JP4887838B2 - Method for producing porous body and porous body using the same - Google Patents

Method for producing porous body and porous body using the same Download PDF

Info

Publication number
JP4887838B2
JP4887838B2 JP2006056869A JP2006056869A JP4887838B2 JP 4887838 B2 JP4887838 B2 JP 4887838B2 JP 2006056869 A JP2006056869 A JP 2006056869A JP 2006056869 A JP2006056869 A JP 2006056869A JP 4887838 B2 JP4887838 B2 JP 4887838B2
Authority
JP
Japan
Prior art keywords
porous body
mixed solution
producing
polymer
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006056869A
Other languages
Japanese (ja)
Other versions
JP2006291180A (en
JP2006291180A5 (en
Inventor
俊信 棧敷
純一 井手
尚幸 花木
洋治 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Original Assignee
JMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd filed Critical JMS Co Ltd
Priority to JP2006056869A priority Critical patent/JP4887838B2/en
Publication of JP2006291180A publication Critical patent/JP2006291180A/en
Publication of JP2006291180A5 publication Critical patent/JP2006291180A5/ja
Application granted granted Critical
Publication of JP4887838B2 publication Critical patent/JP4887838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、多孔質体、特に、組織工学や再生医工学を中心とする医療分野において、細胞の足場(scaffold)材料として有用な多孔質体の製造方法に関する。   The present invention relates to a method for producing a porous body, in particular, a porous body useful as a cell scaffold material in the medical field centered on tissue engineering and regenerative medical engineering.

組織工学や再生医工学の分野においては、細胞を増殖させるために、通常、足場材料が使用されており、特に近年では、足場材料として、生体吸収性材料からなる多孔質体の利用が期待されている。このような生体吸収性の多孔質体であれば、その孔内に細胞を播種して増殖させ、これを生体に移植することにより、生体内で組織再生が起こると共に、足場である生体吸収性材料が徐々に生体内で分解吸収される。このため、細胞の増殖に利用した足場をそのまま増殖細胞と共に生体に移植することが可能となる。   In the fields of tissue engineering and regenerative medical engineering, scaffold materials are usually used to proliferate cells, and in recent years, the use of porous materials made of bioabsorbable materials is expected as scaffold materials. ing. With such a bioabsorbable porous body, cells are seeded and proliferated in the pores and transplanted into the living body, whereby tissue regeneration occurs in the living body and the bioabsorbable as a scaffold. The material is gradually decomposed and absorbed in vivo. For this reason, it is possible to transplant the scaffold used for cell proliferation into the living body together with the proliferating cells.

このような多孔質体の製造方法としては、凍結乾燥法が広く利用されており、一般的な方法として、例えば、生体吸収性ポリマーをジオキサン溶媒に溶解し、これを凍結乾燥させて多孔化する方法が開示されている(例えば、特許文献1参照)。しかしながら、この方法によって得られる多孔質体は、ポアサイズが100μm以下であるため、例えば、多孔質体内への細胞の浸入に適したポアサイズ100μm以上の多孔質体を得ることが困難である。   As a method for producing such a porous body, a freeze-drying method is widely used. As a general method, for example, a bioabsorbable polymer is dissolved in a dioxane solvent, and this is freeze-dried to make it porous. A method is disclosed (for example, see Patent Document 1). However, since the porous body obtained by this method has a pore size of 100 μm or less, for example, it is difficult to obtain a porous body having a pore size of 100 μm or more suitable for infiltration of cells into the porous body.

また、塩化ナトリウムや砂糖等の粒子をポリマー溶液に添加して凍結乾燥し、水等の洗浄により前記粒子を溶出除去することによって、多孔化する方法が提案されている(例えば、特許文献2、特許文献3参照)。これらの方法によれば、粒子の存在していた部分が孔となるため、使用した粒子と同程度のポアサイズである多孔質体が得られる。しかしながら、このような方法では、粒子の溶出が必要であるため製造工程が煩雑となり、また、ポリマー溶液における粒子の沈降により、得られる多孔質体の孔分布の均一性が確保し難いという問題がある。さらに、ポアサイズの均一性を向上するには、粒径が均一な粒子を使用する必要があり、高コスト化につながる。また、粒子を完全に除去することが困難であるため、前記粒子が多孔質体に残留するおそれもある。このように、多孔質体を製造する際に、所望のポアサイズ、特に大きなポアサイズ(数百μm)を実現することは極めて困難であった。   Further, a method has been proposed in which particles such as sodium chloride and sugar are added to a polymer solution and freeze-dried, and the particles are eluted and removed by washing with water or the like (for example, Patent Document 2, (See Patent Document 3). According to these methods, since the portion where the particles existed becomes pores, a porous body having a pore size comparable to the used particles can be obtained. However, in such a method, the elution of particles is necessary, so that the manufacturing process becomes complicated, and the problem that it is difficult to ensure the uniformity of the pore distribution of the obtained porous body due to the sedimentation of the particles in the polymer solution. is there. Furthermore, in order to improve the uniformity of the pore size, it is necessary to use particles having a uniform particle size, leading to an increase in cost. Further, since it is difficult to completely remove the particles, the particles may remain in the porous body. Thus, when producing a porous body, it has been extremely difficult to achieve a desired pore size, particularly a large pore size (several hundred μm).

この他にも、ポアサイズの制御方法として、コラーゲン溶液を凍結乾燥する際に、水と水に相溶性のある有機溶媒を添加して、両者の添加割合を調整することによってポアサイズを制御する方法が開示されている(例えば、特許文献4等)。しかしながら、この方法によっても、得られるポアサイズは50〜80μm程度あり、広い範囲でのポアサイズを実現することは困難である。また、凍結方法として液体窒素による急速凍結法が一般的であるが、ポアサイズが小さくなる傾向がある。
特開平10−234844号 特開2001−49018号 特表2002−541925号 特開平02−265935号
In addition to this, as a method for controlling the pore size, when freeze-drying the collagen solution, there is a method of controlling the pore size by adding water and an organic solvent compatible with water and adjusting the addition ratio of both. It is disclosed (for example, Patent Document 4). However, even with this method, the pore size obtained is about 50 to 80 μm, and it is difficult to realize a pore size in a wide range. Moreover, although the quick freezing method by liquid nitrogen is common as a freezing method, there exists a tendency for a pore size to become small.
JP 10-234844 A JP 2001-49018 A Special table 2002-541925 JP 02-265935 A

そこで、本発明の目的は、ポアサイズの調整、特に小さなポアサイズだけでなく、大きなポアサイズの調整をも可能とする多孔質体の製造方法を提供することである。   Accordingly, an object of the present invention is to provide a method for producing a porous body that enables adjustment of pore size, particularly not only small pore size but also large pore size.

本発明の多孔質体の製造方法は、ラクチドとカプロラクトンとの共重合体を含むポリマー、前記ポリマーに対して相対的に溶解度の低い溶媒、および、前記ポリマーに対して相対的に溶解度が高く且つ前記溶解度の低い溶媒と相溶性である溶媒を含む混合溶液を調製する工程、前記混合溶液を凍結処理する工程、前記混合溶液の凍結処理物を減圧乾燥する工程を含む多孔質体の製造方法であって、前記混合溶液の調製工程において、前記ポリマーに対して相対的に溶解度の低い溶媒の前記混合溶液中の含有率を変化させ、且つ、前記凍結工程において、前記混合溶液を300℃/hr以下の速度で冷却することによって、多孔質体のポアサイズを制御することを特徴とする。なお、以下、前記ポリマーに対して相対的に溶解度の低い溶媒を「貧溶媒」、前記ポリマーに対して相対的に溶解度が高い溶媒を「良溶媒」というが、本発明においてこれらの用語は、あくまでも前記ポリマーに対する相対的な溶解度により前記両者を区別するために使用するものである。   The method for producing a porous body according to the present invention includes a polymer containing a copolymer of lactide and caprolactone, a solvent having a relatively low solubility with respect to the polymer, and a relatively high solubility with respect to the polymer. A method for producing a porous body comprising a step of preparing a mixed solution containing a solvent that is compatible with the low-solubility solvent, a step of freezing the mixed solution, and a step of drying the frozen processed product of the mixed solution under reduced pressure. In the preparation step of the mixed solution, the content of the solvent having a relatively low solubility with respect to the polymer is changed in the mixed solution, and in the freezing step, the mixed solution is changed to 300 ° C / hr. The pore size of the porous body is controlled by cooling at the following speed. Hereinafter, a solvent having a relatively low solubility in the polymer is referred to as a “poor solvent”, and a solvent having a relatively high solubility in the polymer is referred to as a “good solvent”. It is only used to distinguish the two according to the relative solubility in the polymer.

