006-02-01 Cabot Microelectronics Corporation Method of polishing or planarizing a substrate
US6358850B1 (en) * 1999-12-23 2002-03-19 International Business Machines Corporation Slurry-less chemical-mechanical polishing of oxide materials
JP2001269859A (ja) * 2000-03-27 2001-10-02 Jsr Corp 化学機械研磨用水系分散体
US6733553B2 (en) 2000-04-13 2004-05-11 Showa Denko Kabushiki Kaisha Abrasive composition for polishing semiconductor device and method for producing semiconductor device using the same
TWI268286B (en) * 2000-04-28 2006-12-11 Kao Corp Roll-off reducing agent
KR100378180B1 (ko) * 2000-05-22 2003-03-29 삼성전자주식회사 화학기계적 연마 공정용 슬러리 및 이를 이용한 반도체소자의 제조방법
US20040092103A1 (en) * 2000-07-19 2004-05-13 Shigeo Fujii Polishing fluid composition
US6702954B1 (en) 2000-10-19 2004-03-09 Ferro Corporation Chemical-mechanical polishing slurry and method
US6413869B1 (en) * 2000-11-06 2002-07-02 Advanced Micro Devices, Inc. Dielectric protected chemical-mechanical polishing in integrated circuit interconnects
DE10063491A1 (de) * 2000-12-20 2002-06-27 Bayer Ag Saure Polierslurry für das chemisch-mechanische Polieren von SiO¶2¶-Isolationsschichten
US20070290166A1 (en) * 2001-03-14 2007-12-20 Liu Feng Q Method and composition for polishing a substrate
US6796883B1 (en) 2001-03-15 2004-09-28 Beaver Creek Concepts Inc Controlled lubricated finishing
US6540935B2 (en) 2001-04-05 2003-04-01 Samsung Electronics Co., Ltd. Chemical/mechanical polishing slurry, and chemical mechanical polishing process and shallow trench isolation process employing the same
KR100464429B1 (ko) * 2002-08-16 2005-01-03 삼성전자주식회사 화학 기계적 폴리싱 슬러리 및 이를 사용한 화학 기계적폴리싱 방법
JP4002740B2 (ja) * 2001-05-29 2007-11-07 三井金属鉱業株式会社 セリウム系研摩材の製造方法
US6811470B2 (en) 2001-07-16 2004-11-02 Applied Materials Inc. Methods and compositions for chemical mechanical polishing shallow trench isolation substrates
US6677239B2 (en) 2001-08-24 2004-01-13 Applied Materials Inc. Methods and compositions for chemical mechanical polishing
US20050028449A1 (en) * 2001-09-03 2005-02-10 Norihiko Miyata Polishing composition
US7156717B2 (en) 2001-09-20 2007-01-02 Molnar Charles J situ finishing aid control
US6705926B2 (en) * 2001-10-24 2004-03-16 Cabot Microelectronics Corporation Boron-containing polishing system and method
US7666239B2 (en) * 2001-11-16 2010-02-23 Ferro Corporation Hydrothermal synthesis of cerium-titanium oxide for use in CMP
US6596042B1 (en) 2001-11-16 2003-07-22 Ferro Corporation Method of forming particles for use in chemical-mechanical polishing slurries and the particles formed by the process
WO2003044123A1 (en) * 2001-11-16 2003-05-30 Ferro Corporation Particles for use in cmp slurries and method for producing them
US20060032836A1 (en) * 2001-11-16 2006-02-16 Ferro Corporation Methods of controlling the properties of abrasive particles for use in chemical-mechanical polishing slurries
US20030138201A1 (en) * 2002-01-18 2003-07-24 Cabot Microelectronics Corp. Self-aligned lens formed on a single mode optical fiber using CMP and thin film deposition
US7199056B2 (en) * 2002-02-08 2007-04-03 Applied Materials, Inc. Low cost and low dishing slurry for polysilicon CMP
US7513920B2 (en) * 2002-02-11 2009-04-07 Dupont Air Products Nanomaterials Llc Free radical-forming activator attached to solid and used to enhance CMP formulations
