JP6674269B2 - 半導体装置、及び半導体装置の作製方法 - Google Patents

半導体装置、及び半導体装置の作製方法 Download PDF

Info

Publication number
JP6674269B2
JP6674269B2 JP2016021633A JP2016021633A JP6674269B2 JP 6674269 B2 JP6674269 B2 JP 6674269B2 JP 2016021633 A JP2016021633 A JP 2016021633A JP 2016021633 A JP2016021633 A JP 2016021633A JP 6674269 B2 JP6674269 B2 JP 6674269B2
Authority
JP
Japan
Prior art keywords
oxide semiconductor
semiconductor layer
transistor
electrode
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016021633A
Other languages
English (en)
Other versions
JP2016149548A5 (ja
JP2016149548A (ja
Inventor
下村 明久
明久 下村
岡本 悟
悟 岡本
岡崎 豊
豊 岡崎
良信 浅見
良信 浅見
大章 本多
大章 本多
鶴目 卓也
卓也 鶴目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2016149548A publication Critical patent/JP2016149548A/ja
Publication of JP2016149548A5 publication Critical patent/JP2016149548A5/ja
Application granted granted Critical
Publication of JP6674269B2 publication Critical patent/JP6674269B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/38Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
    • H01L21/385Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Description

本発明の一態様は、トランジスタおよび半導体装置、ならびにそれらの製造方法に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。表示装置、液晶表示装置、発光装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置および電子機器などは、半導体装置を有する場合がある。
近年は、酸化物半導体を用いたトランジスタが注目されている。酸化物半導体は、スパッタリング法などを用いて成膜できるため、大型の表示装置を構成するトランジスタの半導体に用いることができる。また、酸化物半導体を用いたトランジスタは、非晶質シリコンを用いたトランジスタの生産設備の一部を改良して利用することが可能であるため、設備投資を抑えられるメリットもある。
また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタの極めてリーク電流が少ないという特性を応用した低消費電力のCPUなどが開示されている(特許文献1参照。)。
特開2012−257187号公報
電気特性の良好なトランジスタを提供することを課題の一とする。または、電気特性の安定したトランジスタを提供することを課題の一とする。または、消費電力の少ないトランジスタを提供することを課題の一とする。または、信頼性の良好なトランジスタを提供することを課題の一とする。または、新規なトランジスタを提供することを課題の一とする。または、これらのトランジスタの少なくとも一つを有する半導体装置を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、第1乃至第3の酸化物半導体層と、第1乃至第3の電極と、第1および第2の絶縁層と、を有し、第1の酸化物半導体層は島状であり、かつ、第1の領域と、第2の領域と、第3の領域と、を有し、第3の領域は、第1の領域と第2の領域に挟まれ、第1の領域上に第1の電極を有し、第2の領域上に第2の電極を有し、第1の電極と第2の電極上に、第2の酸化物半導体層を介して第1の絶縁層を有し、第2の酸化物半導体層は第1の開口を有し、第1の絶縁層は第2の開口を有し、第1の開口と第2の開口は、第3の領域と互いに重なり、第3の領域上に、第3の酸化物半導体層および第2の絶縁層を介して第3の電極を有し、第1および第2の領域において、第2の酸化物半導体層は、第1の酸化物半導体層の側面を覆い、第3の領域において、第3の酸化物半導体層は、第1の酸化物半導体層の側面を覆うトランジスタである。なお、第3の領域は、平面において、第1の領域と第2の領域に挟まれる。また、第2の酸化物半導体層は、第1の領域に含まれる第1の側面と第2の領域に含まれる第2の側面を覆い、第3の酸化物半導体層は、第3の領域に含まれる第3の側面を覆う。
また、第3の電極の側面は第1の絶縁層に囲まれていることが好ましい。第2の酸化物半導体層は、第1の酸化物半導体層の側面に接していることが好ましい。第3の酸化物半導体層は、第1の酸化物半導体層の側面に接していることが好ましい。また、第1の酸化物半導体層は、InまたはZnの一方、もしくは両方を含むことが好ましい。また、第2の酸化物半導体層と第3の酸化物半導体層は、第1の酸化物半導体層に含まれる金属元素のうち、少なくとも一種類の元素を含むことが好ましい。
または、本発明の一態様は、上記トランジスタと、容量素子、または抵抗素子と、を有する半導体装置である。または、本発明の一態様は、該半導体装置と、アンテナ、バッテリ、操作スイッチ、マイク、または、スピーカと、を有する電子機器である。または、本発明の一態様は、上記トランジスタと、アンテナ、バッテリ、操作スイッチ、マイク、または、スピーカと、を有する電子機器である。
電気特性の良好なトランジスタを提供することができる。または、電気特性の安定したトランジスタを提供することができる。または、消費電力の少ないトランジスタを提供することができる。または、信頼性の良好なトランジスタを提供することができる。または、新規なトランジスタを提供することができる。または、これらのトランジスタの少なくとも一つを有する半導体装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 エネルギーバンド構造を説明する図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法例を示す図。 本発明の一態様に係るトランジスタの作製方法例を示す図。 本発明の一態様に係るトランジスタの作製方法例を示す図。 本発明の一態様に係るトランジスタの作製方法例を示す図。 本発明の一態様に係るトランジスタの作製方法例を示す図。 本発明の一態様に係るトランジスタの作製方法例を示す図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係る半導体装置を示す断面図。 本発明の一態様に係る半導体装置を示す断面図。 本発明の一態様に係る半導体装置を示す断面図。 本発明の一態様に係る半導体装置の回路図。 本発明の一態様に係る半導体装置の回路図。 CPUの構成例を示すブロック図。 記憶素子の一例を示す回路図。 撮像装置の一例を示す回路図。 撮像装置の構成例を示す断面図。 撮像装置の構成例を示す断面図。 表示装置の一形態を説明するブロック図及び回路図。 表示装置の一形態を説明するブロック図。 本発明の一態様に係るRFタグのブロック図。 本発明の一態様に係るRFタグの使用例を説明する図。 本発明の一態様に係る電子機器を説明する図。 CAAC−OSの断面におけるCs補正高分解能TEM像、およびCAAC−OSの断面模式図。 CAAC−OSの平面におけるCs補正高分解能TEM像。 CAAC−OSおよび単結晶酸化物半導体のXRDによる構造解析を説明する図。 CAAC−OSの電子回折パターンを示す図。 In−Ga−Zn酸化物の電子照射による結晶部の変化を示す図。 成膜装置の一例を示す上面図。 成膜装置の一例を示す断面図。 実施例に係る試料の構造を示す断面図。 実施例に係る試料の分析結果を示す図。 実施例に係る試料の分析結果を示す図。 実施例に係る試料の分析結果を示す図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。
また、図面などにおいて示す各構成の、位置、大きさ、範囲などは、発明の理解を容易とするため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面などに開示された位置、大きさ、範囲などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために省略して示すことがある。
また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。
本明細書等における「第1」、「第2」などの序数詞は、構成要素の混同を避けるために付すものであり、工程順または積層順など、なんらかの順番や順位を示すものではない。また、本明細書等において序数詞が付されていない用語であっても、構成要素の混同を避けるため、特許請求の範囲において序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲において異なる序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲などにおいて序数詞を省略する場合がある。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
なお、本明細書等において「上」や「下」の用語は、構成要素の位置関係が直上または直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
また、ソースおよびドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合など、動作条件などによって互いに入れ替わるため、いずれがソースまたはドレインであるかを限定することが困難である。このため、本明細書においては、ソースおよびドレインの用語は、入れ替えて用いることができるものとする。
また、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。よって、「電気的に接続する」と表現される場合であっても、現実の回路においては、物理的な接続部分がなく、配線が延在しているだけの場合もある。
なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極が半導体層の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体層の側面を覆うトランジスタでは、半導体層の側面に形成されるチャネル領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
そこで、本明細書では、見かけ上のチャネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel Width)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合には、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。
なお、トランジスタの電界効果移動度や、チャネル幅当たりの電流値などを計算して求める場合、囲い込みチャネル幅を用いて計算する場合がある。その場合には、実効的なチャネル幅を用いて計算する場合とは異なる値をとる場合がある。
なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of State)が高くなることや、キャリア移動度が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、および酸化物半導体の主成分以外の遷移金属などがあり、特に、例えば、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、例えば水素などの不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
また、本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。従って、−5°以上5°以下の場合も含まれる。また、「略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」および「直交」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。従って、85°以上95°以下の場合も含まれる。また、「略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
なお、本明細書等において、計数値および計量値に関して「同一」、「同じ」、「等しい」または「均一」(これらの同意語を含む)などと言う場合は、明示されている場合を除き、プラスマイナス20%の誤差を含むものとする。
また、本明細書において、フォトリソグラフィ工程を行った後にエッチング工程を行う場合は、特段の説明がない限り、フォトリソグラフィ工程で形成したレジストマスクは、エッチング工程終了後に除去するものとする。
また、本明細書等において、高電源電位VDD(以下、単に「VDD」または「H電位」ともいう)とは、低電源電位VSSよりも高い電位の電源電位を示す。また、低電源電位VSS(以下、単に「VSS」または「L電位」ともいう)とは、高電源電位VDDよりも低い電位の電源電位を示す。また、接地電位をVDDまたはVSSとして用いることもできる。例えばVDDが接地電位の場合には、VSSは接地電位より低い電位であり、VSSが接地電位の場合には、VDDは接地電位より高い電位である。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
(実施の形態1)
本実施の形態では、本発明の一態様のトランジスタ100の構造および作製方法の一例について、図面を参照して説明する。
≪トランジスタ100の構造≫
トランジスタ100の構造例について図面を用いて説明する。図1(A)は、トランジスタ100の平面図である。また、図1(B)は、図1(A)にL1−L2の一点鎖線で示す部位と、W1−W2の一点鎖線で示す部位の断面図である。図1(B)において、L1−L2はトランジスタ100のチャネル長方向の断面図であり、W1−W2はトランジスタ100のチャネル幅方向の断面図である。
トランジスタ100は酸化物半導体層104、絶縁層108、電極109、電極105a、および電極105bを有する。電極109はゲート電極として機能できる。絶縁層108はゲート絶縁層として機能できる。電極105aは、ソース電極またはドレイン電極の一方として機能できる。電極105bは、ソース電極またはドレイン電極の他方として機能できる。また、トランジスタ100は、基板101上に、絶縁層102および絶縁層103を介して設けられている。
図1(B)において、基板101上に絶縁層102が設けられ、絶縁層102上に絶縁層103が設けられている。絶縁層103は凸部を有し、該凸部上に島状の酸化物半導体層104aと島状の酸化物半導体層104bが設けられている。また、酸化物半導体層104b上に電極105a、および電極105bが設けられている。酸化物半導体層104bの電極105aと重なる領域が、トランジスタ100のソースまたはドレインの一方として機能できる。酸化物半導体層104bの電極105bと重なる領域が、トランジスタ100のソースまたはドレインの他方として機能できる。よって、酸化物半導体層104bの、電極105aと電極105bに挟まれた領域121が、チャネル形成領域として機能できる。
また、電極105a、および電極105b上に酸化物半導体層106が設けられ、酸化物半導体層106上に絶縁層107が設けられている。また、酸化物半導体層106と絶縁層107の領域121と重なる領域に開口が設けられ、該開口の側面および底面に沿って酸化物半導体層104cが設けられている。また、該開口内に、酸化物半導体層104cを介して、かつ、該開口の側面および底面に沿って、絶縁層108が設けられている。また、該開口内に、酸化物半導体層104cおよび絶縁層108を介して、かつ、該開口の側面および底面に沿って、電極109が設けられている。
なお、該開口は、チャネル幅方向の断面において、酸化物半導体層104aおよび酸化物半導体層104bよりも大きく設けられている。よって、領域121において、酸化物半導体層104aおよび酸化物半導体層104bの側面は、酸化物半導体層104cに覆われている。言い替えると、トランジスタのチャネル幅方向と交差する酸化物半導体層104aおよび酸化物半導体層104bの側面は、酸化物半導体層104cに覆われている。領域121以外の酸化物半導体層104aおよび酸化物半導体層104bの側面は、酸化物半導体層106に覆われている。言い替えると、トランジスタのチャネル長方向と交差する酸化物半導体層104aおよび酸化物半導体層104bの側面は、酸化物半導体層106に覆われている。
また、絶縁層107上に絶縁層110が設けられ、絶縁層110上に絶縁層111が設けられている。また、絶縁層111上に電極113a、電極113b、および電極113cが設けられている。電極113aは、絶縁層111、絶縁層110、絶縁層107、および酸化物半導体層106の一部を除去して形成した開口において、コンタクトプラグ112aを介して電極105aと電気的に接続されている。また、電極113bは、絶縁層111、絶縁層110、絶縁層107、および酸化物半導体層106の一部を除去して形成した開口において、コンタクトプラグ112bを介して電極105bと電気的に接続されている。また、電極113cは、絶縁層111および絶縁層110の一部を除去して形成した開口において、コンタクトプラグ112cを介して電極109と電気的に接続されている。
また、図1(B)に示すように、トランジスタ100は、チャネル幅方向において、電極109が酸化物半導体層104bを覆っている。また、絶縁層103が凸部を有することによって、酸化物半導体層104bの側面も電極109で覆うことができる。すなわち、電極109の電界によって、酸化物半導体層104bを電気的に取り囲むことができる構造を有している(導電膜の電界によって、半導体を電気的に取り囲むトランジスタの構造を、surrounded channel(s−channel)構造とよぶ。)。そのため、酸化物半導体層104bの全体(バルク)にチャネルを形成することもできる。s−channel構造では、トランジスタのドレイン電流を大きくすることができ、さらに大きいオン電流(トランジスタがオン状態のときにソースとドレインの間に流れる電流)を得ることができる。また、電極109の電界によって、酸化物半導体層104bに形成されるチャネル形成領域の全領域を空乏化することができる。したがって、s−channel構造では、トランジスタのオフ電流(トランジスタがオフ状態のときにソースとドレインの間に流れる電流)をさらに小さくすることができる。なお、チャネル幅を小さくすることで、s−channel構造によるオン電流の増大効果、オフ電流の低減効果などを高めることができる。
〔酸化物半導体層104、酸化物半導体層106〕
酸化物半導体層104は、酸化物半導体層104a、酸化物半導体層104b、酸化物半導体層104cを積層した構成を有する。
酸化物半導体層104bは、例えば、インジウム(In)を含む酸化物である。酸化物半導体層104bは、例えば、インジウムを含むと、キャリア移動度(電子移動度)が高くなる。また、酸化物半導体層104bは、元素Mを含むと好ましい。
元素Mは、好ましくは、アルミニウム、ガリウム、イットリウムまたはスズなどである。そのほかの元素Mに適用可能な元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。元素Mは、例えば、酸素との結合エネルギーが高い元素である。元素Mは、例えば、酸化物のエネルギーギャップを大きくする機能を有する元素である。また、酸化物半導体は、亜鉛を含むと好ましい。酸化物半導体は亜鉛を含むと結晶化しやすくなる場合がある。
ただし、酸化物半導体層104bは、インジウムを含む酸化物に限定されない。酸化物半導体層104bは、例えば、亜鉛スズ酸化物、ガリウムスズ酸化物、酸化ガリウムなどの、インジウムを含まず、亜鉛を含む酸化物、ガリウムを含む酸化物、スズを含む酸化物などであっても構わない。
酸化物半導体層104bは、例えば、エネルギーギャップが大きい酸化物を用いる。酸化物半導体層104bのエネルギーギャップは、例えば、2.5eV以上4.2eV以下、好ましくは2.8eV以上3.8eV以下、さらに好ましくは3eV以上3.5eV以下とする。
酸化物半導体層104は、スパッタリング法、CVD(Chemical Vapor Deposition)法(MOCVD(Metal Organic Chemical Vapor Deposition)法、ALD(Atomic Layer Deposition)法、熱CVD法またはPECVD(Plasma Enhanced Chemical Vapor Deposition)法を含むがこれに限定されない)、MBE(Molecular Beam Epitaxy)法またはPLD(Pulsed Laser Deposition)法を用いて成膜するとよい。プラズマCVD法は、比較的低温で高品質の膜が得られる。MOCVD法、ALD法、または熱CVD法などの、成膜時にプラズマを用いない成膜方法を用いると、被形成面にダメージが生じにくく、また、欠陥の少ない膜が得られる。
例えば、酸化物半導体層104として、熱CVD法でInGaZnO(X>0)膜を成膜する場合には、トリメチルインジウム(In(CH)、トリメチルガリウム(Ga(CH)、およびジメチル亜鉛(Zn(CH)を用いる。また、これらの組み合わせに限定されず、トリメチルガリウムに代えてトリエチルガリウム(Ga(C)を用いることもでき、ジメチル亜鉛に代えてジエチル亜鉛(Zn(C)を用いることもできる。
例えば、酸化物半導体層104として、ALD法で、In−Ga−Zn−O膜を成膜する場合には、In(CHガスとOガスを順次繰り返し導入してIn−O層を形成し、その後、Ga(CHガスとOガスを順次繰り返し導入してGaO層を形成し、更にその後Zn(CHガスとOガスを順次繰り返し導入してZnO層を形成する。なお、これらの層の順番はこの例に限らない。また、これらのガスを用いてIn−Ga−O層やIn−Zn−O層、Ga−Zn−O層などの混合化合物層を形成しても良い。なお、Oガスに変えてAr等の不活性ガスで水をバブリングして得られたHOガスを用いても良いが、Hを含まないOガスを用いる方が好ましい。また、In(CHガスにかえて、In(Cガスやトリス(アセチルアセトナト)インジウムを用いても良い。なお、トリス(アセチルアセトナト)インジウムは、In(acac)とも呼ぶ。また、Ga(CHガスにかえて、Ga(Cガスやトリス(アセチルアセトナト)ガリウムを用いても良い。なお、トリス(アセチルアセトナト)ガリウムは、Ga(acac)とも呼ぶ。また、Zn(CHガスや、酢酸亜鉛を用いても良い。これらのガス種には限定されない。
酸化物半導体層104をスパッタリング法で成膜する場合、パーティクル数低減のため、インジウムを含むターゲットを用いると好ましい。また、元素Mの原子数比が高い酸化物ターゲットを用いた場合、ターゲットの導電性が低くなる場合がある。インジウムを含むターゲットを用いる場合、ターゲットの導電率を高めることができ、DC放電、AC放電が容易となるため、大面積の基板へ対応しやすくなる。したがって、半導体装置の生産性を高めることができる。
酸化物半導体層104をスパッタリング法で成膜する場合、ターゲットの原子数比は、In:M:Znが3:1:1、3:1:2、3:1:4、1:1:0.5、1:1:1、1:1:2、1:4:4、4:2:4.1などとすればよい。
酸化物半導体層104をスパッタリング法で成膜する場合、ターゲットの原子数比からずれた原子数比の膜が形成される場合がある。特に、亜鉛は、ターゲットの原子数比よりも膜の原子数比が小さくなる場合がある。具体的には、ターゲットに含まれる亜鉛の原子数比の40atomic%以上90atomic%程度以下となる場合がある。
酸化物半導体層104aおよび酸化物半導体層104cは、酸化物半導体層104bを構成する酸素以外の元素のうち、1種類以上の同じ金属元素を含む材料により形成されることが好ましい。このような材料を用いると、酸化物半導体層104aおよび酸化物半導体層104bとの界面、ならびに酸化物半導体層104cおよび酸化物半導体層104bとの界面に界面準位を生じにくくすることができる。よって、界面におけるキャリアの散乱や捕獲が生じにくく、トランジスタの電界効果移動度を向上させることが可能となる。また、トランジスタのしきい値電圧(以下、「Vth」ともいう。)のばらつきを低減することが可能となる。よって、良好な電気特性を有する半導体装置を実現することが可能となる。
酸化物半導体層104aおよび酸化物半導体層104cの厚さは、3nm以上100nm以下、好ましくは3nm以上50nm以下とする。また、酸化物半導体層104bの厚さは、3nm以上200nm以下、好ましくは3nm以上100nm以下、さらに好ましくは3nm以上50nm以下とする。
また、酸化物半導体層104bがIn−M−Zn酸化物(Inと元素MとZnを含む酸化物)であり、酸化物半導体層104aおよび酸化物半導体層104cもIn−M−Zn酸化物であるとき、酸化物半導体層104aおよび酸化物半導体層104cをIn:M:Zn=x:y:z[原子数比]、酸化物半導体層104bをIn:M:Zn=x:y:z[原子数比]とすると、y/xがy/xよりも大きくなる酸化物半導体層104a、酸化物半導体層104c、および酸化物半導体層104bを選択する。好ましくは、y/xがy/xよりも1.5倍以上大きくなる酸化物半導体層104a、酸化物半導体層104c、および酸化物半導体層104bを選択する。さらに好ましくは、y/xがy/xよりも2倍以上大きくなる酸化物半導体層104a、酸化物半導体層104c、および酸化物半導体層104bを選択する。より好ましくは、y/xがy/xよりも3倍以上大きくなる酸化物半導体層104a、酸化物半導体層104cおよび酸化物半導体層104bを選択する。このとき、酸化物半導体層104bにおいて、yがx以上であるとトランジスタに安定した電気特性を付与できるため好ましい。ただし、yがxの3倍以上になると、トランジスタの電界効果移動度が低下してしまうため、yはxの3倍未満であると好ましい。酸化物半導体層104aおよび酸化物半導体層104cを上記構成とすることにより、酸化物半導体層104aおよび酸化物半導体層104cを、酸化物半導体層104bよりも酸素欠損が生じにくい層とすることができる。
なお、酸化物半導体層104aがIn−M−Zn酸化物のとき、InおよびMの和を100atomic%としたとき、好ましくはInが50atomic%未満、Mが50atomic%以上、さらに好ましくはInが25atomic%未満、Mが75atomic%以上とする。また、酸化物半導体層104bがIn−M−Zn酸化物のとき、InおよびMの和を100atomic%としたとき、好ましくはInが25atomic%以上、Mが75atomic%未満、さらに好ましくはInが34atomic%以上、Mが66atomic%未満とする。また、酸化物半導体層104cがIn−M−Zn酸化物のとき、InおよびMの和を100atomic%としたとき、好ましくはInが50atomic%未満、Mが50atomic%以上、さらに好ましくはInが25atomic%未満、Mが75atomic%以上とする。なお、酸化物半導体層104cは、酸化物半導体層104aと同種の酸化物を用いても構わない。
例えば、InまたはGaを含む酸化物半導体層104a、およびInまたはGaを含む酸化物半導体層104cとして、In:Ga:Zn=1:3:2、1:3:4、1:3:6、1:6:4、または1:9:6などの原子数比のターゲットを用いて形成したIn−Ga−Zn酸化物や、In:Ga=1:9、または7:93などの原子数比のターゲットを用いて形成したIn−Ga酸化物を用いることができる。また、酸化物半導体層104bとして、例えば、In:Ga:Zn=1:1:1または3:1:2などの原子数比のターゲットを用いて形成したIn−Ga−Zn酸化物を用いることができる。なお、酸化物半導体層104a、酸化物半導体層104b、および酸化物半導体層104cの原子数比はそれぞれ、誤差として上記の原子数比のプラスマイナス20%の変動を含む。
酸化物半導体層104bは、酸化物半導体層104aおよび酸化物半導体層104cよりも電子親和力の大きい酸化物を用いる。例えば、酸化物半導体層104bとして、酸化物半導体層104aおよび酸化物半導体層104cよりも電子親和力が0.07eV以上1.3eV以下、好ましくは0.1eV以上0.7eV以下、さらに好ましくは0.15eV以上0.4eV以下大きい酸化物を用いる。なお、電子親和力は、真空準位と伝導帯下端のエネルギーとの差である。
なお、インジウムガリウム酸化物は、小さい電子親和力と、高い酸素ブロック性を有する。そのため、酸化物半導体層104cがインジウムガリウム酸化物を含むと好ましい。ガリウム原子割合[Ga/(In+Ga)]は、例えば、70%以上、好ましくは80%以上、さらに好ましくは90%以上とする。
ただし、酸化物半導体層104aまたは/および酸化物半導体層104cが、酸化ガリウムであっても構わない。例えば、酸化物半導体層104cとして、酸化ガリウムを用いると電極105aまたは電極105bと電極109との間に生じるリーク電流を低減することができる。即ち、トランジスタ100のオフ電流を小さくすることができる。
このとき、ゲート電圧を印加すると、酸化物半導体層104a、酸化物半導体層104b、酸化物半導体層104cのうち、電子親和力の大きい酸化物半導体層104bにチャネルが形成される。
酸化物半導体層を用いたトランジスタに安定した電気特性を付与するためには、酸化物半導体層中の不純物及び酸素欠損を低減して高純度真性化し、少なくとも酸化物半導体層104bを真性または実質的に真性と見なせる酸化物半導体層とすることが好ましい。また、少なくとも酸化物半導体層104b中のチャネル形成領域が真性または実質的に真性と見なせる半導体層とすることが好ましい。
[酸化物半導体層のエネルギーバンド構造]
ここで、酸化物半導体層104a、酸化物半導体層104b、および酸化物半導体層104cの積層により構成される酸化物半導体層104の機能およびその効果について、図3に示すエネルギーバンド構造図を用いて説明する。図3(A)は、図1(B)にA1−A2の一点鎖線で示した部位のエネルギーバンド構造を示している。すなわち、図3(A)は、トランジスタ100のチャネル形成領域のエネルギーバンド構造を示している。
図3中、Ec382、Ec383a、Ec383b、Ec383c、Ec386は、それぞれ、絶縁層103、酸化物半導体層104a、酸化物半導体層104b、酸化物半導体層104c、絶縁層108の伝導帯下端のエネルギーを示している。
ここで、電子親和力は、真空準位と価電子帯上端のエネルギーとの差(「イオン化ポテンシャル」ともいう。)からエネルギーギャップを引いた値となる。なお、エネルギーギャップは、分光エリプソメータ(HORIBA JOBIN YVON社 UT−300)を用いて測定できる。また、真空準位と価電子帯上端のエネルギー差は、紫外線光電子分光分析(UPS:Ultraviolet Photoelectron Spectroscopy)装置(PHI社 VersaProbe)を用いて測定できる。
