Connect public, paid and private patent data with Google Patents Public Datasets

Surgical instrument having recording capabilities

Download PDF

Info

Publication number
US8172124B2
US8172124B2 US13021105 US201113021105A US8172124B2 US 8172124 B2 US8172124 B2 US 8172124B2 US 13021105 US13021105 US 13021105 US 201113021105 A US201113021105 A US 201113021105A US 8172124 B2 US8172124 B2 US 8172124B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
trigger
firing
sensor
end
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13021105
Other versions
US20110121052A1 (en )
Inventor
Frederick E. Shelton, IV
John N. Ouwerkerk
Eugene L. Timperman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon LLC
Original Assignee
Ethicon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date
Family has litigation

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/10Surgical instruments, devices or methods, e.g. tourniquets for applying or removing wound clamps, e.g. containing only one clamp or staple; Wound clamp magazines
    • A61B17/105Wound clamp magazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B17/1114Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis of the digestive tract, e.g. bowels or oesophagus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B17/115Staplers for performing anastomosis in a single operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B17/115Staplers for performing anastomosis in a single operation
    • A61B17/1155Circular staplers comprising a plurality of staples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00199Electrical control of surgical instruments with a console, e.g. a control panel with a display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00221Electrical control of surgical instruments with wireless transmission of data, e.g. by infrared radiation or radiowaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00353Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery one mechanical instrument performing multiple functions, e.g. cutting and grasping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0042Surgical instruments, devices or methods, e.g. tourniquets with special provisions for gripping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00685Archimedes screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00734Aspects not otherwise provided for battery operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07257Stapler heads characterised by its anvil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07271Stapler heads characterised by its cartridge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07278Stapler heads characterised by its sled or its staple holder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07285Stapler heads characterised by its cutter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • A61B2017/2943Toothed members, e.g. rack and pinion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/033Abutting means, stops, e.g. abutting on tissue or skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/067Measuring instruments not otherwise provided for for measuring angles
    • A61B2090/069Measuring instruments not otherwise provided for for measuring angles using a plummet or weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0803Counting the number of times an instrument is used
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • A61B2090/0811Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods

Abstract

A surgical instrument. The surgical instrument has an end effector and a trigger in communication with the end effector. The surgical instrument also has a first sensor and an externally accessible memory device in communication with the first sensor. The first sensor has an output that represents a first condition of either the trigger or the end effector. The memory device is configured to record the output of the first sensor. In various embodiments, memory device may include an output port and/or a removable storage medium.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation patent application of and claims the benefit of U.S. patent application Ser. No. 12/949,099, filed on Nov. 18, 2010, entitled “Surgical Instrument Having Recording Capabilities” to Frederick E. Shelton, IV, John N. Ouwerkerk, and Eugene L. Timperman, which is a continuation of and claims the benefit of U.S. patent application Ser. No. 11/343,803, filed on Jan. 31, 2006, entitled “Surgical Instrument Having Recording Capabilities” to Frederick E. Shelton, IV, John N. Ouwerkerk, and Eugene L. Timperman, now U.S. Pat. No. 7,845,537, which issued on Dec. 7, 2010, which is incorporated herein by reference in its entirety.

The present application is related to the following U.S. patent applications, which are incorporated herein by reference:

  • U.S. patent application Ser. No. 11/343,498, filed Jan. 31, 2006, now U.S. Pat. No. 7,766,210, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH USER FEEDBACK SYSTEM; Inventors: Frederick E. Shelton, IV, John Ouwerkerk and Jerome R. Morgan
  • U.S. patent application Ser. No. 11/343,573, filed Jan. 31, 2006, now U.S. Pat. No. 7,416,101, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH LOADING FORCE FEEDBACK; Inventors: Frederick E. Shelton, IV, John N. Ouwerkerk, Jerome R. Morgan, and Jeffrey S. Swayze
  • U.S. patent application Ser. No. 11/344,035, filed Jan. 31, 2006, now U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK; Inventors: Frederick E. Shelton, IV, John N. Ouwerkerk, Jerome R. Morgan, and Jeffrey S. Swayze
  • U.S. patent application Ser. No. 11/343,447, filed Jan. 31, 2006, now U.S. Pat. No. 7,770,775, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH ADAPTIVE USER FEEDBACK; Inventors: Frederick E. Shelton, IV, John N. Ouwerkerk, and Jerome R. Morgan
  • U.S. patent application Ser. No. 11/343,562, filed Jan. 31, 2006, now U.S. Pat. No. 7,568,603, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH ARTICULATABLE END EFFECTOR; Inventors: Frederick E. Shelton, IV and Christoph L. Gillum
  • U.S. patent application Ser. No. 11/344,024, filed Jan. 31, 2006, now U.S. Patent Publication No. 2007/0175953, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH MECHANICAL CLOSURE SYSTEM; Inventors: Frederick E. Shelton, IV and Christoph L. Gillum
  • U.S. patent application Ser. No. 11/343,321, filed Jan. 31, 2006, now U.S. Patent Publication No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM; Inventors: Frederick E. Shelton, IV and Kevin R. Doll
  • U.S. patent application Ser. No. 11/343,563, filed Jan. 31, 2006, now U.S. Patent Publication No. 2007/0175951, entitled GEARING SELECTOR FOR A POWERED SURGICAL CUTTING AND FASTENING STAPLING INSTRUMENT; Inventors: Frederick E. Shelton, IV, Jeffrey S. Swayze, Eugene L. Timperman
  • U.S. patent application Ser. No. 11/344,020, filed Jan. 31, 2006, now U.S. Pat. No. 7,464,846, entitled SURGICAL INSTRUMENT HAVING A REMOVABLE BATTERY; Inventors: Frederick E. Shelton, IV, Kevin R. Doll, Jeffrey S. Swayze and Eugene Timperman
  • U.S. patent application Ser. No. 11/343,439, filed Jan. 31, 2006, now U.S. Pat. No. 7,644,848, entitled ELECTRONIC LOCKOUTS AND SURGICAL INSTRUMENT INCLUDING SAME; Inventors: Jeffrey S. Swayze, Frederick E. Shelton, IV, Kevin R. Doll
  • U.S. patent application Ser. No. 11/343,547, filed Jan. 31, 2006, now U.S. Pat. No. 7,753,904, entitled ENDOSCOPIC SURGICAL INSTRUMENT WITH A HANDLE THAT CAN ARTICULATE WITH RESPECT TO THE SHAFT; Inventors: Frederick E. Shelton, IV, Jeffrey S. Swayze, Mark S. Ortiz, and Leslie M. Fugikawa
  • U.S. patent application Ser. No. 11/344,021, filed Jan. 31, 2006, now U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING A ROTARY FIRING AND CLOSURE SYSTEM WITH PARALLEL CLOSURE AND ANVIL ALIGNMENT COMPONENTS; Inventors: Frederick E. Shelton, IV, Stephen J. Balek and Eugene L. Timperman
  • U.S. patent application Ser. No. 11/343,546, filed Jan. 31, 2006, now U.S. Patent Publication No. 2007/0175950, entitled DISPOSABLE STAPLE CARTRIDGE HAVING AN ANVIL WITH TISSUE LOCATOR FOR USE WITH A SURGICAL CUTTING AND FASTENING INSTRUMENT AND MODULAR END EFFECTOR SYSTEM THEREFOR; Inventors: Frederick E. Shelton, IV, Michael S. Cropper, Joshua M. Broehl, Ryan S. Crisp, Jamison J. Float, Eugene L. Timperman
  • U.S. patent application Ser. No. 11/343,545, filed Jan. 31, 2006, now U.S. Patent Publication No. 2007/0175949, entitled SURGICAL INSTRUMENT HAVING A FEEDBACK SYSTEM; Inventors: Frederick E. Shelton, IV, Jerome R. Morgan, Kevin R. Doll, Jeffrey S. Swayze and Eugene Timperman
  • U.S. patent application Ser. No. 13/021,121, filed Feb. 3, 2011, now U.S. Patent Publication No. 2001/017860, entitled SURGICAL INSTRUMENT WITH FORCE-FEEDBACK CAPABILITIES; Inventors: Frederick E. Shelton, IV, John N. Ouwerkerk, Jerome R. Morgan and Jeffrey S. Swayze
BACKGROUND

The present invention relates in general to surgical instruments, and more particularly to minimally invasive surgical instruments capable of recording various conditions of the instrument.

Endoscopic surgical instruments are often preferred over traditional open surgical devices because a smaller incision tends to reduce the post-operative recovery time and complications. Consequently, significant development has gone into a range of endoscopic surgical instruments that are suitable for precise placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors engage the tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, staplers, clip applier, access device, drug/gene therapy delivery device, and energy device using ultrasound, RF, laser, etc.).

Known surgical staplers include an end effector that simultaneously makes a longitudinal incision in tissue and applies lines of staples on opposing sides of the incision. The end effector includes a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparoscopic applications, are capable of passing through a cannula passageway. One of the jaw members receives a staple cartridge having at least two laterally spaced rows of staples. The other jaw member defines an anvil having staple-forming pockets aligned with the rows of staples in the cartridge. The instrument includes a plurality of reciprocating wedges which, when driven distally, pass through openings in the staple cartridge and engage drivers supporting the staples to effect the firing of the staples toward the anvil.

An example of a surgical stapler suitable for endoscopic applications is described in U.S. Pat. No. 5,465,895, entitled “SURGICAL STAPLER INSTRUMENT” to Knodel et al., which discloses an endocutter with distinct closing and firing actions. A clinician using this device is able to close the jaw members upon tissue to position the tissue prior to firing. Once the clinician has determined that the jaw members are properly gripping tissue, the clinician can then fire the surgical stapler with a single firing stroke, or multiple firing strokes, depending on the device. Firing the surgical stapler causes severing and stapling of the tissue. The simultaneous severing and stapling avoids complications that may arise when performing such actions sequentially with different surgical tools that respectively only sever and staple.

One specific advantage of being able to close upon tissue before firing is that the clinician is able to verify via an endoscope that the desired location for the cut has been achieved, including a sufficient amount of tissue has been captured between opposing jaws. Otherwise, opposing jaws may be drawn too close together, especially pinching at their distal ends, and thus not effectively forming closed staples in the severed tissue. At the other extreme, an excessive amount of clamped tissue may cause binding and an incomplete firing.

When endoscopic surgical instruments fail, they are often returned to the manufacturer, or other entity, for analysis of the failure. If the failure resulted in a critical class of defect in the instrument, it is necessary for the manufacturer to determine the cause of the failure and determine whether a design change is required. In that case, the manufacturer may spend many hundreds of man-hours analyzing a failed instrument and attempting to reconstruct the conditions under which it failed based only on the damage to the instrument. It can be expensive and very challenging to analyze instrument failures in this way. Also, many of these analyses simply conclude that the failure was due to improper use of the instrument.

SUMMARY

In one general aspect, the present invention is directed to a surgical instrument. The surgical instrument has an end effector and a trigger in communication with the end effector. The surgical instrument also has a first sensor and an externally accessible memory device in communication with the first sensor. The first sensor has an output that represents a first condition of either the trigger or the end effector. The memory device is configured to record the output of the first sensor. In various embodiments, memory device may include an output port and/or a removable storage medium.

Also, in various embodiments, the output of the first sensor represents a condition of the end effector and the instrument further comprises a second sensor with an output representing a condition of the trigger. The memory device is configured to record the output of the first sensor and the second sensor.

In another general aspect, the present invention is directed to a method of recording the state of a surgical instrument. The method comprises the step of monitoring outputs of a plurality of sensors. The outputs represent conditions of the surgical instrument. The method also comprises the step of recording the outputs to a memory device when at least one of the conditions of the surgical instrument changes. In various embodiments, the method may also comprise the step of providing the recorded outputs of the plurality of sensors to an outside device.

DRAWINGS

Various embodiments of the present invention are described herein by way of example in conjunction with the following figures, wherein

FIGS. 1 and 2 are perspective views of a surgical cutting and fastening instrument according to various embodiments of the present invention;

FIGS. 3-5 are exploded views of an end effector and shaft of the instrument according to various embodiments of the present invention;

FIG. 6 is a side view of the end effector according to various embodiments of the present invention;

FIG. 7 is an exploded view of the handle of the instrument according to various embodiments of the present invention;

FIGS. 8 and 9 are partial perspective views of the handle according to various embodiments of the present invention;

FIG. 10 is a side view of the handle according to various embodiments of the present invention;

FIGS. 10A and 10B illustrate a proportional sensor that may be used according to various embodiments of the present invention;

FIG. 11 is a schematic diagram of a circuit used in the instrument according to various embodiments of the present invention;

FIGS. 12-13 are side views of the handle according to other embodiments of the present invention;

FIGS. 14-22 illustrate different mechanisms for locking the closure trigger according to various embodiments of the present invention;

FIGS. 23A-B show a universal joint (“u-joint”) that may be employed at the articulation point of the instrument according to various embodiments of the present invention;

FIGS. 24A-B shows a torsion cable that may be employed at the articulation point of the instrument according to various embodiments of the present invention;

FIGS. 25-31 illustrate a surgical cutting and fastening instrument with power assist according to another embodiment of the present invention;

FIGS. 32-36 illustrate a surgical cutting and fastening instrument with power assist according to yet another embodiment of the present invention;

FIGS. 37-40 illustrate a surgical cutting and fastening instrument with tactile feedback to embodiments of the present invention;

FIG. 41 illustrates an exploded view of an end effector and shaft of the instrument according to various embodiments of the present invention;

FIG. 42 illustrates a side view of the handle of a mechanically instrument according to various embodiments of the present invention;

FIG. 43 illustrates an exploded view of the handle of the mechanically actuated instrument of FIG. 42;

FIG. 44 illustrates a block diagram of a recording system for recording various conditions of the instrument according to various embodiments of the present invention;

FIGS. 45-46 illustrate cut away side views of a handle of the instrument showing various sensors according to various embodiments of the present invention;

FIG. 47 illustrates the end effector of the instrument showing various sensors according to various embodiments of the present invention;

FIG. 48 illustrates a firing bar of the instrument including a sensor according to various embodiments of the present invention;

FIG. 49 illustrates a side view of the handle, end effector, and firing bar of the instrument showing a sensor according to various embodiments of the present invention;

FIG. 50 illustrates an exploded view of the staple channel and portions of a staple cartridge of the instrument showing various sensors according to various embodiments of the present invention;

FIG. 51 illustrates a top down view of the staple channel of the instrument showing various sensors according to various embodiments of the present invention;

FIGS. 52A and 52B illustrate a flow chart showing a method for operating the instrument according to various embodiments; and

FIG. 53 illustrates a memory chart showing exemplary recorded conditions of the instrument according to various embodiments of the present invention.

DETAILED DESCRIPTION

FIGS. 1 and 2 depict a surgical cutting and fastening instrument 10 according to various embodiments of the present invention. The illustrated embodiment is an endoscopic surgical instrument 10 and in general, the embodiments of the instrument 10 described herein are endoscopic surgical cutting and fastening instruments. It should be noted, however, that according to other embodiments of the present invention, the instrument 10 may be a non-endoscopic surgical cutting instrument, such as a laproscopic instrument.

The surgical instrument 10 depicted in FIGS. 1 and 2 comprises a handle 6, a shaft 8, and an articulating end effector 12 pivotally connected to the shaft 8 at an articulation pivot 14. An articulation control 16 may be provided adjacent to the handle 6 to effect rotation of the end effector 12 about the articulation pivot 14. It will be appreciated that various embodiments may include a non-pivoting end effector, and therefore may not have an articulation pivot 14 or articulation control 16. Also, in the illustrated embodiment, the end effector 12 is configured to act as an endocutter for clamping, severing and stapling tissue, although, in other embodiments, different types of end effectors may be used, such as end effectors for other types of surgical devices, such as graspers, cutters, staplers, clip appliers, access devices, drug/gene therapy devices, ultrasound, RF or laser devices, etc.

The handle 6 of the instrument 10 may include a closure trigger 18 and a firing trigger 20 for actuating the end effector 12. It will be appreciated that instruments having end effectors directed to different surgical tasks may have different numbers or types of triggers or other suitable controls for operating the end effector 12. The end effector 12 is shown separated from the handle 6 by a preferably elongate shaft 8. In one embodiment, a clinician or operator of the instrument 10 may articulate the end effector 12 relative to the shaft 8 by utilizing the articulation control 16, as described in more detail in pending U.S. patent application Ser. No. 11/329,020, filed Jan. 10, 2006, entitled “Surgical Instrument Having An Articulating End Effector,” by Geoffrey C. Hueil et al., which is incorporated herein by reference.

The end effector 12 includes in this example, among other things, a staple channel 22 and a pivotally translatable clamping member, such as an anvil 24, which are maintained at a spacing that assures effective stapling and severing of tissue clamped in the end effector 12. The handle 6 includes a pistol grip 26 toward which a closure trigger 18 is pivotally drawn by the clinician to cause clamping or closing of the anvil 24 towards the staple channel 22 of the end effector 12 to thereby clamp tissue positioned between the anvil 24 and channel 22. The firing trigger 20 is farther outboard of the closure trigger 18. Once the closure trigger 18 is locked in the closure position as further described below, the firing trigger 20 may rotate slightly toward the pistol grip 26 so that it can be reached by the operator using one hand. Then the operator may pivotally draw the firing trigger 20 toward the pistol grip 26 to cause the stapling and severing of clamped tissue in the end effector 12. In other embodiments, different types of clamping members besides the anvil 24 could be used, such as, for example, an opposing jaw, etc.

It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping the handle 6 of an instrument 10. Thus, the end effector 12 is distal with respect to the more proximal handle 6. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical” and “horizontal” are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.

The closure trigger 18 may be actuated first. Once the clinician is satisfied with the positioning of the end effector 12, the clinician may draw back the closure trigger 18 to its fully closed, locked position proximate to the pistol grip 26. The firing trigger 20 may then be actuated. The firing trigger 20 returns to the open position (shown in FIGS. 1 and 2) when the clinician removes pressure, as described more fully below. A release button on the handle 6, when depressed may release the locked closure trigger 18. The release button may be implemented in various forms such as, for example, release button 30 shown in FIGS. 42-43, slide release button 160 shown in FIG. 14, and/or button 172 shown in FIG. 16.

FIGS. 3-6 show embodiments of a rotary-driven end effector 12 and shaft 8 according to various embodiments. FIG. 3 is an exploded view of the end effector 12 according to various embodiments. As shown in the illustrated embodiment, the end effector 12 may include, in addition to the previously-mentioned channel 22 and anvil 24, a cutting instrument 32, a sled 33, a staple cartridge 34 that is removably seated in the channel 22, and a helical screw shaft 36. The cutting instrument 32 may be, for example, a knife. The anvil 24 may be pivotably opened and closed at pivot pins 25 connected to the proximate end of the channel 22. The anvil 24 may also include a tab 27 at its proximate end that is inserted into a component of the mechanical closure system (described further below) to open and close the anvil 24. When the closure trigger 18 is actuated, that is, drawn in by a user of the instrument 10, the anvil 24 may pivot about the pivot pins 25 into the clamped or closed position. If clamping of the end effector 12 is satisfactory, the operator may actuate the firing trigger 20, which, as explained in more detail below, causes the knife 32 and sled 33 to travel longitudinally along the channel 22, thereby cutting tissue clamped within the end effector 12. The movement of the sled 33 along the channel 22 causes the staples (not shown) of the staple cartridge 34 to be driven through the severed tissue and against the closed anvil 24, which turns the staples to fasten the severed tissue. In various embodiments, the sled 33 may be an integral component of the cartridge 34. U.S. Pat. No. 6,978,921, entitled “SURGICAL STAPLING INSTRUMENT INCORPORATING AN E-BEAM FIRING MECHANISM” to Shelton, IV et al., which is incorporated herein by reference, provides more details about such two-stroke cutting and fastening instruments. The sled 33 may be part of the cartridge 34, such that when the knife 32 retracts following the cutting operation, the sled 33 does not retract.

It should be noted that although the embodiments of the instrument 10 described herein employ an end effector 12 that staples the severed tissue, in other embodiments different techniques for fastening or sealing the severed tissue may be used. For example, end effectors that use RF energy or adhesives to fasten the severed tissue may also be used. U.S. Pat. No. 5,709,680 entitled “ELECTROSURGICAL HEMOSTATIC DEVICE” to Yates et al., and U.S. Pat. No. 5,688,270 entitled “ELECTOSURGICAL HEMOSTATIC DEVICE WITH RECESSED AND/OR OFFSET ELECTRODES” to Yates et al. which are incorporated herein by reference, disclose an endoscopic cutting instrument that uses RF energy to seal the severed tissue. U.S. patent application Ser. No. 11/267,811 to Jerome R. Morgan, et. al, and U.S. patent application Ser. No. 11/267,383 to Frederick E. Shelton, IV, et. al, which are also incorporated herein by reference, disclose cutting instruments that uses adhesives to fasten the severed tissue. Accordingly, although the description herein refers to cutting/stapling operations and the like below, it should be recognized that this is an exemplary embodiment and is not meant to be limiting. Other tissue fastening techniques may also be used.

FIGS. 4 and 5 are exploded views and FIG. 6 is a side view of the end effector 12 and shaft 8 according to various embodiments. As shown in the illustrated embodiment, the shaft 8 may include a proximate closure tube 40 and a distal closure tube 42 pivotably linked by a pivot link 44. The distal closure tube 42 includes an opening 45 into which the tab 27 on the anvil 24 is inserted in order to open and close the anvil 24, as further described below. Disposed inside the closure tubes 40, 42 may be a proximate spine tube 46. Disposed inside the proximate spine tube 46 may be a main rotational (or proximate) drive shaft 48 that communicates with a secondary (or distal) drive shaft 50 via a bevel gear assembly 52. The secondary drive shaft 50 is connected to a drive gear 54 that engages a proximate drive gear 56 of the helical screw shaft 36. The vertical bevel gear 52 b may sit and pivot in an opening 57 in the distal end of the proximate spine tube 46. A distal spine tube 58 may be used to enclose the secondary drive shaft 50 and the drive gears 54, 56. Collectively, the main drive shaft 48, the secondary drive shaft 50, and the articulation assembly (e.g., the bevel gear assembly 52 a-c) are sometimes referred to herein as the “main drive shaft assembly.”

A bearing 38, positioned at a distal end of the staple channel 22, receives the helical drive screw 36, allowing the helical drive screw 36 to freely rotate with respect to the channel 22. The helical screw shaft 36 may interface a threaded opening (not shown) of the knife 32 such that rotation of the shaft 36 causes the knife 32 to translate distally or proximately (depending on the direction of the rotation) through the staple channel 22. Accordingly, when the main drive shaft 48 is caused to rotate by actuation of the firing trigger 20 (as explained in more detail below), the bevel gear assembly 52 a-c causes the secondary drive shaft 50 to rotate, which in turn, because of the engagement of the drive gears 54, 56, causes the helical screw shaft 36 to rotate, which causes the knife driving member 32 to travel longitudinally along the channel 22 to cut any tissue clamped within the end effector 12. The sled 33 may be made of, for example, plastic, and may have a sloped distal surface. As the sled 33 traverses the channel 22, the sloped forward surface may push up or drive the staples in the staple cartridge through the clamped tissue and against the anvil 24. The anvil 24 turns the staples, thereby stapling the severed tissue. When the knife 32 is retracted, the knife 32 and sled 33 may become disengaged, thereby leaving the sled 33 at the distal end of the channel 22.

As described above, because of the lack of user feedback for the cutting/stapling operation, there is a general lack of acceptance among physicians of motor-driven endocutters where the cutting/stapling operation is actuated by merely pressing a button. In contrast, embodiments of the present invention provide a motor-driven endocutter with user-feedback of the deployment, force and/or position of the cutting instrument 32 in end effector 12.

