JP2023009058A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2023009058A
JP2023009058A JP2022166785A JP2022166785A JP2023009058A JP 2023009058 A JP2023009058 A JP 2023009058A JP 2022166785 A JP2022166785 A JP 2022166785A JP 2022166785 A JP2022166785 A JP 2022166785A JP 2023009058 A JP2023009058 A JP 2023009058A
Authority
JP
Japan
Prior art keywords
film
oxide semiconductor
insulating film
semiconductor film
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2022166785A
Other languages
English (en)
Inventor
舜平 山崎
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2023009058A publication Critical patent/JP2023009058A/ja
Priority to JP2024019606A priority Critical patent/JP2024052769A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

【課題】酸化物半導体膜を有するトランジスタにおいて、電界効果移動度を向上させると共に信頼性を向上させる。【解決手段】酸化物半導体膜を有する半導体装置であって、半導体装置は、ゲート電極と、ゲート電極上の絶縁膜と、絶縁膜上の酸化物半導体膜と、酸化物半導体膜上の一対の電極と、を有し、酸化物半導体膜は、第1の酸化物半導体膜と、第1の酸化物半導体膜上の第2の酸化物半導体膜と、第2の酸化物半導体膜上の第3の酸化物半導体膜と、を有し、第1乃至第3の酸化物半導体膜は、それぞれ、同じ元素を有し、第2の酸化物半導体膜は、第1の酸化物半導体膜及び第3の酸化物半導体膜よりも、キャリア密度が高い領域を有する。【選択図】図1

