US20020017652A1 - Semiconductor chip for optoelectronics - Google Patents

Semiconductor chip for optoelectronics Download PDF

Info

Publication number
US20020017652A1
US20020017652A1 US09/750,004 US75000400A US2002017652A1 US 20020017652 A1 US20020017652 A1 US 20020017652A1 US 75000400 A US75000400 A US 75000400A US 2002017652 A1 US2002017652 A1 US 2002017652A1
Authority
US
United States
Prior art keywords
semiconductor chip
layer
elevations
optoelectronic semiconductor
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/750,004
Other languages
English (en)
Inventor
Stefan Illek
Klaus Streubel
Walter Wegleiter
Andreas Ploessl
Ralph Wirth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10038671A external-priority patent/DE10038671A1/de
Priority claimed from DE10059532A external-priority patent/DE10059532A1/de
Application filed by Individual filed Critical Individual
Assigned to OSRAM OPTO SEMICONDUCTORS GMBH & CO. OHG reassignment OSRAM OPTO SEMICONDUCTORS GMBH & CO. OHG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FLOESSL, ANDREAS, ILLEK, STEFAN, STREUBEL, KLAUS, WEGLETTER, WALTER, WIRTH, RALPH
Publication of US20020017652A1 publication Critical patent/US20020017652A1/en
Priority to US10/346,605 priority Critical patent/US6995030B2/en
Assigned to OSRAM GMBH reassignment OSRAM GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OSRAM OPTO SEMICONDUCTORS GMBH
Priority to US11/292,389 priority patent/US7547921B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/819Bodies characterised by their shape, e.g. curved or truncated substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/018Bonding of wafers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/813Bodies having a plurality of light-emitting regions, e.g. multi-junction LEDs or light-emitting devices having photoluminescent regions within the bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/814Bodies having reflecting means, e.g. semiconductor Bragg reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/83Electrodes
    • H10H20/832Electrodes characterised by their material
    • H10H20/835Reflective materials