KR100442873B1 (ko) * 2002-02-28 2004-08-02 삼성전자주식회사 화학적 기계적 폴리싱 슬러리 및 이를 사용한 화학적기계적 폴리싱 방법
JP2003313542A (ja) * 2002-04-22 2003-11-06 Jsr Corp 化学機械研磨用水系分散体
US7677956B2 (en) * 2002-05-10 2010-03-16 Cabot Microelectronics Corporation Compositions and methods for dielectric CMP
KR100457743B1 (ko) * 2002-05-17 2004-11-18 주식회사 하이닉스반도체 산화막용 cmp 슬러리 및 이를 이용한 반도체 소자의형성 방법
KR100474545B1 (ko) * 2002-05-17 2005-03-08 주식회사 하이닉스반도체 플래쉬 메모리 소자의 형성 방법
US6616514B1 (en) 2002-06-03 2003-09-09 Ferro Corporation High selectivity CMP slurry
US20040007690A1 (en) * 2002-07-12 2004-01-15 Cabot Microelectronics Corp. Methods for polishing fiber optic connectors
US20040127045A1 (en) * 2002-09-12 2004-07-01 Gorantla Venkata R. K. Chemical mechanical planarization of wafers or films using fixed polishing pads and a nanoparticle composition
US7063597B2 (en) 2002-10-25 2006-06-20 Applied Materials Polishing processes for shallow trench isolation substrates
US20040123528A1 (en) * 2002-12-30 2004-07-01 Jung Jong Goo CMP slurry for semiconductor device, and method for manufacturing semiconductor device using the same
JPWO2004061925A1 (ja) * 2002-12-31 2006-05-18 株式会社Sumco 化学的機械研磨用スラリー組成物、これを利用した半導体素子の表面平坦化方法及びスラリー組成物の選択比制御方法
US7071105B2 (en) * 2003-02-03 2006-07-04 Cabot Microelectronics Corporation Method of polishing a silicon-containing dielectric
CN100373556C (zh) * 2003-05-28 2008-03-05 日立化成工业株式会社 研磨剂及研磨方法
US20040259366A1 (en) * 2003-06-20 2004-12-23 Kim Seong Han Method and composition for the chemical-vibrational-mechanical planarization of copper
KR101053653B1 (ko) * 2003-07-01 2011-08-02 주식회사 동진쎄미켐 산화세륨 연마제를 이용한 화학 기계적 연마 슬러리조성물
US20050028450A1 (en) * 2003-08-07 2005-02-10 Wen-Qing Xu CMP slurry
JP4574140B2 (ja) * 2003-08-27 2010-11-04 株式会社フジミインコーポレーテッド 研磨用組成物及びそれを用いる研磨方法
ATE463838T1 (de) * 2003-09-30 2010-04-15 Fujimi Inc Polierzusammensetzung und polierverfahren
US6964600B2 (en) * 2003-11-21 2005-11-15 Praxair Technology, Inc. High selectivity colloidal silica slurry
JP4974447B2 (ja) * 2003-11-26 2012-07-11 株式会社フジミインコーポレーテッド 研磨用組成物及び研磨方法
US7294575B2 (en) * 2004-01-05 2007-11-13 United Microelectronics Corp. Chemical mechanical polishing process for forming shallow trench isolation structure
JP2005268666A (ja) * 2004-03-19 2005-09-29 Fujimi Inc 研磨用組成物
JP2005268664A (ja) * 2004-03-19 2005-09-29 Fujimi Inc 研磨用組成物
JP4316406B2 (ja) * 2004-03-22 2009-08-19 株式会社フジミインコーポレーテッド 研磨用組成物
JP4644434B2 (ja) * 2004-03-24 2011-03-02 株式会社フジミインコーポレーテッド 研磨用組成物
KR100582771B1 (ko) * 2004-03-29 2006-05-22 한화석유화학 주식회사 반도체 얕은 트렌치 소자 분리 공정용 화학적 기계적 연마슬러리
US20050279733A1 (en) * 2004-06-18 2005-12-22 Cabot Microelectronics Corporation CMP composition for improved oxide removal rate
US20060064335A1 (en) * 2004-08-17 2006-03-23 International Business Machines Corporation Method, system, and storage medium for performing business process modeling
JP2006086462A (ja) * 2004-09-17 2006-03-30 Fujimi Inc 研磨用組成物およびそれを用いた配線構造体の製造法
US20070218811A1 (en) * 2004-09-27 2007-09-20 Hitachi Chemical Co., Ltd. Cmp polishing slurry and method of polishing substrate
US20060088976A1 (en) * 2004-10-22 2006-04-27 Applied Materials, Inc. Methods and compositions for chemical mechanical polishing substrates
