EP2620802A1 - Ophthalmic lens assembly having an integrated antenna structure - Google Patents

Ophthalmic lens assembly having an integrated antenna structure Download PDF

Info

Publication number
EP2620802A1
EP2620802A1 EP13152733.5A EP13152733A EP2620802A1 EP 2620802 A1 EP2620802 A1 EP 2620802A1 EP 13152733 A EP13152733 A EP 13152733A EP 2620802 A1 EP2620802 A1 EP 2620802A1
Authority
EP
European Patent Office
Prior art keywords
antenna
lens assembly
lens
circuit
assembly according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13152733.5A
Other languages
German (de)
English (en)
French (fr)
Inventor
Randall Braxton PUGH
Frederick A. Flitsch
Adam Toner
Scott Robert Humphreys
Daniel B. Otts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Vision Care Inc
Original Assignee
Johnson and Johnson Vision Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Vision Care Inc filed Critical Johnson and Johnson Vision Care Inc
Publication of EP2620802A1 publication Critical patent/EP2620802A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/049Contact lenses having special fitting or structural features achieved by special materials or material structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses or corneal implants; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses or corneal implants; Artificial eyes
    • A61F2/16Intraocular lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00807Producing lenses combined with electronics, e.g. chips
    • B29D11/00817Producing electro-active lenses or lenses with energy receptors, e.g. batteries or antennas
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/083Electrooptic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0001Means for transferring electromagnetic energy to implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0001Means for transferring electromagnetic energy to implants
    • A61F2250/0002Means for transferring electromagnetic energy to implants for data transfer

Definitions

  • the present invention is directed to optical lenses, and more particularly to optical lenses, such as wearable lenses, including contact lenses, implantable lenses, including intraocular lenses (IOLs) and any other type of device comprising an optical component that incorporates electronic circuits and associated antennas/antenna assemblies for information reception, information transmission and/or charging/energy harvesting.
  • optical lenses such as wearable lenses, including contact lenses, implantable lenses, including intraocular lenses (IOLs) and any other type of device comprising an optical component that incorporates electronic circuits and associated antennas/antenna assemblies for information reception, information transmission and/or charging/energy harvesting.
  • wearable or embeddable microelectronic devices for a variety of uses.
  • Such uses may include monitoring aspects of body chemistry, administering controlled dosages of medications or therapeutic agents via various mechanisms, including automatically, in response to measurements, or in response to external control signals, and augmenting the performance of organs or tissues.
  • Examples of such devices include glucose infusion pumps, pacemakers, defibrillators, ventricular assist devices and neurostimulators.
  • a new, particularly useful field of application is in ophthalmic wearable lenses and contact lenses.
  • a wearable lens may incorporate a lens assembly having an electronically adjustable focus to augment or enhance performance of the eye.
  • a wearable contact lens may incorporate electronic sensors to detect concentrations of particular chemicals in the precorneal (tear) film.
  • the use of embedded electronics in a lens assembly introduces a potential requirement for communication with the electronics and for a method of powering and/or re-energizing the electronics.
  • the electronics in these applications often may require a power source. Accordingly, it may be desirable to incorporate a self-contained power storage device such as a rechargeable battery or capacitor. Alternately, the electronics may be inductively powered from a distance rather than being powered from a self-contained power storage device, and thus there is no need for recharging.
  • An acceptable method for recharging a battery is through inductive coupling, whereby an external coil is magnetically coupled to a coil that is coupled to, connected to or otherwise associated with a charging circuit adapted to recharge the battery imbedded in the device. Accordingly, there exists a need for inductive structures, for example, antennas, antenna assemblies and/or coils appropriate for use in an optical lens assembly. Further, it is desirable to provide a convenient method for aligning the coil structure with an external inductive coil structure for efficient near-field coupling.
  • Embedding electronics and communication capability in a contact lens presents general challenges in a number of areas, including the limited size of the components, in particular the thickness as well as the maximum length and width, the limited energy storage capacity in batteries or super capacitators, the limited peak current consumption due to higher battery internal resistance in small batteries and limited charge storage in small capacitors, the limited average power consumption due to limited energy storage and the limited robustness and manufacturability of small and especially thin components.
  • specific challenges include limited antenna efficiency, which is directly related to size or area and for a loop antenna, the number of turns, and antenna efficiency.
  • the antennas and/or antenna assemblies of the present invention overcome the disadvantages as briefly set forth above.
  • the present invention is directed to an ophthalmic lens assembly.