Definitions

  • the present invention is directed to a semiconductor chip for optoelectronics of the type having an active layer with a photon-emitting zone and that is attached to a carrier member at a bonding side.
  • the metallic reflection layer arranged between the carrier member and the active layer generally does not exhibit a satisfactory reflectivity at short wavelengths.
  • gold becomes increasingly inefficient as the metallic reflection layer, since the reflectivity significantly decreases.
  • the elements Al and Ag can be employed, their reflectivity remaining comparatively constant at wavelengths below 600 nm.
  • German OS 198 07 758 discloses a truncated pyramid-shaped semiconductor chip that has an active, light-emitting zone between an upper window layer and a lower window layer.
  • the upper window layer and the lower window layer together form a truncated pyramidal base member.
  • the slanting alignment of the sidewalls of the window layers cause the light emanating from the active zone to be totally reflected at the side faces, so the reflected light is incident on the base area of the truncated pyramid-shaped base member, serving as luminous surface, substantially at a right angle.
  • a part of the light emitted by the active zone emerges onto the surface within the exit cone of the semiconductor element.
  • exit cone in this context means the cone of the light rays whose incident angle is smaller than the critical angle for the total reflection and that are therefore not totally reflected.
  • this concept assumes a minimum thickness for the upper and lower window layer.
  • the thickness of the upper and lower window layer amounts to at least 50.8 ⁇ m (2 milli-inches). Such a thickness is still within a range allowing the layers to be produced without difficulty. If, however, the power of the known semiconductor chip is to be increased, it is necessary to scale all dimensions. Layer thicknesses thereby quickly derive that can be manufactured only given high outlay in an epitaxial layer. The known semiconductor chip is therefore not scalable without further difficulty.
  • an object of the invention is to provide a semiconductor chip that is manufacturable in thin-film technology that has improved light output.
  • This object is inventively achieved in a semiconductor chip of the type initially described wherein a recess is introduced into the active layer proceeding from the bonding side, the cross-sectional area of this recess decreasing with increasing depth.
  • the bonding side of the semiconductor chip can be made significantly smaller, so that the bonding of the active layer on the carrier member can be unproblemmatically implemented.
  • lateral faces are created at which a part of the photons emitted by the active layer is reflected such that the photons within the exit cone strike the exist face of the active layer lying opposite the bonding surface.
  • the reflection at the continuous reflection layer is replaced by the reflection at the lateral faces of the recesses.
  • the recesses are so deep that the active zone of the active layer is interrupted by the recess introduced into the active layer proceeding from the bonding side.
  • elevations on a connecting layer of the active layer are formed by the recesses.
  • Such elevations act as collimators that align the trajectories of the photons emitted by the active zone nearly at a right angle relative to the exit face of the semiconductor chip. As a result, a majority of the emitted photons within the exit cone strikes the exit face and can exit the semiconductor chip.
  • the connecting layer is fashioned such that at least one trajectory of the photons emitted by the active zone proceeds from the respective elevation to one of the neighboring elevations.
  • the elevations are provided with concave lateral faces.
  • the elevations are covered with a reflective layer.
  • FIG. 1 is a cross-section through an exemplary embodiment of a semiconductor chip of the invention.
  • FIG. 2 is a cross-section through another exemplary embodiment of a semiconductor chip of the invention, wherein the active zone is arranged within truncated pyramid-shaped elevation.
  • FIG. 3 is a cross-section through a semiconductor chip of the invention that is provided with elevations that have concave lateral faces.
  • FIG. 4 is a diagram that shows the intensification of the light yield in a semiconductor chip of the invention, compared to a conventional semiconductor chips.
  • FIG. 5 is a cross-sectional profile of an elevation in the inventive semiconductor chip that is composed of a lower, flat frustum and an upper, steep frustum.
  • FIGS. 6 a through 6 d respectively show cross-sectional profiles of elevations in the inventive semiconductor chip, and a diagram that shows the dependency of the output efficiency on the radius of the boundary surface between the lower truncated pyramid and the upper truncated pyramid of the elevation of FIG. 5.
  • FIG. 7 is a diagram that shows the dependency of the output efficiency on the reflectivity of a contact layer arranged on the tip of the elevation of FIG. 5.
  • FIG. 8 is a diagram that shows the dependency of the output efficiency on the reflectivity of the lateral faces of the elevation of FIG. 5.
  • FIG. 9 is a diagram from which the relationship between output efficiency and size of a luminous spot in the active zone proceeds.
  • FIGS. 10 a through 10 d respectively show cross-sectional profiles of an elevation in the inventive semiconductor chip, wherein the height of the active zone is varied, and a diagram that shows the output efficiency dependent on the thickness of a lower limiting layer.
  • FIG. 11 is a diagram that shows the dependency of the output efficiency on the sidewall angle of the lateral faces of an elevation with the cross-sectional profile shown in FIG. 10 b.
  • FIG. 12 is another diagram that shows the dependency of the output efficiency on the sidewall angle of an elevation having the cross-section profile from FIG. 10 b.
  • FIG. 13 is a diagram that shows the dependency of the output efficiency on the width of the active layer given constant height.
  • FIG. 14 is a diagram that shows the dependency of the output efficiency on the thickness of a connecting layer uniting elevations with various profiles in the inventive semiconductor chip.
  • the semiconductor chip shown in FIG. 1 for a light-emitting diode has a carrier member 1 on which an active layer 2 is attached.
  • the active layer 2 has a photon-emitting, active zone 3 that is fashioned with elevations 4 at a mid-height.
  • the elevations 4 can be fashioned as a truncated pyramid or truncated cone.
  • the elevations 4 are arranged on a connecting layer 5 that has a central contact location 7 of the front side on a flat front side 6 , the contact location 7 being formed by a metallization layer.
  • the elevations 4 of the backside formed by recesses 8 are covered with a reflective layer that is composed of a dielectric insulating layer 9 and a metallization layer 10 applied thereon.
  • the insulating layer 9 is interrupted by through-contacts 12 along a base area 11 of the elevations 4 , the through-contacts 12 being formed by metallic sections.
  • the active layer 2 is first epitaxially grown on a base substrate.
  • the active layer 2 can, for example, be manufacture on the basis of InGaAIP.
  • the connecting layer 5 is thereby produced first on the base substrate and, subsequently, is doped with a concentration above 10 16 cm ⁇ 3 in order to assure a good conductivity of the connecting layer 5 .
  • Good conductivity of the connecting layer 5 is a pre-condition one central contact location 7 on the front side 6 being sufficient for supplying the active zone 3 with current.
  • the composition of the connecting layer 5 is selected such that it is transparent for the photons generated in the active zone 3 . This can usually be accomplished via setting the band gap on the basis of the composition of the material of the connecting layer 5 .
  • the elevations 4 are preferably formed in the regions provided for the semiconductor chips. These are regions having typical outside dimensions of 400 ⁇ 400 ⁇ m 2 .
  • the elevations 4 have outside dimensions that lie in the range of the layer thickness of the active layer 2 .
  • the outside dimensions of the elevations 4 therefore are in the range of 10 ⁇ m.
  • the active layer 3 is divided (separated) according to the intended number of semiconductor chips. This ensues, for example, by wet etching.
  • the separated active layers at the carrier member 1 are then secured, for example by eutectic bonding, and the base substrate is removed by wet-etching. Finally, the contact locations 7 are formed at the exposed front side of the active layer 2 , and the semiconductor chips are separated by dividing the carrier member 1 .
  • the semiconductor chip shown in FIG. 1 exhibits the advantage that the photons generated by the active zone 3 do not strike components of the semiconductor chip that would absorb them. The photons are kept away from the carrier member 1 by the metallization layer 10 .
  • Another advantage of the semiconductor chip of FIG. 1, is that a majority of the photons emitted from the active zone 3 are totally reflected at lateral faces 13 of the elevations 4 .
  • the photons totally reflected at the lateral faces 13 strike the front side 6 at a large angle.
  • a part of the photons that would be totally reflected at the front side without reflection at the lateral faces 13 strikes the front side 6 within the exit cone, and can therefore exit the semiconductor chip.
  • the reflection at the continuous base area known from the prior art is at least partially replaced by the total reflection at the lateral faces 13 .
  • the semiconductor chip of FIG. 1 compared to conventional semiconductor chips without recesses 8 therefore exhibits a light yield enhanced by nearly a factor of two.
  • light rays are considered in the following discussion, but the term light rays is not a limitation to a specific wavelength, but refers to the processes of geometrical optics, regardless of the wavelength.
  • the elevations 4 are fashioned as a truncated pyramid and are secured to the carrier member 1 via a contact layer 14 only at the base area 11 of the elevations 4 .
  • the active zone 3 is supplied with current by the contact layer 14 .
  • the light rays emanating from the active layer 2 are steered in the direction onto the front side 6 .
  • the elevations 4 therefore act as collimators in whose respective focal surfaces the active zone 3 is located.
  • the elevations 4 causes the light rays that are incident on the lateral faces 13 to be intensified in the direction toward the front side 6 so that they strike within the exit cone, so that they can exit the semiconductor chip.
  • the light yield thereby can be optimized on the basis of a suitable selection of the dimensions of the base area 11 , the angle of inclination of the lateral face 13 , and of the height of the elevations 4 , as well as the position of the active zone 3 .
  • FIG. 2 shows a light ray 15 that is initially totally reflected at the lateral face 13 and is steered therefrom to the front side 6 .
  • the light beam 15 strikes the boundary surface within the exit cone and therefore can exit the semiconductor chip. Without the total reflection at the lateral face 13 , the light wave 15 would be totally reflected at the front side 6 and would have been deflected back to one of the reflection layers known from the prior art where it would have been reflected again.
  • the reflection at the conventional, continuous reflection layer is replaced by the reflection at the lateral faces 13 given the exemplary embodiment shown in FIG. 2.
  • the elevations 4 are optically coupled via the connecting layer 5 .
  • Optical coupling in this context means that at least one of the light rays emanating from the active layer 2 can proceed across a center line 17 from the regions of one of the elevations 4 into the regions of one of the neighboring elevations 4 . Due to the optical coupling with the assistance of the connecting layer 5 , a light ray 18 that does not strike one of the lateral faces 13 of the respective elevations 4 can strike one of the lateral faces 13 of one of the neighboring elevations 4 and be deflected to the front side 6 where it is incident within the exit cone. Due to the optical coupling via the connecting layer 5 , the light yield therefore is enhanced further.
  • FIG. 3 shows a cross-section through a modified exemplary embodiment of the semiconductor chip wherein the elevations 4 are fashioned as a concave cone with concave lateral faces 13 .
  • the fashioning of the lateral faces 13 causes a light ray 18 to be reflected back and forth between the front side 6 and the lateral face 13 and thus it is increasingly intensified as it approaches the center line 27 , until it strikes the front side 6 within the exit cone.
  • FIG. 4 is a diagram wherein a measured curve 20 shows the dependency of the light yield in relative units on the operating current given pulsed mode for a conventional light-emitting diode manufactured in thin-film technology.
  • a further measured curve 21 illustrates the dependency of the light yield in relative units dependent on the operating currentfora light-emitting diode according to the exemplary embodiment shown in FIG. 3. It can be seen from FIG. 4 that the light yield given the exemplary embodiments shown in FIG. 3 exhibits approximately twice the light yield of conventional semiconductor chips without recesses 8 .
  • FIG. 5 shows a cross-sectional profile of one of the elevations 4 .
  • the elevation 4 is composed of a lower truncated cone 22 and of an upper truncated cone 23 .
  • the lower truncated cone 22 has a base area 24 adjoining the connecting layer 5 .
  • the active zone 3 is formed in the upper truncated cone 23 .
  • a contact location 25 arranged on the base area 11 of the elevation 3 is provided in FIG. 5.
  • the lateral faces 13 of the elevation 4 are composed of a sidewall 26 of the lower truncated cone 22 and sidewalls 27 of the upper truncated cone 23 .
  • the geometrical dimensions of the lower truncated cone 22 along a shared boundary surface 28 are selected such that the sidewall 26 merges directly into the sidewall 27 .
  • the radius of the base area 24 of the lower truncated cone 22 is referenced r n
  • the radius of the boundary surface 28 is referenced r t
  • the radius of the base area 11 is referenced r p .
  • the elevation 4 can be divided into a lower limiting layer 29 between the base area 24 and the active zone 3 and an upper limiting layer 30 between the active zone 3 and the base area 11 .
  • the lower limiting layer 29 has a height h u
  • the upper limiting layer 30 has a height h o .
  • the overall height of the elevation 4 is referenced H. This was consistently equated to 6 ⁇ m in all calculations. A value of 2 ⁇ m was selected for the thickness h w of the connecting layer 5 in all calculations and the thickness h w was not varied.
  • FIGS. 6 a through 6 d show the result of a calculation wherein the radius r p of the base area 11 was set equal to 5 ⁇ m, and the radius r n of the base area 24 was set equal to 20 ⁇ m.
  • the radius r t of the boundary surface 28 was varied between 6 and 18 ⁇ m according to the cross-sectional profiles shown in FIG. 6 a through FIG. 6 c.
  • a refractive index of 3.2 was set for the active zone 3 .
  • the refractive index of the lower limiting layer 29 , of the upper limiting layer 30 as well as of the connecting layer 5 was 3.3.
  • the reflectivity of the contact location 25 was set as 0.3.
  • the reflectivity of the base area 11 not covered by the contact location 25 , as well as the reflectivity of the sidewalls 26 and 27 was set to 0.8.
  • reflectivity means the reflection coefficient with respect to energy.
  • the self-absorption of the active zone 3 was taken into consideration with an absorption coefficient of 10,000/cm. All calculations were implemented with photon recycling. An internal quantum efficiency of 0.8 was assumed for this. The quantum efficiency in the generation of photons by charge carrier recombination was not taken into consideration.
  • the output efficiency ⁇ indicated in the diagrams is therefore equal to the ratio of the number of photons coupled out from the semiconductor chip to the number of photons actually generated. The values for the indicated output efficiency ⁇ therefore would also have to be multiplied by the factor 0.8 in order to arrive at the external efficiency.
  • FIG. 6 c shows a diagram wherein the output efficiency ⁇ is entered relative to the radius r t in a curve 31 .
  • the output efficiency of a normal thin-film semiconductor chip is also entered, whereby the scatter is conveyed only via the photon recycling.
  • This thin-film semiconductor having the edge length of 300 ⁇ m exhibits the same epitaxial structure as the elevation 4 in the lower truncated cone 22 and upper truncated cone 23 . It was assumed that the semiconductor chip is provided with a mirror at the p-side, the reflectivity of said mirror amounting to 0.72.
  • This value is the average value—weighted with the degree of occupancy—of the reflectivity of a reflection layer and of a contact layer, whereby the value 0.8 is set for the reflectivity of the reflection layer and the value 0.85 is set for the occupancy of the reflection layer, and the value 0.3 for the reflectivity of the contact layer and 0.15 for the occupancy were employed.
  • the dependency of the output efficiency ⁇ on the reflectivity of the contact location 25 was investigated. To this end, the output efficiency ⁇ was calculated dependent on the reflectivity of the contact location 25 , whereby the cross-sectional profile of the elevation 4 was same as the cross-sectional profile shown in FIG. 6 b. It was also assumed that the contact location 25 covers the entire base area 11 . It can be seen from FIG. 7 that the output efficiency ⁇ is not significantly dependent on the reflectivity of the contact location 25 .
  • elevations 4 at the fastening side therefore seems significantly less sensitive to the poor reflectivity of the contact locations 25 than are the traditional thin-film light-emitting diodes, since only a tiny fraction of the multiplex reflections leading to the output apparently occur between the base area 11 and the light-emitting area 12 but ensue three-dimensional in the elevation 4 .
  • the relative independence from the reflectivity of the contact relation 25 is particularly advantageous since, in practice, a low ohmic resistance between the contact location 25 and the upper limiting layer 30 is generally linked to a poor reflectivity.
  • a good ohmic contact namely, requires the diffusion of atoms from the layer forming the contact location 25 into the material lying there below.
  • the elevations 4 therefore have approximately the cross-sectional profile shown in FIG. 6 b.
  • the result of this calculation is a curve 33 entered in FIG. 8 that rises monotonously with increasing reflectivity R s .
  • a point 34 entered into the diagram from FIG. 8 represents the result of a calculation for a semiconductor chip on which no reflective layer was applied but that was embedded in resin as surrounding medium. However, total reflection occurs here, so that a greater output efficiency occurs compared to a semiconductor chip with a reflective layer. This would also be the case for the exemplary embodiment shown in FIG. 1 wherein the electrical insulating layer at which total reflection can likewise occur is arranged between the metallization layer 16 .
  • the elevations 4 therefore essentially have the cross-sectional profile shown in FIG. 6 a.
  • the active zone 3 was thereby located at medium height between the base area 24 and the base area 11 .
  • the region wherein photons arise in the active zone 3 is constricted to a luminous spot whose diameter d s is entered on the abscissa. It can be seen on the basis of the diagram in FIG. 9 that the output efficiency is especially high given a small luminous spot. This means that photons in the center of the active zone 3 are coupled out especially well. In this respect, a slight Weierstrass effect is present.
  • FIGS. 1O a through 10 c Various cross-section profiles are shown in FIGS. 1O a through 10 c wherein the thickness h u of the lower limiting layer 29 and the thickness h u of the upper limiting layer 30 were varied such that the overall height H of the elevation remained constant.
  • FIG. 10 d the output efficiency ⁇ is entered dependent on the thickness h u of the lower limiting layer 29 .
  • This shows that the output efficiency ⁇ is only slightly dependent on the position of the active zone 3 .
  • An active zone 3 that lies in the lower half of the elevation 4 is to be preferred since the current density through the active zone 3 is then low and, therefore, the current load on the active zone 3 can be kept small, this avoiding aging and linearity problems.
  • the sidewall angle ⁇ there is also an optimum range for the sidewall angle ⁇ .
  • the radius r p was set equal to 10 ⁇ m.
  • the radius r a of the active zone 3 and the radius r n of the base area 24 were varied such that the set angle ⁇ of the sidewalls 27 and 26 covers the value range between 1.5° and 85°.
  • an optimum angular range exists for the set angle ⁇ .
  • the sidewall angle ⁇ should lie between 5° and 60°, preferably between 10° and 400°. Especially good values for the output efficiency ⁇ arise when the set angle ⁇ lies between 15° and 30°.
  • a curve 37 in FIG. 13 illustrates the case where the reflectivity R K of the contact location 25 is equal to 0.3.
  • Another curve 38 is directed to the case where the reflectivity R K of the contact location 25 amounts to 0.8.
  • the curve 37 as well as the curve 38 show the dependency of the output efficiency ⁇ on the diameter 2 r a of the active zone 3 . Given good reflectivity of the contact location 25 , the output efficiency ⁇ drops only slightly with increasing diameter of the active zone 3 .
  • the curve 37 that illustrates the realistic case of a poor reflectivity R K of the contact location 25 , however, shows that the output efficiency ⁇ decreases significantly with increasing diameter of the active zone 3 . The output efficiency therefore becomes better as the lateral expanse of the elevations 4 is made smaller.
  • the thickness of the connecting layer 5 is also of significance for the output efficiency ⁇ .
  • FIG. 14 shows the output efficiency ⁇ for various cases dependent on the thickness h w of the connecting layer 5 .
  • a curve 39 reflects the aforementioned periodic drop.
  • a further curve 40 is directed to the aperiodic case, and a third curve 41 is directed to a case wherein square semiconductor chips having an edge length of 300 ⁇ m are connected to one another by a connecting layer.
  • the connecting layer 5 is increasingly advantageous given increasing layer thickness.