Description

本発明の一態様は、酸化物半導体膜を有する半導体装置及び該半導体装置を有する表示
装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明
の一態様の技術分野は、物、方法、または、製造方法に関する。または、本発明の一態様
は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マ
ター)に関する。特に、本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置
、記憶装置、それらの駆動方法、またはそれらの製造方法に関する。
なお、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる
装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶
装置は、半導体装置の一態様である。撮像装置、表示装置、液晶表示装置、発光装置、電
気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等を含む)、及び電子機器は、
半導体装置を有している場合がある。
トランジスタに適用可能な半導体材料として、酸化物半導体が注目されている。例えば
、特許文献1では、複数の酸化物半導体層を積層し、当該複数の酸化物半導体層の中で、
チャネルとなる酸化物半導体層がインジウム及びガリウムを含み、且つインジウムの割合
をガリウムの割合よりも大きくすることで、電界効果移動度(単に移動度、またはμFE
という場合がある)を高めた半導体装置が開示されている。
また、非特許文献1では、インジウムと、ガリウムと、亜鉛とを有する酸化物半導体は
、In1-xGa1+x(ZnO)(xは-1≦x≦1を満たす数、mは自然数)
で表されるホモロガス相を有することについて開示されている。また、非特許文献1では
、ホモロガス相の固溶域(solid solution range)について開示さ
れている。例えば、m=1の場合のホモロガス相の固溶域は、xが-0.33から0.0
8の範囲であり、m=2の場合のホモロガス相の固溶域は、xが-0.68から0.32
の範囲である。
特開2014-7399号公報
M. Nakamura, N. Kimizuka, and T. Mohri、「The Phase Relations in the In2O3-Ga2ZnO4-ZnO System at 1350℃」、J. Solid State Chem.、1991、Vol.93, pp.298-315
酸化物半導体膜をチャネル領域に用いるトランジスタとしては、電界効果移動度が高い
方が好ましい。しかしながら、トランジスタの電界効果移動度を高めると、トランジスタ
の特性がノーマリーオンの特性になりやすいといった問題がある。なお、ノーマリーオン
とは、ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れ
てしまう状態のことである。
また、酸化物半導体膜をチャネル領域に用いるトランジスタにおいて、酸化物半導体膜
中に形成される酸素欠損は、トランジスタ特性に影響を与えるため問題となる。例えば、
酸化物半導体膜中に酸素欠損が形成されると、該酸素欠損に水素が結合し、キャリア供給
源となる。酸化物半導体膜中にキャリア供給源が生成されると、酸化物半導体膜を有する
トランジスタの電気特性の変動、代表的にはしきい値電圧のシフトが生じる。
例えば、酸化物半導体膜中に酸素欠損が多すぎると、トランジスタのしきい値電圧がマ
イナス側にシフトしてしまい、ノーマリーオンの特性になる。よって、酸化物半導体膜中
、特にチャネル領域においては、酸素欠損が少ない、あるいはノーマリーオンの特性にな
らない程度の酸素欠損量であることが好ましい。
上記問題に鑑み、本発明の一態様は、酸化物半導体膜を有するトランジスタにおいて、
電界効果移動度を向上させると共に信頼性を向上させることを課題の1つとする。または
、本発明の一態様は、酸化物半導体膜を有するトランジスタにおいて、電気特性の変動を
抑制すると共に、信頼性を向上させることを課題の1つとする。または、本発明の一態様
は、消費電力が低減された半導体装置を提供することを課題の1つとする。または、本発
明の一態様は、新規な半導体装置を提供することを課題の1つとする。または、本発明の
一態様は、新規な表示装置を提供することを課題の1つとする。
なお、上記の課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一
態様は、必ずしも、これらの課題の全てを解決する必要はない。上記以外の課題は、明細
書等の記載から自ずと明らかになるものであり、明細書等の記載から上記以外の課題を抽
出することが可能である。
本発明の一態様は、酸化物半導体膜を有する半導体装置であって、半導体装置は、ゲー
ト電極と、ゲート電極上の絶縁膜と、絶縁膜上の酸化物半導体膜と、酸化物半導体膜上の
一対の電極と、を有し、酸化物半導体膜は、第1の酸化物半導体膜と、第1の酸化物半導
体膜上の第2の酸化物半導体膜と、第2の酸化物半導体膜上の第3の酸化物半導体膜と、
を有し、第1乃至第3の酸化物半導体膜は、それぞれ、同じ元素を有し、第2の酸化物半
導体膜は、第1の酸化物半導体膜及び第3の酸化物半導体膜よりも、キャリア密度が高い
領域を有する半導体装置である。
また、本発明の他の一態様は、酸化物半導体膜を有する半導体装置であって、半導体装
置は、第1のゲート電極と、第1のゲート電極上の第1の絶縁膜と、第1の絶縁膜上の酸
化物半導体膜と、酸化物半導体膜上の一対の電極と、酸化物半導体膜、一対の電極上の第
2の絶縁膜と、第2の絶縁膜上の第2のゲート電極と、を有し、酸化物半導体膜は、第1
の酸化物半導体膜と、第1の酸化物半導体膜上の第2の酸化物半導体膜と、第2の酸化物
半導体膜上の第3の酸化物半導体膜と、を有し、第1乃至第3の酸化物半導体膜は、それ
ぞれ、同じ元素を有し、第2の酸化物半導体膜は、第1の酸化物半導体膜及び第3の酸化
物半導体膜よりも、キャリア密度が高い領域を有する半導体装置である。
また、本発明の他の一態様は、酸化物半導体膜を有する半導体装置であって、半導体装
置は、第1のゲート電極と、第1のゲート電極上の第1の絶縁膜と、第1の絶縁膜上の酸
化物半導体膜と、酸化物半導体膜上の一対の電極と、酸化物半導体膜、一対の電極上の第
2の絶縁膜と、第2の絶縁膜上の第2のゲート電極と、を有し、第1のゲート電極、及び
第2のゲート電極は、第1の絶縁膜及び第2の絶縁膜に設けられる開口部において接続さ
れ、且つ、酸化物半導体膜の側端部よりも外側に位置する領域を有し、酸化物半導体膜は
、第1の酸化物半導体膜と、第1の酸化物半導体膜上の第2の酸化物半導体膜と、第2の
酸化物半導体膜上の第3の酸化物半導体膜と、を有し、第1乃至第3の酸化物半導体膜は
、それぞれ、同じ元素を有し、第2の酸化物半導体膜は、第1の酸化物半導体膜及び第3
の酸化物半導体膜よりも、キャリア密度が高い領域を有する半導体装置である。
また、上記態様において、第2の酸化物半導体膜は、窒素元素を有すると好ましい。ま
た、上記態様において、第2の酸化物半導体膜は、第1の酸化物半導体膜及び第3の酸化
物半導体膜よりも、窒素濃度が高い領域を有すると好ましい。
また、上記態様において、第1乃至第3の酸化物半導体膜は、それぞれ独立に、Inと
、M(MはAl、Ga、Y、またはSn)と、Znと、を有すると好ましい。また、上記
態様において、第1乃至第3の酸化物半導体膜は、それぞれ独立に、結晶部を有し、結晶
部は、c軸配向性を有すると好ましい。
また、本発明の他の一態様は、酸化物半導体膜を有する半導体装置であって、半導体装
置は、第1の絶縁膜と、第1の絶縁膜上の酸化物半導体膜と、酸化物半導体膜上の第2の
絶縁膜及び第3の絶縁膜と、第2絶縁膜上のゲート電極と、を有し、酸化物半導体膜は、
第1の絶縁膜と接する第1の領域と、第2の絶縁膜と接する第2の領域と、第3の絶縁膜
と接する第3の領域と、を有し、第1の領域は、第2の領域よりもキャリア密度が高い領
域を有し、第3の領域は、第2の領域よりもキャリア密度が高い領域を有する半導体装置
である。
また、本発明の他の一態様は、酸化物半導体膜を有する半導体装置であって、半導体装
置は、第1のゲート電極と、第1のゲート電極上の第1の絶縁膜と、第1の絶縁膜上の酸
化物半導体膜と、酸化物半導体膜上の第2の絶縁膜及び第3の絶縁膜と、第2絶縁膜上の
第2のゲート電極と、を有し、酸化物半導体膜は、第1の絶縁膜と接する第1の領域と、
第2の絶縁膜と接する第2の領域と、第3の絶縁膜と接する第3の領域と、を有し、第1
の領域は、第2の領域よりもキャリア密度が高い領域を有し、第3の領域は、第2の領域
よりもキャリア密度が高い領域を有する半導体装置である。
また、本発明の他の一態様は、酸化物半導体膜を有する半導体装置であって、半導体装
置は、第1のゲート電極と、第1のゲート電極上の第1の絶縁膜と、第1の絶縁膜上の酸
化物半導体膜と、酸化物半導体膜上の第2の絶縁膜及び第3の絶縁膜と、第2絶縁膜上の
第2のゲート電極と、を有し、第1のゲート電極、及び第2のゲート電極は、第1の絶縁
膜及び第2の絶縁膜に設けられる開口部において接続され、且つ、酸化物半導体膜の側端
部よりも外側に位置する領域を有し、酸化物半導体膜は、第1の絶縁膜と接する第1の領
域と、第2の絶縁膜と接する第2の領域と、第3の絶縁膜と接する第3の領域と、を有し
、第1の領域は、第2の領域よりもキャリア密度が高い領域を有し、第3の領域は、第2
の領域よりもキャリア密度が高い領域を有する半導体装置である。
また、上記態様において、第1の領域は、窒素元素を有すると好ましい。また、上記態
様において、第1の領域は、第2の領域よりも、窒素濃度が高い領域を有すると好ましい
また、上記態様において、酸化物半導体膜は、Inと、M(MはAl、Ga、Y、また
はSn)と、Znと、を有すると好ましい。また、上記態様において、酸化物半導体膜は
、結晶部を有し、結晶部は、c軸配向性を有すると好ましい。
また、本発明の他の一態様は、上記各態様にいずれか一つに記載の半導体装置と、表示
素子と、を有する表示装置である。また、本発明の他の一態様は、該表示装置とタッチセ
ンサとを有する表示モジュールである。また、本発明の他の一態様は、上記態様にいずれ
か一つに記載の半導体装置、上記表示装置、または上記表示モジュールと、操作キーまた
はバッテリとを有する電子機器である。
本発明の一態様により、酸化物半導体膜を有するトランジスタにおいて、電界効果移動
度を向上させると共に信頼性を向上させることができる。または、本発明の一態様により
、酸化物半導体膜を有するトランジスタにおいて、電気特性の変動を抑制すると共に、信
頼性を向上させることができる。または、本発明の一態様により、消費電力が低減された
半導体装置を提供することができる。または、本発明の一態様により、新規な半導体装置
を提供することができる。または、本発明の一態様により、新規な表示装置を提供するこ
とができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の
一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の効果を抽出することが可能である。
半導体装置を説明する上面図及び断面図。 半導体装置を説明する上面図及び断面図。 半導体装置を説明する上面図及び断面図。 半導体装置の作製方法を説明する断面図。 半導体装置の作製方法を説明する断面図。 半導体装置の作製方法を説明する断面図。 半導体装置の作製方法を説明する断面図。 半導体装置を説明する上面図及び断面図。 半導体装置を説明する上面図及び断面図。 半導体装置を説明する断面図。 半導体装置を説明する断面図。 半導体装置の作製方法を説明する断面図。 半導体装置の作製方法を説明する断面図。 半導体装置の作製方法を説明する断面図。 酸化物半導体の原子数比の範囲を説明する図。 InMZnOの結晶を説明する図。 CAAC-OS及び単結晶酸化物半導体のXRDによる構造解析を説明する図、ならびにCAAC-OSの制限視野電子回折パターンを示す図。 CAAC-OSの断面TEM像、ならびに平面TEM像及びその画像解析像。 nc-OSの電子回折パターンを示す図、及びnc-OSの断面TEM像。 a-like OSの断面TEM像。 In-Ga-Zn酸化物の電子照射による結晶部の変化を示す図。 表示装置の一態様を示す上面図。 表示装置の一態様を示す断面図。 表示装置の一態様を示す断面図。 表示装置の一態様を示す断面図。 表示装置の一態様を示す断面図。 表示装置の一態様を示す断面図。 EL層の作製方法を説明する断面図。 液滴吐出装置を説明する概念図。 表示装置を説明するブロック図及び回路図。 本発明の一態様を説明するための回路図およびタイミングチャート。 本発明の一態様を説明するためのグラフおよび回路図。 本発明の一態様を説明するための回路図およびタイミングチャート。 本発明の一態様を説明するための回路図およびタイミングチャート。 本発明の一態様を説明するためのブロック図、回路図および波形図。 本発明の一態様を説明するための回路図およびタイミングチャート。 本発明の一態様を説明するための回路図。 本発明の一態様を説明するための回路図。 表示モジュールを説明する図。 電子機器を説明する図。 電子機器を説明する図。 表示装置を説明する斜視図。
以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの
異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形
態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明
は、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている
場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を
模式的に示したものであり、図面に示す形状又は値などに限定されない。
また、本明細書にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の
混同を避けるために付したものであり、数的に限定するものではないことを付記する。
また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位
置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関
係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明し
た語句に限定されず、状況に応じて適切に言い換えることができる。
また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含
む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイ
ン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間
にチャネル領域を有しており、ドレインとチャネル領域とソースとを介して電流を流すこ
とができるものである。なお、本明細書等において、チャネル領域とは、電流が主として
流れる領域をいう。
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路
動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明
細書等においては、ソースやドレインの用語は、入れ替えて用いることができるものとす
る。
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するも
の」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するも
の」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない
。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジス
タなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有
する素子などが含まれる。
また、本明細書等において、「平行」とは、二つの直線が-10°以上10°以下の角
度で配置されている状態をいう。したがって、-5°以上5°以下の場合も含まれる。ま
た、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態を
いう。したがって、85°以上95°以下の場合も含まれる。
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ
替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変
更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」
という用語に変更することが可能な場合がある。
また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ
状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態と
は、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧V
gsがしきい値電圧Vthよりも低い状態、pチャネル型トランジスタでは、ゲートとソ
ースの間の電圧Vgsがしきい値電圧Vthよりも高い状態をいう。例えば、nチャネル
型のトランジスタのオフ電流とは、ゲートとソースの間の電圧Vgsがしきい値電圧Vt
hよりも低いときのドレイン電流を言う場合がある。
トランジスタのオフ電流は、Vgsに依存する場合がある。従って、トランジスタのオ
フ電流がI以下である、とは、トランジスタのオフ電流がI以下となるVgsの値が存在
することを言う場合がある。トランジスタのオフ電流は、所定のVgsにおけるオフ状態
、所定の範囲内のVgsにおけるオフ状態、または、十分に低減されたオフ電流が得られ
るVgsにおけるオフ状態、等におけるオフ電流を指す場合がある。
一例として、しきい値電圧Vthが0.5Vであり、Vgsが0.5Vにおけるドレイ
ン電流が1×10-9Aであり、Vgsが0.1Vにおけるドレイン電流が1×10-1
Aであり、Vgsが-0.5Vにおけるドレイン電流が1×10-19Aであり、Vg
sが-0.8Vにおけるドレイン電流が1×10-22Aであるようなnチャネル型トラ
ンジスタを想定する。当該トランジスタのドレイン電流は、Vgsが-0.5Vにおいて
、または、Vgsが-0.5V乃至-0.8Vの範囲において、1×10-19A以下で
あるから、当該トランジスタのオフ電流は1×10-19A以下である、と言う場合があ
る。当該トランジスタのドレイン電流が1×10-22A以下となるVgsが存在するた
め、当該トランジスタのオフ電流は1×10-22A以下である、と言う場合がある。
また、本明細書等では、チャネル幅Wを有するトランジスタのオフ電流を、チャネル幅
Wあたりを流れる電流値で表す場合がある。また、所定のチャネル幅(例えば1μm)あ
たりを流れる電流値で表す場合がある。後者の場合、オフ電流の単位は、電流/長さの次
元を持つ単位(例えば、A/μm)で表される場合がある。
トランジスタのオフ電流は、温度に依存する場合がある。本明細書において、オフ電流
は、特に記載がない場合、室温、60℃、85℃、95℃、または125℃におけるオフ
電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等の信頼性が保
証される温度、または、当該トランジスタが含まれる半導体装置等が使用される温度(例
えば、5℃乃至35℃のいずれか一の温度)におけるオフ電流、を表す場合がある。トラ
ンジスタのオフ電流がI以下である、とは、室温、60℃、85℃、95℃、125℃、
当該トランジスタが含まれる半導体装置の信頼性が保証される温度、または、当該トラン
ジスタが含まれる半導体装置等が使用される温度(例えば、5℃乃至35℃のいずれか一
の温度)、におけるトランジスタのオフ電流がI以下となるVgsの値が存在することを
指す場合がある。
トランジスタのオフ電流は、ドレインとソースの間の電圧Vdsに依存する場合がある
。本明細書において、オフ電流は、特に記載がない場合、Vdsが0.1V、0.8V、
1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、また
は20Vにおけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導
体装置等の信頼性が保証されるVds、または、当該トランジスタが含まれる半導体装置
等において使用されるVdsにおけるオフ電流、を表す場合がある。トランジスタのオフ
電流がI以下である、とは、Vdsが0.1V、0.8V、1V、1.2V、1.8V,
2.5V、3V、3.3V、10V、12V、16V、20V、当該トランジスタが含ま
れる半導体装置の信頼性が保証されるVds、または、当該トランジスタが含まれる半導
体装置等において使用されるVds、におけるトランジスタのオフ電流がI以下となるV
gsの値が存在することを指す場合がある。
上記オフ電流の説明において、ドレインをソースと読み替えてもよい。つまり、オフ電
流は、トランジスタがオフ状態にあるときのソースを流れる電流を言う場合もある。
また、本明細書等では、オフ電流と同じ意味で、リーク電流と記載する場合がある。ま
た、本明細書等において、オフ電流とは、例えば、トランジスタがオフ状態にあるときに
、ソースとドレインとの間に流れる電流を指す場合がある。
また、本明細書等において、トランジスタのしきい値電圧とは、トランジスタにチャネ
ルが形成されたときのゲート電圧(Vg)を指す。具体的には、トランジスタのしきい値
電圧とは、ゲート電圧(Vg)を横軸に、ドレイン電流(Id)の平方根を縦軸にプロッ
トした曲線(Vg-√Id特性)において、最大傾きである接線を外挿したときの直線と
、ドレイン電流(Id)の平方根が0(Idが0A)との交点におけるゲート電圧(Vg
)を指す場合がある。あるいは、トランジスタのしきい値電圧とは、チャネル長をL、チ
ャネル幅をWとし、Id[A]×L[μm]/W[μm]の値が1×10-9[A]とな
るゲート電圧(Vg)を指す場合がある。
また、本明細書等において、「半導体」と表記した場合であっても、例えば、導電性が
十分に低い場合は、「絶縁体」としての特性を有する場合がある。また、「半導体」と「
絶縁体」とは境界が曖昧であり、厳密に区別できない場合がある。したがって、本明細書
等に記載の「半導体」は、「絶縁体」に言い換えることが可能な場合がある。同様に、本
明細書等に記載の「絶縁体」は、「半導体」に言い換えることが可能な場合がある。また
は、本明細書等に記載の「絶縁体」を「半絶縁体」に言い換えることが可能な場合がある
また、本明細書等において、「半導体」と表記した場合であっても、例えば、導電性が
十分に高い場合は、「導電体」としての特性を有する場合がある。また、「半導体」と「
導電体」とは境界が曖昧であり、厳密に区別できない場合がある。したがって、本明細書
等に記載の「半導体」は、「導電体」に言い換えることが可能な場合がある。同様に、本
明細書等に記載の「導電体」は、「半導体」に言い換えることが可能な場合がある。
また、本明細書等において、半導体の不純物とは、半導体膜を構成する主成分以外をい
う。例えば、濃度が0.1原子%未満の元素は不純物である。不純物が含まれることによ
り、半導体にDOS(Density of States)が形成されることや、キャ
リア移動度が低下することや、結晶性が低下することなどが起こる場合がある。半導体が
酸化物半導体を有する場合、半導体の特性を変化させる不純物としては、例えば、第1族
元素、第2族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特
に、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、
窒素などがある。酸化物半導体の場合、例えば水素などの不純物の混入によって酸素欠損
を形成する場合がある。また、半導体がシリコンを有する場合、半導体の特性を変化させ
る不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、
第15族元素などがある。
また、本明細書等において、金属酸化物(metal oxide)とは、広い表現で
の金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体
を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSとも
いう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当
該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETと記載する場
合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することがで
きる。
また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal ox
ide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(me
tal oxynitride)と呼称してもよい。
また、本明細書等において、CAAC(c-axis aligned crysta
l)、及びCAC(cloud-aligned composite)と記載する場合
がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一
例を表す。
酸化物半導体または金属酸化物の結晶構造の一例について説明する。なお、以下では、
In-Ga-Zn酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])
を用いて、スパッタリング法にて成膜された酸化物半導体を一例として説明する。上記タ
ーゲットを用いて、基板温度を100℃以上130℃以下として、スパッタリング法によ
り形成した酸化物半導体をsIGZOと呼称し、上記ターゲットを用いて、基板温度を室
温(R.T.)として、スパッタリング法により形成した酸化物半導体をtIGZOと呼
称する。例えば、sIGZOは、nc(nano crystal)及びCAACのいず
れか一方または双方の結晶構造を有する。また、tIGZOは、ncの結晶構造を有する
。なお、ここでいう室温(R.T.)とは、基板を意図的に加熱しない場合の温度を含む
また、本明細書等において、CAC-OSまたはCAC-metal oxideとは
、材料の一部では導電体の機能と、材料の一部では誘電体(または絶縁体)の機能とを有
し、材料の全体では半導体としての機能を有する。なお、CAC-OSまたはCAC-m
etal oxideを、トランジスタの活性層に用いる場合、導電体は、キャリアとな
る電子(またはホール)を流す機能を有し、誘電体は、キャリアとなる電子を流さない機
能を有する。導電体としての機能と、誘電体としての機能とを、それぞれ相補的に作用さ
せることで、スイッチングさせる機能(On/Offさせる機能)をCAC-OSまたは
CAC-metal oxideに付与することができる。CAC-OSまたはCAC-
metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最
大限に高めることができる。
また、本明細書等において、CAC-OSまたはCAC-metal oxideは、
導電体領域、及び誘電体領域を有する。導電体領域は、上述の導電体の機能を有し、誘電
体領域は、上述の誘電体の機能を有する。また、材料中において、導電体領域と、誘電体
領域とは、ナノ粒子レベルで分離している場合がある。また、導電体領域と、誘電体領域
とは、それぞれ材料中に偏在する場合がある。また、導電体領域は、周辺がぼけてクラウ
ド状に連結して観察される場合がある。
すなわち、CAC-OSまたはCAC-metal oxideは、マトリックス複合
材(matrix composite)、または金属マトリックス複合材(metal
matrix composite)と呼称することもできる。
また、CAC-OSまたはCAC-metal oxideにおいて、導電体領域と、
誘電体領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3n
m以下のサイズで材料中に分散している場合がある。
(実施の形態1)
本実施の形態では、本発明の一態様の半導体装置及び半導体装置の作製方法について、
図1乃至図7を参照して説明する。
<1-1.半導体装置の構成例1>
図1(A)は、本発明の一態様の半導体装置であるトランジスタ100の上面図であり
、図1(B)は、図1(A)に示す一点鎖線X1-X2間における切断面の断面図に相当
し、図1(C)は、図1(A)に示す一点鎖線Y1-Y2間における切断面の断面図に相
当する。なお、図1(A)において、煩雑になることを避けるため、トランジスタ100
の構成要素の一部(ゲート絶縁膜として機能する絶縁膜等)を省略して図示している。ま
た、一点鎖線X1-X2方向をチャネル長方向、一点鎖線Y1-Y2方向をチャネル幅方
向と呼称する場合がある。なお、トランジスタの上面図においては、以降の図面において
も図1(A)と同様に、構成要素の一部を省略して図示する場合がある。
トランジスタ100は、基板102上の導電膜104と、基板102及び導電膜104
上の絶縁膜106と、絶縁膜106上の酸化物半導体膜108と、酸化物半導体膜108
上の導電膜112aと、酸化物半導体膜108上の導電膜112bと、を有する。また、
トランジスタ100上、具体的には、酸化物半導体膜108、導電膜112a、及び導電
膜112b上には、絶縁膜114と、絶縁膜114上の絶縁膜116と、絶縁膜116上
の絶縁膜118とが形成されている。
なお、トランジスタ100は、所謂チャネルエッチ型のトランジスタである。
また、酸化物半導体膜108は、絶縁膜106上の酸化物半導体膜108i_1と、酸
化物半導体膜108i_1上の酸化物半導体膜108nと、酸化物半導体膜108n上の
酸化物半導体膜108i_2と、を有する。なお、酸化物半導体膜108i_1、酸化物
半導体膜108n、及び酸化物半導体膜108i_2は、それぞれ同じ元素を有する。例
えば、酸化物半導体膜108i_1、酸化物半導体膜108n、及び酸化物半導体膜10
8i_2は、それぞれ独立に、Inと、M(MはAl、Ga、Y、またはSn)と、Zn
と、を有すると好ましい。
また、酸化物半導体膜108i_1、酸化物半導体膜108n、及び酸化物半導体膜1
08i_2は、それぞれ独立に、Inの原子数比がMの原子数比より多い領域を有すると
好ましい。
例えば、酸化物半導体膜108i_1のIn、M、及びZnの原子数の比を、In:M
:Zn=4:2:3近傍とすると好ましい。また、酸化物半導体膜108nのIn、M、
及びZnの原子数の比を、In:M:Zn=4:2:3近傍とすると好ましい。また、酸
化物半導体膜108i_2のIn、M、及びZnの原子数の比を、In:M:Zn=4:
2:3近傍とすると好ましい。ここで、近傍とは、Inが4の場合、Mが1.5以上2.
5以下であり、且つZnが2以上4以下を含む。
酸化物半導体膜108i_1、酸化物半導体膜108n、及び酸化物半導体膜108i
_2が、それぞれ独立に、Inの原子数比がMの原子数比より多い領域を有することで、
トランジスタ100の電界効果移動度を高くすることができる。具体的には、トランジス
タ100の電界効果移動度が10cm/Vsを超える、さらに好ましくはトランジスタ
100の電界効果移動度が30cm/Vsを超えることが可能となる。
例えば、上記の電界効果移動度が高いトランジスタを、ゲート信号を生成するゲートド
ライバ(とくに、ゲートドライバが有するシフトレジスタの出力端子に接続されるデマル
チプレクサ)に用いることで、額縁幅の狭い(狭額縁ともいう)半導体装置または表示装
置を提供することができる。
一方で、酸化物半導体膜108i_1、酸化物半導体膜108n、及び酸化物半導体膜
108i_2が、それぞれ独立に、Inの原子数比がMの原子数比より多い領域を有する
場合、ゲートバイアス熱ストレス(Gate Bias Temperature St
ress:GBTともいう)試験時にトランジスタ100の電気特性が変動、例えばトラ
ンジスタのしきい値電圧が変動する場合がある。
しかしながら、本発明の一態様の半導体装置においては、酸化物半導体膜108nは、
酸化物半導体膜108i_1及び酸化物半導体膜108i_2よりも、キャリア密度が高
い領域を有する。
酸化物半導体膜108nのキャリア密度を高めることにより、酸化物半導体膜108n
の伝導帯に対してフェルミ準位が相対的に高くなる場合がある。これにより、酸化物半導
体膜108nの伝導帯の下端が低くなり、酸化物半導体膜108nの伝導帯下端と、ゲー
ト絶縁膜(ここでは、絶縁膜106)中に形成されうるトラップ準位とのエネルギー差が
大きくなる場合がある。該エネルギー差が大きくなることにより、ゲート絶縁膜中にトラ
ップされる電荷が少なくなり、GBT試験における、トランジスタのしきい値電圧の変動
を小さくできる場合がある。
また、酸化物半導体膜108に混入する水素または水分などの不純物は、トランジスタ
特性に影響を与えるため問題となる。したがって、酸化物半導体膜108、特に酸化物半
導体膜108i_1及び酸化物半導体膜108i_2においては、水素または水分などの
不純物が少ないほど好ましい。また、酸化物半導体膜108に形成される酸素欠損は、ト
ランジスタ特性に影響を与えるため問題となる。例えば、酸化物半導体膜108中に酸素
欠損が形成されると、該酸素欠損に水素が結合し、キャリア供給源となる。酸化物半導体
膜108中にキャリア供給源が生成されると、酸化物半導体膜108を有するトランジス
タ100の電気特性の変動、代表的にはしきい値電圧のシフトが生じる。したがって、酸
化物半導体膜108、特に酸化物半導体膜108i_1及び酸化物半導体膜108i_2
においては、酸素欠損が少ないほど好ましい。
そこで、本発明の一態様においては、酸化物半導体膜108近傍の絶縁膜、具体的には
、酸化物半導体膜108の上方に形成される絶縁膜114、116が過剰酸素を含有する
構成である。絶縁膜114、116から酸化物半導体膜108へ酸素または過剰酸素を移
動させることで、酸化物半導体膜中の酸素欠損を低減することが可能となる。
なお、酸化物半導体膜108としては、不純物濃度が低く、欠陥準位密度の低い酸化物
半導体膜を用いることで、優れた電気特性を有するトランジスタを作製することができ好
ましい。ここでは、不純物濃度が低く、欠陥準位密度の低い(酸素欠損の少ない)ことを
高純度真性または実質的に高純度真性とよぶ。高純度真性または実質的に高純度真性であ
る酸化物半導体膜は、キャリア発生源が少ないため、キャリア密度を低くすることができ
る。従って、該酸化物半導体膜にチャネル領域が形成されるトランジスタは、しきい値電
圧がマイナスとなる電気特性(ノーマリーオンともいう。)になることが少ない。また、
高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため
、トラップ準位密度も低くなる場合がある。また、高純度真性または実質的に高純度真性
である酸化物半導体膜は、オフ電流が著しく小さく、チャネル幅が1×10μmでチャ
ネル長Lが10μmの素子であっても、ソース電極とドレイン電極間の電圧(ドレイン電
圧)が1Vから10Vの範囲において、オフ電流が、半導体パラメータアナライザの測定
限界以下、すなわち1×10-13A以下という特性を得ることができる。
例えば、酸化物半導体膜108のキャリア密度は、1×10cm-3以上1×10
cm-3未満が好ましく、1×10cm-3以上1×1017cm-3以下がより好
ましく、1×10cm-3以上5×1016cm-3以下がさらに好ましく、1×10
10cm-3以上1×1016cm-3以下がさらに好ましく、1×1011cm-3
上1×1015cm-3以下がさらに好ましい。
また、本発明の一態様においては、酸化物半導体膜108のキャリア密度を高めるため
に、酸化物半導体膜108を酸化物半導体膜108i_1と、酸化物半導体膜108nと
、酸化物半導体膜108i_2との3層の積層構造としている。酸化物半導体膜108n
は、酸化物半導体膜108i_1及び酸化物半導体膜108i_2よりも、キャリア密度
が高い領域を有する。
酸化物半導体膜108nのキャリア密度を高めるためには、例えば、酸化物半導体膜1
08i_1及び酸化物半導体膜108i_2よりもわずかに酸素欠損量を増やす、あるい
は酸化物半導体膜108i_1及び酸化物半導体膜108i_2よりもわずかに不純物濃
度を増やせばよい。
酸化物半導体膜108nのキャリア密度を高めるためには、酸化物半導体膜108nに
酸素欠損を形成する元素を添加し、当該酸素欠損と水素等とを結合させればよい。当該酸
素欠損を形成する元素としては、代表的には、水素、ホウ素、炭素、窒素、フッ素、リン
、硫黄、塩素、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、
ネオン、アルゴン、クリプトン、及びキセノン等がある。なお、酸化物半導体膜中に酸素
欠損を形成する元素としては、上述した元素の中でも、窒素が特に好ましい。
例えば、酸化物半導体膜108nの形成時において、成膜ガスとしてアルゴンガスと一
酸化二窒素ガスとを用いて形成することで、酸化物半導体膜108n中に窒素元素を有す
る構成とすることができる。この場合、酸化物半導体膜108nは、酸化物半導体膜10
8i_1及び酸化物半導体膜108i_2よりも窒素濃度が高い領域を有する。
すなわち、酸化物半導体膜108nは、キャリア密度が高められ、わずかにn型である
。別言すると、キャリア密度が高められた酸化物半導体膜を、「Slightly-n」
と呼称する場合がある。
例えば、トランジスタのゲートに印加する電圧(Vg)が0Vを超えて30V以下の場
合において、酸化物半導体膜108nのキャリア密度は、1×1016cm-3を超えて
1×1018cm-3未満が好ましく、1×1016cm-3を超えて1×1017cm
-3以下がより好ましい。
また、酸化物半導体膜108nのキャリア密度を高めた場合、酸化物半導体膜108n
は、酸化物半導体膜108i_1及び酸化物半導体膜108i_2よりも結晶性が低くな
る場合がある。この場合、酸化物半導体膜108は、結晶性が高い酸化物半導体膜と、結
晶性が低い酸化物半導体膜と、結晶性が高い酸化物半導体膜との積層構造となる。また、
酸化物半導体膜の結晶性と、酸化物半導体膜の膜密度との間には相関があり、結晶性が高
い酸化物半導体膜ほど膜密度が高い。したがって、酸化物半導体膜108は、膜密度が高
い酸化物半導体膜と、膜密度が低い酸化物半導体膜と、膜密度が高い酸化物半導体膜との
積層構造となる。
なお、酸化物半導体膜108の結晶性としては、例えば、X線回折(XRD:X-Ra
y Diffraction)を用いて分析する、あるいは、透過型電子顕微鏡(TEM
:Transmission Electron Microscope)を用いて分析
することで解析することができる。また、酸化物半導体膜108の膜密度としては、例え
ば、X線反射率法(XRR:X-ray Reflectometer)を用いることで
測定することができる。
以上のように、本発明の一態様の半導体装置においては、酸化物半導体膜を3層の積層
構造とし、キャリアが流れる中央の層は、上下の層よりも酸素欠損あるいは不純物濃度が
多いためキャリア密度が高い。また、酸化物半導体膜108の3層の積層構造のうち、上
下の層においては、中央の層よりも酸素欠損あるいは不純物濃度が低減されている。した
がって、本発明の一態様の半導体装置においては、トランジスタの電界効果移動度を向上
させると共に信頼性を向上させることが実現できる。
なお、図1(A)(B)(C)に示すトランジスタ100において、絶縁膜106は、
トランジスタ100のゲート絶縁膜としての機能を有し、絶縁膜114、116、118
は、トランジスタ100の保護絶縁膜としての機能を有する。また、トランジスタ100
において、導電膜104は、ゲート電極としての機能を有し、導電膜112aは、ソース
電極としての機能を有し、導電膜112bは、ドレイン電極としての機能を有する。なお
、本明細書等において、絶縁膜106を第1の絶縁膜と、絶縁膜114、116を第2の
絶縁膜と、絶縁膜118を第3の絶縁膜と、それぞれ呼称する場合がある。
<1-2.半導体装置の構成要素>
次に、本実施の形態の半導体装置に含まれる構成要素について、詳細に説明する。
[基板]
基板102の材質などに大きな制限はないが、少なくとも、後の熱処理に耐えうる程度
の耐熱性を有している必要がある。例えば、ガラス基板、セラミック基板、石英基板、サ
ファイア基板等を、基板102として用いてもよい。また、シリコンや炭化シリコンを材
料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体
基板、SOI基板等を適用することも可能であり、これらの基板上に半導体素子が設けら
れたものを、基板102として用いてもよい。なお、基板102として、ガラス基板を用
いる場合、第6世代(1500mm×1850mm)、第7世代(1870mm×220
0mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×280
0mm)、第10世代(2950mm×3400mm)等の大面積基板を用いることで、
大型の表示装置を作製することができる。
また、基板102として、可撓性基板を用い、可撓性基板上に直接、トランジスタ10
0を形成してもよい。または、基板102とトランジスタ100の間に剥離層を設けても
よい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板102より
分離し、他の基板に転載するのに用いることができる。その際、トランジスタ100は耐
熱性の劣る基板や可撓性の基板にも転載できる。
[導電膜]
ゲート電極として機能する導電膜104、ソース電極として機能する導電膜112a、
ドレイン電極として機能する導電膜112bとしては、クロム(Cr)、銅(Cu)、ア
ルミニウム(Al)、金(Au)、銀(Ag)、亜鉛(Zn)、モリブデン(Mo)、タ
ンタル(Ta)、チタン(Ti)、タングステン(W)、マンガン(Mn)、ニッケル(
Ni)、鉄(Fe)、コバルト(Co)から選ばれた金属元素、または上述した金属元素
を成分とする合金か、上述した金属元素を組み合わせた合金等を用いてそれぞれ形成する
ことができる。
また、導電膜104、112a、112bには、インジウムと錫とを有する酸化物(I
n-Sn酸化物)、インジウムとタングステンとを有する酸化物(In-W酸化物)、イ
ンジウムとタングステンと亜鉛とを有する酸化物(In-W-Zn酸化物)、インジウム
とチタンとを有する酸化物(In-Ti酸化物)、インジウムとチタンと錫とを有する酸
化物(In-Ti-Sn酸化物)、インジウムと亜鉛とを有する酸化物(In-Zn酸化
物)、インジウムと錫とシリコンとを有する酸化物(In-Sn-Si酸化物)、インジ
ウムとガリウムと亜鉛とを有する酸化物(In-Ga-Zn酸化物)等の酸化物導電体ま
たは酸化物半導体を適用することもできる。
ここで、酸化物導電体について説明を行う。本明細書等において、酸化物導電体をOC
(Oxide Conductor)と呼称してもよい。例えば、酸化物半導体に酸素欠
損を形成し、該酸素欠損に水素を添加すると、伝導帯近傍にドナー準位が形成される。こ
の結果、酸化物半導体は、導電性が高くなり導電体化する。導電体化された酸化物半導体
を、酸化物導電体ということができる。一般に、酸化物半導体は、エネルギーギャップが
大きいため、可視光に対して透光性を有する。一方、酸化物導電体は、伝導帯近傍にドナ
ー準位を有する酸化物半導体である。したがって、酸化物導電体は、ドナー準位による吸
収の影響は小さく、可視光に対して酸化物半導体と同程度の透光性を有する。
また、導電膜104、112a、112bには、Cu-X合金膜(Xは、Mn、Ni、
Cr、Fe、Co、Mo、Ta、またはTi)を適用してもよい。Cu-X合金膜を用い
ることで、ウエットエッチングプロセスで加工できるため、製造コストを抑制することが
可能となる。
また、導電膜112a、112bには、上述の金属元素の中でも、特にチタン、タング
ステン、タンタル、及びモリブデンの中から選ばれるいずれか一つまたは複数を有すると
好適である。特に、導電膜112a、112bとしては、窒化タンタル膜を用いると好適
である。当該窒化タンタル膜は、導電性を有し、且つ、銅または水素に対して、高いバリ
ア性を有する。また、窒化タンタル膜は、さらに自身からの水素の放出が少ないため、酸
化物半導体膜108と接する導電膜、または酸化物半導体膜108の近傍の導電膜として
、最も好適に用いることができる。
また、導電膜112a、112bを、無電解めっき法により形成することができる。当
該無電解めっき法により形成できる材料としては、例えば、Cu、Ni、Al、Au、S
n、Co、Ag、及びPdの中から選ばれるいずれか一つまたは複数を用いることが可能
である。特に、CuまたはAgを用いると、導電膜の抵抗を低くすることができるため、
好適である。
[ゲート絶縁膜として機能する絶縁膜]
トランジスタ100のゲート絶縁膜として機能する絶縁膜106としては、プラズマ化
学気相堆積(PECVD:(Plasma Enhanced Chemical Va
por Deposition))法、スパッタリング法等により、酸化シリコン膜、酸
化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化ハ
フニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル
膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜および酸化ネオジム膜を一種
以上含む絶縁層を用いることができる。なお、絶縁膜106を、2層以上の積層構造とし
てもよい。
また、トランジスタ100のチャネル領域として機能する酸化物半導体膜108と接す
る絶縁膜106は、酸化物絶縁膜であることが好ましく、化学量論的組成よりも過剰に酸
素を含有する領域(過剰酸素領域)を有することがより好ましい。別言すると、絶縁膜1
06は、酸素を放出することが可能な絶縁膜である。なお、絶縁膜106に過剰酸素領域
を設けるには、例えば、酸素雰囲気下にて絶縁膜106を形成する、もしくは成膜後の絶
縁膜106を酸素雰囲気下で熱処理すればよい。
また、絶縁膜106として、酸化ハフニウムを用いる場合、以下の効果を奏する。酸化
ハフニウムは、酸化シリコンや酸化窒化シリコンと比べて比誘電率が高い。したがって、
酸化シリコンを用いた場合と比べて、絶縁膜106の膜厚を大きくできるため、トンネル
電流によるリーク電流を小さくすることができる。すなわち、オフ電流の小さいトランジ
スタを実現することができる。さらに、結晶構造を有する酸化ハフニウムは、非晶質構造
を有する酸化ハフニウムと比べて高い比誘電率を備える。したがって、オフ電流の小さい
トランジスタとするためには、結晶構造を有する酸化ハフニウムを用いることが好ましい
。結晶構造の例としては、単斜晶系や立方晶系などが挙げられる。ただし、本発明の一態
様は、これらに限定されない。
なお、本実施の形態では、絶縁膜106として、窒化シリコン膜と酸化シリコン膜との
積層膜を形成する。窒化シリコン膜は、酸化シリコン膜と比較して比誘電率が高く、酸化
シリコン膜と同等の静電容量を得るのに必要な膜厚が大きいため、トランジスタ100の
ゲート絶縁膜として、窒化シリコン膜を含むことで絶縁膜を厚膜化することができる。よ
って、トランジスタ100の絶縁耐圧の低下を抑制、さらには絶縁耐圧を向上させて、ト
ランジスタ100の静電破壊を抑制することができる。
[酸化物半導体膜]
酸化物半導体膜108としては、先に示す材料を用いることができる。
酸化物半導体膜108がIn-M-Zn酸化物の場合、In-M-Zn酸化物を成膜す
るために用いるスパッタリングターゲットの金属元素の原子数比は、In>Mを満たすこ
とが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In
:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.
1等が挙げられる。
また、酸化物半導体膜108が、In-M-Zn酸化物の場合、スパッタリングターゲ
ットとしては、多結晶のIn-M-Zn酸化物を含むターゲットを用いると好ましい。多
結晶のIn-M-Zn酸化物を含むターゲットを用いることで、結晶性を有する酸化物半
導体膜108を形成しやすくなる。なお、成膜される酸化物半導体膜108の原子数比は
、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40
%の変動を含む。例えば、酸化物半導体膜108に用いるスパッタリングターゲットの組
成がIn:Ga:Zn=4:2:4.1[原子数比]の場合、成膜される酸化物半導体膜
108の組成は、In:Ga:Zn=4:2:3[原子数比]の近傍となる場合がある。
また、酸化物半導体膜108は、エネルギーギャップが2eV以上、好ましくは2.5
eV以上である。このように、エネルギーギャップの広い酸化物半導体を用いることで、
トランジスタ100のオフ電流を低減することができる。
また、酸化物半導体膜108の厚さは、3nm以上200nm以下、好ましくは3nm
以上100nm以下、さらに好ましくは3nm以上50nm以下とする。
また、酸化物半導体膜108は、非単結晶構造でもよい。非単結晶構造は、例えば、後
述するCAAC-OS(C Axis Aligned Crystalline Ox
ide Semiconductor)、多結晶構造、微結晶構造、または非晶質構造を
含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC-OSは
最も欠陥準位密度が低い。
[保護絶縁膜として機能する絶縁膜 1]
絶縁膜114、116は、トランジスタ100の保護絶縁膜としての機能を有する。ま
た、絶縁膜114、116は、酸化物半導体膜108に酸素を供給する機能を有する。す
なわち、絶縁膜114、116は、酸素を有する。また、絶縁膜114は、酸素を透過す
ることのできる絶縁膜である。なお、絶縁膜114は、後に形成する絶縁膜116を形成
する際の、酸化物半導体膜108へのダメージ緩和膜としても機能する。
絶縁膜114としては、厚さが5nm以上150nm以下、好ましくは5nm以上50
nm以下の酸化シリコン、酸化窒化シリコン等を用いることができる。
また、絶縁膜114は、欠陥量が少ないことが好ましく、代表的には、ESR測定によ
り、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度
が3×1017spins/cm以下であることが好ましい。これは、絶縁膜114に
含まれる欠陥密度が多いと、該欠陥に酸素が結合してしまい、絶縁膜114における酸素
の透過性が減少してしまうためである。
なお、絶縁膜114においては、外部から絶縁膜114に入った酸素が全て絶縁膜11
4の外部に移動せず、絶縁膜114にとどまる酸素もある。また、絶縁膜114に酸素が
入ると共に、絶縁膜114に含まれる酸素が絶縁膜114の外部へ移動することで、絶縁
膜114において酸素の移動が生じる場合もある。絶縁膜114として酸素を透過するこ
とができる酸化物絶縁膜を形成すると、絶縁膜114上に設けられる、絶縁膜116から
脱離する酸素を、絶縁膜114を介して酸化物半導体膜108に移動させることができる
また、絶縁膜114は、窒素酸化物に起因する準位密度が低い酸化物絶縁膜を用いて形
成することができる。なお、当該窒素酸化物に起因する準位密度は、酸化物半導体膜の価
電子帯の上端のエネルギー(Ev_os)と酸化物半導体膜の伝導帯の下端のエネルギー
(Ec_os)の間に形成され得る場合がある。上記酸化物絶縁膜として、窒素酸化物の
放出量が少ない酸化窒化シリコン膜、または窒素酸化物の放出量が少ない酸化窒化アルミ
ニウム膜等を用いることができる。
なお、窒素酸化物の放出量の少ない酸化窒化シリコン膜は、昇温脱離ガス分析法(TD
S:Thermal Desorption Spectroscopy)において、窒
素酸化物の放出量よりアンモニアの放出量が多い膜であり、代表的にはアンモニアの放出
量が1×1018cm-3以上5×1019cm-3以下である。なお、アンモニアの放
出量は、膜の表面温度が50℃以上650℃以下、好ましくは50℃以上550℃以下の
加熱処理による放出量とする。
窒素酸化物(NO、xは0を越えて2以下、好ましくは1以上2以下)、代表的には
NOまたはNOは、絶縁膜114などに準位を形成する。当該準位は、酸化物半導体膜
108のエネルギーギャップ内に位置する。そのため、窒素酸化物が、絶縁膜114及び
酸化物半導体膜108の界面に拡散すると、当該準位が絶縁膜114側において電子をト
ラップする場合がある。この結果、トラップされた電子が、絶縁膜114及び酸化物半導
体膜108界面近傍に留まるため、トランジスタのしきい値電圧をプラス方向にシフトさ
せてしまう。
また、窒素酸化物は、加熱処理においてアンモニア及び酸素と反応する。絶縁膜114
に含まれる窒素酸化物は、加熱処理において、絶縁膜116に含まれるアンモニアと反応
するため、絶縁膜114に含まれる窒素酸化物が低減される。このため、絶縁膜114及
び酸化物半導体膜108の界面において、電子がトラップされにくい。
絶縁膜114として、上記酸化物絶縁膜を用いることで、トランジスタのしきい値電圧
のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することが
できる。
なお、トランジスタの作製工程の加熱処理、代表的には300℃以上350℃未満の加
熱処理により、絶縁膜114は、100K以下のESRで測定して得られたスペクトルに
おいてg値が2.037以上2.039以下の第1のシグナル、g値が2.001以上2
.003以下の第2のシグナル、及びg値が1.964以上1.966以下の第3のシグ