  • the ophthalmic lens assembly comprising a lens configured for placement in at least one of the inside and proximate to a surface of an eye, the lens including an optic zone configurable for at least one of vision correction and vision enhancement, and one or more electronic components for enabling the vision correction and vision enhancement, and at least one antenna arrangement operatively associated with the one or more electronic components for providing at least one of one or two way communication with the one or more electronic components and power transfer.
  • the present invention is directed to a lens assembly.
  • the lens assembly comprising a lens, including an optic zone for at least one of image enhancement, image capture and vision correction, and one or more electronic components for enabling image enhancement, image capture and vision correction, and at least one antenna arrangement operatively associated with the one or more electronic components for providing at least one of one or two way communication with the one or more electronic components and power transfer.
  • the present invention is directed to a lens assembly.
  • the lens assembly comprising a lens, including an optic zone for at least one of image enhancement, image capture and vision correction, and at least one antenna arrangement operative associated with the lens, wherein energization and de-energization of the at least one antenna arrangement causes a mechanical change in the lens.
  • an antenna or antenna assembly may be incorporated into mechanical devices such as ophthalmic devices, including lenses and contact lenses. While exemplary embodiments will be described with respect to contact lenses (wearable) or implantable lenses (IOLs), it is important to note that the present invention may be utilized in any number of related or non-related devices. Wearable or contact lenses may incorporate a lens assembly having electronically adjustable focus to augment the performance of the eye and/or it may incorporate electronic sensors to detect concentrations of particular chemicals in the tear film. The use of such embedded electronics in a lens assembly potentially introduces the need for one and/or two way communication, and for a method of powering the electronics or recharging a power storage device.
  • the antenna/antenna assembly of the present invention may be utilized to transmit and/or receive information and/or data as well as provide a means for charging the battery, batteries or capacitors utilized to power the electronics by inductive charging or radio frequency (RF) energy harvesting methods.
  • RF energy harvesting systems may be implemented where circuit operation is similar to inductive charging, but at higher frequencies, for example, 900 megahertz to 2.4 gigahertz.
  • inductive charging is often associated with low frequency, for example, 125 kilohertz or 13.5 megahertz, near field coupling to a coil-like structure and RF energy harvesting is associated with longer distance, lower power, higher frequency waves coupled to an RF antenna.
  • An exemplary optical lens assembly in accordance with the present invention may comprise a circuit board or substrate, an electronic circuit, a lens structure (optics) and an antenna structure.
  • the electronic circuit may comprise a number of electronic components mounted on the circuit board and the circuit board may provide wiring traces to interconnect the electronic components.
  • the circuit board may be mechanically attached to the lens to form a rigid component of the optical lens assembly. Alternately, the circuit board may not be mechanically attached to the lens and thus not form a rigid component of the optical lens assembly. This arrangement may vary depending on the type of lens.
  • the antenna structure or antenna may include a coil comprising one or more loops of wire mounted around and concentric with the lens structure.
  • the antenna may comprise one or more wiring traces on the circuit board.
  • the antenna may be electronically coupled to the electronic circuit.
  • the electronic circuit may provide a transmittal signal to the antenna in order to transmit an outgoing electromagnetic signal board on the transmit signal while in alternate exemplary embodiments, the antenna may receive incoming electromagnetic signal and provide a received signal to the electronic circuit.
  • the antenna may be utilized to transmit and receive signals.
  • the antenna may be utilized to inductively charge a storage element or battery.
  • a single antenna may also be utilized for both communication and power transfer as is described in detail subsequently.
  • Antennas and antenna systems or assemblies incorporated into medical devices such as ophthalmic devices may be utilized or configured for a wide variety of applications.
  • Applications include transmitting/receiving data to/from the ophthalmic device, sensing information from the environment in which the ophthalmic device is placed, charging batteries associated with the ophthalmic device and actuation or activation of other devices.
  • Data flow to and from the ophthalmic device may include communication with key fobs, smart phones or other hand-held devices and wireless networks, cases for holding the ophthalmic devices, e.g.
  • the cleaning cases for contact lenses that utilize chemical or UV based disinfection systems, as well as any other types of devices capable of receiving text information, video information, telemetry information, graphics, software or code for reprogramming or updating, and the like via an RF or inductive wireless link.
  • the data or information to be transmitted or received may include tear film analysis, intra ocular pressure, heart rate, blood pressure and the like.
  • the ophthalmic device may be utilized to sense any number of parameters depending on the device application, for example, ciliary muscle contraction for an accommodating lens.
  • the output from the antenna or antenna system may be utilized to actuate or activate secondary devices for changing the optics of the device and to dispense drugs or therapeutic agents.