JP2006135072A (ja) * 2004-11-05 2006-05-25 Fujimi Inc 研磨方法
US20060097219A1 (en) * 2004-11-08 2006-05-11 Applied Materials, Inc. High selectivity slurry compositions for chemical mechanical polishing
TWI323741B (en) * 2004-12-16 2010-04-21 K C Tech Co Ltd Abrasive particles, polishing slurry, and producing method thereof
KR100670538B1 (ko) * 2004-12-30 2007-01-16 매그나칩 반도체 유한회사 광 특성을 향상시킬 수 있는 이미지센서 및 그 제조 방법
KR101371853B1 (ko) * 2005-01-05 2014-03-07 니타 하스 인코포레이티드 연마슬러리
KR100724287B1 (ko) * 2005-01-12 2007-06-04 제일모직주식회사 산화물 침식 특성이 우수한 금속배선 연마용 슬러리 조성물
US20060166458A1 (en) * 2005-01-26 2006-07-27 Yi-Lung Cheng Method for forming shallow trench isolation structures
JP4528164B2 (ja) * 2005-03-11 2010-08-18 関東化学株式会社 エッチング液組成物
CN101180379B (zh) * 2005-03-25 2013-07-24 气体产品与化学公司 用于含有金属离子氧化剂的化学机械抛光组合物中的二羟基烯醇化合物
WO2006119311A2 (en) * 2005-05-02 2006-11-09 Symyx Technologies, Inc. High surface area metal and metal oxide materials and methods of making same
KR100641348B1 (ko) * 2005-06-03 2006-11-03 주식회사 케이씨텍 Cmp용 슬러리와 이의 제조 방법 및 기판의 연마 방법
JP2006339594A (ja) * 2005-06-06 2006-12-14 Seimi Chem Co Ltd 半導体用研磨剤
JP5026710B2 (ja) * 2005-09-02 2012-09-19 株式会社フジミインコーポレーテッド 研磨用組成物
TWI397577B (zh) * 2005-09-02 2013-06-01 Fujimi Inc 研磨用組成物
KR100643628B1 (ko) 2005-11-04 2006-11-10 제일모직주식회사 다결정 실리콘 연마용 cmp 슬러리 조성물 및 이의 제조방법
US8512593B2 (en) * 2005-11-04 2013-08-20 Cheil Industries, Inc. Chemical mechanical polishing slurry compositions, methods of preparing the same and methods of using the same
KR100812052B1 (ko) * 2005-11-14 2008-03-10 주식회사 엘지화학 탄산세륨 분말, 산화세륨 분말, 그 제조방법, 및 이를포함하는 cmp 슬러리
US20070209287A1 (en) * 2006-03-13 2007-09-13 Cabot Microelectronics Corporation Composition and method to polish silicon nitride
JP5353238B2 (ja) * 2006-04-21 2013-11-27 日立化成株式会社 酸化物粒子の製造方法、スラリー、研磨剤および基板の研磨方法
US7510974B2 (en) * 2006-05-05 2009-03-31 United Microelectronics Corp. CMP process
CN100578739C (zh) * 2006-05-17 2010-01-06 联华电子股份有限公司 化学机械抛光的方法
US8759216B2 (en) * 2006-06-07 2014-06-24 Cabot Microelectronics Corporation Compositions and methods for polishing silicon nitride materials
US7294576B1 (en) * 2006-06-29 2007-11-13 Cabot Microelectronics Corporation Tunable selectivity slurries in CMP applications
SG139699A1 (en) * 2006-08-02 2008-02-29 Fujimi Inc Polishing composition and polishing process
US10435639B2 (en) 2006-09-05 2019-10-08 Cerion, Llc Fuel additive containing lattice engineered cerium dioxide nanoparticles
JP2010502821A (ja) 2006-09-05 2010-01-28 セリオン テクノロジー, インコーポレーテッド 内燃機関を調整する方法
US8883865B2 (en) * 2006-09-05 2014-11-11 Cerion Technology, Inc. Cerium-containing nanoparticles
US20080135520A1 (en) * 2006-12-12 2008-06-12 Tao Sun Chemical composition for chemical mechanical planarization
WO2008114972A1 (en) * 2007-03-16 2008-09-25 Lg Chem, Ltd. Method for preparing cerium carbonate powder
JP2008235481A (ja) * 2007-03-19 2008-10-02 Nippon Chem Ind Co Ltd 半導体ウエハ研磨用組成物、その製造方法、及び研磨加工方法
JP5371207B2 (ja) * 2007-06-08 2013-12-18 富士フイルム株式会社 研磨液及び研磨方法
JP2009164188A (ja) * 2007-12-28 2009-07-23 Fujimi Inc 研磨用組成物
JP2009164186A (ja) * 2007-12-28 2009-07-23 Fujimi Inc 研磨用組成物
KR101570732B1 (ko) * 2007-12-31 2015-11-20 에프엔에스테크 주식회사 화학-기계적 평탄화 패드
JP5375025B2 (ja) * 2008-02-27 2013-12-25 日立化成株式会社 研磨液