なお、原子数比がIn:Ga:Zn=1:3:2のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.5eV、電子親和力は約4.5eVである。また、原子数比がIn:Ga:Zn=1:3:4のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.4eV、電子親和力は約4.5eVである。また、原子数比がIn:Ga:Zn=1:3:6のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.3eV、電子親和力は約4.5eVである。また、原子数比がIn:Ga:Zn=1:6:2のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.9eV、電子親和力は約4.3eVである。また、原子数比がIn:Ga:Zn=1:6:8のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.5eV、電子親和力は約4.4eVである。また、原子数比がIn:Ga:Zn=1:6:10のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.5eV、電子親和力は約4.5eVである。また、原子数比がIn:Ga:Zn=1:1:1のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.2eV、電子親和力は約4.7eVである。また、原子数比がIn:Ga:Zn=3:1:2のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約2.8eV、電子親和力は約5.0eVである。
絶縁層103と絶縁層108は絶縁物であるため、Ec382とEc386は、Ec383a、Ec383b、およびEc383cよりも真空準位に近い(電子親和力が小さい)。
また、Ec383aは、Ec383bよりも真空準位に近い。具体的には、Ec383aは、Ec383bよりも0.07eV以上1.3eV以下、好ましくは0.1eV以上0.7eV以下、さらに好ましくは0.15eV以上0.4eV以下真空準位に近いことが好ましい。
また、Ec383cは、Ec383bよりも真空準位に近い。具体的には、Ec383cは、Ec383bよりも0.07eV以上1.3eV以下、好ましくは0.1eV以上0.7eV以下、さらに好ましくは0.15eV以上0.4eV以下真空準位に近いことが好ましい。
ここで、酸化物半導体層104aと酸化物半導体層104bとの間には、酸化物半導体層104aと酸化物半導体層104bとの混合領域を有する場合がある。また、酸化物半導体層104bと酸化物半導体層104cとの間には、酸化物半導体層104bと酸化物半導体層104cとの混合領域を有する場合がある。混合領域は、界面準位密度が低くなる。そのため、酸化物半導体層104a、酸化物半導体層104bおよび酸化物半導体層104cの積層体は、それぞれの界面近傍において、エネルギーが連続的に変化する(連続接合ともいう。)バンド構造となる。
このとき、電子は、酸化物半導体層104a中および酸化物半導体層104c中ではなく、酸化物半導体層104b中を主として移動する。したがって、酸化物半導体層104aおよび酸化物半導体層104bの界面における界面準位密度、酸化物半導体層104bと酸化物半導体層104cとの界面における界面準位密度を低くすることによって、酸化物半導体層104b中で電子の移動が阻害されることが少なく、トランジスタ100のオン電流を高くすることができる。
また、酸化物半導体層104aと絶縁層103の界面または界面近傍、および酸化物半導体層104cと絶縁層108の界面または界面近傍には、不純物や欠陥に起因したトラップ準位390が形成され得るものの、酸化物半導体層104a、および酸化物半導体層104cがあることにより、酸化物半導体層104bと当該トラップ準位とを遠ざけることができる。
なお、トランジスタ100がs−channel構造を有する場合、酸化物半導体層104bの全体にチャネルが形成される。したがって、酸化物半導体層104bが厚いほどチャネル領域は大きくなる。即ち、酸化物半導体層104bが厚いほど、トランジスタ100のオン電流を高くすることができる。例えば、20nm以上、好ましくは40nm以上、さらに好ましくは60nm以上、より好ましくは100nm以上の厚さの領域を有する酸化物半導体層104bとすればよい。ただし、トランジスタ100を有する半導体装置の生産性が低下する場合があるため、例えば、300nm以下、好ましくは200nm以下、さらに好ましくは150nm以下の厚さの領域を有する酸化物半導体層104bとすればよい。
また、トランジスタ100のオン電流を高くするためには、酸化物半導体層104cの厚さは小さいほど好ましい。例えば、10nm未満、好ましくは5nm以下、さらに好ましくは3nm以下の領域を有する酸化物半導体層104cとすればよい。一方、酸化物半導体層104cは、チャネルの形成される酸化物半導体層104bへ、隣接する絶縁体を構成する酸素以外の元素(水素、シリコンなど)が入り込まないようブロックする機能を有する。そのため、酸化物半導体層104cは、ある程度の厚さを有することが好ましい。例えば、0.3nm以上、好ましくは1nm以上、さらに好ましくは2nm以上の厚さの領域を有する酸化物半導体層104cとすればよい。また、酸化物半導体層104cは、絶縁層103などから放出される酸素の外方拡散を抑制するために、酸素をブロックする性質を有すると好ましい。
また、信頼性を高くするためには、酸化物半導体層104aは厚く、酸化物半導体層104cは薄いことが好ましい。例えば、10nm以上、好ましくは20nm以上、さらに好ましくは40nm以上、より好ましくは60nm以上の厚さの領域を有する酸化物半導体層104aとすればよい。酸化物半導体層104aの厚さを、厚くすることで、隣接する絶縁体と酸化物半導体層104aとの界面からチャネルの形成される酸化物半導体層104bまでの距離を離すことができる。ただし、トランジスタ100を有する半導体装置の生産性が低下する場合があるため、例えば、200nm以下、好ましくは120nm以下、さらに好ましくは80nm以下の厚さの領域を有する酸化物半導体層104aとすればよい。
なお、酸化物半導体中のシリコンは、キャリアトラップやキャリア発生源となる場合がある。したがって、酸化物半導体層104bのシリコン濃度は低いほど好ましい。例えば、酸化物半導体層104bと酸化物半導体層104aとの間に、例えば、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)において、1×1019atoms/cm未満、好ましくは5×1018atoms/cm未満、さらに好ましくは2×1018atoms/cm未満のシリコン濃度となる領域を有する。また、酸化物半導体層104bと酸化物半導体層104cとの間に、SIMSにおいて、1×1019atoms/cm未満、好ましくは5×1018atoms/cm未満、さらに好ましくは2×1018atoms/cm未満のシリコン濃度となる領域を有する。
また、酸化物半導体層104bの水素濃度を低減するために、酸化物半導体層104aおよび酸化物半導体層104cの水素濃度を低減すると好ましい。酸化物半導体層104aおよび酸化物半導体層104cは、SIMSにおいて、2×1020atoms/cm以下、好ましくは5×1019atoms/cm以下、より好ましくは1×1019atoms/cm以下、さらに好ましくは5×1018atoms/cm以下の水素濃度となる領域を有する。また、酸化物半導体層104bの窒素濃度を低減するために、酸化物半導体層104aおよび酸化物半導体層104cの窒素濃度を低減すると好ましい。酸化物半導体層104aおよび酸化物半導体層104cは、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下の窒素濃度となる領域を有する。
なお、酸化物半導体に銅が混入すると、電子トラップを生成する場合がある。電子トラップは、トランジスタのしきい値電圧がプラス方向へ変動させる場合がある。したがって、酸化物半導体層104bの表面または内部における銅濃度は低いほど好ましい。例えば、酸化物半導体層104bは、銅濃度が1×1019atoms/cm以下、5×1018atoms/cm以下、または1×1018atoms/cm以下となる領域を有すると好ましい。
上述の3層構造は一例である。例えば、酸化物半導体層104aまたは酸化物半導体層104cのない2層構造としても構わない。または、酸化物半導体層104aの上もしくは下、または酸化物半導体層104c上もしくは下に、酸化物半導体層104a、酸化物半導体層104bおよび酸化物半導体層104cとして例示した半導体のいずれか一を有する4層構造としても構わない。または、酸化物半導体層104aの上、酸化物半導体層104aの下、酸化物半導体層104cの上、酸化物半導体層104cの下のいずれか二箇所以上に、酸化物半導体層104a、酸化物半導体層104bおよび酸化物半導体層104cとして例示した半導体のいずれか一を有するn層構造(nは5以上の整数)としても構わない。
特に、本実施の形態に例示するトランジスタ100は、チャネル幅方向において、酸化物半導体層104bの上面と側面が酸化物半導体層104cと接し、酸化物半導体層104bの下面が酸化物半導体層104aと接して形成されている(図1(B)参照。)。このように、酸化物半導体層104bを酸化物半導体層104aと酸化物半導体層104cで覆う構成とすることで、上記トラップ準位の影響をさらに低減することができる。
また、酸化物半導体層104a、および酸化物半導体層104cのバンドギャップは、酸化物半導体層104bのバンドギャップよりも広いほうが好ましい。
本発明の一態様によれば、電気特性のばらつきが少ないトランジスタを実現することができる。よって、電気特性のばらつきが少ない半導体装置を実現することができる。本発明の一態様によれば、信頼性の良好なトランジスタを実現することができる。よって、信頼性の良好な半導体装置を実現することができる。
また、酸化物半導体のバンドギャップは2eV以上あるため、チャネルが形成される半導体層に酸化物半導体を用いたトランジスタは、オフ電流を極めて小さくすることができる。具体的には、ソースとドレイン間の電圧が3.5V、室温(25℃)下において、チャネル幅1μm当たりのオフ電流を1×10−20A未満、1×10−22A未満、あるいは1×10−24A未満とすることができる。すなわち、オンオフ比を20桁以上150桁以下とすることができる。
本発明の一態様によれば、消費電力が少ないトランジスタを実現することができる。よって、消費電力が少ない半導体装置を実現することができる。
なお、上述の3層構造は一例である。場合によっては、酸化物半導体層104aまたは酸化物半導体層104cの一方を形成しない2層構造としても構わない。また、4層構造としても構わない。
酸化物半導体層106は、酸化物半導体層104aまたは酸化物半導体層104cと同様の材料を用いることができる。よって、酸化物半導体層104bと酸化物半導体層106の間に混合領域を有する場合がある。また、酸化物半導体層106と絶縁層107の界面または界面近傍には、不純物や欠陥に起因したトラップ準位が形成され得るものの、酸化物半導体層106があることにより、酸化物半導体層104bと当該トラップ準位とを遠ざけることができる。また、酸化物半導体層106として、Ga酸化物またはGa−Zn酸化物(GaとZnを含む酸化物)を用いてもよい。
[酸化物半導体の構造]
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体とに分けられる。非単結晶酸化物半導体としては、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline Oxide Semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous like Oxide Semiconductor)、非晶質酸化物半導体などがある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物半導体とに分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−OS、多結晶酸化物半導体、nc−OSなどがある。
非晶質構造の定義としては、一般に、準安定状態で固定化していないこと、等方的であって不均質構造を持たないことなどが知られている。また、結合角度が柔軟であり、短距離秩序性は有するが、長距離秩序性を有さない構造と言い換えることもできる。
逆の見方をすると、本質的に安定な酸化物半導体の場合、完全な非晶質(completely amorphous)酸化物半導体と呼ぶことはできない。また、等方的でない(例えば、微小な領域において周期構造を有する)酸化物半導体を、完全な非晶質酸化物半導体と呼ぶことはできない。ただし、a−like OSは、微小な領域において周期構造を有するものの、鬆(ボイドともいう。)を有し、不安定な構造である。そのため、物性的には非晶質酸化物半導体に近いといえる。
<CAAC−OS>
まずは、CAAC−OSについて説明する。
CAAC−OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物半導体の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって、CAAC−OSの明視野像と回折パターンとの複合解析像(高分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一方、高分解能TEM像ではペレット同士の境界、即ち結晶粒界(グレインバウンダリーともいう。)を明確に確認することができない。そのため、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
以下では、TEMによって観察したCAAC−OSについて説明する。図28(A)に、試料面と略平行な方向から観察したCAAC−OSの断面の高分解能TEM像を示す。高分解能TEM像の観察には、球面収差補正(Spherical Aberration Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像の取得は、例えば、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって行うことができる。
図28(A)の領域(1)を拡大したCs補正高分解能TEM像を図28(B)に示す。図28(B)より、ペレットにおいて、金属原子が層状に配列していることを確認できる。金属原子の各層の配列は、CAAC−OSの膜を形成する面(被形成面ともいう。)または上面の凹凸を反映しており、CAAC−OSの被形成面または上面と平行となる。
図28(B)に示すように、CAAC−OSは特徴的な原子配列を有する。図28(C)は、特徴的な原子配列を、補助線で示したものである。図28(B)および図28(C)より、ペレット一つの大きさは1nm以上のものや、3nm以上のものがあり、ペレットとペレットとの傾きにより生じる隙間の大きさは0.8nm程度であることがわかる。したがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる。また、CAAC−OSを、CANC(C−Axis Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
ここで、Cs補正高分解能TEM像をもとに、基板5120上のCAAC−OSのペレット5100の配置を模式的に示すと、レンガまたはブロックが積み重なったような構造となる(図28(D)参照。)。図28(C)で観察されたペレットとペレットとの間で傾きが生じている箇所は、図28(D)に示す領域5161に相当する。
また、図29(A)に、試料面と略垂直な方向から観察したCAAC−OSの平面のCs補正高分解能TEM像を示す。図29(A)の領域(1)、領域(2)および領域(3)を拡大したCs補正高分解能TEM像を、それぞれ図29(B)、図29(C)および図29(D)に示す。図29(B)、図29(C)および図29(D)より、ペレットは、金属原子が三角形状、四角形状または六角形状に配列していることを確認できる。しかしながら、異なるペレット間で、金属原子の配列に規則性は見られない。
次に、X線回折(XRD:X−Ray Diffraction)によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、out−of−plane法による構造解析を行うと、図30(A)に示すように回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OSの結晶がc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることが確認できる。
なお、CAAC−OSのout−of−plane法による構造解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近傍のピークは、CAAC−OS中の一部に、c軸配向性を有さない結晶が含まれることを示している。より好ましいCAAC−OSは、out−of−plane法による構造解析では、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さない。
一方、CAAC−OSに対し、c軸に略垂直な方向からX線を入射させるin−plane法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、InGaZnOの結晶の(110)面に帰属される。CAAC−OSの場合は、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行っても、図30(B)に示すように明瞭なピークは現れない。これに対し、InGaZnOの単結晶酸化物半導体であれば、2θを56°近傍に固定してφスキャンした場合、図30(C)に示すように(110)面と等価な結晶面に帰属されるピークが6本観察される。したがって、XRDを用いた構造解析から、CAAC−OSは、a軸およびb軸の配向が不規則であることが確認できる。
次に、電子回折によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nmの電子線を入射させると、図31(A)に示すような回折パターン(制限視野透過電子回折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させたときの回折パターンを図31(B)に示す。図31(B)より、リング状の回折パターンが確認される。したがって、電子回折によっても、CAAC−OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる。なお、図31(B)における第1リングは、InGaZnOの結晶の(010)面および(100)面などに起因すると考えられる。また、図31(B)における第2リングは(110)面などに起因すると考えられる。
上述したように、CAAC−OSは結晶性の高い酸化物半導体である。酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、逆の見方をするとCAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。
酸化物半導体が不純物や欠陥を有する場合、光や熱などによって特性が変動する場合がある。例えば、酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャリア発生源となる場合がある。また、酸化物半導体中の酸素欠損は、キャリアトラップとなる場合や、水素を捕獲することによってキャリア発生源となる場合がある。
不純物および酸素欠損の少ないCAAC−OSは、キャリア密度の低い酸化物半導体である。具体的には、8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上のキャリア密度の酸化物半導体とすることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。CAAC−OSは、不純物濃度が低く、欠陥準位密度が低い。即ち、安定な特性を有する酸化物半導体であるといえる。
<nc−OS>
次に、nc−OSについて説明する。
nc−OSは、高分解能TEM像において、結晶部を確認することのできる領域と、明確な結晶部を確認することのできない領域と、を有する。nc−OSに含まれる結晶部は、1nm以上10nm以下、または1nm以上3nm以下の大きさであることが多い。なお、結晶部の大きさが10nmより大きく100nm以下である酸化物半導体を微結晶酸化物半導体と呼ぶことがある。nc−OSは、例えば、高分解能TEM像では、結晶粒界を明確に確認できない場合がある。なお、ナノ結晶は、CAAC−OSにおけるペレットと起源を同じくする可能性がある。そのため、以下ではnc−OSの結晶部をペレットと呼ぶ場合がある。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OSに対し、ペレットよりも大きい径のX線を用いた場合、out−of−plane法による解析では、結晶面を示すピークは検出されない。また、nc−OSに対し、ペレットよりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子回折を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OSに対し、ペレットの大きさと近いかペレットより小さいプローブ径の電子線を用いるナノビーム電子回折を行うと、スポットが観測される。また、nc−OSに対しナノビーム電子回折を行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。さらに、リング状の領域内に複数のスポットが観測される場合がある。
このように、ペレット(ナノ結晶)間では結晶方位が規則性を有さないことから、nc−OSを、RANC(Random Aligned nanocrystals)を有する酸化物半導体、またはNANC(Non−Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
nc−OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため、nc−OSは、a−like OSや非晶質酸化物半導体よりも欠陥準位密度が低くなる。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる。
<a−like OS>
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。
a−like OSは、高分解能TEM像において鬆が観察される場合がある。また、高分解能TEM像において、明確に結晶部を確認することのできる領域と、結晶部を確認することのできない領域と、を有する。
鬆を有するため、a−like OSは、不安定な構造である。以下では、a−like OSが、CAAC−OSおよびnc−OSと比べて不安定な構造であることを示すため、電子照射による構造の変化を示す。
電子照射を行う試料として、a−like OS(試料Aと表記する。)、nc−OS(試料Bと表記する。)およびCAAC−OS(試料Cと表記する。)を準備する。いずれの試料もIn−Ga−Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試料は、いずれも結晶部を有することがわかる。
なお、どの部分を一つの結晶部と見なすかの判定は、以下のように行えばよい。例えば、InGaZnOの結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。これらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその値は0.29nmと求められている。したがって、格子縞の間隔が0.28nm以上0.30nm以下である箇所を、InGaZnOの結晶部と見なすことができる。なお、格子縞は、InGaZnOの結晶のa−b面に対応する。
図32は、各試料の結晶部(22箇所から45箇所)の平均の大きさを調査した例である。ただし、上述した格子縞の長さを結晶部の大きさとしている。図32より、a−like OSは、電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。具体的には、図32中に(1)で示すように、TEMによる観察初期においては1.2nm程度の大きさだった結晶部(初期核ともいう。)が、単位面積当たりの電子の累積照射量が4.2×10/nmにおいては2.6nm程度の大きさまで成長していることがわかる。一方、nc−OSおよびCAAC−OSは、電子照射開始時から4.2×10/nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。具体的には、図32中の(2)および(3)で示すように、電子の累積照射量によらず、nc−OSおよびCAAC−OSの結晶部の大きさは、それぞれ1.4nm程度および2.1nm程度であることがわかる。
このように、a−like OSは、電子照射によって結晶部の成長が見られる場合がある。一方、nc−OSおよびCAAC−OSは、電子照射による結晶部の成長がほとんど見られないことがわかる。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、不安定な構造であることがわかる。
また、鬆を有するため、a−like OSは、nc−OSおよびCAAC−OSと比べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結晶の密度の78.6%以上92.3%未満となる。また、nc−OSの密度およびCAAC−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満となる。単結晶の密度の78%未満となる酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmとなる。よって、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、a−like OSの密度は5.0g/cm以上5.9g/cm未満となる。また、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、nc−OSの密度およびCAAC−OSの密度は5.9g/cm以上6.3g/cm未満となる。
なお、同じ組成の単結晶が存在しない場合がある。その場合、任意の割合で組成の異なる単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積もることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない種類の単結晶を組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。なお、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有する積層膜であってもよい。
〔基板101〕
基板101として用いる材料に大きな制限はないが、少なくとも後の加熱処理に耐えうる程度の耐熱性を有していることが必要となる。例えばバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板、セラミック基板、石英基板、サファイア基板などを用いることができる。
また、基板101としてシリコンや炭化シリコンなどを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウムなどを材料とした化合物半導体基板等を用いてもよい。また、SOI基板や、半導体基板上に歪トランジスタやFIN型トランジスタなどの半導体素子が設けられたものなどを用いることもできる。または、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)に適用可能なヒ化ガリウム、ヒ化アルミニウムガリウム、ヒ化インジウムガリウム、窒化ガリウム、リン化インジウム、シリコンゲルマニウムなどを用いてもよい。すなわち、基板101は、単なる支持基板に限らず、他のトランジスタなどのデバイスが形成された基板であってもよい。この場合、トランジスタ100のゲート、ソース、またはドレインの少なくとも一つは、上記他のデバイスと電気的に接続されていてもよい。
なお、基板101として、可撓性基板(フレキシブル基板)を用いてもよい。可撓性基板を用いる場合、可撓性基板上に、トランジスタや容量素子などを直接作製してもよいし、他の作製基板上にトランジスタや容量素子などを作製し、その後可撓性基板に剥離、転置してもよい。なお、作製基板から可撓性基板に剥離、転置するために、作製基板とトランジスタや容量素子などとの間に剥離層を設けるとよい。
可撓性基板としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。基板101に用いる可撓性基板は、線膨張率が低いほど環境による変形が抑制されて好ましい。基板101に用いる可撓性基板は、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリルなどがある。特に、アラミドは、線膨張率が低いため、可撓性基板として好適である。
〔絶縁層102、絶縁層110〕
絶縁層102および絶縁層110は、窒化アルミニウム、酸化アルミニウム、窒化酸化アルミニウム、酸化窒化アルミニウム、酸化マグネシウム、窒化シリコン、酸化シリコン、窒化酸化シリコン、酸化窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタル、アルミニウムシリケートなどから選ばれた材料を、単層でまたは積層して用いる。また、酸化物材料、窒化物材料、酸化窒化物材料、窒化酸化物材料のうち、複数の材料を混合した材料を用いてもよい。
なお、本明細書中において、窒化酸化物とは、酸素よりも窒素の含有量が多い化合物をいう。また、酸化窒化物とは、窒素よりも酸素の含有量が多い化合物をいう。なお、各元素の含有量は、例えば、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)等を用いて測定することができる。
特に絶縁層102および絶縁層110は、不純物が透過しにくい絶縁性材料を用いて形成することが好ましい。例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁材料を、単層で、または積層で用いればよい。例えば、不純物が透過しにくい絶縁性材料として、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタル、窒化シリコンなどを挙げることができる。
絶縁層102に不純物が透過しにくい絶縁性材料を用いることで、基板101側からの不純物の拡散を抑制し、トランジスタの信頼性を高めることができる。絶縁層110に不純物が透過しにくい絶縁性材料を用いることで、絶縁層111側からの不純物の拡散を抑制し、トランジスタの信頼性を高めることができる。
なお、絶縁層102および絶縁層110として、これらの材料で形成される絶縁層を複数積層して用いてもよい。絶縁層102および絶縁層110の形成方法は特に限定されず、蒸着法、CVD法、スパッタリング法、スピンコート法などの各種形成方法を用いることができる。
絶縁層102および絶縁層110の厚さは、10nm以上500nm以下、好ましくは50nm以上300nm以下とすればよい。
〔絶縁層103、絶縁層107、絶縁層108〕
絶縁層103、絶縁層107、および絶縁層108としては、絶縁層102と同様の材料を用いることができる。また、酸化物半導体層104中の水素濃度の増加を防ぐために、絶縁層103、絶縁層107、および絶縁層108の水素濃度を低減することが好ましい。具体的には、絶縁層103、絶縁層107、および絶縁層108中の水素濃度を、SIMSにおいて、2×1020atoms/cm以下、好ましくは5×1019atoms/cm以下、より好ましくは1×1019atoms/cm以下、さらに好ましくは5×1018atoms/cm以下とする。また、酸化物半導体中の窒素濃度の増加を防ぐために、絶縁層103、絶縁層107、および絶縁層108中の窒素濃度を低減することが好ましい。具体的には、絶縁層103、絶縁層107、および絶縁層108中の窒素濃度を、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
また、絶縁層103、絶縁層107、および絶縁層108は、加熱により酸素が放出される絶縁層(以下、「過剰酸素を含む絶縁層」ともいう。)を用いて形成することが好ましい。具体的には、TDS分析にて、酸素原子に換算した酸素の脱離量が1.0×1018atoms/cm以上、好ましくは3.0×1020atoms/cm以上である絶縁層を用いることが好ましい。
また、過剰酸素を含む絶縁層は、絶縁層に酸素を添加する処理を行って形成することもできる。酸素を添加する処理は、酸素雰囲気下による熱処理や、イオン注入装置、イオンドーピング装置またはプラズマ処理装置を用いて行うことができる。酸素を添加するためのガスとしては、16もしくは18などの酸素ガス、亜酸化窒素ガスまたはオゾンガスなどを用いることができる。なお、本明細書では酸素を添加する処理を「酸素ドープ処理」ともいう。