  • the antennas and antenna assemblies may be utilized, as stated above, to recharge batteries or for continuous powering from a remote source. This may be in the form of inductive powering rather than charging.
  • the antennas may also be utilized to communicate between ophthalmic devices, such as lenses, to detect eye convergence during reading or to synchronize behavior for three-dimensional holographic realization.
  • the antennas and antenna assemblies may be physically realized in any number of ways. Physical realizations include conductive traces on a circuit incorporated in an ophthalmic device, and/or turns of wire embedded in the device, conductive traces printed in/on the device, and/or as a layer in a stacked die assembly. For example, an antenna may be fabricated on a circular/washer or arc shaped layer, with traces on one or both sides of the layer, on substrate materials with the appropriate trace metallurgy. Multiple antennas on a single device may be utilized as well.
  • the exemplary optical lens assembly 100 comprises a lens structure 102, a circuit board 104, an electronic circuit 106 positioned on the circuit board 104, and a single turn loop antenna 108 also positioned on the circuit board 104 so as not to interfere with the lens structure 102.
  • the lens structure 102 may include a portion of an assembly that acts as an optical lens and not necessarily a separate component, but rather a region of a component such as a hydrogel overmolding.
  • the electronic circuit 106 and the antenna 108 may be connected to or mounted to the circuit board 104 by any suitable means, for example, solder, wirebond, conductive epoxy, conductive ink and conductive polymer and in any suitable configuration for any number of applications.
  • the circuit board 104 as used herein may include any suitable substrate, including copper traces on a flexible polyimide substrate with a nickel-gold surface finish. Circuit boards are described in more detail subsequently.
  • the electronic circuit 106 may comprise one or more electronic components 110 mounted to the circuit board 104 and the circuit board 104 may comprise interconnect conductive traces 112 to interconnect the one or more electronic components 110.
  • the circuit board 104 may be attached to the lens structure 102 by any suitable means.
  • the circuit board 104 may be mechanically connected to the lens structure 102 to form a rigid component of the optical lens assembly 100.
  • the single-turn loop antenna 108 may be formed from any number of suitable conductive materials and constructed utilizing any number of techniques.
  • the antenna 108 may be formed by wiring traces on the circuit board 104 and arranged to form an electromagnetic structure having predetermined characteristics for operation as an antenna, such as directivity, efficiency and/or gain when worn in a body or in-eye, or as an inductor for magnetic coupling to another inductor.
  • the single-turn loop antenna 108 may be electrically coupled to the electronic circuit 106 by wiring traces 112.
  • the antenna may be fabricated from any number of suitable conductive materials and alloys, including copper, silver, gold, nickel, indium tin oxide and platinum.
  • the antenna is fabricated from a non-reactive, biocompatible material.
  • FIG 1B illustrates additional details of the circuit board 104 of the exemplary optical lens assembly 100 of Figure 1A .
  • the circuit board 104 may comprise mounting pads 114 to facilitate electrical connection and mounting of the electronic components 110 ( Figure 1A ).
  • the mounting pads 114 may be constructed from any number of suitable materials, for example, the pads 114 may be constructed with the metal layer that forms the metal traces 112 and may also be covered or more appropriately, plated utilizing any suitable process, with additional metal layers to improve manufacturability and reliability as is known to one of ordinary skill in the art.
  • the circuit board 104 may also be constructed to provide an opening 116 in which a lens structure or optics section 102 may be mounted ( Figure 1A ) or through which light may pass by a lens structure mounted on one side of the circuit board 104.
  • the circuit board 104 may comprise conducting and insulating layers, for example, soldermask to cover the top conducting layer or insulators to separate conducting layers as is explained in greater detail subsequently. There are a wide variety of alternate configurations
  • FIG. 2 illustrates an alternate exemplary circuit board 204 that may be utilized with the optical lens assembly 100 illustrated in Figure 1A .
  • Circuit board 204 comprises both top side conductive interconnect traces 212a and bottom side conductive interconnected traces 212b (shown in phantom), through-holes or vias 218 for making electrical connections between the top and bottom sides, mounting pads 214, a center opening 216 and a multi-turn loop antenna 220 rather than a single turn loop antenna.
  • the multi-turn loop antenna 220 comprises two or more turns of wire, conductive traces or the like formed in either or both of the top side or the bottom side of the circuit board 204. If multiple antennas are utilized on opposite sides, the through-hole or vias 208 may be utilized to make connections therebetween.
  • the circuit board 204 may comprise additional metal layers and that any combination of layers may be used to construct the multi-turn loop antenna 220.