FIGS. 7-10 illustrate an exemplary embodiment of a motor-driven endocutter, and in particular the handle thereof, that provides user-feedback regarding the deployment and loading force of the cutting instrument 32 in the end effector 12. In addition, the embodiment may use power provided by the user in retracting the firing trigger 20 to power the device (a so-called “power assist” mode). The embodiment may be used with the rotary driven end effector 12 and shaft 8 embodiments described above. As shown in the illustrated embodiment, the handle 6 includes exterior lower side pieces 59, 60 and exterior upper side pieces 61, 62 that fit together to form, in general, the exterior of the handle 6. A battery 64, such as a Li ion battery, may be provided in the pistol grip portion 26 of the handle 6. The battery 64 powers a motor 65 disposed in an upper portion of the pistol grip portion 26 of the handle 6. According to various embodiments, the motor 65 may be a DC brushed driving motor having a maximum rotation of, approximately, 5000 RPM. The motor 65 may drive a 90° bevel gear assembly 66 comprising a first bevel gear 68 and a second bevel gear 70. The bevel gear assembly 66 may drive a planetary gear assembly 72. The planetary gear assembly 72 may include a pinion gear 74 connected to a drive shaft 76. The pinion gear 74 may drive a mating ring gear 78 that drives a helical gear drum 80 via a drive shaft 82. A ring 84 may be threaded on the helical gear drum 80. Thus, when the motor 65 rotates, the ring 84 is caused to travel along the helical gear drum 80 by means of the interposed bevel gear assembly 66, planetary gear assembly 72 and ring gear 78.

The handle 6 may also include a run motor sensor 110 (see FIG. 10) in communication with the firing trigger 20 to detect when the firing trigger 20 has been drawn in (or “closed”) toward the pistol grip portion 26 of the handle 6 by the operator to thereby actuate the cutting/stapling operation by the end effector 12. The sensor 110 may be a proportional sensor such as, for example, a rheostat or variable resistor. When the firing trigger 20 is drawn in, the sensor 110 detects the movement, and sends an electrical signal indicative of the voltage (or power) to be supplied to the motor 65. When the sensor 110 is a variable resistor or the like, the rotation of the motor 65 may be generally proportional to the amount of movement of the firing trigger 20. That is, if the operator only draws or closes the firing trigger 20 in a little bit, the rotation of the motor 65 is relatively low. When the firing trigger 20 is fully drawn in (or in the fully closed position), the rotation of the motor 65 is at its maximum. In other words, the harder the user pulls on the firing trigger 20, the more voltage is applied to the motor 65, causing greater rates of rotation.

The handle 6 may include a middle handle piece 104 adjacent to the upper portion of the firing trigger 20. The handle 6 also may comprise a bias spring 112 connected between posts on the middle handle piece 104 and the firing trigger 20. The bias spring 112 may bias the firing trigger 20 to its fully open position. In that way, when the operator releases the firing trigger 20, the bias spring 112 will pull the firing trigger 20 to its open position, thereby removing actuation of the sensor 110, thereby stopping rotation of the motor 65. Moreover, by virtue of the bias spring 112, any time a user closes the firing trigger 20, the user will experience resistance to the closing operation, thereby providing the user with feedback as to the amount of rotation exerted by the motor 65. Further, the operator could stop retracting the firing trigger 20 to thereby remove force from the sensor 100, to thereby stop the motor 65. As such, the user may stop the deployment of the end effector 12, thereby providing a measure of control of the cutting/fastening operation to the operator.

The distal end of the helical gear drum 80 includes a distal drive shaft 120 that drives a ring gear 122, which mates with a pinion gear 124. The pinion gear 124 is connected to the main drive shaft 48 of the main drive shaft assembly. In that way, rotation of the motor 65 causes the main drive shaft assembly to rotate, which causes actuation of the end effector 12, as described above.

The ring 84 threaded on the helical gear drum 80 may include a post 86 that is disposed within a slot 88 of a slotted arm 90. The slotted arm 90 has an opening 92 its opposite end 94 that receives a pivot pin 96 that is connected between the handle exterior side pieces 59, 60. The pivot pin 96 is also disposed through an opening 100 in the firing trigger 20 and an opening 102 in the middle handle piece 104.

In addition, the handle 6 may include a reverse motor sensor (or end-of-stroke sensor) 130 and a stop motor (or beginning-of-stroke) sensor 142. In various embodiments, the reverse motor sensor 130 may be a limit switch located at the distal end of the helical gear drum 80 such that the ring 84 threaded on the helical gear drum 80 contacts and trips the reverse motor sensor 130 when the ring 84 reaches the distal end of the helical gear drum 80. The reverse motor sensor 130, when activated, sends a signal to the motor 65 to reverse its rotation direction, thereby withdrawing the knife 32 of the end effector 12 following the cutting operation.

The stop motor sensor 142 may be, for example, a normally-closed limit switch. In various embodiments, it may be located at the proximate end of the helical gear drum 80 so that the ring 84 trips the switch 142 when the ring 84 reaches the proximate end of the helical gear drum 80.

In operation, when an operator of the instrument 10 pulls back the firing trigger 20, the sensor 110 detects the deployment of the firing trigger 20 and sends a signal to the motor 65 to cause forward rotation of the motor 65, for example, at a rate proportional to how hard the operator pulls back the firing trigger 20. The forward rotation of the motor 65 in turn causes the ring gear 78 at the distal end of the planetary gear assembly 72 to rotate, thereby causing the helical gear drum 80 to rotate, causing the ring 84 threaded on the helical gear drum 80 to travel distally along the helical gear drum 80. The rotation of the helical gear drum 80 also drives the main drive shaft assembly as described above, which in turn causes deployment of the knife 32 in the end effector 12. That is, the knife 32 and sled 33 are caused to traverse the channel 22 longitudinally, thereby cutting tissue clamped in the end effector 12. Also, the stapling operation of the end effector 12 is caused to happen in embodiments where a stapling-type end effector 12 is used.

By the time the cutting/stapling operation of the end effector 12 is complete, the ring 84 on the helical gear drum 80 will have reached the distal end of the helical gear drum 80, thereby causing the reverse motor sensor 130 to be tripped, which sends a signal to the motor 65 to cause the motor 65 to reverse its rotation. This in turn causes the knife 32 to retract, and also causes the ring 84 on the helical gear drum 80 to move back to the proximate end of the helical gear drum 80.

The middle handle piece 104 includes a backside shoulder 106 that engages the slotted arm 90 as best shown in FIGS. 8 and 9. The middle handle piece 104 also has a forward motion stop 107 that engages the firing trigger 20. The movement of the slotted arm 90 is controlled, as explained above, by rotation of the motor 65. When the slotted arm 90 rotates counter clockwise as the ring 84 travels from the proximate end of the helical gear drum 80 to the distal end, the middle handle piece 104 will be free to rotate counter clockwise. Thus, as the user draws in the firing trigger 20, the firing trigger 20 will engage the forward motion stop 107 of the middle handle piece 104, causing the middle handle piece 104 to rotate counter clockwise. Due to the backside shoulder 106 engaging the slotted arm 90, however, the middle handle piece 104 will only be able to rotate counter clockwise as far as the slotted arm 90 permits. In that way, if the motor 65 should stop rotating for some reason, the slotted arm 90 will stop rotating, and the user will not be able to further draw in the firing trigger 20 because the middle handle piece 104 will not be free to rotate counter clockwise due to the slotted arm 90.

FIGS. 10A and 10B illustrate two states of a variable sensor that may be used as the run motor sensor 110 according to various embodiments of the present invention. The sensor 110 may include a face portion 280, a first electrode (A) 282, a second electrode (B) 284, and a compressible dielectric material 286 between the electrodes 282, 284, such as, for example, an electroactive polymer (EAP). The sensor 110 may be positioned such that the face portion 280 contacts the firing trigger 20 when retracted. Accordingly, when the firing trigger 20 is retracted, the dielectric material 286 is compressed, as shown in FIG. 10B, such that the electrodes 282, 284 are closer together. Since the distance “b” between the electrodes 282, 284 is directly related to the impedance between the electrodes 282, 284, the greater the distance the more impedance, and the closer the distance the less impedance. In that way, the amount that the dielectric 286 is compressed due to retraction of the firing trigger 20 (denoted as force “F” in FIG. 42) is proportional to the impedance between the electrodes 282, 284, which can be used to proportionally control the motor 65.

Components of an exemplary closure system for closing (or clamping) the anvil 24 of the end effector 12 by retracting the closure trigger 18 are also shown in FIGS. 7-10. In the illustrated embodiment, the closure system includes a yoke 250 connected to the closure trigger 18 by a pivot pin 251 inserted through aligned openings in both the closure trigger 18 and the yoke 250. A pivot pin 252, about which the closure trigger 18 pivots, is inserted through another opening in the closure trigger 18 which is offset from where the pin 251 is inserted through the closure trigger 18. Thus, retraction of the closure trigger 18 causes the upper part of the closure trigger 18, to which the yoke 250 is attached via the pin 251, to rotate counterclockwise. The distal end of the yoke 250 is connected, via a pin 254, to a first closure bracket 256. The first closure bracket 256 connects to a second closure bracket 258. Collectively, the closure brackets 256, 258 define an opening in which the proximate end of the proximate closure tube 40 (see FIG. 4) is seated and held such that longitudinal movement of the closure brackets 256, 258 causes longitudinal motion by the proximate closure tube 40. The instrument 10 also includes a closure rod 260 disposed inside the proximate closure tube 40. The closure rod 260 may include a window 261 into which a post 263 on one of the handle exterior pieces, such as exterior lower side piece 59 in the illustrated embodiment, is disposed to fixedly connect the closure rod 260 to the handle 6. In that way, the proximate closure tube 40 is capable of moving longitudinally relative to the closure rod 260. The closure rod 260 may also include a distal collar 267 that fits into a cavity 269 in proximate spine tube 46 and is retained therein by a cap 271 (see FIG. 4).

In operation, when the yoke 250 rotates due to retraction of the closure trigger 18, the closure brackets 256, 258 cause the proximate closure tube 40 to move distally (i.e., away from the handle end of the instrument 10), which causes the distal closure tube 42 to move distally, which causes the anvil 24 to rotate about the pivot pins 25 into the clamped or closed position. When the closure trigger 18 is unlocked from the locked position, the proximate closure tube 40 is caused to slide proximately, which causes the distal closure tube 42 to slide proximately, which, by virtue of the tab 27 being inserted in the window 45 of the distal closure tube 42, causes the anvil 24 to pivot about the pivot pins 25 into the open or unclamped position. In that way, by retracting and locking the closure trigger 18, an operator may clamp tissue between the anvil 24 and channel 22, and may unclamp the tissue following the cutting/stapling operation by unlocking the closure trigger 20 from the locked position.

FIG. 11 is a schematic diagram of an electrical circuit of the instrument 10 according to various embodiments of the present invention. When an operator initially pulls in the firing trigger 20 after locking the closure trigger 18, the sensor 110 is activated, allowing current to flow there through. If the normally-open reverse motor sensor switch 130 is open (meaning the end of the end effector stroke has not been reached), current will flow to a single pole, double throw relay 132. Since the reverse motor sensor switch 130 is not closed, the inductor 134 of the relay 132 will not be energized, so the relay 132 will be in its non-energized state. The circuit also includes a cartridge lockout sensor 136. If the end effector 12 includes a staple cartridge 34, the sensor 136 will be in the closed state, allowing current to flow. Otherwise, if the end effector 12 does not include a staple cartridge 34, the sensor 136 will be open, thereby preventing the battery 64 from powering the motor 65.

When the staple cartridge 34 is present, the sensor 136 is closed, which energizes a single pole, single throw relay 138. When the relay 138 is energized, current flows through the relay 136, through the variable resistor sensor 110, and to the motor 65 via a double pole, double throw relay 140, thereby powering the motor 65 and allowing it to rotate in the forward direction.

When the end effector 12 reaches the end of its stroke, the reverse motor sensor 130 will be activated, thereby closing the switch 130 and energizing the relay 134. This causes the relay 134 to assume its energized state (not shown in FIG. 13), which causes current to bypass the cartridge lockout sensor 136 and variable resistor 110, and instead causes current to flow to both the normally-closed double pole, double throw relay 142 and back to the motor 65, but in a manner, via the relay 140, that causes the motor 65 to reverse its rotational direction.

Because the stop motor sensor switch 142 is normally-closed, current will flow back to the relay 134 to keep it closed until the switch 142 opens. When the knife 32 is fully retracted, the stop motor sensor switch 142 is activated, causing the switch 142 to open, thereby removing power from the motor 65.

In other embodiments, rather than a proportional-type sensor 110, an on-off type sensor could be used. In such embodiments, the rate of rotation of the motor 65 would not be proportional to the force applied by the operator. Rather, the motor 65 would generally rotate at a constant rate. But the operator would still experience force feedback because the firing trigger 20 is geared into the gear drive train.

FIG. 12 is a side-view of the handle 6 of a power-assist motorized endocutter according to another embodiment. The embodiment of FIG. 12 is similar to that of FIGS. 7-10 except that in the embodiment of FIG. 12, there is no slotted arm connected to the ring 84 threaded on the helical gear drum 80. Instead, in the embodiment of FIG. 12, the ring 84 includes a sensor portion 114 that moves with the ring 84 as the ring 84 advances down (and back) on the helical gear drum 80. The sensor portion 114 includes a notch 116. The reverse motor sensor 130 may be located at the distal end of the notch 116 and the stop motor sensor 142 may be located at the proximate end of the notch 116. As the ring 84 moves down the helical gear drum 80 (and back), the sensor portion 114 moves with it. Further, as shown in FIG. 12, the middle piece 104 may have an arm 118 that extends into the notch 12.

In operation, as an operator of the instrument 10 retracts in the firing trigger 20 toward the pistol grip 26, the run motor sensor 110 detects the motion and sends a signal to power the motor 65, which causes, among other things, the helical gear drum 80 to rotate. As the helical gear drum 80 rotates, the ring 84 threaded on the helical gear drum 80 advances (or retracts, depending on the rotation). Also, due to the pulling in of the firing trigger 20, the middle piece 104 is caused to rotate counter clockwise with the firing trigger 20 due to the forward motion stop 107 that engages the firing trigger 20. The counter clockwise rotation of the middle piece 104 cause the arm 118 to rotate counter clockwise with the sensor portion 114 of the ring 84 such that the arm 118 stays disposed in the notch 116. When the ring 84 reaches the distal end of the helical gear drum 80, the arm 118 will contact and thereby trip the reverse motor sensor 130. Similarly, when the ring 84 reaches the proximate end of the helical gear drum 80, the arm will contact and thereby trip the stop motor sensor 142. Such actions may reverse and stop the motor 65, respectively as described above.

FIG. 13 is a side-view of the handle 6 of a power-assist motorized endocutter according to another embodiment. The embodiment of FIG. 13 is similar to that of FIGS. 7-10 except that in the embodiment of FIG. 13, there is no slot in the arm 90. Instead, the ring 84 threaded on the helical gear drum 80 includes a vertical channel 126. Instead of a slot, the arm 90 includes a post 128 that is disposed in the channel 126. As the helical gear drum 80 rotates, the ring 84 threaded on the helical gear drum 80 advances (or retracts, depending on the rotation). The arm 90 rotates counter clockwise as the ring 84 advances due to the post 128 being disposed in the channel 126, as shown in FIG. 13.

As mentioned above, in using a two-stroke motorized instrument, the operator first pulls back and locks the closure trigger 18. FIGS. 14 and 15 show one embodiment of a way to lock the closure trigger 18 to the pistol grip portion 26 of the handle 6. In the illustrated embodiment, the pistol grip portion 26 includes a hook 150 that is biased to rotate counter clockwise about a pivot point 151 by a torsion spring 152. Also, the closure trigger 18 includes a closure bar 154. As the operator draws in the closure trigger 18, the closure bar 154 engages a sloped portion 156 of the hook 150, thereby rotating the hook 150 upward (or clockwise in FIGS. 14-15) until the closure bar 154 completely passes the sloped portion 156 passes into a recessed notch 158 of the hook 150, which locks the closure trigger 18 in place. The operator may release the closure trigger 18 by pushing down on a slide button release 160 on the back or opposite side of the pistol grip portion 26. Pushing down the slide button release 160 rotates the hook 150 clockwise such that the closure bar 154 is released from the recessed notch 158.

FIG. 16 shows another closure trigger locking mechanism according to various embodiments. In the embodiment of FIG. 16, the closure trigger 18 includes a wedge 160 having an arrow-head portion 161. The arrow-head portion 161 is biased downward (or clockwise) by a leaf spring 162. The wedge 160 and leaf spring 162 may be made from, for example, molded plastic. When the closure trigger 18 is retracted, the arrow-head portion 161 is inserted through an opening 164 in the pistol grip portion 26 of the handle 6. A lower chamfered surface 166 of the arrow-head portion 161 engages a lower sidewall 168 of the opening 164, forcing the arrow-head portion 161 to rotate counter clockwise. Eventually the lower chamfered surface 166 fully passes the lower sidewall 168, removing the counter clockwise force on the arrow-head portion 161, causing the lower sidewall 168 to slip into a locked position in a notch 170 behind the arrow-head portion 161.

To unlock the closure trigger 18, a user presses down on a button 172 on the opposite side of the closure trigger 18, causing the arrow-head portion 161 to rotate counter clockwise and allowing the arrow-head portion 161 to slide out of the opening 164.

FIGS. 17-22 show a closure trigger locking mechanism according to another embodiment. As shown in this embodiment, the closure trigger 18 includes a flexible longitudinal arm 176 that includes a lateral pin 178 extending therefrom. The arm 176 and pin 178 may be made from molded plastic, for example. The pistol grip portion 26 of the handle 6 includes an opening 180 with a laterally extending wedge 182 disposed therein. When the closure trigger 18 is retracted, the pin 178 engages the wedge 182, and the pin 178 is forced downward (i.e., the arm 176 is rotated clockwise) by the lower surface 184 of the wedge 182, as shown in FIGS. 17 and 18. When the pin 178 fully passes the lower surface 184, the clockwise force on the arm 176 is removed, and the pin 178 is rotated counter clockwise such that the pin 178 comes to rest in a notch 186 behind the wedge 182, as shown in FIG. 19, thereby locking the closure trigger 18. The pin 178 is further held in place in the locked position by a flexible stop 188 extending from the wedge 184.

To unlock the closure trigger 18, the operator may further squeeze the closure trigger 18, causing the pin 178 to engage a sloped backwall 190 of the opening 180, forcing the pin 178 upward past the flexible stop 188, as shown in FIGS. 20 and 21. The pin 178 is then free to travel out an upper channel 192 in the opening 180 such that the closure trigger 18 is no longer locked to the pistol grip portion 26, as shown in FIG. 22.

FIGS. 23A-B show a universal joint (“u-joint”) 195. The second piece 195-2 of the u-joint 195 rotates in a horizontal plane in which the first piece 195-1 lies. FIG. 23A shows the u-joint 195 in a linear (180°) orientation and FIG. 23B shows the u-joint 195 at approximately a 150° orientation. The u-joint 195 may be used instead of the bevel gears 52 a-c (see FIG. 4, for example) at the articulation point 14 of the main drive shaft assembly to articulate the end effector 12. FIGS. 24A-B show a torsion cable 197 that may be used in lieu of both the bevel gears 52 a-c and the u-joint 195 to realize articulation of the end effector 12.

FIGS. 25-31 illustrate another embodiment of a motorized, two-stroke surgical cutting and fastening instrument 10 with power assist according to another embodiment of the present invention. The embodiment of FIGS. 25-31 is similar to that of FIGS. 6-10 except that instead of the helical gear drum 80, the embodiment of FIGS. 23-28 includes an alternative gear drive assembly. The embodiment of FIGS. 25-31 includes a gear box assembly 200 including a number of gears disposed in a frame 201, wherein the gears are connected between the planetary gear 72 and the pinion gear 124 at the proximate end of the drive shaft 48. As explained further below, the gear box assembly 200 provides feedback to the user via the firing trigger 20 regarding the deployment and loading force of the end effector 12. Also, the user may provide power to the system via the gear box assembly 200 to assist the deployment of the end effector 12. In that sense, like the embodiments described above, the embodiment of FIGS. 23-32 is another power assist motorized instrument 10 that provides feedback to the user regarding the loading force experienced by the instrument.

In the illustrated embodiment, the firing trigger 20 includes two pieces: a main body portion 202 and a stiffening portion 204. The main body portion 202 may be made of plastic, for example, and the stiffening portion 204 may be made out of a more rigid material, such as metal. In the illustrated embodiment, the stiffening portion 204 is adjacent to the main body portion 202, but according to other embodiments, the stiffening portion 204 could be disposed inside the main body portion 202. A pivot pin 207 may be inserted through openings in the firing trigger pieces 202, 204 and may be the point about which the firing trigger 20 rotates. In addition, a spring 222 may bias the firing trigger 20 to rotate in a counter clockwise direction. The spring 222 may have a distal end connected to a pin 224 that is connected to the pieces 202, 204 of the firing trigger 20. The proximate end of the spring 222 may be connected to one of the handle exterior lower side pieces 59, 60.

In the illustrated embodiment, both the main body portion 202 and the stiffening portion 204 includes gear portions 206, 208 (respectively) at their upper end portions. The gear portions 206, 208 engage a gear in the gear box assembly 200, as explained below, to drive the main drive shaft assembly and to provide feedback to the user regarding the deployment of the end effector 12.

The gear box assembly 200 may include as shown, in the illustrated embodiment, six (6) gears. A first gear 210 of the gear box assembly 200 engages the gear portions 206, 208 of the firing trigger 20. In addition, the first gear 210 engages a smaller second gear 212, the smaller second gear 212 being coaxial with a large third gear 214. The third gear 214 engages a smaller fourth gear 216, the smaller fourth gear being coaxial with a fifth gear 218. The fifth gear 218 is a 90° bevel gear that engages a mating 90° bevel gear 220 (best shown in FIG. 31) that is connected to the pinion gear 124 that drives the main drive shaft 48.

In operation, when the user retracts the firing trigger 20, a run motor sensor (not shown) is activated, which may provide a signal to the motor 65 to rotate at a rate proportional to the extent or force with which the operator is retracting the firing trigger 20. This causes the motor 65 to rotate at a speed proportional to the signal from the sensor. The sensor is not shown for this embodiment, but it could be similar to the run motor sensor 110 described above. The sensor could be located in the handle 6 such that it is depressed when the firing trigger 20 is retracted. Also, instead of a proportional-type sensor, an on/off type sensor may be used.

Rotation of the motor 65 causes the bevel gears 68, 70 to rotate, which causes the planetary gear 72 to rotate, which causes, via the drive shaft 76, the ring gear 122 to rotate. The ring gear 122 meshes with the pinion gear 124, which is connected to the main drive shaft 48. Thus, rotation of the pinion gear 124 drives the main drive shaft 48, which causes actuation of the cutting/stapling operation of the end effector 12.

Forward rotation of the pinion gear 124 in turn causes the bevel gear 220 to rotate, which causes, by way of the rest of the gears of the gear box assembly 200, the first gear 210 to rotate. The first gear 210 engages the gear portions 206, 208 of the firing trigger 20, thereby causing the firing trigger 20 to rotate counter clockwise when the motor 65 provides forward drive for the end effector 12 (and to rotate counter clockwise when the motor 65 rotates in reverse to retract the end effector 12). In that way, the user experiences feedback regarding loading force and deployment of the end effector 12 by way of the user's grip on the firing trigger 20. Thus, when the user retracts the firing trigger 20, the operator will experience a resistance related to the load force experienced by the end effector 12. Similarly, when the operator releases the firing trigger 20 after the cutting/stapling operation so that it can return to its original position, the user will experience a clockwise rotation force from the firing trigger 20 that is generally proportional to the reverse speed of the motor 65.