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)
US09/750,004 2000-08-08 2000-12-27 Semiconductor chip for optoelectronics Abandoned US20020017652A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/346,605 US6995030B2 (en) 2000-08-08 2003-01-17 Semiconductor chip for optoelectronics
US11/292,389 US7547921B2 (en) 2000-08-08 2005-11-30 Semiconductor chip for optoelectronics

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10038671.7 2000-08-08
DE10038671A DE10038671A1 (de) 2000-08-08 2000-08-08 Halbleiterchip für die Optoelektronik
DE10059532A DE10059532A1 (de) 2000-08-08 2000-11-30 Halbleiterchip für die Optoelektronik
DE10059532.4 2000-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/346,605 Division US6995030B2 (en) 2000-08-08 2003-01-17 Semiconductor chip for optoelectronics

Publications (1)

Publication Number Publication Date
US20020017652A1 true US20020017652A1 (en) 2002-02-14

Family

ID=26006634

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/750,004 Abandoned US20020017652A1 (en) 2000-08-08 2000-12-27 Semiconductor chip for optoelectronics
US10/344,308 Expired - Lifetime US7109527B2 (en) 2000-08-08 2001-08-08 Semiconductor chip for optoelectronics and method for production thereof
US10/346,605 Expired - Lifetime US6995030B2 (en) 2000-08-08 2003-01-17 Semiconductor chip for optoelectronics
US11/403,006 Abandoned US20060180820A1 (en) 2000-08-08 2006-04-12 Light-emitting semiconductor chip and method for the manufacture thereof

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/344,308 Expired - Lifetime US7109527B2 (en) 2000-08-08 2001-08-08 Semiconductor chip for optoelectronics and method for production thereof
US10/346,605 Expired - Lifetime US6995030B2 (en) 2000-08-08 2003-01-17 Semiconductor chip for optoelectronics
US11/403,006 Abandoned US20060180820A1 (en) 2000-08-08 2006-04-12 Light-emitting semiconductor chip and method for the manufacture thereof

Country Status (6)

