KR101506264B1 - 발광 소자, 발광 장치 및 상기 발광 소자의 제조 방법 - Google Patents

발광 소자, 발광 장치 및 상기 발광 소자의 제조 방법 Download PDF

Info

Publication number
KR101506264B1
KR101506264B1 KR1020080055995A KR20080055995A KR101506264B1 KR 101506264 B1 KR101506264 B1 KR 101506264B1 KR 1020080055995 A KR1020080055995 A KR 1020080055995A KR 20080055995 A KR20080055995 A KR 20080055995A KR 101506264 B1 KR101506264 B1 KR 101506264B1
Authority
KR
South Korea
Prior art keywords
light emitting
electrode
delete delete
conductive
emitting device
Prior art date
Application number
KR1020080055995A
Other languages
English (en)
Other versions
KR20090129868A (ko
Inventor
김유식
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020080055995A priority Critical patent/KR101506264B1/ko
Priority to US12/457,176 priority patent/US8269247B2/en
Priority to TW098119224A priority patent/TWI443861B/zh
Priority to DE102009025185.5A priority patent/DE102009025185B4/de
Priority to JP2009140997A priority patent/JP5597362B2/ja
Priority to CN201310135179.7A priority patent/CN103219451B/zh
Priority to CN200910149627.2A priority patent/CN101604724B/zh
Publication of KR20090129868A publication Critical patent/KR20090129868A/ko
Priority to US13/611,897 priority patent/US8975656B2/en
Application granted granted Critical
Publication of KR101506264B1 publication Critical patent/KR101506264B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01066Dysprosium [Dy]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Abstract

발광 소자, 발광 장치 및 상기 발광 소자의 제조 방법이 제공된다. 상기 발광 소자는 순차적으로 적층된 제1 도전형의 제1 도전 패턴, 발광 패턴, 제2 도전형의 제2 도전 패턴을 포함하는 발광 구조체, 제1 도전 패턴과 전기적으로 연결된 제1 전극, 및 제2 도전 패턴과 전기적으로 연결되고, 서로 이격되어 배치된 제2 및 제3 전극을 포함한다.
발광 소자, 발광 장치, 개별적 억세스, 로컬 디밍 동작