  • the circuit board 304 comprises top side conductive interconnect traces 312a, bottom side conductive interconnect traces 312b, (illustrated in phantom) through-hole vias 318, mounting pads 314, a center opening 316 and one or more spiral antenna structures 320.
  • the one or more spiral antenna structures 320 each comprise one or more turns of wire, conductive traces or the like formed in either the top side metal, the bottom side metal or both the top side and bottom side metal of the circuit board 304. If one or more antenna structures 320 are utilized on opposite sides, the through-hole vias 318 may be utilized to make connections therebetween.
  • the circuit board 304 may comprise additional metal layers and that any combination of layers may be utilized to construct the spiral antenna structures 320.
  • the antenna structures alternately may be embedded on an inner conducting layer, with other conducting layers above and/or below the antenna structures 320.
  • FIG. 4 illustrates another exemplary embodiment of an optical lens assembly 400.
  • the optical lens assembly 400 comprises a lens structure or optics 402, a circuit board 404, an electronic circuit 406 and a coil antenna subassembly 408.
  • the electronic circuit 406 may comprise electronic components 410 mounted on the circuit board 404 and the circuit board 404 may provide conductive interconnect traces 412 to interconnect the electronic components 410.
  • the electronic components may be connected to the circuit board 404 by any suitable manner, including mounting pads (not illustrated).
  • the circuit board 404 may be attached to the lens structure 402 by any suitable means.
  • the circuit board 404 may be mechanically connected to the lens structure 402 to form a rigid component of the optical lens assembly 400.
  • the coil antenna subassembly 408 may comprise one or more turns of wire or the like on a circular form to create an electromagnetic structure having desirable characteristics for operation as an antenna, such as directivity, efficiency or gain when worn on a body or in eye, or as an inductor for magnetic coupling to another inductor coil.
  • the coil antenna subassembly 408 may be electrically coupled to the electronic circuit 406 by the wiring traces 412 and the electronic components 410.
  • the notable or primary difference between the optical lens assembly of Figure 1A and the optical lens assembly of Figure 4 lies in the antenna.
  • the device of Figure 1A comprises a single-turn loop antenna 108 constructed with the circuit board 104 whereas the device of Figure 4 comprises a coil antenna subassembly 408 separate from the circuit board 404. This design may provide benefits for fabrication, cost, assembly, antenna performance, as well as other characteristics.
  • the antenna subassembly 408 may be integrated with the lens 402, for example, as a wire or printed coils within the lens component.
  • circuit boards described herein may be constructed from any number of biocompatible materials or combination of materials utilizing any number of fabrication techniques. A more detailed description is given subsequently.
  • the single antenna 1100 is configured as a single four loop spiral antenna with a first tap point 1102 after the first loop and a second tap point 1104 after the fourth loop.
  • the single loop tap 1102 is intended, for example, for 900 megahertz while the four loop tap 1104 is intended for 13.5 megahertz.
  • a high pass filter 1106 is coupled to the first tap point 1102 while a low pass filter 1108 is coupled to the second tap point 1104.
  • the high pass filter 1106 may couple an electrical signal to an RF transmit or receive circuit such as for communication or power coupling.
  • the low pass filter 1108 may also couple an electrical signal to a lower frequency transmit or receive circuit such as for communication or power coupling.
  • Low and high pass filters may be implemented in a wide variety of configurations using a wide variety of components and/or software as is known to one skilled in the relevant art.
  • printed circuit boards are commonly manufactured or fabricated with one or more layers of fiberglass reinforced epoxy laminate sheets such as FR-4 fiberglass epoxy or a polyimide flexible material to produce a flexible circuit board.
  • Conductive circuit traces may be created by coating an insulating layer with a predetermined thickness of copper or other suitable conductive material, applying a photoresistive material thereon, and selectively patterning and etching the material based on a desired circuit routing pattern.
  • Multiplayer boards may be built up in layers with adhesive. The upper traces may then be plated with nickel-gold or other materials to achieve suitable corrosion resistance, solderability and bondability.
  • Antenna traces may be created directly within the contact lens or an optic insert.
  • the lens molding process may allow for insertion of an antenna or deposition of an antenna within the polymer of the contact lens.
  • An antenna may be deposited as a printed, curable trace during manufacture.
  • An insert, containing the antenna, may be added to the contact lens during molding.
  • An antenna may be fabricated on an optic insert by selectively depositing metal, broadly depositing then selectively removing metal, depositing a liquid curable conductor, or other means.
  • the functionality of the antenna is similar to what has been described for a circuit board; however, the physical realization is on a polymer or plastic instead of typical circuit board materials.