It should also be noted that in this embodiment the user can apply force (either in lieu of or in addition to the force from the motor 65) to actuate the main drive shaft assembly (and hence the cutting/stapling operation of the end effector 12) through retracting the firing trigger 20. That is, retracting the firing trigger 20 causes the gear portions 206, 208 to rotate counter clockwise, which causes the gears of the gear box assembly 200 to rotate, thereby causing the pinion gear 124 to rotate, which causes the main drive shaft 48 to rotate.

Although not shown in FIGS. 25-31, the instrument 10 may further include reverse motor and stop motor sensors. As described above, the reverse motor and stop motor sensors may detect, respectively, the end of the cutting stroke (full deployment of the knife 32) and the end of retraction operation (full retraction of the knife 32). A similar circuit to that described above in connection with FIG. 11 may be used to appropriately power the motor 65.

FIGS. 32-36 illustrate a two-stroke, motorized surgical cutting and fastening instrument 10 with power assist according to another embodiment. The embodiment of FIGS. 32-36 is similar to that of FIGS. 25-31 except that in the embodiment of FIGS. 32-36, the firing trigger 20 includes a lower portion 228 and an upper portion 230. Both portions 228, 230 are connected to and pivot about a pivot pin 207 that is disposed through each portion 228, 230. The upper portion 230 includes a gear portion 232 that engages the first gear 210 of the gear box assembly 200. The spring 222 is connected to the upper portion 230 such that the upper portion is biased to rotate in the clockwise direction. The upper portion 230 may also include a lower arm 234 that contacts an upper surface of the lower portion 228 of the firing trigger 20 such that when the upper portion 230 is caused to rotate clockwise the lower portion 228 also rotates clockwise, and when the lower portion 228 rotates counter clockwise the upper portion 230 also rotates counter clockwise. Similarly, the lower portion 228 includes a rotational stop 238 that engages a shoulder of the upper portion 230. In that way, when the upper portion 230 is caused to rotate counter clockwise the lower portion 228 also rotates counter clockwise, and when the lower portion 228 rotates clockwise the upper portion 230 also rotates clockwise.

The illustrated embodiment also includes the run motor sensor 110 that communicates a signal to the motor 65 that, in various embodiments, may cause the motor 65 to rotate at a speed proportional to the force applied by the operator when retracting the firing trigger 20. The sensor 110 may be, for example, a rheostat or some other variable resistance sensor, as explained herein. In addition, the instrument 10 may include reverse motor sensor 130 that is tripped or switched when contacted by a front face 242 of the upper portion 230 of the firing trigger 20. When activated, the reverse motor sensor 130 sends a signal to the motor 65 to reverse direction. Also, the instrument 10 may include a stop motor sensor 142 that is tripped or actuated when contacted by the lower portion 228 of the firing trigger 20. When activated, the stop motor sensor 142 sends a signal to stop the reverse rotation of the motor 65.

In operation, when an operator retracts the closure trigger 18 into the locked position, the firing trigger 20 is retracted slightly (through mechanisms known in the art, including U.S. Pat. No. 6,978,921 to Frederick Shelton, IV et. al and U.S. Pat. No. 6,905,057 to Jeffery S. Swayze et. al, which are incorporated herein by reference) so that the user can grasp the firing trigger 20 to initiate the cutting/stapling operation, as shown in FIGS. 32 and 33. At that point, as shown in FIG. 33, the gear portion 232 of the upper portion 230 of the firing trigger 20 moves into engagement with the first gear 210 of the gear box assembly 200. When the operator retracts the firing trigger 20, according to various embodiments, the firing trigger 20 may rotate a small amount, such as five degrees, before tripping the run motor sensor 110, as shown in FIG. 34. Activation of the sensor 110 causes the motor 65 to forward rotate at a rate proportional to the retraction force applied by the operator. The forward rotation of the motor 65 causes, as described above, the main drive shaft 48 to rotate, which causes the knife 32 in the end effector 12 to be deployed (i.e., begin traversing the channel 22). Rotation of the pinion gear 124, which is connected to the main drive shaft 48, causes the gears 210-220 in the gear box assembly 200 to rotate. Since the first gear 210 is in engagement with the gear portion 232 of the upper portion 230 of the firing trigger 20, the upper portion 232 is caused to rotate counter clockwise, which causes the lower portion 228 to also rotate counter clockwise.

When the knife 32 is fully deployed (i.e., at the end of the cutting stroke), the front face 242 of the upper portion 230 trips the reverse motor sensor 130, which sends a signal to the motor 65 to reverse rotational directional. This causes the main drive shaft assembly to reverse rotational direction to retract the knife 32. Reverse rotation of the main drive shaft assembly also causes the gears 210-220 in the gear box assembly to reverse direction, which causes the upper portion 230 of the firing trigger 20 to rotate clockwise, which causes the lower portion 228 of the firing trigger 20 to rotate clockwise until the lower portion 228 trips or actuates the stop motor sensor 142 when the knife 32 is fully retracted, which causes the motor 65 to stop. In that way, the user experiences feedback regarding deployment of the end effector 12 by way of the user's grip on the firing trigger 20. Thus, when the user retracts the firing trigger 20, the operator will experience a resistance related to the deployment of the end effector 12 and, in particular, to the loading force experienced by the knife 32. Similarly, when the operator releases the firing trigger 20 after the cutting/stapling operation so that it can return to its original position, the user will experience a clockwise rotation force from the firing trigger 20 that is generally proportional to the reverse speed of the motor 65.

It should also be noted that in this embodiment the user can apply force (either in lieu of or in addition to the force from the motor 65) to actuate the main drive shaft assembly (and hence the cutting/stapling operation of the end effector 12) through retracting the firing trigger 20. That is, retracting the firing trigger 20 causes the gear portion 232 of the upper portion 230 to rotate counter clockwise, which causes the gears of the gear box assembly 200 to rotate, thereby causing the pinion gear 124 to rotate, which causes the main drive shaft assembly to rotate.

The above-described embodiments employed power-assist user feedback systems, with or without adaptive control (e.g., using a sensor 110, 130, and 142 outside of the closed loop system of the motor 65, gear drive train, and end effector 12) for a two-stroke, motorized surgical cutting and fastening instrument. That is, force applied by the user in retracting the firing trigger 20 may be added to the force applied by the motor 65 by virtue of the firing trigger 20 being geared into (either directly or indirectly) the gear drive train between the motor 65 and the main drive shaft 48. In other embodiments of the present invention, the user may be provided with tactile feedback regarding the position of the knife 32 in the end effector, but without having the firing trigger 20 geared into the gear drive train. FIGS. 37-40 illustrate a motorized surgical cutting and fastening instrument with such a tactile position feedback system.

In the illustrated embodiment of FIGS. 37-40, the firing trigger 20 may have a lower portion 228 and an upper portion 230, similar to the instrument 10 shown in FIGS. 32-36. Unlike the embodiment of FIG. 32-36, however, the upper portion 230 does not have a gear portion that mates with part of the gear drive train. Instead, the instrument includes a second motor 265 with a threaded rod 266 threaded therein. The threaded rod 266 reciprocates longitudinally in and out of the motor 265 as the motor 265 rotates, depending on the direction of rotation. The instrument 10 also includes an encoder 268 that is responsive to the rotations of the main drive shaft 48 for translating the incremental angular motion of the main drive shaft 48 (or other component of the main drive assembly) into a corresponding series of digital signals, for example. In the illustrated embodiment, the pinion gear 124 includes a proximate drive shaft 270 that connects to the encoder 268.

The instrument 10 also includes a control circuit (not shown), which may be implemented using a microcontroller or some other type of integrated circuit, that receives the digital signals from the encoder 268. Based on the signals from the encoder 268, the control circuit may calculate the stage of deployment of the knife 32 in the end effector 12. That is, the control circuit can calculate if the knife 32 is fully deployed, fully retracted, or at an intermittent stage. Based on the calculation of the stage of deployment of the end effector 12, the control circuit may send a signal to the second motor 265 to control its rotation to thereby control the reciprocating movement of the threaded rod 266.

In operation, as shown in FIG. 37, when the closure trigger 18 is not locked into the clamped position, the firing trigger 20 rotated away from the pistol grip portion 26 of the handle 6 such that the front face 242 of the upper portion 230 of the firing trigger 20 is not in contact with the proximate end of the threaded rod 266. When the operator retracts the closure trigger 18 and locks it in the clamped position, the firing trigger 20 rotates slightly towards the closure trigger 20 so that the operator can grasp the firing trigger 20, as shown in FIG. 38. In this position, the front face 242 of the upper portion 230 contacts the proximate end of the threaded rod 266.

As the user then retracts the firing trigger 20, after an initial rotational amount (e.g. 5 degrees of rotation) the run motor sensor 110 may be activated such that, as explained above, the sensor 110 sends a signal to the motor 65 to cause it to rotate at a forward speed proportional to the amount of retraction force applied by the operator to the firing trigger 20. Forward rotation of the motor 65 causes the main drive shaft 48 to rotate via the gear drive train, which causes the knife 32 and sled 33 to travel down the channel 22 and sever tissue clamped in the end effector 12. The control circuit receives the output signals from the encoder 268 regarding the incremental rotations of the main drive shaft assembly and sends a signal to the second motor 265 to cause the second motor 265 to rotate, which causes the threaded rod 266 to retract into the motor 265. This allows the upper portion 230 of the firing trigger 20 to rotate counter clockwise, which allows the lower portion 228 of the firing trigger to also rotate counter clockwise. In that way, because the reciprocating movement of the threaded rod 266 is related to the rotations of the main drive shaft assembly, the operator of the instrument 10, by way of his/her grip on the firing trigger 20, experiences tactile feedback as to the position of the end effector 12. The retraction force applied by the operator, however, does not directly affect the drive of the main drive shaft assembly because the firing trigger 20 is not geared into the gear drive train in this embodiment.

By virtue of tracking the incremental rotations of the main drive shaft assembly via the output signals from the encoder 268, the control circuit can calculate when the knife 32 is fully deployed (i.e., fully extended). At this point, the control circuit may send a signal to the motor 65 to reverse direction to cause retraction of the knife 32. The reverse direction of the motor 65 causes the rotation of the main drive shaft assembly to reverse direction, which is also detected by the encoder 268. Based on the reverse rotation detected by the encoder 268, the control circuit sends a signal to the second motor 265 to cause it to reverse rotational direction such that the threaded rod 266 starts to extend longitudinally from the motor 265. This motion forces the upper portion 230 of the firing trigger 20 to rotate clockwise, which causes the lower portion 228 to rotate clockwise. In that way, the operator may experience a clockwise force from the firing trigger 20, which provides feedback to the operator as to the retraction position of the knife 32 in the end effector 12. The control circuit can determine when the knife 32 is fully retracted. At this point, the control circuit may send a signal to the motor 65 to stop rotation.

According to other embodiments, rather than having the control circuit determine the position of the knife 32, reverse motor and stop motor sensors may be used, as described above. In addition, rather than using a proportional sensor 110 to control the rotation of the motor 65, an on/off switch or sensor can be used. In such an embodiment, the operator would not be able to control the rate of rotation of the motor 65. Rather, it would rotate at a preprogrammed rate.

FIGS. 41-43 illustrate an exemplary embodiment of a mechanically actuated endocutter, and in particular the handle 6, shaft 8 and end effector 12 thereof. Further details of a mechanically actuated endocutter may be found in U.S. patent application Ser. No. 11/052,632 entitled, “Surgical Stapling Instrument Incorporating A Multi-Stroke Firing Mechanism With Automatic End Of Firing Travel Retraction,” which is incorporated herein by reference. With reference to FIG. 41, the end effector 12 responds to the closure motion from the handle 6 (not depicted in FIG. 41) first by including an anvil face 1002 connecting to an anvil proximal end 1004 that includes laterally projecting anvil pivot pins 25 that are proximal to a vertically projecting anvil tab 27. The anvil pivot pins 25 translate within kidney shaped openings 1006 in the staple channel 22 to open and close anvil 24 relative to channel 22. The tab 27 engages a bent tab 1007 extending inwardly in tab opening 45 on a distal end 1008 of the closure tube 1005, the latter distally terminating in a distal edge 1008 that pushes against the anvil face 1002. Thus, when the closure tube 1005 moves proximally from its open position, the bent tab 1007 of the closure tube 1005 draws the anvil tab 27 proximally, and the anvil pivot pins 25 follow the kidney shaped openings 1006 of the staple channel 22 causing the anvil 24 to simultaneously translate proximally and rotate upward to the open position. When the closure tube 1005 moves distally, the bent tab 1007 in the tab opening 45 releases from the anvil tab 27 and the distal edge 1008 pushes on the anvil face 1002, closing the anvil 24.

With continued reference to FIG. 41, the shaft 8 and end effector 12 also include components that respond to a firing motion of a firing rod 1010. In particular, the firing rod 1010 rotatably engages a firing trough member 1012 having a longitudinal recess 1014. Firing trough member 1012 moves longitudinally within frame 1016 in direct response to longitudinal motion of firing rod 1010. A longitudinal slot 1018 in the closure tube 1005 operably couples with the right and left exterior side handle pieces 61, 62 of the handle 6 (not shown in FIG. 41). The length of the longitudinal slot 1018 in the closure tube 1005 is sufficiently long to allow relative longitudinal motion with the handle pieces 61, 62 to accomplish firing and closure motions respectively with the coupling of the handle pieces 61, 62 passing on through a longitudinal slot 1020 in the frame 1016 to slidingly engage the longitudinal recess 1014 in the frame trough member 1012.

The distal end of the frame trough member 1012 is attached to a proximal end of a firing bar 1022 that moves within the frame 1016, specifically within a guide 1024 therein, to distally project the knife 32 into the end effector 12. The end effector 12 includes a staple cartridge 34 that is actuated by the knife 32. The staple cartridge 34 has a tray 1028 that holds a staple cartridge body 1030, a wedge sled driver 33, staple drivers 1034 and staples 1036. It will be appreciated that the wedge sled driver 33 longitudinally moves within a firing recess (not shown) located between the cartridge tray 1028 and the cartridge body 1030. The wedge sled driver 33 presents camming surfaces that contact and lift the staple drivers 1034 upward, driving the staples 1036. The staple cartridge body 1030 further includes a proximally open, vertical slot 1031 for passage of the knife 32. Specifically, a cutting surface 1027 is provided along a distal end of knife 32 to cut tissue after it is stapled.

It should be appreciated that the shaft 8 is shown in FIG. 4 as a non-articulating shaft. Nonetheless, applications of the present invention may include instruments capable of articulation, for example, as such shown above with reference to FIGS. 1-4 and described in the following U.S. patents and patent applications, the disclosure of each being hereby incorporated by reference in their entirety: (1) “SURGICAL INSTRUMENT INCORPORATING AN ARTICULATION MECHANISM HAVING ROTATION ABOUT THE LONGITUDINAL AXIS”, U.S. Patent Application Publication No. 2005/0006434, by Frederick E. Shelton IV, Brian J. Hemmelgarn, Jeffrey S. Swayze, Kenneth S. Wales, filed 9 Jul. 2003; (2) “SURGICAL STAPLING INSTRUMENT INCORPORATING AN ARTICULATION JOINT FOR A FIRING BAR TRACK”, U.S. Pat. No. 6,786,382, to Brian J. Hemmelgarn; (3) “A SURGICAL INSTRUMENT WITH A LATERAL-MOVING ARTICULATION CONTROL”, U.S. Pat. No. 6,981,628, to Jeffrey S. Swayze; (4) “SURGICAL STAPLING INSTRUMENT INCORPORATING A TAPERED FIRING BAR FOR INCREASED FLEXIBILITY AROUND THE ARTICULATION JOINT”, U.S. Pat. No. 6,964,363, to Frederick E. Shelton IV, Michael Setser, Bruce Weisenburgh II; and (5) “SURGICAL STAPLING INSTRUMENT HAVING ARTICULATION JOINT SUPPORT PLATES FOR SUPPORTING A FIRING BAR”, U.S. Patent Application Publication No. 2005/0006431, by Jeffrey S. Swayze, Joseph Charles Hueil, filed 9 Jul. 2003.

FIGS. 42-43 show an embodiment of the handle 6 that is configured for use in a mechanically actuated endocutter along with the embodiment of the shaft 8 and end effector 12 as shown above in FIG. 41. It will be appreciated that any suitable handle design may be used to mechanically close and fire the end effector 12. In FIGS. 42-43, the handle 6 of the surgical stapling and severing instrument 10 includes a linked transmission firing mechanism 1060 that provides features such as increased strength, reduced handle size, minimized binding, etc.

Closure of the end effector 12 (not shown in FIGS. 42-43) is caused by depressing the closure trigger 18 toward the pistol grip 26 of handle 6. The closure trigger 18 pivots about a closure pivot pin 252 that is coupled to right and left exterior lower side pieces 59, 60 the handle 6, causing an upper portion 1094 of the closure trigger 18 to move forward. The closure tube 1005 receives this closure movement via the closure yoke 250 that is pinned to a closure link 1042 and to the upper portion 1094 of the closure trigger 18 respectively by a closure yoke pin 1044 and a closure link pin 1046.

In the fully open position of FIG. 42, the upper portion 1094 of the closure trigger 18 contacts and holds a locking arm 1048 of the pivoting closure release button 30 in the position shown. When the closure trigger 18 reaches its fully depressed position, the closure trigger 18 releases the locking arm 1048 and an abutting surface 1050 rotates into engagement with a distal rightward notch 1052 of the pivoting locking arm 1048, holding the closure trigger 18 in this clamped or closed position. A proximal end of the locking arm 1048 pivots about a lateral pivotal connection 1054 with the pieces 59, 60 to expose the closure release button 30. An intermediate, distal side 1056 of the closure release button 30 is urged proximally by a compression spring 1058, which is compressed between a housing structure 1040 and closure release button 30. The result is that the closure release button 30 urges the locking arm 1048 counterclockwise (when viewed from the left) into locking contact with the abutting surface 1050 of closure trigger 18, which prevents unclamping of closure trigger 18 when the linked transmission firing system 1040 is in an un-retracted condition.

With the closure trigger 18 retracted and fully depressed, the firing trigger 20 is unlocked and may be depressed toward the pistol grip 26, multiple times in this embodiment, to effect firing of the end effector 12. As depicted, the linked transmission firing mechanism 1060 is initially retracted, urged to remain in this position by a combination tension/compression spring 1062 that is constrained within the pistol grip 26 of the handle 6, with its nonmoving end 1063 connected to the pieces 59, 60 and a moving end 1064 connected to a downwardly flexed and proximal, retracted end 1067 of a steel band 1066.

A distally-disposed end 1068 of the steel band 1066 is attached to a link coupling 1070 for structural loading, which in turn is attached to a front link 1072 a of a plurality of links 1072 a-1072 d that form a linked rack 1074. Linked rack 1074 is flexible yet has distal links that form a straight rigid rack assembly that may transfer a significant firing force through the firing rod 1010 in the shaft 6, yet readily retract into the pistol grip 26 to minimize the longitudinal length of the handle 6. It should be appreciated that the combination tension/compression spring 1062 increases the amount of firing travel available while essentially reducing the minimum length by half over a single spring.

The firing trigger 20 pivots about a firing trigger pin 96 that is connected to the handle pieces 59, 60. An upper portion 228 of the firing trigger 20 moves distally about the firing trigger pin 96 as the firing trigger 20 is depressed towards pistol grip 26, stretching a proximally placed firing trigger tension spring 222 proximally connected between the upper portion 228 of the firing trigger 20 and the pieces 59, 60. The upper portion 228 of the firing trigger 20 engages the linked rack 1074 during each firing trigger depression by a traction biasing mechanism 1078 that also disengages when the firing trigger 20 is released. Firing trigger tension spring 222 urges the firing trigger 20 distally when released and disengages the traction biasing mechanism 1078.

As the linked transmission firing mechanism 1040 actuates, an idler gear 1080 is rotated clockwise (as viewed from the left side) by engagement with a toothed upper surface 1082 of the linked rack 1074. This rotation is coupled to an indicator gear 1084, which thus rotates counterclockwise in response to the idler gear 1080. Both the idler gear 1080 and indicator gear 1084 are rotatably connected to the pieces 59, 60 of the handle 6. The gear relationship between the linked rack 1074, idler gear 1080 and indicator gear 1084 may be advantageously selected so that the toothed upper surface 1082 has tooth dimensions that are suitably strong and that the indicator gear 1084 makes no more than one revolution during the full firing travel of the linked transmission firing mechanism 1060.

As described in greater detail below, the indicator gear 1084 performs at least four functions. First, when the linked rack 1074 is fully retracted and both triggers 18, 20 are open as shown in FIG. 42, an opening 1086 in a circular ridge 1088 on the left side of the indicator gear 1084 is presented to an upper surface 1090 of the locking arm 1048. Locking arm 1048 is biased into the opening 1086 by contact with the closure trigger 18, which in turn is urged to the open position by a closure tension spring 1092. Closure trigger tension spring 1092 is connected proximally to the upper portion 1094 of the closure trigger 18 and the handle pieces 59, 60, and thus has energy stored during closing of the closure trigger 18 that urges the closure trigger 18 distally to its unclosed position.

A second function of the indicator gear 1084 is that it is connected to the indicating retraction knob 1096 externally disposed on the handle 6. Thus, the indicator gear 1084 communicates the relative position of the firing mechanism 1060 to the indicating retraction knob 1096 so that the surgeon has a visual indication of how many strokes of the firing trigger 20 are required to complete firing.

A third function of the indicator gear 1084 is to longitudinally and angularly move an anti-backup release lever 1098 of an anti-backup mechanism (one-way clutch mechanism) 1097 as the surgical stapling and severing instrument 10 is operated. During the firing strokes, proximal movement of anti-backup release lever 1098 by indicator gear 1084 activates the anti-backup mechanism 1097 that allows distal movement of firing bar 1010 and prevents proximal motion of firing bar 1010. This movement also extends the anti-backup release button 1100 from the proximal end of the handle pieces 59, 60 for the operator to actuate should the need arise for the linked transmission firing mechanism 1060 to be retracted during the firing strokes. After completion of the firing strokes, the indicator gear 1084 reverses direction of rotation as the firing mechanism 1060 retracts. The reversed rotation deactivates the anti-backup mechanism 1097, withdraws the anti-backup release button 1100 into the handle 6, and rotates the anti-backup release lever 1098 laterally to the right to allow continued reverse rotation of the indicator gear 1084.

A fourth function of the indicator gear 1084 is to receive a manual rotation from the indicating retraction knob 1096 (clockwise in the depiction of FIG. 42) to retract the firing mechanism 1060 with anti-backup mechanism 1097 unlocked, thereby overcoming any binding in the firing mechanism 1060 that is not readily overcome by the combination tension/compression spring 1062. This manual retraction assistance may be employed after a partial firing of the firing mechanism 1060 that would otherwise be prevented by the anti-backup mechanism 1097 that withdraws the anti-backup release button 1100 so that the latter may not laterally move the anti-backup release lever 1098.