絶縁層103、絶縁層107、および絶縁層108の厚さは、10nm以上500nm以下、好ましくは50nm以上300nm以下とすればよい。
〔電極105a、電極105b、電極109、電極113a、電極113b〕
電極105a、電極105b、電極109、電極113a、および電極113bを形成するための導電性材料としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。電極105a、電極105b、電極109、電極113a、および電極113bとして、これらの材料で形成される導電層を複数積層して用いてもよい。
また、電極105a、電極105b、電極109、電極113a、および電極113bに、インジウム錫酸化物(ITO:Indium Tin Oxide)、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物などの酸素を含む導電性材料、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を適用することもできる。また、前述した金属元素を含む材料と、酸素を含む導電性材料を組み合わせた積層構造とすることもできる。また、前述した金属元素を含む材料と、窒素を含む導電性材料を組み合わせた積層構造とすることもできる。また、前述した金属元素を含む材料、酸素を含む導電性材料、および窒素を含む導電性材料を組み合わせた積層構造とすることもできる。
導電層の形成方法は特に限定されず、蒸着法、CVD法、スパッタリング法、スピンコート法などの各種形成方法を用いることができる。
〔絶縁層111〕
絶縁層111は、絶縁層103と同様の材料および方法を用いて形成することができる。また、絶縁層111として、ポリイミド、アクリル、ベンゾシクロブテン、ポリアミド、エポキシ等の、耐熱性を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁層を複数積層させることで、絶縁層111を形成してもよい。
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−Si結合を含む樹脂に相当する。シロキサン系樹脂は置換基としては有機基(例えばアルキル基やアリール基)やフルオロ基を用いても良い。また、有機基はフルオロ基を有していても良い。
絶縁層111の形成方法は、特に限定されず、その材料に応じて、スパッタ法、SOG法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法など)、印刷法(スクリーン印刷、オフセット印刷など)などを用いればよい。絶縁層111の焼成工程と他の熱処理工程を兼ねることで、効率よくトランジスタを作製することが可能となる。
〔コンタクトプラグ112a、コンタクトプラグ112b〕
コンタクトプラグ112a、およびコンタクトプラグ112bとしては、例えば、タングステン、ポリシリコン等の埋め込み性の高い導電性材料を用いることができる。また、図示しないが、当該材料の側面および底面を、チタン層、窒化チタン層またはこれらの積層からなるバリア層(拡散防止層)で覆ってもよい。この場合、バリア層も含めてコンタクトプラグという場合がある。
<変形例1>
図2に、酸化物半導体層104aを設けずに、酸化物半導体層104を酸化物半導体層104bと酸化物半導体層104cで構成したトランジスタ150を示す。図2(A)は、トランジスタ150の平面図である。また、図2(B)は、図2(A)にL1−L2の一点鎖線で示す部位と、W1−W2の一点鎖線で示す部位の断面図である。トランジスタ150は、酸化物半導体層104の構成以外はトランジスタ100と同じ構造を有する。
図3(B)は、図2(B)にB1−B2の一点鎖線で示した部位のエネルギーバンド構造を示している。すなわち、図3(B)は、トランジスタ150のチャネル形成領域のエネルギーバンド構造を示している。トランジスタ150では、酸化物半導体層104aを設けない分、トラップ準位390の影響を受けやすくなるが、酸化物半導体層104cを設けずに酸化物半導体層104bの単層構造とした場合よりも高い電界効果移動度を実現することができる。
<変形例2>
図4にトランジスタ160を示す。トランジスタ160は、絶縁層102と絶縁層103の間にバックゲート電極として機能する電極119を設けた点がトランジスタ100と異なる。図4(A)は、トランジスタ160の平面図である。図4(B)は、図4(A)にL1−L2の一点鎖線で示す部位と、W1−W2の一点鎖線で示す部位の断面図である。なお、電極119は、基板101と絶縁層102の間に設けても構わない。電極119は、電極105aと同様の材料および方法で形成することができる。
一般に、バックゲート電極は導電層で形成され、ゲート電極とバックゲート電極で半導体層のチャネル形成領域を挟むように配置される。よって、バックゲート電極はゲート電極と同様に機能させることができる。バックゲート電極の電位は、ゲート電極と同電位としてもよいし、接地電位(GND電位)や、任意の電位としてもよい。また、バックゲート電極の電位をゲート電極と連動させず独立して変化させることで、トランジスタのしきい値電圧を変化させることができる。
電極109および電極119は、どちらもゲート電極として機能することができる。よって、絶縁層102、絶縁層103、および絶縁層108は、それぞれがゲート絶縁層として機能することができる。
なお、電極109または電極119の一方を、「ゲート電極」という場合、他方を「バックゲート電極」という。例えば、トランジスタ160において、電極109を「ゲート電極」と言う場合、電極119を「バックゲート電極」と言う。また、電極119を「ゲート電極」として用いる場合は、トランジスタ160をボトムゲート型のトランジスタの一種と考えることができる。また、電極109および電極119のどちらか一方を、「第1のゲート電極」といい、他方を「第2のゲート電極」という場合がある。
酸化物半導体層104を挟んで電極109および電極119を設けることで、更には、電極109および電極119を同電位とすることで、酸化物半導体層104においてキャリアの流れる領域が膜厚方向においてより大きくなるため、キャリアの移動量が増加する。この結果、トランジスタ160のオン電流が大きくなると共に、電界効果移動度が高くなる。
したがって、トランジスタ160は、占有面積に対して大きいオン電流を有するトランジスタである。すなわち、求められるオン電流に対して、トランジスタ160の占有面積を小さくすることができる。よって、集積度の高い半導体装置を実現することができる。
また、ゲート電極とバックゲート電極は導電層で形成されるため、トランジスタの外部で生じる電界が、チャネルが形成される半導体層に作用しないようにする機能(特に静電気などに対する電界遮蔽機能)を有する。なお、バックゲート電極を半導体層よりも大きく形成し、バックゲート電極で半導体層を覆うことで、電界遮蔽機能を高めることができる。
電極109および電極119は、それぞれが外部からの電界を遮蔽する機能を有するため、電極109の上方および電極119の下方に生じる荷電粒子等の電荷が酸化物半導体層104のチャネル形成領域に影響しない。この結果、ストレス試験(例えば、ゲートに負の電荷を印加する−GBT(Gate Bias−Temperature)ストレス試験)の劣化が抑制される。また、電極109および電極119は、ドレイン電極から生じる電界が半導体層に作用しないように遮断することができる。よって、ドレイン電圧の変動に起因する、オン電流の立ち上がり電圧の変動を抑制することができる。なお、この効果は、電極109および電極119に電位が供給されている場合において顕著に生じる。
なお、BTストレス試験は加速試験の一種であり、長期間の使用によって起こるトランジスタの特性変化(経年変化)を短時間で評価することができる。特に、BTストレス試験前後におけるトランジスタのしきい値電圧の変動量は、信頼性を調べるための重要な指標となる。BTストレス試験前後において、しきい値電圧の変動量が少ないほど、信頼性が高いトランジスタであるといえる。
また、電極109および電極119を有し、且つ電極109および電極119を同電位とすることで、しきい値電圧の変動量が低減される。このため、複数のトランジスタ間における電気特性のばらつきも同時に低減される。
また、バックゲート電極を有するトランジスタは、ゲートに正の電荷を印加する+GBTストレス試験前後におけるしきい値電圧の変動も、バックゲート電極を有さないトランジスタより小さい。
また、バックゲート電極側から光が入射する場合に、バックゲート電極を、遮光性を有する導電膜で形成することで、バックゲート電極側から半導体層に光が入射することを防ぐことができる。よって、半導体層の光劣化を防ぎ、トランジスタのしきい値電圧がシフトするなどの電気特性の劣化を防ぐことができる。
また、例えば、図4(C)に示すように、電極119上に絶縁層114を形成し、絶縁層114上に絶縁層115を形成し、絶縁層115上に絶縁層103を形成してもよい。絶縁層114および絶縁層115は、絶縁層103と同様の材料および方法で形成することができる。
なお、絶縁層115を酸化ハフニウム、酸化アルミニウム、酸化タンタル、アルミニウムシリケートなどで形成することで、絶縁層115を電荷捕獲層として機能させることができる。絶縁層115に電子を注入することで、トランジスタのしきい値電圧を変動させることが可能である。絶縁層115への電子の注入は、例えば、トンネル効果を利用すればよい。電極119に正の電圧を印加することによって、トンネル電子を絶縁層115に注入することができる。
<変形例3>
図5に示すトランジスタ170のように、電極119を基板101と絶縁層102の間に設けてもよい。図5(A)は、トランジスタ170の平面図である。図5(B)は、図5(A)にL1−L2の一点鎖線で示す部位と、W1−W2の一点鎖線で示す部位の断面図である。
また、例えば、図5(C)に示すように、電極119上に絶縁層102と絶縁層114を形成し、絶縁層114上に絶縁層115を形成し、絶縁層115上に絶縁層103を形成してもよい。
≪トランジスタ100の作製方法≫
トランジスタ100の作製方法例について図6乃至図11を用いて説明する。図6乃至図11中のL1−L2断面は、図1(A)にL1−L2の一点鎖線で示す部位の断面に相当する。また、図6乃至図11中のW1−W2断面は、図1(A)にW1−W2の一点鎖線で示す部位の断面に相当する。
まず、基板101上に絶縁層102を形成し、絶縁層102上に過剰酸素を含む絶縁層103を形成する(図6(A)参照。)。本実施の形態では、基板101としてガラス基板を用いる。また、絶縁層102として、酸化アルミニウムを用いる。また、絶縁層103として、過剰酸素を含む酸化窒化シリコンを用いる。
次に、絶縁層103上に酸化物半導体層124a、酸化物半導体層124b、および導電層125を形成する(図6(B)参照。)。まず、絶縁層103上に酸化物半導体層124aを形成し、酸化物半導体層124a上に酸化物半導体層124bを形成する。
本実施の形態では、スパッタリング法により、酸化物半導体層124aとして、In:Ga:Zn=1:3:4の原子数比のターゲットを用いて、In、Ga、およびZnを含むCAAC−OSを形成する。また、酸化物半導体層124bとして、In:Ga:Zn=1:1:1の原子数比のターゲットを用いて、In、Ga、およびZnを含むCAAC−OSを形成する。なお、酸化物半導体層124aの形成後に酸素ドープ処理を行ってもよい。また、酸化物半導体層124bの形成後に酸素ドープ処理を行ってもよい。
次に、酸化物半導体層124aおよび酸化物半導体層124bに含まれる水分または水素などの不純物をさらに低減して、酸化物半導体層124aおよび酸化物半導体層124bを高純度化するために、加熱処理を行うことが好ましい。
例えば、減圧雰囲気下、窒素や希ガスなどの不活性ガス雰囲気下、酸化性ガス雰囲気下、又は超乾燥エア(CRDS(キャビティリングダウンレーザー分光法)方式の露点計を用いて測定した場合の水分量が20ppm(露点換算で−55℃)以下、好ましくは1ppm以下、好ましくは10ppb以下の空気)雰囲気下で、酸化物半導体層124aおよび酸化物半導体層124bに加熱処理を施す。なお、酸化性ガス雰囲気とは、酸素、オゾンまたは窒化酸素などの酸化性ガスを10ppm以上含有する雰囲気をいう。また、不活性ガス雰囲気とは、前述の酸化性ガスが10ppm未満であり、その他、窒素または希ガスで充填された雰囲気をいう。
また、加熱処理を行うことにより、不純物の放出と同時に絶縁層103に含まれる酸素を酸化物半導体層124aおよび酸化物半導体層124b中に拡散させ、当該酸化物半導体層に含まれる酸素欠損を低減することができる。なお、不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上または10%以上含む雰囲気で加熱処理を行ってもよい。なお、加熱処理は、酸化物半導体層124aおよび酸化物半導体層124bの形成後であればいつ行ってもよい。例えば、酸化物半導体層104aおよび酸化物半導体層104bの形成後に加熱処理を行ってもよい。
加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下で行えばよい。処理時間は24時間以内とする。24時間を超える加熱処理は生産性の低下を招くため好ましくない。
次に、酸化物半導体層124b上に導電層125を形成する。本実施の形態では、導電層125として、スパッタリング法によりタングステンを形成する。
次に、導電層125上にレジストマスクを形成する(図示せず。)。レジストマスクの形成は、フォトリソグラフィ法、印刷法、インクジェット法等を適宜用いて行うことができる。レジストマスクを印刷法やインクジェット法などで形成するとフォトマスクを使用しないため、製造コストを低減できる。
フォトリソグラフィ法によるレジストマスクの形成は、感光性レジストにフォトマスクを介して光を照射し、現像液を用いて感光した部分(または感光していない部分)のレジストを除去して行なう。感光性レジストに照射する光は、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などがある。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、フォトマスクは不要となる。なお、レジストマスクの除去は、アッシングなどのドライエッチング法または専用の剥離液などを用いたウェットエッチング法で行うことができる。ドライエッチング法とウェットエッチング法の両方を用いてもよい。
当該レジストマスクをマスクとして用いて、導電層125の一部を選択的に除去し、導電層105を形成する。また、導電層105をレジストマスクとして用いて、酸化物半導体層124b、酸化物半導体層124aを選択的に除去する。この時、絶縁層103の一部が除去され、絶縁層103に凸部が形成される場合がある。なお、導電層125、酸化物半導体層124b、酸化物半導体層124aの除去(エッチング)は、ドライエッチング法でもウェットエッチング法でもよく、両方を用いてもよい。このようにして、島状の酸化物半導体層104a、島状の酸化物半導体層104b、および島状の導電層105が形成される(図6(C)参照。)。
次に、絶縁層103、酸化物半導体層104a、酸化物半導体層104b、および導電層105上に酸化物半導体層106を形成する(図6(D)参照。)。本実施の形態では、酸化物半導体層106として酸化物半導体層104aと同様の、In、Ga、およびZnを含むCAAC−OSを用いる。
酸化物半導体層104aおよび酸化物半導体層104bは、CAAC−OSであるため、被形成面に対して略平行な層状の結晶構造を有する。このため、酸化物半導体層中への不純物の拡散は、被形成面に対して略垂直な方向からよりも、略平行な方向からの方が生じ易い。よって、酸化物半導体層104aおよび酸化物半導体層104bでは、側面から不純物が拡散し易い。
酸化物半導体層106はCAAC−OSである。よって、酸化物半導体層106は、酸化物半導体層104aおよび酸化物半導体層104bの側面に対して略平行な層状の結晶構造を有する。酸化物半導体層104aおよび酸化物半導体層104bの側面を酸化物半導体層106で覆うことで、当該側面からの不純物の拡散を低減することができる。また、酸化物半導体層106に酸素ドープ処理を行ってもよい。
続いて、酸化物半導体層106上に絶縁層127を形成する(図6(D)参照。)。本実施の形態では、絶縁層127としてプラズマCVD法を用いて酸化窒化シリコンを形成する。酸化窒化シリコンは、例えば、酸化窒素ガスとシランガスを用いて形成するため、絶縁層127の成膜中に水素や窒素などの不純物元素が発生する。絶縁層127の形成前に酸化物半導体層104aおよび酸化物半導体層104bの側面を酸化物半導体層106で覆うことで、これら不純物元素の酸化物半導体層104aおよび酸化物半導体層104b中への拡散を低減することができる。
絶縁層127の成膜後、絶縁層127に含まれる水分または水素などの不純物をさらに低減するために、加熱処理を行ってもよい。なお、絶縁層127は過剰酸素を含む絶縁層であってもよい。また、絶縁層127に酸素ドープ処理を行ってもよい。
次に、絶縁層127上に層131として、タングステンを形成する(図7(A)参照。)。フォトリソグラフィ工程、エッチング工程などを用いて層131の一部を選択的に除去し、ハードマスク132を形成する(図7(B)参照。)。
次に、ハードマスク132をマスクとして用いて、絶縁層127および酸化物半導体層106、の一部を選択的に除去し、開口122を形成する。よって、開口122は、絶縁層127に設けられた開口122aと、酸化物半導体層106に設けられた開口122bを含む。開口122を形成するためのエッチングは、アスペクト比(ここでは、開口122の幅に対する開口122の深さの比)の大きな開口を実現するために、異方性のドライエッチング法を用いることが好ましい。
導電層や絶縁層のエッチングをドライエッチング法で行う場合は、エッチングガスとしてハロゲン元素を含むガスを用いることができる。ハロゲン元素を含むガスの一例としては、塩素(Cl)、三塩化硼素(BCl)、四塩化珪素(SiCl)もしくは四塩化炭素(CCl)などを代表とする塩素系ガス、四フッ化炭素(CF)、六フッ化硫黄(SF)、三フッ化窒素(NF)もしくはトリフルオロメタン(CHF)などを代表とするフッ素系ガス、臭化水素(HBr)または酸素を適宜用いることができる。また用いるエッチング用ガスに不活性気体を添加してもよい。また、酸化物半導体をエッチングするためのエッチングガスとして、メタン(CH)、エタン(C)、プロパン(C)、またはブタン(C10)などの炭化水素系ガスと不活性ガスの混合ガスを用いてもよい。
また、ドライエッチング法としては、平行平板型RIE(Reactive Ion Etching)法や、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)法、DF−CCP(Dual Frequency Capacitively Coupled Plasma:二周波励起容量結合型プラズマ)法などを用いることができる。所望の加工形状にエッチングできるように、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度など)を適宜調節する。なお、ハードマスク132をマスクとして用いて行なう開口122の形成は、ハードマスク132がエッチングされにくいエッチング条件で行なうことが好ましい。
また、開口122形成時に導電層105の開口122と重なる領域が除去され、電極105a、および電極105bが形成される(図7(C)参照。)。前述した通り、酸化物半導体層104bの電極105aと電極105bに挟まれた領域が、領域121となる。よって、領域121は開口122と重なる。また、領域121では、酸化物半導体層104bの表面、ならびに、酸化物半導体層104aの側面および酸化物半導体層104bの側面が露出する。このため、エッチング条件によっては、これら露出した部分がエッチングされる場合がある。
領域121において酸化物半導体層104bの表面、ならびに、酸化物半導体層104aの側面および酸化物半導体層104bの側面がエッチングされた時のトランジスタ100を、トランジスタ100aとして図12に示す。図12(A)はトランジスタ100aの平面図である。また、図12(B)は、図12(A)にL1−L2の一点鎖線で示す部位と、W1−W2の一点鎖線で示す部位の断面図である。
また、開口122形成のためのエッチングをドライエッチング法で行う場合、露出した酸化物半導体層104bの表面、ならびに、酸化物半導体層104aの側面および酸化物半導体層104bの側面にエッチングガスの残留成分などの不純物元素が付着する場合がある。例えば、エッチングガスとして塩素系ガスを用いると、塩素などが付着する場合がある。また、エッチングガスとして炭化水素系ガスを用いると、炭素や水素などが付着する場合がある。
このため、開口122の形成後に、露出した酸化物半導体層の表面および側面に付着した不純物元素を低減することが好ましい。当該不純物の低減は、例えば、希フッ酸などを用いた洗浄処理、オゾンなどを用いた洗浄処理、または紫外線などを用いた洗浄処理で行なえばよい。なお、複数の洗浄処理を組み合わせてもよい。
次に、酸化物半導体層104bおよびハードマスク132上に酸化物半導体層124cを形成し、酸化物半導体層124c上に絶縁層128を形成する。本実施の形態では、酸化物半導体層124cとして酸化物半導体層104aと同様の、In、Ga、およびZnを含むCAAC−OSを用いる。また、絶縁層128としてプラズマCVD法を用いて酸化窒化シリコンを形成する(図8(A)参照。)。また、酸化物半導体層124cに酸素ドープ処理を行ってもよい。なお、絶縁層128は過剰酸素を含む絶縁層であってもよい。また、絶縁層128に酸素ドープ処理を行ってもよい。
酸化物半導体層124cは、絶縁層127および酸化物半導体層106に形成された開口122の側面に沿って形成される。また、酸化物半導体層104aおよび酸化物半導体層104bの側面は、酸化物半導体層124cで覆われる。
前述した酸化物半導体層106と同様に、酸化物半導体層124cで酸化物半導体層104aおよび酸化物半導体層104bの側面を覆うことで、絶縁層128の成膜中に発生する不純物元素の酸化物半導体層104aおよび酸化物半導体層104b中への拡散を低減することができる。
次に、絶縁層128上に、電極109を形成するための導電層129を設ける(図8(B)参照。)。本実施の形態では、導電層129として窒化チタンとタングステンの積層を用いる。具体的には、まず絶縁層128上に窒化チタンを形成し、該窒化チタン上にタングステンを形成する。導電層129の形成は、例えば、MOCVD法などで行なうことが好ましい。MOCVD法などを用いて導電体を形成することにより、被形成面のアスペクト比の大きい凹部にも導電体を充填することができる。
次に、試料表面に化学的機械研磨(CMP:Chemical Mechanical Polishing)処理(以下、「CMP処理」ともいう。)を行なう(図9(A)参照。)。CMP処理を行うことにより、試料表面の凹凸を低減し、この後形成される絶縁層や導電層の被覆性を高めることができる。
また、CMP処理により、導電層129、絶縁層128、酸化物半導体層124c、および絶縁層128の一部が除去され、電極109、絶縁層108、酸化物半導体層104c、絶縁層107が形成される。このようにして、電極109をダマシンプロセスを用いて形成することができる。
次に、電極109、絶縁層108、酸化物半導体層104c、および絶縁層107上に絶縁層110を形成する(図9(B)参照。)。本実施の形態では、絶縁層110として、スパッタリング法で酸化アルミニウムを形成する。この時、スパッタリングガスとして用いる酸素の一部が絶縁層107に導入され、過剰酸素を含む領域107aが形成される。
絶縁層110の形成後に加熱処理を行うことで、領域107aに含まれる酸素(過剰酸素)の一部を酸化物半導体層に導入することができる(図9(C)参照。)。なお、絶縁層107を、過剰酸素を含む絶縁層で形成した場合は、絶縁層110の形成後に加熱処理を行うことで、絶縁層107に含まれている酸素の一部を酸化物半導体層に導入することができる。
また、トランジスタ100の上方および下方に、酸化アルミニウムなどを用いた不純物が透過しにくい絶縁層を設けることで、外部からトランジスタ100へ不純物の拡散を防ぎ、トランジスタ100の動作を安定させ、信頼性を高めることができる。また、トランジスタ100の上方および下方に、酸化アルミニウムなどの酸素が透過しにくい絶縁層を設けることで、酸素の脱離を防ぐことができる。よってトランジスタ100の動作を安定させ、信頼性を高めることができる。また、トランジスタの電気特性を向上させることができる。
次に、絶縁層110の上に絶縁層111を形成する。本実施の形態では、絶縁層111としてプラズマCVD法を用いて酸化窒化シリコンを形成する(図10(A)参照。)。
次に、フォトリソグラフィ工程、エッチング工程などを用いて、絶縁層111、絶縁層110、絶縁層107、酸化物半導体層106の一部を選択的に除去し、開口126aおよび開口126bを形成する。また、絶縁層111および絶縁層110一部を選択的に除去し、開口126cを形成する(図10(B)参照。)。開口126aは電極105aの一部と互いに重なる。開口126bは電極105bの一部と互いに重なる。開口126cは電極109の一部と互いに重なる。
次に、開口126a、開口126b、および開口126cに、それぞれ、コンタクトプラグ112a、コンタクトプラグ112b、およびコンタクトプラグ112cを形成する(図11(A)参照。)。コンタクトプラグ112a、コンタクトプラグ112b、およびコンタクトプラグ112cは、電極109と同様に作製することができる。
次に、絶縁層111上に、コンタクトプラグ112a、コンタクトプラグ112b、およびコンタクトプラグ112cと接して導電層123を形成する(図11(B)参照。)。本実施の形態では、導電層123として、二層のチタンの間にアルミニウムを挟んだ積層を用いる。
次に、フォトリソグラフィ工程、エッチング工程などを用いて、導電層123の一部を選択的に除去し、電極113a、電極113b、および電極113cを形成する。電極113aは、コンタクトプラグ112aを介して電極105aと電気的に接続される。電極113bは、コンタクトプラグ112bを介して電極105bと電気的に接続される。電極113cは、コンタクトプラグ112cを介して電極109と電気的に接続される(図1(A)参照。)。
このようにして、トランジスタ100を作成することができる。本実施の形態に示した作製方法では、電極105aおよび電極105bと、開口122の位置が自己整合により決定される。また、電極109は開口122内に形成される。すなわち、ゲート電極として機能する電極109、ソースまたはドレインの一方として機能する電極105a、およびソースまたはドレインの他方として機能する電極105bの配置は、自己整合により決定される。よって、本実施の形態に示した作製方法で作製されたトランジスタを、SA s−channel FET(Self Align S−channel FET)、トレンチゲート s−channel FET、TGSA FET(Trench Gate Self Align FET)と呼ぶこともできる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では、本明細書等に開示したトランジスタを用いた半導体装置の一例について説明する。
≪半導体装置の構造例≫
図13(A)乃至図13(C)は、半導体装置400の断面図である。半導体装置400は、トランジスタ100とトランジスタ281を有する。なお、トランジスタ100は上記実施の形態に示した他のトランジスタと置き換えが可能である。図13(A)はトランジスタ100とトランジスタ281のチャネル長方向の断面図であり、図13(B)はチャネル幅方向の断面図である。図13(C)は図13(A)におけるトランジスタ281の拡大図である。
半導体装置400は、基板401としてn型半導体を用いる。トランジスタ281は、チャネル形成領域283、高濃度p型不純物領域285、絶縁層286、電極287、側壁288を有する。また、絶縁層286を介して側壁288と重なる領域に低濃度p型不純物領域284を有する。絶縁層286はゲート絶縁層として機能できる。電極287はゲート電極として機能できる。トランジスタ281は、チャネル形成領域283が基板401の一部に形成される。
低濃度p型不純物領域284は、電極287形成後、側壁288形成前に、電極287をマスクとして用いて不純物元素を導入することにより形成することができる。すなわち、低濃度p型不純物領域284は、自己整合によって形成することができる。側壁288の形成後、高濃度p型不純物領域285を形成する。なお、低濃度p型不純物領域284は高濃度p型不純物領域285と同じ導電型を有し、導電型を付与する不純物の濃度が高濃度p型不純物領域285よりも低い。また、低濃度p型不純物領域284は、状況に応じて設けなくてもよい。
トランジスタ281は、素子分離層414によって他のトランジスタと電気的に分離される。素子分離層の形成は、LOCOS(Local Oxidation of Silicon)法や、STI(Shallow Trench Isolation)法などを用いることができる。
トランジスタ281はpチャネル型のトランジスタとして機能できる。また、トランジスタ281上に絶縁層403が形成され、絶縁層403上に絶縁層404が形成されている。絶縁層403、および絶縁層404は、絶縁層111と同様の材料および方法で形成することができる。なお、絶縁層403および絶縁層404は、酸素、水素、水、アルカリ金属、アルカリ土類金属等の不純物の拡散を防ぐ機能を有する絶縁材料を用いて形成することが好ましい。なお、絶縁層403と絶縁層404のどちらか一方を省略してもよいし、絶縁層をさらに積層してもよい。
また、半導体装置400は、絶縁層404上に平坦な表面を有する絶縁層405を有する。絶縁層405は、絶縁層111と同様の材料および方法で形成することができる。また、絶縁層405表面にCMP処理を行ってもよい。
また、絶縁層405の上に、電極413a、電極413b、および電極413cが形成されている。電極413a、電極413b、および電極413cは、電極105aと同様の材料および方法で作製することができる。
また、電極413aはコンタクトプラグ406aを介して高濃度p型不純物領域285の一方と電気的に接続されている。電極413bはコンタクトプラグ406bを介して高濃度p型不純物領域285の他方と電気的に接続されている。電極413cはコンタクトプラグ406cを介して電極287と電気的に接続されている。
また、電極413a、電極413b、および電極413cを覆って絶縁層407が形成されている。絶縁層407は、絶縁層405と同様の材料および方法で形成することができる。また、絶縁層407の表面にCMP処理を行ってもよい。
また、絶縁層407上に絶縁層102が形成されている。絶縁層407よりも上層の構成については、上記実施の形態を参酌すれば理解できる。よって、本実施の形態での詳細な説明は省略する。また、電極113bはコンタクトプラグ112dを介して電極413bと電気的に接続されている。
<変形例1>
基板401の上にnチャネル型のトランジスタであるトランジスタ282を設けてもよい。図14(A)および図14(B)は、半導体装置410の断面図である。半導体装置410は、半導体装置400にトランジスタ282を付加した構成を有する。図14(A)はトランジスタ100、トランジスタ281、および、トランジスタ282のチャネル長方向の断面図であり、図14(B)はトランジスタ282の拡大図である。
トランジスタ282は、チャネル形成領域1283がウェル220に形成される。また、トランジスタ282は、チャネル形成領域1283、高濃度n型不純物領域1285、絶縁層286、電極287、側壁288を有する。また、絶縁層286を介して側壁288と重なる領域に低濃度n型不純物領域1284を有する。
低濃度n型不純物領域1284は、電極287形成後、側壁288形成前に、電極287をマスクとして用いて不純物元素を導入することにより形成することができる。すなわち、低濃度n型不純物領域1284は、自己整合により形成することができる。側壁288の形成後、高濃度n型不純物領域1285を形成する。なお、低濃度n型不純物領域1284は高濃度n型不純物領域1285と同じ導電型を有し、導電型を付与する不純物の濃度が高濃度n型不純物領域1285よりも低い。また、低濃度n型不純物領域1284は、状況に応じて設けなくてもよい。
<変形例2>