  • a coil subassembly may be manufactured by winding enamel coated wire on a cylindrical form that is incorporated as part of a lens assembly.
  • wire may be wound onto an outer part of the lens structure itself and optionally bonded (glued) or otherwise attached to the lens structure. Any suitable means for attaching the wire to the lens, for example, small tabs may be utilized to secure the windings in position.
  • a coil may be created by selectively etching, for example with a laser or mechanical means, a spiral or circular pattern of conductive traces in a conductive layer on an outer or inner portion of the lens assembly.
  • An antenna may also be realized in a contact lens by first fabricating a stacked die structure which is then embedded within the contact lens.
  • An antenna may be fabricated on a circular/washer or arc-shaped layer, with conductive traces on one or both sides of the layer, on substrate materials like glass, silicon or alumina, with the appropriate trace metallurgy.
  • An antenna layer may be combined with other layers to form an electronic system, potentially including batteries, sensors and any number of other electronic circuits or devices.
  • the antennas may be configured as full loops or partial loops on opposite sides of a device or bypassing other devices, and all be interconnected through vias and/or bridges.
  • Figure 12 illustrates an exemplary stacked die arrangement incorporated into a contact lens 1200.
  • the contact lens comprises an optic lens zone 1202, one or more layers of electronic components 1204, and at least one antenna layer 1206.
  • the optic lens zone 1202 comprises a front optic, a rear optic and a metalized flange 1208 on the perimeter thereof.
  • the stacked die is encapsulated into the polymer forming the lens 1200. It is important to note that any of the antennas described herein, including the single-turn loop antenna, the multi-loop antenna, the spiral antenna or the coil antenna subassembly may also be encapsulated into the polymer forming the lens with or without a substrate.
  • the antenna traces should preferably be insulated from the surrounding conductive fluids found in or on the eye.
  • the eye's tear film is composed of three layers.
  • the first or bottom layer is the layer that coats the eye and comprises mucin which is created by cells in the conjunctiva referred to as goblet cells.
  • the mucin fills in microscopic irregularities on or in the eye's surface which is important to clear vision.
  • the second layer or middle layer of the tear film comprises a watery substance that makes up the bulk of the tear film.
  • the third or top layer of the tear film comprises a thin layer of oil secreted by the meibomian glands and functions to prevent the tears from evaporating too quickly.
  • the aqueous humor is a clear waterlike fluid within the anterior chamber between the cornea and the crystalline lens of the eye which is similar to blood plasma in composition.
  • the vitreous humor is a jellylike fluid in the posterior chamber between the crystalline lens and the retina of the eye.
  • Both tears and aqueous humor may contain conductive components. Accordingly, without proper insulation, undesirable shorts could develop between antenna traces, or the performance of the antenna may be degraded by the presence of a nearby conductive fluid or material with a high dielectric constant.
  • a tear film as stated above comprises a conductive solution of water and salt ions. Human tissue as well as tear film also exhibit dielectric properties which could change the tuning, frequency response and efficiency of the antenna.
  • Lens 1300 comprises a flexible circuit board 1302 on which the antenna traces 1304 may be patterned. Also mounted to the circuit board 1302 is the lens module 1306 and electronic components 1308. An insulating layer 1310 is coated on the antenna traces. The contact lens polymer 1312 encapsulates the entire assembly.
  • Lens 1320 as illustrated, comprises a stacked die arrangement 1322 with an antenna layer 1326 as the top layer. The stacked die arrangement 1322 also comprises a number of layers of electronic components 1328, 1330 and 1332 arranged in layers. Layer 1328 may comprise a number of functional components, for example, an integrated circuit RF receiver.
  • Layer 1330 may comprise, for example, multiple battery layers or other energy storage devices.
  • Layer 1332 may comprise additional circuitry or antennas.
  • An insulating layer 1324 may be coated on top of the antenna layer 1326.
  • contact lens polymer encapsulates the entire assembly.
  • Lens 1340 as illustrated, comprises an antenna 1342 mounted directly on the polymer forming the lens 1344 with an insulating layer 1348 positioned thereon.
  • An integrated circuit 1346 may be connected to the antenna 1342, for example, as an RF receiver.
  • the contact lens polymer encapsulates the whole assembly.
