US20020017652A1 - Semiconductor chip for optoelectronics - Google Patents
Semiconductor chip for optoelectronics Download PDFInfo
- Publication number
- US20020017652A1 US20020017652A1 US09/750,004 US75000400A US2002017652A1 US 20020017652 A1 US20020017652 A1 US 20020017652A1 US 75000400 A US75000400 A US 75000400A US 2002017652 A1 US2002017652 A1 US 2002017652A1
- Authority
- US
- United States
- Prior art keywords
- semiconductor chip
- layer
- elevations
- optoelectronic semiconductor
- active layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 80
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 17
- 230000007423 decrease Effects 0.000 claims abstract description 4
- 238000001465 metallisation Methods 0.000 claims description 7
- 238000002310 reflectometry Methods 0.000 description 26
- 238000004364 calculation method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 16
- 239000010409 thin film Substances 0.000 description 11
- 230000001419 dependent effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/018—Bonding of wafers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/813—Bodies having a plurality of light-emitting regions, e.g. multi-junction LEDs or light-emitting devices having photoluminescent regions within the bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/814—Bodies having reflecting means, e.g. semiconductor Bragg reflectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/835—Reflective materials
Definitions
- the present invention is directed to a semiconductor chip for optoelectronics of the type having an active layer with a photon-emitting zone and that is attached to a carrier member at a bonding side.
- the metallic reflection layer arranged between the carrier member and the active layer generally does not exhibit a satisfactory reflectivity at short wavelengths.
- gold becomes increasingly inefficient as the metallic reflection layer, since the reflectivity significantly decreases.
- the elements Al and Ag can be employed, their reflectivity remaining comparatively constant at wavelengths below 600 nm.
- German OS 198 07 758 discloses a truncated pyramid-shaped semiconductor chip that has an active, light-emitting zone between an upper window layer and a lower window layer.
- the upper window layer and the lower window layer together form a truncated pyramidal base member.
- the slanting alignment of the sidewalls of the window layers cause the light emanating from the active zone to be totally reflected at the side faces, so the reflected light is incident on the base area of the truncated pyramid-shaped base member, serving as luminous surface, substantially at a right angle.
- a part of the light emitted by the active zone emerges onto the surface within the exit cone of the semiconductor element.
- exit cone in this context means the cone of the light rays whose incident angle is smaller than the critical angle for the total reflection and that are therefore not totally reflected.
- this concept assumes a minimum thickness for the upper and lower window layer.
- the thickness of the upper and lower window layer amounts to at least 50.8 ⁇ m (2 milli-inches). Such a thickness is still within a range allowing the layers to be produced without difficulty. If, however, the power of the known semiconductor chip is to be increased, it is necessary to scale all dimensions. Layer thicknesses thereby quickly derive that can be manufactured only given high outlay in an epitaxial layer. The known semiconductor chip is therefore not scalable without further difficulty.
- an object of the invention is to provide a semiconductor chip that is manufacturable in thin-film technology that has improved light output.
- This object is inventively achieved in a semiconductor chip of the type initially described wherein a recess is introduced into the active layer proceeding from the bonding side, the cross-sectional area of this recess decreasing with increasing depth.
- the bonding side of the semiconductor chip can be made significantly smaller, so that the bonding of the active layer on the carrier member can be unproblemmatically implemented.
- lateral faces are created at which a part of the photons emitted by the active layer is reflected such that the photons within the exit cone strike the exist face of the active layer lying opposite the bonding surface.
- the reflection at the continuous reflection layer is replaced by the reflection at the lateral faces of the recesses.
- the recesses are so deep that the active zone of the active layer is interrupted by the recess introduced into the active layer proceeding from the bonding side.
- elevations on a connecting layer of the active layer are formed by the recesses.
- Such elevations act as collimators that align the trajectories of the photons emitted by the active zone nearly at a right angle relative to the exit face of the semiconductor chip. As a result, a majority of the emitted photons within the exit cone strikes the exit face and can exit the semiconductor chip.
- the connecting layer is fashioned such that at least one trajectory of the photons emitted by the active zone proceeds from the respective elevation to one of the neighboring elevations.
- the elevations are provided with concave lateral faces.
- the elevations are covered with a reflective layer.
- FIG. 1 is a cross-section through an exemplary embodiment of a semiconductor chip of the invention.
- FIG. 2 is a cross-section through another exemplary embodiment of a semiconductor chip of the invention, wherein the active zone is arranged within truncated pyramid-shaped elevation.
- FIG. 3 is a cross-section through a semiconductor chip of the invention that is provided with elevations that have concave lateral faces.
- FIG. 4 is a diagram that shows the intensification of the light yield in a semiconductor chip of the invention, compared to a conventional semiconductor chips.
- FIG. 5 is a cross-sectional profile of an elevation in the inventive semiconductor chip that is composed of a lower, flat frustum and an upper, steep frustum.
- FIGS. 6 a through 6 d respectively show cross-sectional profiles of elevations in the inventive semiconductor chip, and a diagram that shows the dependency of the output efficiency on the radius of the boundary surface between the lower truncated pyramid and the upper truncated pyramid of the elevation of FIG. 5.
- FIG. 7 is a diagram that shows the dependency of the output efficiency on the reflectivity of a contact layer arranged on the tip of the elevation of FIG. 5.
- FIG. 8 is a diagram that shows the dependency of the output efficiency on the reflectivity of the lateral faces of the elevation of FIG. 5.
- FIG. 9 is a diagram from which the relationship between output efficiency and size of a luminous spot in the active zone proceeds.
- FIGS. 10 a through 10 d respectively show cross-sectional profiles of an elevation in the inventive semiconductor chip, wherein the height of the active zone is varied, and a diagram that shows the output efficiency dependent on the thickness of a lower limiting layer.
- FIG. 11 is a diagram that shows the dependency of the output efficiency on the sidewall angle of the lateral faces of an elevation with the cross-sectional profile shown in FIG. 10 b.
- FIG. 12 is another diagram that shows the dependency of the output efficiency on the sidewall angle of an elevation having the cross-section profile from FIG. 10 b.
- FIG. 13 is a diagram that shows the dependency of the output efficiency on the width of the active layer given constant height.
- FIG. 14 is a diagram that shows the dependency of the output efficiency on the thickness of a connecting layer uniting elevations with various profiles in the inventive semiconductor chip.
- the semiconductor chip shown in FIG. 1 for a light-emitting diode has a carrier member 1 on which an active layer 2 is attached.
- the active layer 2 has a photon-emitting, active zone 3 that is fashioned with elevations 4 at a mid-height.
- the elevations 4 can be fashioned as a truncated pyramid or truncated cone.
- the elevations 4 are arranged on a connecting layer 5 that has a central contact location 7 of the front side on a flat front side 6 , the contact location 7 being formed by a metallization layer.
- the elevations 4 of the backside formed by recesses 8 are covered with a reflective layer that is composed of a dielectric insulating layer 9 and a metallization layer 10 applied thereon.
- the insulating layer 9 is interrupted by through-contacts 12 along a base area 11 of the elevations 4 , the through-contacts 12 being formed by metallic sections.
- the active layer 2 is first epitaxially grown on a base substrate.
- the active layer 2 can, for example, be manufacture on the basis of InGaAIP.
- the connecting layer 5 is thereby produced first on the base substrate and, subsequently, is doped with a concentration above 10 16 cm ⁇ 3 in order to assure a good conductivity of the connecting layer 5 .
- Good conductivity of the connecting layer 5 is a pre-condition one central contact location 7 on the front side 6 being sufficient for supplying the active zone 3 with current.
- the composition of the connecting layer 5 is selected such that it is transparent for the photons generated in the active zone 3 . This can usually be accomplished via setting the band gap on the basis of the composition of the material of the connecting layer 5 .
- the elevations 4 are preferably formed in the regions provided for the semiconductor chips. These are regions having typical outside dimensions of 400 ⁇ 400 ⁇ m 2 .
- the elevations 4 have outside dimensions that lie in the range of the layer thickness of the active layer 2 .
- the outside dimensions of the elevations 4 therefore are in the range of 10 ⁇ m.
- the active layer 3 is divided (separated) according to the intended number of semiconductor chips. This ensues, for example, by wet etching.
- the separated active layers at the carrier member 1 are then secured, for example by eutectic bonding, and the base substrate is removed by wet-etching. Finally, the contact locations 7 are formed at the exposed front side of the active layer 2 , and the semiconductor chips are separated by dividing the carrier member 1 .
- the semiconductor chip shown in FIG. 1 exhibits the advantage that the photons generated by the active zone 3 do not strike components of the semiconductor chip that would absorb them. The photons are kept away from the carrier member 1 by the metallization layer 10 .
- Another advantage of the semiconductor chip of FIG. 1, is that a majority of the photons emitted from the active zone 3 are totally reflected at lateral faces 13 of the elevations 4 .
- the photons totally reflected at the lateral faces 13 strike the front side 6 at a large angle.