ナルが観測される。なお、第1のシグナル及び第2のシグナルのスプリット幅、並びに第
2のシグナル及び第3のシグナルのスプリット幅は、XバンドのESR測定において約5
mTである。また、g値が2.037以上2.039以下の第1のシグナル、g値が2.
001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下
である第3のシグナルのスピンの密度の合計が1×1018spins/cm未満であ
り、代表的には1×1017spins/cm以上1×1018spins/cm
満である。
なお、100K以下のESRスペクトルにおいて、g値が2.037以上2.039以
下の第1のシグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値
が1.964以上1.966以下である第3のシグナルのスピンの密度の合計は、窒素酸
化物(NO、xは0より大きく2以下、好ましくは1以上2以下)起因のシグナルのス
ピンの密度の合計に相当する。窒素酸化物の代表例としては、一酸化窒素、二酸化窒素等
がある。即ち、g値が2.037以上2.039以下の第1のシグナル、g値が2.00
1以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下であ
る第3のシグナルのスピンの密度の合計が少ないほど、酸化物絶縁膜に含まれる窒素酸化
物の含有量が少ないといえる。
また、上記酸化物絶縁膜は、SIMSで測定される窒素濃度が6×1020atoms
/cm以下である。
基板温度が220℃以上350℃以下であり、シラン及び一酸化二窒素を用いたPEC
VD法を用いて、上記酸化物絶縁膜を形成することで、緻密であり、且つ硬度の高い膜を
形成することができる。
絶縁膜116は、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜で
ある。上記の酸化物絶縁膜は、加熱により酸素の一部が脱離する。なお、TDSにおいて
、上記の酸化物絶縁膜は、酸素の放出量が1.0×1019atoms/cm以上、好
ましくは3.0×1020atoms/cm以上の領域を有する。また、上記の酸素の
放出量は、TDSにおける加熱処理の温度が50℃以上650℃以下、または50℃以上
550℃以下の範囲での総量である。また、上記の酸素の放出量は、TDSにおける酸素
原子に換算しての総量である。
絶縁膜116としては、厚さが30nm以上500nm以下、好ましくは50nm以上
400nm以下の、酸化シリコン、酸化窒化シリコン等を用いることができる。
また、絶縁膜116は、欠陥量が少ないことが好ましく、代表的には、ESR測定によ
り、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度
が1.5×1018spins/cm未満、さらには1×1018spins/cm
以下であることが好ましい。なお、絶縁膜116は、絶縁膜114と比較して酸化物半導
体膜108から離れているため、絶縁膜114より、欠陥密度が多くともよい。
また、絶縁膜114、116は、同種の材料の絶縁膜を用いることができるため、絶縁
膜114と絶縁膜116の界面が明確に確認できない場合がある。したがって、本実施の
形態においては、絶縁膜114と絶縁膜116の界面は、破線で図示している。なお、本
実施の形態においては、絶縁膜114と絶縁膜116の2層構造について説明したが、こ
れに限定されず、例えば、絶縁膜114の単層構造、あるいは3層以上の積層構造として
もよい。
[保護絶縁膜として機能する絶縁膜 2]
絶縁膜118は、トランジスタ100の保護絶縁膜として機能する。
絶縁膜118は、水素及び窒素のいずれか一方または双方を有する。または、絶縁膜1
18は、窒素及びシリコンを有する。また、絶縁膜118は、酸素、水素、水、アルカリ
金属、アルカリ土類金属等のブロッキングできる機能を有する。絶縁膜118を設けるこ
とで、酸化物半導体膜108からの酸素の外部への拡散と、絶縁膜114、116に含ま
れる酸素の外部への拡散と、外部から酸化物半導体膜108への水素、水等の入り込みを
防ぐことができる。
絶縁膜118としては、例えば、窒化物絶縁膜を用いることができる。該窒化物絶縁膜
としては、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウム
等がある。
なお、上記記載の、導電膜、絶縁膜、酸化物半導体膜などの様々な膜としては、スパッ
タリング法やPECVD法により形成することができるが、他の方法、例えば、熱CVD
(Chemical Vapor Deposition)法により形成してもよい。熱
CVD法の例としてMOCVD(Metal Organic Chemical Va
por Deposition)法、またはALD(Atomic Layer Dep
osition)法などが挙げられる。
熱CVD法は、プラズマを使わない成膜方法のため、プラズマダメージにより欠陥が生
成されることが無いという利点を有する。また、熱CVD法としては、原料ガスをチャン
バー内に送り、チャンバー内を大気圧または減圧下とし、基板上に膜を堆積させればよい
また、ALD法としては、原料ガスをチャンバー内に送り、チャンバー内を大気圧また
は減圧下とし、基板上に膜を堆積させればよい。
MOCVD法、ALD法などの熱CVD法としては、上記実施形態の導電膜、絶縁膜、
酸化物半導体膜などの様々な膜を形成することができ、例えば、In-Ga-Zn-O膜
を成膜する場合には、トリメチルインジウム、トリメチルガリウム、及びジメチル亜鉛を
用いる。なお、トリメチルインジウムの化学式は、In(CHである。また、トリ
メチルガリウムの化学式は、Ga(CHである。また、ジメチル亜鉛の化学式は、
Zn(CHである。また、これらの組み合わせに限定されず、トリメチルガリウム
に代えてトリエチルガリウム(化学式Ga(C)を用いることもでき、ジメチ
ル亜鉛に代えてジエチル亜鉛(化学式Zn(C)を用いることもできる。
例えば、ALDを利用する成膜装置により酸化ハフニウム膜を形成する場合には、溶媒
とハフニウム前駆体化合物を含む液体(ハフニウムアルコキシドや、テトラキスジメチル
アミドハフニウム(TDMAH)などのハフニウムアミド)を気化させた原料ガスと、酸
化剤としてオゾン(O)の2種類のガスを用いる。なお、テトラキスジメチルアミドハ
フニウムの化学式はHf[N(CHである。また、他の材料液としては、テト
ラキス(エチルメチルアミド)ハフニウムなどがある。
例えば、ALDを利用する成膜装置により酸化アルミニウム膜を形成する場合には、溶
媒とアルミニウム前駆体化合物を含む液体(トリメチルアルミニウム(TMA)など)を
気化させた原料ガスと、酸化剤としてHOの2種類のガスを用いる。なお、トリメチル
アルミニウムの化学式はAl(CHである。また、他の材料液としては、トリス(
ジメチルアミド)アルミニウム、トリイソブチルアルミニウム、アルミニウムトリス(2
,2,6,6-テトラメチル-3,5-ヘプタンジオナート)などがある。
例えば、ALDを利用する成膜装置により酸化シリコン膜を形成する場合には、ヘキサ
クロロジシランを被成膜面に吸着させ、吸着物に含まれる塩素を除去し、酸化性ガス(O
、一酸化二窒素)のラジカルを供給して吸着物と反応させる。
例えば、ALDを利用する成膜装置によりタングステン膜を成膜する場合には、WF
ガスとBガスとを用いて第1のタングステン膜を形成し、その後、WFガスとH
ガスとを用いて第2のタングステン膜を形成する。なお、Bガスに代えてSiH
ガスを用いてもよい。
例えば、ALDを利用する成膜装置により酸化物半導体膜、例えばIn-Ga-Zn-
O膜を成膜する場合には、In(CHガスとOガスとを用いてIn-O層を形成
し、その後、Ga(CHガスとOガスとを用いてGaO層を形成し、更にその後
Zn(CHガスとOガスとを用いてZnO層を形成する。なお、これらの層の順
番はこの例に限らない。また、これらのガスを混ぜてIn-Ga-O層やIn-Zn-O
層、Ga-Zn-O層などの混合化合物層を形成しても良い。なお、Oガスに変えてA
r等の不活性ガスでバブリングして得られたHOガスを用いても良いが、Hを含まない
ガスを用いる方が好ましい。また、In(CHガスに変えて、In(C
ガスを用いても良い。また、Ga(CHガスに変えて、Ga(C
スを用いても良い。また、Zn(CHガスを用いても良い。
<1-3.半導体装置の構成例2>
次に、図1(A)(B)(C)に示すトランジスタ100の変形例について、図2及び
図3を用いて説明する。
図2(A)は、本発明の一態様の半導体装置であるトランジスタ100Aの上面図であ
り、図2(B)は、図2(A)に示す一点鎖線X1-X2間における切断面の断面図に相
当し、図2(C)は、図2(A)に示す一点鎖線Y1-Y2間における切断面の断面図に
相当する。
図2(A)(B)に示すトランジスタ100Aは、所謂チャネル保護型のトランジスタ
構造である。このように、本発明の一態様の半導体装置は、チャネルエッチ型、及びチャ
ネル保護型の双方のトランジスタ構造とすることができる。
なお、トランジスタ100Aにおいては、絶縁膜114、116は、開口部141a、
141bを有する。また、開口部141a、141bを介して酸化物半導体膜108と導
電膜112a、112bとが接続されている。また、導電膜112a、112b上に絶縁
膜118が形成されている。また、絶縁膜114、116は、所謂チャネル保護膜として
の機能を有する。なお、トランジスタ100Aのその他の構成は、先に示すトランジスタ
100と同様であり、同様の効果を奏する。
また、図3(A)は、本発明の一態様の半導体装置であるトランジスタ100Bの上面
図であり、図3(B)は、図3(A)に示す一点鎖線X1-X2間における切断面の断面
図に相当し、図3(C)は、図3(A)に示す一点鎖線Y1-Y2間における切断面の断
面図に相当する。
トランジスタ100Bは、基板102上の導電膜104と、基板102及び導電膜10
4上の絶縁膜106と、絶縁膜106上の酸化物半導体膜108と、酸化物半導体膜10
8上の導電膜112aと、酸化物半導体膜108上の導電膜112bと、酸化物半導体膜
108、導電膜112a、及び導電膜112b上の絶縁膜114と、絶縁膜114上の絶
縁膜116と、絶縁膜116上の導電膜120aと、絶縁膜116上の導電膜120bと
、絶縁膜116、導電膜120a、及び導電膜120b上の絶縁膜118と、を有する。
また、絶縁膜114、116は、開口部142aを有する。また、絶縁膜106、11
4、116は、開口部142bを有する。導電膜120aは、開口部142bを介して、
導電膜104と電気的に接続される。また、導電膜120bは、開口部142aを介して
、導電膜112bと電気的に接続される。
なお、トランジスタ100Bにおいて、絶縁膜106は、トランジスタ100Bの第1
のゲート絶縁膜としての機能を有し、絶縁膜114、116は、トランジスタ100Bの
第2のゲート絶縁膜としての機能を有し、絶縁膜118は、トランジスタ100Bの保護
絶縁膜としての機能を有する。また、トランジスタ100Bにおいて、導電膜104は、
第1のゲート電極としての機能を有し、導電膜112aは、ソース電極としての機能を有
し、導電膜112bは、ドレイン電極としての機能を有する。また、トランジスタ100
Bにおいて、導電膜120aは、第2のゲート電極としての機能を有し、導電膜120b
は、表示装置の画素電極としての機能を有する。
なお、図3(C)に示すように、導電膜120aは、開口部142bを介して導電膜1
04と電気的に接続される。よって、導電膜104と、導電膜120aとは、同じ電位が
与えられる。
また、図3(C)に示すように、酸化物半導体膜108は、導電膜104、及び導電膜
120aと対向するように位置し、2つのゲート電極として機能する導電膜に挟まれてい
る。導電膜120aのチャネル長方向の長さ、及び導電膜120aのチャネル幅方向の長
さは、酸化物半導体膜108のチャネル長方向の長さ、及び酸化物半導体膜108のチャ
ネル幅方向の長さよりもそれぞれ長く、酸化物半導体膜108の全体は、絶縁膜114、
116を介して導電膜120aに覆われている。
別言すると、導電膜104及び導電膜120aは、絶縁膜106、114、116に設
けられる開口部において接続され、且つ酸化物半導体膜108の側端部よりも外側に位置
する領域を有する。
このような構成を有することで、トランジスタ100Bに含まれる酸化物半導体膜10
8を、導電膜104及び導電膜120aの電界によって電気的に囲むことができる。トラ
ンジスタ100Bのように、第1のゲート電極及び第2のゲート電極の電界によって、チ
ャネル領域が形成される酸化物半導体膜を、電気的に囲むトランジスタのデバイス構造を
Surrounded channel(S-channel)構造と呼ぶことができる
トランジスタ100Bは、S-channel構造を有するため、第1のゲート電極と
して機能する導電膜104によってチャネルを誘起させるための電界を効果的に酸化物半
導体膜108に印加することができるため、トランジスタ100Bの電流駆動能力が向上
し、高いオン電流特性を得ることが可能となる。また、オン電流を高くすることが可能で
あるため、トランジスタ100Bを微細化することが可能となる。また、トランジスタ1
00Bは、第1のゲート電極として機能する導電膜104及び第2のゲート電極として機
能する導電膜120aによって囲まれた構造を有するため、トランジスタ100Bの機械
的強度を高めることができる。
なお、導電膜120a、120bとしては、先に示す導電膜104、112a、112
bに列挙した材料と同様の材料を用いることができる。特に導電膜120a、120bと
しては、酸化物導電膜(OC)が好ましい。
なお、トランジスタ100Bのその他の構成は、先に示すトランジスタ100と同様で
あり、同様の効果を奏する。
また、本実施の形態に係るトランジスタは、上記の構造のトランジスタを、それぞれ自
由に組み合わせることが可能である。
<1-4.半導体装置の作製方法>
次に、本発明の一態様の半導体装置であるトランジスタ100Bの作製方法について、
図4乃至図7を用いて説明する。
なお、図4(A)乃至図4(C)、図5(A)乃至図5(C)、図6(A)乃至図6(
C)、及び図7(A)乃至図7(C)は、半導体装置の作製方法を説明する断面図である
。また、図4(A)乃至図4(C)、図5(A)乃至図5(C)、図6(A)乃至図6(
C)、及び図7(A)乃至図7(C)において、左側がチャネル長方向の断面図であり、
右側がチャネル幅方向の断面図である。
まず、基板102上に導電膜を形成し、該導電膜をリソグラフィ工程及びエッチング工
程を行い加工して、第1のゲート電極として機能する導電膜104を形成する。次に、導
電膜104上に第1のゲート絶縁膜として機能する絶縁膜106を形成する(図4(A)
参照)。
本実施の形態では、基板102としてガラス基板を用い、第1のゲート電極として機能
する導電膜104として、厚さ50nmのチタン膜と、厚さ200nmの銅膜とを、それ
ぞれスパッタリング法により形成する。また、絶縁膜106として厚さ400nmの窒化
シリコン膜と、厚さ50nmの酸化窒化シリコン膜とをPECVD法により形成する。
なお、上記窒化シリコン膜は、第1の窒化シリコン膜と、第2の窒化シリコン膜と、第
3の窒化シリコン膜とを有する、3層積層構造である。該3層積層構造の一例としては、
以下のように形成することができる。
第1の窒化シリコン膜としては、例えば、流量200sccmのシラン、流量2000
sccmの窒素、及び流量100sccmのアンモニアガスを原料ガスとしてPE-CV
D装置の反応室に供給し、反応室内の圧力を100Paに制御し、27.12MHzの高
周波電源を用いて2000Wの電力を供給して、厚さが50nmとなるように形成すれば
よい。
第2の窒化シリコン膜としては、流量200sccmのシラン、流量2000sccm
の窒素、及び流量2000sccmのアンモニアガスを原料ガスとしてPECVD装置の
反応室に供給し、反応室内の圧力を100Paに制御し、27.12MHzの高周波電源
を用いて2000Wの電力を供給して、厚さが300nmとなるように形成すればよい。
第3の窒化シリコン膜としては、流量200sccmのシラン、及び流量5000sc
cmの窒素を原料ガスとしてPECVD装置の反応室に供給し、反応室内の圧力を100
Paに制御し、27.12MHzの高周波電源を用いて2000Wの電力を供給して、厚
さが50nmとなるように形成すればよい。
なお、上記第1の窒化シリコン膜、第2の窒化シリコン膜、及び第3の窒化シリコン膜
形成時の基板温度は350℃以下とすることができる。
窒化シリコン膜を上述の3層の積層構造とすることで、例えば、導電膜104に銅を含
む導電膜を用いる場合において、以下の効果を奏する。
第1の窒化シリコン膜は、導電膜104からの銅元素の拡散を抑制することができる。
第2の窒化シリコン膜は、水素を放出する機能を有し、ゲート絶縁膜として機能する絶縁
膜の耐圧を向上させることができる。第3の窒化シリコン膜は、第3の窒化シリコン膜か
らの水素放出が少なく、且つ第2の窒化シリコン膜からの放出される水素の拡散を抑制す
ることができる。
次に、絶縁膜106上に酸化物半導体膜108i_1_0、酸化物半導体膜108n_
0、及び酸化物半導体膜108i_2_0を形成する(図4(B)(C)参照)。
なお、図4(B)は、絶縁膜106上に酸化物半導体膜108i_1_0、酸化物半導
体膜108n_0、及び酸化物半導体膜108i_2_0を形成する際の成膜装置内部の
断面模式図である。図4(B)では、成膜装置としてスパッタリング装置を用い、当該ス
パッタリング装置内部に設置されたターゲット191と、ターゲット191の下方に形成
されるプラズマ192とが、模式的に表されている。
まず、酸化物半導体膜108i_1_0を形成する際に、酸素ガスを含む雰囲気にてプ
ラズマを放電させる。その際に、酸化物半導体膜108i_1_0の被形成面となる絶縁
膜106中に、酸素が添加される。また、酸化物半導体膜108i_1_0を形成する際
に、酸素ガスの他に、不活性ガス(例えば、ヘリウムガス、アルゴンガス、キセノンガス
など)を混合させてもよい。
酸素ガスとしては、少なくとも酸化物半導体膜108i_1_0を形成する際に含まれ
ていればよく、酸化物半導体膜108i_1_0を形成する際の成膜ガス全体に占める酸
素ガスの割合(以下、酸素流量比ともいう)としては、0%を超えて100%以下、好ま
しくは10%以上100%以下、さらに好ましくは30%以上100%以下である。
なお、図4(B)において、絶縁膜106に添加される酸素または過剰酸素を模式的に
破線の矢印で表している。
また、酸化物半導体膜108i_1_0及び酸化物半導体膜108i_2_0の形成条
件としては、酸化物半導体膜108n_0よりも基板温度または酸素流量比のいずれか一
方または双方を高めると好ましい。
具体的には、酸化物半導体膜108i_1_0及び酸化物半導体膜108i_2_0の
形成条件としては、基板温度を150℃以上300℃以下、好ましくは基板温度を160
℃以上200℃以下とし、酸素流量比を30%以上100%以下とする。また、酸化物半
導体膜108n_0の形成条件としては、基板温度を室温以上150℃未満、好ましくは
100℃以上140℃以下とし、酸素流量比を、0%を超えて30%未満とする。
上記のような形成条件とすることで、キャリア密度の異なる酸化物半導体膜を積層して
形成することができる。なお、酸化物半導体膜108i_1_0、酸化物半導体膜108
n_0、及び酸化物半導体膜108i_2_0を真空中で連続して形成することで、各界
面に不純物が取り込まれないため、より好適である。
なお、酸化物半導体膜108を加熱して成膜することで、酸化物半導体膜108の結晶
性を高めることができる。一方で、基板102として、大型のガラス基板(例えば、第6
世代乃至第10世代)を用いる場合、酸化物半導体膜108を成膜する際の基板温度を2
00℃以上300℃以下とした場合、基板102が変形する(歪むまたは反る)場合があ
る。よって、大型のガラス基板を用いる場合においては、酸化物半導体膜108の成膜す
る際の基板温度を100℃以上200℃未満とすることで、ガラス基板の変形を抑制する
ことができる。
また、スパッタリングガスの高純度化も必要である。例えば、スパッタリングガスとし
て用いる酸素ガスやアルゴンガスは、露点が-40℃以下、好ましくは-80℃以下、よ
り好ましくは-100℃以下、より好ましくは-120℃以下にまで高純度化したガスを
用いることで酸化物半導体膜に水分等が取り込まれることを可能な限り防ぐことができる
また、スパッタリング法で酸化物半導体膜を成膜する場合、スパッタリング装置におけ
るチャンバーは、酸化物半導体膜にとって不純物となる水等を可能な限り除去すべくクラ
イオポンプのような吸着式の真空排気ポンプを用いて、高真空(5×10-7Paから1
×10-4Pa程度まで)に排気することが好ましい。特に、スパッタリング装置の待機
時における、チャンバー内のHOに相当するガス分子(m/z=18に相当するガス分
子)の分圧を1×10-4Pa以下、好ましく5×10-5Pa以下とすることが好まし
い。
本実施の形態では、酸化物半導体膜108i_1_0及び酸化物半導体膜108i_2
_0の形成条件としては、In-Ga-Zn金属酸化物ターゲット(In:Ga:Zn=
4:2:4.1[原子数比])を用いて、スパッタリング法により形成する。また、酸化
物半導体膜108i_1_0及び酸化物半導体膜108i_2_0の形成時の基板温度を
170℃とし、成膜ガスとして流量60sccmの酸素ガスと、流量140sccmのア
ルゴンガスとを用いる(酸素流量比30%)。
また、酸化物半導体膜108n_0の形成条件としては、In-Ga-Zn金属酸化物
ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いて、スパッタリン
グ法により形成する。また、酸化物半導体膜108n_0の形成時の基板温度を130℃
とし、成膜ガスとして流量20sccmの酸素ガスと、流量180sccmのアルゴンガ
スとを用いる(酸素流量比10%)。
なお、上記においては、酸化物半導体膜108i_1_0と、酸化物半導体膜108n
_0と、酸化物半導体膜108i_2_0とを、基板温度及び酸素流量比を変えることに
よって、キャリア密度の異なる酸化物半導体膜を積層する構成について例示したが、これ
に限定されない。例えば、酸化物半導体膜108n_0の形成時において、不純物元素を
添加することで、酸化物半導体膜108i_1_0及び酸化物半導体膜108i_2_0
とキャリア密度の異なる酸化物半導体膜を形成してもよい。当該不純物元素としては、水
素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、希ガス等が挙げられる。
なお、酸化物半導体膜108n_0中に添加する不純物元素としては、上述した元素の
中でも、窒素が特に好ましい。例えば、酸化物半導体膜108n_0の形成時において、
アルゴンガス及び窒素ガスを成膜ガスとして用いる、あるいはアルゴンガス及び一酸化二
窒素ガスを成膜ガスとして用いることで、酸化物半導体膜108n_0中に窒素を添加す
ることができる。
また、酸化物半導体膜108n_0の形成時において、不純物元素を用いる場合、不純
物元素を添加したくない膜、例えば、酸化物半導体膜108i_1_0及び酸化物半導体
膜108i_2_0に不純物元素の混入を避けるために、酸化物半導体膜108n_0を
形成するチャンバーを、独立して設けると好適である。
また、酸化物半導体膜108n_0を形成後に、酸化物半導体膜108n_0中に不純
物元素を添加してもよい。酸化物半導体膜108n_0形成後に不純物元素を添加する方
法としては、例えば、ドーピング処理またはプラズマ処理を用いることができる。
次に、酸化物半導体膜108i_1_0、酸化物半導体膜108n_0、及び酸化物半
導体膜108i_2_0を所望の形状に加工することで、島状の酸化物半導体膜108i
_1、島状の酸化物半導体膜108n、及び島状の酸化物半導体膜108i_2を形成す
る。なお、本実施の形態においては、酸化物半導体膜108i_1、酸化物半導体膜10
8n、及び酸化物半導体膜108i_2により酸化物半導体膜108が構成される(図5
(A)参照)。
また、酸化物半導体膜108を形成した後に、加熱処理(以下、第1の加熱処理とする
)を行うと好適である。第1の加熱処理により、酸化物半導体膜108に含まれる水素、
水等を低減することができる。なお、水素、水等の低減を目的とした加熱処理は、酸化物
半導体膜108を島状に加工する前に行ってもよい。なお、第1の加熱処理は、酸化物半
導体膜の高純度化処理の一つである。
第1の加熱処理としては、例えば、150℃以上基板の歪み点未満、好ましくは200
℃以上450℃以下、さらに好ましくは250℃以上350℃以下とすることができる。
また、第1の加熱処理は、電気炉、RTA装置等を用いることができる。RTA装置を
用いることで、短時間に限り基板の歪み点以上の温度で熱処理を行うことができる。その
ため、加熱時間を短縮することが可能となる。また、第1の加熱処理は、窒素、酸素、超
乾燥空気(水の含有量が20ppm以下、好ましくは1ppm以下、好ましくは10pp
b以下の空気)、または希ガス(アルゴン、ヘリウム等)の雰囲気下で行えばよい。なお
、上記窒素、酸素、超乾燥空気、または希ガスに水素、水等が含まれないことが好ましい
。また、窒素または希ガス雰囲気で加熱処理した後、酸素または超乾燥空気雰囲気で加熱
してもよい。この結果、酸化物半導体膜中に含まれる水素、水等を脱離させると共に、酸
化物半導体膜中に酸素を供給することができる。この結果、酸化物半導体膜中に含まれる
酸素欠損を低減することができる。
次に、絶縁膜106、及び酸化物半導体膜108上に導電膜112を形成する(図5(
B)参照)。
本実施の形態では、導電膜112として、厚さ30nmのチタン膜と、厚さ200nm
の銅膜と、厚さ10nmのチタン膜とを、それぞれ順に、スパッタリング法により成膜す
る。
次に、導電膜112を所望の形状に加工することで、島状の導電膜112aと、島状の
導電膜112bと、を形成する(図5(C)参照)。
なお、本実施の形態においては、ウエットエッチング装置を用い、導電膜112を加工
する。ただし、導電膜112の加工方法としては、これに限定されず、例えば、ドライエ
ッチング装置を用いてもよい。
また、導電膜112a、112bの形成後に、酸化物半導体膜108(より具体的には
酸化物半導体膜108i_2)の表面(バックチャネル側)を洗浄してもよい。当該洗浄
方法としては、例えば、リン酸等の薬液を用いた洗浄が挙げられる。リン酸等の薬液を用
いて洗浄を行うことで、酸化物半導体膜108i_2の表面に付着した不純物(例えば、
導電膜112a、112bに含まれる元素等)を除去することができる。なお、当該洗浄
を必ずしも行う必要はなく、場合によっては、洗浄を行わなくてもよい。
また、導電膜112a、112bを形成する工程、及び上記洗浄工程のいずれか一方ま
たは双方において、酸化物半導体膜108の導電膜112a、112bから露出した領域
が、薄くなる場合がある。
次に、酸化物半導体膜108、及び導電膜112a、112b上に絶縁膜114、及び
絶縁膜116を形成する(図6(A)参照)。
なお、絶縁膜114を形成した後、大気に曝すことなく、連続的に絶縁膜116を形成
することが好ましい。絶縁膜114を形成後、大気開放せず、原料ガスの流量、圧力、高
周波電力及び基板温度の一以上を調整して、絶縁膜116を連続的に形成することで、絶
縁膜114と絶縁膜116との界面において大気成分由来の不純物濃度を低減することが
できる。
例えば、絶縁膜114として、PECVD法を用いて、酸化窒化シリコン膜を形成する
ことができる。この場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体
を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラ
ン、トリシラン、フッ化シラン等がある。酸化性気体としては、一酸化二窒素、二酸化窒
素等がある。また、上記の堆積性気体の流量に対して酸化性気体の流量を20倍以上50
00倍以下、好ましくは40倍以上100倍以下とする。
本実施の形態においては、絶縁膜114として、基板102を保持する温度を220℃
とし、流量50sccmのシラン及び流量2000sccmの一酸化二窒素を原料ガスと
し、処理室内の圧力を20Paとし、平行平板電極に供給する高周波電力を13.56M
Hz、100W(電力密度としては1.6×10-2W/cm)とするPECVD法を
用いて、酸化窒化シリコン膜を形成する。
絶縁膜116としては、PECVD装置の真空排気された処理室内に載置された基板を
180℃以上350℃以下に保持し、処理室に原料ガスを導入して処理室内における圧力
を100Pa以上250Pa以下、さらに好ましくは100Pa以上200Pa以下とし
、処理室内に設けられる電極に0.17W/cm以上0.5W/cm以下、さらに好
ましくは0.25W/cm以上0.35W/cm以下の高周波電力を供給する条件に
より、酸化シリコン膜または酸化窒化シリコン膜を形成する。
絶縁膜116の成膜条件として、上記圧力の反応室において上記パワー密度の高周波電
力を供給することで、プラズマ中で原料ガスの分解効率が高まり、酸素ラジカルが増加し
、原料ガスの酸化が進むため、絶縁膜116中における酸素含有量が化学量論的組成より
も多くなる。一方、基板温度が、上記温度で形成された膜では、シリコンと酸素の結合力
が弱いため、後の工程の加熱処理により膜中の酸素の一部が脱離する。この結果、化学量
論的組成を満たす酸素よりも多くの酸素を含み、加熱により酸素の一部が脱離する酸化物
絶縁膜を形成することができる。
なお、絶縁膜116の形成工程において、絶縁膜114が酸化物半導体膜108の保護
膜となる。したがって、酸化物半導体膜108へのダメージを低減しつつ、パワー密度の
高い高周波電力を用いて絶縁膜116を形成することができる。
なお、絶縁膜116の成膜条件において、酸化性気体に対するシリコンを含む堆積性気
体の流量を増加することで、絶縁膜116の欠陥量を低減することが可能である。代表的
には、ESR測定により、シリコンのダングリングボンドに由来するg=2.001に現
れる信号のスピン密度が6×1017spins/cm未満、好ましくは3×1017
spins/cm以下、好ましくは1.5×1017spins/cm以下である欠
陥量の少ない酸化物絶縁膜を形成することができる。この結果、トランジスタ100の信
頼性を高めることができる。
また、絶縁膜114、116を成膜した後に、加熱処理(以下、第2の加熱処理とする
)を行うと好適である。第2の加熱処理により、絶縁膜114、116に含まれる窒素酸
化物を低減することができる。または、第2の加熱処理により、絶縁膜114、116に
含まれる酸素の一部を酸化物半導体膜108に移動させ、酸化物半導体膜108に含まれ
る酸素欠損を低減することができる。
第2の加熱処理の温度は、代表的には、400℃未満、好ましくは375℃未満、さら
に好ましくは、150℃以上350℃以下とする。第2の加熱処理は、窒素、酸素、超乾
燥空気(水の含有量が20ppm以下、好ましくは1ppm以下、好ましくは10ppb
以下の空気)、または希ガス(アルゴン、ヘリウム等)の雰囲気下で行えばよい。なお、
上記窒素、酸素、超乾燥空気、または希ガスに水素、水等が含まれないことが好ましい。
該加熱処理には、電気炉、RTA等を用いることができる。
次に、絶縁膜114、116の所望の領域に開口部142a、142bを形成する(図
6(B)参照)。
本実施の形態においては、開口部142a、142bを、ドライエッチング装置を用い
て形成する。なお、開口部142aは、導電膜112bに達し、開口部142bは、導電
膜104に達する。
次に、絶縁膜116上に導電膜120を形成する(図6(C)及び図7(A)参照)。
なお、図6(C)は、絶縁膜116上に導電膜120を形成する際の成膜装置内部の断
面模式図である。図6(C)では、成膜装置としてスパッタリング装置を用い、当該スパ
ッタリング装置内部に設置されたターゲット193と、ターゲット193の下方に形成さ
れるプラズマ194とが、模式的に表されている。
まず、導電膜120を形成する際に、酸素ガスを含む雰囲気にてプラズマを放電させる
。その際に、導電膜120の被形成面となる絶縁膜116中に、酸素が添加される。また
、導電膜120を形成する際に、酸素ガスの他に、不活性ガス(例えば、ヘリウムガス、
アルゴンガス、キセノンガスなど)を混合させてもよい。
酸素ガスとしては、少なくとも導電膜120を形成する際に含まれていればよく、導電
膜120を形成する際の成膜ガス全体に占める酸素ガスの割合としては、0%を超えて1
00%以下、好ましくは10%以上100%以下、さらに好ましくは30%以上100%
以下である。
なお、図6(C)において、絶縁膜116に添加される酸素または過剰酸素を模式的に
破線の矢印で表している。
本実施の形態では、In-Ga-Zn金属酸化物ターゲット(In:Ga:Zn=4:
2:4.1[原子数比])を用いて、スパッタリング法により導電膜120を形成する。
なお、本実施の形態では、導電膜120を成膜する際に、絶縁膜116に酸素を添加す
る方法について例示したがこれに限定されない。例えば、導電膜120を形成後に、さら
に絶縁膜116に酸素を添加してもよい。
絶縁膜116に酸素を添加する方法としては、例えば、インジウムと、錫と、シリコン
とを有する酸化物(In-Sn-Si酸化物、ITSOともいう)ターゲット(In
:SnO:SiO=85:10:5[重量%])を用いて、膜厚5nmのITSO
膜を形成すればよい。この場合、ITSO膜の膜厚としては、1nm以上20nm以下、
または2nm以上10nm以下とすると好適に酸素を透過し、且つ酸素の放出を抑制でき
るため好ましい。その後、ITSO膜を通過させて、絶縁膜116に酸素を添加する。酸
素の添加方法としては、イオンドーピング法、イオン注入法、プラズマ処理法等が挙げら
れる。また、酸素を添加する際に、基板側にバイアス電圧を印加することで効果的に酸素
を絶縁膜116に添加することができる。上記バイアス電圧としては、例えば、アッシン
グ装置を用い、該アッシング装置の基板側に印加するバイアス電圧の電力密度を1W/c
以上5W/cm以下とすればよい。また、酸素を添加する際の基板温度としては、
室温以上300℃以下、好ましくは、100℃以上250℃以下とすることで、絶縁膜1
16に効率よく酸素を添加することができる。
次に、導電膜120を所望の形状に加工することで、島状の導電膜120aと、島状の
導電膜120bと、を形成する(図7(B)参照)。
本実施の形態においては、ウエットエッチング装置を用い、導電膜120を加工する。
次に、絶縁膜116、及び導電膜120a、120b上に絶縁膜118を形成する(図
7(C)参照)。
絶縁膜118は、水素及び窒素のいずれか一方または双方を有する。絶縁膜118とし
ては、例えば、窒化シリコン膜を用いると好適である。また、絶縁膜118としては、例
えば、スパッタリング法またはPECVD法を用いて形成することができる。例えば、絶
縁膜118をPECVD法で成膜する場合、基板温度は400℃未満、好ましくは375
℃未満、さらに好ましくは180℃以上350℃以下である。絶縁膜118を成膜する場
合の基板温度を、上述の範囲にすることで、緻密な膜を形成できるため好ましい。また、
絶縁膜118を成膜する場合の基板温度を、上述の範囲にすることで、絶縁膜114、1
16中の酸素または過剰酸素を、酸化物半導体膜108に移動させることが可能となる。
また、絶縁膜118としてPECVD法により窒化シリコン膜を形成する場合、シリコ
ンを含む堆積性気体、窒素、及びアンモニアを原料ガスとして用いることが好ましい。窒
素と比較して少量のアンモニアを用いることで、プラズマ中でアンモニアが解離し、活性
種が発生する。該活性種が、シリコンを含む堆積性気体に含まれるシリコン及び水素の結
合、及び窒素の三重結合を切断する。この結果、シリコン及び窒素の結合が促進され、シ
リコン及び水素の結合が少なく、欠陥が少なく、緻密な窒化シリコン膜を形成することが
できる。一方、窒素に対するアンモニアの量が多いと、シリコンを含む堆積性気体及び窒
素の分解が進まず、シリコン及び水素結合が残存してしまい、欠陥が増大した、且つ粗な
窒化シリコン膜が形成されてしまう。これらのため、原料ガスにおいて、アンモニアに対
する窒素の流量比を5倍以上50倍以下、10倍以上50倍以下とすることが好ましい。
本実施の形態においては、絶縁膜118として、PECVD装置を用いて、シラン、窒
素、及びアンモニアを原料ガスとして用いて、厚さ50nmの窒化シリコン膜を形成する
。流量は、シランが50sccm、窒素が5000sccmであり、アンモニアが100
sccmである。処理室の圧力を100Pa、基板温度を350℃とし、27.12MH
zの高周波電源を用いて1000Wの高周波電力を平行平板電極に供給する。PECVD
装置は電極面積が6000cmである平行平板型のPECVD装置であり、供給した電
力を単位面積あたりの電力(電力密度)に換算すると1.7×10-1W/cmである
なお、導電膜120a、120bとして、In-Ga-Zn金属酸化物ターゲット(I
n:Ga:Zn=4:2:4.1[原子数比])を用いて導電膜を形成した場合、絶縁膜
118が形成されることで、絶縁膜118が有する水素及び窒素のいずれか一方または双
方が、導電膜120a、120b中に入り込む場合がある。この場合、導電膜120a、
120b中の酸素欠損と、水素及び窒素のいずれか一方または双方が結合することで、導
電膜120a、120bの抵抗が低くなる場合がある。
また、絶縁膜118形成後に、先に記載の第1の加熱処理及び第2の加熱処理と同等の
加熱処理(以下、第3の加熱処理とする)を行ってもよい。
第3の加熱処理を行うことで、絶縁膜116が有する酸素は、酸化物半導体膜108中
に移動し、酸化物半導体膜108中の酸素欠損を補填する。
以上の工程で図3(A)(B)(C)に示すトランジスタ100Bを作製することがで
きる。
なお、図1(A)(B)(C)に示すトランジスタ100としては、図6(A)に示す
工程を行った後に、絶縁膜118を形成することで、作製することができる。また、図2
(A)(B)(C)に示すトランジスタ100Aとしては、導電膜112a、112bと
、絶縁膜114、116の形成順を変えて、且つ絶縁膜114、116に開口部141a
、141bを形成する工程を追加することで、作製することができる。
なお、本実施の形態で示す構成、方法は、他の実施の形態で示す構成、方法と適宜組み
合わせて用いることができる。
(実施の形態2)
本実施の形態では、本発明の一態様の半導体装置及び半導体装置の作製方法について、
図8乃至図14を参照して説明する。
<2-1.半導体装置の構成例1>
図8(A)は、本発明の一態様の半導体装置であるトランジスタ200の上面図であり
、図8(B)は、図8(A)に示す一点鎖線X1-X2間における切断面の断面図に相当
し、図8(C)は、図8(A)に示す一点鎖線Y1-Y2間における切断面の断面図に相
当する。なお、図8(A)において、煩雑になることを避けるため、トランジスタ200
の構成要素の一部(ゲート絶縁膜として機能する絶縁膜等)を省略して図示している。ま
た、一点鎖線X1-X2方向をチャネル長方向、一点鎖線Y1-Y2方向をチャネル幅方
向と呼称する場合がある。なお、トランジスタの上面図においては、以降の図面において
も図8(A)と同様に、構成要素の一部を省略して図示する場合がある。
図8(A)(B)(C)に示すトランジスタ200は、所謂トップゲート構造のトラン
ジスタである。
トランジスタ200は、基板202上の絶縁膜204と、絶縁膜204上の酸化物半導
体膜208と、酸化物半導体膜208上の絶縁膜210と、絶縁膜210上の導電膜21
2と、絶縁膜204、酸化物半導体膜208、及び導電膜212上の絶縁膜216と、を
有する。
また、酸化物半導体膜208は、Inと、M(MはAl、Ga、Y、またはSn)と、
Znと、を有すると好ましい。
なお、酸化物半導体膜208は、導電膜212と重なり、且つ絶縁膜204と接する第
1の領域208n_1と、導電膜212と重なり、且つ絶縁膜210と接する第2の領域
208iと、絶縁膜216と接する第3の領域208n_2と、有する。また、第1の領
域208n_1は、第2の領域208iよりもキャリア密度が高い領域を有し、第3の領
域208n_2は、第2の領域208iよりもキャリア密度が高い領域を有する。すなわ
ち、本発明の一態様の酸化物半導体膜208は、キャリア密度の異なる3つの領域を有す
る。
なお、酸化物半導体膜208のキャリア密度は、1×10cm-3以上1×1018
cm-3未満が好ましく、1×10cm-3以上1×1017cm-3以下がより好ま
しく、1×10cm-3以上5×1016cm-3以下がさらに好ましく、1×10
cm-3以上1×1016cm-3以下がさらに好ましく、1×1011cm-3以上
1×1015cm-3以下がさらに好ましい。
例えば、酸化物半導体膜208を、第1の酸化物半導体膜と、第1の酸化物半導体膜上
の第2の酸化物半導体膜との、2層の積層構造として形成する。第1の酸化物半導体膜を
、第2の酸化物半導体膜よりもキャリア密度を高めることで、上述のキャリア密度が異な
る領域を有する酸化物半導体膜を形成することができる。
なお、上記第1の酸化物半導体膜としては、第2の酸化物半導体膜よりもわずかに酸素
欠損量を増やす、あるいは第2の酸化物半導体膜よりもわずかに不純物濃度を増やせばよ
い。
第1の酸化物半導体膜のキャリア密度を高めるためには、第1の酸化物半導体膜に酸素
欠損を形成する元素を添加し、当該酸素欠損と水素等とを結合させればよい。当該酸素欠
損を形成する元素としては、代表的には、水素、ホウ素、炭素、窒素、フッ素、リン、硫
黄、塩素、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオ
ン、アルゴン、クリプトン、及びキセノン等がある。なお、酸化物半導体膜中に酸素欠損
を形成する元素としては、上述した元素の中でも、窒素が特に好ましい。
例えば、第1の酸化物半導体膜の形成時において、成膜ガスとしてアルゴンガスと一酸
化二窒素ガスとを用いて形成することで、第1の酸化物半導体膜が窒素元素を有する構成
とすることができる。この場合、第1の酸化物半導体膜は、第2の酸化物半導体膜よりも
窒素濃度が高い領域を有する。
すなわち、第1の酸化物半導体膜は、キャリア密度が高められ、わずかにn型である。
別言すると、キャリア密度が高められた酸化物半導体膜を、「Slightly-n」と
呼称する場合がある。
例えば、トランジスタのゲートに印加する電圧(Vg)が0Vを超えて30V以下の場
合において、第1の酸化物半導体膜のキャリア密度は、1×1016cm-3を超えて1
×1018cm-3未満が好ましく、1×1016cm-3を超えて1×1017cm
以下がより好ましい。
また、第1の酸化物半導体膜のキャリア密度を高めた場合、第1の酸化物半導体膜は、
第2の酸化物半導体膜よりも結晶性が低くなる場合がある。この場合、酸化物半導体膜2
08は、結晶性が低い酸化物半導体膜と、結晶性が高い酸化物半導体膜との積層構造を有
する。また、酸化物半導体膜の結晶性と、酸化物半導体膜の膜密度との間には相関があり
、結晶性が高い酸化物半導体膜ほど膜密度が高い。したがって、酸化物半導体膜208は
、膜密度が低い酸化物半導体膜と、膜密度が高い酸化物半導体膜との積層構造を有する。
なお、酸化物半導体膜208の結晶性としては、例えば、X線回折(XRD:X-Ra
y Diffraction)を用いて分析する、あるいは、透過型電子顕微鏡(TEM
:Transmission Electron Microscope)を用いて分析
することで解析することができる。また、酸化物半導体膜208の膜密度としては、例え
ば、X線反射率法(XRR:X-ray Reflectometer)を用いることで
測定することができる。
また、第3の領域208n_2は、絶縁膜216と接する。絶縁膜216は、窒素また
は水素を有する。そのため、絶縁膜216中の窒素または水素が第3の領域208n_2
中に添加される。第3の領域208n_2は、絶縁膜216から窒素または水素が添加さ
れることで、さらにキャリア密度が高くなる。
また、トランジスタ200は、絶縁膜216上の絶縁膜218と、絶縁膜216、21
8に設けられた開口部241aを介して、第3の領域208n_2に電気的に接続される
導電膜220aと、絶縁膜216、218に設けられた開口部241bを介して、第3の
領域208n_2に電気的に接続される導電膜220bと、を有していてもよい。
なお、本明細書等において、絶縁膜204を第1の絶縁膜と、絶縁膜210を第2の絶
縁膜と、絶縁膜216を第3の絶縁膜と、絶縁膜218を第4の絶縁膜と、それぞれ呼称
する場合がある。また、導電膜212は、ゲート電極としての機能を有し、導電膜220
aは、ソース電極としての機能を有し、導電膜220bは、ドレイン電極としての機能を
有する。
また、絶縁膜210は、ゲート絶縁膜としての機能を有する。また、絶縁膜210は、
過剰酸素領域を有する。絶縁膜210が過剰酸素領域を有することで、酸化物半導体膜2
08が有する第2の領域208i中に過剰酸素を供給することができる。よって、第2の
領域208iに形成されうる酸素欠損を過剰酸素により補填することができるため、信頼
性の高い半導体装置を提供することができる。
なお、酸化物半導体膜208中に過剰酸素を供給させるためには、酸化物半導体膜20
8の下方に形成される絶縁膜204に過剰酸素を供給してもよい。この場合、絶縁膜20
4中に含まれる過剰酸素は、酸化物半導体膜208が有する第1の領域208n_1及び
第3の領域208n_2にも供給されうる。第1の領域208n_1及び第3の領域20
8n_2中に過剰酸素が供給されると、第1の領域208n_1及び第3の領域208n
_2の抵抗が高くなる場合がある。
一方で、酸化物半導体膜208の上方に形成される絶縁膜210に過剰酸素を有する構
成とすることで、第2の領域208iにのみ選択的に過剰酸素を供給させることが可能と
なる。あるいは、第1の領域208n_1、第2の領域208i、及び第3の領域208
n_2に過剰酸素を供給させたのち、第3の領域208n_2のキャリア密度を選択的に
高めることで、第3の領域208n_2の抵抗が高くなることを抑制することができる。
また、酸化物半導体膜208は、Inの原子数比がMの原子数比より多い領域を有する
と好ましい。酸化物半導体膜208が、Inの原子数比がMの原子数比より多い領域を有
することで、トランジスタ200の電界効果移動度を高くすることができる。具体的には
、トランジスタ200の電界効果移動度が10cm/Vsを超える、さらに好ましくは
トランジスタ200の電界効果移動度が30cm/Vsを超えることが可能となる。
例えば、上記の電界効果移動度が高いトランジスタを、ゲート信号を生成するゲートド
ライバ(とくに、ゲートドライバが有するシフトレジスタの出力端子に接続されるデマル
チプレクサ)に用いることで、額縁幅の狭い(狭額縁ともいう)半導体装置または表示装
置を提供することができる。
一方で、酸化物半導体膜208が、Inの原子数比がMの原子数比より多い領域を有す
る場合、ゲートバイアス熱ストレス(Gate Bias Temperature S
tress:GBTともいう)試験時にトランジスタ200の電気特性が変動、例えばト
ランジスタのしきい値電圧が変動する場合がある。
しかしながら、本発明の一態様の半導体装置においては、酸化物半導体膜208が第1
の領域208n_1と、第2の領域208iと、第3の領域208n_2と、を有し、第
1の領域208n_1が、第2の領域208iよりもキャリア密度が高い領域を有する構
成である。
酸化物半導体膜208が有する第1の領域208n_1のキャリア密度を高めることに
より、第1の領域208n_1の伝導帯に対してフェルミ準位が相対的に高くなる場合が
ある。これにより、第1の領域208n_1の伝導帯の下端が低くなり、第1の領域20
8n_1の伝導帯下端と、ゲート絶縁膜(ここでは、絶縁膜210)中に形成されうるト
ラップ準位とのエネルギー差が大きくなる場合がある。該エネルギー差が大きくなること
により、ゲート絶縁膜中にトラップされる電荷が少なくなり、GBT試験における、トラ
ンジスタのしきい値電圧の変動を小さくできる場合がある。
また、酸化物半導体膜208に混入する水素または水分などの不純物は、トランジスタ
特性に影響を与えるため問題となる。したがって、酸化物半導体膜208、特に第2の領
域208iにおいては、水素または水分などの不純物が少ないほど好ましい。また、酸化
物半導体膜208に形成される酸素欠損は、トランジスタ特性に影響を与えるため問題と
なる。例えば、酸化物半導体膜208中に酸素欠損が形成されると、該酸素欠損に水素が
結合し、キャリア供給源となる。酸化物半導体膜208中にキャリア供給源が生成される
と、酸化物半導体膜208を有するトランジスタ200の電気特性の変動、代表的にはし
きい値電圧のシフトが生じる。したがって、酸化物半導体膜208、特に第2の領域20
8iにおいては、酸素欠損が少ないほど好ましい。
第2の領域208i中に形成されうる酸素欠損は、絶縁膜210が有する過剰酸素によ
り補填される。したがって、酸化物半導体膜208が有する第2の領域208iは、不純
物濃度が低く、欠陥準位密度の低い酸化物半導体膜である。なお、不純物濃度が低く、欠
陥準位密度の低い(酸素欠損の少ない)ことを高純度真性または実質的に高純度真性とよ
ぶ。高純度真性または実質的に高純度真性である酸化物半導体膜は、キャリア発生源が少
ないため、キャリア密度を低くすることができる。従って、該酸化物半導体膜にチャネル
領域が形成されるトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリー
オンともいう。)になることが少ない。また、高純度真性または実質的に高純度真性であ
る酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある
。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、オフ電流が著し
く小さく、チャネル幅が1×10μmでチャネル長Lが10μmの素子であっても、ソ
ース電極とドレイン電極間の電圧(ドレイン電圧)が1Vから10Vの範囲において、オ
フ電流が、半導体パラメータアナライザの測定限界以下、すなわち1×10-13A以下
という特性を得ることができる。
以上のように、本発明の一態様の半導体装置においては、酸素欠損あるいは不純物濃度
を制御することで、キャリア密度の異なる酸化物半導体膜の2層の積層構造を形成する。
下層の酸化物半導体膜のキャリア密度を高め、上層の酸化物半導体膜のキャリア密度を低
くすることで、トランジスタの電界効果移動度を向上させると共に信頼性を向上させるこ
とが実現できる。また、本発明の一態様の半導体装置においては、ソース電極及びドレイ
ン電極となる導電膜と接する酸化物半導体膜のキャリア密度がさらに低減されている。し
たがって、ソース電極及びドレイン電極となる導電膜と、酸化物半導体膜との接続抵抗を
低くすることができる。よって、電気特性の優れた半導体装置を提供することができる。
<2-2.半導体装置の構成要素>
次に、本実施の形態の半導体装置に含まれる構成要素について、詳細に説明する。
[基板]
基板202の材質などに大きな制限はないが、少なくとも、後の熱処理に耐えうる程度
の耐熱性を有している必要がある。例えば、ガラス基板、セラミック基板、石英基板、サ
ファイア基板等を、基板202として用いてもよい。また、シリコンや炭化シリコンを材
料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体
基板、SOI基板等を適用することも可能であり、これらの基板上に半導体素子が設けら
れたものを、基板202として用いてもよい。なお、基板202として、ガラス基板を用
いる場合、第6世代(1500mm×1850mm)、第7世代(1870mm×220
0mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×280
0mm)、第10世代(2950mm×3400mm)等の大面積基板を用いることで、
大型の表示装置を作製することができる。
また、基板202として、可撓性基板を用い、可撓性基板上に直接、トランジスタ20
0を形成してもよい。または、基板202とトランジスタ200の間に剥離層を設けても
よい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板202より
分離し、他の基板に転載するのに用いることができる。その際、トランジスタ200は耐
熱性の劣る基板や可撓性の基板にも転載できる。
[第1の絶縁膜]
絶縁膜204としては、スパッタリング法、CVD法、蒸着法、パルスレーザー堆積(
PLD)法、印刷法、塗布法等を適宜用いて形成することができる。また、絶縁膜204
としては、例えば、酸化物絶縁膜または窒化物絶縁膜を単層または積層して形成すること
ができる。なお、酸化物半導体膜208との界面特性を向上させるため、絶縁膜204に
おいて少なくとも酸化物半導体膜208と接する領域は酸化物絶縁膜で形成することが好
ましい。また、絶縁膜204として加熱により酸素を放出する酸化物絶縁膜を用いること
で、加熱処理により絶縁膜204に含まれる酸素を、酸化物半導体膜208に移動させる
ことが可能である。
絶縁膜204の厚さは、50nm以上、または100nm以上3000nm以下、また
は200nm以上1000nm以下とすることができる。絶縁膜204を厚くすることで
、絶縁膜204の酸素放出量を増加させることができると共に、絶縁膜204と酸化物半
導体膜208との界面における界面準位、並びに酸化物半導体膜208に含まれる酸素欠
損を低減することが可能である。
絶縁膜204として、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒
化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa-Zn酸化物
などを用いればよく、単層または積層で設けることができる。本実施の形態では、絶縁膜
204として、窒化シリコン膜と、酸化窒化シリコン膜との積層構造を用いる。このよう
に、絶縁膜204を積層構造として、下層側に窒化シリコン膜を用い、上層側に酸化窒化