Description

발광 소자, 발광 장치 및 상기 발광 소자의 제조 방법{Light emitting element, light emitting device, and fabricating method of the light emitting element}
본 발명은 발광 소자, 발광 장치 및 상기 발광 소자의 제조 방법에 관한 것이다.
LED(Light Emitting Diode)와 같은 발광 소자는, 전자와 홀의 결합에 의해 광을 발산한다. 이러한 발광 소자는 소비 전력이 적고, 수명이 길고, 협소한 공간에서도 설치 가능하며, 진동에 강한 특성을 지닌다.
다수의 발광 소자의 어레이는 예를 들어, 액정 표시 장치(LCD)의 백라이트 유닛(Back Light Unit)으로 사용될 수 있다. 액정 표시 장치는 자체 광원이 없기 때문에, 백라이트 유닛이 광원으로 사용되고, 백라이트 유닛은 주로 액정 패널의 후방에서 조명하게 된다.
그런데, 백라이트 유닛으로 사용되는 발광 소자 어레이는, 로컬 디밍 동작(local dimming operation)을 수행할 수 있다. 즉, 액정 패널에 표시되는 영상의 어두운 영역에 대응되는 발광 소자 어레이의 일부 영역은 턴오프시키고 영상의 밝 은 영역에 대응되는 발광 소자 어레이의 일부 영역은 턴온시킴으로써, 영상의 컨트라스트(contrast)를 높일 수 있다.
그런데, 로컬 디밍 동작을 수행하려면, 어레이를 이루는 발광 소자 각각을 개별적으로 억세스(individual access)할 수 있는 것이 좋다. 억세스할 수 있는 단위가 작을수록 세부적인 제어가 가능하기 때문이다. 예를 들어, 턴온/턴오프 제어를 가능한 단위가 10개의 발광 소자인 것보다, 단위가 1개의 발광 소자인 것이 컨트라스트를 더 높일 수 있다.
본 발명이 해결하고자 하는 과제는, 개별적 억세스가 용이한 발광 소자를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 개별적 억세스가 용이한 발광 장치를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 상기 발광 소자의 제조 방법을 제공하는 것이다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위한 본 발명의 발광 소자의 일 태양은 순차적으로 적층된 제1 도전형의 제1 도전 패턴, 발광 패턴, 제2 도전형의 제2 도전 패턴을 포함하는 발광 구조체, 제1 도전 패턴과 전기적으로 연결된 제1 전극, 및 제2 도전 패 턴과 전기적으로 연결되고, 서로 이격되어 배치된 제2 및 제3 전극을 포함한다.
상기 과제를 달성하기 위한 본 발명의 발광 소자의 다른 태양은 도전 기판, 도전 기판 상에 형성되고, 도전 기판과 전기적으로 연결되는 보울(bowl) 형태의 제1 전극, 제1 전극 내에 순차적으로 적층된 제1 도전형의 제1 도전 패턴, 발광 패턴, 제2 도전형의 제2 도전 패턴을 포함하는 발광 구조체로서, 제1 도전 패턴은 제1 전극과 전기적으로 연결된 발광 구조체, 및 제2 도전 패턴과 전기적으로 연결되고, 서로 이격되어 배치된 제2 및 제3 전극을 포함한다.
상기 과제를 달성하기 위한 본 발명의 발광 장치의 일 태양은 베이스 기판과, 베이스 기판 상에 형성되고 다수의 제1 배선과, 베이스 기판 상에 다수의 제1 배선 사이에 배치된 다수의 제2 배선을 포함하는 회로 기판, 및 회로 기판 상에 배치된 다수의 발광 소자로, 각 발광 소자는 제 1항 내지 제 10항 중 어느 하나의 발광 소자이고, 제1 전극은 제1 배선과 전기적으로 연결되고, 제2 전극은 제1 배선의 일측에 배치된 제2 배선과 전기적으로 연결되고, 제3 전극은 제1 배선의 타측에 배치된 제2 배선과 전기적으로 연결되는 다수의 발광 소자를 포함한다.
상기 과제를 달성하기 위한 본 발명의 발광 장치의 다른 태양은 제1 방향으로 연장되고 제1 배선 레벨에 배치된 다수의 제1 배선과, 제1 방향과 다른 제2 방향으로 연장되고 제1 배선 레벨과 다른 제2 배선 레벨에 배치된 다수의 제2 배선을 포함하는 회로 기판, 및 다수의 발광 소자로서, 각 발광 소자는 다수의 제1 배선 중 대응하는 제1 배선 및 다수의 제2 배선 중 대응하는 제2 배선과 전기적으로 연결되는 다수의 발광 소자를 포함한다.
상기 과제를 달성하기 위한 본 발명의 발광 소자의 제조 방법의 일 태양은 다수의 제1 기판 각각에, 순차적으로 적층된 제1 도전형의 제1 도전 패턴, 발광 패턴, 제2 도전형의 제2 도전 패턴을 포함하는 발광 구조체를 형성하고, 발광 구조체의 상면과 측면에 형성되되, 제2 도전 패턴과 전기적으로 연결되고, 반사 특성을 갖는 제1 전극을 형성하고, 제2 기판 상에 다수의 제1 기판을 본딩하되, 제2 기판은 제1 기판보다 크고, 다수의 제1 기판 각각에 형성된 제1 전극과 제2 기판이 전기적으로 연결되도록 하고, 다수의 제1 기판을 제거하고, 제1 기판을 제거함으로써 노출된 제1 도전 패턴 상에, 제1 도전 패턴과 전기적으로 연결되고 서로 이격되어 배치된 제2 및 제3 전극을 형성하는 것을 포함한다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 따라서, 몇몇 실시예에서, 잘 알려진 공정 단계들, 잘 알려진 구조 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적으로 설명되지 않는다.
하나의 소자(elements)가 다른 소자와 "접속된(connected to)" 또는 "커플링된(coupled to)" 이라고 지칭되는 것은, 다른 소자와 직접 연결 또는 커플링된 경우 또는 중간에 다른 소자를 개재한 경우를 모두 포함한다. 반면, 하나의 소자가 다른 소자와 "직접 접속된(directly connected to)" 또는 "직접 커플링된(directly coupled to)"으로 지칭되는 것은 중간에 다른 소자를 개재하지 않은 것을 나타낸다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
비록 제1, 제2 등이 다양한 소자, 구성요소 또는 섹션들을 서술하기 위해서 이용되나, 이들 소자, 구성요소 또는 섹션들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 소자, 구성요소 또는 섹션들을 다른 소자, 구성요소 또는 섹션들과 구별하기 위하여 이용하는 것이다. 따라서, 이하에서 언급되는 제1 소자, 제1 구성요소 또는 제1 섹션은 본 발명의 기술적 사상 내에서 제2 소자, 제2 구성요소 또는 제2 섹션일 수도 있음은 물론이다.
본 명세서에서 이용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 이용되는 "포함한다(comprises)" 또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 또는 소자의 존재 또는 추가를 배제하지 않는다. 그리고, "A 또는 B"는 A, B, A 및 B를 의미한다. 또, 이하 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 이용되는 모든 용어(기술 및 과학적 용 어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 이용될 수 있을 것이다. 또 일반적으로 이용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
도 1 내지 도 6은 본 발명의 제1 실시예에 따른 발광 장치를 설명하기 위한 도면들이다. 구체적으로, 도 1은 본 발명의 제1 실시예에 따른 발광 장치의 평면도이다. 도 2는 도 1의 발광 장치 중 회로 기판만을 도시한 도면이다. 도 3은 도 1의 A - A'를 따라서 절단한 단면도이다. 도 4는 본 발명의 제1 실시예에 따른 발광 장치의 사시도이다. 도 5는 본 발명의 제1 실시예에 따른 발광 장치의 회로도이다. 도 6은 본 발명의 제1 실시예에 따른 발광 장치의 동작을 설명하기 위한 도면이다.
우선 도 1 내지 도 2를 참조하면, 본 발명의 제1 실시예에 따른 발광 장치(11)는 회로 기판(300)과, 회로 기판(300) 상에 배치된 다수의 발광 소자(1)를 포함한다.
구체적으로, 회로 기판(300)은 베이스 기판(309), 베이스 기판(309) 상에 형성된 다수의 제1 배선(310_1~310_n) 및 다수의 제2 배선(320_1~320_n+1)을 포함한다.
베이스 기판(309)은 회로 기판(300)의 바디가 되는 부분으로, 여러가지 형태 및 물질로 구현될 수 있다. 베이스 기판(309)은 다각형(예를 들어, 사각형, 육각형, 팔각형 등) 형태일 수도 있고, 타원형 형태, 원형 형태 등일 수도 있다. 또한, 베이스 기판(309)은 PCB(Printed Circuit Board), MCPCB(Metal Core Printed Circuit Board), 폴리이미드, 에폭시, 실리콘, 스트레인 실리콘(strained Si), 실리콘 합금, 실리콘 카바이드(SiC), 실리콘 게르마늄(SiGe), 실리콘 게르마늄 카바이드(SiGeC), 게르마늄, 게르마늄 합금, 갈륨 아세나이드(GaAs), 인듐 아세나이드(InAs), 알루미늄 나이트라이드(AlN), 세라믹 중 하나, 이들의 조합물, 이들의 적층물로 이루어질 수 있으나, 이에 한정되는 것은 아니다.
베이스 기판(309) 상에는 다수의 제1 배선(310_1~310_n)이 형성되고, 다수의 제2 배선(320_1~320_n+1)은 다수의 제1 배선(310_1~310_n) 사이에 배치될 수 있다. 도면에서는 인접한 제1 배선(310_1~310_n) 사이에 1개의 제2 배선(320_1~320_n+1)이 배치되는 것으로 도시하였으나, 이에 한정되는 것은 아니다. 예를 들어, 인접한 제1 배선(310_1~310_n) 사이에 2개의 제2 배선(320_1~320_n+1)이 배치될 수도 있다.
다수의 제1 배선(310_1~310_n) 각각은 제1 방향(DR1)으로 연장될 수 있다. 즉, 제1 배선(310_1~310_n)의 길이 방향은 제1 방향(DR1)이 되고, 제1 배선(310_1~310_n)의 폭 방향은 제2 방향(DR2)이 될 수 있다. 다수의 제1 배선(310_1~310_n) 각각은 패턴을 포함할 수 있다.
다수의 제2 배선(320_1~320_n+1) 각각은 제1 배선(310_1~310_n)과 전기적으로 분리되어 있다. 또한, 제1 방향(DR1)과 다른 제2 방향(DR2)으로 연장될 수 있으나, 이에 한정되는 것은 아니다. 즉, 제2 배선(320_1~320_n+1)의 길이 방향은 제2 방향(DR2)이 되고, 제2 배선(320_1~320_n+1)의 폭 방향은 제1 방향(DR1)이 될 수 있다. 제2 배선(320_1~320_n+1)이 제2 방향(DR2)으로 연장된 것은, 후술하겠으나, 발광 소자(1)와의 전기적 연결(예를 들어, 와이어 본딩)을 용이하게 하기 위함이다. 다수의 제2 배선(320_1~320_n+1) 각각은 패턴을 포함할 수 있다.
한편, 도면에서는 제1 방향(DR1)이 행(row) 방향이고, 제2 방향(DR2)이 열(column) 방향으로 도시하였으나 이에 한정되는 것은 아니다. 도면에서는 제1 방향(DR1)과 제2 방향(DR2)이 직각인 것으로 도시되어 있으나 이에 한정되는 것은 아니다. 예를 들어, 제1 방향(DR1)과 제2 방향(DR2)은 예각을 이루거나, 둔각을 이룰 수도 있다.
한편, 도면에서는 다수의 제1 배선(310_1~310_n)은 제2 방향(DR2)으로 n(단, n은 자연수)개가 배치되어 있고, 다수의 제2 배선(320_1~320_n+1)은 제1 방향(DR1)으로 m(단, m은 자연수)개가 배치되어 있는 것으로 도시하였으나 이에 한정되는 것은 아니다.
제1 배선(310_1~310_n)과 제2 배선(320_1~320_n+1)은 도전성 물질이면 무엇이든 가능하고, 도전 특성이 높으면 좋다. 제1 배선(310_1~310_n)과 제2 배선(320_1~320_n+1)은 예를 들어, 구리(Cu), 알루미늄(Al), 은(Ag), 금(Au), 텅스텐(W), 백금(Pt), 주석(Ti), 징크(Zn), 니켈(Ni) 중 어느 하나, 이들의 조합물, 이들의 적층물로 이루어질 수 있으나, 이에 한정되는 것은 아니다.
여기서, 도 2 내지 도 4를 참조하여, 발광 소자(1)의 구조를 자세히 설명한다. 도 3 및 도 4에서는 예시적으로 발광 소자(1)를 버티컬 타입(vertical type)으로 도시하였으나, 이에 한정되는 것은 아니다.
발광 소자(1)는 도전 기판(200)과, 상기 도전 기판(200)과 전기적으로 연결된 보울(bowl) 형태의 제1 전극(140)을 포함한다. 또한, 제1 전극(140) 내에는 발 광 구조체(110)가 형성되어 있다. 제1 도전 패턴(112) 상에는 서로 이격되어 배치된 제2 전극(151), 제3 전극(152)이 형성되어 있다.
제1 전극(140)은 상측의 폭이 하측의 폭보다 넓어서 측벽이 경사를 가질 수 있다. 또한, 제1 전극(140)은 밑면으로부터 튀어나온 제1 및 제2 돌기(141, 142)를 포함할 수 있다. 또한, 제1 전극(140)은 반사율이 높은 물질을 사용할 수 있다. 제1 전극(140)은 예를 들어, 은(Ag), 알루미늄(Al) 중 적어도 하나를 사용할 수 있다. 후술하겠으나, 발광 구조체(110)에서 발생된 광이 제1 전극(140)(특히, 돌기(141, 142))에 반사되어 발광 소자(1)의 전면으로 빠져나가게 된다.
제1 전극(140)이 발광 구조체(110)의 측면에 형성되어 있어도(즉, 제1 전극(140)이 발광 구조체(110)를 둘러싸고 있어도), 제1 전극(140)과 발광 구조체(110)의 사이에는 절연층(120)이 형성되어 있기 때문에, 제1 전극(140)이 제1 도전 패턴(112)과 제2 도전 패턴(116)을 전기적으로 연결시키지 않는다(즉, short시키지 않는다). 즉, 절연층(120)은 누설 전류를 방지할 수 있다.
한편, 발광 구조체(110)는 순차적으로 적층된 제2 도전형의 제2 도전 패턴(116), 발광 패턴(114), 제1 도전형의 제1 도전 패턴(112)을 포함한다.
제2 도전 패턴(116), 발광 패턴(114), 제1 도전 패턴(112)는 InxAlyGa(1-x-y)N(0≤x≤1, 0≤y≤1) (즉, GaN을 포함하는 다양한 물질)을 포함할 수 있다. 즉, 제2 도전 패턴(116), 발광 패턴(114), 제1 도전 패턴(112)은 예를 들어, AlGaN일 수도 있고, InGaN일 수도 있다.
각 층에 대해서 구체적으로 설명하면, 제1 도전 패턴(112)은 제1 도전형(예 를 들어, n형)이고, 제2 도전 패턴(116)은 제2 도전형(예를 들어, p형)일 수 있으나, 설계 방식에 따라서 제1 도전 패턴(112)이 제2 도전형(p형)이고, 제2 도전 패턴(116)이 제1 도전형(n형)일 수 있다.