- a part of the photons that would be totally reflected at the front side without reflection at the lateral faces 13 strikes the front side 6 within the exit cone, and can therefore exit the semiconductor chip.
- the reflection at the continuous base area known from the prior art is at least partially replaced by the total reflection at the lateral faces 13 .
- the semiconductor chip of FIG. 1 compared to conventional semiconductor chips without recesses 8 therefore exhibits a light yield enhanced by nearly a factor of two.
- light rays are considered in the following discussion, but the term light rays is not a limitation to a specific wavelength, but refers to the processes of geometrical optics, regardless of the wavelength.
- the elevations 4 are fashioned as a truncated pyramid and are secured to the carrier member 1 via a contact layer 14 only at the base area 11 of the elevations 4 .
- the active zone 3 is supplied with current by the contact layer 14 .
- the light rays emanating from the active layer 2 are steered in the direction onto the front side 6 .
- the elevations 4 therefore act as collimators in whose respective focal surfaces the active zone 3 is located.
- the elevations 4 causes the light rays that are incident on the lateral faces 13 to be intensified in the direction toward the front side 6 so that they strike within the exit cone, so that they can exit the semiconductor chip.
- the light yield thereby can be optimized on the basis of a suitable selection of the dimensions of the base area 11 , the angle of inclination of the lateral face 13 , and of the height of the elevations 4 , as well as the position of the active zone 3 .
- FIG. 2 shows a light ray 15 that is initially totally reflected at the lateral face 13 and is steered therefrom to the front side 6 .
- the light beam 15 strikes the boundary surface within the exit cone and therefore can exit the semiconductor chip. Without the total reflection at the lateral face 13 , the light wave 15 would be totally reflected at the front side 6 and would have been deflected back to one of the reflection layers known from the prior art where it would have been reflected again.
- the reflection at the conventional, continuous reflection layer is replaced by the reflection at the lateral faces 13 given the exemplary embodiment shown in FIG. 2.
- the elevations 4 are optically coupled via the connecting layer 5 .
- Optical coupling in this context means that at least one of the light rays emanating from the active layer 2 can proceed across a center line 17 from the regions of one of the elevations 4 into the regions of one of the neighboring elevations 4 . Due to the optical coupling with the assistance of the connecting layer 5 , a light ray 18 that does not strike one of the lateral faces 13 of the respective elevations 4 can strike one of the lateral faces 13 of one of the neighboring elevations 4 and be deflected to the front side 6 where it is incident within the exit cone. Due to the optical coupling via the connecting layer 5 , the light yield therefore is enhanced further.
- FIG. 3 shows a cross-section through a modified exemplary embodiment of the semiconductor chip wherein the elevations 4 are fashioned as a concave cone with concave lateral faces 13 .
- the fashioning of the lateral faces 13 causes a light ray 18 to be reflected back and forth between the front side 6 and the lateral face 13 and thus it is increasingly intensified as it approaches the center line 27 , until it strikes the front side 6 within the exit cone.
- FIG. 4 is a diagram wherein a measured curve 20 shows the dependency of the light yield in relative units on the operating current given pulsed mode for a conventional light-emitting diode manufactured in thin-film technology.
- a further measured curve 21 illustrates the dependency of the light yield in relative units dependent on the operating currentfora light-emitting diode according to the exemplary embodiment shown in FIG. 3. It can be seen from FIG. 4 that the light yield given the exemplary embodiments shown in FIG. 3 exhibits approximately twice the light yield of conventional semiconductor chips without recesses 8 .
- FIG. 5 shows a cross-sectional profile of one of the elevations 4 .
- the elevation 4 is composed of a lower truncated cone 22 and of an upper truncated cone 23 .
- the lower truncated cone 22 has a base area 24 adjoining the connecting layer 5 .
- the active zone 3 is formed in the upper truncated cone 23 .
- a contact location 25 arranged on the base area 11 of the elevation 3 is provided in FIG. 5.
- the lateral faces 13 of the elevation 4 are composed of a sidewall 26 of the lower truncated cone 22 and sidewalls 27 of the upper truncated cone 23 .
- the geometrical dimensions of the lower truncated cone 22 along a shared boundary surface 28 are selected such that the sidewall 26 merges directly into the sidewall 27 .
- the radius of the base area 24 of the lower truncated cone 22 is referenced r n
- the radius of the boundary surface 28 is referenced r t
- the radius of the base area 11 is referenced r p .
- the elevation 4 can be divided into a lower limiting layer 29 between the base area 24 and the active zone 3 and an upper limiting layer 30 between the active zone 3 and the base area 11 .
- the lower limiting layer 29 has a height h u
- the upper limiting layer 30 has a height h o .
- the overall height of the elevation 4 is referenced H. This was consistently equated to 6 ⁇ m in all calculations. A value of 2 ⁇ m was selected for the thickness h w of the connecting layer 5 in all calculations and the thickness h w was not varied.
- FIGS. 6 a through 6 d show the result of a calculation wherein the radius r p of the base area 11 was set equal to 5 ⁇ m, and the radius r n of the base area 24 was set equal to 20 ⁇ m.
- the radius r t of the boundary surface 28 was varied between 6 and 18 ⁇ m according to the cross-sectional profiles shown in FIG. 6 a through FIG. 6 c.
- a refractive index of 3.2 was set for the active zone 3 .
- the refractive index of the lower limiting layer 29 , of the upper limiting layer 30 as well as of the connecting layer 5 was 3.3.
- the reflectivity of the contact location 25 was set as 0.3.
- the reflectivity of the base area 11 not covered by the contact location 25 , as well as the reflectivity of the sidewalls 26 and 27 was set to 0.8.
- reflectivity means the reflection coefficient with respect to energy.
- the self-absorption of the active zone 3 was taken into consideration with an absorption coefficient of 10,000/cm. All calculations were implemented with photon recycling. An internal quantum efficiency of 0.8 was assumed for this. The quantum efficiency in the generation of photons by charge carrier recombination was not taken into consideration.
- the output efficiency ⁇ indicated in the diagrams is therefore equal to the ratio of the number of photons coupled out from the semiconductor chip to the number of photons actually generated. The values for the indicated output efficiency ⁇ therefore would also have to be multiplied by the factor 0.8 in order to arrive at the external efficiency.
- FIG. 6 c shows a diagram wherein the output efficiency ⁇ is entered relative to the radius r t in a curve 31 .
- the output efficiency of a normal thin-film semiconductor chip is also entered, whereby the scatter is conveyed only via the photon recycling.
- This thin-film semiconductor having the edge length of 300 ⁇ m exhibits the same epitaxial structure as the elevation 4 in the lower truncated cone 22 and upper truncated cone 23 . It was assumed that the semiconductor chip is provided with a mirror at the p-side, the reflectivity of said mirror amounting to 0.72.
- This value is the average value—weighted with the degree of occupancy—of the reflectivity of a reflection layer and of a contact layer, whereby the value 0.8 is set for the reflectivity of the reflection layer and the value 0.85 is set for the occupancy of the reflection layer, and the value 0.3 for the reflectivity of the contact layer and 0.15 for the occupancy were employed.
- the dependency of the output efficiency ⁇ on the reflectivity of the contact location 25 was investigated. To this end, the output efficiency ⁇ was calculated dependent on the reflectivity of the contact location 25 , whereby the cross-sectional profile of the elevation 4 was same as the cross-sectional profile shown in FIG. 6 b. It was also assumed that the contact location 25 covers the entire base area 11 . It can be seen from FIG. 7 that the output efficiency ⁇ is not significantly dependent on the reflectivity of the contact location 25 .
- elevations 4 at the fastening side therefore seems significantly less sensitive to the poor reflectivity of the contact locations 25 than are the traditional thin-film light-emitting diodes, since only a tiny fraction of the multiplex reflections leading to the output apparently occur between the base area 11 and the light-emitting area 12 but ensue three-dimensional in the elevation 4 .
- the relative independence from the reflectivity of the contact relation 25 is particularly advantageous since, in practice, a low ohmic resistance between the contact location 25 and the upper limiting layer 30 is generally linked to a poor reflectivity.
- a good ohmic contact namely, requires the diffusion of atoms from the layer forming the contact location 25 into the material lying there below.
- the elevations 4 therefore have approximately the cross-sectional profile shown in FIG. 6 b.
- the result of this calculation is a curve 33 entered in FIG. 8 that rises monotonously with increasing reflectivity R s .
- a point 34 entered into the diagram from FIG. 8 represents the result of a calculation for a semiconductor chip on which no reflective layer was applied but that was embedded in resin as surrounding medium. However, total reflection occurs here, so that a greater output efficiency occurs compared to a semiconductor chip with a reflective layer. This would also be the case for the exemplary embodiment shown in FIG. 1 wherein the electrical insulating layer at which total reflection can likewise occur is arranged between the metallization layer 16 .
- the elevations 4 therefore essentially have the cross-sectional profile shown in FIG. 6 a.
- the active zone 3 was thereby located at medium height between the base area 24 and the base area 11 .