  • the insulating layers 1310, 1324 and 1348 may be implanted in any number of ways. For example, on a circuit board, it is typical to implement a soldermask layer which insulates all traces except for defined pads which are left open to permit connection to components such as discrete components, battery and/or integrated circuits. In a die stack arrangement, underfill or other adhesives or encapsulants may be used as is standard practice in die attachment and packing. For a design utilizing antenna traces realized directly on the optic polymer, an insulating layer may be deposited through standard deposition or coating techniques known in the semi-conductor processing industry. Any of these approaches may undergo further insulating or encapsulation, including paralyne coating, dielectric deposition, dip coating, spin coating or painting. The insulating material must have sufficient dielectric strength in the presence of an applied electromagnetic field given the specific trace geometry and separation.
  • a contact lens 1360 having multiple components, including antenna traces on a substrate with insulation thereon.
  • the substrate 1362 may comprise any suitable surface, including a circuit board, silicon or other material used in a die stack, optic plastic/polymer, or any other substrate material suitable for use with optic and metallic traces.
  • the antenna traces 1364 may be formed on the substrate 1362 utilizing any suitable technique such as those described herein. For an antenna implemented as a wire assembly, the antenna may not be formed directly on the substrate.
  • An insulating layer 1366 provides electrical and mechanical insulation between the antenna traces 1364 and also between the antenna traces 1364 and the surrounding environment, which may include a biocompatible polymer 1368 and the ocular environment 1370 which includes the tear film and the like which comes into contact with the lens 1360.
  • the insulating layer 1366 and the biocompatible polymer layer 1368 may also provide chemical as well as mechanical insulation for the antenna traces 1364 and the substrate 1362.
  • the physical separation between the antenna and nearby substances with high permittivity or nearby objects connected to various circuit nodes can affect the antenna frequency response, tuning, and efficiency.
  • Parasitic capacitance may be distributed around the loop antenna causing substantially altered performance from the design goal.
  • Other circuit traces should be kept as far as possible from the antenna trace to avoid parasitic coupling.
  • Electromagnetic field simulations should be performed to design the antenna in the presence of nearby objects and substances.
  • the antenna trace 1502 may be implemented on any suitable substrate 1500, which may include a circuit board or a die stack utilizing any suitable techniques such as those described herein.
  • Other components 1506 mounted on the substrate 1500 and located proximate the antenna trace 1302 may couple to the antenna trace 1502 through parasitic capacitance represented by capacitor 1504.
  • this coupling may significantly impact antenna performance.
  • this parasitic coupling may be reduced by increasing the separation 1508 between the antenna trace 1502 at the other components 1506 by distance or through shielding material.
  • FIGs 16A and 16B are schematic representations illustrating the concept set forth with respect to Figure 15 .
  • antenna trace 1602 on circuit board 1614 is close to traces 1604, 1606, 1608 and 1610 as well as electronic component 1612.
  • Each of these conductive traces and/or electronic components may cause distributed parasitic capacitance along the antenna trace 1602.
  • Figure 16B a single solution is illustrated in Figure 16B , wherein the antenna trace 1602' on circuit board 1614' is separated from traces 1604', 1606', 1608' and 1610' as well as component 1614', thereby decreasing parasitic capacitance and improving antenna performance.
  • Antennas or antenna systems may serve as a means for receiving signals, as a means for transmitting signals, as an inductive coupling means, or any combination thereof.
  • the function of an antenna determines its design as well as its supporting circuitry.
  • an antenna may be coupled to a receiver circuit, a transmitter circuit, an inductive coupling circuit or to any combination thereof.
  • an antenna is an electrical device that converts electromagnetic waveforms into electrical signals, electrical signals into electromagnetic waveforms, or electrical signals into different electrical signals. The discussion below focuses on the three different uses of an antenna and its associated circuitry.
  • circuits set forth and described subsequently may be implemented in a number of ways.
  • the circuits may be implemented using discrete analog components.
  • the circuits may be implemented in integrated circuits or a combination of integrated circuits and discrete components.
  • the circuits or particular functions may be implemented via software running on a microprocessor or microcontroller.
  • the radio receiver electronic circuit 500 comprises an antenna match circuit 504, a receiver circuit 506, a controller 508, an actuator 510, a battery 512 and a power management circuit 514.
  • the antenna 502 is adapted to receive an electromagnetic signal 501 and to provide a received electrical signal to the antenna match circuit 504.
  • the antenna match circuit 504 may comprise any suitable circuitry necessary for balancing the impedance between the source and the load to maximize power transfer and/or minimize reflection from the load.
  • antenna impedance is the ratio of voltage to current at any point on the antenna and for efficient operation, the antenna impendence should be matched to the load, and thus a match circuit is utilized.
  • the match circuit 504 is adopted to provide an impedance match between the antenna 502 and the receiver circuit 506 for an optimum power match, noise match or other match condition as is known in the radio and circuit design arts.