발광 패턴(114)은 제1 도전 패턴(112)의 캐리어(예를 들어, 전자)와 제2 도전 패턴(116)의 캐리어(예를 들어, 홀)가 결합하면서 광을 발생하는 영역이다. 발광 패턴(114)은 도면으로 정확하게 도시하지는 않았으나, 우물층과 장벽층으로 이루어질 수 있는데, 우물층은 장벽층보다 밴드갭이 작기 때문에, 우물층에 캐리어(전자, 홀)가 모여 결합하게 된다. 이러한 발광 패턴(114)은 우물층의 개수에 따라 단일 양자 우물(Single Quantum Well; SQW) 구조, 다중 양자 우물(Multiple Quantum Well; MQW) 구조로 구분할 수 있다. 단일 양자 우물 구조는 하나의 우물층을 포함하고, 다중 양자 우물 구조는 다층의 우물층을 포함한다. 발광 특성을 조절하기 위해서, 우물층, 장벽층 중 적어도 어느 한 곳에, B, P, Si, Mg, Zn, Se 중 적어도 하나를 도핑할 수 있다.
발광 구조체(110)의 바닥면에는 제1 및 제2 돌기(141, 142)에 의해 제1 및 제2 홈(118, 119)이 형성되어 있다.
한편, 오믹층(130)은 제2 도전 패턴(116)과 제1 전극(140) 사이에 형성된다. 예를 들어, 오믹층(130)은 ITO(Indium Tin Oxide), 징크(Zn), 징크 옥사이드(ZnO), 은(Ag), 주석(Ti), 알루미늄(Al), 금(Au), 니켈(Ni), 인듐 옥사이드(In2O3), 틴 옥사이드(SnO2), 구리(Cu), 텅스텐(W), 백금(Pt) 중 적어도 하나를 포함할 수 있다.
한편, 제2 및 제3 전극(151, 152)은 제1 도전 패턴(112)과 전기적으로 연결된다. 제2 및 제3 전극(151, 152)은 서로 분리되어 있고, 제1 전극(140)과도 분리되어 있다. 발광 구조체(110)는 제1 및 제2 돌기(141, 142)에 의해 제1 내지 제3 영역으로 구분될 수 있다. 예를 들어, 제1 돌기(141)과 제2 돌기(142) 사이의 영역이 제1 영역이고, 제1 돌기(141)를 기준으로 제1 영역의 반대편이 제2 영역이 되고, 제2 돌기(142)를 기준으로 제1 영역의 반대편이 제3 영역이 될 수 있다(도 3을 보면, 발광 구조체(110)의 가운데 부분이 제1 영역이 되고, 발광 구조체(110)의 오른쪽 부분이 제2 영역이 되고, 발광 구조체(110)의 왼쪽 부분이 제3 영역이 될 수 있다.). 이와 같은 구조에서, 제2 전극(151)은 제2 영역 상에 형성되고, 제3 전극(152)은 제3 영역 상에 형성될 수 있다.
또한, 제2 및 제3 전극(151, 152)은 인듐 틴 옥사이드(ITO), 구리(Cu), 니켈(Ni), 크롬(Cr), 금(Au), 티타늄(Ti), 백금(Pt), 알루미늄(Al), 바나듐(V), 텅스텐(W), 몰리브덴(Mo), 은(Ag) 중 적어도 하나를 포함할 수 있다.
또한, 도면에는 도시하지 않았으나, 제2 및 제3 전극(151, 152)와 발광 구조체(110) 사이에 오믹층이 형성되어 있을 수도 있다. 이 경우, 제2 및 제3 전극(151, 152)에서 제1 도전 패턴(112)으로 흐르는 전류 크라우딩(crowding)을 개선하고 전류 스프레딩(spreading)을 향상시킬 수 있다.
도전 기판(200)은 실리콘, 스트레인 실리콘(strained Si), 실리콘 합금, SOI(Silicon-On-Insulator), 실리콘 카바이드(SiC), 실리콘 게르마늄(SiGe), 실리콘 게르마늄 카바이드(SiGeC), 게르마늄, 게르마늄 합금, 갈륨 아세나이드(GaAs), 인듐 아세나이드(InAs) 및 III-V 반도체, II-VI 반도체 중 하나, 이들의 조합물, 이들의 적층물일 수 있다.
도전 기판(200)과 제1 전극(140) 사이에는 중간 물질층(210)이 형성되어 있다. 중간 물질층(210)은 도전 기판(200)과 제1 전극(140)을 본딩하기 위해 사용하는 물질이다. 이러한 중간 물질층(210)은 도전성 물질 예를 들어, 금속층일 수 있다. 중간 물질층(210)이 금속층일 경우, 금속층은 예를 들어, Au, Ag, Pt, Ni, Cu, Sn, Al, Pb, Cr, Ti, W 중 적어도 하나를 포함할 수 있다. 즉, 금속층은 Au, Ag, Pt, Ni, Cu, Sn, Al, Pb, Cr, Ti, W 단일층일 수도 있고, 이들의 적층물일 수도 있고, 이들의 조합물일 수도 있다. 예를 들면, 금속층은 Au 단일층일수도 있고, Au-Sn 이중층일 수도 있고, Au와 Sn를 교대로 여러 번 적층한 멀티층일 수도 있다. 이러한 중간 물질층(210)은 제1 전극(140)에 비해 반사율은 낮은 물질일 수 있다.
도 3에서는 중간 물질층(210)이 도전 기판(200)의 프로파일을 따라 형성되어 있는 것으로 도시되어 있으나, 이에 한정되는 것은 아니다. 예를 들어, 제1 전극(140)의 프로파일에 따라 컨포말하게 형성되어 있을 수도 있다.
도시되어 있지 않으나, 제1 도전 패턴(112)의 표면에는 텍스쳐(texture) 형상이 형성되어 있을 수 있다. 제1 도전 패턴(112)과 공기 사이의 굴절율 차이로 인해서, escape cone angle을 제외한 각도의 광은 제1 도전 패턴(112) 내에서 갇히게 된다. 따라서, 텍스쳐 형상을 만들게 되면, 많은 광들이 제1 도전 패턴(112) 밖으로 빠져나올 수 있기 때문에, 광추출 효율을 높일 수 있다.
여기서, 도 3을 참조하여 발광 소자(1)의 발광 동작을 설명한다.
예를 들어, 제2 도전 패턴(116)이 p형이고 제1 도전 패턴(112)이 n형일 경우, 제1 바이어스(V+ 또는 I+)는 제1 배선(310_1), 도전 기판(200), 제1 전극(140), 오믹층(130)을 통해서 제2 도전 패턴(116)에 인가되고, 제2 바이어스(V- 또는 I- 또는 접지)는 제2 배선(320_1, 320_2), 제2 및 제3 전극(151, 152)을 통해서 제1 도전 패턴(112)에 인가되게 된다. 제1 바이어스(V+ 또는 I+)가 제2 도전 패턴(116)에 인가되고 제2 바이어스(V- 또는 I- 또는 접지)가 제1 도전 패턴(112)에 인가되어, 발광 구조체(110)에는 순방향 바이어스가 걸리게 된다. 순방향 바이어스에 의해 발광 패턴(114)으로부터 광(L)이 나오게 된다.
반대로, 제 2 도전 패턴(116)이 n형이고 제1 도전 패턴(112)이 p형일 경우, 제2 바이어스(V- 또는 I- 또는 접지)는 제1 배선(310_1), 도전 기판(200), 제1 전극(140), 오믹층(130)을 통해서 제2 도전 패턴(116)에 인가되고, 제1 바이어스(V+ 또는 I+)는 제2 배선(320_1, 320_2), 제2 및 제3 전극(151, 152)을 통해서 제1 도전 패턴(112)에 인가되게 된다.
한편, 도 3에 도시되어 있듯이, 제2 및 제3 전극(151, 152)은 발광 구조체(110)에서 나오는 광(L)을 방해하지 않는 위치에 배치된다. 발광 구조체(110)는 제1 및 제2 돌기(141, 142)에 의해 제1 내지 제3 영역으로 구분될 때, 제2 전극(151)은 제2 영역 상에 형성되고, 제3 전극(152)은 제3 영역 상에 형성되기 때문이다. 또한, 발광 구조체(110)에서 나오는 광(L)이 제1 및 제2 돌기(141, 142)에 반사되어 제1 도전 패턴(112) 쪽으로 쉽게 빠져나갈 수 있다. 이 때, 제1 영역은 광(L)이 나오는 발광 영역일 수 있고, 제1 영역을 사이에 두는 제2 영역 및 제3 영역은 광(L)이 나오지 않는 비발광 영역일 수 있다. 제2 영역 및 제3 영역의 발광 구조체(110)의 제2 도전 패턴(116)과 제1 전극(140) 사이에 절연층(120)이 개재되어 있기 때문에, 제2 영역 및 제3 영역은 비발광 영역일 수 있다.
여기서, 도 3 및 도 4를 참조하여, 본 발명의 제1 실시예에 따른 발광 장 치(11)에서, 발광 소자(1)와 회로 기판(300) 사이의 연결 방식을 설명한다.
발광 소자(1)는 제2 도전 패턴(116)과 전기적으로 연결된 제1 전극(140)과, 제1 도전 패턴(112)과 전기적으로 연결된 제2 및 제3 전극(151, 152)을 포함한다.
제1 전극(140)은 중간 물질층(210), 도전 기판(200)을 통해서 제1 배선(310_1)과 전기적으로 연결된다. 도전 기판(200)은 예를 들어, 도전성 레진(미도시)을 통해서 제1 배선(310_1)과 연결될 수 있다.
또한, 제2 전극(151)은 제1 배선(310_1)의 일측에 배치된 제2 배선(320_1)과 와이어(330_1)를 통해서 전기적으로 연결되고, 제3 전극(152)은 제1 배선(310_1)의 타측에 배치된 제2 배선(320_2)과 와이어(330_2)를 통해서 전기적으로 연결된다.
이와 같은 연결 방식을 통해서, 다수의 발광 소자(1)와 회로 기판(300)이 전기적으로 연결되면, 제1 배선(310_1)과 전기적으로 연결된 다수의 발광 소자(1)는 서로 병렬 연결되고, 제2 배선(320_1, 320_2)과 전기적으로 연결된 다수의 발광 소자(1)도 서로 병렬 연결된다. 병렬적 연결 관계는 도 5에 도시되어 있다. 설명의 편의를 위해서, 도 5의 회로도 상에서, 와이어(330_1, 330_2)를 통해서 서로 연결된 다수의 제2 배선(320_1, 320_2)을 x1~xm으로 표시하고, 다수의 제1 배선(310_1)을 y1~ym으로 표시하였다.
도 5와 같이, 다수의 발광 소자(1)가 병렬적 연결 관계를 가질 경우, 다수의 발광 소자(1) 각각을 개별적으로 억세스(individual access)가 가능하다. 따라서, 본 발명의 제1 실시예에 따른 발광 장치(11)가 백라이트 유닛으로 사용될 경우, 발광 장치(11)는 로컬 디밍 동작(local dimming operation)을 할 수 있다. 즉, 액정 패널에 표시되는 영상의 어두운 영역에 대응되는 발광 장치(11)의 일부 영역은 턴오프시키고 영상의 밝은 영역에 대응되는 발광 장치(11)의 일부 영역은 턴온시킴으로써, 영상의 컨트라스트(contrast)를 높일 수 있다.
도 6에 로컬 디밍 동작이 예시적으로 도시되어 있다. x1~xm 중에서 x1~x2가 선택되고, y1~yn 중에서 y1~y3이 선택될 경우, 영역 B에 해당하는 다수의 발광 소자(1)만이 선택된다. 선택된 발광 소자(1)만 광을 발산하고, 선택되지 않은 발광 소자(1)는 광을 발산하지 않는다.
도 7은 본 발명의 제2 실시예에 따른 발광 장치를 설명하기 위한 단면도이다.
도 7을 참조하면, 본 발명의 제2 실시예에 따른 발광 장치(12)에서 사용되는 발광 소자(2)의 제1 전극(140)은 제1 및 제2 돌기(도 3의 141, 142 참조)를 포함하지 않는다. 따라서, 발광 구조체(110)에는 제1 및 제2 홈(도 3의 118, 119 참조)이 형성되지 않는다.
제1 및 제2 돌기가 없기 때문에, 발광 구조체(110)에서 발산된 광은 제1 전극(140)의 측벽에 반사되어 밖으로 발산되게 된다.
도 8은 본 발명의 제3 실시예에 따른 발광 장치를 설명하기 위한 단면도이다.
도 8을 참조하면, 본 발명의 제3 실시예에 따른 발광 장치(13)에서 사용되는 발광 소자(3)의 제1 전극(140)은 발광 구조체(110)를 둘러싸도록 형성되지 않는다. 구체적으로 설명하면, 본 발명의 제1 실시예에 따른 발광 장치(11)에서 사용되는 발광 소자(1)의 제1 전극(140)은 발광 구조체(110)의 타면(즉, 바닥면)뿐만 아니라 측면에도 형성되어 있었는데, 본 발명의 제3 실시예에 따른 발광 장치(13)에서 사용되는 발광 소자(3)의 제1 전극(140)은 발광 구조체(110)의 타면에만 형성되어 있다.
도 9는 본 발명의 제4 실시예에 따른 발광 장치의 평면도이다. 도 10은 도 9의 발광 장치에서 사용되는 발광 소자의 단면도이다.
도 9 및 도 10을 참조하면, 본 발명의 제4 실시예에 따른 발광 장치(14)에서 사용되는 발광 소자(4)는 플립칩 타입(flipchip type)일 수 있다.
발광 소자(4)는 기판(220) 상에 형성된 발광 구조체(110)를 포함하고, 발광 구조체(110)는 순차적으로 적층된 제1 도전형의 제1 도전 패턴(112), 발광 패턴(114), 제2 도전형의 제2 도전 패턴(116)를 포함한다. 발광 소자(4)가 플립칩 타입이기 때문에, 제1 내지 제3 전극(140, 151, 152)이 모두 발광 구조체(110)의 동일면에 형성되어 있다. 즉, 제2 도전 패턴(116) 상에 제1 전극(140)이 형성되고, 노출되어 있는 제1 도전 패턴(112) 상에 제2 및 제3 전극(151, 152)이 형성되어 있다. 도시되어 있는 것처럼, 제2 및 제3 전극(151, 152)은 제1 전극(140)을 기준으로 양측에 배치될 수 있다.
기판(220)은 발광 구조체(110)를 성장시킬 수 있는 재질이면 어떤 것이든 가능하다. 예를 들어, 기판(220)은 사파이어(Al2O3), 징크 옥사이드(ZnO) 등의 절연성 기판일 수도 있고, 실리콘(Si), 실리콘 카바이드(SiC), 등의 도전성 기판일 수 있 다.
발광 소자(4)와 회로 기판(300) 사이의 연결 방식을 설명하면, 제1 전극(140)은 예를 들어, 도전성 레진(335)을 통해서 제1 배선(310_1)과 연결되고, 제2 전극(151)은 도전성 레진(335)을 통해서 제1 배선(310_1)의 일측에 배치된 제2 배선(320_1)과 연결되고, 제3 전극(152)은 도전성 레진(335)을 통해서 제1 배선(310_1)의 타측에 배치된 제2 배선(320_2)과 연결될 수 있다. 즉, 발광 소자(4)가 플립칩 타입인 경우, 각 전극(140, 151, 152)과 각 배선(310_1, 320_1, 320_2)을 와이어로 연결하지 않을 수 있다.
도 11a 및 도 11b은 본 발명의 제5 실시예에 따른 발광 장치의 평면도이다. 도 12은 도 11a 및 도 11b의 발광 장치에서 사용되는 발광 소자의 단면도이다.
도 11a 내지 도 12를 참조하면, 본 발명의 제5 실시예에 따른 발광 장치(15)에서 사용되는 발광 소자(5)는 래터럴 타입(lateral type)일 수 있다.
발광 소자(5)는 기판(220) 상에 형성된 발광 구조체(110)를 포함하고, 발광 구조체(110)는 순차적으로 적층된 제1 도전형의 제1 도전 패턴(112), 발광 패턴(114), 제2 도전형의 제2 도전 패턴(116)를 포함한다. 발광 소자(5)가 래터럴 타입이기 때문에, 제1 내지 제3 전극(140, 151, 152)이 모두 발광 구조체(110)의 동일면에 형성되어 있다.
발광 소자(5)와 회로 기판(300) 사이의 연결 방식을 설명하면, 제1 전극(140)은 예를 들어, 와이어를 통해서 제1 배선(310_1)과 연결되고, 제2 전극(151)은 와이어를 통해서 제1 배선(310_1)의 일측에 배치된 제2 배선(320_1)과 연결되고, 제3 전극(152)은 와이어를 통해서 제1 배선(310_1)의 타측에 배치된 제2 배선(320_2)과 연결될 수 있다.
한편, 도 11a에 도시된 것처럼, 발광 소자(5)는 제2 배선(320_1, 320_2)의 연장선과 제1 배선(310_1)의 교차점에 배치될 수 있다.
또는, 도 11b에 도시된 것처럼, 발광 소자(5)는 제2 배선(320_1, 320_2)의 연장선과 제1 배선(310_1)의 교차점에 배치되지 않을 수도 있다. 이러한 경우, 제1 내지 제3 전극(140, 151, 152)은 (평면도 상에서 볼 때) 발광 구조체(110)의 가운데 배치되지 않고 치우쳐 있을 수도 있다.
도 13 내지 도 15는 본 발명의 제6 실시예에 따른 발광 장치를 설명하기 위한 도면들이다. 구체적으로, 도 13은 본 발명의 제6 실시예에 따른 발광 장치의 평면도이다. 도 14는 도 13의 발광 장치 중 회로 기판만을 도시한 도면이다. 도 15는 도 13의 A - A'를 따라서 절단한 단면도이다.