本発明の多孔質体の製造方法によれば、混合溶液における貧溶媒の含有率を変化させ、且つ、300℃/hr以下の速度で混合溶液を冷却して前記混合溶液を凍結することにより、広範囲のポアサイズを容易に調整でき、また、比較的均一な孔形成をも実現できる。   According to the method for producing a porous body of the present invention, by changing the content of the poor solvent in the mixed solution, and cooling the mixed solution at a rate of 300 ° C./hr or less to freeze the mixed solution, A wide range of pore sizes can be easily adjusted, and relatively uniform hole formation can be realized.

前述のように、水のような貧溶媒と有機溶媒のような良溶媒との割合によってポアサイズを調整することは公知である(前記特許文献4)。しかしながら、本発明によれば、凍結処理時の冷却速度をさらに300℃/hr以下の速度に設定することによって、例えば、30〜1800μmという広範囲のポアサイズを可能とし、且つ、形成される孔の均一性も確保できる。すなわち、本発明者らは、例えば、貧溶媒の含有率が同じ混合溶液であっても、冷却速度(300℃/hr以下)の設定を変えることによって、形成される孔のサイズをさらに変化できることを見出し、結果として、前記含有率だけでなく冷却速度の設定を組み合わせることにより、さらにポアサイズの範囲を広げることを可能にしたのである。このようにして広範囲のポアサイズを設定できること、特に100μm以上のポアサイズをも実現できることは、本発明者らがはじめて見出したことである。なお、粒子を使用しない従来法による多孔質体のポアサイズは、一般に、10〜80μm程度であることからも、極めて広範囲の設定が可能であるといえる。また、前述のように粒子を混合しないため、粒子の沈降による分布の不均一化や粒子の残存等の問題もない。したがって、本発明によれば、貧溶媒の含有率と冷却温度の設定のみによって様々なポアサイズを実現でき、例えば、多孔質体の用途に応じたポアサイズが得られるため、組織工学や再生医療等において極めて有用な多孔質体の製造方法といえる。   As described above, it is known to adjust the pore size by the ratio of a poor solvent such as water and a good solvent such as an organic solvent (Patent Document 4). However, according to the present invention, by setting the cooling rate during the freezing process to a rate of 300 ° C./hr or less, for example, a wide pore size of 30 to 1800 μm is possible, and the formed pores are uniform. Can also be secured. That is, the present inventors can further change the size of the formed holes by changing the setting of the cooling rate (300 ° C./hr or less), for example, even in a mixed solution having the same poor solvent content. As a result, the pore size range can be further expanded by combining not only the content ratio but also the setting of the cooling rate. The present inventors have found for the first time that a wide pore size can be set in this way, and in particular that a pore size of 100 μm or more can be realized. In addition, since the pore size of the porous body by the conventional method which does not use particles is generally about 10 to 80 μm, it can be said that an extremely wide range can be set. Further, since the particles are not mixed as described above, there are no problems such as non-uniform distribution due to sedimentation of the particles and remaining particles. Therefore, according to the present invention, various pore sizes can be realized only by setting the content ratio of the poor solvent and the cooling temperature, and for example, pore sizes according to the use of the porous body can be obtained. This can be said to be a very useful method for producing a porous body.

本発明は、前述のように、ラクチドとカプロラクトンとの共重合体を含むポリマー、前記ポリマーに対する貧溶媒、および、前記貧溶媒と相溶性である前記ポリマーに対する良溶媒を含む混合溶液を調製する工程、前記混合溶液を凍結処理する工程、前記混合溶液の凍結処理物を減圧乾燥する工程を含む多孔質体の製造方法であって、前記混合溶液の調製工程において、前記ポリマーに対して相対的に溶解度の低い溶媒の前記混合溶液中の含有率を変化させ、且つ、前記凍結工程において、前記混合溶液を300℃/hr以下の速度で冷却することによって、多孔質体のポアサイズを制御することを特徴とする。   As described above, the present invention provides a step of preparing a mixed solution containing a polymer containing a copolymer of lactide and caprolactone, a poor solvent for the polymer, and a good solvent for the polymer that is compatible with the poor solvent. A method for producing a porous body comprising a step of freezing the mixed solution, and a step of drying a frozen processed product of the mixed solution under reduced pressure, wherein in the step of preparing the mixed solution, The pore size of the porous body is controlled by changing the content of the solvent having low solubility in the mixed solution and cooling the mixed solution at a rate of 300 ° C./hr or less in the freezing step. Features.

本発明における共重合体は、前述のようにラクチドとカプロラクトンとの共重合体であり、例えば、ランダム重合体、ブロック重合体のいずれであってもよい。また、前記共重合体は、異なるモル比のラクチド-カプロラクトン共重合体を2種類以上混合して使用することもできる。なお、本発明における共重合体は、前記共重合体のみを含有してもよいし、本発明に影響を与えない範囲で、さらにその他の重合体や共重合体を含んでもよい。   The copolymer in the present invention is a copolymer of lactide and caprolactone as described above, and may be, for example, a random polymer or a block polymer. The copolymer may be used by mixing two or more kinds of lactide-caprolactone copolymers having different molar ratios. In addition, the copolymer in this invention may contain only the said copolymer, and may also contain another polymer and copolymer in the range which does not affect this invention.

前記共重合体の分子量(重量平均分子量)は、特に制限されないが、例えば、5,000〜2,000,000であり、好ましくは10,000〜1,500,000であり、より好ましくは100,000〜1,000,000である。また、ラクチドとカプロラクトンとのモル比は、例えば、90:10〜10:90の範囲、好ましくは85:15〜20:80の範囲であり、より好ましくは80:20〜40:60の範囲である。   The molecular weight (weight average molecular weight) of the copolymer is not particularly limited, but is, for example, 5,000 to 2,000,000, preferably 10,000 to 1,500,000, and more preferably 100,000 to 1,000,000. The molar ratio of lactide to caprolactone is, for example, in the range of 90:10 to 10:90, preferably in the range of 85:15 to 20:80, and more preferably in the range of 80:20 to 40:60. is there.

前記共重合体の調製方法は、特に制限されず、従来公知の方法が使用できる。一般的に、出発原料としてラクチドとカプロラクトンとを開環重合により共重合させてもよいし、乳酸からラクチド(乳酸の環状二量体)を合成して、これをカプロラクトンと共重合させてもよい。なお、乳酸を用いたラクチドの合成方法も特に制限されず従来公知の方法が使用できる。前記ラクチドとしては、特に制限されず、L-ラクチド、D-ラクチドおよびそれらの混合物(D,L-ラクチド)が使用でき、また、乳酸としては、L-乳酸、D-乳酸、それらの混合物(D,L-乳酸)が使用できる。このように出発原料として乳酸を使用した場合、一量体の乳酸を二量体のラクチドに換算し、換算したラクチドとカプロラクトンとのモル比が前述の範囲であることが好ましい。また、カプロラクトンとしては、例えば、ε−カプロラクトン、γ−カプロラクトン、δ−カプロラクトン等があげられ、中でもε−カプロラクトンが好ましい。   The method for preparing the copolymer is not particularly limited, and a conventionally known method can be used. In general, lactide and caprolactone may be copolymerized by ring-opening polymerization as starting materials, or lactide (a cyclic dimer of lactic acid) may be synthesized from lactic acid and copolymerized with caprolactone. . The method for synthesizing lactide using lactic acid is not particularly limited, and a conventionally known method can be used. The lactide is not particularly limited, and L-lactide, D-lactide and a mixture thereof (D, L-lactide) can be used, and lactic acid includes L-lactic acid, D-lactic acid and a mixture thereof ( D, L-lactic acid) can be used. Thus, when lactic acid is used as a starting material, it is preferable that the monomeric lactic acid is converted into a dimeric lactide, and the molar ratio of the converted lactide to caprolactone is in the above range. Examples of caprolactone include ε-caprolactone, γ-caprolactone, and δ-caprolactone, and among them, ε-caprolactone is preferable.