  • the receiver circuit 506 comprises any suitable circuitry necessary to process the modulated signal received by the antenna 502 and provide a demodulated signal to the controller 508.
  • modulation involves varying one or more properties of a signal or electromagnetic waveform.
  • a waveform may be amplitude modulated (AM), frequency modulated (FM) or phase modulated (PM).
  • AM amplitude modulated
  • FM frequency modulated
  • PM phase modulated
  • Demodulation involves extracting the original information bearing signal from the modulated carrier wave.
  • the controller 508 provides a control signal to the actuator 510 based upon the demodulated signal in order to control a state or operation of the actuator 510.
  • the control signal may be further based on any internal state of the controller (for example, to implement control laws) and/or any other circuits coupled to the controller (for example, to implement a feedback control system or to modify the actuator operation based on other information, such as information based upon sensor data).
  • the battery 512 provides a source of electrical energy for all components in the electronic circuit 500 requiring energy e.g. active components.
  • the power management circuit 514 is adapted to receive a current from the battery 512 and condition it or regulate it to provide a workable output voltage suitable for use by the other active circuits in the electronic circuit 500.
  • the controller 508 may also be utilized to control the receiver circuit 506 or other circuits in the receiver 500.
  • the antenna 502 may comprise one or more of the configurations described herein. For example, a single-turn loop antenna, a multi-turn loop antenna, a spiral antenna, a coil antenna subassembly or a stacked-die configuration or arrangement.
  • the optimum transfer of power between an antenna and a receiving and/or transmitting circuit requires matching the impedance presented to the antenna and the impedance presented to the circuit. Essentially, optimum power transfer occurs when the reactive components of the antenna and circuit impedances are cancelled and the resistive components of the impedances are equal.
  • a matching circuit may be introduced to couple the antenna to the circuit that meets the optimum power transfer criterion at each, thereby allowing for optimum power transfer to occur between the antenna and circuit. Alternately, a different criterion may be selected to optimize a different parameter such as maximum current or voltage at the circuit.
  • Matching circuits are well known in the art and may be implemented with discrete circuit component such as capacitors, inductors and resistors, or with conductive structures, such as traces in a circuit board, that provide a desired impendence characteristic.
  • Impedances of small RF loop antennas are typically between 20 and 50 nanohenries, and matching component valves are in the range of 0.5 to 10 picofarads for capacitors and 3 to 50 nanohenries for inductors.
  • Impedances of inductive charging coils are typically between 100 nanohenries and 5 nanohenries and associated capacitors for resonating the circuits are between 20 and 100 picoforads.
  • the actuator 510 may comprise any number of suitable devices.
  • the actuator 510 may comprise any type of electromechanical device, for example, a pump or transducer.
  • the actuator may also comprise an electrical device, a chemical release device or any combination thereof.
  • the actuator 510 may be replaced with a controlled device such as a light emitting diode or diode array or any other suitable display or user interface.
  • the circuit 500 may utilize an actuator (action device) or a controlled device (passive device).
  • a passive device is a device that does not output to or control another device, for example, actuators such as motors are active whereas displays or monitors are passive.
  • passive electronic devices such as resistors, capacitors and inductors and active devices such as transistors. Active devices as used in this context are devices capable of changing their "operational performance," such as transistors.
  • the battery 512 may comprise any suitable device for the storage of electrical energy.
  • the battery 512 may comprise a non-rechargeable electrochemical cell, a re-chargeable electrochemical cell, a storage electrochemical cell, and/or a capacitor.
  • no battery may be required as explained above with respect to RF energy harvesting or near field inductive coupling.
  • mechanical vibration and similar means may be utilized to generate or harvest power.
  • the power management circuit 514 may comprise additional circuitry for a wide variety of functions in addition to regulating the output of the battery 512.
  • the power management circuit 514 may comprise circuitry for monitoring various battery parameters, such as charge, preventing overdischarge of the battery, and supervising the start up and shut down of the electronic circuit 500.
  • the radio transmitter electronic circuit 600 comprises an antenna match circuit 604, a transmitter circuit 606, a controller 608, a battery 610, a power management circuit 612 and a sensor 614.
  • the antenna 602 is adapted to receive a matched transmit electrical signal from the match circuit 604 and broadcast or radiate a transmit electromagnetic signal 601 based on the transmit electrical signal.
  • the match circuit 604 may be configured to provide an impedance match between the antenna 602 and the transmitter circuit 606 for an optimum power match, noise match or other match condition as is known to one of ordinary skill in the signal processing art.