도 13 내지 도 15를 참조하면, 본 발명의 제6 실시예에 따른 발광 장치(16)에서 사용되는 회로 기판(300)은 다수의 제1 배선(310_1~310_n)과, 다수의 제2 배선(320_1~320_n+1)과, 다수의 제3 배선(350_1~350_m)을 포함한다.
다수의 제1 배선(310_1~310_n)과 다수의 제2 배선(320_1~320_n+1)은 제1 배선 레벨에 배치되고, 다수의 제3 배선(350_1~350_m)은 제2 배선 레벨에 배치될 수 있다. 제1 배선 레벨과 제2 배선 레벨은 서로 다른 배선 레벨일 수 있다. 예를 들어, 도 15에 도시된 것과 같이, 제1 배선 레벨은 베이스 기판(309)의 일면(예를 들어, 상면)이고, 제2 배선 레벨은 베이스 기판(309) 내 또는 베이스 기판(309)의 타 면(예를 들어, 바닥면)일 수 있다.
또한, 다수의 제1 배선(310_1~310_n)은 제1 방향(DR1)으로 연장되고, 다수의 제3 배선(350_1~350_m)은 제2 방향(DR2)으로 연장될 수 있다. 다수의 제1 배선(310_1~310_n)과 다수의 제3 배선(350_1~350_m)은 서로 교차되도록 배치될 수 있다. 또한, 다수의 제2 배선(320_1~320_n+1)은 제2 방향(DR2)으로 연장될 수 있다. 도면에서는 제1 방향(DR1)이 행(row) 방향이고, 제2 방향(DR2)이 열(column) 방향으로 도시하였으나 이에 한정되는 것은 아니다. 도면에서는 제1 방향(DR1)과 제2 방향(DR2)이 직각인 것으로 도시되어 있으나 이에 한정되는 것은 아니다. 예를 들어, 제1 방향(DR1)과 제2 방향(DR2)은 예각을 이루거나, 둔각을 이룰 수도 있다.
뿐만 아니라, 제2 배선(320_1~320_n+1)과 제3 배선(350_1~350_m)은 서로 전기적으로 연결되어 있을 수 있다. 도면에서는 예시적으로 제2 배선(320_1~320_n+1)과 제3 배선(350_1~350_m)이 비아(340)를 통해서 연결되어 있는 것으로 도시되어 있으나, 이에 한정되는 것은 아니다. 비아(340)는 비아홀 내에 채워진 금속 물질이거나, 비아홀의 내벽을 따라 코팅된 금속 물질일 수 있다.
한편, 본 발명의 제6 실시예에 따른 발광 장치(16)에서 사용되는 발광 소자(6)는 도전 기판(200)와, 도전 기판(200)과 전기적으로 연결된 보울(bowl) 형태의 제1 전극(140)을 포함한다. 또한, 제1 전극(140) 내에는 발광 구조체(110)가 형성되어 있다. 제1 도전 패턴(112) 상에는 제2 전극(151)이 형성되어 있다. 특히, 제1 도전 패턴(112)과 전기적으로 연결된 전극(151)이 제1 실시예와 달리 1개일 수 있다.
제1 전극(140)은 중간 물질층(210), 도전 기판(200)을 통해서 제1 배선(310_1)과 전기적으로 연결된다. 제2 전극(151)은 제1 배선(310_1)의 일측에 배치된 제2 배선(320_1)과 와이어(330_1)를 통해서 전기적으로 연결되고, 제2 배선(320_1)과 제3 배선(350_1)은 비아(340)를 통해서 연결되어 있으므로, 결국 제2 전극(151)은 제3 배선(350_1)과 연결된다.
이와 같은 연결 방식을 통해서, 다수의 발광 소자(6)와 회로 기판(300)이 전기적으로 연결되면, 제1 배선(310_1)과 전기적으로 연결된 다수의 발광 소자(6)는 서로 병렬 연결되고, 제2 배선(320_1, 320_2)과 전기적으로 연결된 다수의 발광 소자(6)도 서로 병렬 연결된다.
도 16은 본 발명의 제7 실시예에 따른 발광 장치의 단면도이다.
도 16을 참조하면, 본 발명의 제7 실시예에 따른 발광 장치(17)에서 사용되는 발광 소자(7)는 플립칩 타입(flipchip type)일 수 있다.
발광 소자(7)는 기판(220) 상에 형성된 발광 구조체(110)를 포함하고, 발광 구조체(110)는 순차적으로 적층된 제1 도전형의 제1 도전 패턴(112), 발광 패턴(114), 제2 도전형의 제2 도전 패턴(116)를 포함한다. 발광 소자(7)가 플립칩 타입이기 때문에, 제1 및 제2 전극(140, 151)이 모두 발광 구조체(110)의 동일면에 형성되어 있다. 즉, 제2 도전 패턴(116) 상에 제1 전극(140)이 형성되고, 노출되어 있는 제1 도전 패턴(112) 상에 제2 전극(151)이 형성되어 있다.
발광 소자(7)와 회로 기판(300) 사이의 연결 방식을 설명하면, 제1 전극(140)은 예를 들어, 도전성 레진(335)을 통해서 제1 배선(310_1)과 연결된다. 제 2 전극(151)은 도전성 레진(335)을 통해서 제1 배선(310_1)의 일측에 배치된 제2 배선(320_1)과 전기적으로 연결되고, 제2 배선(320_1)과 제3 배선(350_1)은 비아(340)를 통해서 연결되어 있으므로, 결국 제2 전극(151)은 제3 배선(350_1)과 연결된다.
도 17은 본 발명의 제8 실시예에 따른 발광 장치의 단면도이다.
도 17을 참조하면, 본 발명의 제8 실시예에 따른 발광 장치(18)에서 사용되는 발광 소자(8)는 래터럴 타입(lateral type)일 수 있다.
발광 소자(8)는 기판(220) 상에 형성된 발광 구조체(110)를 포함하고, 발광 구조체(110)는 순차적으로 적층된 제1 도전형의 제1 도전 패턴(112), 발광 패턴(114), 제2 도전형의 제2 도전 패턴(116)를 포함한다. 발광 소자(8)가 래터럴 타입이기 때문에, 제1 및 제2 전극(140, 151)이 모두 발광 구조체(110)의 동일면에 형성되어 있다.
발광 소자(8)와 회로 기판(300) 사이의 연결 방식을 설명하면, 제1 전극(140)은 예를 들어, 와이어를 통해서 제1 배선(310_1)과 연결된다. 제2 전극(151)은 와이어를 통해서 제1 배선(310_1)의 일측에 배치된 제2 배선(320_1)과 연결되고, 제2 배선(320_1)과 제3 배선(350_1)은 비아(340)를 통해서 연결되어 있으므로, 결국 제2 전극(151)은 제3 배선(350_1)과 연결된다.
도 18은 본 발명의 제9 실시예에 따른 발광 장치의 단면도이다.
도 18을 참조하면, 본 발명의 제9 실시예에 따른 발광 장치(19)가 제1 실시예와 다른 점은, 회로 기판(300)이 관통 비아(Through Via)(314_1, 324_1, 324_2) 를 구비한다는 점이다.
제1 배선(310_1)은 베이스 기판(309) 후면에 형성된 배선(312_1)과 관통 비아(314_1)를 통해서 연결되고, 제2 배선(320_1)은 베이스 기판(309) 후면에 형성된 배선(322_1)과 관통 비아(324_1)를 통해서 연결되고, 제3 배선(320_2)은 베이스 기판(309) 후면에 형성된 배선(322_2)과 관통 비아(324_2)를 통해서 연결된다.
도 19는 본 발명의 제10 실시예에 따른 발광 장치의 단면도이다.
도 19를 참조하면, 본 발명의 제10 실시예에 따른 발광 장치(20)가 제1 실시예와 다른 점은, 발광 소자(1)를 둘러싸는 형광층(370)과, 형광층(370)을 둘러싸는 제2 투명 수지(380)를 포함한다는 점이다.
형광층(370)은 제1 투명 수지(372)와 형광체(phosphor)(374)를 혼합한 것일 수 있다. 형광층(370) 내에 분산된 형광체(374)가 발광 소자(1)에서 나온 광을 흡수하여 다른 파장의 광으로 파장 변환하기 때문에, 형광체의 분포가 좋을수록 발광 특성이 좋아질 수 있다. 이와 같이 될 경우, 형광체(374)에 의한 파장 변환, 혼색 효과 등이 개선된다. 도시된 것과 같이, 와이어(330_1, 330_2)를 보호하기 위해, 형광층(370)은 와이어(330_1, 330_2)보다 높게 형성될 수 있다.
예를 들어, 발광 장치(20)이 백색을 만들기 위해 형광층(370)을 형성할 수 있다. 발광 소자(1)가 블루(blue) 파장의 광을 내보낼 경우, 형광체(374)는 옐로우(yellow) 형광체를 포함할 수 있고, 색재현지수(Color Rendering Index, CRI) 특성을 높이기 위해 레드(red) 형광체도 포함할 수 있다. 또는, 발광 소자(1)가 UV 파장의 광을 내보낼 경우, 형광체(374)는 RGB(Red, Green, Blue) 모두를 포함할 수 있다.
제1 투명 수지(372)는 형광체(374)를 안정적으로 분산 가능한 재료라면 특별히 한정하지 않아도 된다. 예를 들면, 에폭시 수지, 실리콘 수지, 경질 실리콘 수지, 변성 실리콘 수지, 우레탄 수지, 옥세탄 수지, 아크릴 수지, 폴리카보네이트 수지, 폴리이미드 수지 등의 수지를 이용할 수가 있다.
형광체(374)는 발광 소자(1)로부터 광을 흡수하여 다른 파장의 광으로 파장 변환하는 물질이면 된다. 예를 들어, Eu, Ce 등의 란타노이드계 원소에 의해 주로 활력을 받는 질화물계/산질화물계 형광체, Eu 등의 란타노이드계, Mn 등의 천이 금속계의 원소에 의해 주로 활력을 받는 알칼리토류 할로겐 애퍼타이트 형광체, 알칼리토류 금속 붕산 할로겐 형광체, 알칼리토류 금속 알루민산염 형광체, 알칼리토류 규산염, 알칼리토류 유화물, 알칼리토류 티오갈레이트, 알칼리토류 질화 규소, 게르만산염, 또는 Ce 등의 란타노이드계 원소에 의해 주로 활력을 받는 희토류 알루민산염, 희토류 규산염 또는 Eu 등의 란타노이드계 원소에 의해 주로 활력을 받는 유기 및 유기 착체 등에서 선택되는 적어도 어느 하나 이상인 것이 바람직하다. 구체적인 예로서 아래와 같은 형광체를 사용할 수가 있지만 이에 한정되지 않는다.
Eu, Ce 등의 란타노이드계 원소에 의해 주로 활력을 받는 질화물계 형광체는 M2Si5N8:Eu(M는 Sr, Ca, Ba, Mg, Zn에서 선택되는 적어도 하나) 등이 있다. 또, M2Si5N8:Eu 외, MSi7N10:Eu, M1 .8Si5O0 .2N8:Eu, M0 .9Si7O0 .1N10:Eu(M는 Sr, Ca, Ba, Mg, Zn에서 선택되는 적어도 하나) 등도 있다.
Eu, Ce 등의 란타노이드계 원소에 의해 주로 활력을 받는 산질화물계 형광체는 MSi2O2N2:Eu(M는 Sr, Ca, Ba, Mg, Zn에서 선택되는 적어도 하나) 등이 있다.
Eu 등의 란타노이드계, Mn 등의 천이 금속계의 원소에 의해 주로 활력을 받는 알칼리토류 할로겐 애퍼타이트 형광체에는 M5(PO4)3 X:R(M는 Sr, Ca, Ba, Mg, Zn에서 선택되는 적어도 하나, X는 F, Cl, Br, I에서 선택되는 적어도 하나, R는 Eu, Mn, Eu에서 선택된 적어도 하나) 등이 있다.
알칼리토류 금속 붕산 할로겐 형광체에는 M2B5O9X:R(M는 Sr, Ca, Ba, Mg, Zn에서 선택되는 적어도 하나, X는 F, Cl, Br, I에서 선택되는 적어도 하나, R는 Eu, Mn, Eu에서 선택된 적어도 하나) 등이 있다.
알칼리토류 금속 알루민산염 형광체에는 SrAl2O4:R, Sr4Al14O25:R, CaAl2O4:R, BaMg2Al16O27:R, BaMg2Al16O12:R, BaMgAl10O17:R(R는 Eu, Mn, Eu에서 선택된 어느 하나) 등이 있다.
알칼리토류 유화물 형광체에는 La2O2S:Eu, Y2O2S:Eu, Gd2O2S:Eu 등이 있다.
Ce 등의 란타노이드계 원소에 의해 주로 활력을 받는 희토류 알루민산염 형광체에는 Y3Al5O12:Ce, (Y0 .8Gd0 .2)3Al5O12:Ce, Y3(Al0 .8Ga0 .2)5 O12:Ce, (Y, Gd)3 (Al, Ga)5 O12의 조성식에서 나타내어지는 YAG계 형광체 등이 있다. 또한, Y의 일부 혹은 전부를 Tb, Lu 등으로 치환한 Tb3Al5O12:Ce, Lu3Al5O12:Ce 등도 있다.
알칼리토류 규산염 형광체에는 실리케이트(silicate)로 구성될 수있으며, 대표적인 형광체로 (SrBa)2SiO4:Eu 등이 있다.
그 외의 형광체에는 ZnS:Eu, Zn2GeO4:Mn, MGa2S4:Eu(M는 Sr, Ca, Ba, Mg, Zn에서 선택되는 적어도 하나, X는 F, Cl, Br, I에서 선택되는 적어도 하나) 등이 있다.
전술한 형광체는 희망하는 바에 따라 Eu에 대신하거나 또는 Eu에 더하여 Tb, Cu, Ag, Au, Cr, Nd, Dy, Co, Ni, Ti에서 선택되는 1종 이상을 함유시킬 수도 있다.
또한, 전술한 형광체 이외의 형광체로서, 동일한 성능, 효과를 갖는 형광체도 사용할 수 있다.
제2 투명 수지(380)는 확산형 렌즈 형태를 갖고, 발광 소자(1)에서 나온 광을 확산하는 역할을 한다. 제2 투명 수지(380)의 곡률, 평평도를 조절함으로써, 확산/추출 특성을 조절할 수 있다. 또한, 제2 투명 수지(380)는 형광층(370)을 둘러싸도록 형성되어 형광층(370)을 보호하는 역할을 한다. 형광체(342)는 습기 등에 접촉할 경우 특성이 악화될 수 있기 때문이다.
제2 투명 수지(380)는 광을 투과하는 재로라면 무엇이든 가능하다. 예를 들면, 에폭시 수지, 실리콘 수지, 경질 실리콘 수지, 변성 실리콘 수지, 우레탄 수지, 옥세탄 수지, 아크릴, 폴리카보네이트, 폴리이미드 등을 이용할 수가 있다.
도 20는 본 발명의 제11 실시예에 따른 발광 장치의 단면도이다.
도 20를 참조하면, 본 발명의 제11 실시예에 따른 발광 장치(21)에서, 형광체(374)가 발광 소자(1), 회로 기판(300)의 프로파일을 따라 형성되어 있다.
이러한 경우, 형광체(374)는 별도의 제1 투명 수지(도 19의 372 참조) 없이 도포될 수도 있다.
별도의 제1 투명 수지없이 형광체(374)가 도포된 경우라면, 발광 패키지(1)를 둘러싸는 투명 수지는 단일 층이 된다(즉, 372 없이 380 단일층이 됨.).
도 21 및 도 22는 각각 본 발명의 제12 및 제13 실시예에 따른 발광 장치를 설명하기 위한 도면이다. 도 21 및 도 22는 다수의 발광 소자가 회로 기판에 어레이로 배열되어 있고, 회로 기판 상에 확산형 렌즈 형태의 제2 투명 수지(380)가 형성된 형태를 예시적으로 도시한 것이다.
제2 투명 수지(380)는 도 21에 도시된 것처럼, 라인 타입으로 형성될 수 있다. 발광 소자(1)가 일방향을 따라 배치된 경우, 제2 투명 수지(380)도 상기 일방향을 따라 배치될 수 있다. 또는, 제2 투명 수지(380)는 도 22에 도시된 것처럼, 도트 타입으로 형성될 수 있다. 각 제2 투명 수지(380)는, 대응되는 발광 소자(1)만을 둘러싸도록 형성될 수 있다.
도 23은 본 발명의 제14 실시예에 따른 발광 장치를 설명하기 위한 도면이다.
도 23에 도시된 것은, 본 발명의 실시예들에 따른 발광 장치가 적용된 예시적인 최종 제품(end product)이다. 발광 장치는 조명 장치, 표시 장치, 모바일 장치(휴대폰, MP3 플레이어, 내비게이션(Navigation) 등)과 같은 여러 가지 장치에 적용될 수 있다. 도 23에 도시된 예시적 장치는 액정 표시 장치(LCD)에서 사용하는 직하형(direct type) 백라이트 유닛(Back Light Unit, BLU)이다. 액정 표시 장치는 자체 광원이 없기 때문에, 백라이트 유닛이 광원으로 사용되고, 백라이트 유닛은 주로 액정 패널의 후방에서 조명하게 된다.