本発明において、前記貧溶媒は、前記ポリマーに対して相対的に溶解度の低い溶媒であり、前記良溶媒は、前記ポリマーに対して相対的に溶解度が高く且つ前記溶解度の低い溶媒と相溶性である溶媒であればそれぞれ特に制限されず、通常、使用するポリマーの種類に応じて設定できる。一般的に、前記貧溶媒としては、水、エタノール、ターシャリーブチルアルコール(tBuOH)等が使用でき、前記良溶媒としては、前記貧溶媒に相溶性を示す、1,4-ジオキサン、炭酸ジメチル等の有機溶媒等が使用でき、特に、貧溶媒が水であり、良溶媒が1,4-ジオキサンである組合せが好ましい。   In the present invention, the poor solvent is a solvent having a relatively low solubility in the polymer, and the good solvent is relatively soluble in the polymer and compatible with the solvent having a low solubility. Each solvent is not particularly limited, and can usually be set according to the type of polymer used. In general, as the poor solvent, water, ethanol, tertiary butyl alcohol (tBuOH) or the like can be used, and as the good solvent, 1,4-dioxane, dimethyl carbonate, or the like that is compatible with the poor solvent. In particular, a combination in which the poor solvent is water and the good solvent is 1,4-dioxane is preferable.

以下に、本発明の多孔質体の製造方法について具体的に説明する。なお、ポアサイズの調整方法については後述する。   Below, the manufacturing method of the porous body of this invention is demonstrated concretely. A pore size adjustment method will be described later.

(混合溶液の調製工程)
ポリマー、貧溶媒および良溶媒を混合して混合溶液を調製する。各溶媒の添加順序は特に制限されない。
(Preparation process of mixed solution)
A polymer, a poor solvent, and a good solvent are mixed to prepare a mixed solution. The order of addition of each solvent is not particularly limited.

前記混合溶液におけるポリマー濃度は、特に制限されないが、通常、0.1〜24質量%の範囲であり、好ましくは2〜8質量%の範囲であり、より好ましくは3〜5質量%の範囲である。前記混合溶液における良溶媒の添加割合は、例えば、後述する貧溶媒の添加量に応じて適宜決定されるが、前記ポリマーと前記良溶媒との質量比(ポリマー:良溶媒)が0.1:99.9〜24:76であることが好ましく、より好ましくは2:98〜6:94、特に好ましくは4:96である。 The polymer concentration in the mixed solution is not particularly limited, but is usually in the range of 0.1 to 24% by mass, preferably in the range of 2 to 8% by mass, more preferably in the range of 3 to 5% by mass. is there. The addition ratio of the good solvent in the mixed solution is appropriately determined according to, for example, the addition amount of the poor solvent described later, but the mass ratio of the polymer to the good solvent (polymer: good solvent) is 0.1: It is preferably 99.9 to 24:76 , more preferably 2:98 to 6:94 , and particularly preferably 4:96.

前記混合溶液における貧溶媒の添加割合は、後述するように、形成する多孔質体の所望のポアサイズならびに採用する一定冷却速度に応じて適宜決定できる。混合溶液における貧溶媒濃度は、例えば、0を超え20質量%以下であり、好ましくは0.1〜20質量%、より好ましくは6〜12.5質量%の範囲、特に好ましくは6〜12.25質量%である。また、前記混合溶液におけるポリマー濃度が3.6質量%の場合、混合溶液における貧溶媒濃度は、例えば、0を超え12.5質量%以下であり、好ましくは6〜12.5質量%の範囲である。前記ポリマーと前記貧溶媒との質量比(ポリマー:貧溶媒)は、特に制限されないが、例えば、3.2:20〜4:0.5の範囲である。 As will be described later, the addition ratio of the poor solvent in the mixed solution can be appropriately determined according to the desired pore size of the porous body to be formed and the constant cooling rate employed. The poor solvent concentration in the mixed solution is, for example, more than 0 and 20% by mass or less, preferably 0.1 to 20% by mass, more preferably 6 to 12.5% by mass, and particularly preferably 6 to 12%. 25% by mass. When the polymer concentration in the mixed solution is 3.6% by mass, the poor solvent concentration in the mixed solution is, for example, more than 0 and 12.5% by mass or less, preferably in the range of 6 to 12.5% by mass. It is. The mass ratio of the polymer to the poor solvent (polymer: poor solvent) is not particularly limited, but is, for example, in the range of 3.2: 20 to 4: 0.5.

(凍結処理工程)
前記混合溶液を300℃/hr以下の速度で冷却して、前記混合溶液を凍結させる。凍結工程においては、前記範囲の速度で冷却を行う以外は何ら制限されず、例えば、市販の凍結乾燥機を用いて前記混合溶液の凍結を行うことができる。前記凍結乾燥機としては、冷却速度の制御が可能な機種が好ましく、例えば、商品名TF5-85ATANCS(宝製作所製)等が使用できる。
(Freezing process)
The mixed solution is cooled at a rate of 300 ° C./hr or less to freeze the mixed solution. In the freezing step, there is no limitation except that the cooling is performed at a speed within the above range. For example, the mixed solution can be frozen using a commercially available freeze dryer. As the freeze dryer, a model capable of controlling the cooling rate is preferable. For example, a trade name TF5-85ATANCS (manufactured by Takara Seisakusho) or the like can be used.

前記凍結溶液を冷却する際には、例えば、前記混合溶液を容器に入れ、前記容器の底部から前記混合溶液を冷却することが好ましい。このように、容器の底部から冷却すれば、前記混合溶液を底部から上部方向へと一定速度で均一に冷却することができ、前記混合溶液を均一に徐々に凍結できる。具体的には、凍結機や凍結乾燥機を使用し、前記混合溶液が入った前記容器を前記凍結機の冷却棚に配置し、前記冷却棚の温度を300℃/hr以下の同じ一定速度で減少するように制御することが好ましい。このように、冷却棚自体の温度を前記所定の速度で下げていけば、前記冷却棚に配置した容器の底部を冷却でき、これによって混合溶液の底部から上部へと冷却していくことができる。なお、前記容器としては、特に制限されないが、例えば、ステンレス製容器があげられる。   When cooling the frozen solution, for example, it is preferable to put the mixed solution in a container and cool the mixed solution from the bottom of the container. Thus, if it cools from the bottom part of a container, the said mixed solution can be cooled uniformly from a bottom part to an upper direction at a fixed speed, and the said mixed solution can be uniformly frozen gradually. Specifically, using a freezer or a freeze dryer, the container containing the mixed solution is placed on a cooling shelf of the freezer, and the temperature of the cooling shelf is the same constant speed of 300 ° C./hr or less. It is preferable to control so as to decrease. In this way, if the temperature of the cooling shelf itself is lowered at the predetermined speed, the bottom of the container disposed on the cooling shelf can be cooled, and thereby the mixed solution can be cooled from the bottom to the top. . In addition, although it does not restrict | limit especially as said container, For example, a stainless steel container is mention | raise | lifted.

前記冷却速度は、300℃/hr以下であれば特に制限されず、後述するように、形成する多孔質体の所望のポアサイズならびに前記混合溶液の貧溶媒濃度に応じて適宜決定できる。前記冷却速度は、例えば、3〜300℃/hrの範囲であり、好ましくは3〜250℃/hrの範囲、より好ましくは3〜180℃/hrの範囲、特に好ましくは5〜180℃/hrの範囲である。なお、前述のように凍結機を使用する場合には、その冷却棚の温度を、このような範囲の一定速度で下げるように制御すればよい(以下、同様である)。   The cooling rate is not particularly limited as long as it is 300 ° C./hr or less, and can be appropriately determined according to the desired pore size of the porous body to be formed and the poor solvent concentration of the mixed solution, as will be described later. The cooling rate is, for example, in the range of 3 to 300 ° C./hr, preferably in the range of 3 to 250 ° C./hr, more preferably in the range of 3 to 180 ° C./hr, particularly preferably 5 to 180 ° C./hr. Range. In addition, when using a freezer as mentioned above, what is necessary is just to control so that the temperature of the cooling shelf may be lowered | hung at the fixed speed | rate of such a range (it is the same below).