シリコン膜を用いることで、酸化物半導体膜208中に効率よく酸素を導入することがで
きる。
[導電膜]
ゲート電極として機能する導電膜212、ソース電極として機能する導電膜220a、
ドレイン電極として機能する導電膜220bとしては、クロム(Cr)、銅(Cu)、ア
ルミニウム(Al)、金(Au)、銀(Ag)、亜鉛(Zn)、モリブデン(Mo)、タ
ンタル(Ta)、チタン(Ti)、タングステン(W)、マンガン(Mn)、ニッケル(
Ni)、鉄(Fe)、コバルト(Co)から選ばれた金属元素、または上述した金属元素
を成分とする合金か、上述した金属元素を組み合わせた合金等を用いてそれぞれ形成する
ことができる。
また、導電膜212、220a、220bには、インジウムと錫とを有する酸化物(I
n-Sn酸化物)、インジウムとタングステンとを有する酸化物(In-W酸化物)、イ
ンジウムとタングステンと亜鉛とを有する酸化物(In-W-Zn酸化物)、インジウム
とチタンとを有する酸化物(In-Ti酸化物)、インジウムとチタンと錫とを有する酸
化物(In-Ti-Sn酸化物)、インジウムと亜鉛とを有する酸化物(In-Zn酸化
物)、インジウムと錫とシリコンとを有する酸化物(In-Sn-Si酸化物)、インジ
ウムとガリウムと亜鉛とを有する酸化物(In-Ga-Zn酸化物)等の酸化物導電体ま
たは酸化物半導体を適用することもできる。
ここで、酸化物導電体について説明を行う。本明細書等において、酸化物導電体をOC
(Oxide Conductor)と呼称してもよい。例えば、酸化物半導体に酸素欠
損を形成し、該酸素欠損に水素を添加すると、伝導帯近傍にドナー準位が形成される。こ
の結果、酸化物半導体は、導電性が高くなり導電体化する。導電体化された酸化物半導体
を、酸化物導電体ということができる。一般に、酸化物半導体は、エネルギーギャップが
大きいため、可視光に対して透光性を有する。一方、酸化物導電体は、伝導帯近傍にドナ
ー準位を有する酸化物半導体である。したがって、酸化物導電体は、ドナー準位による吸
収の影響は小さく、可視光に対して酸化物半導体と同程度の透光性を有する。
特に、導電膜212に上述の酸化物導電体を用いると、絶縁膜210中に過剰酸素を添
加することができるので好適である。
また、導電膜212、220a、220bには、Cu-X合金膜(Xは、Mn、Ni、
Cr、Fe、Co、Mo、Ta、またはTi)を適用してもよい。Cu-X合金膜を用い
ることで、ウエットエッチングプロセスで加工できるため、製造コストを抑制することが
可能となる。
また、導電膜212、120a、220bには、上述の金属元素の中でも、特にチタン
、タングステン、タンタル、及びモリブデンの中から選ばれるいずれか一つまたは複数を
有すると好適である。特に、導電膜212、220a、220bとしては、窒化タンタル
膜を用いると好適である。当該窒化タンタル膜は、導電性を有し、且つ、銅または水素に
対して、高いバリア性を有する。また、窒化タンタル膜は、さらに自身からの水素の放出
が少ないため、酸化物半導体膜208と接する導電膜、または酸化物半導体膜208の近
傍の導電膜として、最も好適に用いることができる。
また、導電膜212、220a、220bを、無電解めっき法により形成することがで
きる。当該無電解めっき法により形成できる材料としては、例えば、Cu、Ni、Al、
Au、Sn、Co、Ag、及びPdの中から選ばれるいずれか一つまたは複数を用いるこ
とが可能である。特に、CuまたはAgを用いると、導電膜の抵抗を低くすることができ
るため、好適である。
[第2の絶縁膜]
トランジスタ200のゲート絶縁膜として機能する絶縁膜210としては、プラズマ化
学気相堆積(PECVD:(Plasma Enhanced Chemical Va
por Deposition))法、スパッタリング法等により、酸化シリコン膜、酸
化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化ハ
フニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル
膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜および酸化ネオジム膜を一種
以上含む絶縁層を用いることができる。なお、絶縁膜210を、2層以上の積層構造とし
てもよい。
また、トランジスタ200のチャネル領域として機能する酸化物半導体膜208と接す
る絶縁膜210は、酸化物絶縁膜であることが好ましく、化学量論的組成よりも過剰に酸
素を含有する領域(過剰酸素領域)を有することがより好ましい。別言すると、絶縁膜2
10は、酸素を放出することが可能な絶縁膜である。なお、絶縁膜210に過剰酸素領域
を設けるには、例えば、酸素雰囲気下にて絶縁膜210を形成する、もしくは成膜後の絶
縁膜210を酸素雰囲気下で熱処理すればよい。
また、絶縁膜210として、酸化ハフニウムを用いる場合、以下の効果を奏する。酸化
ハフニウムは、酸化シリコンや酸化窒化シリコンと比べて比誘電率が高い。したがって、
酸化シリコンを用いた場合と比べて、絶縁膜210の膜厚を大きくできるため、トンネル
電流によるリーク電流を小さくすることができる。すなわち、オフ電流の小さいトランジ
スタを実現することができる。さらに、結晶構造を有する酸化ハフニウムは、非晶質構造
を有する酸化ハフニウムと比べて高い比誘電率を備える。したがって、オフ電流の小さい
トランジスタとするためには、結晶構造を有する酸化ハフニウムを用いることが好ましい
。結晶構造の例としては、単斜晶系や立方晶系などが挙げられる。ただし、本発明の一態
様は、これらに限定されない。
また、絶縁膜210は、欠陥が少ないことが好ましく、代表的には、電子スピン共鳴法
(ESR:Electron Spin Resonance)で観察されるシグナルが
少ない方が好ましい。例えば、上述のシグナルとしては、g値が2.001に観察される
E’センターに起因するシグナルが挙げられる。なお、E’センターは、シリコンのダン
グリングボンドに起因する。絶縁膜210としては、E’センター起因のスピン密度が、
3×1017spins/cm以下、好ましくは5×1016spins/cm以下
である酸化シリコン膜、または酸化窒化シリコン膜を用いればよい。
また、絶縁膜210には、上述のシグナル以外に二酸化窒素(NO)に起因するシグ
ナルが観察される場合がある。当該シグナルは、Nの核スピンにより3つのシグナルに分
裂しており、それぞれのg値が2.037以上2.039以下(第1のシグナルとする)
、g値が2.001以上2.003以下(第2のシグナルとする)、及びg値が1.96
4以上1.966以下(第3のシグナルとする)に観察される。
例えば、絶縁膜210として、二酸化窒素(NO)に起因するシグナルのスピン密度
が、1×1017spins/cm以上1×1018spins/cm未満である絶
縁膜を用いると好適である。
なお、二酸化窒素(NO)を含む窒素酸化物(NO)は、絶縁膜210中に準位を
形成する。当該準位は、酸化物半導体膜208のエネルギーギャップ内に位置する。その
ため、窒素酸化物(NOx)が、絶縁膜210及び酸化物半導体膜208の界面に拡散す
ると、当該準位が絶縁膜210側において電子をトラップする場合がある。この結果、ト
ラップされた電子が、絶縁膜210及び酸化物半導体膜208界面近傍に留まるため、ト
ランジスタのしきい値電圧をプラス方向にシフトさせてしまう。したがって、絶縁膜21
0としては、窒素酸化物の含有量が少ない膜を用いると、トランジスタのしきい値電圧の
シフトを低減することができる。
窒素酸化物(NO)の放出量が少ない絶縁膜としては、例えば、酸化窒化シリコン膜
を用いることができる。当該酸化窒化シリコン膜は、昇温脱離ガス分析法(TDS:Th
ermal Desorption Spectroscopy)において、窒素酸化物
(NO)の放出量よりアンモニアの放出量が多い膜であり、代表的にはアンモニアの放
出量が1×1018/cm以上5×1019/cm以下である。なお、上記のアンモ
ニアの放出量は、TDSにおける加熱処理の温度が50℃以上650℃以下、または50
℃以上550℃以下の範囲での総量である。
窒素酸化物(NO)は、加熱処理においてアンモニア及び酸素と反応するため、アン
モニアの放出量が多い絶縁膜を用いることで窒素酸化物(NO)が低減される。
なお、絶縁膜210をSIMSで分析した場合、膜中の窒素濃度が6×1020ato
ms/cm以下であると好ましい。
[酸化物半導体膜]
酸化物半導体膜208としては、先に示す材料を用いることができる。
酸化物半導体膜208がIn-M-Zn酸化物の場合、In-M-Zn酸化物を成膜す
るために用いるスパッタリングターゲットの金属元素の原子数比は、In>Mを満たすこ
とが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In
:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.
1等が挙げられる。
また、酸化物半導体膜208が、In-M-Zn酸化物の場合、スパッタリングターゲ
ットとしては、多結晶のIn-M-Zn酸化物を含むターゲットを用いると好ましい。多
結晶のIn-M-Zn酸化物を含むターゲットを用いることで、結晶性を有する酸化物半
導体膜208を形成しやすくなる。なお、成膜される酸化物半導体膜208の原子数比は
、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40
%の変動を含む。例えば、酸化物半導体膜208に用いるスパッタリングターゲットの組
成がIn:Ga:Zn=4:2:4.1[原子数比]の場合、成膜される酸化物半導体膜
208の組成は、In:Ga:Zn=4:2:3[原子数比]の近傍となる場合がある。
また、酸化物半導体膜208は、エネルギーギャップが2eV以上、好ましくは2.5
eV以上である。このように、エネルギーギャップの広い酸化物半導体を用いることで、
トランジスタ200のオフ電流を低減することができる。
また、酸化物半導体膜208の厚さは、3nm以上200nm以下、好ましくは3nm
以上100nm以下、さらに好ましくは3nm以上50nm以下とする。
また、酸化物半導体膜208は、非単結晶構造でもよい。非単結晶構造は、例えば、後
述するCAAC-OS(C Axis Aligned Crystalline Ox
ide Semiconductor)、多結晶構造、微結晶構造、または非晶質構造を
含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC-OSは
最も欠陥準位密度が低い。
[第3の絶縁膜]
絶縁膜216は、窒素または水素を有する。絶縁膜216としては、例えば、窒化物絶
縁膜が挙げられる。該窒化物絶縁膜としては、窒化シリコン、窒化酸化シリコン、酸化窒
化シリコン等を用いて形成することができる。絶縁膜216に含まれる水素濃度は、1×
1022atoms/cm以上であると好ましい。また、絶縁膜216は、酸化物半導
体膜208の第3の領域208n_2と接する。したがって、絶縁膜216と接する第3
の領域208n_2中の不純物(窒素または水素)濃度が高くなり、第3の領域208n
_2のキャリア密度を高めることができる。
[第4の絶縁膜]
絶縁膜218としては、酸化物絶縁膜を用いることができる。また、絶縁膜218とし
ては、酸化物絶縁膜と、窒化物絶縁膜との積層膜を用いることができる。絶縁膜218と
して、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、
酸化ハフニウム、酸化ガリウムまたはGa-Zn酸化物などを用いればよい。
また、絶縁膜218としては、外部からの水素、水等のバリア膜として機能する膜であ
ることが好ましい。
絶縁膜218の厚さは、30nm以上500nm以下、または100nm以上400n
m以下とすることができる。
<2-3.トランジスタの構成例2>
次に、図8(A)(B)(C)に示すトランジスタと異なる構成について、図9(A)
(B)(C)を用いて説明する。
図9(A)は、トランジスタ200Aの上面図であり、図9(B)は図9(A)の一点
鎖線X1-X2間の断面図であり、図9(C)は図9(A)の一点鎖線Y1-Y2間の断
面図である。
図9(A)(B)(C)に示すトランジスタ200Aは、基板202上の導電膜206
と、導電膜206上の絶縁膜204と、絶縁膜204上の酸化物半導体膜208と、酸化
物半導体膜208上の絶縁膜210と、絶縁膜210上の導電膜212と、絶縁膜204
、酸化物半導体膜208、及び導電膜212上の絶縁膜216と、を有する。
なお、酸化物半導体膜208は、導電膜212と重なり、且つ絶縁膜204と接する第
1の領域208n_1と、導電膜212と重なり、且つ絶縁膜210と接する第2の領域
208iと、絶縁膜216と接する第3の領域208n_2と、有する。
トランジスタ200Aは、先に示すトランジスタ200の構成に加え、導電膜206と
、開口部243と、を有する。
なお、開口部243は、絶縁膜204、210に設けられる。また、導電膜206は、
開口部243を介して、導電膜212と、電気的に接続される。よって、導電膜206と
導電膜212には、同じ電位が与えられる。なお、開口部243を設けずに、導電膜20
6と、導電膜212と、に異なる電位を与えてもよい。または、開口部243を設けずに
、導電膜206を遮光膜として用いてもよい。例えば、導電膜206を遮光性の材料によ
り形成することで、第2の領域208iに照射される下方からの光を抑制することができ
る。
また、トランジスタ200Aの構成とする場合、導電膜206は、第1のゲート電極(
ボトムゲート電極ともいう)としての機能を有し、導電膜212は、第2のゲート電極(
トップゲート電極ともいう)としての機能を有する。また、絶縁膜204は、第1のゲー
ト絶縁膜としての機能を有し、絶縁膜210は、第2のゲート絶縁膜としての機能を有す
る。
導電膜206としては、先に記載の導電膜212、220a、220bと同様の材料を
用いることができる。特に導電膜206として、銅を含む材料により形成することで抵抗
を低くすることができるため好適である。例えば、導電膜206を窒化チタン膜、窒化タ
ンタル膜、またはタングステン膜上に銅膜を設ける積層構造とし、導電膜220a、22
0bを窒化チタン膜、窒化タンタル膜、またはタングステン膜上に銅膜を設ける積層構造
とすると好適である。この場合、トランジスタ200Aを表示装置の画素トランジスタ及
び駆動トランジスタのいずれか一方または双方に用いることで、導電膜206と導電膜2
20aとの間に生じる寄生容量、及び導電膜206と導電膜220bとの間に生じる寄生
容量を低くすることができる。したがって、導電膜206、導電膜220a、及び導電膜
220bを、トランジスタ200Aの第1のゲート電極、ソース電極、及びドレイン電極
として用いるのみならず、表示装置の電源供給用の配線、信号供給用の配線、または接続
用の配線等に用いる事も可能となる。
このように、図9(A)(B)(C)に示すトランジスタ200Aは、先に説明したト
ランジスタ200と異なり、酸化物半導体膜208の上下にゲート電極として機能する導
電膜を有する構造である。トランジスタ200Aに示すように、本発明の一態様の半導体
装置には、複数のゲート電極を設けてもよい。
また、図9(B)(C)に示すように、酸化物半導体膜208は、第1のゲート電極と
して機能する導電膜206と、第2のゲート電極として機能する導電膜212のそれぞれ
と対向するように位置し、2つのゲート電極として機能する導電膜に挟まれている。
また、導電膜212のチャネル幅方向の長さは、酸化物半導体膜208のチャネル幅方
向の長さよりも長く、酸化物半導体膜208のチャネル幅方向全体は、絶縁膜210を間
に挟んで導電膜212に覆われている。また、導電膜212と導電膜206とは、絶縁膜
204、及び絶縁膜210に設けられる開口部243において接続されるため、酸化物半
導体膜208のチャネル幅方向の側面の一方は、絶縁膜210を間に挟んで導電膜212
と対向している。
別言すると、導電膜206及び導電膜212は、絶縁膜204、210に設けられる開
口部243において接続され、且つ酸化物半導体膜208の側端部よりも外側に位置する
領域を有する。
このような構成を有することで、トランジスタ200Aに含まれる酸化物半導体膜20
8を、第1のゲート電極として機能する導電膜206及び第2のゲート電極として機能す
る導電膜212の電界によって電気的に取り囲むことができる。トランジスタ200Aの
ように、第1のゲート電極及び第2のゲート電極の電界によって、チャネル領域が形成さ
れる酸化物半導体膜を電気的に取り囲むトランジスタのデバイス構造をSurround
ed channel(S-channel)構造と呼ぶことができる。
トランジスタ200Aは、S-channel構造を有するため、導電膜206または
導電膜212によってチャネルを誘起させるための電界を効果的に酸化物半導体膜208
に印加することができるため、トランジスタ200Aの電流駆動能力が向上し、高いオン
電流特性を得ることが可能となる。また、オン電流を高くすることが可能であるため、ト
ランジスタ200Aを微細化することが可能となる。また、トランジスタ200Aは、酸
化物半導体膜208が導電膜206、及び導電膜212によって取り囲まれた構造を有す
るため、トランジスタ200Aの機械的強度を高めることができる。
なお、トランジスタ200Aのチャネル幅方向において、酸化物半導体膜208の開口
部243が形成されていない側に、開口部243と異なる開口部を形成してもよい。
また、トランジスタ200Aに示すように、トランジスタが、半導体膜を間に挟んで存
在する一対のゲート電極を有している場合、一方のゲート電極には信号Aが、他方のゲー
ト電極には固定電位Vbが与えられてもよい。また、一方のゲート電極には信号Aが、他
方のゲート電極には信号Bが与えられてもよい。また、一方のゲート電極には固定電位V
aが、他方のゲート電極には固定電位Vbが与えられてもよい。
信号Aは、例えば、導通状態または非導通状態を制御するための信号である。信号Aは
、電位V1、または電位V2(V1>V2とする)の2種類の電位をとるデジタル信号で
あってもよい。例えば、電位V1を高電源電位とし、電位V2を低電源電位とすることが
できる。信号Aは、アナログ信号であってもよい。
固定電位Vbは、例えば、トランジスタのしきい値電圧VthAを制御するための電位
である。固定電位Vbは、電位V1、または電位V2であってもよい。この場合、固定電
位Vbを生成するための電位発生回路を、別途設ける必要がなく好ましい。固定電位Vb
は、電位V1、または電位V2と異なる電位であってもよい。固定電位Vbを低くするこ
とで、しきい値電圧VthAを高くできる場合がある。その結果、ゲートーソース間電圧
Vgsが0Vのときのドレイン電流を低減し、トランジスタを有する回路のリーク電流を
低減できる場合がある。例えば、固定電位Vbを低電源電位よりも低くしてもよい。一方
で、固定電位Vbを高くすることで、しきい値電圧VthAを低くできる場合がある。そ
の結果、ゲート-ソース間電圧Vgsが高電源電位のときのドレイン電流を向上させ、ト
ランジスタを有する回路の動作速度を向上できる場合がある。例えば、固定電位Vbを低
電源電位よりも高くしてもよい。
信号Bは、例えば、導通状態または非導通状態を制御するための信号である。信号Bは
、電位V3、または電位V4(V3>V4とする)の2種類の電位をとるデジタル信号で
あってもよい。例えば、電位V3を高電源電位とし、電位V4を低電源電位とすることが
できる。信号Bは、アナログ信号であってもよい。
信号Aと信号Bが共にデジタル信号である場合、信号Bは、信号Aと同じデジタル値を
持つ信号であってもよい。この場合、トランジスタのオン電流を向上し、トランジスタを
有する回路の動作速度を向上できる場合がある。このとき、信号Aにおける電位V1及び
電位V2は、信号Bにおける電位V3及び電位V4と、異なっていても良い。例えば、信
号Bが入力されるゲートに対応するゲート絶縁膜が、信号Aが入力されるゲートに対応す
るゲート絶縁膜よりも厚い場合、信号Bの電位振幅(V3-V4)を、信号Aの電位振幅
(V1-V2)より大きくしても良い。そうすることで、トランジスタの導通状態または
非導通状態に対して、信号Aが与える影響と、信号Bが与える影響と、を同程度とするこ
とができる場合がある。
信号Aと信号Bが共にデジタル信号である場合、信号Bは、信号Aと異なるデジタル値
を持つ信号であってもよい。この場合、トランジスタの制御を信号Aと信号Bによって別
々に行うことができ、より高い機能を実現できる場合がある。例えば、トランジスタがn
チャネル型である場合、信号Aが電位V1であり、かつ、信号Bが電位V3である場合の
み導通状態となる場合や、信号Aが電位V2であり、かつ、信号Bが電位V4である場合
のみ非導通状態となる場合には、一つのトランジスタでNAND回路やNOR回路等の機
能を実現できる場合がある。また、信号Bは、しきい値電圧VthAを制御するための信
号であってもよい。例えば、信号Bは、トランジスタを有する回路が動作している期間と
、当該回路が動作していない期間と、で電位が異なる信号であっても良い。信号Bは、回
路の動作モードに合わせて電位が異なる信号であってもよい。この場合、信号Bは信号A
ほど頻繁には電位が切り替わらない場合がある。
信号Aと信号Bが共にアナログ信号である場合、信号Bは、信号Aと同じ電位のアナロ
グ信号、信号Aの電位を定数倍したアナログ信号、または、信号Aの電位を定数だけ加算
もしくは減算したアナログ信号等であってもよい。この場合、トランジスタのオン電流が
向上し、トランジスタを有する回路の動作速度を向上できる場合がある。信号Bは、信号
Aと異なるアナログ信号であってもよい。この場合、トランジスタの制御を信号Aと信号
Bによって別々に行うことができ、より高い機能を実現できる場合がある。
信号Aがデジタル信号であり、信号Bがアナログ信号であってもよい。または信号Aが
アナログ信号であり、信号Bがデジタル信号であってもよい。
トランジスタの両方のゲート電極に固定電位を与える場合、トランジスタを、抵抗素子
と同等の素子として機能させることができる場合がある。例えば、トランジスタがnチャ
ネル型である場合、固定電位Vaまたは固定電位Vbを高く(低く)することで、トラン
ジスタの実効抵抗を低く(高く)することができる場合がある。固定電位Va及び固定電
位Vbを共に高く(低く)することで、一つのゲートしか有さないトランジスタによって
得られる実効抵抗よりも低い(高い)実効抵抗が得られる場合がある。
なお、トランジスタ200Aのその他の構成は、先に示すトランジスタ200と同様で
あり、同様の効果を奏する。
また、トランジスタ200A上にさらに、絶縁膜を形成してもよい。その場合の一例を
図10(A)(B)に示す。図10(A)(B)は、トランジスタ200Bの断面図であ
る。トランジスタ200Bの上面図としては、図9(A)に示すトランジスタ200Aと
同様であるため、ここでの説明は省略する。
図10(A)(B)に示すトランジスタ200Bは、導電膜220a、220b、及び
絶縁膜218上に絶縁膜222を有する。それ以外の構成については、トランジスタ20
0Aと同様であり、同様の効果を奏する。
絶縁膜222は、トランジスタ等に起因する凹凸等を平坦化させる機能を有する。絶縁
膜222としては、絶縁性であればよく、無機材料または有機材料を用いて形成される。
該無機材料としては、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化
シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜等が挙げられる。該有機材料とし
ては、例えば、アクリル樹脂、またはポリイミド樹脂等の感光性の樹脂材料が挙げられる
<2-4.トランジスタの構成例3>
次に、図9(A)(B)(C)に示すトランジスタ200Aと異なる構成について、図
11を用いて説明する。
図11(A)(B)は、トランジスタ200Cの断面図である。なお、トランジスタ2
00Cの上面図としては、図9(A)に示すトランジスタ200Aと同様であるため、こ
こでの説明は省略する。
図11(A)(B)に示すトランジスタ200Cは、導電膜212の積層構造、導電膜
212の形状、及び絶縁膜210の形状がトランジスタ200Aと異なる。
トランジスタ200Cの導電膜212は、絶縁膜210上の導電膜212_1と、導電
膜212_1上の導電膜212_2と、を有する。例えば、導電膜212_1として、酸
化物導電膜を用いることにより、絶縁膜210に過剰酸素を添加することができる。上記
酸化物導電膜としては、スパッタリング法を用い、酸素ガスを含む雰囲気にて形成するこ
とができる。また、上記酸化物導電膜としては、例えば、インジウムと錫とを有する酸化
物、タングステンとインジウムとを有する酸化物、タングステンとインジウムと亜鉛とを
有する酸化物、チタンとインジウムとを有する酸化物、チタンとインジウムと錫とを有す
る酸化物、インジウムと亜鉛とを有する酸化物、シリコンとインジウムと錫とを有する酸
化物、インジウムとガリウムと亜鉛とを有する酸化物等が挙げられる。
また、図11(B)に示すように、開口部243において、導電膜212_2と、導電
膜206とが接続される。開口部243を形成する際に、導電膜212_1となる導電膜
を形成した後、開口部243を形成することで、図11(B)に示す形状とすることがで
きる。導電膜212_1に酸化物導電膜を適用した場合、導電膜212_2と、導電膜2
06とが接続される構成とすることで、導電膜212と導電膜206との接続抵抗を低く
することができる。
また、トランジスタ200Cの導電膜212及び絶縁膜210は、テーパー形状である
。より具体的には、導電膜212の下端部は、導電膜212の上端部よりも外側に形成さ
れる。また、絶縁膜210の下端部は、絶縁膜210の上端部よりも外側に形成される。
また、導電膜212の下端部は、絶縁膜210の上端部と概略同じ位置に形成される。
トランジスタ200Cの導電膜212及び絶縁膜210をテーパー形状とすることで、
トランジスタ200Aの導電膜212及び絶縁膜210が矩形の場合と比較し、絶縁膜2
16の被覆性を高めることができるため好適である。
なお、トランジスタ200Cのその他の構成は、先に示すトランジスタ200Aと同様
であり、同様の効果を奏する。
<2-5.半導体装置の作製方法>
次に、図9(A)(B)(C)に示すトランジスタ200Aの作製方法の一例について
、図12乃至図14を用いて説明する。なお、図12乃至図14は、トランジスタ200
Aの作製方法を説明するチャネル長(L)方向、及びチャネル幅(W)方向の断面図であ
る。
まず、基板202上に導電膜206を形成する。次に、基板202、及び導電膜206
上に絶縁膜204を形成し、絶縁膜204上に第1の酸化物半導体膜と、第2の酸化物半
導体膜とを形成する。その後、第1の酸化物半導体膜を島状に加工することで、酸化物半
導体膜208n_0を形成する。また、第2の酸化物半導体膜を島状に加工することで、
酸化物半導体膜208i_0を形成する(図12(A)参照)。
導電膜206としては、先に記載の材料を選択することで形成できる。本実施の形態に
おいては、導電膜206として、スパッタリング装置を用い、厚さ50nmのタングステ
ン膜と、厚さ400nmの銅膜との積層膜を形成する。
なお、導電膜206となる導電膜の加工方法としては、ウエットエッチング法及びドラ
イエッチング法のいずれか一方または双方を用いればよい。本実施の形態では、ウエット
エッチング法にて銅膜をエッチングしたのち、ドライエッチング法にてタングステン膜を
エッチングすることで導電膜を加工し、導電膜206を形成する。
絶縁膜204としては、スパッタリング法、CVD法、蒸着法、パルスレーザー堆積(
PLD)法、印刷法、塗布法等を適宜用いて形成することができる。本実施の形態におい
ては、絶縁膜204として、プラズマCVD装置を用い、厚さ400nmの窒化シリコン
膜と、厚さ50nmの酸化窒化シリコン膜とを形成する。
また、絶縁膜204を形成した後、絶縁膜204に酸素を添加してもよい。絶縁膜20
4に添加する酸素としては、酸素ラジカル、酸素原子、酸素原子イオン、酸素分子イオン
等がある。また、添加方法としては、イオンドーピング法、イオン注入法、プラズマ処理
法等がある。また、絶縁膜204上に酸素の脱離を抑制する膜を形成した後、該膜を介し
て絶縁膜204に酸素を添加してもよい。
上述の酸素の脱離を抑制する膜として、インジウム、亜鉛、ガリウム、錫、アルミニウ
ム、クロム、タンタル、チタン、モリブデン、ニッケル、鉄、コバルト、またはタングス
テンの1以上を有する導電膜あるいは半導体膜を用いて形成することができる。
また、プラズマ処理で酸素の添加を行う場合、マイクロ波で酸素を励起し、高密度な酸
素プラズマを発生させることで、絶縁膜204への酸素添加量を増加させることができる
酸化物半導体膜208n_0の形成条件としては、酸化物半導体膜208i_0よりも
基板温度または酸素流量比のいずれか一方または双方を低くすると好ましい。
具体的には、酸化物半導体膜208n_0の形成条件としては、基板温度を室温以上1
50℃未満、好ましくは100℃以上140℃以下とし、酸素流量比を、0%を超えて3
0%未満とする。また、酸化物半導体膜208i_0の形成条件としては、基板温度を1
50℃以上300℃以下、好ましくは基板温度を160℃以上200℃以下とし、酸素流
量比を30%以上100%以下とする。
上記のような形成条件とすることで、キャリア密度の異なる酸化物半導体膜を積層して
形成することができる。なお、酸化物半導体膜208n_0及び酸化物半導体膜208i
_0を真空中で連続して形成することで、各界面に不純物が取り込まれないため、より好
適である。
なお、酸化物半導体膜208を加熱して成膜することで、酸化物半導体膜208の結晶
性を高めることができる。一方で、基板202として、大型のガラス基板(例えば、第6
世代乃至第10世代)を用いる場合、酸化物半導体膜208を成膜する際の基板温度を2
00℃以上300℃以下とした場合、基板202が変形する(歪むまたは反る)場合があ
る。よって、大型のガラス基板を用いる場合においては、酸化物半導体膜208の成膜す
る際の基板温度を100℃以上200℃未満とすることで、ガラス基板の変形を抑制する
ことができる。
また、スパッタリングガスの高純度化も必要である。例えば、スパッタリングガスとし
て用いる酸素ガスやアルゴンガスは、露点が-40℃以下、好ましくは-80℃以下、よ
り好ましくは-100℃以下、より好ましくは-120℃以下にまで高純度化したガスを
用いることで酸化物半導体膜に水分等が取り込まれることを可能な限り防ぐことができる
また、スパッタリング法で酸化物半導体膜を成膜する場合、スパッタリング装置におけ
るチャンバーは、酸化物半導体膜にとって不純物となる水等を可能な限り除去すべくクラ
イオポンプのような吸着式の真空排気ポンプを用いて、高真空(5×10-7Paから1
×10-4Pa程度まで)に排気することが好ましい。特に、スパッタリング装置の待機
時における、チャンバー内のHOに相当するガス分子(m/z=18に相当するガス分
子)の分圧を1×10-4Pa以下、好ましく5×10-5Pa以下とすることが好まし
い。
また、酸化物半導体膜208n_0の形成条件としては、In-Ga-Zn金属酸化物
ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いて、スパッタリン
グ法により形成する。また、酸化物半導体膜208n_0の形成時の基板温度を130℃
とし、成膜ガスとして流量20sccmの酸素ガスと、流量180sccmのアルゴンガ
スとを用いる(酸素流量比10%)。
また、酸化物半導体膜208i_0の形成条件としては、In-Ga-Zn金属酸化物
ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いて、スパッタリン
グ法により形成する。また、酸化物半導体膜208i_0の形成時の基板温度を170℃
とし、成膜ガスとして流量60sccmの酸素ガスと、流量140sccmのアルゴンガ
スとを用いる(酸素流量比30%)。
なお、上記においては、酸化物半導体膜208n_0と、酸化物半導体膜208i_0
とを、基板温度及び酸素流量比を変えることによって、キャリア密度の異なる酸化物半導
体膜を積層する構成について例示したが、これに限定されない。例えば、酸化物半導体膜
208n_0の形成時において、不純物元素を添加することで、酸化物半導体膜208i
_0とキャリア密度の異なる酸化物半導体膜を形成してもよい。当該不純物元素としては
、水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、希ガス等が挙げられる。
なお、酸化物半導体膜208n_0中に添加する不純物元素としては、上述した元素の
中でも、窒素が特に好ましい。例えば、酸化物半導体膜208n_0の形成時において、
アルゴンガス及び窒素ガスを成膜ガスとして用いる、あるいはアルゴンガス及び一酸化二
窒素ガスを成膜ガスとして用いることで、酸化物半導体膜208n_0中に窒素を添加す
ることができる。
また、酸化物半導体膜208n_0の形成時において、不純物元素を用いる場合、不純
物元素を添加したくない膜、例えば、酸化物半導体膜208i_0に不純物元素の混入を
避けるために、酸化物半導体膜208n_0を形成するチャンバーを、独立して設けると
好適である。
また、酸化物半導体膜208n_0を形成後に、酸化物半導体膜208n_0中に不純
物元素を添加してもよい。酸化物半導体膜208n_0形成後に不純物元素を添加する方
法としては、例えば、ドーピング処理またはプラズマ処理を用いることができる。
また、酸化物半導体膜208n_0及び酸化物半導体膜208i_0を形成した後、加
熱処理を行い、酸化物半導体膜208n_0及び酸化物半導体膜208i_0の脱水素化
または脱水化をしてもよい。加熱処理の温度は、代表的には、150℃以上基板歪み点未
満、または250℃以上450℃以下、または300℃以上450℃以下である。
加熱処理は、ヘリウム、ネオン、アルゴン、キセノン、クリプトン等の希ガス、または
窒素を含む不活性ガス雰囲気で行うことができる。または、不活性ガス雰囲気で加熱した
後、酸素雰囲気で加熱してもよい。なお、上記不活性雰囲気及び酸素雰囲気に水素、水な
どが含まれないことが好ましい。処理時間は3分以上24時間以下とすればよい。
該加熱処理は、電気炉、RTA装置等を用いることができる。RTA装置を用いること
で、短時間に限り、基板の歪み点以上の温度で熱処理を行うことができる。そのため加熱
処理時間を短縮することができる。
酸化物半導体膜を加熱しながら成膜する、または酸化物半導体膜を形成した後、加熱処
理を行うことで、酸化物半導体膜において、SIMSにより得られる水素濃度を5×10
19atoms/cm以下、または1×1019atoms/cm以下、5×10
atoms/cm以下、または1×1018atoms/cm以下、または5×1
17atoms/cm以下、または1×1016atoms/cm以下とすること
ができる。
次に、絶縁膜204及び酸化物半導体膜208i_0上に絶縁膜210_0を形成する
。(図12(B)参照)。
絶縁膜210_0としては、酸化シリコン膜または酸化窒化シリコン膜を、プラズマ化
学気相堆積装置(PECVD装置、または単にプラズマCVD装置という)を用いて形成
することができる。この場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性
気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジ
シラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸
化二窒素、二酸化窒素等がある。
また、絶縁膜210_0として、堆積性気体の流量に対する酸化性気体の流量を20倍
より大きく100倍未満、または40倍以上80倍以下とし、処理室内の圧力を100P
a未満、または50Pa以下とするプラズマCVD装置を用いることで、欠陥量の少ない
酸化窒化シリコン膜を形成することができる。
また、絶縁膜210_0として、プラズマCVD装置の真空排気された処理室内に載置
された基板を280℃以上400℃以下に保持し、処理室に原料ガスを導入して処理室内
における圧力を20Pa以上250Pa以下、さらに好ましくは100Pa以上250P
a以下とし、処理室内に設けられる電極に高周波電力を供給する条件により、絶縁膜21
0_0として、緻密である酸化シリコン膜または酸化窒化シリコン膜を形成することがで
きる。
また、絶縁膜210_0を、マイクロ波を用いたプラズマCVD法を用いて形成しても
よい。マイクロ波とは300MHzから300GHzの周波数域を指す。マイクロ波は、
電子温度が低く、電子エネルギーが小さい。また、供給された電力において、電子の加速
に用いられる割合が少なく、より多くの分子の解離及び電離に用いられることが可能であ
り、密度の高いプラズマ(高密度プラズマ)を励起することができる。このため、被成膜
面及び堆積物へのプラズマダメージが少なく、欠陥の少ない絶縁膜210_0を形成する
ことができる。
また、絶縁膜210_0を、有機シランガスを用いたCVD法を用いて形成することが
できる。有機シランガスとしては、珪酸エチル(TEOS:化学式Si(OC
)、テトラメチルシラン(TMS:化学式Si(CH)、テトラメチルシクロテト
ラシロキサン(TMCTS)、オクタメチルシクロテトラシロキサン(OMCTS)、ヘ
キサメチルジシラザン(HMDS)、トリエトキシシラン(SiH(OC)、
トリスジメチルアミノシラン(SiH(N(CH)などのシリコン含有化合物
を用いることができる。有機シランガスを用いたCVD法を用いることで、被覆性の高い
絶縁膜210_0を形成することができる。
本実施の形態では絶縁膜210_0として、プラズマCVD装置を用い、厚さ100n
mの酸化窒化シリコン膜を形成する。
次に、絶縁膜210_0上の所望の位置に、リソグラフィによりマスクを形成した後、
絶縁膜210_0及び絶縁膜204の一部をエッチングすることで、導電膜206に達す
る開口部243を形成する(図12(C)参照)。
開口部243の形成方法としては、ウエットエッチング法及びドライエッチング法のい
ずれか一方または双方を用いればよい。本実施の形態においては、ドライエッチング法を
用い、開口部243を形成する。
次に、開口部243を覆うように、導電膜206及び絶縁膜210_0上に導電膜21
2_0を形成する。また、導電膜212_0として、例えば金属酸化膜を用いる場合、導
電膜212_0の形成時に導電膜212_0から絶縁膜210_0中に酸素が添加される
場合がある(図12(D)参照)。
なお、図12(D)において、絶縁膜210_0中に添加される酸素を矢印で模式的に
表している。また、開口部243を覆うように、導電膜212_0を形成することで、導
電膜206と、導電膜212_0とが電気的に接続される。
導電膜212_0として、金属酸化膜を用いる場合、導電膜212_0の形成方法とし
ては、スパッタリング法を用い、形成時に酸素ガスを含む雰囲気で形成することが好まし
い。形成時に酸素ガスを含む雰囲気で導電膜212_0を形成することで、絶縁膜210
_0中に酸素を好適に添加することができる。なお、導電膜212_0の形成方法として
は、スパッタリング法に限定されず、その他の方法、例えばALD法を用いてもよい。
本実施の形態においては、導電膜212_0として、スパッタリング法を用いて、膜厚
が100nmのIn-Ga-Zn酸化物であるIGZO膜(In:Ga:Zn=4:2:
4.1(原子数比)を成膜する。また、導電膜212_0の形成前、または導電膜212
_0の形成後に、絶縁膜210_0中に酸素添加処理を行ってもよい。当該酸素添加処理
の方法としては、絶縁膜204の形成後に行うことのできる酸素の添加と同様とすればよ
い。
次に、導電膜212_0上の所望の位置に、リソグラフィ工程によりマスク240を形
成する(図13(A)参照)。
次に、マスク240上から、エッチングを行い、導電膜212_0及び絶縁膜210_
0を加工する。また、導電膜212_0及び絶縁膜210_0の加工後に、マスク240
を除去する。導電膜212_0及び絶縁膜210_0を加工することで、島状の導電膜2
12及び島状の絶縁膜210が形成される(図13(B)参照)。
本実施の形態においては、ドライエッチング法を用い、導電膜212_0及び絶縁膜2
10_0を加工する。
なお、導電膜212_0及び絶縁膜210_0の加工の際に、導電膜212が重畳しな
い領域の酸化物半導体膜208i_0の膜厚が薄くなる場合がある。または、導電膜21
2_0及び絶縁膜210_0の加工の際に、酸化物半導体膜208i_0が重畳しない領
域の絶縁膜204の膜厚が薄くなる場合がある。また、導電膜212_0及び絶縁膜21
0_0の加工の際に、エッチャントまたはエッチングガス(例えば、塩素など)が酸化物
半導体膜208i_0中に添加される、あるいは導電膜212_0、または絶縁膜210
_0の構成元素が酸化物半導体膜208i_0中に添加される場合がある。
次に、絶縁膜204、酸化物半導体膜208i_0、及び導電膜212上に絶縁膜21
6を形成する。なお、絶縁膜216を形成することで、絶縁膜216と接する酸化物半導
体膜208i_0及び酸化物半導体膜208n_0は、第3の領域208n_2となる。
また、絶縁膜210と接する酸化物半導体膜208i_0は第2の領域208iとなる。
また、絶縁膜204と接し、且つ導電膜212と重なる酸化物半導体膜208n_0は、
第1の領域208n_1となる。これにより、第1の領域208n_1、第2の領域20
8i、及び第3の領域208n_2を有する酸化物半導体膜208が形成される(図13
(C)参照)。
絶縁膜216としては、先に記載の材料を選択することで形成できる。本実施の形態に
おいては、絶縁膜216として、PECVD装置を用い、厚さ100nmの窒化酸化シリ
コン膜を形成する。また、当該窒化酸化シリコン膜の形成時において、プラズマ処理と、
成膜処理との2つのステップを220℃の温度で行う。当該プラズマ処理としては、成膜
前に流量100sccmのアルゴンガスを、チャンバー内に導入し、チャンバー内の圧力
を40Paとし、RF電源(27.12MHz)に1000Wの電力を供給する。また、
成膜処理としては、流量50sccmのシランガスと、流量5000sccmの窒素ガス
と、流量100sccmのアンモニアガスとを、チャンバー内に導入し、チャンバー内の
圧力を100Paとし、RF電源(27.12MHz)に1000Wの電力を供給する。
絶縁膜216として、窒化酸化シリコン膜を用いることで、絶縁膜216に接する第3
の領域208n_2に窒化酸化シリコン膜中の窒素または水素を供給することができる。
また、絶縁膜216の形成時の温度を上述の温度とすることで、絶縁膜210に含まれる
過剰酸素が外部に放出されるのを抑制することができる。
次に、絶縁膜216上に絶縁膜218を形成する(図14(A)参照)。
絶縁膜218としては、先に記載の材料を選択することで形成できる。本実施の形態に
おいては、絶縁膜218として、プラズマCVD装置を用い、厚さ300nmの酸化窒化
シリコン膜を形成する。
次に、絶縁膜218の所望の位置に、リソグラフィによりマスクを形成した後、絶縁膜
218及び絶縁膜216の一部をエッチングすることで、第3の領域208n_2に達す
る開口部241a、241bを形成する(図14(B)参照)。
絶縁膜218及び絶縁膜216をエッチングする方法としては、ウエットエッチング法
及びドライエッチング法のいずれか一方または双方を用いればよい。本実施の形態におい
ては、ドライエッチング法を用い、絶縁膜218、及び絶縁膜216を加工する。
次に、開口部241a、241bを覆うように、第3の領域208n_2、及び絶縁膜
218上に導電膜を形成し、当該導電膜を所望の形状に加工することで導電膜220a、
220bを形成する(図14(C)参照)。
導電膜220a、220bとしては、先に記載の材料を選択することで形成できる。本
実施の形態においては、導電膜220a、220bとして、スパッタリング装置を用い、
厚さ50nmのタングステン膜と、厚さ400nmの銅膜との積層膜を形成する。
なお、導電膜220a、220bとなる導電膜の加工方法としては、ウエットエッチン
グ法及びドライエッチング法のいずれか一方または双方を用いればよい。本実施の形態で
は、ウエットエッチング法にて銅膜をエッチングしたのち、ドライエッチング法にてタン
グステン膜をエッチングすることで導電膜を加工し、導電膜220a、220bを形成す
る。
以上の工程により、図9(A)(B)(C)に示すトランジスタ200Aを作製するこ
とができる。
なお、トランジスタ200Aを構成する膜(絶縁膜、金属酸化膜、酸化物半導体膜、導
電膜等)としては、上述の形成方法の他、スパッタリング法、化学気相堆積(CVD)法
、真空蒸着法、パルスレーザー堆積(PLD)法、ALD法を用いて形成することができ
る。あるいは、塗布法や印刷法で形成することができる。成膜方法としては、スパッタリ
ング法、プラズマ化学気相堆積(PECVD)法が代表的であるが、熱CVD法でもよい
。熱CVD法の例として、有機金属化学気相堆積(MOCVD)法が挙げられる。
熱CVD法は、チャンバー内を大気圧または減圧下とし、原料ガスと酸化剤を同時にチ
ャンバー内に送り、基板近傍または基板上で反応させて基板上に堆積させることで成膜を
行う。このように、熱CVD法は、プラズマを発生させない成膜方法であるため、プラズ
マダメージにより欠陥が生成されることが無いという利点を有する。
MOCVD法などの熱CVD法は、上記記載の導電膜、絶縁膜、酸化物半導体膜、金属
酸化膜などの膜を形成することができ、例えば、In-Ga-Zn-O膜を成膜する場合
には、トリメチルインジウム(In(CH)、トリメチルガリウム(Ga(CH
)、及びジメチル亜鉛を用いる(Zn(CH)。これらの組み合わせに限定さ
れず、トリメチルガリウムに代えてトリエチルガリウム(Ga(C)を用いる
こともでき、ジメチル亜鉛に代えてジエチル亜鉛(Zn(C)を用いることも
できる。
また、ALDを利用する成膜装置により酸化ハフニウム膜を形成する場合には、溶媒と
ハフニウム前駆体を含む液体(ハフニウムアルコキシドや、テトラキスジメチルアミドハ
フニウム(TDMAH、Hf[N(CH)やテトラキス(エチルメチルアミド
)ハフニウムなどのハフニウムアミド)を気化させた原料ガスと、酸化剤としてオゾン(
)の2種類のガスを用いる。
また、ALDを利用する成膜装置により酸化アルミニウム膜を形成する場合には、溶媒
とアルミニウム前駆体を含む液体(トリメチルアルミニウム(TMA、Al(CH
)など)を気化させた原料ガスと、酸化剤としてHOの2種類のガスを用いる。他の材
料としては、トリス(ジメチルアミド)アルミニウム、トリイソブチルアルミニウム、ア
ルミニウムトリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)など
がある。
また、ALDを利用する成膜装置により酸化シリコン膜を形成する場合には、ヘキサク
ロロジシランを被成膜面に吸着させ、酸化性ガス(O、一酸化二窒素)のラジカルを供
給して吸着物と反応させる。
また、ALDを利用する成膜装置によりタングステン膜を成膜する場合には、WF
スとBガスを順次導入して初期タングステン膜を形成し、その後、WFガスとH
ガスとを用いてタングステン膜を形成する。なお、Bガスに代えてSiHガス
を用いてもよい。
また、ALDを利用する成膜装置により酸化物半導体膜、例えばIn-Ga-Zn-O
膜を成膜する場合には、In(CHガスとOガスを用いてIn-O層を形成し、
その後、Ga(CHガスとOガスとを用いてGaO層を形成し、更にその後Zn
(CHガスとOガスとを用いてZnO層を形成する。なお、これらの層の順番は
この例に限らない。また、これらのガスを用いてIn-Ga-O層やIn-Zn-O層、
Ga-Zn-O層などの混合化合物層を形成しても良い。なお、Oガスに変えてAr等
の不活性ガスで水をバブリングして得られたHOガスを用いても良いが、Hを含まない
ガスを用いる方が好ましい。
また、本実施の形態において、トランジスタが酸化物半導体膜を有する場合の例を示し
たが、本発明の一態様は、これに限定されない。本発明の一態様では、トランジスタが酸
化物半導体膜を有さなくてもよい。一例としては、トランジスタのチャネル領域、チャネ
ル領域の近傍、ソース領域、またはドレイン領域において、Si(シリコン)、Ge(ゲ
ルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、などを
有する材料で形成してもよい。
なお、本実施の形態で示す構成、方法は、他の実施の形態で示す構成、方法と適宜組み
合わせて用いることができる。
(実施の形態3)
本実施の形態においては、本発明の一態様に用いることのできる、酸化物半導体の組成
、及び酸化物半導体の構造等について、図15乃至図21を参照して説明する。
<3-1.酸化物半導体の組成>
まず、酸化物半導体の組成について説明する。
酸化物半導体は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジ
ウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、
イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、
チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム
、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれ
た一種、または複数種が含まれていてもよい。
ここで、酸化物半導体が、インジウム、元素M及び亜鉛を有する場合を考える。なお、
元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。元素Mに適用
可能なその他の元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム
、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、
タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み
合わせても構わない。
まず、図15(A)、図15(B)、及び図15(C)を用いて、本発明の一態様に係
る酸化物半導体が有するインジウム、元素M及び亜鉛の原子数比の好ましい範囲について
説明する。なお、図15には、酸素の原子数比については記載しない。また、酸化物半導
体が有するインジウム、元素M、及び亜鉛の原子数比のそれぞれの項を[In]、[M]
、及び[Zn]とする。
図15(A)、図15(B)、及び図15(C)において、破線は、[In]:[M]
:[Zn]=(1+α):(1-α):1の原子数比(-1≦α≦1)となるライン、[
In]:[M]:[Zn]=(1+α):(1-α):2の原子数比となるライン、[I
n]:[M]:[Zn]=(1+α):(1-α):3の原子数比となるライン、[In
]:[M]:[Zn]=(1+α):(1-α):4の原子数比となるライン、及び[I
n]:[M]:[Zn]=(1+α):(1-α):5の原子数比となるラインを表す。
また、一点鎖線は、[In]:[M]:[Zn]=1:1:βの原子数比(β≧0)と
なるライン、[In]:[M]:[Zn]=1:2:βの原子数比となるライン、[In
]:[M]:[Zn]=1:3:βの原子数比となるライン、[In]:[M]:[Zn
]=1:4:βの原子数比となるライン、[In]:[M]:[Zn]=2:1:βの原
子数比となるライン、及び[In]:[M]:[Zn]=5:1:βの原子数比となるラ
インを表す。
また、二点鎖線は、[In]:[M]:[Zn]=(1+γ):2:(1-γ)の原子
数比(-1≦γ≦1)となるラインを表す。また、図15に示す、[In]:[M]:[
Zn]=0:2:1の原子数比またはその近傍値の酸化物半導体は、スピネル型の結晶構
造をとりやすい。
図15(A)及び図15(B)では、本発明の一態様の酸化物半導体が有する、インジ
ウム、元素M、及び亜鉛の原子数比の好ましい範囲の一例について示している。
一例として、図16に、[In]:[M]:[Zn]=1:1:1である、InMZn
の結晶構造を示す。また、図16は、b軸に平行な方向から観察した場合のInMZ
nOの結晶構造である。なお、図16に示すM、Zn、酸素を有する層(以下、(M,
Zn)層)における金属元素は、元素Mまたは亜鉛を表している。この場合、元素Mと亜
鉛の割合が等しいものとする。元素Mと亜鉛とは、置換が可能であり、配列は不規則であ
る。
InMZnOは、層状の結晶構造(層状構造ともいう)をとり、図16に示すように
、インジウム、および酸素を有する層(以下、In層)が1に対し、元素M、亜鉛、およ
び酸素を有する(M,Zn)層が2となる。
また、インジウムと元素Mは、互いに置換可能である。そのため、(M,Zn)層の元
素Mがインジウムと置換し、(In,M,Zn)層と表すこともできる。その場合、In
層が1に対し、(In,M,Zn)層が2である層状構造をとる。
[In]:[M]:[Zn]=1:1:2となる原子数比の酸化物は、In層が1に対
し、(M,Zn)層が3である層状構造をとる。つまり、[In]および[M]に対し[
Zn]が大きくなると、酸化物が結晶化した場合、In層に対する(M,Zn)層の割合
が増加する。
ただし、酸化物中において、In層が1層に対し、(M,Zn)層の層数が非整数であ
る場合、In層が1層に対し、(M,Zn)層の層数が整数である層状構造を複数種有す
る場合がある。例えば、[In]:[M]:[Zn]=1:1:1.5である場合、In
層が1に対し、(M,Zn)層が2である層状構造と、(M,Zn)層が3である層状構
造とが混在する層状構造となる場合がある。
例えば、酸化物をスパッタリング装置にて成膜する場合、ターゲットの原子数比からず
れた原子数比の膜が形成される。特に、成膜時の基板温度によっては、ターゲットの[Z
n]よりも、膜の[Zn]が小さくなる場合がある。
また、酸化物中に複数の相が共存する場合がある(二相共存、三相共存など)。例えば
、[In]:[M]:[Zn]=0:2:1の原子数比の近傍値である原子数比では、ス
ピネル型の結晶構造と層状の結晶構造との二相が共存しやすい。また、[In]:[M]