図15(A)乃至図15(C)は半導体装置420の断面図である。半導体装置420は、半導体装置400が有するトランジスタ281を、Fin型のトランジスタ291に置き換えた構成を有する。トランジスタをFin型とすることにより、実効上のチャネル幅が増大し、トランジスタのオン特性を向上させることができる。また、チャネル形成領域に対するゲート電極の電界の寄与を高くすることができるため、トランジスタのオフ特性を向上させることができる。
〔半導体回路〕
本明細書等に開示したトランジスタは、OR回路、AND回路、NAND回路、およびNOR回路などの論理回路や、インバータ回路、バッファ回路、シフトレジスタ回路、フリップフロップ回路、エンコーダ回路、デコーダ回路、増幅回路、アナログスイッチ回路、積分回路、微分回路、およびメモリ素子などの様々な半導体回路に用いることができる。
本実施の形態では、図16(A)乃至図16(C)を用いて、周辺回路及び画素回路に用いることができるCMOS回路などの一例を示す。図16(A)乃至図16(C)に示す回路図において、酸化物半導体を用いたトランジスタであることを明示するために、酸化物半導体を用いたトランジスタの回路記号に「OS」の記載を付している。
図16(A)に示すCMOS回路は、pチャネル型のトランジスタ281とnチャネル型のトランジスタ282を直列に接続し、且つ、それぞれのゲートを接続した、インバータ回路の構成例を示している。
図16(B)に示すCMOS回路は、pチャネル型のトランジスタ281とnチャネル型のトランジスタ282を並列に接続した、アナログスイッチ回路の構成例を示している。
図16(C)に示すCMOS回路は、トランジスタ281a、トランジスタ281b、トランジスタ282a、およびトランジスタ282bを用いたNAND回路の構成例を示している。NAND回路は、入力端子IN_Aと入力端子IN_Bに入力される電位の組み合わせによって、出力される電位が変化する。
〔記憶装置〕
図17(A)に示す回路は、トランジスタ289のソースまたはドレインの一方を、トランジスタ1281のゲートおよび容量素子257の一方の電極に接続した記憶装置の構成例を示している。また、図17(B)に示す回路は、トランジスタ289のソースまたはドレインの一方を、容量素子257の一方の電極に接続した記憶装置の構成例を示している。
図17(A)および図17(B)に示す回路は、トランジスタ289のソースまたはドレインの他方から入力された電荷を、ノード256に保持することができる。トランジスタ289に酸化物半導体を用いたトランジスタを用いることで、長期間に渡ってノード256の電荷を保持することができる。
図17(A)ではトランジスタ1281として、pチャネル型のトランジスタを示しているが、nチャネル型のトランジスタを用いてもよい。例えば、トランジスタ1281として、トランジスタ281またはトランジスタ282を用いてもよい。また、トランジスタ1281としてチャネルが形成される半導体層に酸化物半導体を用いたトランジスタを用いてもよい。
ここで、図17(A)および図17(B)に示した半導体装置(記憶装置)について、詳細に説明しておく。
図17(A)に示す半導体装置は、第1の半導体を用いたトランジスタ1281と第2の半導体を用いたトランジスタ289、および容量素子257を有している。
トランジスタ289は、上記実施の形態に開示した酸化物半導体を用いたトランジスタである。トランジスタ289のオフ電流が小さいことにより、半導体装置の特定のノードに長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、またはリフレッシュ動作の頻度が極めて少なくすることが可能となるため、消費電力の低い半導体装置となる。
図17(A)において、配線251はトランジスタ1281のソースまたはドレインの一方と電気的に接続され、配線252はトランジスタ1281ソースまたはドレインの他方と電気的に接続される。また、配線253はトランジスタ289のソースまたはドレインの一方と電気的に接続され、配線254はトランジスタ289のゲートと電気的に接続されている。そして、トランジスタ1281のゲート、トランジスタ289のソースまたはドレインの他方、および容量素子257の電極の一方は、ノード256と電気的に接続されている。また、配線255は容量素子257の電極の他方と電気的に接続されている。
図17(A)に示す半導体装置は、ノード256に与えられた電荷を保持可能という特性を有することで、以下に示すように、情報の書き込み、保持、読み出しが可能である。
〔書き込み動作、保持動作〕
情報の書き込みおよび保持について説明する。まず、配線254の電位を、トランジスタ289がオン状態となる電位にする。これにより、配線253の電位が、ノード256に与えられる。即ち、ノード256に所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(以下、「Lowレベル電荷」、「Highレベル電荷」という。)のどちらかが与えられるものとする。その後、配線254の電位を、トランジスタ289がオフ状態となる電位とすることで、ノード256に電荷が保持される。
なお、Highレベル電荷は、Lowレベル電荷よりもノード256に高い電位を与える電荷とする。また、トランジスタ1281にpチャネル型のトランジスタを用いる場合、Highレベル電荷およびLowレベル電荷は、どちらもトランジスタのしきい値電圧よりも高い電位を与える電荷とする。また、トランジスタ1281にnチャネル型のトランジスタを用いる場合、Highレベル電荷およびLowレベル電荷は、どちらもトランジスタのしきい値電圧よりも低い電位である。すなわち、Highレベル電荷とLowレベル電荷は、どちらもトランジスタがオフ状態となる電位を与える電荷である。
トランジスタ289のオフ電流は極めて小さいため、ノード256の電荷は長期間にわたって保持される。
〔読み出し動作〕
次に情報の読み出しについて説明する。配線251に配線252の電位と異なる所定の電位(定電位)を与えた状態で、配線255に読み出し電位Vを与えると、ノード256に保持されている情報を読み出すことができる。
Highレベル電荷により与えられる電位をV、Lowレベル電荷により与えられる電位をVとすると、読み出し電位Vは、{(Vth−V)+(Vth+V)}/2とすればよい。なお、情報の読み出しをしないときの配線255の電位は、トランジスタ1281にpチャネル型のトランジスタを用いる場合はVより高い電位とし、トランジスタ1281にnチャネル型のトランジスタを用いる場合はVより低い電位とすればよい。
例えば、トランジスタ1281にpチャネル型のトランジスタを用いる場合、トランジスタ1281のVthが−2Vであり、Vを1V、Vを−1Vとすると、Vを−2Vとすればよい。ノード256に書き込まれた電位がVのとき、配線255にVが与えられると、トランジスタ1281のゲートにV+V、すなわち−1Vが印加される。−1VはVthよりも高いため、トランジスタ1281はオン状態にならない。よって、配線252の電位は変化しない。また、ノード256に書き込まれた電位がVのとき、配線255にVが与えられると、トランジスタ1281のゲートにV+V、すなわち−3Vが印加される。−3VはVthよりも低いため、トランジスタ1281がオン状態になる。よって、配線252の電位が変化する。
また、トランジスタ1281にnチャネル型のトランジスタを用いる場合、トランジスタ1281のVthが2Vであり、Vを1V、Vを−1Vとすると、Vを2Vとすればよい。ノード256に書き込まれた電位がVのとき、配線255にVが与えられると、トランジスタ1281のゲートにV+V、すなわち3Vが印加される。3VはVthよりも高いため、トランジスタ1281はオン状態になる。よって、配線252の電位が変化する。また、ノード256に書き込まれた電位がVのとき、配線255にVが与えられると、トランジスタ1281のゲートにV+V、すなわち1Vが印加される。1VはVthよりも低いため、トランジスタ1281はオン状態にならない。よって、配線252の電位は変化しない。
配線252の電位を判別することで、ノード256に保持されている情報を読み出すことができる。
図17(B)に示す半導体装置は、トランジスタ1281を有さない点が図17(A)に示した半導体装置と異なる。この場合も図17(A)に示した半導体装置と同様の動作により情報の書き込みおよび保持が可能である。
図17(B)に示す半導体装置における、情報の読み出しについて説明する。配線254にトランジスタ289がオン状態になる電位が与えられると、浮遊状態である配線253と容量素子257とが導通し、配線253と容量素子257の間で電荷が再分配される。その結果、配線253の電位が変化する。配線253の電位の変化量は、ノード256の電位(またはノード256に蓄積された電荷)によって、異なる値をとる。
例えば、ノード256の電位をV、容量素子257の容量をC、配線253が有する容量成分をCB、電荷が再分配される前の配線253の電位をVB0とすると、電荷が再分配された後の配線253の電位は、(CB×VB0+C×V)/(CB+C)となる。したがって、メモリセルの状態として、ノード256の電位がV1とV0(V1>V0)の2つの状態をとるとすると、電位V1を保持している場合の配線253の電位(=(CB×VB0+C×V1)/(CB+C))は、電位V0を保持している場合の配線253の電位(=(CB×VB0+C×V0)/(CB+C))よりも高くなることがわかる。
そして、配線253の電位を所定の電位と比較することで、情報を読み出すことができる。
以上に示した半導体装置は、酸化物半導体を用いたオフ電流の極めて小さいトランジスタを適用することで、長期にわたって記憶内容を保持することが可能となる。つまり、リフレッシュ動作が不要となるか、またはリフレッシュ動作の頻度を極めて低くすることが可能となるため、消費電力の低い半導体装置を実現することができる。また、電力の供給がない場合(ただし、電位は固定されていることが好ましい)であっても、長期にわたって記憶内容を保持することが可能である。
また、該半導体装置は、情報の書き込みに高い電圧が不要であるため、素子の劣化が起こりにくい。例えば、従来の不揮発性メモリのように、フローティングゲートへの電子の注入や、フローティングゲートからの電子の引き抜きを行わないため、絶縁体の劣化といった問題が全く生じない。即ち、本発明の一態様に係る半導体装置は、従来の不揮発性メモリで問題となっている書き換え可能回数に制限はなく、信頼性が飛躍的に向上した半導体装置である。さらに、トランジスタの導通状態、非導通状態によって、情報の書き込みが行われるため、高速な動作が可能となる。
〔CPU〕
本実施の形態では、上述したトランジスタを用いた半導体装置の一例として、CPUについて説明する。図18は、上述したトランジスタを一部に用いたCPUの構成例を示すブロック図である。
図18に示すCPUは、基板1190上に、ALU1191(ALU:Arithmetic logic unit、演算回路)、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、タイミングコントローラ1195、レジスタ1196、レジスタコントローラ1197、バスインターフェース1198(Bus I/F)、書き換え可能なROM1199、およびROMインターフェース1189(ROM I/F)を有している。基板1190は、半導体基板、SOI基板、ガラス基板などを用いる。ROM1199およびROMインターフェース1189は、別チップに設けてもよい。もちろん、図18に示すCPUは、その構成を簡略化して示した一例にすぎず、実際のCPUはその用途によって多種多様な構成を有している。例えば、図18に示すCPUまたは演算回路を含む構成を一つのコアとし、当該コアを複数含み、それぞれのコアが並列で動作するような構成としてもよい。また、CPUが内部演算回路やデータバスで扱えるビット数は、例えば8ビット、16ビット、32ビット、64ビットなどとすることができる。
バスインターフェース1198を介してCPUに入力された命令は、インストラクションデコーダ1193に入力され、デコードされた後、ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195に入力される。
ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195は、デコードされた命令に基づき、各種制御を行なう。具体的にALUコントローラ1192は、ALU1191の動作を制御するための信号を生成する。また、インタラプトコントローラ1194は、CPUのプログラム実行中に、外部の入出力装置や、周辺回路からの割り込み要求を、その優先度やマスク状態から判断し、処理する。レジスタコントローラ1197は、レジスタ1196のアドレスを生成し、CPUの状態に応じてレジスタ1196の読み出しや書き込みを行なう。
また、タイミングコントローラ1195は、ALU1191、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、およびレジスタコントローラ1197の動作のタイミングを制御する信号を生成する。例えばタイミングコントローラ1195は、基準クロック信号を元に、内部クロック信号を生成する内部クロック生成部を備えており、内部クロック信号を上記各種回路に供給する。
図18に示すCPUでは、レジスタ1196に、メモリセルが設けられている。レジスタ1196のメモリセルとして、上述したトランジスタや記憶装置などを用いることができる。
図18に示すCPUにおいて、レジスタコントローラ1197は、ALU1191からの指示に従い、レジスタ1196における保持動作の選択を行う。すなわち、レジスタ1196が有するメモリセルにおいて、フリップフロップによるデータの保持を行うか、容量素子によるデータの保持を行うかを、選択する。フリップフロップによるデータの保持が選択されている場合、レジスタ1196内の記憶素子への、電源電圧の供給が行われる。容量素子におけるデータの保持が選択されている場合、容量素子へのデータの書き換えが行われ、レジスタ1196内のメモリセルへの電源電圧の供給を停止することができる。
図19は、レジスタ1196として用いることのできる記憶素子の回路図の一例である。記憶素子730は、電源遮断で記憶データが揮発する回路701と、電源遮断で記憶データが揮発しない回路702と、スイッチ703と、スイッチ704と、論理素子706と、容量素子707と、選択機能を有する回路720と、を有する。回路702は、容量素子708と、トランジスタ709と、トランジスタ710と、を有する。なお、記憶素子730は、必要に応じて、ダイオード、抵抗素子、インダクタなどのその他の素子をさらに有していても良い。
ここで、回路702には、上述した記憶装置を用いることができる。記憶素子730への電源電圧の供給が停止した際、回路702のトランジスタ709のゲートには接地電位(0V)、またはトランジスタ709がオフする電位が入力され続ける構成とする。例えば、トランジスタ709のゲートが抵抗等の負荷を介して接地される構成とする。
スイッチ703は、一導電型(例えば、nチャネル型)のトランジスタ713を用いて構成され、スイッチ704は、トランジスタ713とは逆の導電型(例えば、pチャネル型)のトランジスタ714を用いて構成した例を示す。ここで、スイッチ703の第1の端子はトランジスタ713のソースとドレインの一方に対応し、スイッチ703の第2の端子はトランジスタ713のソースとドレインの他方に対応し、スイッチ703はトランジスタ713のゲートに入力される制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、トランジスタ713のオン状態またはオフ状態)が選択される。スイッチ704の第1の端子はトランジスタ714のソースとドレインの一方に対応し、スイッチ704の第2の端子はトランジスタ714のソースとドレインの他方に対応し、スイッチ704はトランジスタ714のゲートに入力される制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、トランジスタ714のオン状態またはオフ状態)が選択される。
トランジスタ709のソースとドレインの一方は、容量素子708の一対の電極のうちの一方、およびトランジスタ710のゲートと電気的に接続される。ここで、接続部分をノードM2とする。トランジスタ710のソースとドレインの一方は、低電源電位を供給することのできる配線(例えばGND線)に電気的に接続され、他方は、スイッチ703の第1の端子(トランジスタ713のソースとドレインの一方)と電気的に接続される。スイッチ703の第2の端子(トランジスタ713のソースとドレインの他方)はスイッチ704の第1の端子(トランジスタ714のソースとドレインの一方)と電気的に接続される。スイッチ704の第2の端子(トランジスタ714のソースとドレインの他方)は電源電位VDDを供給することのできる配線と電気的に接続される。スイッチ703の第2の端子(トランジスタ713のソースとドレインの他方)と、スイッチ704の第1の端子(トランジスタ714のソースとドレインの一方)と、論理素子706の入力端子と、容量素子707の一対の電極のうちの一方と、は電気的に接続される。ここで、接続部分をノードM1とする。容量素子707の一対の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる。容量素子707の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND線)と電気的に接続される。容量素子708の一対の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる。容量素子708の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND線)と電気的に接続される。
なお、容量素子707および容量素子708は、トランジスタや配線の寄生容量等を積極的に利用することによって省略することも可能である。
トランジスタ709のゲート電極には、制御信号WEが入力される。スイッチ703およびスイッチ704は、制御信号WEとは異なる制御信号RDによって第1の端子と第2の端子の間の導通状態または非導通状態を選択され、一方のスイッチの第1の端子と第2の端子の間が導通状態のとき他方のスイッチの第1の端子と第2の端子の間は非導通状態となる。
トランジスタ709のソースとドレインの他方には、回路701に保持されたデータに対応する信号が入力される。図19では、回路701から出力された信号が、トランジスタ709のソースとドレインの他方に入力される例を示した。スイッチ703の第2の端子(トランジスタ713のソースとドレインの他方)から出力される信号は、論理素子706によってその論理値が反転された反転信号となり、回路720を介して回路701に入力される。
なお、図19では、スイッチ703の第2の端子(トランジスタ713のソースとドレインの他方)から出力される信号は、論理素子706および回路720を介して回路701に入力する例を示したがこれに限定されない。スイッチ703の第2の端子(トランジスタ713のソースとドレインの他方)から出力される信号が、論理値を反転させられることなく、回路701に入力されてもよい。例えば、回路701内に、入力端子から入力された信号の論理値が反転した信号が保持されるノードが存在する場合に、スイッチ703の第2の端子(トランジスタ713のソースとドレインの他方)から出力される信号を当該ノードに入力することができる。
図19におけるトランジスタ709は、上記実施の形態1で例示したトランジスタ150を用いることができる。また、ゲート電極には制御信号WEを入力し、バックゲート電極には制御信号WE2を入力することができる。制御信号WE2は、一定の電位の信号とすればよい。当該一定の電位には、例えば、接地電位GNDやトランジスタ709のソース電位よりも小さい電位などが選ばれる。制御信号WE2は、トランジスタ709のしきい値電圧を制御するための電位信号であり、トランジスタ709の、ゲート電圧が0Vの時のドレイン電流をより低減することができる。なお、トランジスタ709としては、第2ゲートを有さないトランジスタを用いることもできる。
また、図19において、記憶素子730に用いられるトランジスタのうち、トランジスタ709以外のトランジスタは、酸化物半導体以外の半導体でなる層または基板1190にチャネルが形成されるトランジスタとすることができる。例えば、シリコン層またはシリコン基板にチャネルが形成されるトランジスタとすることができる。また、記憶素子730に用いられるトランジスタ全てを、チャネルが酸化物半導体層で形成されるトランジスタとすることもできる。または、記憶素子730は、トランジスタ709以外のトランジスタを、チャネルが酸化物半導体層で形成されるトランジスタと、酸化物半導体以外の半導体でなる層または基板1190にチャネルが形成されるトランジスタとを組み合わせて用いてもよい。
図19における回路701には、例えばフリップフロップ回路を用いることができる。また、論理素子706としては、例えばインバータやクロックドインバータ等を用いることができる。
本発明の一態様における半導体装置では、記憶素子730に電源電圧が供給されない間は、回路701に記憶されていたデータを、回路702に設けられた容量素子708によってノードM2に保持することができる。
また、前述した通り、酸化物半導体層にチャネルが形成されるトランジスタはオフ電流が極めて小さい。例えば、酸化物半導体層にチャネルが形成されるトランジスタのオフ電流は、結晶性を有するシリコンにチャネルが形成されるトランジスタのオフ電流に比べて著しく低い。そのため、当該トランジスタをトランジスタ709として用いることによって、記憶素子730に電源電圧が供給されない間も容量素子708に保持された信号は長期間にわたり保たれる。こうして、記憶素子730は電源電圧の供給が停止した間も記憶内容(データ)を保持することが可能である。
また、スイッチ703およびスイッチ704を設けることによって、電源電圧供給再開後に、回路701が元のデータを保持しなおすまでの時間を短くすることができる。
また、回路702において、ノードM2に保持された信号はトランジスタ710のゲートに入力される。そのため、記憶素子730への電源電圧の供給が再開された後、ノードM2に保持された信号を、トランジスタ710の状態(オン状態、またはオフ状態)に変換して、回路702から読み出すことができる。それ故、ノードM2に保持された信号に対応する電位が多少変動していても、元の信号を正確に読み出すことが可能である。
このような記憶素子730を、CPUが有するレジスタやキャッシュメモリなどの記憶装置に用いることで、電源電圧の供給停止による記憶装置内のデータの消失を防ぐことができる。また、電源電圧の供給を再開した後、短時間で電源供給停止前の状態に復帰することができる。よって、CPU全体、もしくはCPUを構成する一つ、または複数の論理回路において、短期間の電源停止が可能になり、電源停止の頻度を高めることができるため、消費電力を抑えることができる。
本実施の形態では、記憶素子730をCPUに用いる例として説明したが、記憶素子730は、DSP(Digital Signal Processor)、カスタムLSI、PLD(Programmable Logic Device)等のLSI、RF−ID(Radio Frequency Identification)にも応用可能である。
〔撮像装置〕
上述したトランジスタを用いた半導体装置の一例として、撮像装置について説明する。図20(A)乃至図20(C)に、上述したトランジスタを一部に用いた撮像装置の回路構成例を示す。
図20(A)に示す回路を有する撮像装置610は、光電変換素子601、トランジスタ602、トランジスタ604、および容量素子606を有する。トランジスタ602のソースまたはドレインの一方は光電変換素子601と電気的に接続され、トランジスタ602のソースまたはドレインの他方はノード607(電荷蓄積部)を介してトランジスタ604のゲートと電気的に接続されている。
トランジスタ602として、チャネルが形成される半導体層に酸化物半導体を用いたトランジスタ(「OSトランジスタ」ともいう。)を用いることが好ましい。OSトランジスタは、オフ電流を極めて小さくすることができるため、容量素子606を小さくすることができる。または、図20(B)に示すように、容量素子606を省略することができる。また、トランジスタ602としてOSトランジスタを用いると、ノード607の電位が変動しにくい。よって、ノイズの影響を受けにくい撮像装置を実現することができる。なお、トランジスタ604にOSトランジスタを用いてもよい。
光電変換素子601には、シリコン基板においてpn型やpin型の接合が形成されたダイオード素子を用いることができる。または非晶質シリコン膜や微結晶シリコン膜などを用いたpin型のダイオード素子などを用いてもよい。または、ダイオード接続のトランジスタを用いてもよい。また、光電効果を利用した可変抵抗などをシリコン、ゲルマニウム、セレンなど用いて形成してもよい。
また、光電変換素子として、放射線を吸収して電荷を発生させることが可能な材料を用いて形成してもよい。放射線を吸収して電荷を発生させることが可能な材料としては、ヨウ化鉛、ヨウ化水銀、ガリウムヒ素、CdTe、CdZnなどがある。
図20(C)に示す回路を有する撮像装置610は、光電変換素子601としてフォトダイオードを用いる場合を示している。図20(C)に示す回路を有する撮像装置610は、光電変換素子601、トランジスタ602、トランジスタ603、トランジスタ604、トランジスタ605、および容量素子606を有する。トランジスタ602のソースまたはドレインの一方は光電変換素子601のカソードと電気的に接続され、他方はノード607と電気的に接続されている。光電変換素子601のアノードは、配線611と電気的に接続されている。トランジスタ603のソースまたはドレインの一方はノード607と電気的に接続され、他方は配線608と電気的に接続されている。トランジスタ604のゲートはノード607と電気的に接続され、ソースまたはドレインの一方は配線609と電気的に接続され、他方はトランジスタ605のソースまたはドレインの一方と電気的に接続されている。トランジスタ605のソースまたはドレインの他方は配線608と電気的に接続されている。容量素子606の一方の電極はノード607と電気的に接続され、他方の電極は配線611と電気的に接続される。
トランジスタ602は転送トランジスタとして機能できる。トランジスタ602のゲートには、転送信号TXが供給される。トランジスタ603はリセットトランジスタとして機能できる。トランジスタ603のゲートには、リセット信号RSTが供給される。トランジスタ604は増幅トランジスタとして機能できる。トランジスタ605は選択トランジスタとして機能できる。トランジスタ605のゲートには、選択信号SELが供給される。また、配線608にVDDが供給され、配線611にはVSSが供給される。
次に、図20(C)に示す回路を有する撮像装置610の動作について説明する。まず、トランジスタ603をオン状態にして、ノード607にVDDを供給する(リセット動作)。その後、トランジスタ603をオフ状態にすると、ノード607にVDDが保持される。次に、トランジスタ602をオン状態とすると、光電変換素子601の受光量に応じて、ノード607の電位が変化する(蓄積動作)。その後、トランジスタ602をオフ状態にすると、ノード607の電位が保持される。次に、トランジスタ605をオン状態とすると、ノード607の電位に応じた電位が配線609に出力される(選択動作)。配線609の電位を検出することで、光電変換素子601の受光量を知ることができる。
トランジスタ602およびトランジスタ603には、OSトランジスタを用いることが好ましい。前述した通り、OSトランジスタはオフ電流を極めて小さくすることができるため、容量素子606を小さくすることができる。または、容量素子606を省略することができる。また、トランジスタ602およびトランジスタ603としてOSトランジスタを用いると、ノード607の電位が変動しにくい。よって、ノイズの影響を受けにくい撮像装置を実現することができる。
図20(A)乃至図20(C)に示したいずれかの回路を有する撮像装置610をマトリクス状に配置することで、解像度の高い撮像装置が実現できる。
例えば、撮像装置610を1920×1080のマトリクス状に配置すると、いわゆるフルハイビジョン(「2K解像度」、「2K1K」、「2K」などとも言われる。)の解像度で撮像可能な撮像装置を実現することができる。また、例えば、撮像装置610を4096×2160のマトリクス状に配置すると、いわゆるウルトラハイビジョン(「4K解像度」、「4K2K」、「4K」などとも言われる。)の解像度で撮像可能な撮像装置を実現することができる。また、例えば、撮像装置610を8192×4320のマトリクス状に配置すると、いわゆるスーパーハイビジョン(「8K解像度」、「8K4K」、「8K」などとも言われる。)の解像度で撮像可能な撮像装置を実現することができる。撮像装置610を増やすことで、16Kや32Kの解像度で撮像可能な撮像装置を実現することも可能である。
上述したトランジスタを用いた撮像装置610の構造例を図21に示す。図21は撮像装置610の断面図である。
図21に示す撮像装置610は、基板401としてn型半導体を用いている。また、基板401中に光電変換素子601のp型半導体221が設けられている。また、基板401の一部が、光電変換素子601のn型半導体223として機能する。
また、トランジスタ604は基板401上に設けられている。トランジスタ604はnチャネル型のトランジスタとして機能できる。また、基板401の一部にp型半導体のウェル220が設けられている。ウェル220はp型半導体221の形成と同様の方法で設けることができる。また、ウェル220とp型半導体221は同時に形成することができる。なお、トランジスタ604として、例えば上述したトランジスタ282を用いることができる。
また、光電変換素子601、およびトランジスタ604上に絶縁層403、絶縁層404、および絶縁層405が形成されている。
また、絶縁層403乃至絶縁層405の基板401(n型半導体223)と重なる領域に開口224が形成され、絶縁層403乃至絶縁層405のp型半導体221と重なる領域に開口225が形成されている。また、開口224および開口225中に、コンタクトプラグ406が形成されている。コンタクトプラグ406は上述したコンタクトプラグ112aと同様に設けることができる。なお、開口224および開口225は、その数や配置に特段の制約は無い。よって、レイアウトの自由度が高い撮像装置を実現できる。
また、絶縁層405の上に、電極421、電極429、および電極422が形成されている。電極421は、開口224に設けられたコンタクトプラグ406を介してn型半導体223(基板401)と電気的に接続されている。また、電極429は、開口225に設けられたコンタクトプラグ406を介してp型半導体221と電気的に接続されている。電極422は容量素子606の電極として機能できる。
また、電極421、電極429、および電極422を覆って絶縁層407が形成されている。絶縁層407は、絶縁層405と同様の材料および方法で形成することができる。また、絶縁層407表面にCMP処理を行ってもよい。CMP処理を行うことにより、試料表面の凹凸を低減し、この後形成される絶縁層や導電層の被覆性を高めることができる。電極421、電極429、および電極422は、上述した電極115aと同様の材料および方法により形成することができる。
また、絶縁層407の上に絶縁層102が形成され、絶縁層102の上に電極427、電極119、および電極273が形成されている。電極427はコンタクトプラグを介して電極429と電気的に接続されている。電極119は、トランジスタ602のバックゲートとして機能できる。電極273は、容量素子606の電極として機能できる。トランジスタ602は、例えば、上述したトランジスタ160を用いることができる。
また、絶縁層111上に設けられた電極113aは、コンタクトプラグを介して電極427と電気的に接続している。
<変形例1>
図21とは異なる撮像装置610の構成例を図22に示す。
図22に示す撮像装置610は、基板401上にトランジスタ604とトランジスタ605が設けられている。トランジスタ604はnチャネル型のトランジスタとして機能できる。トランジスタ605はpチャネル型のトランジスタとして機能できる。なお、トランジスタ604として、例えば上述したトランジスタ282を用いることができる。トランジスタ605として、例えば上述したトランジスタ281を用いることができる。
絶縁層405の上に電極413a乃至電極413dが形成されている。電極413aはトランジスタ604のソースまたはドレインの一方と電気的に接続され、電極413bはトランジスタ604のソースまたはドレインの他方と電気的に接続されている。電極413cは、トランジスタ604のゲートと電気的に接続されている。電極413bはトランジスタ605のソースまたはドレインの一方と電気的に接続され、電極413dはトランジスタ605のソースまたはドレインの他方と電気的に接続されている。