凍結を施す混合溶液の温度は、特に制限されず、例えば、使用している溶媒の凝固点以上であり、好ましくは10℃〜室温(例えば、20〜37℃)、より好ましくは、10〜20℃の範囲である。特に、300℃/hrの一定速度での冷却を開始する際には、混合溶液の凍結処理開始時の温度が、10℃付近であることが好ましい。そして、このように凍結処理開始時の混合溶液の温度を10℃付近に設定する場合には、前記混合溶液全体を一定(10℃)にすべく、前記混合溶液を、前記開始時の温度(例えば、10℃)よりも高い温度(例えば、+10℃)に置いてから、前記開始時の温度にまで下げることが好ましい。この際、温度の下降に要する時間は、何ら制限されないが、例えば、60分程度(あるいはそれ以上の時間)であってもよい。一定速度での冷却前に、このような処理を施すことによって、より再現性よく多孔質体を製造することができる。   The temperature of the mixed solution subjected to freezing is not particularly limited, and is, for example, not lower than the freezing point of the solvent used, preferably 10 ° C. to room temperature (for example, 20 to 37 ° C.), more preferably 10 to 20 ° C. Range. In particular, when cooling at a constant rate of 300 ° C./hr is started, the temperature at the start of the freezing treatment of the mixed solution is preferably around 10 ° C. When the temperature of the mixed solution at the start of the freezing process is set to around 10 ° C. in this way, the mixed solution is set to the temperature at the start (in order to keep the entire mixed solution constant (10 ° C.)). For example, it is preferable that the temperature is higher than 10 ° C. (for example, + 10 ° C.) and then lowered to the starting temperature. At this time, the time required for the temperature to drop is not limited at all, but may be, for example, about 60 minutes (or more). By performing such treatment before cooling at a constant rate, a porous body can be produced with higher reproducibility.

前記最終凍結処理温度は、例えば、共晶点以下であり、-10℃以下であることが好ましく、より好ましくは-10〜-50℃の範囲である。前記最終凍結処理温度は、特に制限されないが、例えば、-10℃程度に設定すれば、冷却に係るコストをさらに削減できる。   The final freezing treatment temperature is, for example, not more than the eutectic point, preferably not more than -10 ° C, more preferably in the range of -10 to -50 ° C. Although the final freezing treatment temperature is not particularly limited, for example, if it is set to about −10 ° C., the cost for cooling can be further reduced.

前記混合溶液の温度が最終凍結温度に達した際、前記混合溶液の凍結状態に応じて、最終凍結温度での処理を適宜続行してもよい。これは前記混合溶液が完全に凍結するまででもよく、例えば、0を超え12時間以下であり、好ましくは1〜3時間程度である。   When the temperature of the mixed solution reaches the final freezing temperature, the processing at the final freezing temperature may be appropriately continued according to the frozen state of the mixed solution. This may be until the mixed solution is completely frozen, and is, for example, more than 0 and 12 hours or less, preferably about 1 to 3 hours.

なお、凍結乾燥に供する混合溶液の量は、特に制限されないが、前述の条件は、混合溶液を容器に入れた際に深さが0.5〜1cm程度となる液量に対して特に好ましい条件である。   The amount of the mixed solution to be subjected to lyophilization is not particularly limited, but the above-described conditions are particularly preferable conditions for the amount of liquid that has a depth of about 0.5 to 1 cm when the mixed solution is placed in a container. .

(減圧乾燥処理工程)
前記凍結処理工程において得られた混合溶液の凍結処理物を減圧乾燥することによって、多孔質体が得られる。減圧乾燥の条件は何ら制限されず、従来公知の方法で行うことができる。
(Decompression drying process)
A porous material is obtained by drying the freeze-treated product of the mixed solution obtained in the freezing treatment step under reduced pressure. The conditions for drying under reduced pressure are not limited at all and can be carried out by a conventionally known method.

つぎに、多孔質体のポアサイズの制御方法を具体的に説明する。本発明の制御方法によれば、例えば、貧溶媒の濃度を変化させた複数の混合溶液について、一定の冷却速度で凍結処理を行った場合、後述する図1に示すように、貧溶媒の濃度によってポアサイズが変動する。さらに、異なる冷却速度に設定した場合、ポアサイズの変動は各冷却速度によって同様の挙動、すなわちある貧溶媒濃度範囲でポアサイズが大きくなり、ある濃度範囲でポアサイズが小さくなるという同様の挙動を示すが、同じ濃度でのポアサイズは、冷却速度によって異なる。つまり、貧溶媒濃度の変化に加えて、冷却速度を変化させることによって、さらに広い範囲の孔設定が可能になる。したがって、冷却速度および貧溶媒濃度の条件を変えて多孔質材を作製し、前記速度と濃度と得られるポアサイズとの関係を示す検量線を作成することによって、例えば、約30〜1800μmの範囲である所望のポアサイズの多孔質体を再現性よく製造できる。   Next, a method for controlling the pore size of the porous body will be specifically described. According to the control method of the present invention, for example, when a freezing process is performed at a constant cooling rate for a plurality of mixed solutions in which the concentration of the poor solvent is changed, as shown in FIG. The pore size varies depending on. Furthermore, when different cooling rates are set, the pore size variation shows the same behavior depending on each cooling rate, that is, the pore size increases in a certain poor solvent concentration range, and the pore size decreases in a certain concentration range. The pore size at the same concentration depends on the cooling rate. In other words, by changing the cooling rate in addition to the change in the poor solvent concentration, a wider range of pores can be set. Therefore, by preparing a porous material by changing the conditions of the cooling rate and the poor solvent concentration, and creating a calibration curve showing the relationship between the rate and the concentration and the pore size obtained, for example, in the range of about 30-1800 μm A porous body having a desired pore size can be produced with good reproducibility.

混合溶液が前記共重合体と良溶媒と貧溶媒を含み、前記共重合体と良溶媒との質量比が96:4である場合、例えば、前記混合溶液の貧溶媒濃度と冷却速度とを下記表の条件に設定することによって、表中に記載するポアサイズ(30〜1800μm)の多孔質体を得ることができる。   When the mixed solution contains the copolymer, a good solvent, and a poor solvent, and the mass ratio of the copolymer and the good solvent is 96: 4, for example, the poor solvent concentration and the cooling rate of the mixed solution are as follows: By setting the conditions in the table, a porous body having a pore size (30 to 1800 μm) described in the table can be obtained.

冷却速度3℃/hr
貧溶媒濃度(質量%) ポアサイズ(μm)
6-9 30-200
9.25-9.75 <200-400
10 <400-800
10.25 <800-1000
冷却速度5℃/hr
貧溶媒濃度(質量%) ポアサイズ(μm)
6-9.5 30-200
4.75-10 <200-400
10.25-10.5 <400-800
10.75 <800-1200
11-11.5 <1200-1500
冷却速度10℃/hr
貧溶媒濃度(質量%) ポアサイズ(μm)
6-10 30-200
10.25 <200-400
10.5-10.75 <400-800
11 <800-1200
11-11.75 <1200-1800
冷却速度180℃/hr
貧溶媒濃度(質量%) ポアサイズ(μm)
6-10.25 30-200
10.5-11 <200-400
11.25-12 <400-800
Cooling rate 3 ℃ / hr
Poor solvent concentration (mass%) Pore size (μm)
6-9 30-200
9.25-9.75 <200-400
10 <400-800
10.25 <800-1000
Cooling rate 5 ℃ / hr
Poor solvent concentration (mass%) Pore size (μm)
6-9.5 30-200
4.75-10 <200-400
10.25-10.5 <400-800
10.75 <800-1200
11-11.5 <1200-1500
Cooling rate 10 ℃ / hr
Poor solvent concentration (mass%) Pore size (μm)
6-10 30-200
10.25 <200-400
10.5-10.75 <400-800
11 <800-1200
11-11.75 <1200-1800
Cooling rate 180 ° C / hr
Poor solvent concentration (mass%) Pore size (μm)
6-10.25 30-200
10.5-11 <200-400
11.25-12 <400-800

以上のようにして、本発明の多孔質体を得ることができる。本発明の製造方法によれば前述のように広い範囲のポアサイズを設定できるため、本発明の多孔質膜は、ポアサイズに応じて種々の用途に使用できる。特に、培養細胞の足場材料として使用する場合には、比較的大きいポアサイズのものが好ましく、例えば、ポアサイズ50〜1000μm、好ましくはポアサイズ100〜1000μmの多孔質体が有用である。この他にも種々の医療多孔質体として使用可能である。また、本発明の多孔質体の大きさや形状は、特に制限されず、用途に応じて決定できる。   As described above, the porous body of the present invention can be obtained. According to the production method of the present invention, since a wide range of pore sizes can be set as described above, the porous membrane of the present invention can be used for various applications depending on the pore size. In particular, when used as a scaffold material for cultured cells, those having a relatively large pore size are preferable. For example, a porous body having a pore size of 50 to 1000 μm, preferably a pore size of 100 to 1000 μm is useful. In addition, it can be used as various medical porous bodies. Further, the size and shape of the porous body of the present invention are not particularly limited and can be determined according to the application.