Country Link
US (4) US20020017652A1 (enrdf_load_stackoverflow)
EP (1) EP1307928B1 (enrdf_load_stackoverflow)
JP (2) JP4230219B2 (enrdf_load_stackoverflow)
CN (1) CN100565942C (enrdf_load_stackoverflow)
TW (1) TW516246B (enrdf_load_stackoverflow)
WO (1) WO2002013281A1 (enrdf_load_stackoverflow)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040259278A1 (en) * 2002-11-29 2004-12-23 Osram Opto Semiconductors Gmbh Method for producing a light-emitting semiconductor component
WO2005041313A1 (de) * 2003-09-26 2005-05-06 Osram Opto Semiconductors Gmbh Strahlungsemittierender dünnschicht-halbleiterchip
US20050189558A1 (en) * 2004-03-01 2005-09-01 Wen-Huang Liu Flip-chip light-emitting device with micro-reflector
US20050211993A1 (en) * 2002-01-28 2005-09-29 Masahiko Sano Opposed terminal structure having a nitride semiconductor element
US20050258444A1 (en) * 2004-04-30 2005-11-24 Osram Opto Semiconductors Gmbh Semiconductor chip for optoelectronics and method for the production thereof
US20060051937A1 (en) * 2004-07-30 2006-03-09 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips using thin film technology, and semiconductor chip using thin film technology
WO2006034694A1 (de) * 2004-09-27 2006-04-06 Osram Opto Semiconductors Gmbh Optoelektronischer dünnfilmchip
US20060097271A1 (en) * 2002-07-31 2006-05-11 Osram Opto Semiconductors Gmbh Gan-based radiation-emitting thin-layered semiconductor component
US20060163601A1 (en) * 2003-02-28 2006-07-27 Volker Harle Lighting module and method the production thereof
US20060195293A1 (en) * 2005-02-28 2006-08-31 Hitachi Displays, Ltd. Lens array and display apparatus using same
US20060231852A1 (en) * 2002-08-01 2006-10-19 Nichia Corporation Semiconductor light-emitting device, method for manufacturing same and light-emitting apparatus using same
US20070284999A1 (en) * 2003-07-04 2007-12-13 Min-Hsun Hsieh Light-emitting device
US20080128734A1 (en) * 2006-01-06 2008-06-05 Epistar Corporation Light-emitting device
US20080296609A1 (en) * 2002-07-08 2008-12-04 Nichia Corporation Nitride Semiconductor Device Comprising Bonded Substrate and Fabrication Method of the Same
US7489068B2 (en) 2005-01-25 2009-02-10 Epistar Corporation Light emitting device
US20090166654A1 (en) * 2007-12-31 2009-07-02 Zhiyin Gan Light-emitting diode with increased light efficiency
US20090302429A1 (en) * 2006-05-19 2009-12-10 Osram Opto Semiconductors Gmbh Electrically Conducting Connection with Insulating Connection Medium
US20100084679A1 (en) * 2006-01-06 2010-04-08 Epistar Corporation Light-emitting device
US20100112789A1 (en) * 2004-07-30 2010-05-06 Andreas Ploessl Method for Producing Semiconductor Chips using Thin Film Technology
US20100171135A1 (en) * 2007-04-26 2010-07-08 Karl Engl Optoelectronic Semiconductor Body and Method for Producing the Same
US20100207141A1 (en) * 2009-02-18 2010-08-19 Hyun Kyong Cho Light emitting device
US20100220046A1 (en) * 2005-12-16 2010-09-02 Ploetz Ludwig Illumination Device
US20100230697A1 (en) * 2007-08-20 2010-09-16 Osram Opto Semiconductors Gmbh Opto-electronic semiconductor module and method for the production thereof
US20100301355A1 (en) * 2007-12-21 2010-12-02 Walter Wegleiter Optoelectronic Component and Production Method for an Optoelectronic Component
US20110042643A1 (en) * 2007-09-26 2011-02-24 OSRAM Opto Semicoductors GmbH Optoelectronic Semiconductor Chip Having a Multiple Quantum Well Structure
US20110049555A1 (en) * 2008-03-31 2011-03-03 Karl Engl Optoelectronic Semiconductor Chip and Method for Producing Same
WO2011014490A3 (en) * 2009-07-30 2011-04-28 3M Innovative Properties Company Pixelated led
US20110177636A1 (en) * 2010-01-21 2011-07-21 Pan Shaoher X Manufacturing process for solid state lighting device on a conductive substrate
US20110186953A1 (en) * 2008-10-06 2011-08-04 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor component and optoelectronic semiconductor component
US20110210357A1 (en) * 2008-06-06 2011-09-01 Osram Opto Semiconductors Gmbh Optoelectronic Component and Method for the Production Thereof
US8154042B2 (en) 2010-04-29 2012-04-10 Koninklijke Philips Electronics N V Light emitting device with trenches and a top contact
US8598776B2 (en) 2008-09-29 2013-12-03 Osram Opto Semiconductors Gmbh Headlight comprising a plurality of luminescence diode emitters
US8614450B2 (en) 2008-04-25 2013-12-24 Samsung Electronics Co., Ltd. Luminous devices, packages and systems containing the same, and fabricating methods thereof
US8653552B2 (en) 2012-02-24 2014-02-18 Stanley Electric Co., Ltd. Semiconductor light-emitting device
US8664682B2 (en) 2007-06-22 2014-03-04 Lg Innotek Co., Ltd. Semiconductor light emitting device and method of fabricating the same
US8785127B2 (en) 2003-02-26 2014-07-22 Callida Genomics, Inc. Random array DNA analysis by hybridization
US8981409B2 (en) 2012-08-03 2015-03-17 Stanley Electric Co., Ltd. Semiconductor light emitting device
US9240523B2 (en) 2009-04-03 2016-01-19 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component, optoelectronic component, and component arrangement having a plurality of optoelectronic components
DE102014114194A1 (de) * 2014-09-30 2016-03-31 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
US9541254B2 (en) 2012-09-13 2017-01-10 Lg Innotek Co., Ltd. Light emitting device and lighting system having the same
US9620680B2 (en) 2008-10-09 2017-04-11 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor body
US9853188B2 (en) 2010-04-12 2017-12-26 Osram Opto Semiconductors Gmbh Light-emitting diode chip with current spreading layer
US10224457B2 (en) 2014-11-06 2019-03-05 Lumileds Llc Light emitting device with trench beneath a top contact
US10978616B2 (en) 2018-01-24 2021-04-13 Sharp Kabushiki Kaisha Micro light emitting element and image display device