US9548211B2 (en) * 2008-12-04 2017-01-17 Cabot Microelectronics Corporation Method to selectively polish silicon carbide films
CN102101981B (zh) * 2009-12-18 2014-08-20 安集微电子(上海)有限公司 一种用于介质材料平坦化的抛光液
KR20130136593A (ko) 2010-03-12 2013-12-12 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액 및 이것들을 이용한 기판의 연마 방법
US8961815B2 (en) 2010-07-01 2015-02-24 Planar Solutions, Llc Composition for advanced node front-and back-end of line chemical mechanical polishing
EP2614122A4 (en) 2010-09-08 2014-01-15 Basf Se AQUEOUS CLEANSING COMPOSITIONS WITH N-SUBSTITUTED DIAZENIUM DIOXIDE AND / OR N'-HYDROXY DIAZENIUM OXIDE SALTS
WO2012032469A1 (en) 2010-09-08 2012-03-15 Basf Se Aqueous polishing composition and process for chemically mechanically polishing substrate materials for electrical, mechanical and optical devices
MY175638A (en) 2010-09-08 2020-07-03 Basf Se Aqueous polishing composition and process for chemically mechanically polishing substrates containing silicon oxide dielectic and polysilicon films.
US8497210B2 (en) 2010-10-04 2013-07-30 International Business Machines Corporation Shallow trench isolation chemical mechanical planarization
US9881801B2 (en) 2010-11-22 2018-01-30 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
CN103497733B (zh) 2010-11-22 2016-11-23 日立化成株式会社 悬浮液、研磨液套剂、研磨液、基板的研磨方法及基板
SG190334A1 (en) 2010-12-10 2013-06-28 Basf Se Aqueous polishing composition and process for chemically mechanically polishing substrates containing silicon oxide dielectric and polysilicon films
WO2012092361A2 (en) 2010-12-28 2012-07-05 Saint-Gobain Ceramics & Plastics, Inc. Polishing slurry including zirconia particles and a method of using the polishing slurry
CN103402705B (zh) * 2011-01-27 2017-08-08 福吉米株式会社 研磨材料和研磨用组合物
CN102956535B (zh) * 2011-08-24 2015-05-13 中芯国际集成电路制造(北京)有限公司 半导体器件及其制造方法
WO2013125445A1 (ja) 2012-02-21 2013-08-29 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
SG11201405091TA (en) 2012-02-21 2014-09-26 Hitachi Chemical Co Ltd Polishing agent, polishing agent set, and substrate polishing method
KR102034328B1 (ko) * 2012-05-22 2019-10-18 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기체의 연마 방법 및 기체
US9932497B2 (en) 2012-05-22 2018-04-03 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
JP5943074B2 (ja) * 2012-05-22 2016-06-29 日立化成株式会社 スラリー、研磨液セット、研磨液及び基体の研磨方法
KR102034330B1 (ko) 2012-05-22 2019-10-18 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기체의 연마 방법 및 기체
CN103896321A (zh) * 2012-12-28 2014-07-02 上海新安纳电子科技有限公司 一种氧化铈复合颗粒及其制备方法和应用
US8920667B2 (en) 2013-01-30 2014-12-30 Cabot Microelectronics Corporation Chemical-mechanical polishing composition containing zirconia and metal oxidizer
US8906252B1 (en) * 2013-05-21 2014-12-09 Cabot Microelelctronics Corporation CMP compositions selective for oxide and nitride with high removal rate and low defectivity
US9281210B2 (en) * 2013-10-10 2016-03-08 Cabot Microelectronics Corporation Wet-process ceria compositions for polishing substrates, and methods related thereto
US9279067B2 (en) 2013-10-10 2016-03-08 Cabot Microelectronics Corporation Wet-process ceria compositions for polishing substrates, and methods related thereto
WO2015058037A1 (en) 2013-10-17 2015-04-23 Cerion, Llc Malic acid stabilized nanoceria particles