なお、本発明の多孔質体におけるポアサイズの測定方法は、特に制限されず、従来公知の方法が採用できる。   In addition, the measuring method of the pore size in the porous body of the present invention is not particularly limited, and a conventionally known method can be adopted.

以下、実施例および比較例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to these.

混合溶液中の含水率を変化させて多孔質体を作製し、ポアサイズの制御を確認した。   The porous body was produced by changing the water content in the mixed solution, and the control of the pore size was confirmed.

L-ラクチドとε-カプロラクトンの組成比(モル比)が50:50であるラクチド-カプロラクトン共重合体(P(LA/CL=50/50))と1,4-ジオキサンと水とを混合し、含水率の異なる混合溶液を29種類調製した。なお、P(LA/CL=50/50)と1,4-ジオキサンとの混合割合(質量比)は、一定(4:96)とし、前記混合溶液における水の混合割合(含水率)を、1, 2, 4, 6, 8, 8.25, 8.5, 8.75, 9, 9.25, 9.5, 9.75, 10, 10.25, 10.5, 10.75, 11, 11.25, 11.5, 11.75, 12, 12.25, 12.5, 12.75, 13, 14, 16, 18, 20質量%に変化させた。そして、これらの混合溶液(20g)をステンレスシャーレ(直径5cm、深さ1.5cm、以下同様)にそれぞれ供給した。   A lactide-caprolactone copolymer (P (LA / CL = 50/50)) having a composition ratio (molar ratio) of L-lactide and ε-caprolactone of 50:50, 1,4-dioxane and water are mixed. 29 kinds of mixed solutions having different moisture contents were prepared. In addition, the mixing ratio (mass ratio) of P (LA / CL = 50/50) and 1,4-dioxane is constant (4:96), and the mixing ratio of water in the mixed solution (water content) is 1, 2, 4, 6, 8, 8.25, 8.5, 8.75, 9, 9.25, 9.5, 9.75, 10, 10.25, 10.5, 10.75, 11, 11.25, 11.5, 11.75, 12, 12.25, 12.5, 12.75, 13, It was changed to 14, 16, 18, and 20% by mass. And these mixed solutions (20g) were each supplied to the stainless steel petri dish (diameter 5cm, depth 1.5cm, and the same below).

凍結乾燥機(商品名TF5-85ATANCS:宝製作所製)内(室温)の冷却棚に前記ステンレスシャーレを配置し、前記冷却棚を10℃に設定して1時間放置した後、冷却棚の温度を3℃/hrの速度で-50℃まで冷却し、-50℃で180分放置した。なお、10℃での処理開始から-50℃での処理終了までの時間を合計20時間とした。そして、冷却処理の終了と同時に凍結乾燥機内の温度を25℃に調整して減圧乾燥処理を行い、29種類の多孔質体サンプルを作製した。   Place the stainless steel petri dish on the cooling shelf in the freeze dryer (trade name TF5-85ATANCS: Takara Seisakusho) (room temperature), set the cooling shelf at 10 ° C and let it stand for 1 hour, then set the temperature of the cooling shelf The solution was cooled to -50 ° C at a rate of 3 ° C / hr and left at -50 ° C for 180 minutes. The time from the start of treatment at 10 ° C. to the end of treatment at −50 ° C. was 20 hours in total. Simultaneously with the end of the cooling process, the temperature in the freeze dryer was adjusted to 25 ° C. and a vacuum drying process was performed to prepare 29 types of porous body samples.

前記ステンレスシャーレから円板状の多孔質体サンプルを取り出し、厚み方向の真中で切断した。この切断面について、ポアサイズの測定を以下の方法によって行った(n=5)。前記切断した多孔質体サンプルの切断面(0.5cm2)を電子顕微鏡で観察し、切断面全体の中で比較的ポアサイズが大きく、出現頻度の高いポアサイズの孔を選択し、得られた画像から、画像解析ソフト(NIH image)を用いて解析を行い、ポアサイズを算出した。 A disk-shaped porous body sample was taken out from the stainless steel petri dish and cut in the middle in the thickness direction. For this cut surface, the pore size was measured by the following method (n = 5). The cut surface (0.5 cm 2 ) of the cut porous body sample was observed with an electron microscope, and pores having a relatively large pore size and a high appearance frequency were selected from the obtained image. Analysis was performed using image analysis software (NIH image), and the pore size was calculated.

(比較例1)
従来法として凍結温度の設定によってポアサイズを変化させる方法を採用し、これにより多孔質体を作製した。前記実施例1と同様のP(LA/CL=50/50)と1,4-ジオキサンとを質量比4:96となるように混合して混合溶液を調製した。この混合溶液(20g)をステンレスシャーレに供給し、前記ステンレスシャーレを冷凍庫内で所定の冷却温度(-80, -30, -15℃)に4時間静置して凍結させた。そして、これらのステンレスシャーレを凍結乾燥機(商品名Freeze dryer FDU-830:EYELA社製)に設置して減圧乾燥を行った。また、ステンレスシャーレに前記混合溶液(20g)を供給し、これを液体窒素(-196℃)で凍結した後、同様にして減圧乾燥を行った。これにより、4種類の多孔質体サンプルを作製した。得られた多孔質体サンプルのポアサイズを下記表1に示す。
(Comparative Example 1)
As a conventional method, a method of changing the pore size according to the setting of the freezing temperature was adopted, and thereby a porous body was produced. P (LA / CL = 50/50) similar to Example 1 and 1,4-dioxane were mixed at a mass ratio of 4:96 to prepare a mixed solution. This mixed solution (20 g) was supplied to a stainless steel petri dish, and the stainless steel petri dish was allowed to stand at a predetermined cooling temperature (−80, −30, −15 ° C.) for 4 hours in a freezer and frozen. These stainless steel dishes were placed in a freeze dryer (trade name Freeze dryer FDU-830: manufactured by EYELA) and dried under reduced pressure. In addition, the mixed solution (20 g) was supplied to a stainless steel petri dish, which was frozen with liquid nitrogen (−196 ° C.), and then dried under reduced pressure in the same manner. As a result, four types of porous body samples were prepared. The pore size of the obtained porous body sample is shown in Table 1 below.

(比較例2)
従来法としてポリマー含有量によってポアサイズを変化させる方法を採用し、これにより多孔質体を作製した。前記実施例1と同様のP(LA/CL=50/50)と1,4-ジオキサンとを質量比2:98、4:96、6:94となるようにそれぞれ混合して混合溶液を調製した。そして、ドライアイスとエタノールを用いて-60℃で混合溶液を凍結した以外は、前記比較例1と同様にして凍結乾燥機(商品名Freeze dryer FDU-830:EYELA社製)により減圧乾燥を行い、多孔質体サンプルを作製した。得られたサンプルのポアサイズを下記表1に示す。
(Comparative Example 2)
As a conventional method, a method of changing the pore size depending on the polymer content was adopted, and thereby a porous body was produced. P (LA / CL = 50/50) similar to Example 1 and 1,4-dioxane were mixed at mass ratios of 2:98, 4:96, and 6:94, respectively, to prepare a mixed solution. did. Then, except that the mixed solution was frozen using dry ice and ethanol at −60 ° C., it was dried under reduced pressure by a freeze dryer (trade name Freeze dryer FDU-830: manufactured by EEYLA) in the same manner as in Comparative Example 1. A porous body sample was prepared. The pore size of the obtained sample is shown in Table 1 below.