도 23에 도시된 최종 제품(24)은 화면에 표시되는 액정 패널(390)과, 액정 패널(390)에 광을 조명하는 발광 장치(11)를 포함한다. 전술한 바와 같이, 다수의 발광 소자(1) 각각을 개별적으로 억세스(individual access)가 가능하기 때문에, 발광 장치(11)는 로컬 디밍 동작(local dimming operation)을 할 수 있다. 즉, 액정 패널(390)에 표시되는 영상의 어두운 영역에 대응되는 발광 장치(11)의 일부 영역은 턴오프시키고 영상의 밝은 영역에 대응되는 발광 장치(11)의 일부 영역은 턴온시킴으로써, 영상의 컨트라스트(contrast)를 높일 수 있다.
도 24 내지 도 31은 본 발명의 제1 실시예에 따른 발광 장치에서 사용되는 발광 소자의 제조 방법을 설명하기 위한 중간 단계 도면이다.
우선, 도 24를 참조하면, 기판(100) 상에 제1 도전층(112a), 발광층(114a), 제2 도전층(116a)을 순차적으로 형성한다.
제1 도전층(112a), 발광층(114a), 제2 도전층(116a)는 InxAlyGa(1-x-y)N (0≤x≤1, 0≤y≤1)을 포함할 수 있다. 즉, 제1 도전층(112a), 발광층(114a), 제2 도전층(116a)은 예를 들어, AlGaN일 수도 있고, InGaN일 수도 있다.
이러한 제1 도전층(112a), 발광층(114a), 제2 도전층(116a)은 기판(100) 상 에 MOCVD(metal organic chemical vapor deposition), 액상성장법(liquid phase epitaxy), 수소액상성장법(hydride vapor phase epitaxy), 분자빔 성장법(Molecular beam epitaxy), MOVPE(metal organic vapor phase epitaxy) 등을 이용하여 순차적으로 형성할 수 있다.
한편, 제2 도전층(116a)을 형성한 후에, 제2 도전층(116a)을 활성화하기 위해 어닐링을 할 수 있다. 예를 들어, 약 400℃ 정도에서 어닐링을 할 수 있다. 구체적으로, 제2 도전층(116a)이 예를 들어, Mg가 도핑되어 있는 InxAlyGa(1-x-y)N 이라면, 어닐링을 통해서 Mg와 결합되어 있는 H를 떨어뜨림으로써, 제2 도전층(116a)이 p형 특성을 확실히 나타낼 수 있도록 한다.
기판(100)은 전술한 제1 도전층(112a), 발광층(114a), 제2 도전층(116a)을 성장시킬 수 있는 재질이면 어떤 것이든 가능하다. 예를 들어, 기판(100)은 사파이어(Al2O3), 징크 옥사이드(ZnO) 등의 절연성 기판일 수도 있고, 실리콘(Si), 실리콘 카바이드(SiC), 등의 도전성 기판일 수 있다.
또한, 도면으로 자세히 도시하지는 않았으나, 기판(100)과 제1 도전층(112a) 사이에는 버퍼층이 형성되어 있을 수도 있다. 버퍼층은 InxAlyGa(1-x-y)N (0≤x≤1, 0≤y≤1)로 이루어질 수 있다. 이러한 버퍼층은 제1 도전층(112a), 발광층(114a), 제2 도전층(116a)의 결정성을 향상시키기 위해 형성한다.
또한, 기판(100) 상에 제1 도전층(112a), 발광층(114a) 및 제2 도전층(116a)이 형성되어 있는 기판을 구입하여 사용하는 것도 가능하다.
도 25를 참조하면, 제2 도전층(116a), 발광층(114a), 제1 도전층(112a)을 식각하여, 제2 도전 패턴(116), 발광 패턴(114), 제1 도전 패턴(112), 제1 및 제2 홈(118, 119)을 포함하는 발광 구조체(110)를 형성할 수 있다.
도 25 도시된 것처럼, 발광 구조체(110)의 상측의 폭이 하측의 폭보다 넓어서, 발광 구조체(110)의 측벽은 경사를 갖고 있을 수 있다.
도 26을 참조하면, 발광 구조체(110)의 상면과 측벽과, 제1 및 제2 홈(118, 119) 내에 절연층(120)을 형성한다. 즉, 절연층(120)은 발광 구조체(110)의 프로파일을 따라서 컨포말하게(conformally) 형성될 수 있다.
절연층(120)은 실리콘 산화막 또는 실리콘 질화막으로 이루어질 수 있다. 절연층(120)은 예를 들어, PECVD(Plasma Enhanced Chemical Vapor Deposition), 열산화(thermal oxidation), 전자빔 증착 등을 이용하여 형성할 수 있다.
이어서, 절연층(120)의 일부를 식각하여, 제2 도전 패턴(116)의 상면 일부를 노출시킨다.
도 27를 참조하면, 노출된 제2 도전 패턴(116) 상에 오믹층(130)을 형성한다. 오믹층(130)은 예를 들어, ITO(Indium Tin Oxide), 징크 옥사이드(ZnO), 은(Ag), 주석(Ti), 알루미늄(Al), 금(Au), 니켈(Ni), 인듐 옥사이드(In2O3), 틴 옥사이드(SnO2) 중 적어도 하나를 포함할 수 있다.
이어서, 오믹층(130)을 활성화시키기 위해서, 오믹층(130)이 형성된 기판(100)을 어닐링할 수 있다. 예를 들어, 약 400℃ 정도에서 어닐링을 할 수 있다.
이어서, 절연층(120)과 오믹층(130) 상에, 제1 전극(140)을 형성한다. 따라서, 제1 전극(140)은 발광 구조체(110)의 상면과 측면, 제1 및 제2 홈(118, 119)에 형성되게 된다. 즉, 제1 전극(140)은 홈(118)의 프로파일을 따라 생긴 제1 및 제2 돌기(141, 142)를 포함한다. 여기서, 제1 전극(140)은 반사율이 높은 물질을 사용할 수 있다. 제1 전극(140)은 예를 들어, 은(Ag), 알루미늄(Al)을 사용할 수 있다.
도 28 및 도 29을 참조하면, 도전 기판(200) 상에 다수의 기판(100)을 본딩한다.
구체적으로, 도전 기판(200)은 기판(100)보다 크다. 즉, 도전 기판(200)과 기판(100)을 겹쳐 두었을 때, 앞에 있는 도전 기판(200)에 가려서 기판(100)이 보이지 않는 것을 의미한다. 예를 들어, 도전 기판(200)와 기판(100)가 원형인 경우에는, 도전 기판(200)의 직경이 기판(100)의 직경보다 크다. 예를 들어, 도전 기판(200)의 직경은 6인치(약 150mm) 이상이고, 기판(100)의 직경은 6인치 미만일 수 있다. 도전 기판(200)와 기판(100)가 사각형인 경우에는, 도전 기판(200)의 대각선 길이가 기판(100)의 대각선 길이보다 클 수 있다.
도전 기판(200)은 도전성 기판이면 되는데, 예를 들어, 실리콘, 스트레인 실리콘(strained Si), 실리콘 합금, SOI(Silicon-On-Insulator), 실리콘 카바이드(SiC), 실리콘 게르마늄(SiGe), 실리콘 게르마늄 카바이드(SiGeC), 게르마늄, 게르마늄 합금, 갈륨 아세나이드(GaAs), 인듐 아세나이드(InAs) 및 III-V 반도체, II-VI 반도체 중 하나일 수 있다.
기판(100) 또는 도전 기판(200)은 실질적으로 평평한 것이 좋 다(substantially flat). 기판(100) 또는 도전 기판(200)이 휘어져 있으면, 본딩하기가 어렵기 때문이다. 후술하겠으나, 기판(100)과 도전 기판(200) 사이에 중간 물질층(210)이 배치되기 때문에(특히, 중간 물질층(210)이 충분한 두께를 갖는 경우), 중간 물질층(210)이 제1 기판 또는 도전 기판(200)이 조금 휘어져 있는 정도는 보상(compensation)할 수 있다.
예를 들어, 도전 기판(200)과 다수의 기판(100)은 접착 본딩(adhesive bonding) 방식을 통해서 본딩될 수 있는데, 구체적으로 설명하면 다음과 같다.
먼저, 도전 기판(200)와 다수의 기판(100)를 깨끗하게 세정한다. 도전 기판(200)의 본딩면과, 기판(100)의 본딩면은 깨끗한 것이 좋다.
도전 기판(200)와 기판(100) 표면에 붙어있는 여러 가지 불순물들(예를 들어, 파티클(particle), 먼지(dust) 등)은 오염 소오스(contamination source)가 될 수 있기 때문이다. 즉, 도전 기판(200)와 기판(100)를 서로 본딩하였을 때, 도전 기판(200)와 기판(100) 사이에 전술한 불순물들이 있으면, 본딩 에너지(bonding energy)를 약화시킬 수 있다. 본딩 에너지가 약하면, 도전 기판(200)와 기판(100)가 쉽게 떨어질 수 있다.
이어서, 도전 기판(200)의 본딩면 또는, 다수의 기판(100)의 본딩면에 중간 물질층(210)을 형성한다. 도 28에서는 설명의 편의상 도전 기판(200)의 본딩면에 중간 물질층(210)이 형성되어 있는 것을 도시하였다. 도면에 도시하지 않았으나, 기판(100)의 제1 전극(140)의 프로파일에 따라 컨포말하게 중간 물질층(210)을 더 형성할 수 있거나, 발광 구조체(110)의 제1 전극(140) 상면에 중간 물질층(210)을 형성한 후 도전 기판(200)과 본딩할 수도 있다.
중간 물질층(210)은 도전성 물질 예를 들어, 금속층일 수 있다. 중간 물질층(210)이 금속층일 경우, 금속층은 예를 들어, Au, Ag, Pt, Ni, Cu, Sn, Al, Pb, Cr, Ti, W 중 적어도 하나를 포함할 수 있다. 즉, 금속층은 Au, Ag, Pt, Ni, Cu, Sn, Al, Pb, Cr, Ti, W 단일층일 수도 있고, 이들의 적층물일 수도 있고, 이들의 조합물일 수도 있다. 예를 들면, 금속층은 Au 단일층일수도 있고, Au-Sn 이중층일 수도 있고, Au와 Sn를 교대로 여러 번 적층한 멀티층일 수도 있다. 이러한 중간 물질층(210)은 제1 전극(140)에 비해 반사율은 낮은 물질일 수 있다.
이어서, 다수의 기판(100) 각각에 형성된 제1 전극(140)과, 도전 기판(200)의 본딩면이 마주보도록 한다. 예를 들어, 도 29에 도시된 것처럼, 기판(100)의 직경이 2인치이고, 도전 기판(200)의 직경이 8인치인 경우, 1개의 도전 기판(200) 상에 9개의 기판(100)이 배치될 수 있다.
이어서, 도전 기판(200)과 다수의 기판(100)를 열처리하여 본딩한다. 열처리를 하면서, 도전 기판(200)과 다수의 기판(100)을 압착하여 본딩할 수도 있다.
중간 물질층(210)으로 Au 단일층을 사용하는 경우, 열압착이 예를 들어, 약 200℃에서 450℃ 의 온도에서 진행할 수 있으나, 이 온도는 당업자에 의해 적절히 조절될 수 있다.
도 30을 참조하면, 다수의 기판(100)을 제거한다.
다수의 기판(100)을 제거하는 것은 레이저 리프트 오프(laser lift off) 공정을 이용할 수 있다. 구체적으로, 레이저는 기판(100) 측으로부터 조사되고, 레이 저는 상대적으로 작은 면적을 가지고 있으므로 상대적으로 넓은 면적의 기판(100)을 스캔한다. 그러면, 레이저가 조사되는 부분에서부터 순차적으로 기판(100)이 떨어지기 시작한다.
한편, 레이저 리프트 오프 공정에 의해 발광 구조체(110)가 손상입는 것을 방지하기 위해서, 레이저 리프트 오프 공정 전에 기판(100)의 두께를 얇게 할 수 있다. 전술한 바와 같이, 레이저가 조사되는 부분에서부터 순차적으로 기판(100)이 떨어지기 때문에, 기판(100)이 떨어질 때의 물리적 힘에 의해 발광 구조체(110)가 깨지거나 손상을 입을 수 있다. 그런데, CMP(Chemical Mechanical Polishing) 공정 등을 통해서 기판(100)의 두께를 미리 얇게 만들면, 기판(100)이 떨어질 때의 물리적 힘의 크기가 줄어들기 때문에 발광 구조체(110)의 손상을 줄일 수 있다.
도 31를 참조하면, 기판(100)을 제거함으로써 노출된 제1 도전 패턴(112) 상에, 제2 및 제3 전극(151, 152)을 형성한다. 제2 및 제3 전극(151, 152)은 서로 분리되어 있고, 제1 전극(140)과도 서로 분리되어 있다. 제2 및 제3 전극(151, 152)은 인듐 틴 옥사이드(ITO), 구리(Cu), 니켈(Ni), 크롬(Cr), 금(Au), 티타늄(Ti), 백금(Pt), 알루미늄(Al), 바나듐(V), 텅스텐(W), 몰리브덴(Mo), 은(Ag) 중 적어도 하나를 포함할 수 있다.
한편, 도면에 표시하지 않았으나, 제2 및 제3 전극(151, 152) 형성 전 또는 후 단계에서, 표면 텍스쳐링(surface texturing) 공정을 실시하여, 제1 도전 패턴(112)의 표면에 텍스쳐(texture) 형상을 만들 수도 있다. 텍스쳐 형상은 예를 들어, KOH와 같은 식각액을 이용하여, 제1 도전 패턴(112)의 표면을 습식 식각하여 형성할 수 있다.
이어서, 쏘잉(sawing) 공정을 통해서 칩 단위로 분리하면, 발광 소자(1)가 완성된다.
전술한 바와 같이, 다수의 소형 기판(100)를 대형 도전 기판(200)에 본딩하여 제조 공정을 진행하면, 대형 도전 기판(200)의 크기에 맞는 제조 설비를 이용하면 되기 때문에 소형 기판(100)를 위한 별도의 제조 설비가 불필요하다. 뿐만 아니라, 한번에 많은 기판(100)의 제조 공정이 진행되므로, 스루풋(throughput)이 향상된다. 따라서, 발광 소자(1)의 단가를 떨어뜨릴 수 있다.
전술한 본 발명의 제1 실시예에 따른 발광 장치에서 사용되는 발광 소자의 제조 방법을 통해서, 당업자는 나머지 발광 소자의 제조 방법을 유추할 수 있으므로 설명을 생략한다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
도 1은 본 발명의 제1 실시예에 따른 발광 장치의 평면도이다.
도 2는 도 1의 발광 장치 중 회로 기판만을 도시한 도면이다.
도 3은 도 1의 A - A'를 따라서 절단한 단면도이다.
도 4는 본 발명의 제1 실시예에 따른 발광 장치의 사시도이다.
도 5는 본 발명의 제1 실시예에 따른 발광 장치의 회로도이다.
도 6은 본 발명의 제1 실시예에 따른 발광 장치의 동작을 설명하기 위한 도면이다.
도 7은 본 발명의 제2 실시예에 따른 발광 장치를 설명하기 위한 단면도이다.
도 8은 본 발명의 제3 실시예에 따른 발광 장치를 설명하기 위한 단면도이다.
도 9는 본 발명의 제4 실시예에 따른 발광 장치의 평면도이다.
도 10은 도 9의 발광 장치에서 사용되는 발광 소자의 단면도이다.
도 11a 및 도 11b은 본 발명의 제5 실시예에 따른 발광 장치의 평면도이다.
도 12는 도 11a 및 도 11b의 발광 장치에서 사용되는 발광 소자의 단면도이다.
도 13은 본 발명의 제6 실시예에 따른 발광 장치의 평면도이다.
도 14는 도 13의 발광 장치 중 회로 기판만을 도시한 도면이다.
도 15는 도 13의 A - A'를 따라서 절단한 단면도이다.
도 16은 본 발명의 제7 실시예에 따른 발광 장치의 단면도이다.
도 17은 본 발명의 제8 실시예에 따른 발광 장치의 단면도이다.
도 18은 본 발명의 제9 실시예에 따른 발광 장치의 단면도이다.
도 19는 본 발명의 제10 실시예에 따른 발광 장치의 단면도이다.
도 20는 본 발명의 제11 실시예에 따른 발광 장치의 단면도이다.
도 21 및 도 22는 본 발명의 제12 실시예에 따른 발광 장치를 설명하기 위한 도면이다.
도 23은 본 발명의 제13 실시예에 따른 발광 장치를 설명하기 위한 도면이다.
도 24 내지 도 31은 본 발명의 제1 실시예에 따른 발광 장치에서 사용되는 발광 소자의 제조 방법을 설명하기 위한 중간 단계 도면이다.
(도면의 주요부분에 대한 부호의 설명)
1~8: 발광 소자 11~24: 발광 장치
310_1~310_n: 제1 배선 320_1~320_n+1: 제2 배선
350_1~350_m: 제3 배선