:[Zn]=1:0:0を示す原子数比の近傍値である原子数比では、ビックスバイト型
の結晶構造と層状の結晶構造との二相が共存しやすい。酸化物中に複数の相が共存する場
合、異なる結晶構造の間において、粒界(グレインバウンダリーともいう)が形成される
場合がある。
一方、酸化物中のインジウムおよび亜鉛の含有率が低くなると、キャリア移動度が低く
なる。従って、[In]:[M]:[Zn]=0:1:0を示す原子数比、およびその近
傍値である原子数比(例えば図15(C)に示す領域C)では、絶縁性が高くなる。
従って、本発明の一態様の酸化物は、キャリア移動度が高く、かつ、粒界が少ない層状
構造となりやすい、図15(A)の領域Aで示される原子数比を有することが好ましい。
また、図15(B)に示す領域Bは、[In]:[M]:[Zn]=4:2:3から4
.1、およびその近傍値を示している。近傍値には、例えば、原子数比が[In]:[M
]:[Zn]=5:3:4が含まれる。領域Bで示される原子数比を有する酸化物は、特
に、結晶性が高く、キャリア移動度も高い優れた酸化物である。
なお、酸化物が、層状構造を形成する条件は、原子数比によって一義的に定まらない。
原子数比により、層状構造を形成するための難易の差はある。一方、同じ原子数比であっ
ても、形成条件により、層状構造になる場合も層状構造にならない場合もある。従って、
図示する領域は、酸化物が層状構造を有する原子数比を示す領域であり、領域A乃至領域
Cの境界は厳密ではない。
<3-2.酸化物半導体をトランジスタに用いる構成>
続いて、酸化物半導体をトランジスタに用いる構成について説明する。
なお、酸化物半導体をトランジスタに用いることで、粒界におけるキャリア散乱等を減
少させることができるため、高い電界効果移動度のトランジスタを実現することができる
。また、信頼性の高いトランジスタを実現することができる。
また、トランジスタのチャネル領域には、キャリア密度の低い酸化物半導体を用いるこ
とが好ましい。例えば、酸化物半導体は、キャリア密度が8×1011/cm未満、好
ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり
、1×10-9/cm以上とすればよい。
なお、高純度真性または実質的に高純度真性である酸化物半導体は、キャリア発生源が
少ないため、キャリア密度を低くすることができる。また、高純度真性または実質的に高
純度真性である酸化物半導体は、欠陥準位密度が低いため、トラップ準位密度も低くなる
場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が
長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高
い酸化物半導体にチャネル領域が形成されるトランジスタは、電気特性が不安定となる場
合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度
を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、
近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、ア
ルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化
物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭
素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法
(SIMS:Secondary Ion Mass Spectrometry)によ
り得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017
toms/cm以下とする。
また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を
形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属
が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。
このため、酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を低減すること
が好ましい。具体的には、SIMSにより得られる酸化物半導体中のアルカリ金属または
アルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×10
16atoms/cm以下にする。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリ
ア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体
に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導体にお
いて、窒素はできる限り低減されていることが好ましい、例えば、酸化物半導体中の窒素
濃度は、SIMSにおいて、6×1020atoms/cm以下、好ましくは5×10
19atoms/cm未満、より好ましくは5×1018atoms/cm以下、よ
り好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017at
oms/cm以下とする。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるた
め、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電
子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キ
ャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用
いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素
はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SI
MSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×
1019atoms/cm未満、より好ましくは5×1018atoms/cm未満
、さらに好ましくは1×1018atoms/cm未満とする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いるこ
とで、安定した電気特性を付与することができる。
また、酸化物半導体膜は、エネルギーギャップが2eV以上、または2.5eV以上、
または3eV以上であると好ましい。
また、酸化物半導体膜の厚さは、3nm以上200nm以下、好ましくは3nm以上1
00nm以下、さらに好ましくは3nm以上60nm以下である。
また、酸化物半導体膜がIn-M-Zn酸化物の場合、In-M-Zn酸化物を成膜す
るために用いるスパッタリングターゲットの金属元素の原子数比として、In:M:Zn
=1:1:0.5、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、I
n:M:Zn=2:1:1.5、In:M:Zn=2:1:2.3、In:M:Zn=2
:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.1、In:M:
Zn=5:1:7等が好ましい。
なお、成膜される酸化物半導体膜の金属元素の原子数比はそれぞれ、上記のスパッタリ
ングターゲットに含まれる金属元素の原子数比のプラスマイナス40%程度変動すること
がある。例えば、スパッタリングターゲットとして、原子数比がIn:Ga:Zn=4:
2:4.1を用いる場合、成膜される酸化物半導体膜の原子数比は、In:Ga:Zn=
4:2:3近傍となる場合がある。また、スパッタリングターゲットとして、原子数比が
In:Ga:Zn=5:1:7を用いる場合、成膜される酸化物半導体膜の原子数比は、
In:Ga:Zn=5:1:6近傍となる場合がある。
<3-3.酸化物半導体の構造>
次に、酸化物半導体の構造について説明する。
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分け
られる。非単結晶酸化物半導体としては、CAAC-OS(c-axis-aligne
d crystalline oxide semiconductor)、多結晶酸化
物半導体、nc-OS(nanocrystalline oxide semicon
ductor)、擬似非晶質酸化物半導体(a-like OS:amorphous-
like oxide semiconductor)及び非晶質酸化物半導体などがあ
る。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物
半導体と、に分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC
-OS、多結晶酸化物半導体及びnc-OSなどがある。
非晶質構造は、一般に、等方的であって不均質構造を持たない、準安定状態で原子の配
置が固定化していない、結合角度が柔軟である、短距離秩序は有するが長距離秩序を有さ
ない、などといわれている。
すなわち、安定な酸化物半導体を完全な非晶質(completely amorph
ous)酸化物半導体とは呼べない。また、等方的でない(例えば、微小な領域において
周期構造を有する)酸化物半導体を、完全な非晶質酸化物半導体とは呼べない。一方、a
-like OSは、等方的でないが、鬆(ボイドともいう。)を有する不安定な構造で
ある。不安定であるという点では、a-like OSは、物性的に非晶質酸化物半導体
に近い。
[CAAC-OS]
まずは、CAAC-OSについて説明する。
CAAC-OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物
半導体の一種である。
CAAC-OSをX線回折(XRD:X-Ray Diffraction)によって
解析した場合について説明する。例えば、空間群R-3mに分類されるInGaZnO
の結晶を有するCAAC-OSに対し、out-of-plane法による構造解析を行
うと、図17(A)に示すように回折角(2θ)が31°近傍にピークが現れる。このピ
ークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC-OS
では、結晶がc軸配向性を有し、c軸がCAAC-OSの膜を形成する面(被形成面とも
いう。)、または上面に略垂直な方向を向いていることが確認できる。なお、2θが31
°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°
近傍のピークは、空間群Fd-3mに分類される結晶構造に起因する。そのため、CAA
C-OSは、該ピークを示さないことが好ましい。
一方、CAAC-OSに対し、被形成面に平行な方向からX線を入射させるin-pl
ane法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、
InGaZnOの結晶の(110)面に帰属される。そして、2θを56°近傍に固定
し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)
を行っても、図17(B)に示すように明瞭なピークは現れない。一方、単結晶InGa
ZnOに対し、2θを56°近傍に固定してφスキャンした場合、図17(C)に示す
ように(110)面と等価な結晶面に帰属されるピークが6本観察される。したがって、
XRDを用いた構造解析から、CAAC-OSは、a軸及びb軸の配向が不規則であるこ
とが確認できる。
次に、電子回折によって解析したCAAC-OSについて説明する。例えば、InGa
ZnOの結晶を有するCAAC-OSに対し、CAAC-OSの被形成面に平行にプロ
ーブ径が300nmの電子線を入射させると、図17(D)に示すような回折パターン(
制限視野電子回折パターンともいう。)が現れる場合がある。この回折パターンには、I
nGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子
回折によっても、CAAC-OSに含まれるペレットがc軸配向性を有し、c軸が被形成
面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面
に垂直にプローブ径が300nmの電子線を入射させたときの回折パターンを図17(E
)に示す。図17(E)より、リング状の回折パターンが確認される。したがって、プロ
ーブ径が300nmの電子線を用いた電子回折によっても、CAAC-OSに含まれるペ
レットのa軸及びb軸は配向性を有さないことがわかる。なお、図17(E)における第
1リングは、InGaZnOの結晶の(010)面及び(100)面などに起因すると
考えられる。また、図17(E)における第2リングは(110)面などに起因すると考
えられる。
また、透過型電子顕微鏡(TEM:Transmission Electron M
icroscope)によって、CAAC-OSの明視野像と回折パターンとの複合解析
像(高分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができ
る。一方、高分解能TEM像であってもペレット同士の境界、即ち結晶粒界(グレインバ
ウンダリーともいう。)を明確に確認することができない場合がある。そのため、CAA
C-OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
図18(A)に、試料面と略平行な方向から観察したCAAC-OSの断面の高分解能
TEM像を示す。高分解能TEM像の観察には、球面収差補正(Spherical A
berration Corrector)機能を用いた。球面収差補正機能を用いた高
分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像は
、例えば、日本電子株式会社製原子分解能分析電子顕微鏡JEM-ARM200Fなどに
よって観察することができる。
図18(A)より、金属原子が層状に配列している領域であるペレットを確認すること
ができる。ペレット一つの大きさは1nm以上のものや、3nm以上のものがあることが
わかる。したがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこ
ともできる。また、CAAC-OSを、CANC(C-Axis Aligned na
nocrystals)を有する酸化物半導体と呼ぶこともできる。ペレットは、CAA
C-OSの被形成面または上面の凹凸を反映しており、CAAC-OSの被形成面または
上面と平行となる。
また、図18(B)及び図18(C)に、試料面と略垂直な方向から観察したCAAC
-OSの平面のCs補正高分解能TEM像を示す。図18(D)及び図18(E)は、そ
れぞれ図18(B)及び図18(C)を画像処理した像である。以下では、画像処理の方
法について説明する。まず、図18(B)を高速フーリエ変換(FFT:Fast Fo
urier Transform)処理することでFFT像を取得する。次に、取得した
FFT像において原点を基準に、2.8nm-1から5.0nm-1の間の範囲を残すマ
スク処理する。次に、マスク処理したFFT像を、逆高速フーリエ変換(IFFT:In
verse Fast Fourier Transform)処理することで画像処理
した像を取得する。こうして取得した像をFFTフィルタリング像と呼ぶ。FFTフィル
タリング像は、Cs補正高分解能TEM像から周期成分を抜き出した像であり、格子配列
を示している。
図18(D)では、格子配列の乱れた箇所を破線で示している。破線で囲まれた領域が
、一つのペレットである。そして、破線で示した箇所がペレットとペレットとの連結部で
ある。破線は、六角形状であるため、ペレットが六角形状であることがわかる。なお、ペ
レットの形状は、正六角形状とは限らず、非正六角形状である場合が多い。
図18(E)では、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格
子配列の向きが変化している箇所を点線で示し、格子配列の向きの変化を破線で示してい
る。点線近傍においても、明確な結晶粒界を確認することはできない。点線近傍の格子点
を中心に周囲の格子点を繋ぐと、歪んだ六角形や、五角形及び/または七角形などが形成
できる。即ち、格子配列を歪ませることによって結晶粒界の形成を抑制していることがわ
かる。これは、CAAC-OSが、a-b面方向において原子配列が稠密でないことや、
金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容す
ることができるためと考えられる。
以上に示すように、CAAC-OSは、c軸配向性を有し、かつa-b面方向において
複数のペレット(ナノ結晶)が連結し、歪みを有した結晶構造となっている。よって、C
AAC-OSを、CAA crystal(c-axis-aligned a-b-p
lane-anchored crystal)を有する酸化物半導体と称することもで
きる。
CAAC-OSは結晶性の高い酸化物半導体である。酸化物半導体の結晶性は不純物の
混入や欠陥の生成などによって低下する場合があるため、CAAC-OSは不純物や欠陥
(酸素欠損など)の少ない酸化物半導体ともいえる。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金
属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸
素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列
を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、
二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列
を乱し、結晶性を低下させる要因となる。
酸化物半導体が不純物や欠陥を有する場合、光や熱などによって特性が変動する場合が
ある。例えば、酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャ
リア発生源となる場合がある。例えば、酸化物半導体中の酸素欠損は、キャリアトラップ
となる場合や、水素を捕獲することによってキャリア発生源となる場合がある。
不純物及び酸素欠損の少ないCAAC-OSは、キャリア密度の低い酸化物半導体であ
る。具体的には、8×1011cm-3未満、好ましくは1×1011cm-3未満、さ
らに好ましくは1×1010cm-3未満であり、1×10-9cm-3以上のキャリア
密度の酸化物半導体とすることができる。そのような酸化物半導体を、高純度真性または
実質的に高純度真性な酸化物半導体と呼ぶ。CAAC-OSは、不純物濃度が低く、欠陥
準位密度が低い。即ち、安定な特性を有する酸化物半導体であるといえる。
[nc-OS]
次に、nc-OSについて説明する。
nc-OSをXRDによって解析した場合について説明する。例えば、nc-OSに対
し、out-of-plane法による構造解析を行うと、配向性を示すピークが現れな
い。即ち、nc-OSの結晶は配向性を有さない。
また、例えば、InGaZnOの結晶を有するnc-OSを薄片化し、厚さが34n
mの領域に対し、被形成面に平行にプローブ径が50nmの電子線を入射させると、図1
9(A)に示すようなリング状の回折パターン(ナノビーム電子回折パターン)が観測さ
れる。また、同じ試料にプローブ径が1nmの電子線を入射させたときの回折パターン(
ナノビーム電子回折パターン)を図19(B)に示す。図19(B)より、リング状の領
域内に複数のスポットが観測される。したがって、nc-OSは、プローブ径が50nm
の電子線を入射させることでは秩序性が確認されないが、プローブ径が1nmの電子線を
入射させることでは秩序性が確認される。
また、厚さが10nm未満の領域に対し、プローブ径が1nmの電子線を入射させると
、図19(C)に示すように、スポットが略正六角状に配置された電子回折パターンを観
測される場合がある。したがって、厚さが10nm未満の範囲において、nc-OSが秩
序性の高い領域、即ち結晶を有することがわかる。なお、結晶が様々な方向を向いている
ため、規則的な電子回折パターンが観測されない領域もある。
図19(D)に、被形成面と略平行な方向から観察したnc-OSの断面のCs補正高
分解能TEM像を示す。nc-OSは、高分解能TEM像において、補助線で示す箇所な
どのように結晶部を確認することのできる領域と、明確な結晶部を確認することのできな
い領域と、を有する。nc-OSに含まれる結晶部は、1nm以上10nm以下の大きさ
であり、特に1nm以上3nm以下の大きさであることが多い。なお、結晶部の大きさが
10nmより大きく100nm以下である酸化物半導体を微結晶酸化物半導体(micr
o crystalline oxide semiconductor)と呼ぶことが
ある。nc-OSは、例えば、高分解能TEM像では、結晶粒界を明確に確認できない場
合がある。なお、ナノ結晶は、CAAC-OSにおけるペレットと起源を同じくする可能
性がある。そのため、以下ではnc-OSの結晶部をペレットと呼ぶ場合がある。
このように、nc-OSは、微小な領域(例えば、1nm以上10nm以下の領域、特
に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc-OS
は、異なるペレット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見
られない。したがって、nc-OSは、分析方法によっては、a-like OSや非晶
質酸化物半導体と区別が付かない場合がある。
なお、ペレット(ナノ結晶)間で結晶方位が規則性を有さないことから、nc-OSを
、RANC(Random Aligned nanocrystals)を有する酸化
物半導体、またはNANC(Non-Aligned nanocrystals)を有
する酸化物半導体と呼ぶこともできる。
nc-OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため
、nc-OSは、a-like OSや非晶質酸化物半導体よりも欠陥準位密度が低くな
る。ただし、nc-OSは、異なるペレット間で結晶方位に規則性が見られない。そのた
め、nc-OSは、CAAC-OSと比べて欠陥準位密度が高くなる。
[a-like OS]
a-like OSは、nc-OSと非晶質酸化物半導体との間の構造を有する酸化物
半導体である。
図20に、a-like OSの高分解能断面TEM像を示す。ここで、図20(A)
は電子照射開始時におけるa-like OSの高分解能断面TEM像である。図20(
B)は4.3×10/nmの電子(e)照射後におけるa-like OSの
高分解能断面TEM像である。図20(A)及び図20(B)より、a-like OS
は電子照射開始時から、縦方向に延伸する縞状の明領域が観察されることがわかる。また
、明領域は、電子照射後に形状が変化することがわかる。なお、明領域は、鬆または低密
度領域と推測される。
鬆を有するため、a-like OSは、不安定な構造である。以下では、a-lik
e OSが、CAAC-OS及びnc-OSと比べて不安定な構造であることを示すため
、電子照射による構造の変化を示す。
試料として、a-like OS、nc-OS及びCAAC-OSを準備する。いずれ
の試料もIn-Ga-Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試
料は、いずれも結晶部を有する。
なお、InGaZnOの結晶の単位格子は、In-O層を3層有し、またGa-Zn
-O層を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られてい
る。これらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と
同程度であり、結晶構造解析からその値は0.29nmと求められている。したがって、
以下では、格子縞の間隔が0.28nm以上0.30nm以下である箇所を、InGaZ
nOの結晶部と見なした。なお、格子縞は、InGaZnOの結晶のa-b面に対応
する。
図21は、各試料の結晶部(22箇所から30箇所)の平均の大きさを調査した例であ
る。なお、上述した格子縞の長さを結晶部の大きさとしている。図21より、a-lik
e OSは、TEM像の取得などに係る電子の累積照射量に応じて結晶部が大きくなって
いくことがわかる。図21より、TEMによる観察初期においては1.2nm程度の大き
さだった結晶部(初期核ともいう。)が、電子(e)の累積照射量が4.2×10
/nmにおいては1.9nm程度の大きさまで成長していることがわかる。一方、n
c-OS及びCAAC-OSは、電子照射開始時から電子の累積照射量が4.2×10
/nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。図21よ
り、電子の累積照射量によらず、nc-OS及びCAAC-OSの結晶部の大きさは、そ
れぞれ1.3nm程度及び1.8nm程度であることがわかる。なお、電子線照射及びT
EMの観察は、日立透過電子顕微鏡H-9000NARを用いた。電子線照射条件は、加
速電圧を300kV、電流密度を6.7×10/(nm・s)、照射領域の直径
を230nmとした。
このように、a-like OSは、電子照射によって結晶部の成長が見られる場合が
ある。一方、nc-OS及びCAAC-OSは、電子照射による結晶部の成長がほとんど
見られない。即ち、a-like OSは、nc-OS及びCAAC-OSと比べて、不
安定な構造であることがわかる。
また、鬆を有するため、a-like OSは、nc-OS及びCAAC-OSと比べ
て密度の低い構造である。具体的には、a-like OSの密度は、同じ組成の単結晶
の密度の78.6%以上92.3%未満である。また、nc-OSの密度及びCAAC-
OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満である。単結晶の
密度の78%未満である酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、
菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmである。よ
って、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体におい
て、a-like OSの密度は5.0g/cm以上5.9g/cm未満である。ま
た、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において
、nc-OSの密度及びCAAC-OSの密度は5.9g/cm以上6.3g/cm
未満である。
なお、同じ組成の単結晶が存在しない場合、任意の割合で組成の異なる単結晶を組み合
わせることにより、所望の組成における単結晶に相当する密度を見積もることができる。
所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせる割合に対して
、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない種類の単結晶を
組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。
なお、酸化物半導体は、例えば、非晶質酸化物半導体、a-like OS、nc-OS
、CAAC-OSのうち、二種以上を有する積層膜であってもよい。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜、組み合わせて用
いることができる。
(実施の形態4)
本実施の形態においては、先の実施の形態で例示した半導体装置を有する表示装置の一
例について、図22乃至図29を用いて以下説明を行う。
図22は、表示装置の一例を示す上面図である。図22に示す表示装置700は、第1
の基板701上に設けられた画素部702と、第1の基板701に設けられたソースドラ
イバ回路部704及びゲートドライバ回路部706と、画素部702、ソースドライバ回
路部704、及びゲートドライバ回路部706を囲むように配置されるシール材712と
、第1の基板701に対向するように設けられる第2の基板705と、を有する。なお、
第1の基板701と第2の基板705は、シール材712によって封止されている。すな
わち、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706は
、第1の基板701とシール材712と第2の基板705によって封止されている。なお
、図22には図示しないが、第1の基板701と第2の基板705の間には表示素子が設
けられる。
また、表示装置700は、第1の基板701上のシール材712によって囲まれている
領域とは異なる領域に、画素部702、ソースドライバ回路部704、及びゲートドライ
バ回路部706と、それぞれ電気的に接続されるFPC端子部708(FPC:Flex
ible printed circuit)が設けられる。また、FPC端子部708
には、FPC716が接続され、FPC716によって画素部702、ソースドライバ回
路部704、及びゲートドライバ回路部706に各種信号等が供給される。また、画素部
702、ソースドライバ回路部704、ゲートドライバ回路部706、及びFPC端子部
708には、信号線710が各々接続されている。FPC716により供給される各種信
号等は、信号線710を介して、画素部702、ソースドライバ回路部704、ゲートド
ライバ回路部706、及びFPC端子部708に与えられる。
また、表示装置700にゲートドライバ回路部706を複数設けてもよい。また、表示
装置700としては、ソースドライバ回路部704、及びゲートドライバ回路部706を
画素部702と同じ第1の基板701に形成している例を示しているが、この構成に限定
されない。例えば、ゲートドライバ回路部706のみを第1の基板701に形成しても良
い、またはソースドライバ回路部704のみを第1の基板701に形成しても良い。この
場合、ソースドライバ回路またはゲートドライバ回路等が形成された基板(例えば、単結
晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を、第1の基板701に形成す
る構成としても良い。なお、別途形成した駆動回路基板の接続方法は、特に限定されるも
のではなく、COG(Chip On Glass)方法、ワイヤボンディング方法など
を用いることができる。
また、表示装置700が有する画素部702、ソースドライバ回路部704及びゲート
ドライバ回路部706は、複数のトランジスタを有している。
また、表示装置700は、様々な素子を有することが出来る。該素子の一例としては、
例えば、エレクトロルミネッセンス(EL)素子(有機物及び無機物を含むEL素子、有
機EL素子、無機EL素子、LEDなど)、発光トランジスタ素子(電流に応じて発光す
るトランジスタ)、電子放出素子、液晶素子、電子インク素子、電気泳動素子、エレクト
ロウェッティング素子、プラズマディスプレイパネル(PDP)、MEMS(マイクロ・
エレクトロ・メカニカル・システム)ディスプレイ(例えば、グレーティングライトバル
ブ(GLV)、デジタルマイクロミラーデバイス(DMD)、デジタル・マイクロ・シャ
ッター(DMS)素子、インターフェロメトリック・モジュレーション(IMOD)素子
など)、圧電セラミックディスプレイなどが挙げられる。
また、EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子
放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FE
D)又はSED方式平面型ディスプレイ(SED:Surface-conductio
n Electron-emitter Display)などがある。液晶素子を用い
た表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶
ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプ
レイ)などがある。電子インク素子又は電気泳動素子を用いた表示装置の一例としては、
電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを
実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するよ
うにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを
有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路
を設けることも可能である。これにより、さらに、消費電力を低減することができる。
なお、表示装置700における表示方式は、プログレッシブ方式やインターレース方式
等を用いることができる。また、カラー表示する際に画素で制御する色要素としては、R
GB(Rは赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、Rの画素とGの
画素とBの画素とW(白)の画素の四画素から構成されてもよい。または、ペンタイル配
列のように、RGBのうちの2色分で一つの色要素を構成し、色要素よって、異なる2色
を選択して構成してもよい。またはRGBに、イエロー、シアン、マゼンタ等を一色以上
追加してもよい。なお、色要素のドット毎にその表示領域の大きさが異なっていてもよい
。ただし、開示する発明はカラー表示の表示装置に限定されるものではなく、モノクロ表
示の表示装置に適用することもできる。
また、バックライト(有機EL素子、無機EL素子、LED、蛍光灯など)に白色発光
(W)を用いて表示装置をフルカラー表示させるために、着色層(カラーフィルタともい
う。)を用いてもよい。着色層は、例えば、レッド(R)、グリーン(G)、ブルー(B
)、イエロー(Y)などを適宜組み合わせて用いることができる。着色層を用いることで
、着色層を用いない場合と比べて色の再現性を高くすることができる。このとき、着色層
を有する領域と、着色層を有さない領域と、を配置することによって、着色層を有さない
領域における白色光を直接表示に利用しても構わない。一部に着色層を有さない領域を配
置することで、明るい表示の際に、着色層による輝度の低下を少なくでき、消費電力を2
割から3割程度低減できる場合がある。ただし、有機EL素子や無機EL素子などの自発
光素子を用いてフルカラー表示する場合、R、G、B、Y、Wを、それぞれの発光色を有
する素子から発光させても構わない。自発光素子を用いることで、着色層を用いた場合よ
りも、さらに消費電力を低減できる場合がある。
また、カラー化方式としては、上述の白色発光からの発光の一部をカラーフィルタを通
すことで赤色、緑色、青色に変換する方式(カラーフィルタ方式)の他、赤色、緑色、青
色の発光をそれぞれ用いる方式(3色方式)、または青色発光からの発光の一部を赤色や
緑色に変換する方式(色変換方式、量子ドット方式)を適用してもよい。
本実施の形態においては、表示素子として液晶素子及びEL素子を用いる構成について
、図23乃至図25を用いて説明する。なお、図23及び図24は、図22に示す一点鎖
線Q-Rにおける断面図であり、表示素子として液晶素子を用いた構成である。また、図
25は、図22に示す一点鎖線Q-Rにおける断面図であり、表示素子としてEL素子を
用いた構成である。
まず、図23乃至図25に示す共通部分について最初に説明し、次に異なる部分につい
て以下説明する。
<4-1.表示装置の共通部分に関する説明>
図23乃至図25に示す表示装置700は、引き回し配線部711と、画素部702と
、ソースドライバ回路部704と、FPC端子部708と、を有する。また、引き回し配
線部711は、信号線710を有する。また、画素部702は、トランジスタ750及び
容量素子790を有する。また、ソースドライバ回路部704は、トランジスタ752を
有する。
トランジスタ750及びトランジスタ752は、先に示すトランジスタ100と同様の
構成である。なお、トランジスタ750及びトランジスタ752の構成については、先の
実施の形態に示す、その他のトランジスタを用いてもよい。
本実施の形態で用いるトランジスタは、高純度化し、酸素欠損の形成を抑制した酸化物
半導体膜を有する。該トランジスタは、オフ電流を低くすることができる。よって、画像
信号等の電気信号の保持時間を長くすることができ、電源オン状態では書き込み間隔も長
く設定できる。よって、リフレッシュ動作の頻度を少なくすることができるため、消費電
力を抑制する効果を奏する。
また、本実施の形態で用いるトランジスタは、比較的高い電界効果移動度が得られるた
め、高速駆動が可能である。例えば、このような高速駆動が可能なトランジスタを液晶表
示装置に用いることで、画素部のスイッチングトランジスタと、駆動回路部に使用するド
ライバトランジスタを同一基板上に形成することができる。すなわち、別途駆動回路とし
て、シリコンウェハ等により形成された半導体装置を用いる必要がないため、半導体装置
の部品点数を削減することができる。また、画素部においても、高速駆動が可能なトラン
ジスタを用いることで、高画質な画像を提供することができる。
容量素子790は、トランジスタ750が有するゲート電極として機能する導電膜と同
一の導電膜を加工する工程を経て形成される下部電極と、トランジスタ750が有するソ
ース電極及びドレイン電極として機能する導電膜と同一の導電膜を加工する工程を経て形
成される上部電極と、を有する。また、下部電極と上部電極との間には、トランジスタ7
50が有する第1のゲート絶縁膜として機能する絶縁膜と同一の絶縁膜を形成する工程を
経て形成される絶縁膜が設けられる。すなわち、容量素子790は、一対の電極間に誘電
体膜として機能する絶縁膜が挟持された積層型の構造である。
また、図23乃至図25において、トランジスタ750、トランジスタ752、及び容
量素子790上に平坦化絶縁膜770が設けられている。
また、図23乃至図25においては、画素部702が有するトランジスタ750と、ソ
ースドライバ回路部704が有するトランジスタ752と、を同じ構造のトランジスタを
用いる構成について例示したが、これに限定されない。例えば、画素部702と、ソース
ドライバ回路部704とは、異なるトランジスタを用いてもよい。具体的には、画素部7
02にトップゲート型のトランジスタを用い、ソースドライバ回路部704にボトムゲー
ト型のトランジスタを用いる構成、あるいは画素部702にボトムゲート型のトランジス
タを用い、ソースドライバ回路部704にトップゲート型のトランジスタを用いる構成な
どが挙げられる。なお、上記のソースドライバ回路部704を、ゲートドライバ回路部と
読み替えてもよい。
また、信号線710は、トランジスタ750、752のソース電極及びドレイン電極と
して機能する導電膜と同じ工程を経て形成される。信号線710として、例えば、銅元素
を含む材料を用いた場合、配線抵抗に起因する信号遅延等が少なく、大画面での表示が可
能となる。
また、FPC端子部708は、接続電極760、異方性導電膜780、及びFPC71
6を有する。なお、接続電極760は、トランジスタ750、752のソース電極及びド
レイン電極として機能する導電膜と同じ工程を経て形成される。また、接続電極760は
、FPC716が有する端子と異方性導電膜780を介して、電気的に接続される。
また、第1の基板701及び第2の基板705としては、例えばガラス基板を用いるこ
とができる。また、第1の基板701及び第2の基板705として、可撓性を有する基板
を用いてもよい。該可撓性を有する基板としては、例えばプラスチック基板等が挙げられ
る。
また、第1の基板701と第2の基板705の間には、構造体778が設けられる。構
造体778は、絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、
第1の基板701と第2の基板705の間の距離(セルギャップ)を制御するために設け
られる。なお、構造体778として、球状のスペーサを用いていても良い。
また、第2の基板705側には、ブラックマトリクスとして機能する遮光膜738と、
カラーフィルタとして機能する着色膜736と、遮光膜738及び着色膜736に接する
絶縁膜734が設けられる。
<4-2.液晶素子を用いる表示装置の構成例>
図23に示す表示装置700は、液晶素子775を有する。液晶素子775は、導電膜
772、導電膜774、及び液晶層776を有する。導電膜774は、第2の基板705
側に設けられ、対向電極としての機能を有する。図23に示す表示装置700は、導電膜
772と導電膜774に印加される電圧によって、液晶層776の配向状態が変わること
によって光の透過、非透過が制御され画像を表示することができる。
また、導電膜772は、トランジスタ750が有するソース電極及びドレイン電極とし
て機能する導電膜と電気的に接続される。導電膜772は、平坦化絶縁膜770上に形成
され画素電極、すなわち表示素子の一方の電極として機能する。
導電膜772としては、可視光において透光性のある導電膜、または可視光において反
射性のある導電膜を用いることができる。可視光において透光性のある導電膜としては、
例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中から選ばれた一種を含む材
料を用いるとよい。可視光において反射性のある導電膜としては、例えば、アルミニウム
、または銀を含む材料を用いるとよい。
導電膜772に可視光において反射性のある導電膜を用いる場合、表示装置700は、
反射型の液晶表示装置となる。また、導電膜772に可視光において透光性のある導電膜
を用いる場合、表示装置700は、透過型の液晶表示装置となる。
また、導電膜772上の構成を変えることで、液晶素子の駆動方式を変えることができ
る。この場合の一例を図24に示す。また、図24に示す表示装置700は、液晶素子の
駆動方式として横電界方式(例えば、FFSモード)を用いる構成の一例である。図24
に示す構成の場合、導電膜772上に絶縁膜773が設けられ、絶縁膜773上に導電膜
774が設けられる。この場合、導電膜774は、共通電極(コモン電極ともいう)とし
ての機能を有し、絶縁膜773を介して、導電膜772と導電膜774との間に生じる電
界によって、液晶層776の配向状態を制御することができる。
また、図23及び図24において図示しないが、導電膜772または導電膜774のい
ずれか一方または双方に、液晶層776と接する側に、それぞれ配向膜を設ける構成とし
てもよい。また、図23及び図24において図示しないが、偏光部材、位相差部材、反射
防止部材などの光学部材(光学基板)などは適宜設けてもよい。例えば、偏光基板及び位
相差基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトな
どを用いてもよい。
表示素子として液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液
晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これら
の液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイ
ラルネマチック相、等方相等を示す。
また、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよ
い。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリ
ック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発
現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組
成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速
度が短く、光学的等方性であるため配向処理が不要である。また配向膜を設けなくてもよ
いのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を
防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。
また、ブルー相を示す液晶材料は、視野角依存性が小さい。
また、表示素子として液晶素子を用いる場合、TN(Twisted Nematic
)モード、IPS(In-Plane-Switching)モード、FFS(Frin
ge Field Switching)モード、ASM(Axially Symme
tric aligned Micro-cell)モード、OCB(Optical
Compensated Birefringence)モード、FLC(Ferroe
lectric Liquid Crystal)モード、AFLC(AntiFerr
oelectric Liquid Crystal)モードなどを用いることができる
また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用し
た透過型の液晶表示装置としてもよい。垂直配向モードとしては、いくつか挙げられるが
、例えば、MVA(Multi-Domain Vertical Alignment
)モード、PVA(Patterned Vertical Alignment)モー
ド、ASVモードなどを用いることができる。
<4-3.発光素子を用いる表示装置>
図25に示す表示装置700は、発光素子782を有する。発光素子782は、導電膜
772、EL層786、及び導電膜788を有する。図25に示す表示装置700は、発
光素子782が有するEL層786が発光することによって、画像を表示することができ
る。なお、EL層786は、有機化合物、または量子ドットなどの無機化合物を有する。
有機化合物に用いることのできる材料としては、蛍光性材料または燐光性材料などが挙
げられる。また、量子ドットに用いることのできる材料としては、コロイド状量子ドット
材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料、
などが挙げられる。また、12族と16族、13族と15族、または14族と16族の元
素グループを含む材料を用いてもよい。または、カドミウム(Cd)、セレン(Se)、
亜鉛(Zn)、硫黄(S)、リン(P)、インジウム(In)、テルル(Te)、鉛(P
b)、ガリウム(Ga)、ヒ素(As)、アルミニウム(Al)、等の元素を有する量子
ドット材料を用いてもよい。
また、上述の有機化合物、及び無機化合物としては、例えば、蒸着法(真空蒸着法を含
む)、液滴吐出法(インクジェット法ともいう)、塗布法、グラビア印刷法等の方法を用
いて形成することができる。また、EL層786としては、低分子材料、中分子材料(オ
リゴマー、デンドリマーを含む)、または高分子材料を含んでも良い。
ここで、液滴吐出法を用いてEL層786を形成する方法について、図28を用いて説
明する。図28(A)乃至図28(D)は、EL層786の作製方法を説明する断面図で
ある。
まず、平坦化絶縁膜770上に導電膜772が形成され、導電膜772の一部を覆うよ
うに絶縁膜730が形成される(図28(A)参照)。
次に、絶縁膜730の開口である導電膜772の露出部に、液滴吐出装置783より液
滴784を吐出し、組成物を含む層785を形成する。液滴784は、溶媒を含む組成物
であり、導電膜772上に付着する(図28(B)参照)。
なお、液滴784を吐出する工程を減圧下で行ってもよい。
次に、組成物を含む層785より溶媒を除去し、固化することによってEL層786を
形成する(図28(C)参照)。
なお、溶媒の除去方法としては、乾燥工程または加熱工程を行えばよい。
次に、EL層786上に導電膜788を形成し、発光素子782を形成する(図28(
D)参照)。
このようにEL層786を液滴吐出法で行うと、選択的に組成物を吐出することができ
るため、材料のロスを削減することができる。また、形状を加工するためのリソグラフィ
工程なども必要ないために工程も簡略化することができ、低コスト化が達成できる。
なお、上記説明した液滴吐出法とは、組成物の吐出口を有するノズル、あるいは1つ又
は複数のノズルを有するヘッド等の液滴を吐出する手段を有するものの総称とする。
次に、液滴吐出法に用いる液滴吐出装置について、図29を用いて説明する。図29は
、液滴吐出装置1400を説明する概念図である。
液滴吐出装置1400は、液滴吐出手段1403を有する。また、液滴吐出手段140
3は、ヘッド1405と、ヘッド1412とを有する。
ヘッド1405、及びヘッド1412は制御手段1407に接続され、それがコンピュ
ータ1410で制御することにより予めプログラミングされたパターンに描画することが
できる。
また、描画するタイミングとしては、例えば、基板1402上に形成されたマーカー1
411を基準に行えば良い。あるいは、基板1402の外縁を基準にして基準点を確定さ
せても良い。ここでは、マーカー1411を撮像手段1404で検出し、画像処理手段1
409にてデジタル信号に変換したものをコンピュータ1410で認識して制御信号を発
生させて制御手段1407に送る。
撮像手段1404としては、電荷結合素子(CCD)や相補型金属酸化物半導体(CM
OS)を利用したイメージセンサなどを用いることができる。なお、基板1402上に形
成されるべきパターンの情報は記憶媒体1408に格納されたものであり、この情報を基
にして制御手段1407に制御信号を送り、液滴吐出手段1403の個々のヘッド140
5、ヘッド1412を個別に制御することができる。吐出する材料は、材料供給源141
3、材料供給源1414より配管を通してヘッド1405、ヘッド1412にそれぞれ供
給される。
ヘッド1405の内部は、点線1406が示すように液状の材料を充填する空間と、吐
出口であるノズルを有する構造となっている。図示しないが、ヘッド1412もヘッド1
405と同様な内部構造を有する。ヘッド1405とヘッド1412のノズルを異なるサ
イズで設けると、異なる材料を異なる幅で同時に描画することができる。一つのヘッドで
、複数種の発光材料などをそれぞれ吐出し、描画することができ、広領域に描画する場合
は、スループットを向上させるため複数のノズルより同材料を同時に吐出し、描画するこ
とができる。大型基板を用いる場合、ヘッド1405、ヘッド1412は基板上を、図2
9中に示すX、Y、Zの矢印の方向に自在に走査し、描画する領域を自由に設定すること
ができ、同じパターンを一枚の基板に複数描画することができる。
また、組成物を吐出する工程は、減圧下で行ってもよい。吐出時に基板を加熱しておい
てもよい。組成物を吐出後、乾燥と焼成の一方又は両方の工程を行う。乾燥と焼成の工程
は、両工程とも加熱処理の工程であるが、その目的、温度と時間が異なるものである。乾
燥の工程、焼成の工程は、常圧下又は減圧下で、レーザ光の照射や瞬間熱アニール、加熱
炉などにより行う。なお、この加熱処理を行うタイミング、加熱処理の回数は特に限定さ
れない。乾燥と焼成の工程を良好に行うためには、そのときの温度は、基板の材質及び組
成物の性質に依存する。
以上のように、液滴吐出装置を用いてEL層786を作製することができる。
再び、図25に示す表示装置700の説明に戻る。
図25に示す表示装置700には、平坦化絶縁膜770及び導電膜772上に絶縁膜7
30が設けられる。絶縁膜730は、導電膜772の一部を覆う。なお、発光素子782
はトップエミッション構造である。したがって、導電膜788は透光性を有し、EL層7
86が発する光を透過する。なお、本実施の形態においては、トップエミッション構造に
ついて、例示するが、これに限定されない。例えば、導電膜772側に光を射出するボト
ムエミッション構造や、導電膜772及び導電膜788の双方に光を射出するデュアルエ
ミッション構造にも適用することができる。
また、発光素子782と重なる位置に、着色膜736が設けられ、絶縁膜730と重な
る位置、引き回し配線部711、及びソースドライバ回路部704に遮光膜738が設け
られている。また、着色膜736及び遮光膜738は、絶縁膜734で覆われている。ま
た、発光素子782と絶縁膜734の間は封止膜732で充填されている。なお、図25
に示す表示装置700においては、着色膜736を設ける構成について例示したが、これ
に限定されない。例えば、EL層786を塗り分けにより形成する場合においては、着色
膜736を設けない構成としてもよい。
<4-4.表示装置に入出力装置を設ける構成例>
また、図24及び図25に示す表示装置700に入出力装置を設けてもよい。当該入出
力装置としては、例えば、タッチパネル等が挙げられる。
図24に示す表示装置700にタッチパネル791を設ける構成を図26に、図25に
示す表示装置700にタッチパネル791を設ける構成を図27に、それぞれ示す。
図26は図24に示す表示装置700にタッチパネル791を設ける構成の断面図であ
り、図27は図25に示す表示装置700にタッチパネル791を設ける構成の断面図で
ある。
まず、図26及び図27に示すタッチパネル791について、以下説明を行う。
図26及び図27に示すタッチパネル791は、第2の基板705と着色膜736との
間に設けられる、所謂インセル型のタッチパネルである。タッチパネル791は、着色膜
736を形成する前に、第2の基板705側に形成すればよい。
なお、タッチパネル791は、遮光膜738と、絶縁膜792と、電極793と、電極
794と、絶縁膜795と、電極796と、絶縁膜797と、を有する。例えば、指やス
タイラスなどの被検知体が近接することで、電極793と、電極794との相互容量の変
化を検知することができる。
また、図26及び図27に示すトランジスタ750の上方においては、電極793と、
電極794との交差部を明示している。電極796は、絶縁膜795に設けられた開口部
を介して、電極794を挟む2つの電極793と電気的に接続されている。なお、図26