Continuing with FIGS. 42-43, anti-backup mechanism 1097 consists of the operator accessible anti-backup release lever 1098 operably coupled at the proximal end to the anti-backup release button 1100 and at the distal end to an anti-backup yoke 1102. In particular, a distal end 1099 of the anti-backup release lever 1098 is engaged to the anti-backup yoke 1102 by an anti-backup yoke pin 1104. The anti-backup yoke 1102 moves longitudinally to impart a rotation to an anti-backup cam slot tube 1106 that is longitudinally constrained by the handle pieces 59, 90 and that encompasses the firing rod 1010 distally to the connection of the firing rod 1010 to the link coupling 1070 of the linked rack 1074. The anti-backup yoke 1102 communicates the longitudinal movement from the anti-backup release lever 1098 via a cam slot tube pin 1108 to the anti-backup cam slot tube 1106. That is, longitudinal movement of cam slot tube pin 1108 in an angled slot in the anti-backup cam slot tube 1106 rotates the anti-backup cam slot tube 1106.

Trapped between a proximal end of the frame 1016 and the anti-backup cam slot tube 1106 respectively are an anti-backup compression spring 1110, an anti-backup plate 1112, and an anti-backup cam tube 1114. As depicted, proximal movement of the firing rod 1010 causes the anti-backup plate 1112 to pivot top to the rear, presenting an increased frictional contact to the firing rod 1010 that resists further proximal movement of the firing rod 1010.

This anti-backup plate 1112 pivots in a manner similar to that of a screen door lock that holds open a screen door when the anti-backup cam slot tube 1106 is closely spaced to the anti-backup cam tube 1114. Specifically, the anti-backup compression spring 1110 is able to act upon a top surface of the plate 1112 to tip the anti-backup plate 1112 to its locked position. Rotation of the anti-backup cam slot tube 1106 causes a distal camming movement of the anti-backup cam tube 1114 thereby forcing the top of the anti-backup plate 1112 distally, overcoming the force from the anti-backup compression spring 1110, thus positioning the anti-backup plate 1112 in an untipped (perpendicular), unlocked position that allows proximal retraction of the firing rod 1010.

With particular reference to FIG. 43, the traction biasing mechanism 1078 is depicted as being composed of a pawl 1116 that has a distally projecting narrow tip 1118 and a rightwardly projecting lateral pin 1120 at its proximal end that is rotatably inserted through a hole 1076 in the upper portion 230 of the firing trigger 20. On the right side of the firing trigger 20 the lateral pin 1120 receives a biasing member, depicted as biasing wheel 1122. As the firing trigger 20 translates fore and aft, the biasing wheel 1122 traverses an arc proximate to the right half piece 59 of the handle 6, overrunning at its distal portion of travel a biasing ramp 1124 integrally formed in the right half piece 59. The biasing wheel 1122 may advantageously be formed from a resilient, frictional material that induces a counterclockwise rotation (when viewed from the left) into the lateral pin 1120 of the pawl 1116, thus traction biasing the distally projecting narrow tip 1118 downward into a ramped central track 1075 of the nearest link 1072 a-d to engage the linked rack 1074.

As the firing trigger 20 is released, the biasing wheel 1122 thus tractionally biases the pawl 1116 in the opposite direction, raising the narrow tip 1118 from the ramped central track 1075 of the linked rack 1074. To ensure disengagement of the tip 1118 under high load conditions and at nearly full distal travel of the pawl 1116, the right side of the pawl 1116 ramps up onto a proximally and upwardly facing beveled surface 1126 on the rightside of the closure yoke 250 to disengage the narrow tip 1118 from the ramped central track 1075. If the firing trigger 20 is released at any point other than full travel, the biasing wheel 1122 is used to lift the narrow tip 1118 from the ramped central track 1075. Whereas a biasing wheel 1122 is depicted, it should be appreciated that the shape of the biasing member or wheel 1122 is illustrative and may be varied to accommodate a variety of shapes that use friction or traction to engage or disengage the firing of the end effector 12.

Various embodiments of the surgical instrument 10 have the capability to record instrument conditions at one or more times during use. FIG. 44 shows a block diagram of a system 2000 for recording conditions of the instrument 10. It will be appreciated that the system 2000 may be implemented in embodiments of the instrument 10 having motorized or motor-assisted firing, for example, as described above with reference to FIGS. 1-40, as well as embodiments of the instrument 10 having mechanically actuated firing, for example, as described above with reference to FIGS. 41-43.

The system 2000 may include various sensors 2002, 2004, 2006, 2008, 2010, 2012 for sensing instrument conditions. The sensors may be positioned, for example, on or within the instrument 10. In various embodiments, the sensors may be dedicated sensors that provide output only for the system 2000, or may be dual-use sensors that perform other functions with in the instrument 10. For example, sensors 110, 130, 142 described above may be configured to also provide output to the system 2000.

Directly or indirectly, each sensor provides a signal to the memory device 2001, which records the signals as described in more detail below. The memory device 2001 may be any kind of device capable of storing or recording sensor signals. For example, the memory device 2001 may include a microprocessor, an Electrically Erasable Programmable Read Only Memory (EEPROM), or any other suitable storage device. The memory device 2001 may record the signals provided by the sensors in any suitable way. For example, in one embodiment, the memory device 2001 may record the signal from a particular sensor when that signal changes states. In another embodiment, the memory device 2001 may record a state of the system 2000, e.g., the signals from all of the sensors included in the system 2000, when the signal from any sensor changes states. This may provide a snap-shot of the state of the instrument 10. In various embodiments, the memory device 2001 and/or sensors may be implemented to include 1-WIRE bus products available from DALLAS SEMICONDUCTOR such as, for example, a 1-WIRE EEPROM.

In various embodiments, the memory device 2001 is externally accessible, allowing an outside device, such as a computer, to access the instrument conditions recorded by the memory device 2001. For example, the memory device 2001 may include a data port 2020. The data port 2020 may provide the stored instrument conditions according to any wired or wireless communication protocol in, for example, serial or parallel format. The memory device 2001 may also include a removable medium 2021 in addition to or instead of the output port 2020. The removable medium 2021 may be any kind of suitable data storage device that can be removed from the instrument 10. For example, the removable medium 2021 may include any suitable kind of flash memory, such as a Personal Computer Memory Card International Association (PCMCIA) card, a COMPACTFLASH card, a MULTIMEDIA card, a FLASHMEDIA card, etc. The removable medium 2021 may also include any suitable kind of disk-based storage including, for example, a portable hard drive, a compact disk (CD), a digital video disk (DVD), etc.

The closure trigger sensor 2002 senses a condition of the closure trigger 18. FIGS. 45 and 46 show an exemplary embodiment of the closure trigger sensor 2002. In FIGS. 45 and 46, the closure trigger sensor 2002 is positioned between the closure trigger 18 and closure pivot pin 252. It will be appreciated that pulling the closure trigger 18 toward the pistol grip 26 causes the closure trigger 18 to exert a force on the closure pivot pin 252. The sensor 2002 may be sensitive to this force, and generate a signal in response thereto, for example, as described above with respect to sensor 110 and FIGS. 10A and 10B. In various embodiments, the closure trigger sensor 2002 may be a digital sensor that indicates only whether the closure trigger 18 is actuated or not actuated. In other various embodiments, the closure trigger sensor 2002 may be an analog sensor that indicates the force exerted on the closure trigger 18 and/or the position of the closure trigger 18. If the closure trigger sensor 2002 is an analog sensor, an analog-to-digital converter may be logically positioned between the sensor 2002 and the memory device 2001. Also, it will be appreciated that the closure trigger sensor 2002 may take any suitable form and be placed at any suitable location that allows sensing of the condition of the closure trigger.

The anvil closure sensor 2004 may sense whether the anvil 24 is closed. FIG. 47 shows an exemplary anvil closure sensor 2004. The sensor 2004 is positioned next to, or within the kidney shaped openings 1006 of the staple channel 22 as shown. As the anvil 24 is closed, anvil pivot pins 25 slides through the kidney shaped openings 1006 and into contact with the sensor 2004, causing the sensor 2004 to generate a signal indicating that the anvil 24 is closed. The sensor 2004 may be any suitable kind of digital or analog sensor including a proximity sensor, etc. It will be appreciated that when the anvil closure sensor 2004 is an analog sensor, an analog-to-digital converter may be included logically between the sensor 2004 and the memory device 2001.

Anvil closure load sensor 2006 is shown placed on an inside bottom surface of the staple channel 22. In use, the sensor 2006 may be in contact with a bottom side of the staple cartridge 34 (not shown in FIG. 46). As the anvil 24 is closed, it exerts a force on the staple cartridge 34 which is transferred to the sensor 2006. In response, the sensor 2006 generates a signal. The signal may be an analog signal proportional to the force exerted on the sensor 2006 by the staple cartridge 34 and due to the closing of the anvil 24. Referring the FIG. 44, the analog signal may be provided to an analog-to-digital converter 2014, which converts the analog signal to a digital signal before providing it to the memory device 2001. It will be appreciated that embodiments where the sensor 2006 is a digital or binary sensor may not include analog-to-digital converter 2014.

The firing trigger sensor 110 senses the position and/or state of the firing trigger 20. In motorized or motor-assisted embodiments of the instrument, the firing trigger sensor may double as the run motor sensor 110 described above. In addition, the firing trigger sensor 110 may take any of the forms described above, and may be analog or digital. FIGS. 45 and 46 show an additional embodiment of the firing trigger sensor 110. In FIGS. 45 and 46, the firing trigger sensor is mounted between firing trigger 20 and firing trigger pivot pin 96. When firing trigger 20 is pulled, it will exert a force on firing trigger pivot pin 96 that is sensed by the sensor 110. Referring to FIG. 44, in embodiments where the output of the firing trigger sensor 110 is analog, analog-to-digital converter 2016 is included logically between the firing trigger sensor 110 and the memory device 2001.

The knife position sensor 2008 senses the position of the knife 32 or cutting surface 1027 within the staple channel 22. FIGS. 47 and 48 show embodiments of a knife position sensor 2008 that are suitable for use with the mechanically actuated shaft 8 and end effector 12 shown in FIG. 41. The sensor 2008 includes a magnet 2009 coupled to the firing bar 1022 of the instrument 10. A coil 2011 is positioned around the firing bar 1022, and may be installed; for example, along the longitudinal recess 1014 of the firing trough member 1012 (see FIG. 41). As the knife 32 and cutting surface 1027 are reciprocated through the staple channel 22, the firing bar 1022 and magnet 2009 may move back and forth through the coil 2011. This motion relative to the coil induces a voltage in the coil proportional to the position of the firing rod within the coil and the cutting edge 1027 within the staple channel 22. This voltage may be provided to the memory device 2001, for example, via analog-to-digital converter 2018.

In various embodiments, the knife position sensor 2008 may instead be implemented as a series of digital sensors (not shown) placed at various positions on or within the shaft 8. The digital sensors may sense a feature of the firing bar 1022 such as, for example, magnet 2009, as the feature reciprocates through the shaft 8. The position of the firing bar 1022 within the shaft 8, and by extension, the position of the knife 32 within the staple channel 22, may be approximated as the position of the last digital sensor tripped.

It will be appreciated that the knife position may also be sensed in embodiments of the instrument 10 having a rotary driven end effector 12 and shaft 8, for example, as described above, with reference to FIGS. 3-6. An encoder, such as encoder 268, may be configured to generate a signal proportional to the rotation of the helical screw shaft 36, or any other drive shaft or gear. Because the rotation of the shaft 36 and other drive shafts and gears is proportional to the movement of the knife 32 through the channel 22, the signal generated by the encoder 268 is also proportional to the movement of the knife 32. Thus, the output of the encoder 268 may be provided to the memory device 2001.

The cartridge present sensor 2010 may sense the presence of the staple cartridge 34 within the staple channel 22. In motorized or motor-assisted instruments, the cartridge present sensor 2010 may double as the cartridge lock-out sensor 136 described above with reference to FIG. 11. FIGS. 50 and 51 show an embodiment of the cartridge present sensor 2010. In the embodiment shown, the cartridge present sensor 2010 includes two contacts, 2011 and 2013. When no cartridge 34 is present, the contacts 2011, 2013 form an open circuit. When a cartridge 34 is present, the cartridge tray 1028 of the staple cartridge 34 contacts the contacts 2011, 2013, a closed circuit is formed. When the circuit is open, the sensor 2010 may output a logic zero. When the circuit is closed, the sensor 2010 may output a logic one. The output of the sensor 2010 is provided to memory device 2001, as shown in FIG. 44.

The cartridge condition sensor 2012 may indicate whether a cartridge 34 installed within the staple channel 22 has been fired or spent. As the knife 32 is translated through the end effector 12, it pushes the sled 33, which fires the staple cartridge. Then the knife 32 is translated back to its original position, leaving the sled 33 at the distal end of the cartridge. Without the sled 33 to guide it, the knife 32 may fall into lock-out pocket 2022. Sensor 2012 may sense whether the knife 32 is present in the lock-out pocket 2022, which indirectly indicates whether the cartridge 34 has been spent. It will be appreciated that in various embodiments, sensor 2012 may directly sense the present of the sled at the proximate end of the cartridge 34, thus eliminating the need for the knife 32 to fall into the lock-out pocket 2022.

FIGS. 52A and 52B depict a process flow 2200 for operating embodiments of the surgical instrument 10 configured as an endocutter and having the capability to record instrument conditions according to various embodiments. At box 2202, the anvil 24 of the instrument 10 may be closed. This causes the closure trigger sensor 2002 and or the anvil closure sensor 2006 to change state. In response, the memory device 2001 may record the state of all of the sensors in the system 2000 at box 2203. At box 2204, the instrument 10 may be inserted into a patient. When the instrument is inserted, the anvil 24 may be opened and closed at box 2206, for example, to manipulate tissue at the surgical site. Each opening and closing of the anvil 24 causes the closure trigger sensor 2002 and/or the anvil closure sensor 2004 to change state. In response, the memory device 2001 records the state of the system 2000 at box 2205.

At box 2208, tissue is clamped for cutting and stapling. If the anvil 24 is not closed at decision block 2210, continued clamping is required. If the anvil 24 is closed, then the sensors 2002, 2004 and/or 2006 may change state, prompting the memory device 2001 to record the state of the system at box 2213. This recording may include a closure pressure received from sensor 2006. At box 2212, cutting and stapling may occur. Firing trigger sensor 110 may change state as the firing trigger 20 is pulled toward the pistol grip 26. Also, as the knife 32 moves through the staple channel 22, knife position sensor 2008 will change state. In response, the memory device 2001 may record the state of the system 2000 at box 2013.

When the cutting and stapling operations are complete, the knife 32 may return to a pre-firing position. Because the cartridge 34 has now been fired, the knife 32 may fall into lock-out pocket 2022, changing the state of cartridge condition sensor 2012 and triggering the memory device 2001 to record the state of the system 2000 at box 2015. The anvil 24 may then be opened to clear the tissue. This may cause one or more of the closure trigger sensor 2002, anvil closure sensor 2004 and anvil closure load sensor 2006 to change state, resulting in a recordation of the state of the system 2000 at box 2017. After the tissue is cleared, the anvil 24 may be again closed at box 2220. This causes another state change for at least sensors 2002 and 2004, which in turn causes the memory device 2001 to record the state of the system at box 2019. Then the instrument 10 may be removed from the patient at box 2222.

If the instrument 10 is to be used again during the same procedure, the anvil may be opened at box 2224, triggering another recordation of the system state at box 2223. The spent cartridge 34 may be removed from the end effector 12 at box 2226. This causes cartridge present sensor 2010 to change state and cause a recordation of the system state at box 2225. Another cartridge 34 may be inserted at box 2228. This causes a state change in the cartridge present sensor 2010 and a recordation of the system state at box 2227. If the other cartridge 34 is a new cartridge, indicated at decision block 2230, its insertion may also cause a state change to cartridge condition sensor 2012. In that case, the system state may be recorded at box 2231.

FIG. 53 shows an exemplary memory map 2300 from the memory device 2001 according to various embodiments. The memory map 2300 includes a series of columns 2302, 2304, 2306, 2308, 2310, 2312, 2314, 2316 and rows (not labeled). Column 2302 shows an event number for each of the rows. The other columns represent the output of one sensor of the system 2000. All of the sensor readings recorded at a given time may be recorded in the same row under the same event number. Hence, each row represents an instance where one or more of the signals from the sensors of the system 2000 are recorded.

Column 2304 lists the closure load recorded at each event. This may reflect the output of anvil closure load sensor 2006. Column 2306 lists the firing stroke position. This may be derived from the knife position sensor 2008. For example, the total travel of the knife 32 may be divided into partitions. The number listed in column 2306 may represent the partition where the knife 32 is currently present. The firing load is listed in column 2308. This may be derived from the firing trigger sensor 110. The knife position is listed at column 2310. The knife position may be derived from the knife position sensor 2008 similar to the firing stroke. Whether the anvil 24 is open or closed may be listed at column 2312. This value may be derived from the output of the anvil closure sensor 2004 and/or the anvil closure load sensor 2006. Whether the sled 33 is present, or whether the cartridge 34 is spent, may be indicated at column 2314. This value may be derived from the cartridge condition sensor 2012. Finally, whether the cartridge 34 is present may be indicated a column 2316. This value may be derived from cartridge present sensor 2010. It will be appreciated that various other values may be stored at memory device 2001 including, for example, the end and beginning of firing strokes, for example, as measured by sensors 130, 142.

While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art.

For example, although the embodiments described above have advantages for an endoscopically employed surgical severing and stapling instrument 100, a similar embodiments may be used in other clinical procedures. It is generally accepted that endoscopic procedures are more common than laparoscopic procedures. Accordingly, the present invention has been discussed in terms of endoscopic procedures and apparatus. However, use herein of terms such as “endoscopic”, should not be construed to limit the present invention to a surgical instrument for use only in conjunction with an endoscopic tube (i.e., trocar). On the contrary, it is believed that the present invention may find use in any procedure where access is limited to a small incision, including but not limited to laparoscopic procedures, as well as open procedures.

Any patent, publication, or information, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this document. As such the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference.

Claims (21)

1. A surgical instrument comprising:
an end effector to engage tissue, the end effector comprising a staple channel and an anvil pivotably translatable relative to the staple channel, wherein at least one of the anvil and the staple channel define a longitudinal channel;
a reciprocating knife positioned to slide distally through the longitudinal channel when the anvil is pivoted to a position substantially parallel to the staple channel;
an actuation device operably communicating with said end effector;
a first sensor having an output representing a first condition of the actuation device;
a second sensor having an output representing a position of the anvil;
a third sensor having an output representing a position of the reciprocating knife; and
an externally accessible memory device in communication with the first, second and third sensors, wherein the memory device is configured to record the output of the first, second and third sensors.
2. The surgical instrument of claim 1, wherein the memory device comprises an output port.
3. The surgical instrument of claim 1, wherein the memory device comprises a removable medium.
4. The surgical instrument of claim 1, wherein the surgical instrument further comprises a fourth sensor in communication with the memory device, the fourth sensor having an output representing a second condition of at least one of the group consisting of the actuation device and the end effector, wherein the memory device is further configured to record the output of the fourth sensor.
5. The surgical instrument of claim 4, wherein the memory device is configured to record the output of the first sensor and the output of the fourth sensor when the first condition changes and when the second condition changes.
6. The surgical instrument of claim 1, wherein the actuation device operates to pivot the anvil between an open position and a closed position relative to the staple channel; and
wherein the first condition indicates whether the anvil of the end effector is in an open position or a closed position.
7. The surgical instrument of claim 1, wherein the first condition indicates at least one of the group consisting of a position of the actuation device, and a pressure exerted by the end effector.
8. The surgical instrument of claim 1, further comprising a motorized drive system in communication with the actuation device and the end effector.
9. The surgical instrument of claim 1, further comprising a mechanical drive system in communication with the actuation device and the end effector.
10. The surgical instrument of claim 1, wherein the memory device comprises at least one of the group consisting of a microcontroller and an electrically erasable programmable read only memory (EEPROM).
11. The surgical instrument of claim 1, wherein the first sensor is a binary sensor.
12. The surgical instrument of claim 1, wherein the first sensor is an analog sensor.
13. The surgical instrument of claim 12, wherein the surgical instrument further comprises an analog-to-digital converter in communication with the first sensor and the memory device.
14. A surgical instrument comprising:
an end effector to engage tissue, the end effector comprising a staple channel and an anvil pivotably translatable relative to the staple channel, wherein at least one of the anvil and the staple channel define a longitudinal channel;
a reciprocating knife positioned to slide distally through the longitudinal channel when the anvil is pivoted to a position substantially parallel to the staple channel;
an actuation device in communication with the end effector;
a first sensor mounted on the end effector and having an output representing a condition of the anvil;
a second sensor mounted on the end effector and having an output representing a condition of the reciprocating knife; and
a memory device in communication with the first sensor and the second sensor, wherein the memory device is configured to record the output of the first sensor and the output of the second sensor.
15. The surgical instrument of claim 14, wherein the memory device comprises at least one of an output port and a removable storage medium.
16. The surgical instrument of claim 14, wherein the condition of the anvil indicates a position of the reciprocating knife.
17. The surgical instrument of claim 14, further comprising a third sensor having an output representing a position of the acruation device.
18. The surgical instrument of claim 17, wherein the output of the first sensor indicates whether the anvil of the end effector is in an open position or a closed position.
19. The surgical instrument of claim 17, wherein the output of the first sensor indicates whether the anvil is in a position between an open position and a closed position.
20. The surgical instrument of claim 17, wherein the output of the second sensor indicates a position of the reciprocating knife.
21. The surgical instrument of claim 17 wherein the actuation device is a first actuation device; and
further comprising a second actuation device operably coupled to the reciprocating knife.
US13021105 2006-01-31 2011-02-04 Surgical instrument having recording capabilities Active US8172124B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11343803 US7845537B2 (en) 2006-01-31 2006-01-31 Surgical instrument having recording capabilities
US12949099 US8167185B2 (en) 2006-01-31 2010-11-18 Surgical instrument having recording capabilities
US13021105 US8172124B2 (en) 2006-01-31 2011-02-04 Surgical instrument having recording capabilities

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13021105 US8172124B2 (en) 2006-01-31 2011-02-04 Surgical instrument having recording capabilities
US14459485 US20140353358A1 (en) 2006-01-31 2014-08-14 Automated end effector component reloading system for use with a robotic system
US15078610 US20160199956A1 (en) 2006-01-31 2016-03-23 Automated end effector component reloading system for use with a robotic system
US15151031 US20160249922A1 (en) 2006-01-31 2016-05-10 Automated end effector component reloading system for use with a robotic system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12949099 Continuation US8167185B2 (en) 2006-01-31 2010-11-18 Surgical instrument having recording capabilities

Publications (2)

Publication Number Publication Date
US20110121052A1 true US20110121052A1 (en) 2011-05-26
US8172124B2 true US8172124B2 (en) 2012-05-08

Family

ID=38063732

Family Applications (28)