Claims (35)

  1. 회로 기판;
    상기 회로 기판 상의 도전 기판;
    상기 도전 기판 상의 중간층;
    상기 중간층 상에, 바닥부와 적어도 하나의 측면부들을 포함하는 보울(bowl) 형태의 제1 전극;
    상기 회로 기판 상의 제2 전극 및 제3 전극;
    상기 제1 전극 내에 순차적으로 적층된 제1 도전형의 제1 도전 패턴, 발광 패턴, 제2 도전형의 제2 도전 패턴을 포함하는 발광 구조체; 및
    상기 회로 기판 상에, 상기 도전 기판의 측면에 배치되는 제1 및 제2 패턴으로, 상기 제1 패턴은 상기 도전 기판의 제1 측면에 배치되어 상기 제2 전극과 전기적으로 연결되고, 상기 제2 패턴은 상기 도전 기판을 사이에 두고 상기 제1 측면과 반대측의 제2 측면에 배치되어 상기 제3 전극과 전기적으로 연결되는 제1 및 제2 패턴을 포함하고,
    상기 바닥부는 상기 중간층의 프로파일을 따라 형성되고,
    상기 제1 전극은 상기 바닥부로부터 튀어나오고, 상기 측면부들에 의해 정의되는 복수의 돌기를 포함하고,
    상기 발광 구조체는 상기 복수의 돌기에 의해 정의되는 발광 영역 및 상기 발광 영역을 사이에 두는 제1 및 제2 비발광 영역을 포함하고,
    상기 제1 및 제2 비발광 영역의 상기 발광 구조체의 상기 제1 도전 패턴과 상기 제1 전극 사이에 절연층이 개재되고,
    상기 제2 전극은 상기 제1 비발광 영역과 중첩되고, 상기 발광 영역과 비중첩되고,
    상기 제3 전극은 상기 제2 비발광 영역과 중첩되고, 상기 발광 영역과 비중첩되고,
    상기 제1 전극은 상기 발광 영역의 상기 발광 구조체의 상기 제1 도전 패턴과 전기적으로 연결되고,
    상기 제2 전극은 상기 제1 비발광 영역의 상기 발광 구조체의 상기 제2 도전 패턴과 전기적으로 연결되고,
    상기 제3 전극은 상기 제2 비발광 영역의 상기 발광 구조체의 상기 제2 도전 패턴과 전기적으로 연결되는 발광 소자.
  2. 제1항에 있어서,
    상기 도전 기판은 실리콘, 스트레인 실리콘, 실리콘 합금, 실리콘 카바이드, 실리콘 게르마늄, 실리콘 게르마늄 카바이드, 게르마늄, 게르마늄 합금, 갈륨 아세나이드, 인듐 아세나이드, III-V 반도체, II-VI 반도체 중 적어도 하나를 포함하는 발광 소자.
  3. 제1항에 있어서,
    상기 중간층은 상기 제1 전극을 상기 도전 기판에 연결하고, 금, 은, 백금, 니켈, 구리, 주석, 알루미늄, 납, 크롬, 티타늄, 텅스텐 중 적어도 하나를 포함하는 발광소자.
  4. 제1항에 있어서,
    상기 제1 전극은 반사 물질을 포함하는 발광소자.
  5. 청구항 5은(는) 설정등록료 납부시 포기되었습니다.
    제1항에 있어서,
    상기 제1 전극은 은, 알루미늄 중 적어도 하나를 포함하는 발광소자.
  6. 청구항 6은(는) 설정등록료 납부시 포기되었습니다.
    제1항에 있어서,
    상기 바닥부는 상기 중간 층과 평행한 면을 따라 연장되는 발광소자.
  7. 제1항에 있어서,
    상기 제1 전극의 측면부들은 상기 바닥부에 대하여 90도보다 큰 각도로 연장되는 발광소자.
  8. 제1항에 있어서,
    상기 발광 소자 상에 형성되는 형광층과, 상기 형광층 상의 제2 투명 수지를 더 포함하는 발광소자.
  9. 제8항에 있어서,
    상기 형광층은 제1 투명 수지와 형광체를 포함하는 발광소자.
  10. 청구항 10은(는) 설정등록료 납부시 포기되었습니다.
    제9항에 있어서,
    상기 형광체는 Eu 및 Ce 등의 란타노이드계 원소에 의해 활력을 받는 질화물계, 산화물계 물질 중 적어도 하나를 포함하는 발광소자.
  11. 제9항에 있어서,
    상기 형광체는 상기 발광 소자 및 상기 회로 기판의 프로파일을 따라 상기 발광 소자 상에 직접 컨포말하게 형성되는 발광소자.
  12. 청구항 12은(는) 설정등록료 납부시 포기되었습니다.
    제8항에 있어서,
    상기 형광층은 상기 발광소자를 완전하게 둘러싸는 발광소자.
  13. 제8항에 있어서,
    상기 제2 투명 수지는 상기 회로 기판 상의 상기 형광층을 완전하게 둘러싸는 발광소자.
  14. 제8항에 있어서,
    상기 제2 투명 수지는 렌즈 형태를 포함하는 발광소자.
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
KR1020080055995A 2008-06-13 2008-06-13 발광 소자, 발광 장치 및 상기 발광 소자의 제조 방법 KR101506264B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020080055995A KR101506264B1 (ko) 2008-06-13 2008-06-13 발광 소자, 발광 장치 및 상기 발광 소자의 제조 방법
US12/457,176 US8269247B2 (en) 2008-06-13 2009-06-03 Light emitting elements, light emitting devices including light emitting elements and methods for manufacturing such light emitting elements and/or devices
TW098119224A TWI443861B (zh) 2008-06-13 2009-06-09 發光元件、包含此發光元件的發光裝置以及製造該發光元件及/或裝置的方法
DE102009025185.5A DE102009025185B4 (de) 2008-06-13 2009-06-12 Lichtemittierendes Bauelement, lichtemittierende Vorrichtung und Verfahren zur Herstellung und zum Betrieb eines derartigen Lichtbauelements
JP2009140997A JP5597362B2 (ja) 2008-06-13 2009-06-12 発光素子、発光素子を含む発光装置、発光素子の製造方法および発光素子を含む発光装置の製造方法
CN201310135179.7A CN103219451B (zh) 2008-06-13 2009-06-15 发光元件
CN200910149627.2A CN101604724B (zh) 2008-06-13 2009-06-15 发光元件、包括该发光元件的发光器件及其制造方法
US13/611,897 US8975656B2 (en) 2008-06-13 2012-09-12 Light emitting elements, light emitting devices including light emitting elements and methods of manufacturing such light emitting elements and/or device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080055995A KR101506264B1 (ko) 2008-06-13 2008-06-13 발광 소자, 발광 장치 및 상기 발광 소자의 제조 방법