- the region wherein photons arise in the active zone 3 is constricted to a luminous spot whose diameter d s is entered on the abscissa. It can be seen on the basis of the diagram in FIG. 9 that the output efficiency is especially high given a small luminous spot. This means that photons in the center of the active zone 3 are coupled out especially well. In this respect, a slight Weierstrass effect is present.
- FIGS. 1O a through 10 c Various cross-section profiles are shown in FIGS. 1O a through 10 c wherein the thickness h u of the lower limiting layer 29 and the thickness h u of the upper limiting layer 30 were varied such that the overall height H of the elevation remained constant.
- FIG. 10 d the output efficiency ⁇ is entered dependent on the thickness h u of the lower limiting layer 29 .
- This shows that the output efficiency ⁇ is only slightly dependent on the position of the active zone 3 .
- An active zone 3 that lies in the lower half of the elevation 4 is to be preferred since the current density through the active zone 3 is then low and, therefore, the current load on the active zone 3 can be kept small, this avoiding aging and linearity problems.
- the sidewall angle ⁇ there is also an optimum range for the sidewall angle ⁇ .
- the radius r p was set equal to 10 ⁇ m.
- the radius r a of the active zone 3 and the radius r n of the base area 24 were varied such that the set angle ⁇ of the sidewalls 27 and 26 covers the value range between 1.5° and 85°.
- an optimum angular range exists for the set angle ⁇ .
- the sidewall angle ⁇ should lie between 5° and 60°, preferably between 10° and 400°. Especially good values for the output efficiency ⁇ arise when the set angle ⁇ lies between 15° and 30°.
- a curve 37 in FIG. 13 illustrates the case where the reflectivity R K of the contact location 25 is equal to 0.3.
- Another curve 38 is directed to the case where the reflectivity R K of the contact location 25 amounts to 0.8.
- the curve 37 as well as the curve 38 show the dependency of the output efficiency ⁇ on the diameter 2 r a of the active zone 3 . Given good reflectivity of the contact location 25 , the output efficiency ⁇ drops only slightly with increasing diameter of the active zone 3 .
- the curve 37 that illustrates the realistic case of a poor reflectivity R K of the contact location 25 , however, shows that the output efficiency ⁇ decreases significantly with increasing diameter of the active zone 3 . The output efficiency therefore becomes better as the lateral expanse of the elevations 4 is made smaller.
- the thickness of the connecting layer 5 is also of significance for the output efficiency ⁇ .
- FIG. 14 shows the output efficiency ⁇ for various cases dependent on the thickness h w of the connecting layer 5 .
- a curve 39 reflects the aforementioned periodic drop.
- a further curve 40 is directed to the aperiodic case, and a third curve 41 is directed to a case wherein square semiconductor chips having an edge length of 300 ⁇ m are connected to one another by a connecting layer.
- the connecting layer 5 is increasingly advantageous given increasing layer thickness.
Landscapes
- Led Devices (AREA)
- Led Device Packages (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/346,605 US6995030B2 (en) | 2000-08-08 | 2003-01-17 | Semiconductor chip for optoelectronics |
US11/292,389 US7547921B2 (en) | 2000-08-08 | 2005-11-30 | Semiconductor chip for optoelectronics |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10038671.7 | 2000-08-08 | ||
DE10038671A DE10038671A1 (de) | 2000-08-08 | 2000-08-08 | Halbleiterchip für die Optoelektronik |
DE10059532A DE10059532A1 (de) | 2000-08-08 | 2000-11-30 | Halbleiterchip für die Optoelektronik |
DE10059532.4 | 2000-11-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/346,605 Division US6995030B2 (en) | 2000-08-08 | 2003-01-17 | Semiconductor chip for optoelectronics |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020017652A1 true US20020017652A1 (en) | 2002-02-14 |
Family
ID=26006634
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/750,004 Abandoned US20020017652A1 (en) | 2000-08-08 | 2000-12-27 | Semiconductor chip for optoelectronics |
US10/344,308 Expired - Lifetime US7109527B2 (en) | 2000-08-08 | 2001-08-08 | Semiconductor chip for optoelectronics and method for production thereof |
US10/346,605 Expired - Lifetime US6995030B2 (en) | 2000-08-08 | 2003-01-17 | Semiconductor chip for optoelectronics |
US11/403,006 Abandoned US20060180820A1 (en) | 2000-08-08 | 2006-04-12 | Light-emitting semiconductor chip and method for the manufacture thereof |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/344,308 Expired - Lifetime US7109527B2 (en) | 2000-08-08 | 2001-08-08 | Semiconductor chip for optoelectronics and method for production thereof |
US10/346,605 Expired - Lifetime US6995030B2 (en) | 2000-08-08 | 2003-01-17 | Semiconductor chip for optoelectronics |
US11/403,006 Abandoned US20060180820A1 (en) | 2000-08-08 | 2006-04-12 | Light-emitting semiconductor chip and method for the manufacture thereof |
Country Status (6)
Country | Link |
---|---|
US (4) | US20020017652A1 (enrdf_load_stackoverflow) |
EP (1) | EP1307928B1 (enrdf_load_stackoverflow) |
JP (2) | JP4230219B2 (enrdf_load_stackoverflow) |
CN (1) | CN100565942C (enrdf_load_stackoverflow) |
TW (1) | TW516246B (enrdf_load_stackoverflow) |
WO (1) | WO2002013281A1 (enrdf_load_stackoverflow) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040259278A1 (en) * | 2002-11-29 | 2004-12-23 | Osram Opto Semiconductors Gmbh | Method for producing a light-emitting semiconductor component |
WO2005041313A1 (de) * | 2003-09-26 | 2005-05-06 | Osram Opto Semiconductors Gmbh | Strahlungsemittierender dünnschicht-halbleiterchip |
US20050189558A1 (en) * | 2004-03-01 | 2005-09-01 | Wen-Huang Liu | Flip-chip light-emitting device with micro-reflector |
US20050211993A1 (en) * | 2002-01-28 | 2005-09-29 | Masahiko Sano | Opposed terminal structure having a nitride semiconductor element |
US20050258444A1 (en) * | 2004-04-30 | 2005-11-24 | Osram Opto Semiconductors Gmbh | Semiconductor chip for optoelectronics and method for the production thereof |
US20060051937A1 (en) * | 2004-07-30 | 2006-03-09 | Osram Opto Semiconductors Gmbh | Method for producing semiconductor chips using thin film technology, and semiconductor chip using thin film technology |
WO2006034694A1 (de) * | 2004-09-27 | 2006-04-06 | Osram Opto Semiconductors Gmbh | Optoelektronischer dünnfilmchip |
US20060097271A1 (en) * | 2002-07-31 | 2006-05-11 | Osram Opto Semiconductors Gmbh | Gan-based radiation-emitting thin-layered semiconductor component |
US20060163601A1 (en) * | 2003-02-28 | 2006-07-27 | Volker Harle | Lighting module and method the production thereof |
US20060195293A1 (en) * | 2005-02-28 | 2006-08-31 | Hitachi Displays, Ltd. | Lens array and display apparatus using same |
US20060231852A1 (en) * | 2002-08-01 | 2006-10-19 | Nichia Corporation | Semiconductor light-emitting device, method for manufacturing same and light-emitting apparatus using same |
US20070284999A1 (en) * | 2003-07-04 | 2007-12-13 | Min-Hsun Hsieh | Light-emitting device |
US20080128734A1 (en) * | 2006-01-06 | 2008-06-05 | Epistar Corporation | Light-emitting device |
US20080296609A1 (en) * | 2002-07-08 | 2008-12-04 | Nichia Corporation | Nitride Semiconductor Device Comprising Bonded Substrate and Fabrication Method of the Same |
US7489068B2 (en) | 2005-01-25 | 2009-02-10 | Epistar Corporation | Light emitting device |
US20090166654A1 (en) * | 2007-12-31 | 2009-07-02 | Zhiyin Gan | Light-emitting diode with increased light efficiency |