Application Number Title Priority Date Filing Date
US11343803 Active 2029-10-09 US7845537B2 (en) 2006-01-31 2006-01-31 Surgical instrument having recording capabilities
US12949099 Active US8167185B2 (en) 2006-01-31 2010-11-18 Surgical instrument having recording capabilities
US13021121 Active US8157153B2 (en) 2006-01-31 2011-02-04 Surgical instrument with force-feedback capabilities
US13021105 Active US8172124B2 (en) 2006-01-31 2011-02-04 Surgical instrument having recording capabilities
US13369569 Active 2026-04-22 US8820605B2 (en) 2006-01-31 2012-02-09 Robotically-controlled surgical instruments
US13424648 Active US8752747B2 (en) 2006-01-31 2012-03-20 Surgical instrument having recording capabilities
US13627241 Abandoned US20130020375A1 (en) 2006-01-31 2012-09-26 Surgical instrument
US13627246 Abandoned US20130020376A1 (en) 2006-01-31 2012-09-26 Surgical instrument
US13628695 Abandoned US20130023861A1 (en) 2006-01-31 2012-09-27 Surgical instrument
US13628674 Abandoned US20130026210A1 (en) 2006-01-31 2012-09-27 Surgical instrument
US13629702 Abandoned US20130087597A1 (en) 2006-01-31 2012-09-28 Surgical instrument
US13630433 Abandoned US20130026208A1 (en) 2006-01-31 2012-09-28 Surgical instrument for acting on tissue
US13712090 Active 2028-05-22 US9439649B2 (en) 2006-01-31 2012-12-12 Surgical instrument having force feedback capabilities
US13712118 Abandoned US20130116669A1 (en) 2006-01-31 2012-12-12 A surgical method using feedback capabilities.
US13786840 Active 2027-06-28 US9326769B2 (en) 2006-01-31 2013-03-06 Surgical instrument
US13787637 Active 2027-04-02 US9326770B2 (en) 2006-01-31 2013-03-06 Surgical instrument
US13789076 Pending US20130181033A1 (en) 2006-01-31 2013-03-07 Surgical instrument
US13789194 Pending US20130181034A1 (en) 2006-01-31 2013-03-07 Surgical instrument
US13791909 Pending US20130186933A1 (en) 2006-01-31 2013-03-09 Surgical instrument
US13958932 Active 2027-08-07 US9517068B2 (en) 2006-01-31 2013-08-05 Surgical instrument with automatically-returned firing member
US13958922 Active 2027-05-23 US9451958B2 (en) 2006-01-31 2013-08-05 Surgical instrument with firing actuator lockout
US14538145 Pending US20150060518A1 (en) 2006-01-31 2014-11-11 Surgical instrument having recording capabilities
US14538446 Pending US20150060520A1 (en) 2006-01-31 2014-11-11 Surgical stapling apparatus comprising a usage lockout
US14538420 Pending US20150060519A1 (en) 2006-01-31 2014-11-11 End effector for use with a surgical stapling apparatus comprising a lockout
US14664333 Pending US20150196295A1 (en) 2006-01-31 2015-03-20 Gearing selector for a powered surgical cutting and fastening instrument
US15081420 Pending US20160262746A1 (en) 2006-01-31 2016-03-25 Surgical instrument
US15223791 Pending US20170014129A1 (en) 2006-01-31 2016-07-29 Surgical instrument having force feedback capabilities
US15270796 Pending US20170007247A1 (en) 2006-01-31 2016-09-20 Surgical instrument with firing lockout

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11343803 Active 2029-10-09 US7845537B2 (en) 2006-01-31 2006-01-31 Surgical instrument having recording capabilities
US12949099 Active US8167185B2 (en) 2006-01-31 2010-11-18 Surgical instrument having recording capabilities
US13021121 Active US8157153B2 (en) 2006-01-31 2011-02-04 Surgical instrument with force-feedback capabilities

Family Applications After (24)

Application Number Title Priority Date Filing Date
US13369569 Active 2026-04-22 US8820605B2 (en) 2006-01-31 2012-02-09 Robotically-controlled surgical instruments
US13424648 Active US8752747B2 (en) 2006-01-31 2012-03-20 Surgical instrument having recording capabilities
US13627241 Abandoned US20130020375A1 (en) 2006-01-31 2012-09-26 Surgical instrument
US13627246 Abandoned US20130020376A1 (en) 2006-01-31 2012-09-26 Surgical instrument
US13628695 Abandoned US20130023861A1 (en) 2006-01-31 2012-09-27 Surgical instrument
US13628674 Abandoned US20130026210A1 (en) 2006-01-31 2012-09-27 Surgical instrument
US13629702 Abandoned US20130087597A1 (en) 2006-01-31 2012-09-28 Surgical instrument
US13630433 Abandoned US20130026208A1 (en) 2006-01-31 2012-09-28 Surgical instrument for acting on tissue
US13712090 Active 2028-05-22 US9439649B2 (en) 2006-01-31 2012-12-12 Surgical instrument having force feedback capabilities
US13712118 Abandoned US20130116669A1 (en) 2006-01-31 2012-12-12 A surgical method using feedback capabilities.
US13786840 Active 2027-06-28 US9326769B2 (en) 2006-01-31 2013-03-06 Surgical instrument
US13787637 Active 2027-04-02 US9326770B2 (en) 2006-01-31 2013-03-06 Surgical instrument
US13789076 Pending US20130181033A1 (en) 2006-01-31 2013-03-07 Surgical instrument
US13789194 Pending US20130181034A1 (en) 2006-01-31 2013-03-07 Surgical instrument
US13791909 Pending US20130186933A1 (en) 2006-01-31 2013-03-09 Surgical instrument
US13958932 Active 2027-08-07 US9517068B2 (en) 2006-01-31 2013-08-05 Surgical instrument with automatically-returned firing member
US13958922 Active 2027-05-23 US9451958B2 (en) 2006-01-31 2013-08-05 Surgical instrument with firing actuator lockout
US14538145 Pending US20150060518A1 (en) 2006-01-31 2014-11-11 Surgical instrument having recording capabilities
US14538446 Pending US20150060520A1 (en) 2006-01-31 2014-11-11 Surgical stapling apparatus comprising a usage lockout
US14538420 Pending US20150060519A1 (en) 2006-01-31 2014-11-11 End effector for use with a surgical stapling apparatus comprising a lockout
US14664333 Pending US20150196295A1 (en) 2006-01-31 2015-03-20 Gearing selector for a powered surgical cutting and fastening instrument
US15081420 Pending US20160262746A1 (en) 2006-01-31 2016-03-25 Surgical instrument
US15223791 Pending US20170014129A1 (en) 2006-01-31 2016-07-29 Surgical instrument having force feedback capabilities
US15270796 Pending US20170007247A1 (en) 2006-01-31 2016-09-20 Surgical instrument with firing lockout

Country Status (7)

Country Link
US (28) US7845537B2 (en)
JP (1) JP5269324B2 (en)
KR (1) KR20070079048A (en)
CN (1) CN101023879B (en)
CA (1) CA2576322C (en)
EP (2) EP1813201B1 (en)
RU (1) RU2464944C2 (en)

Cited By (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100305552A1 (en) * 2006-01-31 2010-12-02 Ethicon End-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20110118753A1 (en) * 2009-11-13 2011-05-19 Brandon Itkowitz Master finger tracking device and method of use in a minimally invasive surgical system
US20110204120A1 (en) * 2010-02-25 2011-08-25 Design Standards Corporation Laproscopic Stapler
US8317070B2 (en) 2005-08-31 2012-11-27 Ethicon Endo-Surgery, Inc. Surgical stapling devices that produce formed staples having different lengths
US8348131B2 (en) 2006-09-29 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
US8453914B2 (en) 2009-12-24 2013-06-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8479969B2 (en) 2007-01-10 2013-07-09 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US8517244B2 (en) 2004-07-28 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8573461B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US8590762B2 (en) 2007-06-29 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US8602287B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery, Inc. Motor driven surgical cutting instrument
US8602288B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery. Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US8616431B2 (en) 2007-06-04 2013-12-31 Ethicon Endo-Surgery, Inc. Shiftable drive interface for robotically-controlled surgical tool
US8622275B2 (en) 2009-11-19 2014-01-07 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid distal end portion
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8636766B2 (en) 1997-09-23 2014-01-28 Covidien Lp Surgical stapling apparatus including sensing mechanism
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US8746529B2 (en) 2006-01-31 2014-06-10 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8746530B2 (en) 2007-01-10 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US8752747B2 (en) 2006-01-31 2014-06-17 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US8783541B2 (en) 2003-05-20 2014-07-22 Frederick E. Shelton, IV Robotically-controlled surgical end effector system
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US8789739B2 (en) 2011-09-06 2014-07-29 Ethicon Endo-Surgery, Inc. Continuous stapling instrument
US8789741B2 (en) 2010-09-24 2014-07-29 Ethicon Endo-Surgery, Inc. Surgical instrument with trigger assembly for generating multiple actuation motions
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US8801735B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical circular stapler with tissue retention arrangements
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8831782B2 (en) 2009-11-13 2014-09-09 Intuitive Surgical Operations, Inc. Patient-side surgeon interface for a teleoperated surgical instrument
US8844789B2 (en) 2006-01-31 2014-09-30 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US8893950B2 (en) 2009-04-16 2014-11-25 Covidien Lp Surgical apparatus for applying tissue fasteners
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US8935003B2 (en) 2010-09-21 2015-01-13 Intuitive Surgical Operations Method and system for hand presence detection in a minimally invasive surgical system
US8996173B2 (en) 2010-09-21 2015-03-31 Intuitive Surgical Operations, Inc. Method and apparatus for hand gesture control in a minimally invasive surgical system
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9072515B2 (en) 2008-02-14 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9138225B2 (en) 2007-06-22 2015-09-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US9155537B2 (en) 2011-08-08 2015-10-13 Covidien Lp Surgical fastener applying apparatus
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9232944B2 (en) 2012-06-29 2016-01-12 Covidien Lp Surgical instrument and bushing
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9271728B2 (en) 2011-06-09 2016-03-01 Covidien Lp Surgical fastener applying apparatus
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9289210B2 (en) 2008-09-19 2016-03-22 Ethicon Endo-Surgery, Llc Surgical stapler with apparatus for adjusting staple height
US9289211B2 (en) 2013-03-13 2016-03-22 Covidien Lp Surgical stapling apparatus
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9289209B2 (en) 2011-06-09 2016-03-22 Covidien Lp Surgical fastener applying apparatus
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9295465B2 (en) 2008-09-23 2016-03-29 Covidien Lp Tissue stop for surgical instrument
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9307987B2 (en) 2009-12-24 2016-04-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument that analyzes tissue thickness
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9320521B2 (en) 2006-06-27 2016-04-26 Ethicon Endo-Surgery, Llc Surgical instrument
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9345480B2 (en) 2013-01-18 2016-05-24 Covidien Lp Surgical instrument and cartridge members for use therewith
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9364217B2 (en) 2012-10-16 2016-06-14 Covidien Lp In-situ loaded stapler
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9445811B2 (en) 2008-09-23 2016-09-20 Covidien Lp Knife bar for surgical instrument
US9445810B2 (en) 2013-06-12 2016-09-20 Covidien Lp Stapling device with grasping jaw mechanism
US9451959B2 (en) 2011-06-09 2016-09-27 Covidien Lp Surgical fastener applying apparatus
US9498216B2 (en) 2011-12-01 2016-11-22 Covidien Lp Surgical instrument with actuator spring arm
US9510827B2 (en) 2013-03-25 2016-12-06 Covidien Lp Micro surgical instrument and loading unit for use therewith
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
US9526497B2 (en) 2012-05-07 2016-12-27 Covidien Lp Surgical instrument with articulation mechanism
US9539007B2 (en) 2011-08-08 2017-01-10 Covidien Lp Surgical fastener applying aparatus
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9585660B2 (en) 2010-01-07 2017-03-07 Ethicon Endo-Surgery, Llc Method for testing a surgical tool
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US9597075B2 (en) 2010-07-30 2017-03-21 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9629628B2 (en) 2013-03-13 2017-04-25 Covidien Lp Surgical stapling apparatus
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9655617B2 (en) 2007-08-31 2017-05-23 Covidien Lp Surgical instrument
US9662108B2 (en) 2013-08-30 2017-05-30 Covidien Lp Surgical stapling apparatus
US9668733B2 (en) 2014-04-21 2017-06-06 Covidien Lp Stapling device with features to prevent inadvertent firing of staples
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9687231B2 (en) 2008-02-13 2017-06-27 Ethicon Llc Surgical stapling instrument
US9687236B2 (en) 2010-10-01 2017-06-27 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9717498B2 (en) 2013-03-13 2017-08-01 Covidien Lp Surgical stapling apparatus
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9724095B2 (en) 2011-08-08 2017-08-08 Covidien Lp Surgical fastener applying apparatus
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9724093B2 (en) 2008-09-23 2017-08-08 Covidien Lp Surgical instrument and loading unit for use therewith
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9730695B2 (en) 2014-03-26 2017-08-15 Ethicon Endo-Surgery, Llc Power management through segmented circuit
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9757126B2 (en) 2014-03-31 2017-09-12 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9814463B2 (en) 2013-03-13 2017-11-14 Covidien Lp Surgical stapling apparatus
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9820737B2 (en) 2006-10-06 2017-11-21 Covidien Lp Surgical instrument including a locking assembly
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9833236B2 (en) 2010-09-30 2017-12-05 Ethicon Llc Tissue thickness compensator for surgical staplers
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9839429B2 (en) 2008-02-15 2017-12-12 Ethicon Endo-Surgery, Llc Stapling system comprising a lockout
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9848874B2 (en) 2014-02-14 2017-12-26 Covidien Lp Small diameter endoscopic stapler
US9861366B2 (en) 2014-05-06 2018-01-09 Covidien Lp Ejecting assembly for a surgical stapler
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9867613B2 (en) 2013-12-19 2018-01-16 Covidien Lp Surgical staples and end effectors for deploying the same
US9877723B2 (en) 2016-05-05 2018-01-30 Ethicon Llc Surgical stapling assembly comprising a selector arrangement