Publications (2)

Publication Number Publication Date
KR20090129868A KR20090129868A (ko) 2009-12-17
KR101506264B1 true KR101506264B1 (ko) 2015-03-30

Family

ID=41414119

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080055995A KR101506264B1 (ko) 2008-06-13 2008-06-13 발광 소자, 발광 장치 및 상기 발광 소자의 제조 방법

Country Status (6)

Country Link
US (2) US8269247B2 (ko)
JP (1) JP5597362B2 (ko)
KR (1) KR101506264B1 (ko)
CN (2) CN101604724B (ko)
DE (1) DE102009025185B4 (ko)
TW (1) TWI443861B (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091025A2 (en) * 2009-02-04 2010-08-12 Applied Materials, Inc. Metrology and inspection suite for a solar production line
US8273588B2 (en) * 2009-07-20 2012-09-25 Osram Opto Semiconductros Gmbh Method for producing a luminous device and luminous device
KR20110008550A (ko) * 2009-07-20 2011-01-27 삼성전자주식회사 발광 소자 및 그 제조 방법
JP5532744B2 (ja) * 2009-08-20 2014-06-25 富士通株式会社 マルチチップモジュール及びマルチチップモジュールの製造方法
KR100974787B1 (ko) * 2010-02-04 2010-08-06 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
US9640728B2 (en) * 2010-02-09 2017-05-02 Epistar Corporation Optoelectronic device and the manufacturing method thereof
KR101730152B1 (ko) * 2010-10-06 2017-04-25 엘지이노텍 주식회사 발광 소자
SG10201606075XA (en) 2011-08-10 2016-09-29 Heptagon Micro Optics Pte Ltd Opto-electronic module and method for manufacturing the same
US9196807B2 (en) 2012-10-24 2015-11-24 Nichia Corporation Light emitting element
TWI597863B (zh) * 2013-10-22 2017-09-01 晶元光電股份有限公司 發光元件及其製造方法
US9768345B2 (en) * 2013-12-20 2017-09-19 Apple Inc. LED with current injection confinement trench
CN104976526A (zh) * 2014-04-03 2015-10-14 弘凯光电(深圳)有限公司 Led发光装置及具有该led发光装置的灯具
CN104253194A (zh) * 2014-09-18 2014-12-31 易美芯光(北京)科技有限公司 一种芯片尺寸白光led的封装结构及方法
BR102015027316B1 (pt) * 2014-10-31 2021-07-27 Nichia Corporation Dispositivo emissor de luz e sistema de lâmpada frontal de farol de acionamento adaptativo
JP6547548B2 (ja) * 2014-10-31 2019-07-24 日亜化学工業株式会社 発光装置及び配光可変ヘッドランプシステム
DE102018128896A1 (de) * 2018-11-16 2020-05-20 Osram Opto Semiconductors Gmbh Halbleiterchip mit einem inneren Kontaktelement und zwei äusseren Kontaktelementen und Halbleiterbauelement
US11508891B2 (en) * 2020-01-31 2022-11-22 Nichia Corporation Method of manufacturing light-emitting module
DE102021103984A1 (de) * 2021-02-19 2022-08-25 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer halbleiterchip und verfahren zum betreiben eines optoelektronischen halbleiterchips
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106631A (ja) * 1993-09-29 1995-04-21 Sanken Electric Co Ltd 半導体発光素子
KR20050034936A (ko) * 2003-10-10 2005-04-15 삼성전기주식회사 형광체를 이용한 파장변환형 발광 다이오드 패키지 및제조방법
JP2007035885A (ja) 2005-07-26 2007-02-08 Kyocera Corp 発光装置およびそれを用いた照明装置
JP2008066704A (ja) 2006-08-11 2008-03-21 Sharp Corp 窒化物半導体発光素子およびその製造方法