EP3161098B1 (en) * 2014-06-25 2022-10-26 CMC Materials, Inc. Tungsten chemical-mechanical polishing composition
SG11201610533WA (en) * 2014-06-25 2017-01-27 Cabot Microelectronics Corp Colloidal silica chemical-mechanical polishing composition
CN104403575B (zh) * 2014-12-23 2016-09-21 包头市华辰稀土材料有限公司 一种高精度氧化铝抛光粉的制备方法
US10414947B2 (en) * 2015-03-05 2019-09-17 Cabot Microelectronics Corporation Polishing composition containing ceria particles and method of use
KR102583709B1 (ko) * 2015-03-10 2023-09-26 가부시끼가이샤 레조낙 연마제, 연마제용 저장액 및 연마 방법
CN108076668B (zh) 2015-09-30 2019-05-14 福吉米株式会社 研磨用组合物
JP7306608B2 (ja) 2016-03-11 2023-07-11 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド 高度な流体処理方法およびシステム
WO2018012175A1 (ja) 2016-07-15 2018-01-18 株式会社フジミインコーポレーテッド 研磨用組成物の製造方法および研磨方法
US11111412B2 (en) 2016-07-15 2021-09-07 Fujimi Incorporated Polishing composition, method for producing polishing composition, and polishing method
CN106381068A (zh) * 2016-08-31 2017-02-08 常熟市光学仪器有限责任公司 用于加工无色光学玻璃的抛光液
WO2019043819A1 (ja) * 2017-08-30 2019-03-07 日立化成株式会社 スラリ及び研磨方法
US10759970B2 (en) * 2018-12-19 2020-09-01 Fujifilm Electronic Materials U.S.A., Inc. Polishing compositions and methods of using same
US10763119B2 (en) * 2018-12-19 2020-09-01 Fujifilm Electronic Materials U.S.A., Inc. Polishing compositions and methods of using same
US11326076B2 (en) 2019-01-25 2022-05-10 Versum Materials Us, Llc Shallow trench isolation (STI) chemical mechanical planarization (CMP) polishing with low abrasive concentration and a combination of chemical additives
US11608451B2 (en) 2019-01-30 2023-03-21 Versum Materials Us, Llc Shallow trench isolation (STI) chemical mechanical planarization (CMP) polishing with tunable silicon oxide and silicon nitride removal rates
US20200270479A1 (en) 2019-02-26 2020-08-27 Versum Materials Us, Llc Shallow Trench Isolation Chemical And Mechanical Polishing Slurry
CN114341286B (zh) 2019-08-30 2023-10-20 圣戈本陶瓷及塑料股份有限公司 用于进行材料去除操作的组合物和方法
KR102765340B1 (ko) 2019-08-30 2025-02-13 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. 재료 제거 작업을 수행하기 위한 유체 조성물 및 방법
JP7650275B2 (ja) 2019-12-04 2025-03-24 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー 高い酸化物膜の除去速度のシャロートレンチアイソレーション(sti)化学機械平坦化(cmp)研磨
CN113122139B (zh) * 2019-12-30 2024-04-05 安集微电子科技(上海)股份有限公司 一种化学机械抛光液及其使用方法
IL298552A (en) 2020-05-29 2023-01-01 Versum Mat Us Llc cmp polishing compositions with few oxides for shallow trench insulation applications and methods for their preparation
CN115386300B (zh) * 2022-08-22 2023-09-19 万华化学集团电子材料有限公司 一种适用于硅晶圆再生的抛光组合物、制备方法及其应用
CN116948531A (zh) * 2023-05-10 2023-10-27 深圳市拉达特科技有限公司 一种集成电路铜化学机械抛光组合物及其制备方法、用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383857A (en) * 1980-05-28 1983-05-17 The United States Of America As Represented By The United States Department Of Energy Attack polish for nickel-base alloys and stainless steels
EP0266233A1 (fr) * 1986-09-26 1988-05-04 Rhone-Poulenc Chimie Procédé de polissage de verres organiques avec une composition de polissage à base de cérium
US4959113A (en) * 1989-07-31 1990-09-25 Rodel, Inc. Method and composition for polishing metal surfaces
US5114437A (en) * 1990-08-28 1992-05-19 Sumitomo Chemical Co., Ltd. Polishing composition for metallic material