US20090302429A1 (en) * | 2006-05-19 | 2009-12-10 | Osram Opto Semiconductors Gmbh | Electrically Conducting Connection with Insulating Connection Medium |
US20100084679A1 (en) * | 2006-01-06 | 2010-04-08 | Epistar Corporation | Light-emitting device |
US20100112789A1 (en) * | 2004-07-30 | 2010-05-06 | Andreas Ploessl | Method for Producing Semiconductor Chips using Thin Film Technology |
US20100171135A1 (en) * | 2007-04-26 | 2010-07-08 | Karl Engl | Optoelectronic Semiconductor Body and Method for Producing the Same |
US20100207141A1 (en) * | 2009-02-18 | 2010-08-19 | Hyun Kyong Cho | Light emitting device |
US20100220046A1 (en) * | 2005-12-16 | 2010-09-02 | Ploetz Ludwig | Illumination Device |
US20100230697A1 (en) * | 2007-08-20 | 2010-09-16 | Osram Opto Semiconductors Gmbh | Opto-electronic semiconductor module and method for the production thereof |
US20100301355A1 (en) * | 2007-12-21 | 2010-12-02 | Walter Wegleiter | Optoelectronic Component and Production Method for an Optoelectronic Component |
US20110042643A1 (en) * | 2007-09-26 | 2011-02-24 | OSRAM Opto Semicoductors GmbH | Optoelectronic Semiconductor Chip Having a Multiple Quantum Well Structure |
US20110049555A1 (en) * | 2008-03-31 | 2011-03-03 | Karl Engl | Optoelectronic Semiconductor Chip and Method for Producing Same |
WO2011014490A3 (en) * | 2009-07-30 | 2011-04-28 | 3M Innovative Properties Company | Pixelated led |
US20110177636A1 (en) * | 2010-01-21 | 2011-07-21 | Pan Shaoher X | Manufacturing process for solid state lighting device on a conductive substrate |
US20110186953A1 (en) * | 2008-10-06 | 2011-08-04 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic semiconductor component and optoelectronic semiconductor component |
US20110210357A1 (en) * | 2008-06-06 | 2011-09-01 | Osram Opto Semiconductors Gmbh | Optoelectronic Component and Method for the Production Thereof |
US8154042B2 (en) | 2010-04-29 | 2012-04-10 | Koninklijke Philips Electronics N V | Light emitting device with trenches and a top contact |
US8598776B2 (en) | 2008-09-29 | 2013-12-03 | Osram Opto Semiconductors Gmbh | Headlight comprising a plurality of luminescence diode emitters |
US8614450B2 (en) | 2008-04-25 | 2013-12-24 | Samsung Electronics Co., Ltd. | Luminous devices, packages and systems containing the same, and fabricating methods thereof |
US8653552B2 (en) | 2012-02-24 | 2014-02-18 | Stanley Electric Co., Ltd. | Semiconductor light-emitting device |
US8664682B2 (en) | 2007-06-22 | 2014-03-04 | Lg Innotek Co., Ltd. | Semiconductor light emitting device and method of fabricating the same |
US8785127B2 (en) | 2003-02-26 | 2014-07-22 | Callida Genomics, Inc. | Random array DNA analysis by hybridization |
US8981409B2 (en) | 2012-08-03 | 2015-03-17 | Stanley Electric Co., Ltd. | Semiconductor light emitting device |
US9240523B2 (en) | 2009-04-03 | 2016-01-19 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic component, optoelectronic component, and component arrangement having a plurality of optoelectronic components |
DE102014114194A1 (de) * | 2014-09-30 | 2016-03-31 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung |
US9541254B2 (en) | 2012-09-13 | 2017-01-10 | Lg Innotek Co., Ltd. | Light emitting device and lighting system having the same |
US9620680B2 (en) | 2008-10-09 | 2017-04-11 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor body |
US9853188B2 (en) | 2010-04-12 | 2017-12-26 | Osram Opto Semiconductors Gmbh | Light-emitting diode chip with current spreading layer |
US10224457B2 (en) | 2014-11-06 | 2019-03-05 | Lumileds Llc | Light emitting device with trench beneath a top contact |
US10978616B2 (en) | 2018-01-24 | 2021-04-13 | Sharp Kabushiki Kaisha | Micro light emitting element and image display device |
Families Citing this family (131)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6410942B1 (en) * | 1999-12-03 | 2002-06-25 | Cree Lighting Company | Enhanced light extraction through the use of micro-LED arrays |
US20020017652A1 (en) * | 2000-08-08 | 2002-02-14 | Stefan Illek | Semiconductor chip for optoelectronics |
EP1263058B1 (en) * | 2001-05-29 | 2012-04-18 | Toyoda Gosei Co., Ltd. | Light-emitting element |
US7135711B2 (en) * | 2001-08-30 | 2006-11-14 | Osram Opto Semiconductors Gmbh | Electroluminescent body |
DE10148227B4 (de) * | 2001-09-28 | 2015-03-05 | Osram Opto Semiconductors Gmbh | Strahlungsemittierender Halbleiterchip, Verfahren zu dessen Herstellung und strahlungsemittierendes Bauelement |
DE10307280B4 (de) * | 2002-11-29 | 2005-09-01 | Osram Opto Semiconductors Gmbh | Verfahren zum Herstellen eines lichtemittierenden Halbleiterbauelements |
DE10261364B4 (de) * | 2002-12-30 | 2004-12-16 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung einer temperbarer Mehrschichtkontaktbeschichtung, insbesondere einer temperbaren Mehrschichtkontaktmetallisierung |
DE10308322B4 (de) * | 2003-01-31 | 2014-11-06 | Osram Opto Semiconductors Gmbh | Verfahren zum Herstellen eines elektrischen Kontaktbereiches auf einer Halbleiterschicht und Bauelement mit derartigem Kontaktbereich |
DE102004016697B4 (de) * | 2004-02-27 | 2007-10-11 | Osram Opto Semiconductors Gmbh | Verfahren zum Herstellen von Halbleiterchips umfassend ein Verbindungsverfahren, das Löten mit einem Lot umfasst, und Halbleiterchip |
JP4868709B2 (ja) * | 2004-03-09 | 2012-02-01 | 三洋電機株式会社 | 発光素子 |
US7064356B2 (en) | 2004-04-16 | 2006-06-20 | Gelcore, Llc | Flip chip light emitting diode with micromesas and a conductive mesh |
DE102004040277B4 (de) * | 2004-06-30 | 2015-07-30 | Osram Opto Semiconductors Gmbh | Reflektierendes Schichtsystem mit einer Mehrzahl von Schichten zur Aufbringung auf ein III/V-Verbindungshalbleitermaterial |
TWI500072B (zh) * | 2004-08-31 | 2015-09-11 | Sophia School Corp | 發光元件之製造方法 |
US7352006B2 (en) * | 2004-09-28 | 2008-04-01 | Goldeneye, Inc. | Light emitting diodes exhibiting both high reflectivity and high light extraction |
DE102004061865A1 (de) * | 2004-09-29 | 2006-03-30 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines Dünnfilmhalbleiterchips |
US20060104061A1 (en) * | 2004-11-16 | 2006-05-18 | Scott Lerner | Display with planar light source |
DE102006002275A1 (de) | 2005-01-19 | 2006-07-20 | Osram Opto Semiconductors Gmbh | Beleuchtungseinrichtung |
US20060237735A1 (en) * | 2005-04-22 | 2006-10-26 | Jean-Yves Naulin | High-efficiency light extraction structures and methods for solid-state lighting |
KR100597166B1 (ko) * | 2005-05-03 | 2006-07-04 | 삼성전기주식회사 | 플립 칩 발광다이오드 및 그 제조방법 |
EP2410582B1 (en) * | 2005-05-24 | 2019-09-04 | LG Electronics Inc. | Nano rod type light emitting diode and method for fabricating a nano rod type light emitting diode |
DE102005033005A1 (de) * | 2005-07-14 | 2007-01-18 | Osram Opto Semiconductors Gmbh | Optoelektronischer Chip |
DE102005035722B9 (de) | 2005-07-29 | 2021-11-18 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung |
DE102005062514A1 (de) | 2005-09-28 | 2007-03-29 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement |
DE102005047152A1 (de) * | 2005-09-30 | 2007-04-12 | Osram Opto Semiconductors Gmbh | Epitaxiesubstrat, Verfahren zu seiner Herstellung und Verfahren zur Herstellung eines Halbleiterchips |
DE102005046942A1 (de) | 2005-09-30 | 2007-04-05 | Osram Opto Semiconductors Gmbh | Verfahren zur Verbindung von Schichten, entsprechendes Bauelement und organische Leuchtdiode |
DE102005047149A1 (de) * | 2005-09-30 | 2007-04-12 | Osram Opto Semiconductors Gmbh | Epitaxiesubstrat, damit hergestelltes Bauelement sowie entsprechende Herstellverfahren |
DE102005061346A1 (de) * | 2005-09-30 | 2007-04-05 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip |
JP2007103725A (ja) * | 2005-10-05 | 2007-04-19 | Toshiba Corp | 半導体発光装置 |