Families Citing this family (400)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960935B2 (en) * 2003-07-08 2011-06-14 The Board Of Regents Of The University Of Nebraska Robotic devices with agent delivery components and related methods
WO2006015319A3 (en) 2004-07-30 2009-05-28 Power Med Interventions Inc Flexible shaft extender and method of using same
US7464847B2 (en) 2005-06-03 2008-12-16 Tyco Healthcare Group Lp Surgical stapler with timer and feedback display
JP2009506799A (en) 2005-06-03 2009-02-19 タイコ ヘルスケア グループ リミテッド パートナーシップ Powered surgical instruments
US9662116B2 (en) 2006-05-19 2017-05-30 Ethicon, Llc Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US9554803B2 (en) 2005-07-26 2017-01-31 Ethicon Endo-Surgery, Llc Electrically self-powered surgical instrument with manual release
US8579176B2 (en) 2005-07-26 2013-11-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device and method for using the device
US7959050B2 (en) * 2005-07-26 2011-06-14 Ethicon Endo-Surgery, Inc Electrically self-powered surgical instrument with manual release
US7673783B2 (en) 2005-11-04 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for delivery of medical agents
US7799039B2 (en) 2005-11-09 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument having a hydraulically actuated end effector
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7673780B2 (en) * 2005-11-09 2010-03-09 Ethicon Endo-Surgery, Inc. Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
US7644848B2 (en) 2006-01-31 2010-01-12 Ethicon Endo-Surgery, Inc. Electronic lockouts and surgical instrument including same
US20110290856A1 (en) * 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US7770775B2 (en) 2006-01-31 2010-08-10 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US7568603B2 (en) 2006-01-31 2009-08-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with articulatable end effector
US20120292367A1 (en) * 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US7766210B2 (en) 2006-01-31 2010-08-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with user feedback system
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US8721630B2 (en) 2006-03-23 2014-05-13 Ethicon Endo-Surgery, Inc. Methods and devices for controlling articulation
US8627995B2 (en) * 2006-05-19 2014-01-14 Ethicon Endo-Sugery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US7479608B2 (en) 2006-05-19 2009-01-20 Ethicon Endo-Surgery, Inc. Force switch
US8038046B2 (en) 2006-05-19 2011-10-18 Ethicon Endo-Surgery, Inc. Electrical surgical instrument with optimized power supply and drive
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US8733614B2 (en) 2006-10-06 2014-05-27 Covidien Lp End effector identification by mechanical features
US20080091225A1 (en) * 2006-10-16 2008-04-17 Cole John P Counting device and method
WO2008057023A1 (en) * 2006-11-08 2008-05-15 Atlas Copco Tools Ab Power tool with exchangeable reduction gearing unit.
US7954682B2 (en) 2007-01-10 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US7721936B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US7738971B2 (en) * 2007-01-10 2010-06-15 Ethicon Endo-Surgery, Inc. Post-sterilization programming of surgical instruments
US7900805B2 (en) 2007-01-10 2011-03-08 Ethicon Endo-Surgery, Inc. Surgical instrument with enhanced battery performance
US7721931B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Prevention of cartridge reuse in a surgical instrument
US7431188B1 (en) 2007-03-15 2008-10-07 Tyco Healthcare Group Lp Surgical stapling apparatus with powered articulation
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US20080234709A1 (en) 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8056787B2 (en) 2007-03-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with travel-indicating retraction member
US7950560B2 (en) 2007-04-13 2011-05-31 Tyco Healthcare Group Lp Powered surgical instrument
US8800837B2 (en) * 2007-04-13 2014-08-12 Covidien Lp Powered surgical instrument
US7823760B2 (en) 2007-05-01 2010-11-02 Tyco Healthcare Group Lp Powered surgical stapling device platform
US20090327715A1 (en) * 2007-05-04 2009-12-31 Smith Kevin W System and Method for Cryptographic Identification of Interchangeable Parts
US7931660B2 (en) 2007-05-10 2011-04-26 Tyco Healthcare Group Lp Powered tacker instrument
US8485411B2 (en) * 2007-05-16 2013-07-16 The Invention Science Fund I, Llc Gentle touch surgical stapler
US7810693B2 (en) 2007-05-30 2010-10-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with articulatable end effector
US7798386B2 (en) 2007-05-30 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument articulation joint cover
US8157145B2 (en) * 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7819299B2 (en) 2007-06-04 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system
US7731072B2 (en) 2007-06-18 2010-06-08 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with improved anvil opening features
US7597229B2 (en) * 2007-06-22 2009-10-06 Ethicon Endo-Surgery, Inc. End effector closure system for a surgical stapling instrument
US7658311B2 (en) 2007-06-22 2010-02-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a geared return mechanism
US7441685B1 (en) 2007-06-22 2008-10-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a return mechanism
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US20090001130A1 (en) * 2007-06-29 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US20110046659A1 (en) * 2007-07-09 2011-02-24 Immersion Corporation Minimally Invasive Surgical Tools With Haptic Feedback
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US20090048924A1 (en) * 2007-08-14 2009-02-19 Wiborg Elizabeth E Apparatuses, Systems and Methods for Loading, Activating and Redeeming an Investment Gift Card
US9023014B2 (en) 2007-09-21 2015-05-05 Covidien Lp Quick connect assembly for use between surgical handle assembly and surgical accessories
US8968276B2 (en) 2007-09-21 2015-03-03 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9055943B2 (en) 2007-09-21 2015-06-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
EP2217157A2 (en) 2007-10-05 2010-08-18 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
CA2733377A1 (en) * 2010-03-12 2011-09-12 Tyco Healthcare Group Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US20090090763A1 (en) * 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
US8967443B2 (en) 2007-10-05 2015-03-03 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US8960520B2 (en) 2007-10-05 2015-02-24 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US7922063B2 (en) 2007-10-31 2011-04-12 Tyco Healthcare Group, Lp Powered surgical instrument
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
USD700699S1 (en) * 2011-08-23 2014-03-04 Covidien Ag Handle for portable surgical device
US8006365B2 (en) * 2008-01-30 2011-08-30 Easylap Ltd. Device and method for applying rotary tacks
US7766209B2 (en) 2008-02-13 2010-08-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
EP2713902A1 (en) 2011-05-27 2014-04-09 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-drive loading unit
JP5496520B2 (en) * 2008-02-14 2014-05-21 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. A control circuit for optimizing battery use, motorized cutting and fastening instrument
US7810692B2 (en) 2008-02-14 2010-10-12 Ethicon Endo-Surgery, Inc. Disposable loading unit with firing indicator
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7819297B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with reprocessible handle assembly
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US7819296B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with retractable firing systems
US7857185B2 (en) * 2008-02-14 2010-12-28 Ethicon Endo-Surgery, Inc. Disposable loading unit for surgical stapling apparatus
US7861906B2 (en) 2008-02-14 2011-01-04 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with articulatable components
US7913891B2 (en) 2008-02-14 2011-03-29 Ethicon Endo-Surgery, Inc. Disposable loading unit with user feedback features and surgical instrument for use therewith
US7980443B2 (en) 2008-02-15 2011-07-19 Ethicon Endo-Surgery, Inc. End effectors for a surgical cutting and stapling instrument
US20090206125A1 (en) * 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Packaging for attaching buttress material to a surgical stapling instrument
US7959051B2 (en) 2008-02-15 2011-06-14 Ethicon Endo-Surgery, Inc. Closure systems for a surgical cutting and stapling instrument
US20090206126A1 (en) * 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Buttress material with alignment and retention features for use with surgical end effectors
US20090206142A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Buttress material for a surgical stapling instrument
US7922061B2 (en) * 2008-05-21 2011-04-12 Ethicon Endo-Surgery, Inc. Surgical instrument with automatically reconfigurable articulating end effector
US7942303B2 (en) 2008-06-06 2011-05-17 Tyco Healthcare Group Lp Knife lockout mechanisms for surgical instrument
US7789283B2 (en) 2008-06-06 2010-09-07 Tyco Healthcare Group Lp Knife/firing rod connection for surgical instrument
US8701959B2 (en) 2008-06-06 2014-04-22 Covidien Lp Mechanically pivoting cartridge channel for surgical instrument
US8011551B2 (en) 2008-07-01 2011-09-06 Tyco Healthcare Group Lp Retraction mechanism with clutch-less drive for use with a surgical apparatus
US8074858B2 (en) 2008-07-17 2011-12-13 Tyco Healthcare Group Lp Surgical retraction mechanism
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US20100051668A1 (en) * 2008-09-03 2010-03-04 Milliman Keith L Surgical instrument with indicator
US8113405B2 (en) * 2008-09-03 2012-02-14 Tyco Healthcare Group, Lp Surgical instrument with indicator
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
US7837080B2 (en) * 2008-09-18 2010-11-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with device for indicating when the instrument has cut through tissue
US20100069942A1 (en) * 2008-09-18 2010-03-18 Ethicon Endo-Surgery, Inc. Surgical instrument with apparatus for measuring elapsed time between actions
RU2508913C2 (en) * 2008-09-19 2014-03-10 Этикон Эндо-Серджери, Инк. Block structure for surgical stapling apparatus
JP5631568B2 (en) * 2008-09-19 2014-11-26 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical stapling instrument having a cutting member structure
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US9050083B2 (en) * 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8215532B2 (en) 2008-09-23 2012-07-10 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US8020743B2 (en) 2008-10-15 2011-09-20 Ethicon Endo-Surgery, Inc. Powered articulatable surgical cutting and fastening instrument with flexible drive member
US7918377B2 (en) * 2008-10-16 2011-04-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with apparatus for providing anvil position feedback
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US20110024477A1 (en) * 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US20110024478A1 (en) * 2009-02-06 2011-02-03 Shelton Iv Frederick E Driven Surgical Stapler Improvements
US8245899B2 (en) * 2009-02-06 2012-08-21 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
US8356740B1 (en) * 2009-03-09 2013-01-22 Cardica, Inc. Controlling compression applied to tissue by surgical tool
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
US8251994B2 (en) * 2009-04-07 2012-08-28 Tyco Healthcare Group Lp Vessel sealer and divider with blade deployment alarm
US20100270354A1 (en) * 2009-04-22 2010-10-28 Ofir Rimer Ergonomic rotary tacker
US8127976B2 (en) 2009-05-08 2012-03-06 Tyco Healthcare Group Lp Stapler cartridge and channel interlock
US8579920B2 (en) * 2009-05-12 2013-11-12 Ethicon, Inc. Surgical fasteners, applicator instruments, and methods for deploying surgical fasteners
US8894669B2 (en) * 2009-05-12 2014-11-25 Ethicon, Inc. Surgical fasteners, applicator instruments, and methods for deploying surgical fasteners
US8728098B2 (en) * 2009-05-12 2014-05-20 Ethicon, Inc. Surgical fasteners, applicator instruments, and methods for deploying surgical fasteners
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8132706B2 (en) 2009-06-05 2012-03-13 Tyco Healthcare Group Lp Surgical stapling apparatus having articulation mechanism
US8821514B2 (en) 2009-06-08 2014-09-02 Covidien Lp Powered tack applier
US8319400B2 (en) 2009-06-24 2012-11-27 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8205779B2 (en) 2009-07-23 2012-06-26 Tyco Healthcare Group Lp Surgical stapler with tactile feedback system
US8360299B2 (en) * 2009-08-11 2013-01-29 Covidien Lp Surgical stapling apparatus
US8955732B2 (en) 2009-08-11 2015-02-17 Covidien Lp Surgical stapling apparatus
US8733612B2 (en) 2009-08-17 2014-05-27 Covidien Lp Safety method for powered surgical instruments
US8342378B2 (en) 2009-08-17 2013-01-01 Covidien Lp One handed stapler
US8141762B2 (en) 2009-10-09 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical stapler comprising a staple pocket
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US20110087224A1 (en) * 2009-10-09 2011-04-14 Cadeddu Jeffrey A Magnetic surgical sled with variable arm
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8418907B2 (en) 2009-11-05 2013-04-16 Covidien Lp Surgical stapler having cartridge with adjustable cam mechanism
US8353439B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
US8899466B2 (en) 2009-11-19 2014-12-02 Ethicon Endo-Surgery, Inc. Devices and methods for introducing a surgical circular stapling instrument into a patient
US8353438B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid cap assembly configured for easy removal
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8561871B2 (en) 2009-12-31 2013-10-22 Covidien Lp Indicators for surgical staplers
US8714430B2 (en) 2009-12-31 2014-05-06 Covidien Lp Indicator for surgical stapler
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8348127B2 (en) 2010-04-07 2013-01-08 Covidien Lp Surgical fastener applying apparatus
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8517241B2 (en) 2010-04-16 2013-08-27 Covidien Lp Hand-held surgical devices
GB201008510D0 (en) 2010-05-21 2010-07-07 Ethicon Endo Surgery Inc Medical device
EP2417925B1 (en) 2010-08-12 2016-12-07 Immersion Corporation Electrosurgical tool having tactile feedback
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US8783542B2 (en) 2010-09-30 2014-07-22 Ethicon Endo-Surgery, Inc. Fasteners supported by a fastener cartridge support
JP5905472B2 (en) * 2010-10-01 2016-04-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument having a jaw member
US8899461B2 (en) 2010-10-01 2014-12-02 Covidien Lp Tissue stop for surgical instrument
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8292150B2 (en) 2010-11-02 2012-10-23 Tyco Healthcare Group Lp Adapter for powered surgical devices
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
US9072523B2 (en) 2010-11-05 2015-07-07 Ethicon Endo-Surgery, Inc. Medical device with feature for sterile acceptance of non-sterile reusable component
US8308041B2 (en) 2010-11-10 2012-11-13 Tyco Healthcare Group Lp Staple formed over the wire wound closure procedure
US8523043B2 (en) * 2010-12-07 2013-09-03 Immersion Corporation Surgical stapler having haptic feedback
US8801710B2 (en) 2010-12-07 2014-08-12 Immersion Corporation Electrosurgical sealing tool having haptic feedback
US8276801B2 (en) 2011-02-01 2012-10-02 Tyco Healthcare Group Lp Surgical stapling apparatus
US8986287B2 (en) 2011-02-14 2015-03-24 Adrian E. Park Adjustable laparoscopic instrument handle
US9393017B2 (en) * 2011-02-15 2016-07-19 Intuitive Surgical Operations, Inc. Methods and systems for detecting staple cartridge misfire or failure
JP2014512885A (en) 2011-02-15 2014-05-29 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System for detecting the failure of the clamp or firing
US8496157B2 (en) 2011-02-18 2013-07-30 Covidien Lp Tilting anvil for annular surgical stapler
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
US8763876B2 (en) 2011-06-30 2014-07-01 Covidien Lp Surgical instrument and cartridge for use therewith
US8845667B2 (en) 2011-07-18 2014-09-30 Immersion Corporation Surgical tool having a programmable rotary module for providing haptic feedback
US8956342B1 (en) 2011-09-01 2015-02-17 Microaire Surgical Instruments Llc Method and device for ergonomically and ambidextrously operable surgical device
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US8657177B2 (en) 2011-10-25 2014-02-25 Covidien Lp Surgical apparatus and method for endoscopic surgery
US8672206B2 (en) 2011-10-25 2014-03-18 Covidien Lp Apparatus for endoscopic procedures
US8899462B2 (en) 2011-10-25 2014-12-02 Covidien Lp Apparatus for endoscopic procedures
US9480492B2 (en) 2011-10-25 2016-11-01 Covidien Lp Apparatus for endoscopic procedures
US9016539B2 (en) 2011-10-25 2015-04-28 Covidien Lp Multi-use loading unit
JP6210994B2 (en) * 2011-10-26 2017-10-11 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Surgical instrument having an integral knife blade
US20130105552A1 (en) * 2011-10-26 2013-05-02 Intuitive Surgical Operations, Inc. Cartridge Status and Presence Detection
WO2013063674A1 (en) * 2011-11-04 2013-05-10 Titan Medical Inc. Apparatus and method for controlling an end-effector assembly
EP2773277B1 (en) 2011-11-04 2016-03-02 Titan Medical Inc. Apparatus for controlling an end-effector assembly
JP6230541B2 (en) 2011-11-15 2017-11-15 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Surgical instrument with a knife blade to put it away
US8864010B2 (en) 2012-01-20 2014-10-21 Covidien Lp Curved guide member for articulating instruments
US9038882B2 (en) 2012-02-03 2015-05-26 Covidien Lp Circular stapling instrument
WO2013119545A1 (en) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Robotically controlled surgical instrument
US8979827B2 (en) 2012-03-14 2015-03-17 Covidien Lp Surgical instrument with articulation mechanism
US9198711B2 (en) * 2012-03-22 2015-12-01 Covidien Lp Electrosurgical system for communicating information embedded in an audio tone
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9186141B2 (en) 2012-04-12 2015-11-17 Covidien Lp Circular anastomosis stapling apparatus utilizing a two stroke firing sequence
US9597104B2 (en) 2012-06-01 2017-03-21 Covidien Lp Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9868198B2 (en) 2012-06-01 2018-01-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US9364220B2 (en) 2012-06-19 2016-06-14 Covidien Lp Apparatus for endoscopic procedures
EP2863827A4 (en) 2012-06-21 2016-04-20 Globus Medical Inc Surgical robot platform
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9839480B2 (en) 2012-07-09 2017-12-12 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US9402604B2 (en) 2012-07-20 2016-08-02 Covidien Lp Apparatus for endoscopic procedures
US9421014B2 (en) 2012-10-18 2016-08-23 Covidien Lp Loading unit velocity and position feedback
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9265585B2 (en) 2012-10-23 2016-02-23 Covidien Lp Surgical instrument with rapid post event detection
US9566065B2 (en) * 2012-12-21 2017-02-14 Cardica, Inc. Apparatus and methods for surgical stapler clamping and deployment
CN104902826B (en) 2012-12-31 2017-10-27 直观外科手术操作公司 Knife gap with increased surgical staple cartridge
US9782187B2 (en) 2013-01-18 2017-10-10 Covidien Lp Adapter load button lockout
WO2014116782A1 (en) * 2013-01-23 2014-07-31 Cambridge Surgical Instruments, Inc. Device for providing sensory feedback during surgical procedures
US9421003B2 (en) 2013-02-18 2016-08-23 Covidien Lp Apparatus for endoscopic procedures
US9216013B2 (en) 2013-02-18 2015-12-22 Covidien Lp Apparatus for endoscopic procedures
US9375262B2 (en) 2013-02-27 2016-06-28 Covidien Lp Limited use medical devices
US9808248B2 (en) 2013-02-28 2017-11-07 Ethicon Llc Installation features for surgical instrument end effector cartridge
US9717497B2 (en) 2013-02-28 2017-08-01 Ethicon Llc Lockout feature for movable cutting member of surgical instrument
US9839421B2 (en) 2013-02-28 2017-12-12 Ethicon Llc Jaw closure feature for end effector of surgical instrument
US9795379B2 (en) 2013-02-28 2017-10-24 Ethicon Llc Surgical instrument with multi-diameter shaft
US9517065B2 (en) 2013-02-28 2016-12-13 Ethicon Endo-Surgery, Llc Integrated tissue positioning and jaw alignment features for surgical stapler
US9186142B2 (en) * 2013-02-28 2015-11-17 Ethicon Endo-Surgery, Inc. Surgical instrument end effector articulation drive with pinion and opposing racks
US9867615B2 (en) 2013-02-28 2018-01-16 Ethicon Llc Surgical instrument with articulation lock having a detenting binary spring
US9622746B2 (en) 2013-02-28 2017-04-18 Ethicon Endo-Surgery, Llc Distal tip features for end effector of surgical instrument
US20140239037A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Staple forming features for surgical stapling instrument
US9254170B2 (en) 2013-03-13 2016-02-09 Ethicon Endo-Surgery, Inc. Electrosurgical device with disposable shaft having modular subassembly
US9492189B2 (en) 2013-03-13 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US9107685B2 (en) 2013-03-13 2015-08-18 Ethicon Endo-Surgery, Inc. Electrosurgical device with disposable shaft having clamshell coupling
US9737300B2 (en) 2013-03-13 2017-08-22 Ethicon Llc Electrosurgical device with disposable shaft having rack and pinion drive
US9314308B2 (en) 2013-03-13 2016-04-19 Ethicon Endo-Surgery, Llc Robotic ultrasonic surgical device with articulating end effector
US20140276719A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Electrosurgical device with drum-driven articulation
US9220569B2 (en) 2013-03-13 2015-12-29 Ethicon Endo-Surgery, Inc. Electrosurgical device with disposable shaft having translating gear and snap fit
US9402687B2 (en) 2013-03-13 2016-08-02 Ethicon Endo-Surgery, Llc Robotic electrosurgical device with disposable shaft
EP2967567A1 (en) * 2013-03-15 2016-01-20 Boston Scientific Scimed, Inc. System for controlling a tissue-stapling operation with pressurized fluid
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9775610B2 (en) 2013-04-09 2017-10-03 Covidien Lp Apparatus for endoscopic procedures
US9700318B2 (en) 2013-04-09 2017-07-11 Covidien Lp Apparatus for endoscopic procedures
US20140309666A1 (en) 2013-04-16 2014-10-16 Ethicon Endo-Surgery, Inc. Powered linear surgical stapler
US20140305991A1 (en) 2013-04-16 2014-10-16 Ethicon Endo-Surgery, Inc. Transmission arrangement for a surgical instrument
US9801646B2 (en) 2013-05-30 2017-10-31 Covidien Lp Adapter load button decoupled from loading unit sensor
US9797486B2 (en) 2013-06-20 2017-10-24 Covidien Lp Adapter direct drive with manual retraction, lockout and connection mechanisms
US9757129B2 (en) 2013-07-08 2017-09-12 Covidien Lp Coupling member configured for use with surgical devices
EP2845549B1 (en) * 2013-09-10 2016-08-31 Erbe Elektromedizin GmbH Surgical instrument with improved actuating mechanism
US9642671B2 (en) 2013-09-30 2017-05-09 Covidien Lp Limited-use medical device
US20140175150A1 (en) 2013-10-01 2014-06-26 Ethicon Endo-Surgery, Inc. Providing Near Real Time Feedback To A User of A Surgical Instrument
US20140035762A1 (en) 2013-10-01 2014-02-06 Ethicon Endo-Surgery, Inc. Providing Near Real Time Feedback To A User Of A Surgical Instrument
US9295522B2 (en) 2013-11-08 2016-03-29 Covidien Lp Medical device adapter with wrist mechanism
CN105813580A (en) * 2013-12-12 2016-07-27 柯惠Lp公司 Gear train assemblies for robotic surgical systems
US9808245B2 (en) 2013-12-13 2017-11-07 Covidien Lp Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US20150173749A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical staples and staple cartridges
WO2015100229A1 (en) 2013-12-24 2015-07-02 Ppc Broadband, Inc. A connector having an inner conductor engager
US9839424B2 (en) 2014-01-17 2017-12-12 Covidien Lp Electromechanical surgical assembly
US9655616B2 (en) 2014-01-22 2017-05-23 Covidien Lp Apparatus for endoscopic procedures
US20150230796A1 (en) * 2014-02-14 2015-08-20 Covidien Lp End stop detection
US9707005B2 (en) 2014-02-14 2017-07-18 Ethicon Llc Lockout mechanisms for surgical devices
US9301691B2 (en) 2014-02-21 2016-04-05 Covidien Lp Instrument for optically detecting tissue attributes
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US20150272575A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Surgical instrument comprising a sensor system
US20150272571A1 (en) * 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Surgical instrument utilizing sensor adaptation
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US9713466B2 (en) 2014-05-16 2017-07-25 Covidien Lp Adaptor for surgical instrument for converting rotary input to linear output
CN106413504A (en) * 2014-06-20 2017-02-15 奥林巴斯株式会社 Actuator control device
US9693774B2 (en) 2014-06-25 2017-07-04 Ethicon Llc Pivotable articulation joint unlocking feature for surgical stapler
US20150374363A1 (en) 2014-06-25 2015-12-31 Ethicon Endo-Surgery, Inc. Lockout engagement features for surgical stapler
US20150374373A1 (en) 2014-06-25 2015-12-31 Ethicon Endo-Surgery, Inc. Method of using lockout features for surgical stapler cartridge
US20150374361A1 (en) 2014-06-25 2015-12-31 Ethicon Endo-Surgery, Inc. Jaw opening feature for surgical stapler
US20150374362A1 (en) 2014-06-25 2015-12-31 Ethicon Endo-Surgery, Inc. Method of unlocking articulation joint in surgical stapler
US20150374365A1 (en) 2014-06-25 2015-12-31 Ethicon Endo-Surgery, Inc. Translatable articulation joint unlocking feature for surgical stapler
US9839425B2 (en) 2014-06-26 2017-12-12 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9763661B2 (en) 2014-06-26 2017-09-19 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US20160030040A1 (en) * 2014-07-31 2016-02-04 Covidien Lp Powered surgical instrument with pressure sensitive motor speed control
US20160058444A1 (en) * 2014-09-02 2016-03-03 Ethicon Endo-Surgery, Inc. Devices and Methods for Manually Retracting a Drive Shaft, Drive Beam, and Associated Components of a Surgical Fastening Device
US20160066913A1 (en) * 2014-09-05 2016-03-10 Ethicon Endo-Surgery, Inc. Local display of tissue parameter stabilization
US20160081690A1 (en) 2014-09-18 2016-03-24 Ethicon Endo-Surgery, Inc. Surgical stapler with plurality of cutting elements
US20160089154A1 (en) * 2014-09-26 2016-03-31 DePuy Synthes Products, LLC Surgical tool with feedback
US20160100837A1 (en) 2014-10-13 2016-04-14 Ethicon Endo-Surgery, Inc. Staple cartridge
US20160106426A1 (en) 2014-10-16 2016-04-21 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjunct material
US20160120544A1 (en) 2014-10-29 2016-05-05 Ethicon Endo-Surgery, Inc. Cartridge assemblies for surgical staplers
US20160120545A1 (en) 2014-10-29 2016-05-05 Ethicon Endo-Surgery, Inc. Staple cartridges comprising driver arrangements
US20160166256A1 (en) 2014-12-10 2016-06-16 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument system
US20160174971A1 (en) 2014-12-18 2016-06-23 Ethicon Endo-Surgery, Inc. Surgical instrument assembly comprising a lockable articulation system
US20160174983A1 (en) 2014-12-18 2016-06-23 Ethicon Endo-Surgery, Inc. Surgical instruments with improved closure arrangements
US20160174975A1 (en) 2014-12-18 2016-06-23 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US20160174972A1 (en) 2014-12-18 2016-06-23 Ethicon Endo-Surgery, Inc. Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US20160174976A1 (en) 2014-12-18 2016-06-23 Ethicon Endo-Surgery, Inc. Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US20160174973A1 (en) 2014-12-18 2016-06-23 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US20160174970A1 (en) 2014-12-18 2016-06-23 Ethicon Endo-Surgery, Inc. Surgical instrument assembly comprising a flexible articulation system
EP3232957A1 (en) 2014-12-19 2017-10-25 Ethicon LLC Adaptor for robotics cannula and seal assembly
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US20160249916A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc System for monitoring whether a surgical instrument needs to be serviced
US20160249945A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc Adaptable surgical instrument handle
US20160256162A1 (en) 2015-03-06 2016-09-08 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US20160278848A1 (en) 2015-03-24 2016-09-29 Ethicon Endo-Surgery, Llc Surgical instruments with firing system overload protection mechanisms
US20160278776A1 (en) 2015-03-25 2016-09-29 Ethicon Endo-Surgery, Llc Low glass transition temperature bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US20160278777A1 (en) 2015-03-25 2016-09-29 Ethicon Endo-Surgery, Llc Biologically derived extracellular matrix with infused viscous absorbable copolymer for releasably attaching a staple buttress to a surgical stapler
US20160278774A1 (en) 2015-03-25 2016-09-29 Ethicon Endo-Surgery, Llc Method of applying a buttress to a surgical stapler
US20160278765A1 (en) 2015-03-25 2016-09-29 Ethicon Endo-Surgery, Llc Surgical staple buttress with integral adhesive for releasably attaching to a surgical stapler
US20160278775A1 (en) 2015-03-25 2016-09-29 Ethicon Endo-Surgery, Llc Malleable bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US20160278778A1 (en) 2015-03-25 2016-09-29 Ethicon Endo-Surgery, Llc Naturally derived bioabsorbable polymer gel adhesive for releasably attaching a staple buttress to a surgical stapler
US20160278764A1 (en) 2015-03-25 2016-09-29 Ethicon Endo-Surgery, Llc Flowable bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US20160287251A1 (en) 2015-03-31 2016-10-06 Ethicon Endo-Surgery, Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US20160287253A1 (en) 2015-03-31 2016-10-06 Ethicon Endo-Surgery, Llc. Surgical instrument with selectively disengageable threaded drive systems
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
US20160367247A1 (en) 2015-06-18 2016-12-22 Ethicon Endo-Surgery, Llc Surgical stapling instruments with lockout arrangements for preventing firing system actuation when a cartridge is spent or missing
US20160367255A1 (en) 2015-06-18 2016-12-22 Ethicon Endo-Surgery, Llc Movable firing beam support arrangements for articulatable surgical instruments
WO2016205481A1 (en) * 2015-06-19 2016-12-22 Covidien Lp Robotic surgical assemblies
US20170020524A1 (en) * 2015-07-20 2017-01-26 Covidien Lp Endoscopic stapler and staple
US20170027569A1 (en) 2015-07-28 2017-02-02 Ethicon Endo-Surgery, Llc Surgical staple cartridge with outer edge compression features
US20170027568A1 (en) 2015-07-28 2017-02-02 Ethicon Endo-Surgery, Llc Surgical stapler cartridge with compression features at staple driver edges
US20170027567A1 (en) 2015-07-28 2017-02-02 Ethicon Endo-Surgery, Llc Surgical staple cartridge with compression feature at knife slot
US20170027574A1 (en) 2015-07-30 2017-02-02 Ethicon Endo-Surgery, Llc Surgical instrument comprising a system for bypassing an operational step of the surgical instrument
US20170027572A1 (en) 2015-07-30 2017-02-02 Ethicon Endo-Surgery, Llc Surgical instrument comprising separate tissue securing and tissue cutting systems
US20170056007A1 (en) 2015-08-26 2017-03-02 Ethicon Endo-Surgery, Llc Staples comprising a cover
US20170056003A1 (en) 2015-08-26 2017-03-02 Ethicon Endo-Surgery, Llc Staple cartridge assembly including staple guides
US20170055996A1 (en) 2015-08-26 2017-03-02 Ethicon Endo-Surgery, Llc Surgical staples comprising features for improved fastening of tissue
US20170056002A1 (en) 2015-08-26 2017-03-02 Ethicon Endo-Surgery, Llc Staple cartridge assembly comprising various tissue compression gaps and staple forming gaps
US20170055998A1 (en) 2015-08-26 2017-03-02 Ethicon Endo-Surgery, Llc Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US20170056000A1 (en) 2015-08-26 2017-03-02 Ethicon Endo-Surgery, Llc Surgical stapling configurations for curved and circular stapling instruments
US20170056011A1 (en) 2015-09-02 2017-03-02 Ethicon Endo-Surgery, Llc Surgical staple cartridge with improved staple driver configurations
US20170056014A1 (en) 2015-09-02 2017-03-02 Ethicon Endo-Surgery, Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US20170056015A1 (en) 2015-09-02 2017-03-02 Ethicon Endo-Surgery, Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US20170079650A1 (en) 2015-09-23 2017-03-23 Ethicon Endo-Surgery, Llc Surgical stapler having current mirror-based motor control
US20170086843A1 (en) 2015-09-30 2017-03-30 Ethicon Endo-Surgery, Llc Compressible adjunct with attachment regions
US20170086845A1 (en) 2015-09-30 2017-03-30 Ethicon Endo-Surgery, Llc Compressible adjunct assemblies with attachment layers
US20170105730A1 (en) 2015-10-15 2017-04-20 Ethicon Endo-Surgery, Llc Surgical staple cartridge with varying staple crown width along a curve
US20170105731A1 (en) 2015-10-15 2017-04-20 Ethicon Endo-Surgery, Llc End effector for surgical stapler with varying curve and taper
US20170105728A1 (en) 2015-10-15 2017-04-20 Ethicon Endo-Surgery, Llc Surgical stapler with terminal staple orientation crossing center line
US20170105732A1 (en) 2015-10-15 2017-04-20 Ethicon Endo-Surgery, Llc Surgical stapler end effector with knife position indicators
US20170105733A1 (en) 2015-10-15 2017-04-20 Ethicon Endo-Surgery, Llc Surgical stapler end effector with multi-staple driver crossing center line
US20170105729A1 (en) 2015-10-15 2017-04-20 Ethicon Endo-Surgery, Llc Surgical staple actuating sled with actuation stroke having minimized distance relative to distal staple
US20170105727A1 (en) 2015-10-15 2017-04-20 Ethicon Endo-Surgery, Llc Surgical stapler with progressively driven asymmetric alternating staple drivers
US20170119386A1 (en) 2015-10-29 2017-05-04 Ethicon Endo-Surgery, Llc Surgical stapler buttress assembly with gel adhesive retainer
US20170119390A1 (en) 2015-10-29 2017-05-04 Ethicon Endo-Surgery, Llc Surgical stapler buttress assembly with features to interact with movable end effector components
US20170119389A1 (en) 2015-10-29 2017-05-04 Ethicon Endo-Surgery, Llc Fluid penetrable buttress assembly for a surgical stapler
US20170119379A1 (en) 2015-10-29 2017-05-04 Ethicon Endo-Surgery, Llc Surgical stapler buttress assembly with humidity tolerant adhesive
US20170119385A1 (en) 2015-10-29 2017-05-04 Ethicon Endo-Surgery, Llc Surgical stapler buttress assembly with adhesion to wet end effector
US20170119380A1 (en) 2015-10-29 2017-05-04 Ethicon Endo-Surgery, Llc Extensible buttress assembly for surgical stapler
US20170119392A1 (en) 2015-10-29 2017-05-04 Ethicon Endo-Surgery, Llc Multi-layer surgical stapler buttress assembly
US20170119391A1 (en) 2015-10-29 2017-05-04 Ethicon Endo-Surgery, Llc Surgical stapler buttress applicator with data communication
US20170119387A1 (en) 2015-10-29 2017-05-04 Ethicon Endo-Surgery, Llc Extensible buttress assembly for surgical stapler
US20170189132A1 (en) 2015-12-31 2017-07-06 Ethicon Endo-Surgery, Llc Surgical stapler with end of stroke indicator
US20170189015A1 (en) 2015-12-31 2017-07-06 Ethicon Endo-Surgery, Llc Surgical stapler with fixed jaw support pin
US20170189024A1 (en) 2015-12-31 2017-07-06 Ethicon Endo-Surgery, Llc Surgical stapler with variable height drivers for uniform staple formation
US20170224334A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Articulatable surgical instruments with single articulation link arrangements
US20170224331A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US20170281185A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical stapling system comprising a spent cartridge lockout
US20170281173A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical stapling instrument
US20170281166A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical cutting and stapling end effector with anvil concentric drive member
US20170281178A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical stapling system comprising a shiftable transmission
US20170281170A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical instrument comprising a shifting mechanism
US20170281187A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical stapling system comprising a tissue compression lockout
US20170281179A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical stapling system comprising an unclamping lockout
US20170281169A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Circular stapling system comprising rotary firing system
US20170281162A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical stapling system configured to provide selective cutting of tissue
US20170281161A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Rotary powered surgical instrument with manually actuatable bailout system
US20170281174A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Circular stapling system comprising load control
US20170281186A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical stapling system comprising a contourable shaft
US20170281171A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Method for operating a surgical stapling system
US20170281167A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US20170281188A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical stapling system comprising a grooved forming pocket
US20170281189A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Circular stapling system comprising an incisable tissue support
US20170281183A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical stapling system comprising a jaw closure lockout
US20170296184A1 (en) 2016-04-15 2017-10-19 Ethicon Endo-Surgery, Llc Modular surgical instrument with configurable operating mode
US20170296177A1 (en) 2016-04-15 2017-10-19 Ethicon Endo-Surgery, Llc Surgical instrument with multiple program responses during a firing motion
US20170296178A1 (en) 2016-04-15 2017-10-19 Ethicon Endo-Surgery, Llc Surgical instrument with detection sensors
US20170296169A1 (en) 2016-04-15 2017-10-19 Ethicon Endo-Surgery, Llc Systems and methods for controlling a surgical stapling and cutting instrument
US20170296179A1 (en) 2016-04-15 2017-10-19 Ethicon Endo-Surgery, Llc Surgical instrument with improved stop/start control during a firing motion
US20170296189A1 (en) 2016-04-15 2017-10-19 Ethicon Endo-Surgery, Llc Staple formation detection mechanisms
US20170296180A1 (en) 2016-04-15 2017-10-19 Ethicon Endo-Surgery, Llc Surgical instrument with adjustable stop/start control during a firing motion
US20170296213A1 (en) 2016-04-15 2017-10-19 Ethicon Endo-Surgery, Llc Systems and methods for controlling a surgical stapling and cutting instrument
US20170296183A1 (en) 2016-04-15 2017-10-19 Ethicon Endo-Surgery, Llc Surgical instrument with multiple program responses during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US20170296171A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US20170303924A1 (en) 2016-04-20 2017-10-26 Ethicon Endo-Surgery, Llc Surgical staple cartridge with hydraulic staple deployment
US20170303925A1 (en) 2016-04-20 2017-10-26 Ethicon Endo-Surgery, Llc Surgical stapler with hydraulic deck control
US20170303923A1 (en) 2016-04-20 2017-10-26 Ethicon Endo-Surgery, Llc Compliant compensation features for end effector of surgical stapling instrument