電極113bと電極413cは、コンタクトプラグ112dを介して電気的に接続されている。また、電極113a、電極113b、および絶縁層111上に絶縁層415が形成されている。絶縁層415は絶縁層111と同様の材料および方法で形成することができる。
また、図22に示す撮像装置610は、絶縁層415上に光電変換素子601が設けられている。また、光電変換素子601上に絶縁層442が設けられ、絶縁層442上に電極488が設けられている。絶縁層442は、絶縁層415と同様の材料および方法で形成することができる。
図22に示す光電変換素子601は、金属材料などで形成された電極686と透光性導電層682との間に光電変換層681を有する。図22では、セレン系材料を光電変換層681に用いた形態を示している。セレン系材料を用いた光電変換素子601は、可視光に対する外部量子効率が高い特性を有する。当該光電変換素子では、アバランシェ現象により入射される光量に対する電子の増幅が大きい高感度のセンサとすることができる。また、セレン系材料は光吸収係数が高いため、光電変換層681を薄くしやすい利点を有する。
セレン系材料としては、非晶質セレンまたは結晶セレンを用いることができる。結晶セレンは、一例として、非晶質セレンを成膜後、熱処理することで得ることができる。なお、結晶セレンの結晶粒径を画素ピッチより小さくすることで、画素ごとの特性ばらつきを低減させることができる。また、結晶セレンは、非晶質セレンよりも可視光に対する分光感度や光吸収係数が高い特性を有する。
なお、光電変換層681は単層として図示しているが、セレン系材料の受光面側に正孔注入阻止層として酸化ガリウムまたは酸化セリウムなどを設け、電極686側に電子注入阻止層として酸化ニッケルまたは硫化アンチモンなどを設ける構成とすることもできる。
また、光電変換層681は、銅、インジウム、セレンの化合物(CIS)を含む層であってもよい。または、銅、インジウム、ガリウム、セレンの化合物(CIGS)を含む層であってもよい。CISおよびCIGSでは、セレンの単層と同様にアバランシェ現象が利用できる光電変換素子を形成することができる。
また、CISおよびCIGSはp型半導体であり、接合を形成するためにn型半導体の硫化カドミウムや硫化亜鉛等を接して設けてもよい。
アバランシェ現象を発生させるためには、光電変換素子に比較的高い電圧(例えば、10V以上)を印加することが好ましい。OSトランジスタは、Siトランジスタよりもドレイン耐圧の高い特性を有するため、光電変換素子に比較的高い電圧を印加することが容易である。したがって、ドレイン耐圧の高いOSトランジスタと、セレン系材料を光電変換層とした光電変換素子とを組み合わせることで、高感度、かつ信頼性の高い撮像装置とすることができる。
透光性導電層682には、例えば、インジウム錫酸化物、シリコンを含むインジウム錫酸化物、亜鉛を含む酸化インジウム、酸化亜鉛、ガリウムを含む酸化亜鉛、アルミニウムを含む酸化亜鉛、酸化錫、フッ素を含む酸化錫、アンチモンを含む酸化錫、またはグラフェン等を用いることができる。また、透光性導電層682は単層に限らず、異なる膜の積層であっても良い。また、図22では、透光性導電層682と配線487が、電極488およびコンタクトプラグ489を介して電気的に接続する構成を図示しているが、透光性導電層682と配線487が直接接してもよい。
また、電極686および配線487などは、複数の導電層を積層した構成であってもよい。例えば、電極686を第1の導電層、第2の導電層の二層とし、配線487を第3の導電層、第4の導電層の二層とすることができる。また、例えば、第1の導電層および第3の導電層を低抵抗の金属等を選択して形成し、第2の導電層および第4の導電層を光電変換層681とコンタクト特性の良い金属等を選択して形成するとよい。このような構成とすることで、光電変換素子の電気特性を向上させることができる。また、一部の金属は透光性導電層682と接触することにより電蝕を起こすことがある。そのような金属を第3の導電層に用いた場合でも第4の導電層を介することによって電蝕を防止することができる。
第2の導電層および第4の導電層には、例えば、モリブデンやタングステンなどを用いることができる。また、第1の導電層および第3の導電層には、例えば、アルミニウム、チタン、またはアルミニウムをチタンで挟むような積層を用いることができる。
また、絶縁層442が多層である構成であってもよい。隔壁477は、無機絶縁体や絶縁有機樹脂などを用いて形成することができる。また、隔壁477は、トランジスタ等に対する遮光のため、および/または1画素あたりの受光部の面積を確定するために黒色等に着色されていてもよい。
また、光電変換素子601には、非晶質シリコン膜や微結晶シリコン膜などを用いたpin型のダイオード素子などを用いてもよい。当該フォトダイオードは、n型の半導体層、i型の半導体層、およびp型の半導体層が順に積層された構成を有している。i型の半導体層には非晶質シリコンを用いることが好ましい。また、p型の半導体層およびn型の半導体層には、それぞれの導電型を付与するドーパントを含む非晶質シリコンまたは微結晶シリコンなどを用いることができる。非晶質シリコンを光電変換層とするフォトダイオードは可視光の波長領域における感度が高く、微弱な可視光を検知しやすい。
なお、pn型やpin型のダイオード素子は、p型の半導体層が受光面となるように設けることが好ましい。p型の半導体層を受光面とすることで、光電変換素子601の出力電流を高めることができる。
上述したセレン系材料や非晶質シリコンなどを用いて形成した光電変換素子601は、成膜工程、リソグラフィ工程、エッチング工程などの一般的な半導体作製工程を用いて作製するこができる。
〔表示装置〕
また、表示装置(または表示装置において用いられるトランジスタなど)に本発明の一態様を適用することもできる。
例えば、本明細書等において、表示素子、表示素子を有する装置である表示装置、発光素子、及び発光素子を有する装置である発光装置は、様々な形態を用いること、又は様々な素子を有することが出来る。表示素子、表示装置、発光素子又は発光装置は、例えば、EL(エレクトロルミネッセンス)素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)、LEDチップ(白色LEDチップ、赤色LEDチップ、緑色LEDチップ、青色LEDチップなど)、トランジスタ(電流に応じて発光するトランジスタ)、プラズマディスプレイ(PDP)、電子放出素子、カーボンナノチューブを用いた表示素子、液晶素子、電子インク、エレクトロウェッティング素子、電気泳動素子、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子(例えば、グレーティングライトバルブ(GLV)、デジタルマイクロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)、MIRASOL(登録商標)、IMOD(インターフェアレンス・モジュレーション)素子、シャッター方式のMEMS表示素子、光干渉方式のMEMS表示素子、圧電セラミックディスプレイなど)、または、量子ドットなどの少なくとも一つを有している。これらの他にも、表示素子、表示装置、発光素子又は発光装置は、電気的または磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有していてもよい。EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)又はSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Display)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク、電子粉流体(登録商標)、又は電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。量子ドットを各画素に用いた表示装置の一例としては、量子ドットディスプレイなどがある。なお、量子ドットは、表示素子としてではなく、バックライトの一部に設けてもよい。量子ドットを用いることにより、色純度の高い表示を行うことができる。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。なお、LEDチップを用いる場合、LEDチップの電極や窒化物半導体の下に、グラフェンやグラファイトを配置してもよい。グラフェンやグラファイトは、複数の層を重ねて、多層膜としてもよい。このように、グラフェンやグラファイトを設けることにより、その上に、窒化物半導体、例えば、結晶を有するn型GaN半導体層などを容易に成膜することができる。さらに、その上に、結晶を有するp型GaN半導体層などを設けて、LEDチップを構成することができる。なお、グラフェンやグラファイトと、結晶を有するn型GaN半導体層との間に、AlN層を設けてもよい。なお、LEDチップが有するGaN半導体層は、MOCVDで成膜してもよい。ただし、グラフェンを設けることにより、LEDチップが有するGaN半導体層は、スパッタ法で成膜することも可能である。また、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子においては、表示素子が封止されている空間(例えば、表示素子が配置されている素子基板と、素子基板に対向して配置されている対向基板との間)に、乾燥剤を配置してもよい。乾燥剤を配置することにより、MEMSなどが水分によって動きにくくなることや、劣化しやすくなることを防止することができる。
<画素回路構成例>
次に、図23を用いて、表示装置のより具体的な構成例について説明する。図23(A)は、表示装置3100の構成を説明するためのブロック図である。表示装置3100は、表示領域3131、回路3132、および回路3133を有する。回路3132は、例えば走査線駆動回路として機能する。また、回路3133は、例えば信号線駆動回路として機能する。
また、表示装置3100は、各々が略平行に配設され、且つ、回路3132によって電位が制御されるm本の走査線3135と、各々が略平行に配設され、且つ、回路3133によって電位が制御されるn本の信号線3136と、を有する。さらに、表示領域3131はm行n列のマトリクス状に配設された複数の画素3130を有する。なお、m、nは、ともに2以上の自然数である。
表示領域3131において、各走査線3135は、画素3130のうち、いずれかの行に配設されたn個の画素3130と電気的に接続される。また、各信号線3136は、画素3130のうち、いずれかの列に配設されたm個の画素3130に電気的に接続される。
また、図24(A)に示すように、表示領域3131を挟んで回路3132と向き合う位置に、回路3152を設けてもよい。また、図24(B)に示すように、表示領域3131を挟んで回路3133と向き合う位置に、回路3153を設けてもよい。図24(A)及び図24(B)では、回路3152を回路3132と同様に走査線3135に接続する例を示している。ただし、これに限らず、例えば、走査線3135に接続する回路3132と回路3152を、数行毎に変えてもよい。図24(B)では、回路3153を回路3133と同様に信号線3136に接続する例を示している。ただし、これに限らず、例えば、信号線3136に接続する回路3133と回路3153を、数行毎に変えてもよい。また、回路3132、回路3133、回路3152及び回路3153は、画素3130を駆動する以外の機能を有していてもよい。
また、回路3132、回路3133、回路3152及び回路3153を、駆動回路部という場合がある。画素3130は、画素回路3137及び表示素子を有する。画素回路3137は表示素子を駆動する回路である。駆動回路部が有するトランジスタは、画素回路3137を構成するトランジスタと同時に形成することができる。また、駆動回路部の一部または全部を他の基板上に形成して、表示装置3100と電気的に接続してもよい。例えば、駆動回路部の一部または全部を単結晶基板を用いて形成し、表示装置3100と電気的に接続してもよい。
図23(B)および図23(C)は、図23(A)に示す表示装置の画素3130に用いることができる回路構成を示している。
《発光表示装置用画素回路の一例》
また、図23(B)に示す画素回路3137は、トランジスタ3431と、容量素子3233と、トランジスタ3232と、トランジスタ3434と、を有する。また、画素回路3137は、表示素子として機能できる発光素子3125と電気的に接続されている。
トランジスタ3431のソース電極およびドレイン電極の一方は、データ信号が与えられるn列目の信号線3136(以下、信号線DL_nという)に電気的に接続される。さらに、トランジスタ3431のゲート電極は、ゲート信号が与えられるm行目の走査線3135(以下、走査線GL_mという)に電気的に接続される。
トランジスタ3431は、データ信号のノード3435への書き込みを制御する機能を有する。
容量素子3233の一対の電極の一方は、ノード3435に電気的に接続され、他方は、ノード3437に電気的に接続される。また、トランジスタ3431のソース電極およびドレイン電極の他方は、ノード3435に電気的に接続される。
容量素子3233は、ノード3435に書き込まれたデータを保持する保持容量としての機能を有する。
トランジスタ3232のソース電極およびドレイン電極の一方は、電位供給線VL_aに電気的に接続され、他方はノード3437に電気的に接続される。さらに、トランジスタ3232のゲート電極は、ノード3435に電気的に接続される。
トランジスタ3434のソース電極およびドレイン電極の一方は、電位供給線V0に電気的に接続され、他方はノード3437に電気的に接続される。さらに、トランジスタ3434のゲート電極は、走査線GL_mに電気的に接続される。
発光素子3125のアノードおよびカソードの一方は、電位供給線VL_bに電気的に接続され、他方は、ノード3437に電気的に接続される。
発光素子3125としては、例えば有機エレクトロルミネセンス素子(有機EL素子ともいう)などを用いることができる。ただし、これに限定されず、例えば無機材料からなる無機EL素子を用いても良い。
例えば、電位供給線VL_aはVDDを供給する機能を有する。また、電位供給線VL_bはVSSを供給する機能を有する。また、電位供給線V0はVSSを供給する機能を有する。
ここで、図23(B)の画素回路3137を有する表示装置の動作例について説明しておく。まず、回路3132により各行の画素回路3137を順次選択し、トランジスタ3431をオン状態にしてデータ信号(電位)をノード3435に書き込む。次に、トランジスタ3434をオン状態にしてノード3437の電位をVSSとする。
その後、トランジスタ3431をオフ状態としてノード3435に書き込まれたデータ信号を保持する。次に、トランジスタ3434をオフ状態とする。トランジスタ3232のソースとドレインの間に流れる電流量は、ノード3435に書き込まれたデータ信号に応じて決まる。よって、発光素子3125は、流れる電流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
《液晶表示装置用画素回路の一例》
図23(C)に示す画素回路3137は、トランジスタ3431と、容量素子3233と、を有する。また、画素回路3137は、表示素子として機能できる液晶素子3432と電気的に接続されている。
液晶素子3432の一対の電極の一方の電位は、画素回路3137の仕様に応じて適宜設定される。液晶素子3432に含まれる液晶は、ノード3436に書き込まれるデータにより配向状態が設定される。なお、複数の画素回路3137のそれぞれが有する液晶素子3432の一対の電極の一方に、共通の電位(コモン電位)を与えてもよい。
液晶素子3432のモードとしては、例えば、TNモード、STNモード、VAモード、ASM(Axially Symmetric Aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード、MVAモード、PVA(Patterned Vertical Alignment)モード、IPSモード、FFSモード、またはTBA(Transverse Bend Alignment)モードなどを用いてもよい。また、他の例として、ECB(Electrically Controlled Birefringence)モード、PDLC(Polymer Dispersed Liquid Crystal)モード、PNLC(Polymer Network Liquid Crystal)モード、ゲストホストモードなどがある。ただし、これに限定されず、様々なモードを用いることができる。
また、ブルー相(Blue Phase)を示す液晶とカイラル剤とを含む液晶組成物により液晶素子3432を構成してもよい。ブルー相を示す液晶は、応答速度が1msec以下と短く、光学的等方性であるため、配向処理が不要であり、かつ視野角依存性が小さい。
m行n列目の画素回路3137において、トランジスタ3431のソース電極およびドレイン電極の一方は、信号線DL_nに電気的に接続され、他方はノード3436に電気的に接続される。トランジスタ3431のゲート電極は、走査線GL_mに電気的に接続される。トランジスタ3431は、ノード3436へのデータ信号の書き込みを制御する機能を有する。
容量素子3233の一対の電極の一方は、特定の電位が供給される配線(以下、「容量線CL」ともいう。)に電気的に接続され、他方は、ノード3436に電気的に接続される。また、液晶素子3432の一対の電極の他方はノード3436に電気的に接続される。なお、容量線CLの電位の値は、画素回路3137の仕様に応じて適宜設定される。容量素子3233は、ノード3436に書き込まれたデータを保持する保持容量としての機能を有する。
ここで、図23(C)の画素回路3137を有する表示装置の動作例について説明しておく。まず、回路3132により各行の画素回路3137を順次選択し、トランジスタ3431をオン状態にしてノード3436にデータ信号を書き込む。
次に、トランジスタ3431をオフ状態としてノード3436に書き込まれたデータ信号を保持する。ノード3436に書き込まれたデータ信号に応じて、液晶素子3432の透過光量が決まる。これを行毎に順次行うことにより、表示領域3131に画像を表示できる。
〔RFタグ〕
上述したトランジスタを使用した半導体装置の一例として、RFタグについて説明する。
本発明の一態様に係るRFタグは、内部に記憶回路(記憶装置)を有し、記憶回路に情報を記憶し、非接触手段、例えば無線通信を用いて外部と情報の授受を行うものである。このような特徴から、RFタグは、物品などの個体情報を読み取ることにより物品の識別を行う個体認証システムなどに用いることが可能である。なお、これらの用途に用いるためには高い信頼性が要求される。
RFタグの構成について図25を用いて説明する。図25は、RFタグの構成例を示すブロック図である。
図25に示すようにRFタグ800は、通信器801(質問器、リーダ/ライタなどともいう)に接続されたアンテナ802から送信される無線信号803を受信するアンテナ804を有する。通信器801に上述したトランジスタを用いてもよい。またRFタグ800は、整流回路805、定電圧回路806、復調回路807、変調回路808、論理回路809、記憶回路810、ROM811を有している。なお、復調回路807に含まれる整流作用を示すトランジスタの半導体には、逆方向電流を十分に抑制することが可能な、例えば、酸化物半導体を用いてもよい。これにより、逆方向電流に起因する整流作用の低下を抑制し、復調回路の出力が飽和することを防止できる。つまり、復調回路の入力に対する復調回路の出力を線形に近づけることができる。なお、データの伝送形式は、一対のコイルを対向配置して相互誘導によって交信を行う電磁結合方式、誘導電磁界によって交信する電磁誘導方式、電波を利用して交信する電波方式の3つに大別される。RFタグ800は、そのいずれの方式に用いることも可能である。
次に各回路の構成について説明する。アンテナ804は、通信器801に接続されたアンテナ802との間で無線信号803の送受信を行うためのものである。また、整流回路805は、アンテナ804で無線信号を受信することにより生成される入力交流信号を整流、例えば、半波2倍圧整流し、後段の容量素子により、整流された信号を平滑化することで入力電位を生成するための回路である。なお、整流回路805の入力側または出力側には、リミッタ回路を有してもよい。リミッタ回路とは、入力交流信号の振幅が大きく、内部生成電圧が大きい場合に、ある電力以上の電力を後段の回路に入力しないように制御するための回路である。
定電圧回路806は、入力電位から安定した電源電圧を生成し、各回路に供給するための回路である。なお、定電圧回路806は、内部にリセット信号生成回路を有していてもよい。リセット信号生成回路は、安定した電源電圧の立ち上がりを利用して、論理回路809のリセット信号を生成するための回路である。
復調回路807は、入力交流信号を包絡線検出することにより復調し、復調信号を生成するための回路である。また、変調回路808は、アンテナ804より出力するデータに応じて変調をおこなうための回路である。
論理回路809は復調信号を解析し、処理を行うための回路である。記憶回路810は、入力された情報を保持する回路であり、ロウデコーダ、カラムデコーダ、記憶領域などを有する。また、ROM811は、固有番号(ID)などを格納し、処理に応じて出力を行うための回路である。
なお、上述の各回路は、適宜、取捨することができる。
記憶回路810に上述した記憶装置を用いることができる。本発明の一態様に係る記憶装置は、電源が遮断された状態であっても情報を保持できるため、RFタグに好適である。さらに本発明の一態様に係る記憶装置は、データの書き込みに必要な電力(電圧)が従来の不揮発性メモリに比べて低いため、データの読み出し時と書込み時の最大通信距離の差を生じさせないことも可能である。さらに、データの書き込み時に電力が不足し、誤動作または誤書込みが生じることを抑制することができる。
また、本発明の一態様に係る記憶装置は、不揮発性メモリとして用いることが可能であるため、ROM811に適用することもできる。その場合には、生産者がROM811にデータを書き込むためのコマンドを別途用意し、ユーザが自由に書き換えできないようにしておくことが好ましい。生産者が出荷前に固有番号を書込んだのちに製品を出荷することで、作製したRFタグすべてについて固有番号を付与するのではなく、出荷する良品にのみ固有番号を割り当てることが可能となり、出荷後の製品の固有番号が不連続になることがなく出荷後の製品に対応した顧客管理が容易となる。
本発明の一態様に係るRFタグの使用例について図26を用いて説明する。RFタグの用途は広範にわたるが、例えば、紙幣、硬貨、有価証券、無記名債券、運転免許証や住民票などの証書(図26(A)参照。)、DVDソフトやビデオテープなどの記録媒体(図26(B)参照。)、皿やコップや瓶などの容器(図26(C)参照。)、包装紙や箱やリボンなどの包装用品、自転車などの移動体(図26(D)参照。)、鞄や眼鏡などの身の回り品、植物、動物、人体、衣類、生活用品、薬品や薬剤を含む医療品、または電子機器(例えば、液晶表示装置、EL表示装置、テレビジョン装置、または携帯電話。)などの物品、もしくは各物品に取り付ける荷札(図26(E)および図26(F)参照。)などに設けて使用することができる。
本発明の一態様に係るRFタグ800は、表面に貼る、または埋め込むことにより、物品に固定される。例えば、本であれば紙に埋め込み、有機樹脂からなるパッケージであれば当該有機樹脂の内部に埋め込み、各物品に固定される。本発明の一態様に係るRFタグ800は、小型、薄型、軽量を実現するため、物品に固定した後もその物品自体のデザイン性を損なうことがない。また、紙幣、硬貨、有価証券、無記名債券、または証書などに本発明の一態様に係るRFタグ800により、認証機能を付与することができ、この認証機能を活用すれば、偽造を防止することができる。また、包装用容器、記録媒体、身の回り品、衣類、生活用品、または電子機器などに本発明の一態様に係るRFタグ800を取り付けることにより、検品システムなどのシステムの効率化を図ることができる。また、移動体に本発明の一態様に係るRFタグ800を取り付けることにより、盗難などに対するセキュリティ性を高めることができる。以上のように、本発明の一態様に係るRFタグ800は、上述したような各用途に用いることができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、本発明の一態様に係る半導体装置を用いた電子機器の一例について説明する。
本発明の一態様に係る半導体装置を用いた電子機器として、テレビ、モニタ等の表示装置、照明装置、デスクトップ型或いはノート型のパーソナルコンピュータ、ワードプロセッサ、DVD(Digital Versatile Disc)などの記録媒体に記憶された静止画又は動画を再生する画像再生装置、ポータブルCDプレーヤ、ラジオ、テープレコーダ、ヘッドホンステレオ、ステレオ、置き時計、壁掛け時計、コードレス電話子機、トランシーバ、自動車電話、携帯電話、携帯情報端末、タブレット型端末、携帯型ゲーム機、パチンコ機などの固定式ゲーム機、電卓、電子手帳、電子書籍端末、電子翻訳機、音声入力機器、ビデオカメラ、デジタルスチルカメラ、電気シェーバ、電子レンジ等の高周波加熱装置、電気炊飯器、電気洗濯機、電気掃除機、温水器、扇風機、毛髪乾燥機、エアコンディショナー、加湿器、除湿器などの空調設備、食器洗い器、食器乾燥器、衣類乾燥器、布団乾燥器、電気冷蔵庫、電気冷凍庫、電気冷凍冷蔵庫、DNA保存用冷凍庫、懐中電灯、チェーンソー等の工具、煙感知器、透析装置等の医療機器などが挙げられる。さらに、誘導灯、信号機、ベルトコンベア、エレベータ、エスカレータ、産業用ロボット、電力貯蔵システム、電力の平準化やスマートグリッドのための蓄電装置等の産業機器が挙げられる。また、燃料を用いたエンジンや、蓄電体からの電力を用いて電動機により推進する移動体なども、電子機器の範疇に含まれる場合がある。上記移動体として、例えば、電気自動車(EV)、内燃機関と電動機を併せ持ったハイブリッド車(HEV)、プラグインハイブリッド車(PHEV)、これらのタイヤ車輪を無限軌道に変えた装軌車両、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、ゴルフ用カート、小型又は大型船舶、潜水艦、ヘリコプター、航空機、ロケット、人工衛星、宇宙探査機や惑星探査機、宇宙船などが挙げられる。
図27(A)に示す携帯型ゲーム機2900は、筐体2901、筐体2902、表示部2903、表示部2904、マイクロホン2905、スピーカ2906、操作キー2907等を有する。なお、図27(A)に示した携帯型ゲーム機は、2つの表示部2903と表示部2904とを有しているが、表示部の数は、これに限定されない。表示部2903は、入力装置としてタッチスクリーンが設けられており、スタイラス2908等により操作可能となっている。
図27(B)に示す情報端末2910は、筐体2911に、表示部2912、マイク2917、スピーカ部2914、カメラ2913、外部接続部2916、および操作用のボタン2915等を有する。表示部2912には、可撓性基板が用いられた表示パネルおよびタッチスクリーンを備える。情報端末2910は、例えば、スマートフォン、携帯電話、タブレット型情報端末、タブレット型パーソナルコンピュータ、電子書籍端末等として用いることができる。
図27(C)に示すノート型パーソナルコンピュータ2920は、筐体2921、表示部2922、キーボード2923、およびポインティングデバイス2924等を有する。
図27(D)に示すビデオカメラ2940は、筐体2941、筐体2942、表示部2943、操作キー2944、レンズ2945、および接続部2946等を有する。操作キー2944およびレンズ2945は筐体2941に設けられており、表示部2943は筐体2942に設けられている。そして、筐体2941と筐体2942は、接続部2946により接続されており、筐体2941と筐体2942の間の角度は、接続部2946により変えることが可能な構造となっている。筐体2941に対する筐体2942の角度によって、表示部2943に表示される画像の向きの変更や、画像の表示/非表示の切り換えを行うことができる。
図27(E)にバングル型の情報端末の一例を示す。情報端末2950は、筐体2951、および表示部2952等を有する。表示部2952は、曲面を有する筐体2951に支持されている。表示部2952には、可撓性基板を用いた表示パネルを備えているため、フレキシブルかつ軽くて使い勝手の良い情報端末2950を提供することができる。
図27(F)に腕時計型の情報端末の一例を示す。情報端末2960は、筐体2961、表示部2962、バンド2963、バックル2964、操作ボタン2965、入出力端子2966などを備える。情報端末2960は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
表示部2962の表示面は湾曲しており、湾曲した表示面に沿って表示を行うことができる。また、表示部2962はタッチセンサを備え、指やスタイラスなどで画面に触れることで操作することができる。例えば、表示部2962に表示されたアイコン2967に触れることで、アプリケーションを起動することができる。操作ボタン2965は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、情報端末2960に組み込まれたオペレーティングシステムにより、操作ボタン2965の機能を設定することもできる。
また、情報端末2960は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、情報端末2960は入出力端子2966を備え、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また入出力端子2966を介して充電を行うこともできる。なお、充電動作は入出力端子2966を介さずに無線給電により行ってもよい。
図27(G)に家庭用電気製品の一例として電気冷蔵庫を示す。電気冷蔵庫2970は、筐体2971、冷蔵室用扉2972、および冷凍室用扉2973等を有する。
図27(H)は、自動車の一例を示す外観図である。自動車2980は、車体2981、車輪2982、ダッシュボード2983、およびライト2984等を有する。
本実施の形態に示す電子機器には、上述したトランジスタまたは上述した半導体装置などが搭載されている。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態4)
本実施の形態では、スパッタリング用ターゲットを設置することが可能な成膜室を有する成膜装置(スパッタリング装置)について説明する。本実施の形態に示す成膜装置は、平行平板型のスパッタリング装置や、対向ターゲット式のスパッタリング装置などに用いることができる。
対向ターゲット式のスパッタリング装置を用いた成膜では、被形成面へのダメージが小さくできるため、結晶性の高い膜を得やすい。即ち、CAAC−OSなどの成膜には、対向ターゲット式のスパッタリング装置を用いることが好ましい場合がある。
なお、平行平板型スパッタリング装置を用いた成膜法を、PESP(Parallel Electrode Sputtering)と呼ぶこともできる。また、対向ターゲット式スパッタリング装置を用いた成膜法を、VDSP(Vapor Deposition Sputtering)と呼ぶこともできる。
まず、成膜時などに膜中に不純物の混入が少ない成膜装置の構成について図33および図34を用いて説明する。
図33は、枚葉式マルチチャンバーの成膜装置2700の上面図を模式的に示している。成膜装置2700は、基板を収容するカセットポート2761と、基板のアライメントを行うアライメントポート2762と、を備える大気側基板供給室2701と、大気側基板供給室2701から、基板を搬送する大気側基板搬送室2702と、基板の搬入を行い、かつ室内の圧力を大気圧から減圧、または減圧から大気圧へ切り替えるロードロック室2703aと、基板の搬出を行い、かつ室内の圧力を減圧から大気圧、または大気圧から減圧へ切り替えるアンロードロック室2703bと、真空中の基板の搬送を行う搬送室2704と、基板の加熱を行う基板加熱室2705と、ターゲットが配置され成膜を行う成膜室2706a、成膜室2706bおよび成膜室2706cと、を有する。なお、成膜室2706a、成膜室2706bおよび成膜室2706cは、後述する成膜室の構成を参酌することができる。
また、大気側基板搬送室2702は、ロードロック室2703aおよびアンロードロック室2703bと接続され、ロードロック室2703aおよびアンロードロック室2703bは、搬送室2704と接続され、搬送室2704は、基板加熱室2705、成膜室2706a、成膜室2706bおよび成膜室2706cと接続する。