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944836A (en) * 1985-10-28 1990-07-31 International Business Machines Corporation Chem-mech polishing method for producing coplanar metal/insulator films on a substrate
US4752628A (en) * 1987-05-15 1988-06-21 Nalco Chemical Company Concentrated lapping slurries
US4867757A (en) * 1988-09-09 1989-09-19 Nalco Chemical Company Lapping slurry compositions with improved lap rate
JP2868885B2 (ja) * 1989-11-09 1999-03-10 新日本製鐵株式会社 シリコンウェハの研磨液及び研磨方法
US5244534A (en) * 1992-01-24 1993-09-14 Micron Technology, Inc. Two-step chemical mechanical polishing process for producing flush and protruding tungsten plugs
US5264010A (en) * 1992-04-27 1993-11-23 Rodel, Inc. Compositions and methods for polishing and planarizing surfaces
US5225034A (en) * 1992-06-04 1993-07-06 Micron Technology, Inc. Method of chemical mechanical polishing predominantly copper containing metal layers in semiconductor processing
US5575837A (en) * 1993-04-28 1996-11-19 Fujimi Incorporated Polishing composition
US5391258A (en) * 1993-05-26 1995-02-21 Rodel, Inc. Compositions and methods for polishing
US5389352A (en) * 1993-07-21 1995-02-14 Rodel, Inc. Oxide particles and method for producing them
US5382272A (en) * 1993-09-03 1995-01-17 Rodel, Inc. Activated polishing compositions
US5340370A (en) * 1993-11-03 1994-08-23 Intel Corporation Slurries for chemical mechanical polishing
JP3397501B2 (ja) * 1994-07-12 2003-04-14 株式会社東芝 研磨剤および研磨方法
JP3430733B2 (ja) * 1994-09-30 2003-07-28 株式会社日立製作所 研磨剤及び研磨方法
KR960041316A (ko) * 1995-05-22 1996-12-19 고사이 아키오 연마용 입상체, 이의 제조방법 및 이의 용도
US5700383A (en) * 1995-12-21 1997-12-23 Intel Corporation Slurries and methods for chemical mechanical polish of aluminum and titanium aluminide
US5863838A (en) * 1996-07-22 1999-01-26 Motorola, Inc. Method for chemically-mechanically polishing a metal layer
KR19980019046A (ko) * 1996-08-29 1998-06-05 고사이 아키오 연마용 조성물 및 이의 용도(Abrasive composition and use of the same)
US5783489A (en) * 1996-09-24 1998-07-21 Cabot Corporation Multi-oxidizer slurry for chemical mechanical polishing
US5773364A (en) * 1996-10-21 1998-06-30 Motorola, Inc. Method for using ammonium salt slurries for chemical mechanical polishing (CMP)
US5759917A (en) * 1996-12-30 1998-06-02 Cabot Corporation Composition for oxide CMP
US6083419A (en) * 1997-07-28 2000-07-04 Cabot Corporation Polishing composition including an inhibitor of tungsten etching
US6063306A (en) * 1998-06-26 2000-05-16 Cabot Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrate
US20030104770A1 (en) * 2001-04-30 2003-06-05 Arch Specialty Chemicals, Inc. Chemical mechanical polishing slurry composition for polishing conductive and non-conductive layers on semiconductor wafers
US6974777B2 (en) * 2002-06-07 2005-12-13 Cabot Microelectronics Corporation CMP compositions for low-k dielectric materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383857A (en) * 1980-05-28 1983-05-17 The United States Of America As Represented By The United States Department Of Energy Attack polish for nickel-base alloys and stainless steels
EP0266233A1 (fr) * 1986-09-26 1988-05-04 Rhone-Poulenc Chimie Procédé de polissage de verres organiques avec une composition de polissage à base de cérium
US4959113A (en) * 1989-07-31 1990-09-25 Rodel, Inc. Method and composition for polishing metal surfaces
US4959113C1 (en) * 1989-07-31 2001-03-13 Rodel Inc Method and composition for polishing metal surfaces
US5114437A (en) * 1990-08-28 1992-05-19 Sumitomo Chemical Co., Ltd. Polishing composition for metallic material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080296A1 (fr) * 2000-04-13 2001-10-25 Showa Denko K.K. Compose de polissage pour le polissage de dispositif a semiconducteur et procede de fabrication de dispositif a semiconducteur dans lesquel ledit compose est utilise
KR100826725B1 (ko) * 2000-04-13 2008-04-30 쇼와 덴코 가부시키가이샤 반도체 장치 연마용 연마제 조성물 및 이것을 이용한반도체 장치의 제조 방법
KR100863088B1 (ko) * 2000-04-13 2008-10-13 쇼와 덴코 가부시키가이샤 반도체 장치 연마용 연마제 조성물 및 이것을 이용한반도체 장치의 제조 방법
JPWO2002067309A1 (ja) * 2001-02-20 2004-06-24 日立化成工業株式会社 研磨剤及び基板の研磨方法
US6589100B2 (en) 2001-09-24 2003-07-08 Cabot Microelectronics Corporation Rare earth salt/oxidizer-based CMP method
KR100474540B1 (ko) * 2002-06-24 2005-03-10 주식회사 하이닉스반도체 반도체소자의 금속배선 콘택플러그 형성방법
US7253111B2 (en) 2004-04-21 2007-08-07 Rohm And Haas Electronic Materials Cmp Holding, Inc. Barrier polishing solution
EP3049216A4 (en) * 2013-09-24 2017-07-26 Cabot Microelectronics Corporation Chemical-mechanical planarization of polymer films