及び図27においては、電極796が設けられる領域を画素部702に設ける構成を例示
したが、これに限定されず、例えば、ソースドライバ回路部704に形成してもよい。
電極793及び電極794は、遮光膜738と重なる領域に設けられる。また、図26
に示すように、電極793は、発光素子782と重ならないように設けられると好ましい
。また、図27に示すように、電極793は、液晶素子775と重ならないように設けら
れると好ましい。別言すると、電極793は、発光素子782及び液晶素子775と重な
る領域に開口部を有する。すなわち、電極793はメッシュ形状を有する。このような構
成とすることで、電極793は、発光素子782が射出する光を遮らない構成とすること
ができる。または、電極793は、液晶素子775を透過する光を遮らない構成とするこ
とができる。したがって、タッチパネル791を配置することによる輝度の低下が極めて
少ないため、視認性が高く、且つ消費電力が低減された表示装置を実現できる。なお、電
極794も同様の構成とすればよい。
また、電極793及び電極794が発光素子782と重ならないため、電極793及び
電極794には、可視光の透過率が低い金属材料を用いることができる。または、電極7
93及び電極794が液晶素子775と重ならないため、電極793及び電極794には
、可視光の透過率が低い金属材料を用いることができる。
そのため、可視光の透過率が高い酸化物材料を用いた電極と比較して、電極793及び
電極794の抵抗を低くすることが可能となり、タッチパネルのセンサ感度を向上させる
ことができる。
例えば、電極793、794、796には、導電性のナノワイヤを用いてもよい。当該
ナノワイヤは、直径の平均値が1nm以上100nm以下、好ましくは5nm以上50n
m以下、より好ましくは5nm以上25nm以下の大きさとすればよい。また、上記ナノ
ワイヤとしては、Agナノワイヤ、Cuナノワイヤ、またはAlナノワイヤ等の金属ナノ
ワイヤ、あるいは、カーボンナノチューブなどを用いればよい。例えば、電極793、7
94、796のいずれか一つあるいは全部にAgナノワイヤを用いる場合、可視光におけ
る光透過率を89%以上、シート抵抗値を40Ω/□以上100Ω/□以下とすることが
できる。
また、図26及び図27においては、インセル型のタッチパネルの構成について例示し
たが、これに限定されない。例えば、表示装置700上に形成する、所謂オンセル型のタ
ッチパネルや、表示装置700に貼り合わせて用いる、所謂アウトセル型のタッチパネル
としてもよい。
このように、本発明の一態様の表示装置は、様々な形態のタッチパネルと組み合わせて
用いることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用い
ることができる。
(実施の形態5)
本実施の形態では、本発明の一態様の半導体装置を有する表示装置について、図30を
用いて説明を行う。
<5.表示装置の回路構成>
図30(A)に示す表示装置は、表示素子の画素を有する領域(以下、画素部502と
いう)と、画素部502の外側に配置され、画素を駆動するための回路を有する回路部(
以下、駆動回路部504という)と、素子の保護機能を有する回路(以下、保護回路50
6という)と、端子部507と、を有する。なお、保護回路506は、設けない構成とし
てもよい。
駆動回路部504の一部、または全部は、画素部502と同一基板上に形成されている
ことが望ましい。これにより、部品数や端子数を減らすことが出来る。駆動回路部504
の一部、または全部が、画素部502と同一基板上に形成されていない場合には、駆動回
路部504の一部、または全部は、COGやTAB(Tape Automated B
onding)によって、実装することができる。
画素部502は、X行(Xは2以上の自然数)Y列(Yは2以上の自然数)に配置され
た複数の表示素子を駆動するための回路(以下、画素回路501という)を有し、駆動回
路部504は、画素を選択する信号(走査信号)を出力する回路(以下、ゲートドライバ
504aという)、画素の表示素子を駆動するための信号(データ信号)を供給するため
の回路(以下、ソースドライバ504b)などの駆動回路を有する。
ゲートドライバ504aは、シフトレジスタ等を有する。ゲートドライバ504aは、
端子部507を介して、シフトレジスタを駆動するための信号が入力され、信号を出力す
る。例えば、ゲートドライバ504aは、スタートパルス信号、クロック信号等が入力さ
れ、パルス信号を出力する。ゲートドライバ504aは、走査信号が与えられる配線(以
下、走査線GL_1乃至GL_Xという)の電位を制御する機能を有する。なお、ゲート
ドライバ504aを複数設け、複数のゲートドライバ504aにより、走査線GL_1乃
至GL_Xを分割して制御してもよい。または、ゲートドライバ504aは、初期化信号
を供給することができる機能を有する。ただし、これに限定されず、ゲートドライバ50
4aは、別の信号を供給することも可能である。
ソースドライバ504bは、シフトレジスタ等を有する。ソースドライバ504bは、
端子部507を介して、シフトレジスタを駆動するための信号の他、データ信号の元とな
る信号(画像信号)が入力される。ソースドライバ504bは、画像信号を元に画素回路
501に書き込むデータ信号を生成する機能を有する。また、ソースドライバ504bは
、スタートパルス、クロック信号等が入力されて得られるパルス信号に従って、データ信
号の出力を制御する機能を有する。また、ソースドライバ504bは、データ信号が与え
られる配線(以下、データ線DL_1乃至DL_Yという)の電位を制御する機能を有す
る。または、ソースドライバ504bは、初期化信号を供給することができる機能を有す
る。ただし、これに限定されず、ソースドライバ504bは、別の信号を供給することも
可能である。
ソースドライバ504bは、例えば複数のアナログスイッチなどを用いて構成される。
ソースドライバ504bは、複数のアナログスイッチを順次オン状態にすることにより、
画像信号を時分割した信号をデータ信号として出力できる。また、シフトレジスタなどを
用いてソースドライバ504bを構成してもよい。
複数の画素回路501のそれぞれは、走査信号が与えられる複数の走査線GLの一つを
介してパルス信号が入力され、データ信号が与えられる複数のデータ線DLの一つを介し
てデータ信号が入力される。また、複数の画素回路501のそれぞれは、ゲートドライバ
504aによりデータ信号のデータの書き込み及び保持が制御される。例えば、m行n列
目の画素回路501は、走査線GL_m(mはX以下の自然数)を介してゲートドライバ
504aからパルス信号が入力され、走査線GL_mの電位に応じてデータ線DL_n(
nはY以下の自然数)を介してソースドライバ504bからデータ信号が入力される。
図30(A)に示す保護回路506は、例えば、ゲートドライバ504aと画素回路5
01の間の配線である走査線GLに接続される。または、保護回路506は、ソースドラ
イバ504bと画素回路501の間の配線であるデータ線DLに接続される。または、保
護回路506は、ゲートドライバ504aと端子部507との間の配線に接続することが
できる。または、保護回路506は、ソースドライバ504bと端子部507との間の配
線に接続することができる。なお、端子部507は、外部の回路から表示装置に電源及び
制御信号、及び画像信号を入力するための端子が設けられた部分をいう。
保護回路506は、自身が接続する配線に一定の範囲外の電位が与えられたときに、該
配線と別の配線とを導通状態にする回路である。
図30(A)に示すように、画素部502と駆動回路部504にそれぞれ保護回路50
6を設けることにより、ESD(Electro Static Discharge:
静電気放電)などにより発生する過電流に対する表示装置の耐性を高めることができる。
ただし、保護回路506の構成はこれに限定されず、例えば、ゲートドライバ504aに
保護回路506を接続した構成、またはソースドライバ504bに保護回路506を接続
した構成とすることもできる。あるいは、端子部507に保護回路506を接続した構成
とすることもできる。
また、図30(A)においては、ゲートドライバ504aとソースドライバ504bに
よって駆動回路部504を形成している例を示しているが、この構成に限定されない。例
えば、ゲートドライバ504aのみを形成し、別途用意されたソースドライバ回路が形成
された基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を実
装する構成としても良い。
また、図30(A)に示す複数の画素回路501は、例えば、図30(B)に示す構成
とすることができる。
図30(B)に示す画素回路501は、液晶素子570と、トランジスタ550と、容
量素子560と、を有する。トランジスタ550に先の実施の形態に示すトランジスタを
適用することができる。
液晶素子570の一対の電極の一方の電位は、画素回路501の仕様に応じて適宜設定
される。液晶素子570は、書き込まれるデータにより配向状態が設定される。なお、複
数の画素回路501のそれぞれが有する液晶素子570の一対の電極の一方に共通の電位
(コモン電位)を与えてもよい。また、各行の画素回路501の液晶素子570の一対の
電極の一方に異なる電位を与えてもよい。
例えば、液晶素子570を備える表示装置の駆動方法としては、TNモード、STNモ
ード、VAモード、ASM(Axially Symmetric Aligned M
icro-cell)モード、OCB(Optically Compensated
Birefringence)モード、FLC(Ferroelectric Liqu
id Crystal)モード、AFLC(AntiFerroelectric Li
quid Crystal)モード、MVAモード、PVA(Patterned Ve
rtical Alignment)モード、IPSモード、FFSモード、又はTBA
(Transverse Bend Alignment)モードなどを用いてもよい。
また、表示装置の駆動方法としては、上述した駆動方法の他、ECB(Electric
ally Controlled Birefringence)モード、PDLC(P
olymer Dispersed Liquid Crystal)モード、PNLC
(Polymer Network Liquid Crystal)モード、ゲストホ
ストモードなどがある。ただし、これに限定されず、液晶素子及びその駆動方式として様
々なものを用いることができる。
m行n列目の画素回路501において、トランジスタ550のソース電極またはドレイ
ン電極の一方は、データ線DL_nに電気的に接続され、他方は液晶素子570の一対の
電極の他方に電気的に接続される。また、トランジスタ550のゲート電極は、走査線G
L_mに電気的に接続される。トランジスタ550は、オン状態またはオフ状態になるこ
とにより、データ信号のデータの書き込みを制御する機能を有する。
容量素子560の一対の電極の一方は、電位が供給される配線(以下、電位供給線VL
)に電気的に接続され、他方は、液晶素子570の一対の電極の他方に電気的に接続され
る。なお、電位供給線VLの電位の値は、画素回路501の仕様に応じて適宜設定される
。容量素子560は、書き込まれたデータを保持する保持容量としての機能を有する。
例えば、図30(B)の画素回路501を有する表示装置では、例えば、図30(A)
に示すゲートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ
550をオン状態にしてデータ信号のデータを書き込む。
データが書き込まれた画素回路501は、トランジスタ550がオフ状態になることで
保持状態になる。これを行毎に順次行うことにより、画像を表示できる。
また、図30(A)に示す複数の画素回路501は、例えば、図30(C)に示す構成
とすることができる。
また、図30(C)に示す画素回路501は、トランジスタ552、554と、容量素
子562と、発光素子572と、を有する。トランジスタ552及びトランジスタ554
のいずれか一方または双方に先の実施の形態に示すトランジスタを適用することができる
トランジスタ552のソース電極及びドレイン電極の一方は、データ信号が与えられる
配線(以下、データ線DL_nという)に電気的に接続される。さらに、トランジスタ5
52のゲート電極は、ゲート信号が与えられる配線(以下、走査線GL_mという)に電
気的に接続される。
トランジスタ552は、オン状態またはオフ状態になることにより、データ信号のデー
タの書き込みを制御する機能を有する。
容量素子562の一対の電極の一方は、電位が与えられる配線(以下、電位供給線VL
_aという)に電気的に接続され、他方は、トランジスタ552のソース電極及びドレイ
ン電極の他方に電気的に接続される。
容量素子562は、書き込まれたデータを保持する保持容量としての機能を有する。
トランジスタ554のソース電極及びドレイン電極の一方は、電位供給線VL_aに電
気的に接続される。さらに、トランジスタ554のゲート電極は、トランジスタ552の
ソース電極及びドレイン電極の他方に電気的に接続される。
発光素子572のアノード及びカソードの一方は、電位供給線VL_bに電気的に接続
され、他方は、トランジスタ554のソース電極及びドレイン電極の他方に電気的に接続
される。
発光素子572としては、例えば有機エレクトロルミネセンス素子(有機EL素子とも
いう)などを用いることができる。ただし、発光素子572としては、これに限定されず
、無機材料からなる無機EL素子を用いても良い。
なお、電位供給線VL_a及び電位供給線VL_bの一方には、高電源電位VDDが与
えられ、他方には、低電源電位VSSが与えられる。
図30(C)の画素回路501を有する表示装置では、例えば、図30(A)に示すゲ
ートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ552を
オン状態にしてデータ信号のデータを書き込む。
データが書き込まれた画素回路501は、トランジスタ552がオフ状態になることで
保持状態になる。さらに、書き込まれたデータ信号の電位に応じてトランジスタ554の
ソース電極とドレイン電極の間に流れる電流量が制御され、発光素子572は、流れる電
流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用い
ることができる。
(実施の形態6)
本実施の形態では、上述の実施の形態で説明したトランジスタの適用可能な回路構成の
一例について、図31乃至図34を用いて説明する。
なお、本実施の形態においては、先の実施の形態で説明した酸化物半導体を有するトラ
ンジスタを、OSトランジスタと呼称して以下説明を行う。
<6.インバータ回路の構成例>
図31(A)には、駆動回路が有するシフトレジスタやバッファ等に適用することがで
きるインバータの回路図を示す。インバータ800は、入力端子INに与える信号の論理
を反転した信号を出力端子OUTに出力する。インバータ800は、複数のOSトランジ
スタを有する。信号SBGは、OSトランジスタの電気特性を切り替えることができる信
号である。
図31(B)は、インバータ800の一例である。インバータ800は、OSトランジ
スタ810、およびOSトランジスタ820を有する。インバータ800は、nチャネル
型トランジスタのみで作製することができるため、CMOS(Complementar
y Metal Oxide Semiconductor)でインバータ(CMOSイ
ンバータ)を作製する場合と比較して、低コストで作製することが可能である。
なお、OSトランジスタを有するインバータ800は、Siトランジスタで構成される
CMOS上に配置することもできる。インバータ800は、CMOSの回路に重ねて配置
できるため、インバータ800を追加する分の回路面積の増加を抑えることができる。
OSトランジスタ810、820は、フロントゲートとして機能する第1ゲートと、バ
ックゲートとして機能する第2ゲートと、ソースまたはドレインの一方として機能する第
1端子と、ソースまたはドレインの他方として機能する第2端子とを有する。
OSトランジスタ810の第1ゲートは、第2端子に接続される。OSトランジスタ8
10の第2ゲートは、信号SBGを供給する配線に接続される。OSトランジスタ810
の第1端子は、電圧VDDを与える配線に接続される。OSトランジスタ810の第2端
子は、出力端子OUTに接続される。
OSトランジスタ820の第1ゲートは、入力端子INに接続される。OSトランジス
タ820の第2ゲートは、入力端子INに接続される。OSトランジスタ820の第1端
子は、出力端子OUTに接続される。OSトランジスタ820の第2端子は、電圧VSS
を与える配線に接続される。
図31(C)は、インバータ800の動作を説明するためのタイミングチャートである
。図31(C)のタイミングチャートでは、入力端子INの信号波形、出力端子OUTの
信号波形、信号SBGの信号波形、およびOSトランジスタ810のしきい値電圧の変化
について示している。
信号SBGをOSトランジスタ810の第2ゲートに与えることで、OSトランジスタ
810のしきい値電圧を制御することができる。
信号SBGは、しきい値電圧をマイナスシフトさせるための電圧VBG_A、しきい値
電圧をプラスシフトさせるための電圧VBG_Bを有する。第2ゲートに電圧VBG_A
を与えることで、OSトランジスタ810はしきい値電圧VTH_Aにマイナスシフトさ
せることができる。また、第2ゲートに電圧VBG_Bを与えることで、OSトランジス
タ810は、しきい値電圧VTH_Bにプラスシフトさせることができる。
前述の説明を可視化するために、図32(A)には、トランジスタの電気特性の一つで
ある、Id-Vgカーブを示す。
上述したOSトランジスタ810の電気特性は、第2ゲートの電圧を電圧VBG_A
ように大きくすることで、図32(A)中の破線840で表される曲線にシフトさせるこ
とができる。また、上述したOSトランジスタ810の電気特性は、第2ゲートの電圧を
電圧VBG_Bのように小さくすることで、図32(A)中の実線841で表される曲線
にシフトさせることができる。図32(A)に示すように、OSトランジスタ810は、
信号SBGを電圧VBG_Aあるいは電圧VBG_Bというように切り替えることで、し
きい値電圧をプラスシフトあるいはマイナスシフトさせることができる。
しきい値電圧をしきい値電圧VTH_Bにプラスシフトさせることで、OSトランジス
タ810は電流が流れにくい状態とすることができる。図32(B)には、この状態を可
視化して示す。
図32(B)に図示するように、OSトランジスタ810に流れる電流Iを極めて小
さくすることができる。そのため、入力端子INに与える信号がハイレベルでOSトラン
ジスタ820はオン状態(ON)のとき、出力端子OUTの電圧を急峻に下降させること
ができる。
図32(B)に図示したように、OSトランジスタ810に流れる電流が流れにくい状
態とすることができるため、図31(C)に示すタイミングチャートにおける出力端子の
信号波形831を急峻に変化させることができる。電圧VDDを与える配線と、電圧VS
Sを与える配線との間に流れる貫通電流を少なくすることができるため、低消費電力での
動作を行うことができる。
また、しきい値電圧をしきい値電圧VTH_Aにマイナスシフトさせることで、OSト
ランジスタ810は電流が流れやすい状態とすることができる。図32(C)には、この
状態を可視化して示す。図32(C)に図示するように、このとき流れる電流Iを少な
くとも電流Iよりも大きくすることができる。そのため、入力端子INに与える信号が
ローレベルでOSトランジスタ820はオフ状態(OFF)のとき、出力端子OUTの電
圧を急峻に上昇させることができる。図32(C)に図示したように、OSトランジスタ
810に流れる電流が流れやすい状態とすることができるため、図31(C)に示すタイ
ミングチャートにおける出力端子の信号波形832を急峻に変化させることができる。
なお、信号SBGによるOSトランジスタ810のしきい値電圧の制御は、OSトラン
ジスタ820の状態が切り替わる以前、すなわち時刻T1やT2よりも前に行うことが好
ましい。例えば、図31(C)に図示するように、入力端子INに与える信号がハイレベ
ルに切り替わる時刻T1よりも前に、しきい値電圧VTH_Aから、しきい値電圧VTH
_BにOSトランジスタ810のしきい値電圧を切り替えることが好ましい。また、図3
1(C)に図示するように、入力端子INに与える信号がローレベルに切り替わる時刻T
2よりも前に、しきい値電圧VTH_Bからしきい値電圧VTH_AにOSトランジスタ
810のしきい値電圧を切り替えることが好ましい。
なお、図31(C)のタイミングチャートでは、入力端子INに与える信号に応じて信
号SBGを切り替える構成を示したが、別の構成としてもよい。例えば、しきい値電圧を
制御するための電圧は、フローティング状態としたOSトランジスタ810の第2ゲート
に保持させる構成としてもよい。当該構成を実現可能な回路構成の一例について、図33
(A)に示す。
図33(A)では、図31(B)で示した回路構成に加えて、OSトランジスタ850
を有する。OSトランジスタ850の第1端子は、OSトランジスタ810の第2ゲート
に接続される。またOSトランジスタ850の第2端子は、電圧VBG_B(あるいは電
圧VBG_A)を与える配線に接続される。OSトランジスタ850の第1ゲートは、信
号Sを与える配線に接続される。OSトランジスタ850の第2ゲートは、電圧VBG
_B(あるいは電圧VBG_A)を与える配線に接続される。
図33(A)の動作について、図33(B)のタイミングチャートを用いて説明する。
OSトランジスタ810のしきい値電圧を制御するための電圧は、入力端子INに与え
る信号がハイレベルに切り替わる時刻T3よりも前に、OSトランジスタ810の第2ゲ
ートに与える構成とする。信号SをハイレベルとしてOSトランジスタ850をオン状
態とし、ノードNBGにしきい値電圧を制御するための電圧VBG_Bを与える。
ノードNBGが電圧VBG_Bとなった後は、OSトランジスタ850をオフ状態とす
る。OSトランジスタ850は、オフ電流が極めて小さいため、オフ状態にし続けること
で、一旦ノードNBGに保持させた電圧VBG_Bを保持することができる。そのため、
OSトランジスタ850の第2ゲートに電圧VBG_Bを与える動作の回数が減るため、
電圧VBG_Bの書き換えに要する分の消費電力を小さくすることができる。
なお、図31(B)及び図33(A)の回路構成では、OSトランジスタ810の第2
ゲートに与える電圧を外部からの制御によって与える構成について示したが、別の構成と
してもよい。例えば、しきい値電圧を制御するための電圧を、入力端子INに与える信号
を基に生成し、OSトランジスタ810の第2ゲートに与える構成としてもよい。当該構
成を実現可能な回路構成の一例について、図34(A)に示す。
図34(A)では、図31(B)で示した回路構成において、入力端子INとOSトラ
ンジスタ810の第2ゲートとの間にCMOSインバータ860を有する。CMOSイン
バータ860の入力端子は、入力端子INに接続される。CMOSインバータ860の出
力端子は、OSトランジスタ810の第2ゲートに接続される。
図34(A)の動作について、図34(B)のタイミングチャートを用いて説明する。
図34(B)のタイミングチャートでは、入力端子INの信号波形、出力端子OUTの信
号波形、CMOSインバータ860の出力波形IN_B、及びOSトランジスタ810の
しきい値電圧の変化について示している。
入力端子INに与える信号の論理を反転した信号である出力波形IN_Bは、OSトラ
ンジスタ810のしきい値電圧を制御する信号とすることができる。したがって、図32
(A)乃至図32(C)で説明したように、OSトランジスタ810のしきい値電圧を制
御できる。例えば、図34(B)における時刻T4となるとき、入力端子INに与える信
号がハイレベルでOSトランジスタ820はオン状態となる。このとき、出力波形IN_
Bはローレベルとなる。そのため、OSトランジスタ810は電流が流れにくい状態とす
ることができ、出力端子OUTの電圧を急峻に下降させることができる。
また、図34(B)における時刻T5となるとき、入力端子INに与える信号がローレ
ベルでOSトランジスタ820はオフ状態となる。このとき、出力波形IN_Bはハイレ
ベルとなる。そのため、OSトランジスタ810は電流が流れやすい状態とすることがで
き、出力端子OUTの電圧を急峻に上昇させることができる。
以上説明したように本実施の形態の構成では、OSトランジスタを有するインバータに
おける、バックゲートの電圧を入力端子INの信号の論理にしたがって切り替える。当該
構成とすることで、OSトランジスタのしきい値電圧を制御することができる。入力端子
INに与える信号によってOSトランジスタのしきい値電圧を制御することで、出力端子
OUTの電圧を急峻に変化させることができる。また、電源電圧を与える配線間の貫通電
流を小さくすることができる。そのため、低消費電力化を図ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用い
ることができる。
(実施の形態7)
本実施の形態では、上述の実施の形態で説明した酸化物半導体を有するトランジスタ(
OSトランジスタ)を、複数の回路に用いる半導体装置の一例について、図35乃至図3
8を用いて説明する。
<7.半導体装置の回路構成例>
図35(A)は、半導体装置900のブロック図である。半導体装置900は、電源回
路901、回路902、電圧生成回路903、回路904、電圧生成回路905および回
路906を有する。
電源回路901は、基準となる電圧VORGを生成する回路である。電圧VORGは、
単一の電圧ではなく、複数の電圧でもよい。電圧VORGは、半導体装置900の外部か
ら与えられる電圧Vを基に生成することができる。半導体装置900は、外部から与え
られる単一の電源電圧を基に電圧VORGを生成できる。そのため半導体装置900は、
外部から電源電圧を複数与えることなく動作することができる。
回路902、904および906は、異なる電源電圧で動作する回路である。例えば回
路902の電源電圧は、電圧VORGと電圧VSS(VORG>VSS)とを基に印加さ
れる電圧である。また、例えば回路904の電源電圧は、電圧VPOGと電圧VSS(V
POG>VORG)とを基に印加される電圧である。また、例えば回路906の電源電圧
は、電圧VORGと電圧VSSと電圧VNEG(VORG>VSS>VNEG)とを基に
印加される電圧である。なお電圧VSSは、グラウンド電位(GND)と等電位とすれば
、電源回路901で生成する電圧の種類を削減できる。
電圧生成回路903は、電圧VPOGを生成する回路である。電圧生成回路903は、
電源回路901から与えられる電圧VORGを基に電圧VPOGを生成できる。そのため
、回路904を有する半導体装置900は、外部から与えられる単一の電源電圧を基に動
作することができる。
電圧生成回路905は、電圧VNEGを生成する回路である。電圧生成回路905は、
電源回路901から与えられる電圧VORGを基に電圧VNEGを生成できる。そのため
、回路906を有する半導体装置900は、外部から与えられる単一の電源電圧を基に動
作することができる。
図35(B)は電圧VPOGで動作する回路904の一例、図35(C)は回路904
を動作させるための信号の波形の一例である。
図35(B)では、トランジスタ911を示している。トランジスタ911のゲートに
与える信号は、例えば、電圧VPOGと電圧VSSを基に生成される。当該信号は、トラ
ンジスタ911を導通状態とする動作時に電圧VPOG、非導通状態とする動作時に電圧
SSとする。電圧VPOGは、図35(C)に図示するように、電圧VORGより大き
い。そのため、トランジスタ911は、ソース(S)とドレイン(D)との間をより確実
に導通状態にできる。その結果、回路904は、誤動作が低減された回路とすることがで
きる。
図35(D)は電圧VNEGで動作する回路906の一例、図35(E)は回路906
を動作させるための信号の波形の一例である。
図35(D)では、バックゲートを有するトランジスタ912を示している。トランジ
スタ912のゲートに与える信号は、例えば、電圧VORGと電圧VSSを基にして生成
される。当該信号は、トランジスタ912を導通状態とする動作時に電圧VORG、非導
通状態とする動作時に電圧VSSを基に生成される。また、トランジスタ912のバック
ゲートに与える信号は、電圧VNEGを基に生成される。電圧VNEGは、図35(E)
に図示するように、電圧VSS(GND)より小さい。そのため、トランジスタ912の
閾値電圧は、プラスシフトするように制御することができる。そのため、トランジスタ9
12をより確実に非導通状態とすることができ、ソース(S)とドレイン(D)との間を
流れる電流を小さくできる。その結果、回路906は、誤動作が低減され、且つ低消費電
力化が図られた回路とすることができる。
なお、電圧VNEGは、トランジスタ912のバックゲートに直接与える構成としても
よい。あるいは、電圧VORGと電圧VNEGを基に、トランジスタ912のゲートに与
える信号を生成し、当該信号をトランジスタ912のバックゲートに与える構成としても
よい。
また図36(A)(B)には、図35(D)(E)の変形例を示す。
図36(A)に示す回路図では、電圧生成回路905と、回路906と、の間に制御回
路921によって導通状態が制御できるトランジスタ922を示す。トランジスタ922
は、nチャネル型のOSトランジスタとする。制御回路921が出力する制御信号SBG
は、トランジスタ922の導通状態を制御する信号である。また回路906が有するトラ
ンジスタ912A、912Bは、トランジスタ922と同じOSトランジスタである。
図36(B)のタイミングチャートには、制御信号SBGの電位の変化を示し、トラン
ジスタ912A、912Bのバックゲートの電位の状態をノードNBGの電位の変化で示
す。制御信号SBGがハイレベルのときにトランジスタ922が導通状態となり、ノード
BGが電圧VNEGとなる。その後、制御信号SBGがローレベルのときにノードN
が電気的にフローティングとなる。トランジスタ922は、OSトランジスタであるた
め、オフ電流が小さい。そのため、ノードNBGが電気的にフローティングであっても、
一旦与えた電圧VNEGを保持することができる。
また、図37(A)には、上述した電圧生成回路903に適用可能な回路構成の一例を
示す。図37(A)に示す電圧生成回路903は、ダイオードD1乃至D5、キャパシタ
C1乃至C5、およびインバータINVを有する5段のチャージポンプである。クロック
信号CLKは、キャパシタC1乃至C5に直接、あるいはインバータINVを介して与え
られる。インバータINVの電源電圧を、電圧VORGと電圧VSSを基に印加される電
圧とすると、クロック信号CLKによって、電圧VORGの5倍の正電圧に昇圧された電
圧VPOGを得ることができる。なお、ダイオードD1乃至D5の順方向電圧は0Vとし
ている。また、チャージポンプの段数を変更することで、所望の電圧VPOGを得ること
ができる。
また、図37(B)には、上述した電圧生成回路905に適用可能な回路構成の一例を
示す。図37(B)に示す電圧生成回路905は、ダイオードD1乃至D5、キャパシタ
C1乃至C5、およびインバータINVを有する4段のチャージポンプである。クロック
信号CLKは、キャパシタC1乃至C5に直接、あるいはインバータINVを介して与え
られる。インバータINVの電源電圧を、電圧VORGと電圧VSSを基に印加される電
圧とすると、クロック信号CLKを与えることによって、グラウンド、すなわち電圧V
から電圧VORGの4倍の負電圧に降圧された電圧VNEGを得ることができる。なお
、ダイオードD1乃至D5の順方向電圧は0Vとしている。また、チャージポンプの段数
を変更することで、所望の電圧VNEGを得ることができる。
なお、上述した電圧生成回路903の回路構成は、図37(A)で示す回路図の構成に
限らない。例えば、電圧生成回路903の変形例を図38(A)乃至図38(C)に示す
。なお、電圧生成回路903の変形例は、図38(A)乃至図38(C)に示す電圧生成
回路903A乃至903Cにおいて、各配線に与える電圧を変更すること、あるいは素子
の配置を変更することで実現可能である。
図38(A)に示す電圧生成回路903Aは、トランジスタM1乃至M10、キャパシ
タC11乃至C14、およびインバータINV1を有する。クロック信号CLKは、トラ
ンジスタM1乃至M10のゲートに直接、あるいはインバータINV1を介して与えられ
る。クロック信号CLKを与えることによって、電圧VORGの4倍の正電圧に昇圧され
た電圧VPOGを得ることができる。なお、段数を変更することで、所望の電圧VPOG
を得ることができる。図38(A)に示す電圧生成回路903Aは、トランジスタM1乃
至M10をOSトランジスタとすることでオフ電流を小さくでき、キャパシタC11乃至
C14に保持した電荷の漏れを抑制できる。そのため、効率的に電圧VORGから電圧V
POGへの昇圧を図ることができる。
また、図38(B)に示す電圧生成回路903Bは、トランジスタM11乃至M14、
キャパシタC15、C16、およびインバータINV2を有する。クロック信号CLKは
、トランジスタM11乃至M14のゲートに直接、あるいはインバータINV2を介して
与えられる。クロック信号CLKを与えることによって、電圧VORGの2倍の正電圧に
昇圧された電圧VPOGを得ることができる。図38(B)に示す電圧生成回路903B
は、トランジスタM11乃至M14をOSトランジスタとすることでオフ電流を小さくで
き、キャパシタC15、C16に保持した電荷の漏れを抑制できる。そのため、効率的に
電圧VORGから電圧VPOGへの昇圧を図ることができる。
また、図38(C)に示す電圧生成回路903Cは、インダクタInd1、トランジス
タM15、ダイオードD6、およびキャパシタC17を有する。トランジスタM15は、
制御信号ENによって、導通状態が制御される。制御信号ENによって、電圧VORG
昇圧された電圧VPOGを得ることができる。図38(C)に示す電圧生成回路903C
は、インダクタInd1を用いて電圧の昇圧を行うため、変換効率の高い電圧の昇圧を行
うことができる。
以上説明したように本実施の形態の構成では、半導体装置が有する回路に必要な電圧を
内部で生成することができる。そのため半導体装置は、外部から与える電源電圧の数を削
減できる。
なお、本実施の形態で示す構成等は、他の実施の形態で示す構成と適宜組み合わせて用
いることができる。
(実施の形態8)
本実施の形態では、本発明の一態様の半導体装置を有する表示モジュール及び電子機器
について、図39乃至図42を用いて説明を行う。
<8-1.表示モジュール>
図39に示す表示モジュール7000は、上部カバー7001と下部カバー7002と
の間に、FPC7003に接続されたタッチパネル7004、FPC7005に接続され
た表示パネル7006、バックライト7007、フレーム7009、プリント基板701
0、バッテリ7011を有する。
本発明の一態様の半導体装置は、例えば、表示パネル7006に用いることができる。
上部カバー7001及び下部カバー7002は、タッチパネル7004及び表示パネル
7006のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル7004は、抵抗膜方式または静電容量方式のタッチパネルを表示パネル
7006に重畳して用いることができる。また、表示パネル7006の対向基板(封止基
板)に、タッチパネル機能を持たせるようにすることも可能である。また、表示パネル7
006の各画素内に光センサを設け、光学式のタッチパネルとすることも可能である。
バックライト7007は、光源7008を有する。なお、図39において、バックライ
ト7007上に光源7008を配置する構成について例示したが、これに限定さない。例
えば、バックライト7007の端部に光源7008を配置し、さらに光拡散板を用いる構
成としてもよい。なお、有機EL素子等の自発光型の発光素子を用いる場合、または反射
型パネル等の場合においては、バックライト7007を設けない構成としてもよい。
フレーム7009は、表示パネル7006の保護機能の他、プリント基板7010の動
作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレ
ーム7009は、放熱板としての機能を有していてもよい。
プリント基板7010は、電源回路、ビデオ信号及びクロック信号を出力するための信
号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であって
も良いし、別途設けたバッテリ7011による電源であってもよい。バッテリ7011は
、商用電源を用いる場合には、省略可能である。
また、表示モジュール7000は、偏光板、位相差板、プリズムシートなどの部材を追
加して設けてもよい。
<8-2.電子機器1>
次に、図40(A)乃至図40(E)に電子機器の一例を示す。
図40(A)は、ファインダー8100を取り付けた状態のカメラ8000の外観を示
す図である。
カメラ8000は、筐体8001、表示部8002、操作ボタン8003、シャッター
ボタン8004等を有する。またカメラ8000には、着脱可能なレンズ8006が取り
付けられている。
ここではカメラ8000として、レンズ8006を筐体8001から取り外して交換す
ることが可能な構成としたが、レンズ8006と筐体が一体となっていてもよい。
カメラ8000は、シャッターボタン8004を押すことにより、撮像することができ
る。また、表示部8002はタッチパネルとしての機能を有し、表示部8002をタッチ
することにより撮像することも可能である。
カメラ8000の筐体8001は、電極を有するマウントを有し、ファインダー810
0のほか、ストロボ装置等を接続することができる。
ファインダー8100は、筐体8101、表示部8102、ボタン8103等を有する
筐体8101は、カメラ8000のマウントと係合するマウントを有しており、ファイ
ンダー8100をカメラ8000に取り付けることができる。また当該マウントには電極
を有し、当該電極を介してカメラ8000から受信した映像等を表示部8102に表示さ
せることができる。
ボタン8103は、電源ボタンとしての機能を有する。ボタン8103により、表示部
8102の表示のオン・オフを切り替えることができる。
カメラ8000の表示部8002、及びファインダー8100の表示部8102に、本
発明の一態様の表示装置を適用することができる。
なお、図40(A)では、カメラ8000とファインダー8100とを別の電子機器と
し、これらを脱着可能な構成としたが、カメラ8000の筐体8001に、表示装置を備
えるファインダーが内蔵されていてもよい。
図40(B)は、ヘッドマウントディスプレイ8200の外観を示す図である。
ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体82
03、表示部8204、ケーブル8205等を有している。また装着部8201には、バ
ッテリ8206が内蔵されている。
ケーブル8205は、バッテリ8206から本体8203に電力を供給する。本体82
03は無線受信機等を備え、受信した画像データ等の映像情報を表示部8204に表示さ
せることができる。また、本体8203に設けられたカメラで使用者の眼球やまぶたの動
きを捉え、その情報をもとに使用者の視点の座標を算出することにより、使用者の視点を
入力手段として用いることができる。
また、装着部8201には、使用者に触れる位置に複数の電極が設けられていてもよい
。本体8203は使用者の眼球の動きに伴って電極に流れる電流を検知することにより、
使用者の視点を認識する機能を有していてもよい。また、当該電極に流れる電流を検知す
ることにより、使用者の脈拍をモニタする機能を有していてもよい。また、装着部820
1には、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使
用者の生体情報を表示部8204に表示する機能を有していてもよい。また、使用者の頭
部の動きなどを検出し、表示部8204に表示する映像をその動きに合わせて変化させて
もよい。
表示部8204に、本発明の一態様の表示装置を適用することができる。
図40(C)(D)(E)は、ヘッドマウントディスプレイ8300の外観を示す図で
ある。ヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バ
ンド状の固定具8304と、一対のレンズ8305と、を有する。
使用者は、レンズ8305を通して、表示部8302の表示を視認することができる。
なお、表示部8302を湾曲して配置させると好適である。表示部8302を湾曲して配
置することで、使用者が高い臨場感を感じることができる。なお、本実施の形態において
は、表示部8302を1つ設ける構成について例示したが、これに限定されず、例えば、
表示部8302を2つ設ける構成としてもよい。この場合、使用者の片方の目に1つの表
示部が配置されるような構成とすると、視差を用いた3次元表示等を行うことも可能とな
る。
なお、表示部8302に、本発明の一態様の表示装置を適用することができる。本発明
の一態様の半導体装置を有する表示装置は、極めて精細度が高いため、図40(E)のよ
うにレンズ8305を用いて拡大したとしても、使用者に画素が視認されることなく、よ
り現実感の高い映像を表示することができる。
<8-3.電子機器2>
次に、図40(A)乃至図40(E)に示す電子機器と、異なる電子機器の一例を図4
1(A)乃至図41(G)に示す。
図41(A)乃至図41(G)に示す電子機器は、筐体9000、表示部9001、ス
ピーカ9003、操作キー9005(電源スイッチ、又は操作スイッチを含む)、接続端
子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、
光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、
流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォ
ン9008、等を有する。
図41(A)乃至図41(G)に示す電子機器は、様々な機能を有する。例えば、様々
な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能
、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)
によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータ
ネットワークに接続する機能、無線通信機能を用いて様々なデータの送信または受信を行
う機能、記録媒体に記録されているプログラムまたはデータを読み出して表示部に表示す
る機能、等を有することができる。なお、図41(A)乃至図41(G)に示す電子機器
が有することのできる機能はこれらに限定されず、様々な機能を有することができる。ま
た、図41(A)乃至図41(G)には図示していないが、電子機器には、複数の表示部
を有する構成としてもよい。また、該電子機器にカメラ等を設け、静止画を撮影する機能
、動画を撮影する機能、撮影した画像を記録媒体(外部またはカメラに内蔵)に保存する
機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
図41(A)乃至図41(G)に示す電子機器の詳細について、以下説明を行う。
図41(A)は、テレビジョン装置9100を示す斜視図である。テレビジョン装置9
100は、表示部9001を大画面、例えば、50インチ以上、または100インチ以上
の表示部9001を組み込むことが可能である。
図41(B)は、携帯情報端末9101を示す斜視図である。携帯情報端末9101は
、例えば電話機、手帳又は情報閲覧装置等から選ばれた一つ又は複数の機能を有する。具
体的には、スマートフォンとして用いることができる。なお、携帯情報端末9101は、
スピーカ、接続端子、センサ等を設けてもよい。また、携帯情報端末9101は、文字や
画像情報をその複数の面に表示することができる。例えば、3つの操作ボタン9050(
操作アイコンまたは単にアイコンともいう)を表示部9001の一の面に表示することが
できる。また、破線の矩形で示す情報9051を表示部9001の他の面に表示すること
ができる。なお、情報9051の一例としては、電子メールやSNS(ソーシャル・ネッ
トワーキング・サービス)や電話などの着信を知らせる表示、電子メールやSNSなどの
題名、電子メールやSNSなどの送信者名、日時、時刻、バッテリの残量、アンテナ受信
の強度などがある。または、情報9051が表示されている位置に、情報9051の代わ
りに、操作ボタン9050などを表示してもよい。
図41(C)は、携帯情報端末9102を示す斜視図である。携帯情報端末9102は
、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、
情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば、携
帯情報端末9102の使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状
態で、その表示(ここでは情報9053)を確認することができる。具体的には、着信し
た電話の発信者の電話番号又は氏名等を、携帯情報端末9102の上方から観察できる位
置に表示する。使用者は、携帯情報端末9102をポケットから取り出すことなく、表示
を確認し、電話を受けるか否かを判断できる。
図41(D)は、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末
9200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信
、コンピュータゲームなどの種々のアプリケーションを実行することができる。また、表
示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うこと
ができる。また、携帯情報端末9200は、通信規格された近距離無線通信を実行するこ
とが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハン
ズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006を
有し、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。ま
た接続端子9006を介して充電を行うこともできる。なお、充電動作は接続端子900
6を介さずに無線給電により行ってもよい。
図41(E)(F)(G)は、折り畳み可能な携帯情報端末9201を示す斜視図であ
る。また、図41(E)が携帯情報端末9201を展開した状態の斜視図であり、図41
(F)が携帯情報端末9201を展開した状態または折り畳んだ状態の一方から他方に変
化する途中の状態の斜視図であり、図41(G)が携帯情報端末9201を折り畳んだ状
態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開し
た状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末92
01が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000
に支持されている。ヒンジ9055を介して2つの筐体9000間を屈曲させることによ
り、携帯情報端末9201を展開した状態から折りたたんだ状態に可逆的に変形させるこ
とができる。例えば、携帯情報端末9201は、曲率半径1mm以上150mm以下で曲
げることができる。
次に、図40(A)乃至図40(E)に示す電子機器、及び図41(A)乃至図41(
G)に示す電子機器と異なる電子機器の一例を図42(A)(B)に示す。図42(A)
(B)は、複数の表示パネルを有する表示装置の斜視図である。なお、図42(A)は、
複数の表示パネルが巻き取られた形態の斜視図であり、図42(B)は、複数の表示パネ
ルが展開された状態の斜視図である。
図42(A)(B)に示す表示装置9500は、複数の表示パネル9501と、軸部9
511と、軸受部9512と、を有する。また、複数の表示パネル9501は、表示領域
9502と、透光性を有する領域9503と、を有する。
また、複数の表示パネル9501は、可撓性を有する。また、隣接する2つの表示パネ
ル9501は、それらの一部が互いに重なるように設けられる。例えば、隣接する2つの
表示パネル9501の透光性を有する領域9503を重ね合わせることができる。複数の
表示パネル9501を用いることで、大画面の表示装置とすることができる。また、使用
状況に応じて、表示パネル9501を巻き取ることが可能であるため、汎用性に優れた表
示装置とすることができる。
また、図42(A)(B)においては、表示領域9502が隣接する表示パネル950
1で離間する状態を図示しているが、これに限定されず、例えば、隣接する表示パネル9
501の表示領域9502を隙間なく重ねあわせることで、連続した表示領域9502と
してもよい。
本実施の形態において述べた電子機器は、何らかの情報を表示するための表示部を有す
ることを特徴とする。ただし、本発明の一態様の半導体装置は、表示部を有さない電子機
器にも適用することができる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用い
ることができる。
100 トランジスタ
100A トランジスタ
100B トランジスタ
102 基板
104 導電膜
106 絶縁膜
108 酸化物半導体膜
108i_1 酸化物半導体膜
108i_1_0 酸化物半導体膜
108i_2 酸化物半導体膜
108i_2_0 酸化物半導体膜
108n 酸化物半導体膜
108n_0 酸化物半導体膜
112 導電膜
112a 導電膜
112b 導電膜
114 絶縁膜
116 絶縁膜
118 絶縁膜
120 導電膜
120a 導電膜
120b 導電膜
141a 開口部
141b 開口部
142a 開口部
142b 開口部
191 ターゲット
192 プラズマ
193 ターゲット
194 プラズマ
200 トランジスタ
200A トランジスタ
200B トランジスタ
200C トランジスタ
202 基板
204 絶縁膜
206 導電膜
208 酸化物半導体膜
208i 領域
208i_0 酸化物半導体膜
208n_0 酸化物半導体膜
208n_1 領域
208n_2 領域
210 絶縁膜
210_0 絶縁膜
212 導電膜
212_0 導電膜
212_1 導電膜
212_2 導電膜
216 絶縁膜
218 絶縁膜
220a 導電膜
220b 導電膜
222 絶縁膜
240 マスク
241a 開口部
241b 開口部
243 開口部
501 画素回路
502 画素部
504 駆動回路部
504a ゲートドライバ
504b ソースドライバ
506 保護回路
507 端子部
550 トランジスタ
552 トランジスタ
554 トランジスタ
560 容量素子
562 容量素子
570 液晶素子
572 発光素子
700 表示装置
701 基板
702 画素部
704 ソースドライバ回路部
705 基板
706 ゲートドライバ回路部
708 FPC端子部
710 信号線
711 配線部
712 シール材
716 FPC
730 絶縁膜
732 封止膜
734 絶縁膜
736 着色膜
738 遮光膜
750 トランジスタ
752 トランジスタ
760 接続電極
770 平坦化絶縁膜
772 導電膜
773 絶縁膜
774 導電膜
775 液晶素子
776 液晶層
778 構造体
780 異方性導電膜
782 発光素子
783 液滴吐出装置
784 液滴
785 層
786 EL層
788 導電膜
790 容量素子
791 タッチパネル
792 絶縁膜
793 電極
794 電極
795 絶縁膜
796 電極
797 絶縁膜
800 インバータ
810 OSトランジスタ
820 OSトランジスタ
831 信号波形
832 信号波形
840 破線
841 実線
850 OSトランジスタ
860 CMOSインバータ
900 半導体装置
901 電源回路
902 回路
903 電圧生成回路
903A 電圧生成回路
903B 電圧生成回路
903C 電圧生成回路
904 回路
905 電圧生成回路
906 回路
911 トランジスタ
912 トランジスタ
912A トランジスタ
912B トランジスタ
921 制御回路
922 トランジスタ
1400 液滴吐出装置
1402 基板
1403 液滴吐出手段
1404 撮像手段
1405 ヘッド
1406 点線
1407 制御手段
1408 記憶媒体
1409 画像処理手段
1410 コンピュータ
1411 マーカー
1412 ヘッド
1413 材料供給源
1414 材料供給源
7000 表示モジュール
7001 上部カバー
7002 下部カバー
7003 FPC
7004 タッチパネル
7005 FPC
7006 表示パネル
7007 バックライト
7008 光源
7009 フレーム
7010 プリント基板
7011 バッテリ
8000 カメラ
8001 筐体
8002 表示部
8003 操作ボタン
8004 シャッターボタン
8006 レンズ
8100 ファインダー
8101 筐体
8102 表示部
8103 ボタン
8200 ヘッドマウントディスプレイ
8201 装着部
8202 レンズ
8203 本体
8204 表示部
8205 ケーブル
8206 バッテリ
8300 ヘッドマウントディスプレイ
8301 筐体
8302 表示部
8304 固定具
8305 レンズ
9000 筐体
9001 表示部
9003 スピーカ
9005 操作キー
9006 接続端子
9007 センサ
9008 マイクロフォン
9050 操作ボタン
9051 情報
9052 情報
9053 情報
9054 情報
9055 ヒンジ
9100 テレビジョン装置
9101 携帯情報端末
9102 携帯情報端末
9200 携帯情報端末
9201 携帯情報端末
9500 表示装置
9501 表示パネル
9502 表示領域
9503 領域
9511 軸部
9512 軸受部