なお、各室の接続部にはゲートバルブ2764が設けられており、大気側基板供給室2701と、大気側基板搬送室2702を除き、各室を独立して真空状態に保持することができる。また、大気側基板搬送室2702および搬送室2704は、搬送ロボット2763を有し、基板を搬送することができる。
また、基板加熱室2705は、プラズマ処理室を兼ねると好ましい。成膜装置2700は、処理と処理の間で基板を大気暴露することなく搬送することが可能なため、基板に不純物が吸着することを抑制できる。また、成膜や熱処理などの順番を自由に構築することができる。なお、搬送室、成膜室、ロードロック室、アンロードロック室および基板加熱室は、上述の数に限定されず、設置スペースやプロセス条件に合わせて、適宜最適な数を設けることができる。
次に、図33に示す成膜装置2700の一点鎖線X1−X2、一点鎖線Y1−Y2、および一点鎖線Y2−Y3に相当する断面を図34に示す。
図34(A)は、基板加熱室2705と、搬送室2704の断面を示しており、基板加熱室2705は、基板を収容することができる複数の加熱ステージ2765を有している。なお、基板加熱室2705は、バルブを介して真空ポンプ2770と接続されている。真空ポンプ2770としては、例えば、ドライポンプ、およびメカニカルブースターポンプ等を用いることができる。
また、基板加熱室2705に用いることのできる加熱機構としては、例えば、抵抗発熱体などを用いて加熱する加熱機構としてもよい。または、加熱されたガスなどの媒体からの熱伝導または熱輻射によって、加熱する加熱機構としてもよい。例えば、GRTA(Gas Rapid Thermal Anneal)、LRTA(Lamp Rapid Thermal Anneal)などのRTA(Rapid Thermal Anneal)を用いることができる。LRTAは、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する。GRTAは、高温のガスを用いて熱処理を行う。ガスとしては、不活性ガスが用いられる。
また、基板加熱室2705は、マスフローコントローラ2780を介して、精製機2781と接続される。なお、マスフローコントローラ2780および精製機2781は、ガス種の数だけ設けられるが、理解を容易にするため一つのみを示す。基板加熱室2705に導入されるガスは、露点が−80℃以下、好ましくは−100℃以下であるガスを用いることができ、例えば、酸素ガス、窒素ガス、および希ガス(アルゴンガスなど)を用いる。
搬送室2704は、搬送ロボット2763を有している。搬送ロボット2763は、各室へ基板を搬送することができる。また、搬送室2704は、バルブを介して真空ポンプ2770と、クライオポンプ2771と、接続されている。このような構成とすることで、搬送室2704は、大気圧から低真空または中真空(0.1から数百Pa程度)まで真空ポンプ2770を用いて排気され、バルブを切り替えて中真空から高真空または超高真空(0.1Paから1×10−7Pa)まではクライオポンプ2771を用いて排気される。
また、例えば、クライオポンプ2771は、搬送室2704に対して2台以上並列に接続してもよい。このような構成とすることで、1台のクライオポンプがリジェネ中であっても、残りのクライオポンプを使って排気することが可能となる。なお、上述したリジェネとは、クライオポンプ内にため込まれた分子(または原子)を放出する処理をいう。クライオポンプは、分子(または原子)をため込みすぎると排気能力が低下してくるため、定期的にリジェネが行われる。
図34(B)は、成膜室2706bと、搬送室2704と、ロードロック室2703aの断面を示している。
ここで、図34(B)を用いて、成膜室(スパッタリング室)の詳細について説明する。図34(B)に示す成膜室2706bは、ターゲット2766aと、ターゲット2766bと、ターゲットシールド2767aと、ターゲットシールド2767bと、マグネットユニット2790aと、マグネットユニット2790bと、基板ホルダ2768と、電源2791と、を有する。図示しないが、ターゲット2766aおよびターゲット2766bは、それぞれバッキングプレートを介してターゲットホルダに固定される。また、ターゲット2766aおよびターゲット2766bには、電源2791が電気的に接続されている。マグネットユニット2790aおよびマグネットユニット2790bは、それぞれターゲット2766aおよびターゲット2766bの背面に配置される。ターゲットシールド2767aおよびターゲットシールド2767bは、それぞれターゲット2766aおよびターゲット2766bの端部を囲うように配置される。なお、ここでは基板ホルダ2768には、基板2769が支持されている。基板ホルダ2768は、可変部材2784を介して成膜室2706bに固定される。可変部材2784によって、ターゲット2766aとターゲット2766bとの間の領域(ターゲット間領域ともいう。)まで基板ホルダ2768を移動させることができる。例えば、基板2769を支持した基板ホルダ2768をターゲット間領域に配置することによって、プラズマによる損傷を低減できる場合がある。また、基板ホルダ2768は、図示しないが、基板2769を保持する基板保持機構や、基板2769を背面から加熱するヒーター等を備えていてもよい。
また、ターゲットシールド2767によって、ターゲット2766からスパッタリングされる粒子が不要な領域に堆積することを抑制できる。ターゲットシールド2767は、累積されたスパッタ粒子が剥離しないように、加工することが望ましい。例えば、表面粗さを増加させるブラスト処理、またはターゲットシールド2767の表面に凹凸を設けてもよい。
また、成膜室2706bは、ガス加熱機構2782を介してマスフローコントローラ2780と接続され、ガス加熱機構2782はマスフローコントローラ2780を介して精製機2781と接続される。ガス加熱機構2782により、成膜室2706bに導入されるガスを40℃以上400℃以下、好ましくは50℃以上200℃以下に加熱することができる。なお、ガス加熱機構2782、マスフローコントローラ2780、および精製機2781は、ガス種の数だけ設けられるが、理解を容易にするため一つのみを示す。成膜室2706bに導入されるガスは、露点が−80℃以下、好ましくは−100℃以下であるガスを用いることができ、例えば、酸素ガス、窒素ガス、および希ガス(アルゴンガスなど)を用いる。
なお、ガスの導入口の直前に精製機を設ける場合、精製機から成膜室2706bまでの配管の長さを10m以下、好ましくは5m以下、さらに好ましくは1m以下とする。配管の長さを10m以下、5m以下または1m以下とすることで、配管からの放出ガスの影響を長さに応じて低減できる。さらに、ガスの配管には、フッ化鉄、酸化アルミニウム、酸化クロムなどで内部が被覆された金属配管を用いるとよい。前述の配管は、例えばSUS316L−EP配管と比べ、不純物を含むガスの放出量が少なく、ガスへの不純物の入り込みを低減できる。また、配管の継手には、高性能超小型メタルガスケット継手(UPG継手)を用いるとよい。また、配管を全て金属で構成することで、樹脂等を用いた場合と比べ、生じる放出ガスおよび外部リークの影響を低減できて好ましい。
また、成膜室2706bは、バルブを介してターボ分子ポンプ2772および真空ポンプ2770と接続される。
また、成膜室2706bは、クライオトラップ2751が設けられる。
クライオトラップ2751は、水などの比較的融点の高い分子(または原子)を吸着することができる機構である。ターボ分子ポンプ2772は大きいサイズの分子(または原子)を安定して排気し、かつメンテナンスの頻度が低いため、生産性に優れる一方、水素や水の排気能力が低い。そこで、水などに対する排気能力を高めるため、クライオトラップ2751が成膜室2706bに接続された構成としている。クライオトラップ2751の冷凍機の温度は100K以下、好ましくは80K以下とする。また、クライオトラップ2751が複数の冷凍機を有する場合、冷凍機ごとに温度を変えると、効率的に排気することが可能となるため好ましい。例えば、1段目の冷凍機の温度を100K以下とし、2段目の冷凍機の温度を20K以下とすればよい。なお、クライオトラップに替えて、チタンサブリメーションポンプを用いることで、さらに高真空とすることができる場合がある。また、クライオポンプやターボ分子ポンプに替えてイオンポンプを用いることでもさらに高真空とすることができる場合がある。
なお、成膜室2706bの排気方法は、これに限定されず、先の搬送室2704に示す排気方法(クライオポンプと真空ポンプとの排気方法)と同様の構成としてもよい。もちろん、搬送室2704の排気方法を成膜室2706bと同様の構成(ターボ分子ポンプと真空ポンプとの排気方法)としてもよい。
なお、上述した搬送室2704、基板加熱室2705、および成膜室2706bの背圧(全圧)、ならびに各気体分子(原子)の分圧は、以下の通りとすると好ましい。とくに、形成される膜中に不純物が混入され得る可能性があるので、成膜室2706bの背圧、ならびに各気体分子(原子)の分圧には注意する必要がある。
上述した各室の背圧(全圧)は、1×10−4Pa以下、好ましくは3×10−5Pa以下、さらに好ましくは1×10−5Pa以下である。上述した各室の質量電荷比(m/z)が18である気体分子(原子)の分圧は、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下である。また、上述した各室のm/zが28である気体分子(原子)の分圧は、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下である。また、上述した各室のm/zが44である気体分子(原子)の分圧は、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下である。
なお、真空チャンバー内の全圧および分圧は、質量分析計を用いて測定することができる。例えば、株式会社アルバック製四重極形質量分析計(Q−massともいう。)Qulee CGM−051を用いればよい。
また、上述した搬送室2704、基板加熱室2705、および成膜室2706bは、外部リークまたは内部リークが少ない構成とすることが望ましい。
例えば、上述した搬送室2704、基板加熱室2705、および成膜室2706bのリークレートは、3×10−6Pa・m/s以下、好ましくは1×10−6Pa・m/s以下である。また、m/zが18である気体分子(原子)のリークレートが1×10−7Pa・m/s以下、好ましくは3×10−8Pa・m/s以下である。また、m/zが28である気体分子(原子)のリークレートが1×10−5Pa・m/s以下、好ましくは1×10−6Pa・m/s以下である。また、m/zが44である気体分子(原子)のリークレートが3×10−6Pa・m/s以下、好ましくは1×10−6Pa・m/s以下である。
なお、リークレートに関しては、前述の質量分析計を用いて測定した全圧および分圧から導出すればよい。
リークレートは、外部リークおよび内部リークに依存する。外部リークは、微小な穴やシール不良などによって真空系外から気体が流入することである。内部リークは、真空系内のバルブなどの仕切りからの漏れや内部の部材からの放出ガスに起因する。リークレートを上述の数値以下とするために、外部リークおよび内部リークの両面から対策をとる必要がある。
例えば、成膜室2706bの開閉部分はメタルガスケットでシールするとよい。メタルガスケットは、フッ化鉄、酸化アルミニウム、または酸化クロムによって被覆された金属を用いると好ましい。メタルガスケットはOリングと比べ密着性が高く、外部リークを低減できる。また、フッ化鉄、酸化アルミニウム、酸化クロムなどによって被覆された金属の不動態を用いることで、メタルガスケットから放出される不純物を含む放出ガスが抑制され、内部リークを低減することができる。
また、成膜装置2700を構成する部材として、不純物を含む放出ガスの少ないアルミニウム、クロム、チタン、ジルコニウム、ニッケルまたはバナジウムを用いる。また、前述の部材を鉄、クロムおよびニッケルなどを含む合金に被覆して用いてもよい。鉄、クロムおよびニッケルなどを含む合金は、剛性があり、熱に強く、また加工に適している。ここで、表面積を小さくするために部材の表面凹凸を研磨などによって低減しておくと、放出ガスを低減できる。
または、前述の成膜装置2700の部材をフッ化鉄、酸化アルミニウム、酸化クロムなどで被覆してもよい。
成膜装置2700の部材は、極力金属のみで構成することが好ましく、例えば石英などで構成される覗き窓などを設置する場合も、放出ガスを抑制するために表面をフッ化鉄、酸化アルミニウム、酸化クロムなどで薄く被覆するとよい。
成膜室に存在する吸着物は、内壁などに吸着しているために成膜室の圧力に影響しないが、成膜室を排気した際のガス放出の原因となる。そのため、リークレートと排気速度に相関はないものの、排気能力の高いポンプを用いて、成膜室に存在する吸着物をできる限り脱離し、あらかじめ排気しておくことは重要である。なお、吸着物の脱離を促すために、成膜室をベーキングしてもよい。ベーキングすることで吸着物の脱離速度を10倍程度大きくすることができる。ベーキングは100℃以上450℃以下で行えばよい。このとき、不活性ガスを成膜室に導入しながら吸着物の除去を行うと、排気するだけでは脱離しにくい水などの脱離速度をさらに大きくすることができる。なお、導入する不活性ガスをベーキングの温度と同程度に加熱することで、吸着物の脱離速度をさらに高めることができる。ここで不活性ガスとして希ガスを用いると好ましい。また、成膜する膜種によっては不活性ガスの代わりに酸素などを用いても構わない。例えば、酸化物を成膜する場合は、主成分である酸素を用いた方が好ましい場合もある。なお、ベーキングは、ランプを用いて行うと好ましい。
または、加熱した希ガスなどの不活性ガスまたは酸素などを導入することで成膜室内の圧力を高め、一定時間経過後に再び成膜室を排気する処理を行うと好ましい。加熱したガスの導入により成膜室内の吸着物を脱離させることができ、成膜室内に存在する不純物を低減することができる。なお、この処理は2回以上30回以下、好ましくは5回以上15回以下の範囲で繰り返し行うと効果的である。具体的には、温度が40℃以上400℃以下、好ましくは50℃以上200℃以下である不活性ガスまたは酸素などを導入することで成膜室内の圧力を0.1Pa以上10kPa以下、好ましくは1Pa以上1kPa以下、さらに好ましくは5Pa以上100Pa以下とし、圧力を保つ期間を1分以上300分以下、好ましくは5分以上120分以下とすればよい。その後、成膜室を5分以上300分以下、好ましくは10分以上120分以下の期間排気する。
また、ダミー成膜を行うことでも吸着物の脱離速度をさらに高めることができる。ダミー成膜とは、ダミー基板に対してスパッタリング法などによる成膜を行うことで、ダミー基板および成膜室内壁に膜を堆積させ、成膜室内の不純物および成膜室内壁の吸着物を膜中に閉じこめることをいう。ダミー基板は、放出ガスの少ない基板が好ましい。ダミー成膜を行うことで、後に成膜される膜中の不純物濃度を低減することができる。なお、ダミー成膜はベーキングと同時に行ってもよい。
次に、図34(B)に示す搬送室2704、およびロードロック室2703aと、図34(C)に示す大気側基板搬送室2702、および大気側基板供給室2701の詳細について以下説明を行う。なお、図34(C)は、大気側基板搬送室2702、および大気側基板供給室2701の断面を示している。
図34(B)に示す搬送室2704については、図34(A)に示す搬送室2704の記載を参照する。
ロードロック室2703aは、基板受け渡しステージ2752を有する。ロードロック室2703aは、減圧状態から大気まで圧力を上昇させ、ロードロック室2703aの圧力が大気圧になった時に、大気側基板搬送室2702に設けられている搬送ロボット2763から基板受け渡しステージ2752に基板を受け取る。その後、ロードロック室2703aを真空引きし、減圧状態としたのち、搬送室2704に設けられている搬送ロボット2763が基板受け渡しステージ2752から基板を受け取る。
また、ロードロック室2703aは、バルブを介して真空ポンプ2770、およびクライオポンプ2771と接続されている。真空ポンプ2770、およびクライオポンプ2771の排気系の接続方法は、搬送室2704の接続方法を参考とすることで接続できるため、ここでの説明は省略する。なお、図33に示すアンロードロック室2703bは、ロードロック室2703aと同様の構成とすることができる。
大気側基板搬送室2702は、搬送ロボット2763を有する。搬送ロボット2763により、カセットポート2761とロードロック室2703aとの基板の受け渡しを行うことができる。また、大気側基板搬送室2702、および大気側基板供給室2701の上方にHEPAフィルタ(High Efficiency Particulate Air Filter)等のゴミまたはパーティクルを清浄化するための機構を設けてもよい。
大気側基板供給室2701は、複数のカセットポート2761を有する。カセットポート2761は、複数の基板を収容することができる。
ターゲットは、表面温度が100℃以下、好ましくは50℃以下、さらに好ましくは室温程度(代表的には25℃)とする。大面積の基板に対応するスパッタリング装置では大面積のターゲットを用いることが多い。ところが、大面積に対応した大きさのターゲットをつなぎ目なく作製することは困難である。現実には複数のターゲットをなるべく隙間のないように並べて大きな形状としているが、どうしても僅かな隙間が生じてしまう。こうした僅かな隙間から、ターゲットの表面温度が高まることで亜鉛などが揮発し、徐々に隙間が広がっていくことがある。隙間が広がると、バッキングプレートや、バッキングプレートとターゲットとの接合に用いているボンディング材の金属がスパッタリングされることがあり、不純物濃度を高める要因となる。したがって、ターゲットは、十分に冷却されていることが好ましい。
具体的には、バッキングプレートとして、高い導電性および高い放熱性を有する金属(具体的には銅)を用いる。また、バッキングプレート内に水路を形成し、水路に十分な量の冷却水を流すことで、効率的にターゲットを冷却できる。
なお、ターゲットが亜鉛を含む場合、酸素ガス雰囲気で成膜することにより、プラズマダメージが軽減され、亜鉛の揮発が起こりにくい酸化物を得ることができる。
上述した成膜装置を用いることで、水素濃度が、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)において、2×1020atoms/cm以下、好ましくは5×1019atoms/cm以下、より好ましくは1×1019atoms/cm以下、さらに好ましくは5×1018atoms/cm以下である酸化物半導体を成膜することができる。
また、窒素濃度が、SIMSにおいて、5×1019atoms/cm未満、好ましくは1×1019atoms/cm以下、より好ましくは5×1018atoms/cm以下、さらに好ましくは1×1018atoms/cm以下である酸化物半導体を成膜することができる。
また、炭素濃度が、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下である酸化物半導体を成膜することができる。
また、昇温脱離ガス分光法(TDS:Thermal Desorption Spectroscopy)分析によるm/zが2(水素分子など)である気体分子(原子)、m/zが18である気体分子(原子)、m/zが28である気体分子(原子)およびm/zが44である気体分子(原子)の放出量が、それぞれ1×1019個/cm以下、好ましくは1×1018個/cm以下である酸化物半導体を成膜することができる。
以上の成膜装置を用いることで、酸化物半導体への不純物の混入を抑制できる。さらには、以上の成膜装置を用いて、酸化物半導体に接する膜を成膜することで、酸化物半導体に接する膜から酸化物半導体へ不純物が混入することを抑制できる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
前述したように、開口122をドライエッチング法によって形成した場合、露出した酸化物半導体層104b表面にエッチングガスの残留成分が付着する場合がある。本実施例では、開口122の形成後に行なう洗浄処理の効果について説明する。
表1に、開口122形成時のエッチング処理を想定したプラズマ処理A乃至Cの条件を示す。表2に、開口122の形成後に行なう洗浄処理を想定した洗浄処理A乃至Cの条件を示す。
まず、単結晶シリコンを用いた基板901上に、厚さ100nmの酸化物半導体層902を形成した試料900を13試料作製した(図35参照。)。酸化物半導体層902は、原子数比がIn:Ga:Zn=1:1:1のスパッタリングターゲットを用いて形成した。
次に、4つの試料900について、プラズマ処理A(ICP法によるプラズマ処理、下部電極設定温度70℃、使用ガスBCl、ガス流量80sccm、圧力1.2Pa、ICP電力450W、バイアス電力100W、処理時間30秒)で酸化物半導体層902の表面を処理した。さらにその中の3試料を用いて、洗浄処理A(エキシマUV照射、UV光波長172nm、5mm/sec、10回)を行なった試料912、洗浄処理B(UVオゾン処理、波長184.9nmと波長253.7nmのUV光を同時に使用、処理時間60秒)を行なった試料913、洗浄処理C(希フッ酸処理、0.5wt%フッ化水素酸を純水で100倍に希釈した溶液を使用、処理時間15秒)を行なった試料914を作製した。なお、プラズマ処理Aのみを行い、洗浄処理を行わない残りの1試料を「試料911」と呼ぶ。
次に、上記とは別の4つの試料900について、プラズマ処理B(ICP法によるプラズマ処理、下部電極設定温度70℃、使用ガスCHとArの混合ガス、CHガス流量16sccm、Arガス流量32sccm、圧力1.2Pa、ICP電力450W,バイアス電力100W、処理時間30秒)で酸化物半導体層902の表面を処理した。さらにその中の3試料を用いて、洗浄処理Aを行なった試料922、洗浄処理Bを行なった試料923、洗浄処理Cを行なった試料924を作製した。なお、プラズマ処理Bのみを行い、洗浄処理を行わない残りの1試料を「試料921」と呼ぶ。
次に、上記とは別の4つの試料900について、プラズマ処理C(DF−CCP法によるプラズマ処理、下部電極設定温度20℃、使用ガスCHとArの混合ガス、CHガス流量12.5sccm、Arガス流量75sccm、圧力0.6Pa、上部電力1000W、下部電力400W、処理時間30秒)で酸化物半導体層902の表面を処理した。さらにその中の3試料を用いて、洗浄処理Aを行なった試料932、洗浄処理Bを行なった試料933、洗浄処理Cを行なった試料934をそれぞれ作製した。なお、プラズマ処理Cのみを行い、洗浄処理を行わない残りの1試料を「試料931」と呼ぶ。
試料900、試料911乃至試料914、試料921乃至試料924、および試料931乃至試料934について、SIMSを行なった。なお、図35に示す矢印は、分析方向を示している。
図36(A)および図36(B)は、試料900、および試料911乃至試料914の分析結果である。図36(A)および図36(B)の横軸は、酸化物半導体層902表面からの深さを示し、縦軸は塩素原子の濃度を示している。図36(B)は、図36(A)中の深さ0nm乃至25nmの領域を拡大したグラフである。
なお、試料911乃至試料914は、プラズマ処理および洗浄処理により、酸化物半導体層902の厚さが減少している。よって、図36(A)中の深さ75nmから85nmにある試料911乃至試料914のピークは、酸化物半導体層902と基板901の界面を示している。また、図36(A)および図36(B)において、塩素原子の濃度のバックグラウンドレベルは1.48×1016atoms/cmである。
図37(A)および図37(B)は、試料900、および試料921乃至試料924の分析結果である。図37(A)および図37(B)の横軸は、酸化物半導体層902表面からの深さを示し、縦軸は水素原子の濃度を示している。図37(B)は、図37(A)中の深さ0nm乃至25nmの領域を拡大したグラフである。
なお、試料921乃至試料924は、プラズマ処理および洗浄処理により、酸化物半導体層902の厚さが減少している。よって、図37(A)中の深さ75nmから85nmにある試料921乃至試料924のピークは、酸化物半導体層902と基板901の界面を示している。また、図37(A)および図37(B)において、水素原子の濃度のバックグラウンドレベルは1.47×1018atoms/cmである。
図38(A)および図38(B)は、試料900、および試料931乃至試料934の分析結果である。図38(A)および図38(B)の横軸は、酸化物半導体層902表面からの深さを示し、縦軸は水素原子の濃度を示している。図38(B)は、図38(A)中の深さ0nm乃至25nmの領域を拡大したグラフである。
なお、試料931乃至試料934は、プラズマ処理および洗浄処理により、酸化物半導体層902の厚さが減少している。よって、図38(A)中の深さ65nmから75nmにある試料931乃至試料934のピークは、酸化物半導体層902と基板901の界面を示している。また、図38(A)および図38(B)において、水素原子の濃度のバックグラウンドレベルは1.47×1018atoms/cmである。
図36から、プラズマ処理Aを行なうことにより、試料表面または試料表面近傍の塩素濃度が増加していることがわかる(試料911)。また、試料表面または試料表面近傍の塩素は、洗浄処理により減少することがわかる(試料912乃至試料914)。洗浄処理A乃至洗浄処理Cいずれの洗浄処理においても、試料表面または試料表面近傍から塩素を除去する効果が確認できる。
図37から、プラズマ処理Bを行なうことにより、試料表面または試料表面近傍の水素濃度が増加していることがわかる(試料921)。また、試料表面または試料表面近傍の水素は、洗浄処理により減少することがわかる(試料922乃至試料924)。洗浄処理A乃至洗浄処理Cいずれの洗浄処理においても、試料表面または試料表面近傍から水素を除去する効果が確認できる。
図38から、プラズマ処理Cを行なうことにより、試料表面または試料表面近傍の水素濃度が増加していることがわかる(試料931)。また、試料表面または試料表面近傍の水素は、洗浄処理により減少することがわかる(試料932乃至試料934)。洗浄処理A乃至洗浄処理Cいずれの洗浄処理においても、試料表面または試料表面近傍から水素を除去する効果が確認できる。
100 トランジスタ
101 基板
102 絶縁層
103 絶縁層
104 酸化物半導体層
105 導電層
106 酸化物半導体層
107 絶縁層
108 絶縁層
109 電極
110 絶縁層
111 絶縁層
114 絶縁層
115 絶縁層
119 電極
121 領域
122 開口
123 導電層
125 導電層
127 絶縁層
128 絶縁層
129 導電層
131 層
132 ハードマスク
150 トランジスタ
160 トランジスタ
170 トランジスタ
220 ウェル
221 p型半導体
223 n型半導体
224 開口
225 開口
251 配線
252 配線
253 配線
254 配線
255 配線
256 ノード
257 容量素子
273 電極
281 トランジスタ
282 トランジスタ
283 チャネル形成領域
284 低濃度p型不純物領域
285 高濃度p型不純物領域
286 絶縁層
287 電極
288 側壁
289 トランジスタ
291 トランジスタ
382 Ec
386 Ec
390 トラップ準位
400 半導体装置
401 基板
403 絶縁層
404 絶縁層
405 絶縁層
406 コンタクトプラグ
407 絶縁層
410 半導体装置
414 素子分離層
415 絶縁層
420 半導体装置
421 電極
422 電極
427 電極
429 電極
442 絶縁層
477 隔壁
487 配線
488 電極
489 コンタクトプラグ
601 光電変換素子
602 トランジスタ
603 トランジスタ
604 トランジスタ
605 トランジスタ
606 容量素子
607 ノード
608 配線
609 配線
610 撮像装置
611 配線
681 光電変換層
682 透光性導電層
686 電極
701 回路
702 回路
703 スイッチ
704 スイッチ
706 論理素子
707 容量素子
708 容量素子
709 トランジスタ
710 トランジスタ
713 トランジスタ
714 トランジスタ
720 回路
730 記憶素子
800 RFタグ
801 通信器
802 アンテナ
803 無線信号
804 アンテナ
805 整流回路
806 定電圧回路
807 復調回路
808 変調回路
809 論理回路
810 記憶回路
811 ROM
900 試料
901 基板
902 酸化物半導体層
911 試料
912 試料
913 試料
914 試料
921 試料
922 試料
923 試料
924 試料
931 試料
932 試料
933 試料
934 試料
1189 ROMインターフェース
1190 基板
1191 ALU
1192 ALUコントローラ
1193 インストラクションデコーダ
1194 インタラプトコントローラ
1195 タイミングコントローラ
1196 レジスタ
1197 レジスタコントローラ
1198 バスインターフェース
1199 ROM
1281 トランジスタ
1283 チャネル形成領域
1284 低濃度n型不純物領域
1285 高濃度n型不純物領域
2700 成膜装置
2701 大気側基板供給室
2702 大気側基板搬送室
2704 搬送室
2705 基板加熱室
2751 クライオトラップ
2752 ステージ
2761 カセットポート
2762 アライメントポート
2763 搬送ロボット
2764 ゲートバルブ
2765 加熱ステージ
2766 ターゲット
2767 ターゲットシールド
2768 基板ホルダ
2769 基板
2770 真空ポンプ
2771 クライオポンプ
2772 ターボ分子ポンプ
2780 マスフローコントローラ
2781 精製機
2782 ガス加熱機構
2784 可変部材
2791 電源
2900 携帯型ゲーム機
2901 筐体
2902 筐体
2903 表示部
2904 表示部
2905 マイクロホン
2906 スピーカ
2907 操作キー
2908 スタイラス
2910 情報端末
2911 筐体
2912 表示部
2913 カメラ
2914 スピーカ部
2915 ボタン
2916 外部接続部
2917 マイク
2920 ノート型パーソナルコンピュータ
2921 筐体
2922 表示部
2923 キーボード
2924 ポインティングデバイス
2940 ビデオカメラ
2941 筐体
2942 筐体
2943 表示部
2944 操作キー
2945 レンズ
2946 接続部
2950 情報端末
2951 筐体
2952 表示部
2960 情報端末
2961 筐体
2962 表示部
2963 バンド
2964 バックル
2965 操作ボタン
2966 入出力端子
2967 アイコン
2970 電気冷蔵庫
2971 筐体
2972 冷蔵室用扉
2973 冷凍室用扉
2980 自動車
2981 車体
2982 車輪
2983 ダッシュボード
2984 ライト
3100 表示装置
3125 発光素子
3130 画素
3131 表示領域
3132 回路
3133 回路
3135 走査線
3136 信号線
3137 画素回路
3152 回路
3153 回路
3232 トランジスタ
3233 容量素子
3431 トランジスタ
3432 液晶素子
3434 トランジスタ
3435 ノード
3436 ノード
3437 ノード
5100 ペレット
5120 基板
5161 領域
100a トランジスタ
104a 酸化物半導体層
104b 酸化物半導体層
104c 酸化物半導体層
105a 電極
105b 電極
107a 領域
112a コンタクトプラグ
112b コンタクトプラグ
112c コンタクトプラグ
112d コンタクトプラグ
113a 電極
113b 電極
113c 電極
115a 電極
122a 開口
122b 開口
124a 酸化物半導体層
124b 酸化物半導体層
124c 酸化物半導体層
126a 開口
126b 開口
126c 開口
2703a ロードロック室
2703b アンロードロック室
2706a 成膜室
2706b 成膜室
2706c 成膜室
2766a ターゲット
2766b ターゲット
2767a ターゲットシールド
2767b ターゲットシールド
2790a マグネットユニット
2790b マグネットユニット
281a トランジスタ
281b トランジスタ
282a トランジスタ
282b トランジスタ
383a Ec
383b Ec
383c Ec
406a コンタクトプラグ
406b コンタクトプラグ
406c コンタクトプラグ
413a 電極
413b 電極
413c 電極
413d 電極