(表1)
比較例1 凍結温度 ポアサイズ(μm)
-196℃ 12
-80℃ 33
-30℃ 56
-15℃ 82
比較例2 質量比 ポアサイズ(μm)
2:98 83
4:96 56
6:94 46
(Table 1)
Comparative Example 1 Freezing temperature Pore size (μm)
-196 ℃ 12
-80 ℃ 33
-30 ℃ 56
-15 ℃ 82
Comparative Example 2 Mass ratio Pore size (μm)
2: 98 83
4:96 56
6:94 46

前記混合溶液における含水率と前記サンプルのポアサイズの関係を図1に示す。また、図1には、前記比較例1および比較例2で得られた多孔質のポアサイズ範囲を点線(図中矢印矢印の範囲)で示した。同図に示すように、実施例1の方法によれば、含水率を変化させ、同じ一定速度で冷却することによって、多孔質体のポアサイズを調節し、且つ、均一なポアが形成できることがわかった。特に、表1に示すように、凍結温度によりポアサイズを調整する従来法の比較例1によれば、10-80μm程度のポアサイズ、ポリマー含有量によりポアサイズを調整する従来法の比較例2によれば、40-80μm程度のポアサイズしか実現できず、90μm以上の大きなポアサイズを形成できなかった。これに対して、実施例1によれば、30〜1800μmという広い範囲のポアサイズが実現でき、且つ、その均一性にも優れていた。   The relationship between the water content in the mixed solution and the pore size of the sample is shown in FIG. In FIG. 1, the porous pore size range obtained in Comparative Example 1 and Comparative Example 2 is indicated by a dotted line (the range indicated by the arrow in the figure). As shown in the figure, according to the method of Example 1, it is found that the pore size of the porous body can be adjusted and uniform pores can be formed by changing the moisture content and cooling at the same constant speed. It was. In particular, as shown in Table 1, according to the comparative example 1 of the conventional method in which the pore size is adjusted by the freezing temperature, according to the comparative example 2 of the conventional method in which the pore size is adjusted by the polymer content by the pore size of about 10-80 μm. Only a pore size of about 40-80 μm could be realized, and a large pore size of 90 μm or more could not be formed. On the other hand, according to Example 1, a pore size in a wide range of 30 to 1800 μm could be realized, and the uniformity was excellent.

冷却速度を変化させて多孔質体を作製し、ポアサイズの制御を確認した。   The porous body was produced by changing the cooling rate, and the control of the pore size was confirmed.

L-ラクチドとεカプロラクトンの組成比が51:49であるP(LA/CL=51/49)を使用した以外は、前記実施例1と同様にして含水率の異なる混合溶液を複数種類調製し、前記混合溶液(20g)をステンレスシャーレにそれぞれ供給した。そして、凍結乾燥機(商品名TF5-85ATANCS:宝製作所製)の冷却棚に前記ステンレスシャーレを配置し、冷却棚の温度を10℃に下げて(所要時間25分)、60分間放置した。放置後、前記冷却棚を所定速度(180℃/hr、10℃/hr、5℃/hr、3℃/hr)で-50℃まで冷却し、-50℃で180分間処理した。そして、冷却処理の終了と同時に凍結乾燥機内の温度を25℃に調整して減圧乾燥処理を行い、多孔質体サンプルを作製した。これらの多孔質体サンプルについて、前記実施例1と同様にしてポアサイズを測定した(n=2)。前記混合溶液における含水率と前記サンプルのポアサイズの関係を図2に示す。なお、組成比51:49のP(LA/CL)を用いて実施例1と同様の実験を行った場合、同様の挙動を示すことは確認済みである。   A plurality of mixed solutions having different moisture contents were prepared in the same manner as in Example 1 except that P (LA / CL = 51/49) having a composition ratio of L-lactide and ε-caprolactone of 51:49 was used. The mixed solution (20 g) was supplied to each stainless steel dish. Then, the stainless steel petri dish was placed on the cooling shelf of a freeze dryer (trade name TF5-85ATANCS: manufactured by Takara Seisakusho), the temperature of the cooling shelf was lowered to 10 ° C. (required time 25 minutes), and left for 60 minutes. Then, the cooling shelf was cooled to −50 ° C. at a predetermined rate (180 ° C./hr, 10 ° C./hr, 5 ° C./hr, 3 ° C./hr) and treated at −50 ° C. for 180 minutes. Then, simultaneously with the end of the cooling treatment, the temperature inside the freeze dryer was adjusted to 25 ° C., and a reduced pressure drying treatment was performed to produce a porous body sample. For these porous body samples, the pore size was measured in the same manner as in Example 1 (n = 2). The relationship between the water content in the mixed solution and the pore size of the sample is shown in FIG. In addition, when the same experiment as Example 1 was conducted using P (LA / CL) with a composition ratio of 51:49, it was confirmed that the same behavior was exhibited.

図2に示すように、いずれの冷却速度で冷却を行った場合でも、含水率の変化に伴って多孔質体のポアサイズが変動し、特にポアサイズが大きくなる含水率の範囲も同様であった。また、冷却速度を変化させることによって、同じ含水率の混合溶液であってもポアサイズを変化させることができ、冷却速度が速いほどポアサイズを小さく、冷却速度が遅いほどポアサイズを大きくできる傾向が得られた。以上のことから、含水率と冷却速度を調整することによって、所望のポアサイズ、特に従来法では作製困難であった大きなポアサイズの多孔質体を容易に製造できることがわかった。また、冷却速度180℃/hrで得られた多孔質体サンプルの断面写真を図4に示す。同図に示すように断面において孔が均一に分布し、そのポアサイズも均一性に優れることがわかる。   As shown in FIG. 2, regardless of the cooling rate, the pore size of the porous body fluctuated with the change of the moisture content, and the moisture content range in which the pore size was increased was also the same. In addition, by changing the cooling rate, the pore size can be changed even with a mixed solution having the same water content. The higher the cooling rate, the smaller the pore size, and the slower the cooling rate, the larger the pore size. It was. From the above, it was found that by adjusting the water content and the cooling rate, it is possible to easily produce a porous body having a desired pore size, particularly a large pore size that was difficult to produce by the conventional method. Moreover, the cross-sectional photograph of the porous body sample obtained with the cooling rate of 180 degreeC / hr is shown in FIG. As shown in the figure, the holes are uniformly distributed in the cross section, and the pore size is excellent in uniformity.

凍結温度の変化によるポアサイズへの影響を調べた。   The effect of the freezing temperature on the pore size was investigated.

冷却速度を180℃/hrとし、最終の冷却温度を所定温度(-20℃、-30℃、-40℃)とする以外は、前記実施例2と同様にして多孔質体サンプルを作製し、ポアサイズを測定した(n=3)。前記混合溶液における含水率と前記サンプルのポアサイズの関係を図3に示す。   A porous body sample was prepared in the same manner as in Example 2 except that the cooling rate was 180 ° C / hr and the final cooling temperature was a predetermined temperature (-20 ° C, -30 ° C, -40 ° C). The pore size was measured (n = 3). The relationship between the water content in the mixed solution and the pore size of the sample is shown in FIG.

同図に示すように、冷却速度180℃/hrの場合、最終の冷却温度の変化によっては、含水率に対応したポアサイズの挙動に大きな変化はなく、前記冷却温度には影響されないことがわかった。このことから、-20℃の冷却温度に設定すれば、過度な冷却が不要となり低コスト化が可能になるといえる。   As shown in the figure, when the cooling rate was 180 ° C / hr, depending on the final change in the cooling temperature, the pore size behavior corresponding to the moisture content did not change significantly, and it was found that the cooling temperature was not affected. . From this, it can be said that if the cooling temperature is set to −20 ° C., excessive cooling is not required and the cost can be reduced.

作製した多孔質体をラット体内に埋入させ、前記多孔質体の細胞・組織の浸入性を確認した。   The produced porous body was embedded in the rat body, and the cell / tissue penetration of the porous body was confirmed.