Families Citing this family (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410942B1 (en) * 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
US20020017652A1 (en) * 2000-08-08 2002-02-14 Stefan Illek Semiconductor chip for optoelectronics
EP1263058B1 (en) * 2001-05-29 2012-04-18 Toyoda Gosei Co., Ltd. Light-emitting element
US7135711B2 (en) * 2001-08-30 2006-11-14 Osram Opto Semiconductors Gmbh Electroluminescent body
DE10148227B4 (de) * 2001-09-28 2015-03-05 Osram Opto Semiconductors Gmbh Strahlungsemittierender Halbleiterchip, Verfahren zu dessen Herstellung und strahlungsemittierendes Bauelement
DE10307280B4 (de) * 2002-11-29 2005-09-01 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines lichtemittierenden Halbleiterbauelements
DE10261364B4 (de) * 2002-12-30 2004-12-16 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer temperbarer Mehrschichtkontaktbeschichtung, insbesondere einer temperbaren Mehrschichtkontaktmetallisierung
DE10308322B4 (de) * 2003-01-31 2014-11-06 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines elektrischen Kontaktbereiches auf einer Halbleiterschicht und Bauelement mit derartigem Kontaktbereich
DE102004016697B4 (de) * 2004-02-27 2007-10-11 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen von Halbleiterchips umfassend ein Verbindungsverfahren, das Löten mit einem Lot umfasst, und Halbleiterchip
JP4868709B2 (ja) * 2004-03-09 2012-02-01 三洋電機株式会社 発光素子
US7064356B2 (en) 2004-04-16 2006-06-20 Gelcore, Llc Flip chip light emitting diode with micromesas and a conductive mesh
DE102004040277B4 (de) * 2004-06-30 2015-07-30 Osram Opto Semiconductors Gmbh Reflektierendes Schichtsystem mit einer Mehrzahl von Schichten zur Aufbringung auf ein III/V-Verbindungshalbleitermaterial
TWI500072B (zh) * 2004-08-31 2015-09-11 Sophia School Corp 發光元件之製造方法
US7352006B2 (en) * 2004-09-28 2008-04-01 Goldeneye, Inc. Light emitting diodes exhibiting both high reflectivity and high light extraction
DE102004061865A1 (de) * 2004-09-29 2006-03-30 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Dünnfilmhalbleiterchips
US20060104061A1 (en) * 2004-11-16 2006-05-18 Scott Lerner Display with planar light source
DE102006002275A1 (de) 2005-01-19 2006-07-20 Osram Opto Semiconductors Gmbh Beleuchtungseinrichtung
US20060237735A1 (en) * 2005-04-22 2006-10-26 Jean-Yves Naulin High-efficiency light extraction structures and methods for solid-state lighting
KR100597166B1 (ko) * 2005-05-03 2006-07-04 삼성전기주식회사 플립 칩 발광다이오드 및 그 제조방법
EP2410582B1 (en) * 2005-05-24 2019-09-04 LG Electronics Inc. Nano rod type light emitting diode and method for fabricating a nano rod type light emitting diode
DE102005033005A1 (de) * 2005-07-14 2007-01-18 Osram Opto Semiconductors Gmbh Optoelektronischer Chip
DE102005035722B9 (de) 2005-07-29 2021-11-18 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
DE102005062514A1 (de) 2005-09-28 2007-03-29 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
DE102005047152A1 (de) * 2005-09-30 2007-04-12 Osram Opto Semiconductors Gmbh Epitaxiesubstrat, Verfahren zu seiner Herstellung und Verfahren zur Herstellung eines Halbleiterchips
DE102005046942A1 (de) 2005-09-30 2007-04-05 Osram Opto Semiconductors Gmbh Verfahren zur Verbindung von Schichten, entsprechendes Bauelement und organische Leuchtdiode
DE102005047149A1 (de) * 2005-09-30 2007-04-12 Osram Opto Semiconductors Gmbh Epitaxiesubstrat, damit hergestelltes Bauelement sowie entsprechende Herstellverfahren
DE102005061346A1 (de) * 2005-09-30 2007-04-05 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
JP2007103725A (ja) * 2005-10-05 2007-04-19 Toshiba Corp 半導体発光装置
KR101316415B1 (ko) * 2005-10-17 2013-10-08 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조 방법
JP4857733B2 (ja) * 2005-11-25 2012-01-18 パナソニック電工株式会社 半導体発光素子およびその製造方法
KR100714123B1 (ko) * 2005-12-08 2007-05-02 한국전자통신연구원 실리콘 발광소자
DE102006033893B4 (de) * 2005-12-16 2017-02-23 Osram Opto Semiconductors Gmbh Beleuchtungseinrichtung
JP2007173579A (ja) * 2005-12-22 2007-07-05 Matsushita Electric Works Ltd 半導体発光素子およびその製造方法
KR20070088145A (ko) * 2006-02-24 2007-08-29 엘지전자 주식회사 발광 다이오드 및 그 제조방법
DE102006031076A1 (de) * 2006-03-17 2007-09-20 Osram Opto Semiconductors Gmbh Optisches Projektionsgerät
DE102006024220A1 (de) * 2006-04-13 2007-10-18 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
DE102006061167A1 (de) 2006-04-25 2007-12-20 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
DE102006034847A1 (de) * 2006-04-27 2007-10-31 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
US20070291494A1 (en) * 2006-06-20 2007-12-20 Galli Robert D Led reflector assembly for improving the color rendering index of the light output
US20080030974A1 (en) * 2006-08-02 2008-02-07 Abu-Ageel Nayef M LED-Based Illumination System
KR100809236B1 (ko) * 2006-08-30 2008-03-05 삼성전기주식회사 편광 발광 다이오드
DE102007004302A1 (de) 2006-09-29 2008-04-03 Osram Opto Semiconductors Gmbh Halbleiterchip und Verfahren zur Herstellung eines Halbleiterchips
KR100887139B1 (ko) * 2007-02-12 2009-03-04 삼성전기주식회사 질화물 반도체 발광소자 및 제조방법
DE102007008524A1 (de) * 2007-02-21 2008-08-28 Osram Opto Semiconductors Gmbh Strahlung emittierender Chip mit mindestens einem Halbleiterkörper
JP4896788B2 (ja) * 2007-03-28 2012-03-14 富士通株式会社 半導体発光素子およびその製造方法
US20080303033A1 (en) * 2007-06-05 2008-12-11 Cree, Inc. Formation of nitride-based optoelectronic and electronic device structures on lattice-matched substrates
JP5123573B2 (ja) * 2007-06-13 2013-01-23 ローム株式会社 半導体発光素子およびその製造方法
DE102007029391A1 (de) 2007-06-26 2009-01-02 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
DE102007029369A1 (de) 2007-06-26 2009-01-02 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
US20090050905A1 (en) * 2007-08-20 2009-02-26 Abu-Ageel Nayef M Highly Efficient Light-Emitting Diode
DE102008005344A1 (de) 2007-09-21 2009-04-02 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Bauelement
DE102007057672A1 (de) 2007-11-30 2009-06-04 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper
DE102007057756B4 (de) 2007-11-30 2022-03-10 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines optoelektronischen Halbleiterkörpers
DE102007061140A1 (de) 2007-12-19 2009-06-25 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement mit Kühlelement
DE102008008599A1 (de) 2007-12-20 2009-06-25 Osram Opto Semiconductors Gmbh Halbleiteranordnung, insbesondere Leuchtdiodenanordnung und Leuchtmittelanordnung
DE102007062046B4 (de) 2007-12-21 2023-09-07 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Lichtemittierende Bauelementeanordnung, lichtemittierendes Bauelement sowie Verfahren zum Herstellen einer Mehrzahl von lichtemittierenden Bauelementen
DE102008003182A1 (de) 2008-01-04 2009-07-09 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
DE102008005497A1 (de) 2008-01-22 2009-07-23 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements und eines Wafers
DE102008006988A1 (de) * 2008-01-31 2009-08-06 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
DE102008012407A1 (de) 2008-01-31 2009-08-06 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung
DE102008011848A1 (de) 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
KR101571577B1 (ko) 2008-02-29 2015-11-24 오스람 옵토 세미컨덕터스 게엠베하 모놀리식 광전자 반도체 본체 및 그 제조 방법
DE102008016525A1 (de) 2008-03-31 2009-11-26 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
DE102008011866B4 (de) 2008-02-29 2018-05-03 Osram Opto Semiconductors Gmbh Lichtquellenanordnung mit einer Halbleiterlichtquelle
DE102008038857A1 (de) 2008-03-31 2009-10-01 Osram Opto Semiconductors Gmbh Beleuchtungseinrichtung
DE102008033705A1 (de) 2008-04-07 2009-10-08 Osram Opto Semiconductors Gmbh Optoelektronische Projektionsvorrichtung
DE102008024485A1 (de) 2008-05-21 2009-11-26 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
DE102008038852B4 (de) 2008-06-03 2024-02-01 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines optoelektronischen Bauelementes und optoelektronisches Bauelement
KR101506264B1 (ko) * 2008-06-13 2015-03-30 삼성전자주식회사 발광 소자, 발광 장치 및 상기 발광 소자의 제조 방법
DE102008030751A1 (de) 2008-06-27 2009-12-31 Osram Opto Semiconductors Gmbh Strahlungsemittierender Halbleiterchip
DE102008030584A1 (de) 2008-06-27 2009-12-31 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelementes und optoelektronisches Bauelement
KR101478334B1 (ko) * 2008-06-30 2015-01-02 서울바이오시스 주식회사 발광 다이오드 및 그 제조방법
US8236582B2 (en) * 2008-07-24 2012-08-07 Philips Lumileds Lighting Company, Llc Controlling edge emission in package-free LED die
US10147843B2 (en) 2008-07-24 2018-12-04 Lumileds Llc Semiconductor light emitting device including a window layer and a light-directing structure
DE102008035255B4 (de) 2008-07-29 2021-10-07 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
DE102008035254A1 (de) 2008-07-29 2010-02-11 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und optoelektronisches Bauteil