Claims (1)

  1. トランジスタのチャネルが形成される酸化物半導体膜を有し、
    前記酸化物半導体膜は、
    第1の酸化物半導体膜と、
    前記第1の酸化物半導体膜上の第2の酸化物半導体膜と、
    前記第2の酸化物半導体膜上の第3の酸化物半導体膜と、を有し、
    前記第1の酸化物半導体膜は、Inと、Gaと、Znと、を有し、
    前記第2の酸化物半導体膜は、Inと、Gaと、Znと、を有し、
    前記第3の酸化物半導体膜は、Inと、Gaと、Znと、を有し、
    前記第2の酸化物半導体膜は、前記第1の酸化物半導体膜及び前記第3の酸化物半導体膜よりも、窒素濃度が高い領域を有する、半導体装置。
JP2022166785A 2015-12-15 2022-10-18 半導体装置 Withdrawn JP2023009058A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024019606A JP2024052769A (ja) 2015-12-15 2024-02-13 半導体装置

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2015244195 2015-12-15
JP2015244195 2015-12-15
JP2015244201 2015-12-15
JP2015244201 2015-12-15
JP2016124845 2016-06-23
JP2016124845 2016-06-23
JP2016125206 2016-06-24
JP2016125206 2016-06-24
JP2016241935A JP6867792B2 (ja) 2015-12-15 2016-12-14 半導体装置、表示装置、表示モジュール、及び電子機器
JP2021066235A JP2021114617A (ja) 2015-12-15 2021-04-09 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021066235A Division JP2021114617A (ja) 2015-12-15 2021-04-09 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024019606A Division JP2024052769A (ja) 2015-12-15 2024-02-13 半導体装置