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250196A (en) * 1975-10-21 1977-04-21 Seiko Instr & Electronics Ltd Matrix dispaly device
JPS636759Y2 (ko) * 1980-08-25 1988-02-26
JPS59119775A (ja) * 1982-12-25 1984-07-11 Fujitsu Ltd 発光半導体装置
JPS60212793A (ja) * 1984-04-06 1985-10-25 豊田合成株式会社 ドツトマトリツクス表示装置
JPS62215289A (ja) * 1986-03-17 1987-09-21 タキロン株式会社 ドツトマトリクス発光表示体
JPH071798B2 (ja) * 1986-09-12 1995-01-11 日本電気株式会社 発光ダイオ−ド
JP3365787B2 (ja) * 1992-06-18 2003-01-14 シャープ株式会社 Ledチップ実装部品
US5748658A (en) * 1993-10-22 1998-05-05 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and optical pickup head
JPH07221400A (ja) * 1994-01-31 1995-08-18 Fujitsu Ltd 光変調器集積化発光装置及びその製造方法
EP0856202A2 (en) * 1996-06-11 1998-08-05 Koninklijke Philips Electronics N.V. Visible light emitting devices including uv-light emitting diode and uv-excitable, visible light emitting phosphor, and method of producing such devices
US6936859B1 (en) * 1998-05-13 2005-08-30 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
JP2000101194A (ja) 1998-09-22 2000-04-07 Sanyo Electric Co Ltd 半導体層の形成方法ならびに半導体素子の製造方法
JP2000174348A (ja) * 1998-12-09 2000-06-23 Matsushita Electronics Industry Corp 半導体発光装置
GB9919913D0 (en) * 1999-08-24 1999-10-27 Koninkl Philips Electronics Nv Thin-film transistors and method for producing the same
DE10038671A1 (de) * 2000-08-08 2002-02-28 Osram Opto Semiconductors Gmbh Halbleiterchip für die Optoelektronik
US20020017652A1 (en) * 2000-08-08 2002-02-14 Stefan Illek Semiconductor chip for optoelectronics
JP4084620B2 (ja) * 2001-09-27 2008-04-30 信越半導体株式会社 発光素子及び発光素子の製造方法
JP3718770B2 (ja) * 2002-01-11 2005-11-24 株式会社日立製作所 アクティブマトリックス型の表示装置
US7038239B2 (en) * 2002-04-09 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US6897137B2 (en) 2002-08-05 2005-05-24 Hrl Laboratories, Llc Process for fabricating ultra-low contact resistances in GaN-based devices
KR100487757B1 (ko) 2003-01-28 2005-05-06 엘지전자 주식회사 레이저 발광 다이오드 및 그 제조 방법
US7157745B2 (en) * 2004-04-09 2007-01-02 Blonder Greg E Illumination devices comprising white light emitting diodes and diode arrays and method and apparatus for making them
JP2005093594A (ja) 2003-09-16 2005-04-07 Fuji Photo Film Co Ltd 発光装置及びその製造方法
KR100857790B1 (ko) 2003-12-16 2008-09-09 엘지전자 주식회사 발광 다이오드 조명장치와 패키지 및 그 제조 방법
US7531294B2 (en) * 2004-03-25 2009-05-12 Semiconductor Energy Laboratory Co., Ltd. Method for forming film pattern, method for manufacturing semiconductor device, liquid crystal television, and EL television
JP2006013237A (ja) * 2004-06-28 2006-01-12 Toshiba Lighting & Technology Corp 発光装置
TWI253188B (en) * 2004-11-19 2006-04-11 Epistar Corp Method of forming light emitting diode array
WO2006071799A2 (en) * 2004-12-23 2006-07-06 Touchsensor Technologies, Llc Shared electrode pattern field effect sensor and joystick therewith
KR101197046B1 (ko) 2005-01-26 2012-11-06 삼성디스플레이 주식회사 발광다이오드를 사용하는 2차원 광원 및 이를 이용한 액정표시 장치
JP4974568B2 (ja) * 2005-04-06 2012-07-11 エルジー ディスプレイ カンパニー リミテッド 電界発光表示装置
ATE458276T1 (de) 2005-04-21 2010-03-15 Fiat Ricerche Durchsichtige led-anzeigevorrichtung
KR101047683B1 (ko) * 2005-05-17 2011-07-08 엘지이노텍 주식회사 와이어 본딩이 불필요한 발광소자 패키징 방법
JP5054331B2 (ja) * 2005-06-30 2012-10-24 パナソニック株式会社 Ledを用いた照明器具
KR100604562B1 (ko) 2005-07-01 2006-07-24 엘지전자 주식회사 발광 다이오드 및 그 제조방법
JP4753419B2 (ja) 2005-08-05 2011-08-24 パナソニック株式会社 発光モジュール
JP4662306B2 (ja) * 2005-08-09 2011-03-30 セイコーエプソン株式会社 電気光学装置、電子機器
KR100690635B1 (ko) * 2005-09-07 2007-03-09 엘지전자 주식회사 광출력을 향상시킨 엘이디 소자
JP4799974B2 (ja) * 2005-09-16 2011-10-26 昭和電工株式会社 窒化物系半導体発光素子及びその製造方法
JP2007142256A (ja) 2005-11-21 2007-06-07 Sharp Corp Led基板、ledバックライト装置、及び画像表示装置
JP2007157853A (ja) * 2005-12-01 2007-06-21 Sony Corp 半導体発光素子およびその製造方法
KR100652133B1 (ko) 2005-12-20 2006-11-30 서울옵토디바이스주식회사 플립칩 구조의 발광 소자
KR101125339B1 (ko) * 2006-02-14 2012-03-27 엘지이노텍 주식회사 질화물계 반도체 발광소자 및 그 제조 방법
JP2007273602A (ja) * 2006-03-30 2007-10-18 Kyocera Corp 発光素子用配線基板および発光装置
CN101485000B (zh) * 2006-06-23 2012-01-11 Lg电子株式会社 具有垂直拓扑的发光二极管及其制造方法
JP4720665B2 (ja) * 2006-07-31 2011-07-13 パナソニック電工株式会社 Led照明器具
US20100252841A1 (en) * 2006-09-18 2010-10-07 Cok Ronald S Oled device having improved lifetime and resolution
US7633218B2 (en) * 2006-09-29 2009-12-15 Eastman Kodak Company OLED device having improved lifetime and resolution
KR20080032882A (ko) * 2006-10-11 2008-04-16 삼성전기주식회사 발광 다이오드 패키지
KR100836471B1 (ko) * 2006-10-27 2008-06-09 삼성에스디아이 주식회사 마스크 및 이를 이용한 증착 장치
US7576364B2 (en) * 2007-02-15 2009-08-18 Chi Mei Optoelectronics Corp. Display device and method of manufacturing the same
WO2009005477A1 (en) * 2007-07-04 2009-01-08 Tinggi Technologies Private Limited Separation of semiconductor devices
US9287469B2 (en) * 2008-05-02 2016-03-15 Cree, Inc. Encapsulation for phosphor-converted white light emitting diode
US7994771B2 (en) * 2008-10-08 2011-08-09 Agilent Technologies, Inc. Current measurement circuit, current detection circuit and saturation prevention and recovery circuit for operational amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106631A (ja) * 1993-09-29 1995-04-21 Sanken Electric Co Ltd 半導体発光素子
KR20050034936A (ko) * 2003-10-10 2005-04-15 삼성전기주식회사 형광체를 이용한 파장변환형 발광 다이오드 패키지 및제조방법
JP2007035885A (ja) 2005-07-26 2007-02-08 Kyocera Corp 発光装置およびそれを用いた照明装置
JP2008066704A (ja) 2006-08-11 2008-03-21 Sharp Corp 窒化物半導体発光素子およびその製造方法

Also Published As

Publication number Publication date
TW201001761A (en) 2010-01-01
CN101604724B (zh) 2014-04-09
CN103219451A (zh) 2013-07-24
US8269247B2 (en) 2012-09-18
CN101604724A (zh) 2009-12-16
CN103219451B (zh) 2016-01-13
US20090309514A1 (en) 2009-12-17
US8975656B2 (en) 2015-03-10
KR20090129868A (ko) 2009-12-17
TWI443861B (zh) 2014-07-01
JP2009302542A (ja) 2009-12-24
JP5597362B2 (ja) 2014-10-01
DE102009025185B4 (de) 2016-05-25
US20130002148A1 (en) 2013-01-03
DE102009025185A1 (de) 2010-01-28

Similar Documents

Publication Publication Date Title
KR101506264B1 (ko) 발광 소자, 발광 장치 및 상기 발광 소자의 제조 방법
KR101530876B1 (ko) 발광량이 증가된 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및 발광 장치의 제조 방법
KR101809472B1 (ko) 광추출 효율이 향상된 발광 장치
KR101332794B1 (ko) 발광 장치, 이를 포함하는 발광 시스템, 상기 발광 장치 및발광 시스템의 제조 방법
KR101428719B1 (ko) 발광 소자 및 발광 장치의 제조 방법, 상기 방법을이용하여 제조한 발광 소자 및 발광 장치
KR101497953B1 (ko) 광추출 효율이 향상된 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및 발광 장치의 제조 방법
KR101539246B1 (ko) 광추출 효율이 향상된 발광 장치의 제조 방법 및 그 방법으로 제조된 발광 장치
US8704260B2 (en) Light emitting device and light-emitting system including the same
US8889448B2 (en) Method of fabricating a light-emitting element
TWI460884B (zh) 發光裝置,發光元件及其製造方法
JP5040355B2 (ja) 半導体発光素子及びこれを備えた発光装置
CN102903706B (zh) 发光器件封装件及使用其的照明系统
KR101541512B1 (ko) 발광 장치
KR101592201B1 (ko) 발광 장치 및 그 제조 방법
KR20100003321A (ko) 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및발광 장치의 제조 방법
KR20100024231A (ko) 광추출 효율이 향상된 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및 발광 장치의 제조 방법
KR101585102B1 (ko) 발광 소자 및 그 제조 방법
KR20100008656A (ko) 발광 소자 및 발광 장치의 제조 방법, 상기 제조 방법에의해 제조된 발광 소자 및 발광 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20180228

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190228

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200228

Year of fee payment: 6