DE102008064956B3 (de) 2008-07-29 2023-08-24 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches halbleiterbauelement und verfahren zur herstellung eines optoelektronischen halbleiterbauelements
DE102008038750A1 (de) 2008-08-12 2010-02-18 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
DE102008039790B4 (de) 2008-08-26 2022-05-12 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
DE102008045653B4 (de) * 2008-09-03 2020-03-26 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil
US7741134B2 (en) * 2008-09-15 2010-06-22 Bridgelux, Inc. Inverted LED structure with improved light extraction
DE102008057350A1 (de) 2008-11-14 2010-05-20 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Bauelement und Verfahren zu dessen Herstellung
JP2010134217A (ja) * 2008-12-05 2010-06-17 Sony Corp カラーフィルタおよびその製造方法並びに発光装置
TWI404233B (zh) * 2009-03-31 2013-08-01 Epistar Corp 光電元件及其製造方法
JP2011029612A (ja) * 2009-06-24 2011-02-10 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子
DE102009032486A1 (de) * 2009-07-09 2011-01-13 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
KR101007077B1 (ko) * 2009-11-06 2011-01-10 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 그 제조방법
DE102009054555A1 (de) 2009-12-11 2011-06-16 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zum Herstellen eines optoelektronischen Halbleiterchips
DE102009054784A1 (de) 2009-12-16 2011-06-22 Osram Gesellschaft mit beschränkter Haftung, 81543 Halbleiterchip und Verfahren zum Herstellen eines Halbleiterchips
KR101106151B1 (ko) * 2009-12-31 2012-01-20 서울옵토디바이스주식회사 발광 소자 및 그것을 제조하는 방법
JP5733594B2 (ja) * 2010-02-18 2015-06-10 スタンレー電気株式会社 半導体発光装置
DE102010002204A1 (de) 2010-02-22 2011-08-25 OSRAM Opto Semiconductors GmbH, 93055 Halbleiterdiode und Verfahren zum Herstellen einer Halbleiterdiode
KR101014155B1 (ko) 2010-03-10 2011-02-10 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
DE102010003112A1 (de) 2010-03-22 2011-09-22 Osram Opto Semiconductors Gmbh Verfahren zur Kontrolle einer zwischen einer Metallschicht und einer Halbleiterschicht ausgebildeten Grenzfläche
JP2011233783A (ja) * 2010-04-28 2011-11-17 Mitsubishi Heavy Ind Ltd 半導体発光素子、半導体発光素子の保護膜及びその作製方法
KR20120006410A (ko) 2010-07-12 2012-01-18 엘지이노텍 주식회사 발광 소자 및 그 제조방법
DE102010027679A1 (de) 2010-07-20 2012-01-26 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
CN102386319B (zh) 2010-08-30 2015-10-14 晶元光电股份有限公司 发光元件
TW201216508A (en) * 2010-10-06 2012-04-16 Chi Mei Lighting Tech Corp Light-emitting diode device and manufacturing method thereof
DE102010054068A1 (de) 2010-12-10 2012-06-14 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelements und Bauelement
TWI435481B (zh) * 2011-02-18 2014-04-21 Genesis Photonics Inc Light emitting diode device
DE102011012264A1 (de) 2011-02-24 2012-08-30 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
DE102011012262A1 (de) 2011-02-24 2012-08-30 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
JP2012044232A (ja) * 2011-12-02 2012-03-01 Toshiba Corp 半導体発光装置
JP5806608B2 (ja) * 2011-12-12 2015-11-10 株式会社東芝 半導体発光装置
DE102012103159A1 (de) 2012-04-12 2013-10-17 Osram Opto Semiconductors Gmbh Strahlung emittierendes Bauelement, transparentes Material und Füllstoffpartikel sowie deren Herstellungsverfahren
DE102012104363A1 (de) 2012-05-21 2013-11-21 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
DE102012106812A1 (de) 2012-07-26 2014-01-30 Osram Opto Semiconductors Gmbh Verfahren zum Vergießen von optoelektronischen Bauelementen
JP5462333B1 (ja) 2012-09-21 2014-04-02 株式会社東芝 半導体発光素子及びその製造方法
KR102037865B1 (ko) 2013-02-01 2019-10-30 삼성전자주식회사 반도체 발광소자 및 반도체 발광소자 제조방법
US9178109B2 (en) 2013-02-17 2015-11-03 Tien Yang Wang Semiconductor light-emitting device and method of manufacturing the same
JP2014042062A (ja) * 2013-10-31 2014-03-06 Future Light Limited Liability Company 発光素子
US9768345B2 (en) 2013-12-20 2017-09-19 Apple Inc. LED with current injection confinement trench
US9870927B2 (en) * 2015-04-02 2018-01-16 Microsoft Technology Licensing, Llc Free-edge semiconductor chip bending
KR102554702B1 (ko) * 2015-08-25 2023-07-13 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 및 이를 포함하는 발광소자 패키지
EP3359981B1 (en) * 2015-10-09 2021-05-26 Shenzhen Xpectvision Technology Co., Ltd. Packaging methods of semiconductor x-ray detectors
DE102015117662B4 (de) * 2015-10-16 2021-07-22 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
CN105870264A (zh) * 2016-03-03 2016-08-17 映瑞光电科技(上海)有限公司 具有倒金字塔型侧壁的GaN基LED垂直芯片结构及制备方法
CN105720140A (zh) * 2016-03-03 2016-06-29 映瑞光电科技(上海)有限公司 GaN基LED垂直芯片结构及制备方法
JP7083230B2 (ja) * 2016-05-10 2022-06-10 ローム株式会社 半導体発光素子
DE102016115907A1 (de) 2016-08-26 2018-03-01 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
CN106299084B (zh) * 2016-08-30 2018-10-16 开发晶照明(厦门)有限公司 Led封装结构
CN109037263A (zh) * 2017-06-09 2018-12-18 美商晶典有限公司 具有透光基材的微发光二极管显示模块及其制造方法
DE112021002204A5 (de) 2020-04-08 2023-01-19 Ams-Osram International Gmbh Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements
JP6918398B1 (ja) * 2020-06-01 2021-08-18 株式会社京都セミコンダクター 端面入射型半導体受光素子
DE102020114884A1 (de) 2020-06-04 2021-12-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Strahlungsemittierendes bauelement und verfahren zur herstellung eines strahlungsemittierenden bauelements
WO2021251524A1 (ko) * 2020-06-11 2021-12-16 엘지전자 주식회사 반도체 발광소자 및 이를 이용한 디스플레이 장치
DE102020116871A1 (de) 2020-06-26 2021-12-30 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer halbleiterchip
DE102020125056A1 (de) 2020-09-25 2022-03-31 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements
CN112864293A (zh) * 2021-02-24 2021-05-28 江苏大学 一种垂直结构深紫外led芯片及其制造方法
CN119560488A (zh) * 2023-08-31 2025-03-04 京东方科技集团股份有限公司 发光基板及其制作方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1589099C3 (de) 1967-09-09 1975-08-28 Siemens Ag, 1000 Berlin Und 8000 Muenchen Leuchtanordnung
JPS5310840B2 (enrdf_load_stackoverflow) * 1972-05-04 1978-04-17
US4039890A (en) * 1974-08-16 1977-08-02 Monsanto Company Integrated semiconductor light-emitting display array
JPS52124885A (en) * 1976-04-12 1977-10-20 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
DE2926803A1 (de) * 1979-07-03 1981-02-12 Licentia Gmbh Elektrolumineszenz-anordnung
NZ201460A (en) * 1981-08-17 1986-11-12 Allware Agencies Ltd Multipurpose microprocessor controlled heating and cooling fan
JPS5892751U (ja) * 1981-12-17 1983-06-23 三洋電機株式会社 発光ダイオ−ド素子
JPS61183986A (ja) * 1985-02-08 1986-08-16 Toshiba Corp 半導体発光装置の製造方法
JPH0752779B2 (ja) * 1987-12-09 1995-06-05 日立電線株式会社 発光ダイオードアレイ
US5087949A (en) * 1989-06-27 1992-02-11 Hewlett-Packard Company Light-emitting diode with diagonal faces
US5008718A (en) * 1989-12-18 1991-04-16 Fletcher Robert M Light-emitting diode with an electrically conductive window
JPH0463478A (ja) * 1990-07-03 1992-02-28 Sanyo Electric Co Ltd SiC発光装置
JP3149030B2 (ja) * 1991-06-13 2001-03-26 富士通株式会社 半導体量子箱装置及びその製造方法
US5309001A (en) * 1991-11-25 1994-05-03 Sharp Kabushiki Kaisha Light-emitting diode having a surface electrode of a tree-like form
JPH05327012A (ja) * 1992-05-15 1993-12-10 Sanyo Electric Co Ltd 炭化ケイ素発光ダイオード
JPH06151955A (ja) * 1992-10-29 1994-05-31 Victor Co Of Japan Ltd 半導体発光素子
JPH06318731A (ja) * 1993-03-12 1994-11-15 Sharp Corp 半導体発光装置
US5376580A (en) * 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
US5385632A (en) * 1993-06-25 1995-01-31 At&T Laboratories Method for manufacturing integrated semiconductor devices
JP3158869B2 (ja) * 1993-06-30 2001-04-23 日立電線株式会社 発光ダイオード及びその製造方法
TW253999B (enrdf_load_stackoverflow) * 1993-06-30 1995-08-11 Hitachi Cable
US5621225A (en) * 1996-01-18 1997-04-15 Motorola Light emitting diode display package
GB9603052D0 (en) * 1996-02-14 1996-04-10 Philips Electronics Nv Image sensor
US6229160B1 (en) * 1997-06-03 2001-05-08 Lumileds Lighting, U.S., Llc Light extraction from a semiconductor light-emitting device via chip shaping
EP2169733B1 (de) * 1997-09-29 2017-07-19 OSRAM Opto Semiconductors GmbH Halbleiterlichtquelle
US6091085A (en) * 1998-02-19 2000-07-18 Agilent Technologies, Inc. GaN LEDs with improved output coupling efficiency
EP0977063A1 (en) * 1998-07-28 2000-02-02 Interuniversitair Micro-Elektronica Centrum Vzw A socket and a system for optoelectronic interconnection and a method of fabricating such socket and system
DE19911717A1 (de) 1999-03-16 2000-09-28 Osram Opto Semiconductors Gmbh Monolithisches elektrolumineszierendes Bauelement und Verfahren zu dessen Herstellung
US6410942B1 (en) * 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
US6486499B1 (en) * 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
US20020017652A1 (en) * 2000-08-08 2002-02-14 Stefan Illek Semiconductor chip for optoelectronics
WO2002031865A1 (en) * 2000-10-13 2002-04-18 Emcore Corporation Method of making an electrode
US6455878B1 (en) * 2001-05-15 2002-09-24 Lumileds Lighting U.S., Llc Semiconductor LED flip-chip having low refractive index underfill