前記実施例1と同様にして、所定の含水率(8.5質量%、9.75質量%、10.25質量%)の混合溶液を用いて多孔質体を作製し、12×15mmの大きさに切断してサンプルを調製した。得られたサンプルのポアサイズは、8.5質量%のサンプルが130μm、9.75質量%のサンプルが310μm、10.25質量%のサンプルが790μmであった。なお、前記サンプルの厚みは、それぞれ5mm程度であった。これらのサンプルをラット背部の皮下に埋入させ、2週間後および4週間後、前記サンプルをH-E染色(ヘマトキシリン−エオシン染色)を行い、前記サンプルへの組織の浸入状態を確認した。   In the same manner as in Example 1, a porous body was prepared using a mixed solution having a predetermined moisture content (8.5% by mass, 9.75% by mass, 10.25% by mass), and cut into a size of 12 × 15 mm. Was prepared. The pore size of the obtained sample was 130 µm for the 8.5 mass% sample, 310 µm for the 9.75 mass% sample, and 790 µm for the 10.25 mass% sample. Each sample had a thickness of about 5 mm. These samples were implanted subcutaneously on the back of the rat, and after 2 weeks and 4 weeks, the samples were subjected to H-E staining (hematoxylin-eosin staining) to confirm the state of tissue infiltration into the samples.

その結果、図5の写真(4週間)に示すように、大きなポアサイズを有する多孔質体サンプル(ポアサイズ310μm、790μm)において、特に著しい細胞の浸入が見られた。本発明の製造方法によれば、このように、細胞の担体(足場)に適したポアサイズの大きな多孔質体が得られることから、医療分野に極めて有用といえる。   As a result, as shown in the photograph of FIG. 5 (4 weeks), particularly significant cell infiltration was observed in the porous body sample (pore size 310 μm, 790 μm) having a large pore size. According to the production method of the present invention, a porous material having a large pore size suitable for a cell carrier (scaffold) can be obtained as described above, and thus can be said to be extremely useful in the medical field.

このように本発明によれば、多孔質体のポアサイズを広範囲に設定することができる。このため、例えば、細胞の足場材料等、目的に応じた孔径を設定でき、再生医療をはじめとする医療分野において極めて有用な製造方法といえる。   Thus, according to the present invention, the pore size of the porous body can be set in a wide range. For this reason, for example, the pore diameter can be set according to the purpose, such as a cell scaffolding material, which can be said to be an extremely useful production method in the medical field including regenerative medicine.

図1は、本発明の実施例において、混合溶液の含水率と得られた多孔質体のポアサイズとの関係を示すグラフである。FIG. 1 is a graph showing the relationship between the water content of a mixed solution and the pore size of the obtained porous body in an example of the present invention. 図2は、本発明のその他の実施例において、混合溶液の含水率と得られた多孔質体のポアサイズとの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the water content of the mixed solution and the pore size of the obtained porous body in another example of the present invention. 図3は、本発明のさらにその他の実施例において、混合溶液の含水率と得られた多孔質体のポアサイズとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the water content of the mixed solution and the pore size of the obtained porous body in still another example of the present invention. 図4は、前記実施例における多孔質体断面の写真である。FIG. 4 is a photograph of a cross-section of the porous body in the example. 図5は、本発明のさらにその他の実施例において、多孔質体を生体内に埋入した後の細胞染色の結果を示す写真である。FIG. 5 is a photograph showing the results of cell staining after the porous body was embedded in the living body in still another example of the present invention.

Claims (24)

ラクチドとカプロラクトンとの共重合体を含むポリマー、前記ポリマーに対して相対的に溶解度の低い溶媒、および、前記ポリマーに対して相対的に溶解度が高く且つ前記溶解度の低い溶媒と相溶性である溶媒を含む混合溶液を調製する工程、
前記混合溶液を凍結処理する工程、
前記混合溶液の凍結処理物を減圧乾燥する工程を含む多孔質体の製造方法であって、
前記混合溶液の調製工程において、前記ポリマーに対して相対的に溶解度の低い溶媒の前記混合溶液中の含有率を変化させ、且つ、前記凍結工程において、前記混合溶液を300℃/hr以下の速度で冷却することによって、製造される多孔質体のポアサイズを制御することを特徴とする多孔質体の製造方法。
A polymer comprising a copolymer of lactide and caprolactone, a solvent having a relatively low solubility in the polymer, and a solvent having a relatively high solubility in the polymer and compatible with the solvent having a low solubility Preparing a mixed solution comprising:
Freezing the mixed solution;
A method for producing a porous body comprising a step of drying a frozen processed product of the mixed solution under reduced pressure,
In the mixed solution preparation step, the content of the solvent having a relatively low solubility in the polymer is changed in the mixed solution, and in the freezing step, the mixed solution is fed at a rate of 300 ° C./hr or less. The method for producing a porous body is characterized in that the pore size of the produced porous body is controlled by cooling in step (a).
前記混合溶液を300℃/hr以下の同じ一定速度で冷却する、請求項1記載の多孔質体の製造方法。 The method for producing a porous body according to claim 1, wherein the mixed solution is cooled at the same constant rate of 300 ° C./hr or less. 前記凍結工程において、前記混合溶液を容器に入れ、前記容器の底部から前記混合溶液を冷却する、請求項1または2記載の多孔質体の製造方法。 The method for producing a porous body according to claim 1 or 2, wherein, in the freezing step, the mixed solution is put in a container and the mixed solution is cooled from the bottom of the container. 前記凍結工程において、混合溶液の冷却に凍結機を使用し、前記混合溶液が入った前記容器を、前記凍結機の冷却棚に配置し、前記冷却棚の温度を300℃/hr以下の同じ一定速度で減少するように制御する、請求項3記載の多孔質体の製造方法。 In the freezing step, a freezer is used for cooling the mixed solution, the container containing the mixed solution is placed on the cooling shelf of the freezer, and the temperature of the cooling shelf is the same constant of 300 ° C./hr or less. The method for producing a porous body according to claim 3, wherein the porous body is controlled so as to decrease at a speed. 前記容器が、ステンレス製容器である、請求項3または4記載の多孔質体の製造方法。 The method for producing a porous body according to claim 3 or 4, wherein the container is a stainless steel container. 前記凍結工程における冷却速度が、3〜180℃/hrの範囲である、請求項1〜5のいずれか一項に記載の多孔質体の製造方法。 The manufacturing method of the porous body as described in any one of Claims 1-5 whose cooling rate in the said freezing process is the range of 3-180 degreeC / hr. 前記ポリマーに対して相対的に溶解度の低い溶媒が、エタノールおよびターシャリーブチルアルコールからなる群から選択された少なくとも一つである、請求項1〜6のいずれか一項に記載の多孔質体の製造方法。 The porous material according to any one of claims 1 to 6, wherein the solvent having a relatively low solubility with respect to the polymer is at least one selected from the group consisting of water , ethanol and tertiary butyl alcohol. Body manufacturing method. 前記ポリマーに対して相対的に溶解度が高い溶媒が1,4−ジオキサンおよび炭酸ジメチルの少なくとも一方である、請求項1〜7のいずれか一項に記載の多孔質体の製造方法。 The method for producing a porous body according to any one of claims 1 to 7, wherein the solvent having a relatively high solubility with respect to the polymer is at least one of 1,4-dioxane and dimethyl carbonate . 前記混合溶液における前記相対的に溶解度が低い溶媒の含有率が、6〜12.5質量%の範囲である、請求項1〜8のいずれか一項に記載の多孔質体の製造方法。 The manufacturing method of the porous body as described in any one of Claims 1-8 whose content rate of the said relatively low solvent in the said mixed solution is the range of 6-12.5 mass%. ラクチドとカプロラクトンとの共重合体において、ラクチドとカプロラクトンとのモル比が、90:10〜10:90の範囲である、請求項1〜9のいずれか一項に記載の多孔質体の製造方法。 The method for producing a porous body according to any one of claims 1 to 9, wherein in the copolymer of lactide and caprolactone, the molar ratio of lactide to caprolactone is in the range of 90:10 to 10:90. . 前記凍結工程において、前記混合溶液の最終凍結処理温度が、共晶点以下である、請求項1〜10のいずれか一項に記載の多孔質体の製造方法。 The manufacturing method of the porous body as described in any one of Claims 1-10 whose final freezing process temperature of the said mixed solution is below a eutectic point in the said freezing process. 前記凍結工程において、前記混合溶液の最終凍結処理温度が、−10℃以下である、請求項1〜11のいずれか一項に記載の多孔質体の製造方法。 The manufacturing method of the porous body as described in any one of Claims 1-11 whose final freezing process temperature of the said mixed solution is -10 degrees C or less in the said freezing process. 前記混合溶液の最終凍結処理温度が、−50〜−10℃の範囲である、請求項12記載の多孔質体の製造方法。 The method for producing a porous body according to claim 12, wherein the final freezing treatment temperature of the mixed solution is in the range of -50 to -10 ° C. 前記凍結工程において、前記混合溶液を最終凍結処理温度で0を超え12時間以下の範囲で処理する、請求項11〜13のいずれか一項に記載の多孔質体の製造方法。 The method for producing a porous body according to any one of claims 11 to 13, wherein in the freezing step, the mixed solution is treated at a final freezing treatment temperature in a range exceeding 0 and not longer than 12 hours. 前記凍結工程において、凍結処理開始時における前記混合溶液の温度が、10℃〜室温の範囲である、請求項1〜14のいずれか一項に記載の多孔質体の製造方法。 The method for producing a porous body according to any one of claims 1 to 14, wherein in the freezing step, the temperature of the mixed solution at the start of freezing treatment is in the range of 10 ° C to room temperature. 凍結処理開始時における前記混合溶液の温度が、10℃である、請求項15記載の多孔質体の製造方法。 The method for producing a porous body according to claim 15, wherein the temperature of the mixed solution at the start of the freezing treatment is 10 ° C. 前記混合溶液における前記ポリマー濃度が、0.1〜24質量%の範囲である、請求項1〜16のいずれか一項に記載の多孔質体の製造方法。 The manufacturing method of the porous body as described in any one of Claims 1-16 whose said polymer concentration in the said mixed solution is the range of 0.1-24 mass%. 前記ポリマーと前記ポリマーに対して相対的に溶解度が高い溶媒との質量比が、0.1:99.9〜24:76の範囲である請求項1〜17のいずれか一項に記載の多孔質体の製造方法。 The porosity according to any one of claims 1 to 17, wherein a mass ratio of the polymer and a solvent having a relatively high solubility with respect to the polymer is in a range of 0.1: 99.9 to 24:76. A method for producing a mass. 前記ポリマーと前記ポリマーに対して相対的に溶解度が高い溶媒との質量比が、4:96である請求項18記載の多孔質体の製造方法。 The method for producing a porous body according to claim 18, wherein a mass ratio of the polymer and a solvent having a relatively high solubility with respect to the polymer is 4:96. 前記ポリマーと前記ポリマーに対して相対的に溶解度が低い溶媒との質量比が、3.2:20〜4:0.5の範囲である請求項1〜19のいずれか一項に記載の多孔質体の製造方法。 The porosity according to any one of claims 1 to 19, wherein a mass ratio of the polymer and a solvent having a relatively low solubility with respect to the polymer is in a range of 3.2: 20 to 4: 0.5. A method for producing a mass. 請求項1〜20のいずれか一項に記載の多孔質体の製造方法によって得られる多孔質体。 The porous body obtained by the manufacturing method of the porous body as described in any one of Claims 1-20. 平均ポアサイズが、30〜1800μmの範囲である、請求項21記載の多孔質体。 The porous body according to claim 21, wherein the average pore size is in the range of 30 to 1800 μm. 多孔質体が培養細胞の足場材料である、請求項21または22記載の多孔質体。 The porous body according to claim 21 or 22, wherein the porous body is a scaffold material for cultured cells. 多孔質体が医療用多孔質体である、請求項21〜23のいずれか一項に記載の多孔質体。 The porous body according to any one of claims 21 to 23, wherein the porous body is a medical porous body.
JP2006056869A 2005-03-18 2006-03-02 Method for producing porous body and porous body using the same Active JP4887838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056869A JP4887838B2 (en) 2005-03-18 2006-03-02 Method for producing porous body and porous body using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005080059 2005-03-18
JP2005080059 2005-03-18
JP2006056869A JP4887838B2 (en) 2005-03-18 2006-03-02 Method for producing porous body and porous body using the same