Publications (1)

Publication Number Publication Date
JP2023009058A true JP2023009058A (ja) 2023-01-19

Family

ID=59020085

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016241935A Active JP6867792B2 (ja) 2015-12-15 2016-12-14 半導体装置、表示装置、表示モジュール、及び電子機器
JP2021066235A Withdrawn JP2021114617A (ja) 2015-12-15 2021-04-09 半導体装置
JP2022166785A Withdrawn JP2023009058A (ja) 2015-12-15 2022-10-18 半導体装置
JP2024019606A Pending JP2024052769A (ja) 2015-12-15 2024-02-13 半導体装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016241935A Active JP6867792B2 (ja) 2015-12-15 2016-12-14 半導体装置、表示装置、表示モジュール、及び電子機器
JP2021066235A Withdrawn JP2021114617A (ja) 2015-12-15 2021-04-09 半導体装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024019606A Pending JP2024052769A (ja) 2015-12-15 2024-02-13 半導体装置

Country Status (3)

Country Link
US (3) US10714633B2 (ja)
JP (4) JP6867792B2 (ja)
KR (1) KR20170071418A (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017001488T5 (de) 2016-03-22 2018-12-20 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung und Anzeigevorrichtung, die diese umfasst
US10043659B2 (en) 2016-05-20 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device or display device including the same
CN109075209B (zh) 2016-05-20 2022-05-27 株式会社半导体能源研究所 半导体装置或包括该半导体装置的显示装置
US11545581B2 (en) * 2019-08-02 2023-01-03 South China University Of Technology Metal oxide (MO) semiconductor and thin-film transistor and application thereof
KR102446301B1 (ko) * 2017-12-11 2022-09-23 엘지디스플레이 주식회사 지지층을 갖는 박막 트랜지스터, 그 제조방법 및 이를 포함하는 표시장치
KR102606487B1 (ko) * 2018-02-01 2023-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
US11069796B2 (en) * 2018-08-09 2021-07-20 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP7444436B2 (ja) * 2020-02-05 2024-03-06 三国電子有限会社 液晶表示装置
JP2023522296A (ja) * 2020-03-20 2023-05-30 ガーミン スウィッツァランド ゲーエムベーハー 携帯電子装置用のマルチセル光起電力
US11557678B2 (en) * 2020-05-28 2023-01-17 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor, integrated circuit, and manufacturing method
EP4207303A4 (en) * 2021-06-25 2024-01-10 Boe Technology Group Co Ltd OXIDE THIN FILM TRANSISTOR AND PREPARATION METHOD THEREFOR, AND DISPLAY DEVICE

Family Cites Families (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312259B1 (ko) 2007-02-09 2013-09-25 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
JP5345456B2 (ja) * 2008-08-14 2013-11-20 富士フイルム株式会社 薄膜電界効果型トランジスタ
TWI567829B (zh) 2008-10-31 2017-01-21 半導體能源研究所股份有限公司 半導體裝置及其製造方法
TWI508304B (zh) 2008-11-28 2015-11-11 Semiconductor Energy Lab 半導體裝置和其製造方法
US8441007B2 (en) 2008-12-25 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
KR101291395B1 (ko) * 2009-06-30 2013-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제조 방법
CN102473734B (zh) 2009-07-31 2015-08-12 株式会社半导体能源研究所 半导体装置及其制造方法
KR102089200B1 (ko) * 2009-11-28 2020-03-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
KR101824124B1 (ko) 2009-11-28 2018-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
KR101048987B1 (ko) * 2009-12-10 2011-07-12 삼성모바일디스플레이주식회사 평판 표시 장치 및 그의 제조 방법
JP5497417B2 (ja) 2009-12-10 2014-05-21 富士フイルム株式会社 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
WO2011074409A1 (en) 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN104867984B (zh) 2009-12-28 2018-11-06 株式会社半导体能源研究所 制造半导体装置的方法
KR102292523B1 (ko) 2010-04-02 2021-08-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP5606787B2 (ja) * 2010-05-18 2014-10-15 富士フイルム株式会社 薄膜トランジスタの製造方法、並びに、薄膜トランジスタ、イメージセンサー、x線センサー及びx線デジタル撮影装置
US9209314B2 (en) 2010-06-16 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor
TWI525818B (zh) 2010-11-30 2016-03-11 半導體能源研究所股份有限公司 半導體裝置及半導體裝置之製造方法
WO2012090973A1 (en) * 2010-12-28 2012-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9412623B2 (en) * 2011-06-08 2016-08-09 Cbrite Inc. Metal oxide TFT with improved source/drain contacts and reliability
US8952377B2 (en) 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9214474B2 (en) 2011-07-08 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8748886B2 (en) 2011-07-08 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP4982620B1 (ja) 2011-07-29 2012-07-25 富士フイルム株式会社 電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ
US8841675B2 (en) 2011-09-23 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Minute transistor
TWI580047B (zh) 2011-12-23 2017-04-21 半導體能源研究所股份有限公司 半導體裝置
JP5917385B2 (ja) 2011-12-27 2016-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI604609B (zh) 2012-02-02 2017-11-01 半導體能源研究所股份有限公司 半導體裝置
KR101890799B1 (ko) * 2012-02-07 2018-08-23 삼성디스플레이 주식회사 박막 트랜지스터 어레이 기판, 이를 포함하는 유기 발광 표시 장치 및 그 제조 방법
JP6148024B2 (ja) * 2012-02-09 2017-06-14 株式会社半導体エネルギー研究所 半導体装置
KR102479944B1 (ko) 2012-04-13 2022-12-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9817032B2 (en) * 2012-05-23 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Measurement device
WO2013180040A1 (en) * 2012-05-31 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2013179922A1 (en) 2012-05-31 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6208469B2 (ja) 2012-05-31 2017-10-04 株式会社半導体エネルギー研究所 半導体装置
US8901557B2 (en) * 2012-06-15 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2014027263A (ja) 2012-06-15 2014-02-06 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US9059219B2 (en) 2012-06-27 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR102161077B1 (ko) 2012-06-29 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6310194B2 (ja) 2012-07-06 2018-04-11 株式会社半導体エネルギー研究所 半導体装置
KR20140009023A (ko) 2012-07-13 2014-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20230035434A (ko) 2012-07-20 2023-03-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치, 및 표시 장치를 포함하는 전자 장치
KR102262323B1 (ko) 2012-07-20 2021-06-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제조 방법
US20140027762A1 (en) 2012-07-27 2014-01-30 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device
JP6134598B2 (ja) 2012-08-02 2017-05-24 株式会社半導体エネルギー研究所 半導体装置
SG10201700805WA (en) 2012-08-03 2017-02-27 Semiconductor Energy Lab Co Ltd Oxide semiconductor stacked film and semiconductor device
US9245958B2 (en) 2012-08-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20150043307A (ko) 2012-08-10 2015-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제조 방법
US9929276B2 (en) 2012-08-10 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2014024808A1 (en) 2012-08-10 2014-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6220597B2 (ja) 2012-08-10 2017-10-25 株式会社半導体エネルギー研究所 半導体装置
KR102171650B1 (ko) 2012-08-10 2020-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US9018624B2 (en) 2012-09-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
US8981372B2 (en) 2012-09-13 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
TWI595659B (zh) 2012-09-14 2017-08-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
WO2014046222A1 (en) 2012-09-24 2014-03-27 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI627750B (zh) 2012-09-24 2018-06-21 半導體能源研究所股份有限公司 半導體裝置
JP6059501B2 (ja) 2012-10-17 2017-01-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102102589B1 (ko) 2012-10-17 2020-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 프로그램 가능한 논리 장치
JP6283191B2 (ja) 2012-10-17 2018-02-21 株式会社半導体エネルギー研究所 半導体装置
JP5951442B2 (ja) 2012-10-17 2016-07-13 株式会社半導体エネルギー研究所 半導体装置
US9166021B2 (en) 2012-10-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102168987B1 (ko) 2012-10-17 2020-10-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 마이크로컨트롤러 및 그 제조 방법
KR102220279B1 (ko) 2012-10-19 2021-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막을 포함하는 다층막 및 반도체 장치의 제작 방법
JP6204145B2 (ja) 2012-10-23 2017-09-27 株式会社半導体エネルギー研究所 半導体装置
TWI782259B (zh) 2012-10-24 2022-11-01 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
KR102279459B1 (ko) 2012-10-24 2021-07-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US9287411B2 (en) 2012-10-24 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102130184B1 (ko) 2012-10-24 2020-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2014065343A1 (en) 2012-10-24 2014-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6220641B2 (ja) 2012-11-15 2017-10-25 株式会社半導体エネルギー研究所 半導体装置
TWI620323B (zh) 2012-11-16 2018-04-01 半導體能源研究所股份有限公司 半導體裝置
US9246011B2 (en) 2012-11-30 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN108493253B (zh) 2012-11-30 2023-04-25 株式会社半导体能源研究所 半导体装置
US9153649B2 (en) 2012-11-30 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for evaluating semiconductor device
KR102207028B1 (ko) 2012-12-03 2021-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9349593B2 (en) 2012-12-03 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2014103901A1 (en) 2012-12-25 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102370239B1 (ko) 2012-12-28 2022-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9391096B2 (en) 2013-01-18 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI618252B (zh) 2013-02-12 2018-03-11 半導體能源研究所股份有限公司 半導體裝置
US9190527B2 (en) 2013-02-13 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
US9231111B2 (en) 2013-02-13 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI611566B (zh) * 2013-02-25 2018-01-11 半導體能源研究所股份有限公司 顯示裝置和電子裝置
US9373711B2 (en) 2013-02-27 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102238682B1 (ko) 2013-02-28 2021-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 그 제작 방법
KR102153110B1 (ko) 2013-03-06 2020-09-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체막 및 반도체 장치
US9269315B2 (en) 2013-03-08 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device
TWI644433B (zh) * 2013-03-13 2018-12-11 半導體能源研究所股份有限公司 半導體裝置
US9368636B2 (en) 2013-04-01 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising a plurality of oxide semiconductor layers
US9041453B2 (en) 2013-04-04 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Pulse generation circuit and semiconductor device
US10304859B2 (en) 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
TWI620324B (zh) 2013-04-12 2018-04-01 半導體能源研究所股份有限公司 半導體裝置
US9893192B2 (en) 2013-04-24 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6401483B2 (ja) 2013-04-26 2018-10-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2014181785A1 (en) 2013-05-09 2014-11-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI627751B (zh) * 2013-05-16 2018-06-21 半導體能源研究所股份有限公司 半導體裝置
US9343579B2 (en) 2013-05-20 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102098795B1 (ko) 2013-05-20 2020-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
DE102014208859B4 (de) * 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
WO2014188982A1 (en) 2013-05-20 2014-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6400336B2 (ja) 2013-06-05 2018-10-03 株式会社半導体エネルギー研究所 半導体装置
US20150001533A1 (en) 2013-06-28 2015-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9666697B2 (en) 2013-07-08 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device including an electron trap layer
US20150008428A1 (en) 2013-07-08 2015-01-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP6322503B2 (ja) 2013-07-16 2018-05-09 株式会社半導体エネルギー研究所 半導体装置
US9443592B2 (en) 2013-07-18 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
TWI632688B (zh) 2013-07-25 2018-08-11 半導體能源研究所股份有限公司 半導體裝置以及半導體裝置的製造方法
JP6410496B2 (ja) 2013-07-31 2018-10-24 株式会社半導体エネルギー研究所 マルチゲート構造のトランジスタ
JP2015053477A (ja) 2013-08-05 2015-03-19 株式会社半導体エネルギー研究所 半導体装置および半導体装置の作製方法
JP6345544B2 (ja) 2013-09-05 2018-06-20 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102294507B1 (ko) 2013-09-06 2021-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6401977B2 (ja) 2013-09-06 2018-10-10 株式会社半導体エネルギー研究所 半導体装置
JP2015079946A (ja) 2013-09-13 2015-04-23 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP6429540B2 (ja) 2013-09-13 2018-11-28 株式会社半導体エネルギー研究所 半導体装置の作製方法
US9887297B2 (en) 2013-09-17 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer in which thickness of the oxide semiconductor layer is greater than or equal to width of the oxide semiconductor layer
TWI677989B (zh) 2013-09-19 2019-11-21 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
US9397153B2 (en) 2013-09-23 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6386323B2 (ja) 2013-10-04 2018-09-05 株式会社半導体エネルギー研究所 半導体装置
US9293592B2 (en) 2013-10-11 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP2015109422A (ja) 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 半導体装置の評価方法
US9455349B2 (en) 2013-10-22 2016-09-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor thin film transistor with reduced impurity diffusion
TW201523877A (zh) 2013-11-29 2015-06-16 Semiconductor Energy Lab 半導體裝置、半導體裝置的製造方法以及顯示裝置
US9627413B2 (en) 2013-12-12 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US9349751B2 (en) 2013-12-12 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI642186B (zh) 2013-12-18 2018-11-21 日商半導體能源研究所股份有限公司 半導體裝置
TWI666770B (zh) 2013-12-19 2019-07-21 日商半導體能源研究所股份有限公司 半導體裝置
KR102472875B1 (ko) 2013-12-26 2022-12-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2015097596A1 (en) 2013-12-26 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9318618B2 (en) 2013-12-27 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9397149B2 (en) 2013-12-27 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9472678B2 (en) 2013-12-27 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9401432B2 (en) 2014-01-16 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
TWI658597B (zh) 2014-02-07 2019-05-01 日商半導體能源研究所股份有限公司 半導體裝置
JP2015188062A (ja) * 2014-02-07 2015-10-29 株式会社半導体エネルギー研究所 半導体装置
US10096489B2 (en) 2014-03-06 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9640669B2 (en) * 2014-03-13 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic appliance including the semiconductor device, the display device, and the display module
TWI657488B (zh) 2014-03-20 2019-04-21 日商半導體能源研究所股份有限公司 半導體裝置、具有該半導體裝置的顯示裝置、具有該顯示裝置的顯示模組以及具有該半導體裝置、該顯示裝置和該顯示模組的電子裝置
TWI772799B (zh) 2014-05-09 2022-08-01 日商半導體能源研究所股份有限公司 半導體裝置
TWI672804B (zh) 2014-05-23 2019-09-21 日商半導體能源研究所股份有限公司 半導體裝置的製造方法
TWI663726B (zh) 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. 半導體裝置、模組及電子裝置
KR102373263B1 (ko) 2014-05-30 2022-03-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 이를 제조하기 위한 방법
WO2015182000A1 (en) 2014-05-30 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and electronic device
WO2015189731A1 (en) 2014-06-13 2015-12-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including the semiconductor device
US10008611B2 (en) * 2014-06-26 2018-06-26 Joled Inc. Thin film transistor and organic EL display device
US9461179B2 (en) 2014-07-11 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor device (TFT) comprising stacked oxide semiconductor layers and having a surrounded channel structure
DE112015003266T5 (de) 2014-07-15 2017-04-13 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung, Herstellungsverfahren dafür und Anzeigevorrichtung mit der Halbleitervorrichtung
US9722091B2 (en) 2014-09-12 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9991393B2 (en) 2014-10-16 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, module, and electronic device
WO2016063159A1 (en) 2014-10-20 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, module, and electronic device
CN107004602A (zh) 2014-10-20 2017-08-01 株式会社半导体能源研究所 半导体装置、其制造方法、显示装置以及显示模块
TW201624708A (zh) 2014-11-21 2016-07-01 半導體能源研究所股份有限公司 半導體裝置及記憶體裝置
US20160155759A1 (en) 2014-11-28 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the same
JP6647846B2 (ja) 2014-12-08 2020-02-14 株式会社半導体エネルギー研究所 半導体装置
CN107004722A (zh) 2014-12-10 2017-08-01 株式会社半导体能源研究所 半导体装置及其制造方法
TWI686874B (zh) 2014-12-26 2020-03-01 日商半導體能源研究所股份有限公司 半導體裝置、顯示裝置、顯示模組、電子裝置、氧化物及氧化物的製造方法
US10396210B2 (en) 2014-12-26 2019-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with stacked metal oxide and oxide semiconductor layers and display device including the semiconductor device
US9954112B2 (en) 2015-01-26 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9660100B2 (en) 2015-02-06 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6674269B2 (ja) 2015-02-09 2020-04-01 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
US9818880B2 (en) 2015-02-12 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
JP2016154225A (ja) 2015-02-12 2016-08-25 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
US9991394B2 (en) 2015-02-20 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US10403646B2 (en) 2015-02-20 2019-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6711642B2 (ja) 2015-02-25 2020-06-17 株式会社半導体エネルギー研究所 半導体装置
US9653613B2 (en) 2015-02-27 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6744108B2 (ja) 2015-03-02 2020-08-19 株式会社半導体エネルギー研究所 トランジスタ、トランジスタの作製方法、半導体装置および電子機器
DE112016001033T5 (de) 2015-03-03 2017-12-21 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung, Verfahren zum Herstellen derselben oder Anzeigevorrichtung mit derselben
TWI718125B (zh) 2015-03-03 2021-02-11 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
JP6705663B2 (ja) 2015-03-06 2020-06-03 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
US10147823B2 (en) 2015-03-19 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9842938B2 (en) 2015-03-24 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including semiconductor device
KR20160114511A (ko) 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US10096715B2 (en) 2015-03-26 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and electronic device
US9806200B2 (en) 2015-03-27 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20230098354A (ko) 2015-04-13 2023-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20180010205A (ko) 2015-05-22 2018-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 및 상기 반도체 장치를 포함하는 표시 장치
KR101822889B1 (ko) * 2016-06-14 2018-03-08 엘지전자 주식회사 리어 콤비네이션 램프의 입력 전압 안정화 회로, 리어 콤비네이션 램프 및 차량

Also Published As

Publication number Publication date
KR20170071418A (ko) 2017-06-23
JP2018006727A (ja) 2018-01-11
JP6867792B2 (ja) 2021-05-12
JP2024052769A (ja) 2024-04-12
US11764309B2 (en) 2023-09-19
US20170170332A1 (en) 2017-06-15
US20220059705A1 (en) 2022-02-24
US10714633B2 (en) 2020-07-14
JP2021114617A (ja) 2021-08-05
US20200313005A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US10903368B2 (en) Semiconductor device and display device including semiconductor device
US11842901B2 (en) Semiconductor device, manufacturing method thereof, display device, and electronic device
JP6803682B2 (ja) 半導体装置の作製方法
JP7293282B2 (ja) 半導体装置
JP2023009058A (ja) 半導体装置
JP2022186808A (ja) 液晶表示装置
US9893202B2 (en) Manufacturing method of semiconductor device
JP2020014001A (ja) 半導体装置
JP2018006732A (ja) 半導体装置、該半導体装置の作製方法、または該半導体装置を有する表示装置
JP2017005064A (ja) 半導体装置、該半導体装置を有する表示装置
JP2020127016A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231114

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20240214