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050211993A1 (en) * 2002-01-28 2005-09-29 Masahiko Sano Opposed terminal structure having a nitride semiconductor element
US7049635B2 (en) 2002-01-28 2006-05-23 Nichia Corporation Opposed terminal structure having a nitride semiconductor element
US8030665B2 (en) 2002-07-08 2011-10-04 Nichia Corporation Nitride semiconductor device comprising bonded substrate and fabrication method of the same
US20080296609A1 (en) * 2002-07-08 2008-12-04 Nichia Corporation Nitride Semiconductor Device Comprising Bonded Substrate and Fabrication Method of the Same
US20060097271A1 (en) * 2002-07-31 2006-05-11 Osram Opto Semiconductors Gmbh Gan-based radiation-emitting thin-layered semiconductor component
US7943944B2 (en) 2002-07-31 2011-05-17 Osram Opto Semiconductors Gmbh GaN-based radiation-emitting thin-layered semiconductor component
US20080251808A1 (en) * 2002-08-01 2008-10-16 Takeshi Kususe Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US20060231852A1 (en) * 2002-08-01 2006-10-19 Nichia Corporation Semiconductor light-emitting device, method for manufacturing same and light-emitting apparatus using same
US8035118B2 (en) 2002-08-01 2011-10-11 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US7511311B2 (en) 2002-08-01 2009-03-31 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US8330179B2 (en) 2002-08-01 2012-12-11 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US8742438B2 (en) 2002-08-01 2014-06-03 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US20040259278A1 (en) * 2002-11-29 2004-12-23 Osram Opto Semiconductors Gmbh Method for producing a light-emitting semiconductor component
US6929966B2 (en) 2002-11-29 2005-08-16 Osram Opto Semiconductors Gmbh Method for producing a light-emitting semiconductor component
US8785127B2 (en) 2003-02-26 2014-07-22 Callida Genomics, Inc. Random array DNA analysis by hybridization
US20060163601A1 (en) * 2003-02-28 2006-07-27 Volker Harle Lighting module and method the production thereof
US7560741B2 (en) 2003-02-28 2009-07-14 Osram Opto Semiconductors Gmbh Lighting module and method for the production thereof
US20070284999A1 (en) * 2003-07-04 2007-12-13 Min-Hsun Hsieh Light-emitting device
US8063557B2 (en) 2003-07-04 2011-11-22 Epistar Corporation Light-emitting device having wavelength-converting materials therewithin
US8604497B2 (en) 2003-09-26 2013-12-10 Osram Opto Semiconductors Gmbh Radiation-emitting thin-film semiconductor chip
US20080035941A1 (en) * 2003-09-26 2008-02-14 Volker Harle Radiation-Emitting Thin-Film Semiconductor Chip
WO2005041313A1 (de) * 2003-09-26 2005-05-06 Osram Opto Semiconductors Gmbh Strahlungsemittierender dünnschicht-halbleiterchip
US20050189558A1 (en) * 2004-03-01 2005-09-01 Wen-Huang Liu Flip-chip light-emitting device with micro-reflector
US7294866B2 (en) 2004-03-01 2007-11-13 Epistar Corporation Flip-chip light-emitting device with micro-reflector
US7435999B2 (en) * 2004-04-30 2008-10-14 Osram Opto Semiconductors Gmbh Semiconductor chip for optoelectronics and method for the production thereof
US20050258444A1 (en) * 2004-04-30 2005-11-24 Osram Opto Semiconductors Gmbh Semiconductor chip for optoelectronics and method for the production thereof
US8728937B2 (en) 2004-07-30 2014-05-20 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips using thin film technology
US20100112789A1 (en) * 2004-07-30 2010-05-06 Andreas Ploessl Method for Producing Semiconductor Chips using Thin Film Technology
US7649266B2 (en) 2004-07-30 2010-01-19 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips using thin film technology, and semiconductor chip using thin film technology
US20060051937A1 (en) * 2004-07-30 2006-03-09 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips using thin film technology, and semiconductor chip using thin film technology
US20080283855A1 (en) * 2004-09-27 2008-11-20 Klaus Streubel Optoelectronic Thin-Film Chip
US7989830B2 (en) 2004-09-27 2011-08-02 Osram Opto Semiconductors Gmbh Optoelectronic thin-film chip
WO2006034694A1 (de) * 2004-09-27 2006-04-06 Osram Opto Semiconductors Gmbh Optoelektronischer dünnfilmchip
DE102006002683B4 (de) 2005-01-25 2019-10-17 Epistar Corp. Licht emittierendes Bauteil
US7489068B2 (en) 2005-01-25 2009-02-10 Epistar Corporation Light emitting device
US20060195293A1 (en) * 2005-02-28 2006-08-31 Hitachi Displays, Ltd. Lens array and display apparatus using same
US20100220046A1 (en) * 2005-12-16 2010-09-02 Ploetz Ludwig Illumination Device
US8593390B2 (en) * 2005-12-16 2013-11-26 Osram Gesellschaft Mit Beschrankter Haftung Illumination device
US20080128734A1 (en) * 2006-01-06 2008-06-05 Epistar Corporation Light-emitting device
US20100084679A1 (en) * 2006-01-06 2010-04-08 Epistar Corporation Light-emitting device
US20090302429A1 (en) * 2006-05-19 2009-12-10 Osram Opto Semiconductors Gmbh Electrically Conducting Connection with Insulating Connection Medium
US8102060B2 (en) 2006-05-19 2012-01-24 Osram Opto Semiconductors Gmbh Electrically conducting connection with insulating connection medium
US8450751B2 (en) 2007-04-26 2013-05-28 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor body and method for producing the same
US20100171135A1 (en) * 2007-04-26 2010-07-08 Karl Engl Optoelectronic Semiconductor Body and Method for Producing the Same
US8653540B2 (en) 2007-04-26 2014-02-18 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor body and method for producing the same
US8994053B2 (en) 2007-06-22 2015-03-31 Lg Innotek Co., Ltd. Semiconductor light emitting device and method of fabricating the same
US8664682B2 (en) 2007-06-22 2014-03-04 Lg Innotek Co., Ltd. Semiconductor light emitting device and method of fabricating the same
US9564555B2 (en) * 2007-08-20 2017-02-07 Osram Opto Semiconductors Gmbh Opto-electronic semiconductor module and method for the production thereof
US20100230697A1 (en) * 2007-08-20 2010-09-16 Osram Opto Semiconductors Gmbh Opto-electronic semiconductor module and method for the production thereof
US20110042643A1 (en) * 2007-09-26 2011-02-24 OSRAM Opto Semicoductors GmbH Optoelectronic Semiconductor Chip Having a Multiple Quantum Well Structure
US8173991B2 (en) 2007-09-26 2012-05-08 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip having a multiple quantum well structure
US8513682B2 (en) 2007-12-21 2013-08-20 Osram Opto Semiconductors Gmbh Optoelectronic component and production method for an optoelectronic component
US20100301355A1 (en) * 2007-12-21 2010-12-02 Walter Wegleiter Optoelectronic Component and Production Method for an Optoelectronic Component
US20090166654A1 (en) * 2007-12-31 2009-07-02 Zhiyin Gan Light-emitting diode with increased light efficiency
US20110049555A1 (en) * 2008-03-31 2011-03-03 Karl Engl Optoelectronic Semiconductor Chip and Method for Producing Same
US8928052B2 (en) 2008-03-31 2015-01-06 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for producing same
US8937321B2 (en) 2008-04-25 2015-01-20 Samsung Electronics Co., Ltd. Luminous devices, packages and systems containing the same, and fabricating methods thereof
US9287479B2 (en) 2008-04-25 2016-03-15 Samsung Electronics Co., Ltd. Luminous devices, packages and systems containing the same, and fabricating methods thereof
US8614450B2 (en) 2008-04-25 2013-12-24 Samsung Electronics Co., Ltd. Luminous devices, packages and systems containing the same, and fabricating methods thereof
US20110210357A1 (en) * 2008-06-06 2011-09-01 Osram Opto Semiconductors Gmbh Optoelectronic Component and Method for the Production Thereof
US11222992B2 (en) 2008-06-06 2022-01-11 Osram Oled Gmbh Optoelectronic component and method for the production thereof
US10128405B2 (en) 2008-06-06 2018-11-13 Osram Opto Semiconductors Gmbh Optoelectronic component and method for the production thereof
US8598776B2 (en) 2008-09-29 2013-12-03 Osram Opto Semiconductors Gmbh Headlight comprising a plurality of luminescence diode emitters
US20110186953A1 (en) * 2008-10-06 2011-08-04 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor component and optoelectronic semiconductor component
US8367438B2 (en) 2008-10-06 2013-02-05 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor component and optoelectronic semiconductor component
US9620680B2 (en) 2008-10-09 2017-04-11 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor body
US20100207141A1 (en) * 2009-02-18 2010-08-19 Hyun Kyong Cho Light emitting device
WO2010095784A1 (ko) * 2009-02-18 2010-08-26 엘지이노텍주식회사 발광소자
US8319227B2 (en) 2009-02-18 2012-11-27 Lg Innotek Co., Ltd. Light emitting device
US9240523B2 (en) 2009-04-03 2016-01-19 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component, optoelectronic component, and component arrangement having a plurality of optoelectronic components
US9196653B2 (en) 2009-07-30 2015-11-24 3M Innovative Properties Company Pixelated LED
WO2011014490A3 (en) * 2009-07-30 2011-04-28 3M Innovative Properties Company Pixelated led
US8283676B2 (en) * 2010-01-21 2012-10-09 Siphoton Inc. Manufacturing process for solid state lighting device on a conductive substrate
US20110177636A1 (en) * 2010-01-21 2011-07-21 Pan Shaoher X Manufacturing process for solid state lighting device on a conductive substrate
US9853188B2 (en) 2010-04-12 2017-12-26 Osram Opto Semiconductors Gmbh Light-emitting diode chip with current spreading layer
US8154042B2 (en) 2010-04-29 2012-04-10 Koninklijke Philips Electronics N V Light emitting device with trenches and a top contact
US8415656B2 (en) 2010-04-29 2013-04-09 Koninklijke Philips Electronics N.V. Light emitting device with trenches and a top contact
US8653552B2 (en) 2012-02-24 2014-02-18 Stanley Electric Co., Ltd. Semiconductor light-emitting device
US8981409B2 (en) 2012-08-03 2015-03-17 Stanley Electric Co., Ltd. Semiconductor light emitting device
US9541254B2 (en) 2012-09-13 2017-01-10 Lg Innotek Co., Ltd. Light emitting device and lighting system having the same
DE102014114194A1 (de) * 2014-09-30 2016-03-31 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
US20170222088A1 (en) * 2014-09-30 2017-08-03 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method of producing the same
US10490698B2 (en) * 2014-09-30 2019-11-26 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method of producing the same
DE102014114194B4 (de) 2014-09-30 2023-10-19 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
US10224457B2 (en) 2014-11-06 2019-03-05 Lumileds Llc Light emitting device with trench beneath a top contact
EP3216062B1 (en) * 2014-11-06 2021-01-06 Lumileds Holding B.V. Light emitting device with trenches beneath a top contact
US10978616B2 (en) 2018-01-24 2021-04-13 Sharp Kabushiki Kaisha Micro light emitting element and image display device