Also Published As

Publication number Publication date
CN1168794C (zh) 2004-09-29
ATE264378T1 (de) 2004-04-15
US5759917A (en) 1998-06-02
EP0963419A1 (en) 1999-12-15
US20040089634A1 (en) 2004-05-13
AU5532898A (en) 1998-07-31
KR20000069823A (ko) 2000-11-25
US6689692B1 (en) 2004-02-10
JP5038199B2 (ja) 2012-10-03
US6984588B2 (en) 2006-01-10
JP2001507739A (ja) 2001-06-12
EP0963419B1 (en) 2004-04-14
JP2008199043A (ja) 2008-08-28
DE69728691T2 (de) 2004-08-19
IL130720A0 (en) 2000-06-01
DE69728691D1 (de) 2004-05-19
CN1248994A (zh) 2000-03-29
TW505690B (en) 2002-10-11

Similar Documents

Publication Publication Date Title
EP0963419B1 (en) Composition for oxide cmp
US6533832B2 (en) Chemical mechanical polishing slurry and method for using same
TWI452124B (zh) Cmp用研磨液及使用其的研磨方法
JP3616802B2 (ja) スラリー組成物およびそれを用いる化学機械的研磨方法
KR101419156B1 (ko) Cmp용 연마액 및 이것을 사용한 연마 방법
TW201632605A (zh) Cmp研磨液、基板的研磨方法及電子零件
EP0846741A1 (en) Polishing composition
US20050198912A1 (en) Polishing slurry, method of producing same, and method of polishing substrate
US7364600B2 (en) Slurry for CMP and method of polishing substrate using same
JP6551053B2 (ja) Cmp用研磨液及びこれを用いた研磨方法
KR100341141B1 (ko) 반도체 cmp 공정의 산화막 연마용 슬러리 및 이의제조방법
KR101613359B1 (ko) 화학적 기계적 연마용 나노 세리아 슬러리 조성물 및 이의 제조방법
JP4707864B2 (ja) 研磨用組成物およびそれを用いた研磨方法
JPH10172934A (ja) 研磨用組成物
KR100497410B1 (ko) 연마성능이 개선된 산화막 연마용 슬러리 조성물
WO2016021325A1 (ja) Cmp用研磨液及びこれを用いた研磨方法
KR100466422B1 (ko) Cmp용 조성물
HK1027590A (en) Composition for oxide cmp
JP2001002415A (ja) Cmp研磨剤及び基板の研磨方法
KR100366304B1 (ko) 반도체 웨이퍼 절연층의 화학적 기계적 연마용 조성물
JP6938855B2 (ja) Cmp用研磨液及びこれを用いた研磨方法
HK1037002A (en) Chemical mechanical polishing slurry and method for using same
HK1021553A (en) Multi-oxidizer slurry for chemical mechanical polishing

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97181972.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1998 530138

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997005985

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997951772

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997951772

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997005985

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019997005985

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997951772

Country of ref document: EP