Claims (7)

  1. 第1の酸化物半導体層と、
    前記第1の酸化物半導体層上の、第2の酸化物半導体層と、
    前記第2の酸化物半導体層上の、第1の電極と、
    前記第2の酸化物半導体層上の、第2の電極と、
    前記第1の電極の上面及び側面を覆い、前記第2の電極の上面及び側面を覆い、前記第2の酸化物半導体層の側面を覆い、且つ前記第1の酸化物半導体層の側面を覆う、第3の酸化物半導体層と、
    前記第3の酸化物半導体層上の、第1の絶縁層と、
    前記第1の電極及び前記第2の電極との間に設けられた前記第1の絶縁層の開口部と重なる、第1の凹部の形状を有する第4の酸化物半導体層と、
    前記第1の凹部と重なる、第2の凹部の形状を有するゲート絶縁層と、
    前記第2の凹部と重なる、ゲート電極と、
    前記第4の酸化物半導体層、前記ゲート絶縁層、及び前記ゲート電極上の、第2の絶縁層と、を有し、
    前記ゲート電極上の上面は、前記第4の酸化物半導体層の上面、及び前記ゲート絶縁層の上面と等しい位置を有し、
    前記第1の絶縁層の上面側は、前記第1の絶縁層の下面側より酸素が多く存在する領域を有することを特徴とする半導体装置。
  2. 第2の酸化物半導体層と、
    前記第2の酸化物半導体層上の、第1の電極と、
    前記第2の酸化物半導体層上の、第2の電極と、
    前記第1の電極の上面及び側面を覆い、前記第2の電極の上面及び側面を覆い、前記第2の酸化物半導体層の側面を覆う、第3の酸化物半導体層と、
    前記第3の酸化物半導体層上の、第1の絶縁層と、
    前記第1の電極及び前記第2の電極との間に設けられた前記第1の絶縁層の開口部と重なる、第1の凹部の形状を有する第4の酸化物半導体層と、
    前記第1の凹部と重なる、第2の凹部の形状を有するゲート絶縁層と、
    前記第2の凹部と重なる、ゲート電極と、
    前記第4の酸化物半導体層、前記ゲート絶縁層、及び前記ゲート電極上の、第2の絶縁層と、を有し、
    前記ゲート電極上の上面は、前記第4の酸化物半導体層の上面、及び前記ゲート絶縁層の上面と等しい位置を有し、
    前記第1の絶縁層の上面側は、前記第1の絶縁層の下面側より酸素が多く存在する領域を有することを特徴とする半導体装置。
  3. 請求項1又は請求項2において、
    前記第2の酸化物半導体層は前記ゲート電極と重なる領域に、チャネル形成領域を有することを特徴とする半導体装置。
  4. 請求項1乃至請求項3のいずれか一において、
    前記第2の酸化物半導体層は、InまたはZnの一方、もしくは両方を含むことを特徴とする半導体装置。
  5. 請求項1乃至請求項4のいずれか一において、
    前記第3の酸化物半導体層は、前記第2の酸化物半導体層に含まれる金属元素のうち、少なくとも一種類の元素を含むことを特徴とする半導体装置。
  6. 請求項1乃至請求項5のいずれか一において、
    前記第3の酸化物半導体層は、c軸配向領域を有することを特徴とする半導体装置。
  7. 第1の酸化物半導体層と、
    前記第1の酸化物半導体層上の、第2の酸化物半導体層と、
    前記第2の酸化物半導体層上の、第1の電極と、
    前記第2の酸化物半導体層上の、第2の電極と、
    前記第1の電極の上面及び側面を覆い、前記第2の電極の上面及び側面を覆い、前記第2の酸化物半導体層の側面を覆い、且つ前記第1の酸化物半導体層の側面を覆う、第3の酸化物半導体層と、
    前記第3の酸化物半導体層上の、第1の絶縁層と、
    前記第1の電極及び前記第2の電極との間に設けられた前記第1の絶縁層の開口部と重なる、第1の凹部の形状を有する第4の酸化物半導体層と、
    前記第1の凹部と重なる、第2の凹部の形状を有するゲート絶縁層と、
    前記第2の凹部と重なる、ゲート電極と、
    前記第4の酸化物半導体層、前記ゲート絶縁層、及び前記ゲート電極上の、第2の絶縁層と、を有し、
    前記ゲート電極上の上面は、前記第4の酸化物半導体層の上面、及び前記ゲート絶縁層の上面と等しい位置を有する半導体装置の作製方法であって、
    前記第2の絶縁形成後の加熱処理により、前記第1の絶縁が有する酸素が、前記第1の酸化物半導体層乃至前記第3の酸化物半導体層へ導入されることを特徴とする半導体装置の作製方法。
JP2016021633A 2015-02-09 2016-02-08 半導体装置、及び半導体装置の作製方法 Active JP6674269B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015023137 2015-02-09
JP2015023137 2015-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020038553A Division JP6876175B2 (ja) 2015-02-09 2020-03-06 半導体装置