Also Published As

Publication number Publication date
US6995030B2 (en) 2006-02-07
TW516246B (en) 2003-01-01
JP4230219B2 (ja) 2009-02-25
JP2004506331A (ja) 2004-02-26
JP5215575B2 (ja) 2013-06-19
EP1307928B1 (de) 2014-12-31
US20040084682A1 (en) 2004-05-06
CN100565942C (zh) 2009-12-02
JP2007189242A (ja) 2007-07-26
US20060180820A1 (en) 2006-08-17
EP1307928A1 (de) 2003-05-07
US20030141496A1 (en) 2003-07-31
CN1592974A (zh) 2005-03-09
US7109527B2 (en) 2006-09-19
WO2002013281A1 (de) 2002-02-14

Similar Documents

Publication Publication Date Title
US6995030B2 (en) Semiconductor chip for optoelectronics
KR100753710B1 (ko) 발광 다이오드 구조체 및 그의 형성 방법
US7547921B2 (en) Semiconductor chip for optoelectronics
US8354682B2 (en) Radiation emitting element
US6015719A (en) Transparent substrate light emitting diodes with directed light output
CN1227750C (zh) 具有一个半导体层式结构的光辐射二极管及其制造方法
EP2445022B1 (en) Light emitting devices with improved light extraction efficiency
US5793062A (en) Transparent substrate light emitting diodes with directed light output
KR101314414B1 (ko) 광 장치
US20070018184A1 (en) Light emitting diodes with high light extraction and high reflectivity
CN100420041C (zh) 发射辐射的半导体器件
US20030075723A1 (en) Method of manufacturing surface textured high-efficiency radiating devices and devices obtained therefrom
JP2004524710A (ja) オプトエレクトロニクス用半導体チップ
US7741134B2 (en) Inverted LED structure with improved light extraction
KR101436188B1 (ko) 광전 반도체칩
EP0772248A2 (en) Microactivity LED with photon recycling
CN101132047A (zh) 用于光电子学的半导体芯片及其制造方法
EP2315277A2 (en) Devices for emitting radiation with a high efficiency

Legal Events

Date Code Title Description
AS Assignment

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH & CO. OHG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ILLEK, STEFAN;STREUBEL, KLAUS;WEGLETTER, WALTER;AND OTHERS;REEL/FRAME:011674/0355

Effective date: 20010307

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: OSRAM GMBH,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSRAM OPTO SEMICONDUCTORS GMBH;REEL/FRAME:016446/0508

Effective date: 20050317

Owner name: OSRAM GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSRAM OPTO SEMICONDUCTORS GMBH;REEL/FRAME:016446/0508

Effective date: 20050317