Citations (1361)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171316B2 (en)
US66052A (en) 1867-06-25 smith
DE273689C (en) 1913-08-07 1914-05-08
US2037727A (en) 1934-12-27 1936-04-21 United Shoe Machinery Corp Fastening
US2214870A (en) 1938-08-10 1940-09-17 William J West Siding cutter
US2441096A (en) 1944-09-04 1948-05-04 Singer Mfg Co Control means for portable electric tools
US2526902A (en) 1947-07-31 1950-10-24 Norman C Rublee Insulating staple
FR999646A (en) 1949-11-16 1952-02-04 Device cleat
FR1112936A (en) 1954-10-20 1956-03-20 electric motor and control three-speed enclosed in a sheath
US2804848A (en) 1954-09-30 1957-09-03 Chicago Pneumatic Tool Co Drilling apparatus
US2808482A (en) 1956-04-12 1957-10-01 Miniature Switch Corp Toggle switch construction
US2853074A (en) 1956-06-15 1958-09-23 Edward A Olson Stapling instrument for surgical purposes
DE1775926U (en) 1958-06-11 1958-10-16 Rudolf W Dipl Ing Ihmig Pen refill.
US3032769A (en) 1959-08-18 1962-05-08 John R Palmer Method of making a bracket
US3075062A (en) 1960-02-02 1963-01-22 J B T Instr Inc Toggle switch
US3078465A (en) 1959-09-09 1963-02-26 Bobrov Boris Sergueevitch Instrument for stitching gastric stump
GB939929A (en) 1959-10-30 1963-10-16 Vasilii Fedotovich Goodov Instrument for stitching blood vessels, intestines, bronchi and other soft tissues
US3266494A (en) 1963-08-26 1966-08-16 Possis Machine Corp Powered forceps
US3269630A (en) 1964-04-30 1966-08-30 Fleischer Harry Stapling instrument
US3357296A (en) 1965-05-14 1967-12-12 Keuneth W Lefever Staple fastener
US3490675A (en) 1966-10-10 1970-01-20 United States Surgical Corp Instrument for placing lateral gastrointestinal anastomoses
GB1210522A (en) 1966-10-10 1970-10-28 United States Surgical Corp Instrument for placing lateral gastro-intestinal anastomoses
GB1217159A (en) 1967-12-05 1970-12-31 Coventry Gauge & Tool Co Ltd Torque limiting device
US3551987A (en) 1968-09-12 1971-01-05 Jack E Wilkinson Stapling clamp for gastrointestinal surgery
US3598943A (en) 1969-12-01 1971-08-10 Illinois Tool Works Actuator assembly for toggle switch
US3643851A (en) 1969-08-25 1972-02-22 United States Surgical Corp Skin stapler
US3662939A (en) 1970-02-26 1972-05-16 United States Surgical Corp Surgical stapler for skin and fascia
US3717294A (en) 1970-12-14 1973-02-20 Surgical Corp Cartridge and powering instrument for stapling skin and fascia
US3734207A (en) 1971-12-27 1973-05-22 M Fishbein Battery powered orthopedic cutting tool
US3751902A (en) 1972-02-22 1973-08-14 Emhart Corp Apparatus for installing insulation on a staple
GB1339394A (en) 1972-04-06 1973-12-05 Vnii Khirurgicheskoi Apparatur Dies for surgical stapling instruments
US3819100A (en) 1972-09-29 1974-06-25 United States Surgical Corp Surgical stapling instrument
US3821919A (en) 1972-11-10 1974-07-02 Illinois Tool Works Staple
US3892228A (en) 1972-10-06 1975-07-01 Olympus Optical Co Apparatus for adjusting the flexing of the bending section of an endoscope
US3894174A (en) 1974-07-03 1975-07-08 Emhart Corp Insulated staple and method of making the same
US3940844A (en) 1972-02-22 1976-03-02 Pci Group, Inc. Method of installing an insulating sleeve on a staple
US4129059A (en) 1974-11-07 1978-12-12 Eck William F Van Staple-type fastener
US4213562A (en) 1977-04-29 1980-07-22 Roger Garrett Programmer
US4250436A (en) 1979-09-24 1981-02-10 The Singer Company Motor braking arrangement and method
US4261244A (en) 1979-05-14 1981-04-14 Senco Products, Inc. Surgical staple
US4272662A (en) 1979-05-21 1981-06-09 C & K Components, Inc. Toggle switch with shaped wire spring contact
US4275813A (en) 1979-06-04 1981-06-30 United States Surgical Corporation Coherent surgical staple array
US4289133A (en) 1980-02-28 1981-09-15 Senco Products, Inc. Cut-through backup washer for the scalpel of an intraluminal surgical stapling instrument
US4305539A (en) 1979-03-26 1981-12-15 Korolkov Ivan A Surgical suturing instrument for application of a staple suture
US4317451A (en) 1980-02-19 1982-03-02 Ethicon, Inc. Plastic surgical staple
US4321002A (en) 1978-03-27 1982-03-23 Minnesota Mining And Manufacturing Company Medical stapling device
US4331277A (en) 1980-05-23 1982-05-25 United States Surgical Corporation Self-contained gas powered surgical stapler
US4340331A (en) 1979-03-26 1982-07-20 Savino Dominick J Staple and anviless stapling apparatus therefor
US4347450A (en) 1980-12-10 1982-08-31 Colligan Wallace M Portable power tool
US4349028A (en) 1980-10-03 1982-09-14 United States Surgical Corporation Surgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence
US4353371A (en) 1980-09-24 1982-10-12 Cosman Eric R Longitudinally, side-biting, bipolar coagulating, surgical instrument
US4379457A (en) 1981-02-17 1983-04-12 United States Surgical Corporation Indicator for surgical stapler
US4380312A (en) 1980-07-17 1983-04-19 Minnesota Mining And Manufacturing Company Stapling tool
US4383634A (en) 1981-05-26 1983-05-17 United States Surgical Corporation Surgical stapler apparatus with pivotally mounted actuator assemblies
GB2109241A (en) 1981-09-11 1983-06-02 Fuji Photo Optical Co Ltd Endoscope together with another medical appliance
US4396139A (en) 1980-02-15 1983-08-02 Technalytics, Inc. Surgical stapling system, apparatus and staple
US4402445A (en) 1981-10-09 1983-09-06 United States Surgical Corporation Surgical fastener and means for applying same
DE3210466A1 (en) 1982-03-22 1983-09-29 Peter Dipl Kfm Dr Gschaider Method and device for carrying out handling processes
US4415112A (en) 1981-10-27 1983-11-15 United States Surgical Corporation Surgical stapling assembly having resiliently mounted anvil
US4428376A (en) 1980-05-02 1984-01-31 Ethicon Inc. Plastic surgical staple
US4429695A (en) 1980-02-05 1984-02-07 United States Surgical Corporation Surgical instruments
US4442964A (en) 1981-12-07 1984-04-17 Senco Products, Inc. Pressure sensitive and working-gap controlled surgical stapling instrument
US4451743A (en) 1980-12-29 1984-05-29 Citizen Watch Company Limited DC-to-DC Voltage converter
US4454887A (en) 1981-04-15 1984-06-19 Krueger Christian Medical instruments for introduction into the respiratory tract of a patient
US4467805A (en) 1982-08-25 1984-08-28 Mamoru Fukuda Skin closure stapling device for surgical procedures
US4475679A (en) 1981-08-07 1984-10-09 Fleury Jr George J Multi-staple cartridge for surgical staplers
EP0122046A1 (en) 1983-03-11 1984-10-17 Ethicon Inc. Absorbable fastening device with internal locking means
US4485816A (en) 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US4489875A (en) 1980-10-17 1984-12-25 United States Surgical Corporation Self-centering surgical staple and stapler for applying the same
US4500024A (en) 1980-11-19 1985-02-19 Ethicon, Inc. Multiple clip applier
US4505273A (en) 1982-02-10 1985-03-19 Intermedicat Gmbh Surgical staple
US4505414A (en) 1983-10-12 1985-03-19 Filipi Charles J Expandable anvil surgical stapler
US4506671A (en) 1983-03-30 1985-03-26 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
EP0070230B1 (en) 1981-07-09 1985-04-10 Tractel S.A. Declutching mechanism for a hauling apparatus through which runs a cable
US4520817A (en) 1980-02-05 1985-06-04 United States Surgical Corporation Surgical instruments
US4522327A (en) 1983-05-18 1985-06-11 United States Surgical Corporation Surgical fastener applying apparatus
US4526174A (en) 1981-03-27 1985-07-02 Minnesota Mining And Manufacturing Company Staple and cartridge for use in a tissue stapling device and a tissue closing method
US4527724A (en) 1983-06-10 1985-07-09 Senmed, Inc. Disposable linear surgical stapling instrument
US4530453A (en) 1983-10-04 1985-07-23 United States Surgical Corporation Surgical fastener applying apparatus
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4565189A (en) 1981-10-08 1986-01-21 Bio Mabuchi Co. Ltd. Beauty treatment device
US4566620A (en) 1984-10-19 1986-01-28 United States Surgical Corporation Articulated surgical fastener applying apparatus
US4573469A (en) 1983-06-20 1986-03-04 Ethicon, Inc. Two-piece tissue fastener with coinable leg staple and retaining receiver and method and instrument for applying same
US4573622A (en) 1984-10-19 1986-03-04 United States Surgical Corporation Surgical fastener applying apparatus with variable fastener arrays
US4576167A (en) 1981-09-03 1986-03-18 United States Surgical Corporation Surgical stapler apparatus with curved shaft
US4580712A (en) 1984-10-19 1986-04-08 United States Surgical Corporation Surgical fastener applying apparatus with progressive application of fastener
US4589416A (en) 1983-10-04 1986-05-20 United States Surgical Corporation Surgical fastener retainer member assembly
US4591085A (en) 1984-07-16 1986-05-27 Ethicon, Inc. Surgical instrument for applying fasteners, said instrument having an improved trigger interlocking mechanism (Case VI)
US4605001A (en) 1984-10-19 1986-08-12 Senmed, Inc. Surgical stapling instrument with dual staple height mechanism
US4604786A (en) 1982-11-05 1986-08-12 The Grigoleit Company Method of making a composite article including a body having a decorative metal plate attached thereto
US4606343A (en) 1980-08-18 1986-08-19 United States Surgical Corporation Self-powered surgical fastening instrument
US4607638A (en) 1984-04-20 1986-08-26 Design Standards Corporation Surgical staples
US4608981A (en) 1984-10-19 1986-09-02 Senmed, Inc. Surgical stapling instrument with staple height adjusting mechanism
US4610250A (en) 1985-10-08 1986-09-09 United States Surgical Corporation Two-part surgical fastener for fascia wound approximation
US4610383A (en) 1983-10-14 1986-09-09 Senmed, Inc. Disposable linear surgical stapler
US4619262A (en) 1984-07-10 1986-10-28 Syncare, Inc. Surgical stapling device
US4629107A (en) 1983-08-16 1986-12-16 Vsesojuzny Nauchno-Issledovatelsky I Ispytatelny Institute Meditsinskoi Tekhniki Ligating instrument
US4632290A (en) 1981-08-17 1986-12-30 United States Surgical Corporation Surgical stapler apparatus
US4633874A (en) 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
US4641076A (en) 1985-01-23 1987-02-03 Hall Surgical-Division Of Zimmer, Inc. Method and apparatus for sterilizing and charging batteries
US4646722A (en) 1984-12-10 1987-03-03 Opielab, Inc. Protective endoscope sheath and method of installing same
US4655222A (en) 1984-07-30 1987-04-07 Ethicon, Inc. Coated surgical staple
US4664305A (en) 1982-05-04 1987-05-12 Blake Joseph W Iii Surgical stapler
US4665916A (en) 1985-08-09 1987-05-19 United States Surgical Corporation Surgical stapler apparatus
US4667674A (en) 1983-10-04 1987-05-26 United States Surgical Corporation Surgical fastener exhibiting improved hemostasis
US4671445A (en) 1984-08-09 1987-06-09 Baxter Travenol Laboratories, Inc. Flexible surgical stapler assembly
US4676245A (en) 1983-02-09 1987-06-30 Mamoru Fukuda Interlocking surgical staple assembly
US4693248A (en) 1983-06-20 1987-09-15 Ethicon, Inc. Two-piece tissue fastener with deformable retaining receiver
US4709120A (en) 1986-06-06 1987-11-24 Pearson Dean C Underground utility equipment vault
US4715520A (en) 1985-10-10 1987-12-29 United States Surgical Corporation Surgical fastener applying apparatus with tissue edge control
US4719917A (en) 1987-02-17 1988-01-19 Minnesota Mining And Manufacturing Company Surgical staple
US4728020A (en) 1985-08-30 1988-03-01 United States Surgical Corporation Articulated surgical fastener applying apparatus
US4728876A (en) 1986-02-19 1988-03-01 Minnesota Mining And Manufacturing Company Orthopedic drive assembly
US4729260A (en) 1985-12-06 1988-03-08 Desoutter Limited Two speed gearbox
US4741336A (en) 1984-07-16 1988-05-03 Ethicon, Inc. Shaped staples and slotted receivers (case VII)
US4752024A (en) 1986-10-17 1988-06-21 Green David T Surgical fastener and surgical stapling apparatus
US4754909A (en) 1984-08-09 1988-07-05 Barker John M Flexible stapler
EP0276104A2 (en) 1987-01-21 1988-07-27 American Medical Systems, Inc. Apparatus for removal of objects from body passages
US4767044A (en) 1984-10-19 1988-08-30 United States Surgical Corporation Surgical fastener applying apparatus
US4777780A (en) 1987-04-21 1988-10-18 United States Surgical Corporation Method for forming a sealed sterile package
US4787387A (en) 1984-11-08 1988-11-29 American Cyanamid Company Surgical closure element
US4790225A (en) 1982-11-24 1988-12-13 Panduit Corp. Dispenser of discrete cable ties provided on a continuous ribbon of cable ties
US4805823A (en) 1988-03-18 1989-02-21 Ethicon, Inc. Pocket configuration for internal organ staplers
US4805617A (en) 1987-11-05 1989-02-21 Ethicon, Inc. Surgical fastening systems made from polymeric materials
US4809695A (en) 1981-10-21 1989-03-07 Owen M. Gwathmey Suturing assembly and method
US4817847A (en) 1986-04-21 1989-04-04 Finanzaktiengesellschaft Globe Control Instrument and a procedure for performing an anastomosis
US4819853A (en) 1987-12-31 1989-04-11 United States Surgical Corporation Surgical fastener cartridge
US4821939A (en) 1987-09-02 1989-04-18 United States Surgical Corporation Staple cartridge and an anvilless surgical stapler
US4827911A (en) 1986-04-02 1989-05-09 Cooper Lasersonics, Inc. Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
US4844068A (en) 1987-06-05 1989-07-04 Ethicon, Inc. Bariatric surgical instrument
US4869415A (en) 1988-09-26 1989-09-26 Ethicon, Inc. Energy storage means for a surgical stapler
US4880015A (en) 1988-06-03 1989-11-14 Nierman David M Biopsy forceps
US4892244A (en) 1988-11-07 1990-01-09 Ethicon, Inc. Surgical stapler cartridge lockout device
US4915100A (en) 1988-12-19 1990-04-10 United States Surgical Corporation Surgical stapler apparatus with tissue shield
US4938408A (en) 1988-01-15 1990-07-03 Ethicon, Inc. Surgical stapler safety and sequencing mechanisms
US4941623A (en) 1987-05-12 1990-07-17 United States Surgical Corporation Stapling process and device for use on the mesentery of the abdomen
US4944443A (en) 1988-04-22 1990-07-31 Innovative Surgical Devices, Inc. Surgical suturing instrument and method
US4955959A (en) 1989-05-26 1990-09-11 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US4978049A (en) 1989-05-26 1990-12-18 United States Surgical Corporation Three staple drive member
US4986808A (en) 1988-12-20 1991-01-22 Valleylab, Inc. Magnetostrictive transducer
US4988334A (en) 1986-04-09 1991-01-29 Valleylab, Inc. Ultrasonic surgical system with aspiration tubulation connector
US5002553A (en) 1984-05-14 1991-03-26 Surgical Systems & Instruments, Inc. Atherectomy system with a clutch
US5009661A (en) 1989-04-24 1991-04-23 Michelson Gary K Protective mechanism for surgical rongeurs
US5015227A (en) 1987-09-30 1991-05-14 Valleylab Inc. Apparatus for providing enhanced tissue fragmentation and/or hemostasis
US5014899A (en) 1990-03-30 1991-05-14 United States Surgical Corporation Surgical stapling apparatus
US5027834A (en) 1987-06-11 1991-07-02 United States Surgical Corporation Stapling process for use on the mesenteries of the abdomen
US5031814A (en) 1989-05-26 1991-07-16 United States Surgical Corporation Locking mechanism for surgical fastening apparatus
US5040715A (en) 1989-05-26 1991-08-20 United States Surgical Corporation Apparatus and method for placing staples in laparoscopic or endoscopic procedures
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
US5061269A (en) 1989-02-07 1991-10-29 Joseph J. Berke Surgical rongeur power grip structure and method
US5062563A (en) 1989-04-10 1991-11-05 United States Surgical Corporation Fascia stapler
US5065929A (en) 1991-04-01 1991-11-19 Ethicon, Inc. Surgical stapler with locking means
US5071430A (en) 1988-11-11 1991-12-10 United States Surgical Corporation Surgical instrument
US5071052A (en) 1988-09-22 1991-12-10 United States Surgical Corporation Surgical fastening apparatus with activation lockout
US5080556A (en) 1990-09-28 1992-01-14 General Electric Company Thermal seal for a gas turbine spacer disc
US5083695A (en) 1990-12-18 1992-01-28 Minnesota Mining And Manufacturing Company Stapler and firing device
US5084057A (en) 1989-07-18 1992-01-28 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5088979A (en) 1990-10-11 1992-02-18 Wilson-Cook Medical Inc. Method for esophageal invagination and devices useful therein
US5088997A (en) 1990-03-15 1992-02-18 Valleylab, Inc. Gas coagulation device
US5094247A (en) 1990-08-31 1992-03-10 Cordis Corporation Biopsy forceps with handle having a flexible coupling
US5100420A (en) 1989-07-18 1992-03-31 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5104025A (en) 1990-09-28 1992-04-14 Ethicon, Inc. Intraluminal anastomotic surgical stapler with detached anvil
US5106008A (en) 1989-05-26 1992-04-21 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US5111987A (en) 1989-01-23 1992-05-12 Moeinzadeh Manssour H Semi-disposable surgical stapler
US5116349A (en) 1990-05-23 1992-05-26 United States Surgical Corporation Surgical fastener apparatus
US5129570A (en) 1990-11-30 1992-07-14 Ethicon, Inc. Surgical stapler
US5137198A (en) 1991-05-16 1992-08-11 Ethicon, Inc. Fast closure device for linear surgical stapling instrument
US5139513A (en) 1989-10-17 1992-08-18 Bieffe Medital S.A. Apparatus and method for suturing
US5156315A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
US5156614A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5158567A (en) 1987-09-02 1992-10-27 United States Surgical Corporation One-piece surgical staple
US5163598A (en) 1990-07-23 1992-11-17 Rudolph Peters Sternum stapling apparatus
WO1992021300A1 (en) 1991-06-06 1992-12-10 Valleylab, Inc. Electrosurgical and ultrasonic surgical system
US5171249A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier
US5171247A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier with rotating shaft
EP0248844B1 (en) 1985-12-13 1993-01-07 Valleylab, Inc. Angulated ultrasonic surgical handpieces
US5188111A (en) 1991-01-18 1993-02-23 Catheter Research, Inc. Device for seeking an area of interest within a body
US5195968A (en) 1990-02-02 1993-03-23 Ingemar Lundquist Catheter steering mechanism
US5197648A (en) 1988-11-29 1993-03-30 Gingold Bruce S Surgical stapling apparatus
US5200280A (en) 1991-09-05 1993-04-06 Black & Decker Inc. Terminal cover for a battery pack
US5205459A (en) 1991-08-23 1993-04-27 Ethicon, Inc. Surgical anastomosis stapling instrument
US5207697A (en) 1991-06-27 1993-05-04 Stryker Corporation Battery powered surgical handpiece
WO1993008755A1 (en) 1991-11-08 1993-05-13 Ep Technologies, Inc. Ablation electrode with insulated temperature sensing elements
US5211649A (en) 1987-02-10 1993-05-18 Vaso Products Australia Pty. Limited Venous cuff applicator, cartridge and cuff
US5217457A (en) 1990-03-15 1993-06-08 Valleylab Inc. Enhanced electrosurgical apparatus
US5217478A (en) 1987-02-18 1993-06-08 Linvatec Corporation Arthroscopic surgical instrument drive system
EP0545029A1 (en) 1991-11-07 1993-06-09 American Cyanamid Company Surgical stapling instrument
US5219111A (en) 1991-03-11 1993-06-15 Ethicon, Inc. Pneumatically actuated linear stapling device
US5221036A (en) 1991-06-11 1993-06-22 Haruo Takase Surgical stapler
US5221281A (en) 1992-06-30 1993-06-22 Valleylab Inc. Electrosurgical tubular trocar
US5222976A (en) 1989-05-16 1993-06-29 Inbae Yoon Suture devices particularly useful in endoscopic surgery
US5222975A (en) 1992-07-13 1993-06-29 Lawrence Crainich Surgical staples
US5222963A (en) 1991-01-17 1993-06-29 Ethicon, Inc. Pull-through circular anastomosic intraluminal stapler with absorbable fastener means
US5223675A (en) 1992-04-02 1993-06-29 Taft Anthony W Cable fastener
WO1993013718A1 (en) 1992-01-21 1993-07-22 Valleylab, Inc. Electrosurgical control for a trocar
WO1993014690A1 (en) 1992-01-24 1993-08-05 Applied Medical Resources, Inc. Surgical manipulator
US5234447A (en) 1990-08-28 1993-08-10 Robert L. Kaster Side-to-end vascular anastomotic staple apparatus
US5236440A (en) 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