Publications (3)

Publication Number Publication Date
JP2016149548A JP2016149548A (ja) 2016-08-18
JP2016149548A5 JP2016149548A5 (ja) 2019-03-14
JP6674269B2 true JP6674269B2 (ja) 2020-04-01

Family

ID=56567043

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016021633A Active JP6674269B2 (ja) 2015-02-09 2016-02-08 半導体装置、及び半導体装置の作製方法
JP2020038553A Active JP6876175B2 (ja) 2015-02-09 2020-03-06 半導体装置
JP2021072990A Active JP7059423B2 (ja) 2015-02-09 2021-04-23 半導体装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2020038553A Active JP6876175B2 (ja) 2015-02-09 2020-03-06 半導体装置
JP2021072990A Active JP7059423B2 (ja) 2015-02-09 2021-04-23 半導体装置

Country Status (2)

Country Link
US (1) US9954113B2 (ja)
JP (3) JP6674269B2 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102386362B1 (ko) * 2013-12-02 2022-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR102546189B1 (ko) 2015-04-13 2023-06-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9917209B2 (en) 2015-07-03 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including step of forming trench over semiconductor
US10985278B2 (en) 2015-07-21 2021-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9773919B2 (en) 2015-08-26 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2017100132A1 (en) * 2015-12-10 2017-06-15 Ioneer, Llc Apparatus and method for determining parameters of process operation
JP6887243B2 (ja) 2015-12-11 2021-06-16 株式会社半導体エネルギー研究所 トランジスタ、半導体装置、電子機器及び半導ウエハ
US10714633B2 (en) 2015-12-15 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US9905657B2 (en) 2016-01-20 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR20170096956A (ko) 2016-02-17 2017-08-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 전자 기기
WO2017149428A1 (en) * 2016-03-04 2017-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and display device including the semiconductor device
WO2017153882A1 (en) 2016-03-11 2017-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and display device including the semiconductor device
US10096718B2 (en) 2016-06-17 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Transistor, electronic device, manufacturing method of transistor
US10644140B2 (en) * 2016-06-30 2020-05-05 Intel Corporation Integrated circuit die having back-end-of-line transistors
JPWO2018178793A1 (ja) 2017-03-29 2020-02-06 株式会社半導体エネルギー研究所 半導体装置、半導体装置の作製方法
CN107293493A (zh) * 2017-06-06 2017-10-24 武汉华星光电技术有限公司 铟镓锌氧化物薄膜晶体管的制作方法
US11699704B2 (en) * 2017-09-28 2023-07-11 Intel Corporation Monolithic integration of a thin film transistor over a complimentary transistor
US11133420B2 (en) 2017-12-27 2021-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
WO2019166914A1 (ja) * 2018-02-28 2019-09-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP7142081B2 (ja) * 2018-03-06 2022-09-26 株式会社半導体エネルギー研究所 積層体、及び半導体装置
JP7093673B2 (ja) * 2018-05-15 2022-06-30 株式会社半導体エネルギー研究所 半導体装置
JP2020009960A (ja) * 2018-07-11 2020-01-16 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
KR102634245B1 (ko) * 2018-11-16 2024-02-07 삼성전자주식회사 이미지 센서
US20220085214A1 (en) * 2019-01-29 2022-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN113557608A (zh) * 2019-04-12 2021-10-26 株式会社半导体能源研究所 半导体装置以及半导体装置的制造方法

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
JPH11505377A (ja) 1995-08-03 1999-05-18 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 半導体装置
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
KR20070116889A (ko) 2004-03-12 2007-12-11 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 아몰퍼스 산화물 박막의 기상성막방법
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
KR100889796B1 (ko) 2004-11-10 2009-03-20 캐논 가부시끼가이샤 비정질 산화물을 사용한 전계 효과 트랜지스터
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
BRPI0517568B8 (pt) 2004-11-10 2022-03-03 Canon Kk Transistor de efeito de campo
CN101057333B (zh) 2004-11-10 2011-11-16 佳能株式会社 发光器件
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI562380B (en) 2005-01-28 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
EP3614442A3 (en) 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101397571B1 (ko) 2005-11-15 2014-05-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치 및 그의 제조방법
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5067039B2 (ja) 2007-06-25 2012-11-07 パナソニック株式会社 半導体装置の製造方法
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
WO2011068028A1 (en) * 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device, and method for manufacturing the same
KR101811203B1 (ko) 2009-12-25 2017-12-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 이를 제작하기 위한 방법
WO2012014786A1 (en) * 2010-07-30 2012-02-02 Semiconductor Energy Laboratory Co., Ltd. Semicondcutor device and manufacturing method thereof
WO2012017843A1 (en) 2010-08-06 2012-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
TWI552345B (zh) * 2011-01-26 2016-10-01 半導體能源研究所股份有限公司 半導體裝置及其製造方法
US8847233B2 (en) * 2011-05-12 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a trenched insulating layer coated with an oxide semiconductor film
KR20130007426A (ko) * 2011-06-17 2013-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
WO2012172746A1 (en) * 2011-06-17 2012-12-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9385238B2 (en) * 2011-07-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Transistor using oxide semiconductor
US9117916B2 (en) * 2011-10-13 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor film
US9419146B2 (en) * 2012-01-26 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI562361B (en) * 2012-02-02 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device
US9219164B2 (en) * 2012-04-20 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor channel
US9048323B2 (en) * 2012-04-30 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN108305895B (zh) * 2012-08-10 2021-08-03 株式会社半导体能源研究所 半导体装置及其制造方法
TWI620323B (zh) * 2012-11-16 2018-04-01 半導體能源研究所股份有限公司 半導體裝置
JP2014143410A (ja) * 2012-12-28 2014-08-07 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
KR102222344B1 (ko) * 2013-05-02 2021-03-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
DE102014208859B4 (de) * 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
US9768317B2 (en) 2014-12-08 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of semiconductor device, and electronic device
CN107004722A (zh) 2014-12-10 2017-08-01 株式会社半导体能源研究所 半导体装置及其制造方法
JP6857447B2 (ja) 2015-01-26 2021-04-14 株式会社半導体エネルギー研究所 半導体装置
US9954112B2 (en) 2015-01-26 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20170107997A (ko) 2015-02-06 2017-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법

Also Published As

Publication number Publication date
JP6876175B2 (ja) 2021-05-26
JP2021114627A (ja) 2021-08-05
US20160233340A1 (en) 2016-08-11
JP2020113775A (ja) 2020-07-27
JP7059423B2 (ja) 2022-04-25
US9954113B2 (en) 2018-04-24
JP2016149548A (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6674269B2 (ja) 半導体装置、及び半導体装置の作製方法
JP7044836B2 (ja) トランジスタ
US9954003B2 (en) Semiconductor device and electronic device
CN107046040B (zh) 半导体装置及电子设备
TWI736038B (zh) 半導體裝置及包括該半導體裝置的電子裝置
US10868045B2 (en) Transistor, semiconductor device, and electronic device
JP6568353B2 (ja) 酸化物半導体膜の成膜方法
JP6570829B2 (ja) 半導体装置
JP6683503B2 (ja) 半導体装置
JP2016164979A (ja) 半導体装置およびその作製方法
JP2017112374A (ja) トランジスタ、半導体装置、および電子機器
JP2017168838A (ja) トランジスタ、電子機器
JP2017183718A (ja) トランジスタ、半導体装置、および電子機器
JP2023059891A (ja) 半導体装置の作製方法
JP2016001722A (ja) 半導体装置及び該半導体装置を含む電子機器
JP2016167590A (ja) トランジスタ、トランジスタの作製方法、半導体装置および電子機器
JP2016201518A (ja) 導電体および半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200306

R150 Certificate of patent or registration of utility model

Ref document number: 6674269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250