Publications (3)

Publication Number Publication Date
JP2006291180A JP2006291180A (en) 2006-10-26
JP2006291180A5 JP2006291180A5 (en) 2008-12-11
JP4887838B2 true JP4887838B2 (en) 2012-02-29

Family

ID=37412090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056869A Active JP4887838B2 (en) 2005-03-18 2006-03-02 Method for producing porous body and porous body using the same

Country Status (1)

Country Link
JP (1) JP4887838B2 (en)

Families Citing this family (312)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US20090001121A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical staple having an expandable portion
JP2008272453A (en) * 2007-03-30 2008-11-13 Jms Co Ltd Process for production of porous body and uses thereof
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
BRPI1008667A2 (en) 2009-02-06 2016-03-08 Ethicom Endo Surgery Inc improvement of the operated surgical stapler
JP5574256B2 (en) * 2009-05-07 2014-08-20 国立大学法人大阪大学 Porous material
JP2011139898A (en) * 2009-12-08 2011-07-21 Jms Co Ltd Porous member, method for causing porosity, and method for manufacturing the porous member
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US8864009B2 (en) 2010-09-30 2014-10-21 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
JP6026509B2 (en) 2011-04-29 2016-11-16 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Staple cartridge including staples disposed within a compressible portion of the staple cartridge itself
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
MX353040B (en) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Retainer assembly including a tissue thickness compensator.
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
EP2866686A1 (en) 2012-06-28 2015-05-06 Ethicon Endo-Surgery, Inc. Empty clip cartridge lockout
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
BR112017005981B1 (en) 2014-09-26 2022-09-06 Ethicon, Llc ANCHOR MATERIAL FOR USE WITH A SURGICAL STAPLE CARTRIDGE AND SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
CN107735114B (en) 2015-08-06 2020-11-10 郡是株式会社 Artificial blood vessel, method for producing artificial blood vessel, and method for producing porous tissue regeneration substrate
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10835245B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
CN110087565A (en) 2016-12-21 2019-08-02 爱惜康有限责任公司 Surgical stapling system
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168619A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11583274B2 (en) 2017-12-21 2023-02-21 Cilag Gmbh International Self-guiding stapling instrument
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Also Published As

Publication number Publication date
JP2006291180A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4887838B2 (en) Method for producing porous body and porous body using the same
Cai et al. A novel porous cells scaffold made of polylactide–dextran blend by combining phase-separation and particle-leaching techniques
EP1860142B1 (en) Process for producing porous object and porous object obtained by the same
Kang et al. Fabrication of porous gelatin scaffolds for tissue engineering
KR100355563B1 (en) Biodegradable porous polymer scaffolds by using effervescent mixture for tissue engineering and their preparation methods
Salerno et al. Design of porous polymeric scaffolds by gas foaming of heterogeneous blends
KR100529209B1 (en) A preparation method of biodegradable porous polymer scaffolds having improved cell compatibility
Nam et al. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation
KR100673498B1 (en) Preparation method of biodegradable dual pore polymer scaffolds for tissue engineering
Do Kim et al. Effect of PEG–PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation
JP2007283096A (en) Porous bio-absorptive material and manufacturing method thereof
Neves et al. The morphology, mechanical properties and ageing behavior of porous injection molded starch-based blends for tissue engineering scaffolding
US10046088B2 (en) Nanoscale collagen particles and membranes
Zhang et al. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)–chitosan scaffolds
Kang et al. Novel porous gelatin scaffolds by overrun/particle leaching process for tissue engineering applications
Kiran Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part II. Foaming of poly (ɛ-caprolactone-co-lactide) in carbon dioxide and carbon dioxide+ acetone fluid mixtures and formation of tubular foams via solution extrusion
KR100372751B1 (en) Fabrication Method of Porous Biodegradable Polymer Scaffolds for Tissue Engineering
Zhou et al. Fabrication of tissue engineering scaffolds through solid-state foaming of immiscible polymer blends
Rouholamin et al. Control of morphological properties of porous biodegradable scaffolds processed by supercritical CO 2 foaming
KR100979628B1 (en) Porous beads having uniform pore structure for tissue engineering and its manufacturing method
Chun et al. Controlled release of plasmid DNA from biodegradable scaffolds fabricated using a thermally-induced phase-separation method
CN101405038A (en) Porous bioabsorbable material and method of producing the same
KR100288488B1 (en) Fabrication Method of Porous Polymer Scaffolds for Tissue Engneering by Using a Gas Foaming Salt
US20070282024A1 (en) Process for Producing Porous Object and Porous Object Obtained By the Same
JP5669248B2 (en) Porous scaffold

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4887838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250