WO1993015850A1 (en) 1992-02-07 1993-08-19 Valleylab, Inc. Ultrasonic surgical apparatus
US5240163A (en) 1991-10-30 1993-08-31 American Cyanamid Company Linear surgical stapling instrument
US5242457A (en) 1992-05-08 1993-09-07 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
US5244462A (en) 1990-03-15 1993-09-14 Valleylab Inc. Electrosurgical apparatus
US5246156A (en) 1991-09-12 1993-09-21 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5246443A (en) 1990-10-30 1993-09-21 Christian Mai Clip and osteosynthesis plate with dynamic compression and self-retention
EP0277959B1 (en) 1986-04-09 1993-10-06 Valleylab, Inc. Irrigation/aspiration manifold and fittings for ultrasonic surgical aspiration system
WO1993019681A1 (en) 1992-03-31 1993-10-14 Valleylab, Inc. Electrosurgical bipolar cutting handpiece
US5253793A (en) 1990-09-17 1993-10-19 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5258009A (en) 1992-06-30 1993-11-02 American Cyanamid Company Malleable, bioabsorbable,plastic staple having a knotted configuration; and method and apparatus for deforming such staple
US5259366A (en) 1992-11-03 1993-11-09 Boris Reydel Method of using a catheter-sleeve assembly for an endoscope
US5260637A (en) 1991-09-18 1993-11-09 MAGNETI MARELLI S.p.A. Electrical system for a motor vehicle, including at least one supercapacitor
EP0233940B1 (en) 1985-08-28 1993-11-18 Valleylab, Inc. Endoscopic ultrasonic aspirator with modified working tip and vibration apparatus thereof
US5263629A (en) 1992-06-29 1993-11-23 Ethicon, Inc. Method and apparatus for achieving hemostasis along a staple line
US5263973A (en) 1991-08-30 1993-11-23 Cook Melvin S Surgical stapling method
US5268622A (en) 1991-06-27 1993-12-07 Stryker Corporation DC powered surgical handpiece having a motor control circuit
US5271543A (en) 1992-02-07 1993-12-21 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
US5275608A (en) 1991-10-16 1994-01-04 Implemed, Inc. Generic endoscopic instrument
JPH067357A (en) 1992-01-17 1994-01-18 Ethicon Inc Endoscope surgical system having detecting means
US5282806A (en) 1992-08-21 1994-02-01 Habley Medical Technology Corporation Endoscopic surgical instrument having a removable, rotatable, end effector assembly
US5282829A (en) 1991-08-15 1994-02-01 United States Surgical Corporation Hollow body implants
RU2008830C1 (en) 1990-07-13 1994-03-15 Константин Алексеевич Додонов Electrosurgical apparatus
US5297714A (en) 1991-04-17 1994-03-29 Ethicon, Inc. Surgical staple with modified "B" shaped configuration
US5304204A (en) 1993-02-09 1994-04-19 Ethicon, Inc. Receiverless surgical fasteners
EP0593920A1 (en) 1992-09-23 1994-04-27 United States Surgical Corporation Apparatus for applying surgical fasteners
US5307976A (en) 1991-10-18 1994-05-03 Ethicon, Inc. Linear stapling mechanism with cutting means
US5309927A (en) 1992-10-22 1994-05-10 Ethicon, Inc. Circular stapler tissue retention spring method
GB2272159A (en) 1992-11-10 1994-05-11 Andreas G Constantinides Surgical/diagnostic aid
US5312023A (en) 1991-10-18 1994-05-17 United States Surgical Corporation Self contained gas powered surgical apparatus
US5312329A (en) 1993-04-07 1994-05-17 Valleylab Inc. Piezo ultrasonic and electrosurgical handpiece
US5314424A (en) 1992-04-06 1994-05-24 United States Surgical Corporation Surgical instrument locking mechanism
WO1994011057A1 (en) 1992-11-16 1994-05-26 Boaz Avitall Catheter deflection control
US5318221A (en) 1989-05-26 1994-06-07 United States Surgical Corporation Apparatus and method for placing staples in laparoscopic or endoscopic procedures
EP0600182A2 (en) 1992-10-02 1994-06-08 United States Surgical Corporation Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures
WO1994012108A1 (en) 1992-11-30 1994-06-09 Valleylab, Inc. An ultrasonic surgical handpiece and an energy initiator to maintain the vibration and linear dynamics
US5330502A (en) 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5334183A (en) 1985-08-28 1994-08-02 Valleylab, Inc. Endoscopic electrosurgical apparatus
US5333422A (en) 1992-12-02 1994-08-02 The United States Of America As Represented By The United States Department Of Energy Lightweight extendable and retractable pole
US5339799A (en) 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5341724A (en) 1993-06-28 1994-08-30 Bronislav Vatel Pneumatic telescoping cylinder and method
US5342395A (en) 1990-07-06 1994-08-30 American Cyanamid Co. Absorbable surgical repair devices
US5342396A (en) 1993-03-02 1994-08-30 Cook Melvin S Staples
WO1994018893A1 (en) 1993-02-22 1994-09-01 Valleylab, Inc. A laparoscopic dissection tension retractor device and method
US5344060A (en) 1990-03-05 1994-09-06 United States Surgical Corporation Surgical fastener apparatus
DE9412228U1 (en) 1994-07-28 1994-09-22 Loctite Europa Eeig Peristaltic pump for accurate dosing of small amounts of liquid
US5350400A (en) 1991-10-30 1994-09-27 American Cyanamid Company Malleable, bioabsorbable, plastic staple; and method and apparatus for deforming such staple
US5352235A (en) 1992-03-16 1994-10-04 Tibor Koros Laparoscopic grasper and cutter
US5354303A (en) 1991-01-09 1994-10-11 Endomedix Corporation Devices for enclosing, manipulating, debulking and removing tissue through minimal incisions
US5356006A (en) 1992-12-16 1994-10-18 Ethicon, Inc. Sterile package for surgical devices
US5358510A (en) 1993-01-26 1994-10-25 Ethicon, Inc. Two part surgical fastener
US5359231A (en) 1991-06-21 1994-10-25 Lutron Electronics Co., Inc. Wallbox-mountable switch and dimmer
WO1994023659A1 (en) 1993-04-19 1994-10-27 Valleylab, Inc. Electrosurgical processor and method of use
US5360428A (en) 1992-07-22 1994-11-01 Hutchinson Jr William B Laparoscopic instrument with electrical cutting wires
EP0310431B1 (en) 1987-09-30 1994-11-02 Valleylab, Inc. Apparatus for providing enhanced tissue fragmentation and/or hemostasis
EP0376562B1 (en) 1988-12-20 1994-11-02 Valleylab, Inc. Improved resonator for surgical handpiece
US5364003A (en) 1993-05-05 1994-11-15 Ethicon Endo-Surgery Staple cartridge for a surgical stapler
US5366479A (en) 1991-10-18 1994-11-22 United States Surgical Corporation Surgical staple for attaching an object to body tissue
US5366134A (en) 1991-10-18 1994-11-22 United States Surgical Corporation Surgical fastening apparatus
US5372602A (en) 1992-11-30 1994-12-13 Device For Vascular Intervention, Inc. Method of removing plaque using catheter cutter with torque control
US5372596A (en) 1993-07-27 1994-12-13 Valleylab Inc. Apparatus for leakage control and method for its use
US5374277A (en) 1992-10-09 1994-12-20 Ethicon, Inc. Surgical instrument
EP0630612A1 (en) 1993-05-24 1994-12-28 Ethicon Inc. Endoscopic surgical instrument with electromagnetic sensor
US5381782A (en) 1992-01-09 1995-01-17 Spectrum Medsystems Corporation Bi-directional and multi-directional miniscopes
US5382247A (en) 1994-01-21 1995-01-17 Valleylab Inc. Technique for electrosurgical tips and method of manufacture and use
EP0634144A1 (en) 1993-07-15 1995-01-18 Ethicon Inc. An Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
US5383888A (en) 1992-02-12 1995-01-24 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5383895A (en) 1993-02-10 1995-01-24 Unisurge, Inc. Endoscopic surgical grasper and method
US5383881A (en) 1989-07-18 1995-01-24 United States Surgical Corporation Safety device for use with endoscopic instrumentation
WO1995002369A1 (en) 1993-07-12 1995-01-26 Gyrus Medical Limited An electrosurgical generator
US5389098A (en) 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
US5391180A (en) 1991-08-05 1995-02-21 United States Surgical Corporation Articulating endoscopic surgical apparatus
EP0639349A2 (en) 1993-08-19 1995-02-22 United States Surgical Corporation Surgical apparatus with indicator
US5392979A (en) 1987-05-26 1995-02-28 United States Surgical Corporation Surgical stapler apparatus
US5395030A (en) 1992-06-04 1995-03-07 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
US5395312A (en) 1991-10-18 1995-03-07 Desai; Ashvin Surgical tool
WO1995006817A1 (en) 1993-08-31 1995-03-09 Valleylab, Inc. Pump head cartridge
US5397046A (en) 1991-10-18 1995-03-14 United States Surgical Corporation Lockout mechanism for surgical apparatus
US5397324A (en) 1993-03-10 1995-03-14 Carroll; Brendan J. Surgical stapler instrument and method for vascular hemostasis
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
EP0646357A1 (en) 1993-09-30 1995-04-05 Ethicon, Inc. Surgical instrument having improved manipulating means
EP0646356A2 (en) 1993-09-30 1995-04-05 Ethicon Inc. Articulable socket joint assembly for an endoscopic instrument and surgical fastener track therefor
US5405072A (en) 1991-10-17 1995-04-11 United States Surgical Corporation Anvil for surgical staplers
WO1995009576A1 (en) 1993-10-07 1995-04-13 Valleylab, Inc. Automatic control for electrosurgical generator
WO1995009577A1 (en) 1993-10-07 1995-04-13 Valleylab, Inc. Automatic control for electrosurgical generator energy
US5409498A (en) 1992-11-05 1995-04-25 Ethicon, Inc. Rotatable articulating endoscopic fastening instrument
US5411508A (en) 1991-10-29 1995-05-02 The Trustees Of Columbia University In The City Of New York Gastrointestinal approximating and tissue attaching device
US5413267A (en) 1991-05-14 1995-05-09 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
US5413268A (en) 1989-05-26 1995-05-09 United States Surgical Corporation Apparatus and method for placing stables in laparoscopic or endoscopic procedures
US5413272A (en) 1991-05-07 1995-05-09 United States Surgical Corporation Surgical fastening device
US5415335A (en) 1994-04-07 1995-05-16 Ethicon Endo-Surgery Surgical stapler cartridge containing lockout mechanism
US5415334A (en) 1993-05-05 1995-05-16 Ethicon Endo-Surgery Surgical stapler and staple cartridge
GB2284242A (en) 1993-11-30 1995-05-31 Wolf Gmbh Richard Remote movement of manipulator end effector
WO1995014436A1 (en) 1993-11-24 1995-06-01 Valleylab, Inc. A retrograde high frequency tissue splitter
US5422567A (en) 1993-12-27 1995-06-06 Valleylab Inc. High frequency power measurement
WO1995017855A1 (en) 1993-12-30 1995-07-06 Valleylab, Inc. Bipolar ultrasonic surgery
US5431322A (en) 1991-10-18 1995-07-11 United States Surgical Corporation Self contained gas powered surgical apparatus
US5431668A (en) 1993-04-29 1995-07-11 Ethicon, Inc. Ligating clip applier
WO1995018572A1 (en) 1994-01-04 1995-07-13 Alpha Surgical Technologies, Inc. Stapling device
WO1995020360A1 (en) 1994-01-31 1995-08-03 Valleylab, Inc. Telescoping bipolar electrode for non-invasive medical procedures
US5441193A (en) 1993-09-23 1995-08-15 United States Surgical Corporation Surgical fastener applying apparatus with resilient film
US5441494A (en) 1993-07-29 1995-08-15 Ethicon, Inc. Manipulable hand for laparoscopy
US5445644A (en) 1992-04-16 1995-08-29 Ethicon, Inc. Pyloroplasty/pylorectomy shield
US5445304A (en) 1990-12-18 1995-08-29 United States Surgical Corporation Safety device for a surgical stapler cartridge
EP0669104A1 (en) 1994-02-25 1995-08-30 Ethicon Endo-Surgery Anvil pockets for surgical stapler
US5447513A (en) 1992-05-06 1995-09-05 Ethicon, Inc. Endoscopic ligation and division instrument
WO1995023557A1 (en) 1994-03-01 1995-09-08 United States Surgical Corporation Surgical stapler with anvil sensor and lockout
US5449365A (en) 1992-09-02 1995-09-12 United States Surgical Corporation Surgical clamp apparatus
WO1995024865A1 (en) 1994-03-17 1995-09-21 Valleylab Inc. Methods of making and using ultrasonic handpiece
US5452836A (en) 1994-02-07 1995-09-26 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved jaw closure and staple firing actuator mechanism
US5454827A (en) 1994-05-24 1995-10-03 Aust; Gilbert M. Surgical instrument
WO1995026562A1 (en) 1994-03-28 1995-10-05 Valleylab Inc. Tool and switch and method of assembling
US5456401A (en) 1991-10-18 1995-10-10 United States Surgical Corporation Surgical apparatus having articulation mechanism
US5458579A (en) 1991-12-31 1995-10-17 Technalytics, Inc. Mechanical trocar insertion apparatus
WO1995025471A3 (en) 1994-03-23 1995-10-19 Michael S Klicek Monopolar/bipolar electrosurgical handpiece for minimally invasive surgery
US5462215A (en) 1991-10-18 1995-10-31 United States Surgical Corporation Locking device for an apparatus for applying surgical fasteners
EP0679367A2 (en) 1994-04-28 1995-11-02 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
WO1995029639A1 (en) 1994-05-02 1995-11-09 United States Surgical Corporation Laparoscopic stapler with overload sensor and interlock
US5466020A (en) 1994-12-30 1995-11-14 Valleylab Inc. Bayonet connector for surgical handpiece
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5465894A (en) 1993-12-06 1995-11-14 Ethicon, Inc. Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft
US5467911A (en) 1993-04-27 1995-11-21 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
US5470006A (en) 1990-12-06 1995-11-28 United States Surgical Corporation Surgical fastening apparatus with locking mechanism
US5473204A (en) 1994-06-16 1995-12-05 Temple; Thomas D. Time delay switch
EP0685204A1 (en) 1994-05-05 1995-12-06 United States Surgical Corporation Self-contained powered surgical apparatus
US5476479A (en) 1991-09-26 1995-12-19 United States Surgical Corporation Handle for endoscopic surgical instruments and jaw structure
US5478003A (en) 1991-10-18 1995-12-26 United States Surgical Corporation Surgical apparatus
US5478354A (en) 1993-07-14 1995-12-26 United States Surgical Corporation Wound closing apparatus and method
EP0392547B1 (en) 1989-04-14 1995-12-27 JOHNSON & JOHNSON PROFESSIONAL, INC. Multi-position latching mechanism for forceps
US5480089A (en) 1994-08-19 1996-01-02 United States Surgical Corporation Surgical stapler apparatus with improved staple pockets
US5480409A (en) 1994-05-10 1996-01-02 Riza; Erol D. Laparoscopic surgical instrument
US5484451A (en) 1992-05-08 1996-01-16 Ethicon, Inc. Endoscopic surgical instrument and staples for applying purse string sutures
US5484095A (en) 1992-03-31 1996-01-16 United States Surgical Corporation Apparatus for endoscopically applying staples individually to body tissue
EP0364216B1 (en) 1988-10-13 1996-01-17 Gyrus Medical Limited Screening and monitoring instrument
US5485947A (en) 1992-07-20 1996-01-23 Ethicon, Inc. Linear stapling mechanism with cutting means
US5487499A (en) 1993-10-08 1996-01-30 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
US5487500A (en) 1994-02-03 1996-01-30 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5489256A (en) 1992-09-01 1996-02-06 Adair; Edwin L. Sterilizable endoscope with separable disposable tube assembly
US5489058A (en) 1994-05-02 1996-02-06 Minnesota Mining And Manufacturing Company Surgical stapler with mechanisms for reducing the firing force
JPH0833641A (en) 1994-02-10 1996-02-06 Bio Vascular Inc Buttress member and performing of surgery to remove affected tissue
WO1996004858A1 (en) 1994-08-12 1996-02-22 Valleylab, Inc. Laser-assisted electrosurgery system
US5496317A (en) 1993-05-04 1996-03-05 Gyrus Medical Limited Laparoscopic surgical instrument
EP0699418A1 (en) 1994-08-05 1996-03-06 United States Surgical Corporation Self-contained powered surgical apparatus
US5497933A (en) 1991-10-18 1996-03-12 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
EP0702937A1 (en) 1994-09-23 1996-03-27 United States Surgical Corporation Endoscopic surgical apparatus with rotation lock
US5503635A (en) 1993-11-12 1996-04-02 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5505363A (en) 1989-05-26 1996-04-09 United States Surgical Corporation Surgical staples with plated anvils
EP0705571A1 (en) 1994-10-07 1996-04-10 United States Surgical Corporation Self-contained powered surgical apparatus
US5509596A (en) 1991-10-18 1996-04-23 United States Surgical Corporation Apparatus for applying surgical fasteners
US5511564A (en) 1992-07-29 1996-04-30 Valleylab Inc. Laparoscopic stretching instrument and associated method
US5514129A (en) 1993-12-03 1996-05-07 Valleylab Inc. Automatic bipolar control for an electrosurgical generator
US5514157A (en) 1992-02-12 1996-05-07 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5520700A (en) 1992-11-13 1996-05-28 Technion Research & Development Foundation, Ltd. Stapler device particularly useful in medical suturing
US5522817A (en) 1989-03-31 1996-06-04 United States Surgical Corporation Absorbable surgical fastener with bone penetrating elements
US5527320A (en) 1994-02-10 1996-06-18 Pilling Weck Inc. Surgical clip applying instrument
WO1996019152A1 (en) 1994-12-22 1996-06-27 Valleylab, Inc. Adaptive monitoring for a return electrode consisting of two parts (rem)
WO1996019151A1 (en) 1994-12-21 1996-06-27 Valleylab, Inc. Rate control for a smoke/liquid suction accessory
US5531744A (en) 1991-11-01 1996-07-02 Medical Scientific, Inc. Alternative current pathways for bipolar surgical cutting tool
US5533581A (en) 1991-05-18 1996-07-09 Robert Bosch Gmbh Electric hand tool, in particular drill
US5533521A (en) 1994-07-15 1996-07-09 United States Surgical Corporation Interchangeable tissue measuring device
US5533661A (en) 1991-08-23 1996-07-09 Ethicon, Inc. Sealing means for endoscopic surgical anastomosis stapling instrument
WO1996020652A1 (en) 1994-12-30 1996-07-11 Valleylab, Inc. Partially coated electrodes, manufacture and use
WO1996022055A1 (en) 1995-01-19 1996-07-25 Inbae Yoon Surgical stapling system and method of applying staples from multiple staple cartridges
US5540375A (en) 1993-04-20 1996-07-30 United States Surgical Corporation Endoscopic stapler
US5542594A (en) 1993-10-06 1996-08-06 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric
US5543119A (en) 1993-07-15 1996-08-06 Siemens Aktiengesellschaft Cassette for treating medical instruments
WO1996023448A1 (en) 1995-02-03 1996-08-08 Valleylab, Inc. Electrosurgical aspirator combined with a pencil
WO1996024301A1 (en) 1995-02-10 1996-08-15 Valleylab, Inc. Plasma enhanced bipolar electrosurgical system
US5547117A (en) 1994-03-30 1996-08-20 Ethicon Endo-Surgery Handle actuator for surgical instrument having clamp lock and emergency release
US5549637A (en) 1994-11-10 1996-08-27 Crainich; Lawrence Articulated medical instrument
US5553675A (en) 1994-06-10 1996-09-10 Minnesota Mining And Manufacturing Company Orthopedic surgical device
JPH08229050A (en) 1994-12-22 1996-09-10 Ethicon Endo Surgery Inc Impedance feedback monitor with query electrode for electrosurgical instrument
US5553765A (en) 1995-04-28 1996-09-10 Ethicon Endo-Surgery, Inc. Surgical stapler with improved operating lever mounting arrangement
WO1996027337A1 (en) 1995-03-07 1996-09-12 Valleylab Inc. Surgical gas plasma ignition apparatus and method
US5556416A (en) 1993-10-12 1996-09-17 Valleylab, Inc. Endoscopic instrument
DE19509116A1 (en) 1995-03-16 1996-09-19 Deutsche Forsch Luft Raumfahrt Flexible structure comprising material block subdivided into sections by notches
US5558665A (en) 1994-06-24 1996-09-24 Archimedes Surgical, Inc. Surgical instrument and method for intraluminal retraction of an anatomic structure
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5560532A (en) 1993-10-08 1996-10-01 United States Surgical Corporation Apparatus and method for applying surgical staples to body tissue
US5560530A (en) 1994-04-07 1996-10-01 United States Surgical Corporation Graduated anvil for surgical stapling instruments
US5562682A (en) 1993-10-08 1996-10-08 Richard-Allan Medical Industries, Inc. Surgical Instrument with adjustable arms
US5562701A (en) 1994-02-18 1996-10-08 Ethicon Endo-Surgery, Inc. Cable-actuated jaw assembly for surgical instruments
US5564615A (en) 1992-10-09 1996-10-15 Ethicon, Inc. Surgical instrument
US5571090A (en) 1994-10-07 1996-11-05 United States Surgical Corporation Vascular suturing apparatus
US5571116A (en) 1994-10-02 1996-11-05 United States Surgical Corporation Non-invasive treatment of gastroesophageal reflux disease
US5571100A (en)