KR101316415B1 (ko) * | 2005-10-17 | 2013-10-08 | 엘지이노텍 주식회사 | 질화물 반도체 발광소자 및 그 제조 방법 |
JP4857733B2 (ja) * | 2005-11-25 | 2012-01-18 | パナソニック電工株式会社 | 半導体発光素子およびその製造方法 |
KR100714123B1 (ko) * | 2005-12-08 | 2007-05-02 | 한국전자통신연구원 | 실리콘 발광소자 |
DE102006033893B4 (de) * | 2005-12-16 | 2017-02-23 | Osram Opto Semiconductors Gmbh | Beleuchtungseinrichtung |
JP2007173579A (ja) * | 2005-12-22 | 2007-07-05 | Matsushita Electric Works Ltd | 半導体発光素子およびその製造方法 |
KR20070088145A (ko) * | 2006-02-24 | 2007-08-29 | 엘지전자 주식회사 | 발광 다이오드 및 그 제조방법 |
DE102006031076A1 (de) * | 2006-03-17 | 2007-09-20 | Osram Opto Semiconductors Gmbh | Optisches Projektionsgerät |
DE102006024220A1 (de) * | 2006-04-13 | 2007-10-18 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauelement |
DE102006061167A1 (de) | 2006-04-25 | 2007-12-20 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauelement |
DE102006034847A1 (de) * | 2006-04-27 | 2007-10-31 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip |
US20070291494A1 (en) * | 2006-06-20 | 2007-12-20 | Galli Robert D | Led reflector assembly for improving the color rendering index of the light output |
US20080030974A1 (en) * | 2006-08-02 | 2008-02-07 | Abu-Ageel Nayef M | LED-Based Illumination System |
KR100809236B1 (ko) * | 2006-08-30 | 2008-03-05 | 삼성전기주식회사 | 편광 발광 다이오드 |
DE102007004302A1 (de) | 2006-09-29 | 2008-04-03 | Osram Opto Semiconductors Gmbh | Halbleiterchip und Verfahren zur Herstellung eines Halbleiterchips |
KR100887139B1 (ko) * | 2007-02-12 | 2009-03-04 | 삼성전기주식회사 | 질화물 반도체 발광소자 및 제조방법 |
DE102007008524A1 (de) * | 2007-02-21 | 2008-08-28 | Osram Opto Semiconductors Gmbh | Strahlung emittierender Chip mit mindestens einem Halbleiterkörper |
JP4896788B2 (ja) * | 2007-03-28 | 2012-03-14 | 富士通株式会社 | 半導体発光素子およびその製造方法 |
US20080303033A1 (en) * | 2007-06-05 | 2008-12-11 | Cree, Inc. | Formation of nitride-based optoelectronic and electronic device structures on lattice-matched substrates |
JP5123573B2 (ja) * | 2007-06-13 | 2013-01-23 | ローム株式会社 | 半導体発光素子およびその製造方法 |
DE102007029391A1 (de) | 2007-06-26 | 2009-01-02 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip |
DE102007029369A1 (de) | 2007-06-26 | 2009-01-02 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements |
US20090050905A1 (en) * | 2007-08-20 | 2009-02-26 | Abu-Ageel Nayef M | Highly Efficient Light-Emitting Diode |
DE102008005344A1 (de) | 2007-09-21 | 2009-04-02 | Osram Opto Semiconductors Gmbh | Strahlungsemittierendes Bauelement |
DE102007057672A1 (de) | 2007-11-30 | 2009-06-04 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterkörper |
DE102007057756B4 (de) | 2007-11-30 | 2022-03-10 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung eines optoelektronischen Halbleiterkörpers |
DE102007061140A1 (de) | 2007-12-19 | 2009-06-25 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement mit Kühlelement |
DE102008008599A1 (de) | 2007-12-20 | 2009-06-25 | Osram Opto Semiconductors Gmbh | Halbleiteranordnung, insbesondere Leuchtdiodenanordnung und Leuchtmittelanordnung |
DE102007062046B4 (de) | 2007-12-21 | 2023-09-07 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Lichtemittierende Bauelementeanordnung, lichtemittierendes Bauelement sowie Verfahren zum Herstellen einer Mehrzahl von lichtemittierenden Bauelementen |
DE102008003182A1 (de) | 2008-01-04 | 2009-07-09 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement |
DE102008005497A1 (de) | 2008-01-22 | 2009-07-23 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements und eines Wafers |
DE102008006988A1 (de) * | 2008-01-31 | 2009-08-06 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements |
DE102008012407A1 (de) | 2008-01-31 | 2009-08-06 | Osram Opto Semiconductors Gmbh | Strahlungsemittierende Vorrichtung |
DE102008011848A1 (de) | 2008-02-29 | 2009-09-03 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen |
KR101571577B1 (ko) | 2008-02-29 | 2015-11-24 | 오스람 옵토 세미컨덕터스 게엠베하 | 모놀리식 광전자 반도체 본체 및 그 제조 방법 |
DE102008016525A1 (de) | 2008-03-31 | 2009-11-26 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen |
DE102008011866B4 (de) | 2008-02-29 | 2018-05-03 | Osram Opto Semiconductors Gmbh | Lichtquellenanordnung mit einer Halbleiterlichtquelle |
DE102008038857A1 (de) | 2008-03-31 | 2009-10-01 | Osram Opto Semiconductors Gmbh | Beleuchtungseinrichtung |
DE102008033705A1 (de) | 2008-04-07 | 2009-10-08 | Osram Opto Semiconductors Gmbh | Optoelektronische Projektionsvorrichtung |
DE102008024485A1 (de) | 2008-05-21 | 2009-11-26 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement |
DE102008038852B4 (de) | 2008-06-03 | 2024-02-01 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung eines optoelektronischen Bauelementes und optoelektronisches Bauelement |
KR101506264B1 (ko) * | 2008-06-13 | 2015-03-30 | 삼성전자주식회사 | 발광 소자, 발광 장치 및 상기 발광 소자의 제조 방법 |
DE102008030751A1 (de) | 2008-06-27 | 2009-12-31 | Osram Opto Semiconductors Gmbh | Strahlungsemittierender Halbleiterchip |
DE102008030584A1 (de) | 2008-06-27 | 2009-12-31 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Bauelementes und optoelektronisches Bauelement |
KR101478334B1 (ko) * | 2008-06-30 | 2015-01-02 | 서울바이오시스 주식회사 | 발광 다이오드 및 그 제조방법 |
US8236582B2 (en) * | 2008-07-24 | 2012-08-07 | Philips Lumileds Lighting Company, Llc | Controlling edge emission in package-free LED die |
US10147843B2 (en) | 2008-07-24 | 2018-12-04 | Lumileds Llc | Semiconductor light emitting device including a window layer and a light-directing structure |
DE102008035255B4 (de) | 2008-07-29 | 2021-10-07 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements |
DE102008035254A1 (de) | 2008-07-29 | 2010-02-11 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip und optoelektronisches Bauteil |
DE102008064956B3 (de) | 2008-07-29 | 2023-08-24 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronisches halbleiterbauelement und verfahren zur herstellung eines optoelektronischen halbleiterbauelements |
DE102008038750A1 (de) | 2008-08-12 | 2010-02-18 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement und Verfahren zu dessen Herstellung |
DE102008039790B4 (de) | 2008-08-26 | 2022-05-12 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronisches Bauelement und Verfahren zu dessen Herstellung |
DE102008045653B4 (de) * | 2008-09-03 | 2020-03-26 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauteil |
US7741134B2 (en) * | 2008-09-15 | 2010-06-22 | Bridgelux, Inc. | Inverted LED structure with improved light extraction |
DE102008057350A1 (de) | 2008-11-14 | 2010-05-20 | Osram Opto Semiconductors Gmbh | Strahlungsemittierendes Bauelement und Verfahren zu dessen Herstellung |
JP2010134217A (ja) * | 2008-12-05 | 2010-06-17 | Sony Corp | カラーフィルタおよびその製造方法並びに発光装置 |
TWI404233B (zh) * | 2009-03-31 | 2013-08-01 | Epistar Corp | 光電元件及其製造方法 |
JP2011029612A (ja) * | 2009-06-24 | 2011-02-10 | Toyoda Gosei Co Ltd | Iii族窒化物半導体発光素子 |
DE102009032486A1 (de) * | 2009-07-09 | 2011-01-13 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement |
KR101007077B1 (ko) * | 2009-11-06 | 2011-01-10 | 엘지이노텍 주식회사 | 발광소자, 발광소자 패키지 및 그 제조방법 |
DE102009054555A1 (de) | 2009-12-11 | 2011-06-16 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip und Verfahren zum Herstellen eines optoelektronischen Halbleiterchips |
DE102009054784A1 (de) | 2009-12-16 | 2011-06-22 | Osram Gesellschaft mit beschränkter Haftung, 81543 | Halbleiterchip und Verfahren zum Herstellen eines Halbleiterchips |
KR101106151B1 (ko) * | 2009-12-31 | 2012-01-20 | 서울옵토디바이스주식회사 | 발광 소자 및 그것을 제조하는 방법 |
JP5733594B2 (ja) * | 2010-02-18 | 2015-06-10 | スタンレー電気株式会社 | 半導体発光装置 |
DE102010002204A1 (de) | 2010-02-22 | 2011-08-25 | OSRAM Opto Semiconductors GmbH, 93055 | Halbleiterdiode und Verfahren zum Herstellen einer Halbleiterdiode |
KR101014155B1 (ko) | 2010-03-10 | 2011-02-10 | 엘지이노텍 주식회사 | 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지 |
DE102010003112A1 (de) | 2010-03-22 | 2011-09-22 | Osram Opto Semiconductors Gmbh | Verfahren zur Kontrolle einer zwischen einer Metallschicht und einer Halbleiterschicht ausgebildeten Grenzfläche |
JP2011233783A (ja) * | 2010-04-28 | 2011-11-17 | Mitsubishi Heavy Ind Ltd | 半導体発光素子、半導体発光素子の保護膜及びその作製方法 |
KR20120006410A (ko) | 2010-07-12 | 2012-01-18 | 엘지이노텍 주식회사 | 발광 소자 및 그 제조방법 |
DE102010027679A1 (de) | 2010-07-20 | 2012-01-26 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement |
CN102386319B (zh) | 2010-08-30 | 2015-10-14 | 晶元光电股份有限公司 | 发光元件 |
TW201216508A (en) * | 2010-10-06 | 2012-04-16 | Chi Mei Lighting Tech Corp | Light-emitting diode device and manufacturing method thereof |
DE102010054068A1 (de) | 2010-12-10 | 2012-06-14 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Bauelements und Bauelement |
TWI435481B (zh) * | 2011-02-18 | 2014-04-21 | Genesis Photonics Inc | Light emitting diode device |
DE102011012264A1 (de) | 2011-02-24 | 2012-08-30 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauelement |
DE102011012262A1 (de) | 2011-02-24 | 2012-08-30 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements |
JP2012044232A (ja) * | 2011-12-02 | 2012-03-01 | Toshiba Corp | 半導体発光装置 |
JP5806608B2 (ja) * | 2011-12-12 | 2015-11-10 | 株式会社東芝 | 半導体発光装置 |
DE102012103159A1 (de) | 2012-04-12 | 2013-10-17 | Osram Opto Semiconductors Gmbh | Strahlung emittierendes Bauelement, transparentes Material und Füllstoffpartikel sowie deren Herstellungsverfahren |
DE102012104363A1 (de) | 2012-05-21 | 2013-11-21 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement und Verfahren zu dessen Herstellung |
DE102012106812A1 (de) | 2012-07-26 | 2014-01-30 | Osram Opto Semiconductors Gmbh | Verfahren zum Vergießen von optoelektronischen Bauelementen |
JP5462333B1 (ja) | 2012-09-21 | 2014-04-02 | 株式会社東芝 | 半導体発光素子及びその製造方法 |
KR102037865B1 (ko) | 2013-02-01 | 2019-10-30 | 삼성전자주식회사 | 반도체 발광소자 및 반도체 발광소자 제조방법 |
US9178109B2 (en) | 2013-02-17 | 2015-11-03 | Tien Yang Wang | Semiconductor light-emitting device and method of manufacturing the same |
JP2014042062A (ja) * | 2013-10-31 | 2014-03-06 | Future Light Limited Liability Company | 発光素子 |
US9768345B2 (en) | 2013-12-20 | 2017-09-19 | Apple Inc. | LED with current injection confinement trench |
US9870927B2 (en) * | 2015-04-02 | 2018-01-16 | Microsoft Technology Licensing, Llc | Free-edge semiconductor chip bending |
KR102554702B1 (ko) * | 2015-08-25 | 2023-07-13 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | 발광소자 및 이를 포함하는 발광소자 패키지 |
EP3359981B1 (en) * | 2015-10-09 | 2021-05-26 | Shenzhen Xpectvision Technology Co., Ltd. | Packaging methods of semiconductor x-ray detectors |
DE102015117662B4 (de) * | 2015-10-16 | 2021-07-22 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips |
CN105870264A (zh) * | 2016-03-03 | 2016-08-17 | 映瑞光电科技(上海)有限公司 | 具有倒金字塔型侧壁的GaN基LED垂直芯片结构及制备方法 |
CN105720140A (zh) * | 2016-03-03 | 2016-06-29 | 映瑞光电科技(上海)有限公司 | GaN基LED垂直芯片结构及制备方法 |
JP7083230B2 (ja) * | 2016-05-10 | 2022-06-10 | ローム株式会社 | 半導体発光素子 |
DE102016115907A1 (de) | 2016-08-26 | 2018-03-01 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements |
CN106299084B (zh) * | 2016-08-30 | 2018-10-16 | 开发晶照明(厦门)有限公司 | Led封装结构 |
CN109037263A (zh) * | 2017-06-09 | 2018-12-18 | 美商晶典有限公司 | 具有透光基材的微发光二极管显示模块及其制造方法 |
DE112021002204A5 (de) | 2020-04-08 | 2023-01-19 | Ams-Osram International Gmbh | Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements |
JP6918398B1 (ja) * | 2020-06-01 | 2021-08-18 | 株式会社京都セミコンダクター | 端面入射型半導体受光素子 |
DE102020114884A1 (de) | 2020-06-04 | 2021-12-09 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Strahlungsemittierendes bauelement und verfahren zur herstellung eines strahlungsemittierenden bauelements |
WO2021251524A1 (ko) * | 2020-06-11 | 2021-12-16 | 엘지전자 주식회사 | 반도체 발광소자 및 이를 이용한 디스플레이 장치 |
DE102020116871A1 (de) | 2020-06-26 | 2021-12-30 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronischer halbleiterchip |
DE102020125056A1 (de) | 2020-09-25 | 2022-03-31 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements |
CN112864293A (zh) * | 2021-02-24 | 2021-05-28 | 江苏大学 | 一种垂直结构深紫外led芯片及其制造方法 |
CN119560488A (zh) * | 2023-08-31 | 2025-03-04 | 京东方科技集团股份有限公司 | 发光基板及其制作方法 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1589099C3 (de) | 1967-09-09 | 1975-08-28 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Leuchtanordnung |
JPS5310840B2 (enrdf_load_stackoverflow) * | 1972-05-04 | 1978-04-17 | ||
US4039890A (en) * | 1974-08-16 | 1977-08-02 | Monsanto Company | Integrated semiconductor light-emitting display array |
JPS52124885A (en) * | 1976-04-12 | 1977-10-20 | Matsushita Electric Ind Co Ltd | Semiconductor light emitting device |
DE2926803A1 (de) * | 1979-07-03 | 1981-02-12 | Licentia Gmbh | Elektrolumineszenz-anordnung |
NZ201460A (en) * | 1981-08-17 | 1986-11-12 | Allware Agencies Ltd | Multipurpose microprocessor controlled heating and cooling fan |
JPS5892751U (ja) * | 1981-12-17 | 1983-06-23 | 三洋電機株式会社 | 発光ダイオ−ド素子 |
JPS61183986A (ja) * | 1985-02-08 | 1986-08-16 | Toshiba Corp | 半導体発光装置の製造方法 |
JPH0752779B2 (ja) * | 1987-12-09 | 1995-06-05 | 日立電線株式会社 | 発光ダイオードアレイ |
US5087949A (en) * | 1989-06-27 | 1992-02-11 | Hewlett-Packard Company | Light-emitting diode with diagonal faces |
US5008718A (en) * | 1989-12-18 | 1991-04-16 | Fletcher Robert M | Light-emitting diode with an electrically conductive window |
JPH0463478A (ja) * | 1990-07-03 | 1992-02-28 | Sanyo Electric Co Ltd | SiC発光装置 |
JP3149030B2 (ja) * | 1991-06-13 | 2001-03-26 | 富士通株式会社 | 半導体量子箱装置及びその製造方法 |
US5309001A (en) * | 1991-11-25 | 1994-05-03 | Sharp Kabushiki Kaisha | Light-emitting diode having a surface electrode of a tree-like form |
JPH05327012A (ja) * | 1992-05-15 | 1993-12-10 | Sanyo Electric Co Ltd | 炭化ケイ素発光ダイオード |
JPH06151955A (ja) * | 1992-10-29 | 1994-05-31 | Victor Co Of Japan Ltd | 半導体発光素子 |
JPH06318731A (ja) * | 1993-03-12 | 1994-11-15 | Sharp Corp | 半導体発光装置 |
US5376580A (en) * | 1993-03-19 | 1994-12-27 | Hewlett-Packard Company | Wafer bonding of light emitting diode layers |
US5385632A (en) * | 1993-06-25 | 1995-01-31 | At&T Laboratories | Method for manufacturing integrated semiconductor devices |
JP3158869B2 (ja) * | 1993-06-30 | 2001-04-23 | 日立電線株式会社 | 発光ダイオード及びその製造方法 |
TW253999B (enrdf_load_stackoverflow) * | 1993-06-30 | 1995-08-11 | Hitachi Cable | |
US5621225A (en) * | 1996-01-18 | 1997-04-15 | Motorola | Light emitting diode display package |
GB9603052D0 (en) * | 1996-02-14 | 1996-04-10 | Philips Electronics Nv | Image sensor |
US6229160B1 (en) * | 1997-06-03 | 2001-05-08 | Lumileds Lighting, U.S., Llc | Light extraction from a semiconductor light-emitting device via chip shaping |
EP2169733B1 (de) * | 1997-09-29 | 2017-07-19 | OSRAM Opto Semiconductors GmbH | Halbleiterlichtquelle |
US6091085A (en) * | 1998-02-19 | 2000-07-18 | Agilent Technologies, Inc. | GaN LEDs with improved output coupling efficiency |
EP0977063A1 (en) * | 1998-07-28 | 2000-02-02 | Interuniversitair Micro-Elektronica Centrum Vzw | A socket and a system for optoelectronic interconnection and a method of fabricating such socket and system |
DE19911717A1 (de) | 1999-03-16 | 2000-09-28 | Osram Opto Semiconductors Gmbh | Monolithisches elektrolumineszierendes Bauelement und Verfahren zu dessen Herstellung |
US6410942B1 (en) * | 1999-12-03 | 2002-06-25 | Cree Lighting Company | Enhanced light extraction through the use of micro-LED arrays |
US6486499B1 (en) * | 1999-12-22 | 2002-11-26 | Lumileds Lighting U.S., Llc | III-nitride light-emitting device with increased light generating capability |
US20020017652A1 (en) * | 2000-08-08 | 2002-02-14 | Stefan Illek | Semiconductor chip for optoelectronics |
WO2002031865A1 (en) * | 2000-10-13 | 2002-04-18 | Emcore Corporation | Method of making an electrode |
US6455878B1 (en) * | 2001-05-15 | 2002-09-24 | Lumileds Lighting U.S., Llc | Semiconductor LED flip-chip having low refractive index underfill |
-
2000
- 2000-12-27 US US09/750,004 patent/US20020017652A1/en not_active Abandoned
-
2001
- 2001-08-08 TW TW090119347A patent/TW516246B/zh not_active IP Right Cessation
- 2001-08-08 WO PCT/DE2001/003033 patent/WO2002013281A1/de active Application Filing
- 2001-08-08 EP EP01984505.6A patent/EP1307928B1/de not_active Expired - Lifetime
- 2001-08-08 JP JP2002518539A patent/JP4230219B2/ja not_active Expired - Lifetime
- 2001-08-08 CN CNB018170358A patent/CN100565942C/zh not_active Expired - Lifetime
- 2001-08-08 US US10/344,308 patent/US7109527B2/en not_active Expired - Lifetime
-
2003
- 2003-01-17 US US10/346,605 patent/US6995030B2/en not_active Expired - Lifetime
-
2006
- 2006-04-12 US US11/403,006 patent/US20060180820A1/en not_active Abandoned
-
2007
- 2007-03-12 JP JP2007061973A patent/JP5215575B2/ja not_active Expired - Lifetime
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050211993A1 (en) * | 2002-01-28 | 2005-09-29 | Masahiko Sano | Opposed terminal structure having a nitride semiconductor element |
US7049635B2 (en) | 2002-01-28 | 2006-05-23 | Nichia Corporation | Opposed terminal structure having a nitride semiconductor element |
US8030665B2 (en) | 2002-07-08 | 2011-10-04 | Nichia Corporation | Nitride semiconductor device comprising bonded substrate and fabrication method of the same |
US20080296609A1 (en) * | 2002-07-08 | 2008-12-04 | Nichia Corporation | Nitride Semiconductor Device Comprising Bonded Substrate and Fabrication Method of the Same |
US20060097271A1 (en) * | 2002-07-31 | 2006-05-11 | Osram Opto Semiconductors Gmbh | Gan-based radiation-emitting thin-layered semiconductor component |
US7943944B2 (en) | 2002-07-31 | 2011-05-17 | Osram Opto Semiconductors Gmbh | GaN-based radiation-emitting thin-layered semiconductor component |
US20080251808A1 (en) * | 2002-08-01 | 2008-10-16 | Takeshi Kususe | Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same |
US20060231852A1 (en) * | 2002-08-01 | 2006-10-19 | Nichia Corporation | Semiconductor light-emitting device, method for manufacturing same and light-emitting apparatus using same |
US8035118B2 (en) | 2002-08-01 | 2011-10-11 | Nichia Corporation | Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same |
US7511311B2 (en) | 2002-08-01 | 2009-03-31 | Nichia Corporation | Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same |
US8330179B2 (en) | 2002-08-01 | 2012-12-11 | Nichia Corporation | Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same |
US8742438B2 (en) | 2002-08-01 | 2014-06-03 | Nichia Corporation | Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same |
US20040259278A1 (en) * | 2002-11-29 | 2004-12-23 | Osram Opto Semiconductors Gmbh | Method for producing a light-emitting semiconductor component |
US6929966B2 (en) | 2002-11-29 | 2005-08-16 | Osram Opto Semiconductors Gmbh | Method for producing a light-emitting semiconductor component |
US8785127B2 (en) | 2003-02-26 | 2014-07-22 | Callida Genomics, Inc. | Random array DNA analysis by hybridization |
US20060163601A1 (en) * | 2003-02-28 | 2006-07-27 | Volker Harle | Lighting module and method the production thereof |
US7560741B2 (en) | 2003-02-28 | 2009-07-14 | Osram Opto Semiconductors Gmbh | Lighting module and method for the production thereof |
US20070284999A1 (en) * | 2003-07-04 | 2007-12-13 | Min-Hsun Hsieh | Light-emitting device |
US8063557B2 (en) | 2003-07-04 | 2011-11-22 | Epistar Corporation | Light-emitting device having wavelength-converting materials therewithin |
US8604497B2 (en) | 2003-09-26 | 2013-12-10 | Osram Opto Semiconductors Gmbh | Radiation-emitting thin-film semiconductor chip |
US20080035941A1 (en) * | 2003-09-26 | 2008-02-14 | Volker Harle | Radiation-Emitting Thin-Film Semiconductor Chip |
WO2005041313A1 (de) * | 2003-09-26 | 2005-05-06 | Osram Opto Semiconductors Gmbh | Strahlungsemittierender dünnschicht-halbleiterchip |
US20050189558A1 (en) * | 2004-03-01 | 2005-09-01 | Wen-Huang Liu | Flip-chip light-emitting device with micro-reflector |
US7294866B2 (en) | 2004-03-01 | 2007-11-13 | Epistar Corporation | Flip-chip light-emitting device with micro-reflector |
US7435999B2 (en) * | 2004-04-30 | 2008-10-14 | Osram Opto Semiconductors Gmbh | Semiconductor chip for optoelectronics and method for the production thereof |
US20050258444A1 (en) * | 2004-04-30 | 2005-11-24 | Osram Opto Semiconductors Gmbh | Semiconductor chip for optoelectronics and method for the production thereof |
US8728937B2 (en) | 2004-07-30 | 2014-05-20 | Osram Opto Semiconductors Gmbh | Method for producing semiconductor chips using thin film technology |
US20100112789A1 (en) * | 2004-07-30 | 2010-05-06 | Andreas Ploessl | Method for Producing Semiconductor Chips using Thin Film Technology |
US7649266B2 (en) | 2004-07-30 | 2010-01-19 | Osram Opto Semiconductors Gmbh | Method for producing semiconductor chips using thin film technology, and semiconductor chip using thin film technology |
US20060051937A1 (en) * | 2004-07-30 | 2006-03-09 | Osram Opto Semiconductors Gmbh | Method for producing semiconductor chips using thin film technology, and semiconductor chip using thin film technology |
US20080283855A1 (en) * | 2004-09-27 | 2008-11-20 | Klaus Streubel | Optoelectronic Thin-Film Chip |
US7989830B2 (en) | 2004-09-27 | 2011-08-02 | Osram Opto Semiconductors Gmbh | Optoelectronic thin-film chip |
WO2006034694A1 (de) * | 2004-09-27 | 2006-04-06 | Osram Opto Semiconductors Gmbh | Optoelektronischer dünnfilmchip |
DE102006002683B4 (de) | 2005-01-25 | 2019-10-17 | Epistar Corp. | Licht emittierendes Bauteil |
US7489068B2 (en) | 2005-01-25 | 2009-02-10 | Epistar Corporation | Light emitting device |
US20060195293A1 (en) * | 2005-02-28 | 2006-08-31 | Hitachi Displays, Ltd. | Lens array and display apparatus using same |
US20100220046A1 (en) * | 2005-12-16 | 2010-09-02 | Ploetz Ludwig | Illumination Device |
US8593390B2 (en) * | 2005-12-16 | 2013-11-26 | Osram Gesellschaft Mit Beschrankter Haftung | Illumination device |
US20080128734A1 (en) * | 2006-01-06 | 2008-06-05 | Epistar Corporation | Light-emitting device |
US20100084679A1 (en) * | 2006-01-06 | 2010-04-08 | Epistar Corporation | Light-emitting device |
US20090302429A1 (en) * | 2006-05-19 | 2009-12-10 | Osram Opto Semiconductors Gmbh | Electrically Conducting Connection with Insulating Connection Medium |
US8102060B2 (en) | 2006-05-19 | 2012-01-24 | Osram Opto Semiconductors Gmbh | Electrically conducting connection with insulating connection medium |
US8450751B2 (en) | 2007-04-26 | 2013-05-28 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor body and method for producing the same |
US20100171135A1 (en) * | 2007-04-26 | 2010-07-08 | Karl Engl | Optoelectronic Semiconductor Body and Method for Producing the Same |
US8653540B2 (en) | 2007-04-26 | 2014-02-18 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor body and method for producing the same |
US8994053B2 (en) | 2007-06-22 | 2015-03-31 | Lg Innotek Co., Ltd. | Semiconductor light emitting device and method of fabricating the same |
US8664682B2 (en) | 2007-06-22 | 2014-03-04 | Lg Innotek Co., Ltd. | Semiconductor light emitting device and method of fabricating the same |
US9564555B2 (en) * | 2007-08-20 | 2017-02-07 | Osram Opto Semiconductors Gmbh | Opto-electronic semiconductor module and method for the production thereof |
US20100230697A1 (en) * | 2007-08-20 | 2010-09-16 | Osram Opto Semiconductors Gmbh | Opto-electronic semiconductor module and method for the production thereof |
US20110042643A1 (en) * | 2007-09-26 | 2011-02-24 | OSRAM Opto Semicoductors GmbH | Optoelectronic Semiconductor Chip Having a Multiple Quantum Well Structure |
US8173991B2 (en) | 2007-09-26 | 2012-05-08 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor chip having a multiple quantum well structure |
US8513682B2 (en) | 2007-12-21 | 2013-08-20 | Osram Opto Semiconductors Gmbh | Optoelectronic component and production method for an optoelectronic component |
US20100301355A1 (en) * | 2007-12-21 | 2010-12-02 | Walter Wegleiter | Optoelectronic Component and Production Method for an Optoelectronic Component |
US20090166654A1 (en) * | 2007-12-31 | 2009-07-02 | Zhiyin Gan | Light-emitting diode with increased light efficiency |
US20110049555A1 (en) * | 2008-03-31 | 2011-03-03 | Karl Engl | Optoelectronic Semiconductor Chip and Method for Producing Same |
US8928052B2 (en) | 2008-03-31 | 2015-01-06 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor chip and method for producing same |
US8937321B2 (en) | 2008-04-25 | 2015-01-20 | Samsung Electronics Co., Ltd. | Luminous devices, packages and systems containing the same, and fabricating methods thereof |
US9287479B2 (en) | 2008-04-25 | 2016-03-15 | Samsung Electronics Co., Ltd. | Luminous devices, packages and systems containing the same, and fabricating methods thereof |
US8614450B2 (en) | 2008-04-25 | 2013-12-24 | Samsung Electronics Co., Ltd. | Luminous devices, packages and systems containing the same, and fabricating methods thereof |
US20110210357A1 (en) * | 2008-06-06 | 2011-09-01 | Osram Opto Semiconductors Gmbh | Optoelectronic Component and Method for the Production Thereof |
US11222992B2 (en) | 2008-06-06 | 2022-01-11 | Osram Oled Gmbh | Optoelectronic component and method for the production thereof |
US10128405B2 (en) | 2008-06-06 | 2018-11-13 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for the production thereof |
US8598776B2 (en) | 2008-09-29 | 2013-12-03 | Osram Opto Semiconductors Gmbh | Headlight comprising a plurality of luminescence diode emitters |
US20110186953A1 (en) * | 2008-10-06 | 2011-08-04 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic semiconductor component and optoelectronic semiconductor component |
US8367438B2 (en) | 2008-10-06 | 2013-02-05 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic semiconductor component and optoelectronic semiconductor component |
US9620680B2 (en) | 2008-10-09 | 2017-04-11 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor body |
US20100207141A1 (en) * | 2009-02-18 | 2010-08-19 | Hyun Kyong Cho | Light emitting device |
WO2010095784A1 (ko) * | 2009-02-18 | 2010-08-26 | 엘지이노텍주식회사 | 발광소자 |
US8319227B2 (en) | 2009-02-18 | 2012-11-27 | Lg Innotek Co., Ltd. | Light emitting device |
US9240523B2 (en) | 2009-04-03 | 2016-01-19 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic component, optoelectronic component, and component arrangement having a plurality of optoelectronic components |
US9196653B2 (en) | 2009-07-30 | 2015-11-24 | 3M Innovative Properties Company | Pixelated LED |
WO2011014490A3 (en) * | 2009-07-30 | 2011-04-28 | 3M Innovative Properties Company | Pixelated led |
US8283676B2 (en) * | 2010-01-21 | 2012-10-09 | Siphoton Inc. | Manufacturing process for solid state lighting device on a conductive substrate |
US20110177636A1 (en) * | 2010-01-21 | 2011-07-21 | Pan Shaoher X | Manufacturing process for solid state lighting device on a conductive substrate |
US9853188B2 (en) | 2010-04-12 | 2017-12-26 | Osram Opto Semiconductors Gmbh | Light-emitting diode chip with current spreading layer |
US8154042B2 (en) | 2010-04-29 | 2012-04-10 | Koninklijke Philips Electronics N V | Light emitting device with trenches and a top contact |
US8415656B2 (en) | 2010-04-29 | 2013-04-09 | Koninklijke Philips Electronics N.V. | Light emitting device with trenches and a top contact |
US8653552B2 (en) | 2012-02-24 | 2014-02-18 | Stanley Electric Co., Ltd. | Semiconductor light-emitting device |
US8981409B2 (en) | 2012-08-03 | 2015-03-17 | Stanley Electric Co., Ltd. | Semiconductor light emitting device |
US9541254B2 (en) | 2012-09-13 | 2017-01-10 | Lg Innotek Co., Ltd. | Light emitting device and lighting system having the same |
DE102014114194A1 (de) * | 2014-09-30 | 2016-03-31 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung |
US20170222088A1 (en) * | 2014-09-30 | 2017-08-03 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor chip and method of producing the same |
US10490698B2 (en) * | 2014-09-30 | 2019-11-26 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor chip and method of producing the same |
DE102014114194B4 (de) | 2014-09-30 | 2023-10-19 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung |
US10224457B2 (en) | 2014-11-06 | 2019-03-05 | Lumileds Llc | Light emitting device with trench beneath a top contact |
EP3216062B1 (en) * | 2014-11-06 | 2021-01-06 | Lumileds Holding B.V. | Light emitting device with trenches beneath a top contact |
US10978616B2 (en) | 2018-01-24 | 2021-04-13 | Sharp Kabushiki Kaisha | Micro light emitting element and image display device |
Also Published As
Publication number | Publication date |
---|---|
US6995030B2 (en) | 2006-02-07 |
TW516246B (en) | 2003-01-01 |
JP4230219B2 (ja) | 2009-02-25 |
JP2004506331A (ja) | 2004-02-26 |
JP5215575B2 (ja) | 2013-06-19 |
EP1307928B1 (de) | 2014-12-31 |
US20040084682A1 (en) | 2004-05-06 |
CN100565942C (zh) | 2009-12-02 |
JP2007189242A (ja) | 2007-07-26 |
US20060180820A1 (en) | 2006-08-17 |
EP1307928A1 (de) | 2003-05-07 |
US20030141496A1 (en) | 2003-07-31 |
CN1592974A (zh) | 2005-03-09 |
US7109527B2 (en) | 2006-09-19 |
WO2002013281A1 (de) | 2002-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6995030B2 (en) | Semiconductor chip for optoelectronics | |
KR100753710B1 (ko) | 발광 다이오드 구조체 및 그의 형성 방법 | |
US7547921B2 (en) | Semiconductor chip for optoelectronics | |
US8354682B2 (en) | Radiation emitting element | |
US6015719A (en) | Transparent substrate light emitting diodes with directed light output | |
CN1227750C (zh) | 具有一个半导体层式结构的光辐射二极管及其制造方法 | |
EP2445022B1 (en) | Light emitting devices with improved light extraction efficiency | |
US5793062A (en) | Transparent substrate light emitting diodes with directed light output | |
KR101314414B1 (ko) | 광 장치 | |
US20070018184A1 (en) | Light emitting diodes with high light extraction and high reflectivity | |
CN100420041C (zh) | 发射辐射的半导体器件 | |
US20030075723A1 (en) | Method of manufacturing surface textured high-efficiency radiating devices and devices obtained therefrom | |
JP2004524710A (ja) | オプトエレクトロニクス用半導体チップ | |
US7741134B2 (en) | Inverted LED structure with improved light extraction | |
KR101436188B1 (ko) | 광전 반도체칩 | |
EP0772248A2 (en) | Microactivity LED with photon recycling | |
CN101132047A (zh) | 用于光电子学的半导体芯片及其制造方法 | |
EP2315277A2 (en) | Devices for emitting radiation with a high efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OSRAM OPTO SEMICONDUCTORS GMBH & CO. OHG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ILLEK, STEFAN;STREUBEL, KLAUS;WEGLETTER, WALTER;AND OTHERS;REEL/FRAME:011674/0355 Effective date: 20010307 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: OSRAM GMBH,GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSRAM OPTO SEMICONDUCTORS GMBH;REEL/FRAME:016446/0508 Effective date: 20050317 Owner name: OSRAM GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSRAM OPTO SEMICONDUCTORS GMBH;REEL/FRAME:016446/0508 Effective date: 20050317 |