  • the controller 608 is coupled to and configured to receive a sensor data signal from the sensor 614.
  • the sensor 614 may comprise any type of sensor, including mechanical sensors, chemical sensors, and/or electrical sensors.
  • the controller 608 provides a transmit data signal to the transmitter circuit 606 based on the sensor data signal from the sensor 614.
  • the transmit data signal may be further based on an internal state of the controller 608 and/or the state of the other circuits coupled to the controller 608.
  • the battery 610 provides a source of electrical potential energy for any of the components requiring energy (active components).
  • the power management circuit 612 is configured to receive current from the battery 610 and to provide a regulated supply voltage to the other active components in the circuit 600.
  • the antenna 602 may comprise one or more of the configurations described herein. For example, a single-turn loop antenna, a multi-turn loop antenna, a spiral antenna. a coil antenna subassembly or a stacked-die arrangement or configuration.
  • FIG. 7 illustrates an electronic circuit 700 comprising an inductive charging receiver.
  • the electronic circuit 700 comprises a rectifier circuit 702, a battery charging circuit 704, a battery 706, a power management circuit 708, a controller 710 and an actuator 712.
  • a secondary inductive circuit 714 is coupled to and provides a power signal to the rectifier circuit 702.
  • the secondary inductive circuit 714 is essentially an inductive circuit in which the current is produced by a magnetic field from a primary circuit (not shown).
  • a rectifier circuit converts an alternating current to a direct current.
  • the rectifier circuit 702 is illustrated in its simplest form, essentially using a diode to allow current to flow in a single direction.
  • the inductive circuit 714 is also shown in its simplest form with a coil in which current is utilized to create a magnetic field. Both of these circuits may be much more complex depending on what is needed for the particular application. Those skilled in the art will recognize many alternate exemplary embodiments of resonant circuits and rectifier circuits, including full wave bridge rectifiers which may or may not be coupled to inductors having a secondary tap that may improve the efficiency of the rectification, but essentially perform the same or similar function.
  • the rectifier circuit 702 rectifies the power signal to provide a direct current (DC) signal to the battery charging circuit 704.
  • the battery charging circuit 704 is coupled to the battery 706 which is also coupled to and provides energy to the power management circuit 708.
  • the power management circuit 708 may provide a regulated voltage supply to the controller 710 and actuator 712.
  • the controller 710 may be further configured to receive an indicator signal from the power management circuit 708 and to provide control signals to the power management circuit 708.
  • the controller 710 provides an actuator control signal to the actuator 712.
  • the battery charging circuit 704 may sense the battery voltage of the battery 706 and the available voltage from the rectifier circuit 702.
  • the battery charging circuit 704 may charge the battery until either the available voltage is too low or the battery voltage reaches the desired charged level.
  • the controller 710 may operate under the control of an internal state machine or microprocessor core and software to periodically enter a low or high power state, and to command the power management circuit 708 to change an operating mode and to control the actuator 710.
  • the power management circuit 708 may sense the battery voltage and provide an indication of the state of charge of the battery 706 on the indicator signal. The operation of the controller 710 may depend on the indicator signal and therefore the state of charge of the battery 706.
  • the secondary inductive circuit 714 may comprise one or more of a single-turn loop antenna, a multi-turn loop antenna, spiral antenna structures, or a coil antenna subassembly.
  • the overall system 800 comprises a control transmitter 802 and an optical lens assembly 804.
  • the control transmitter 802 may comprise an antenna 806, a transmitter circuit 808, a battery 810 and a user interface 812.
  • the user interface 812 may be an optional component.
  • the antenna 806 may comprise any suitable device such as those disclosed herein.
  • the battery 810 may comprise any suitable device, including rechargeable batteries, non-rechargeable batteries, one or more capacitors and a power supply that works with an AC adapter as described above.
  • the user interface 812 is coupled to the transmitter circuit 808 and may provide buttons or similar means for a user to control and/or observe the status of the transmitter circuit 808.
  • the user interface 812 may comprise any suitable means through which a user or operator may command and communicate with the transmitter circuit 808 such as buttons, touch screen displays or any other known means.
  • the transmitter circuit 808 generates and provides and electrical transmit signal to the antenna 801 in order to broadcast a transmit electromagnetic signal 801.
  • the transmit electromagnetic signal 801 may be based on control information provided by the user/operator and/or may be based on an internal state of the transmitter 802.
  • the optical lens assembly 804 may also comprise an antenna 814, an electronic circuit 816, which may be substantially similar to the circuit 500 of Figure 5 , and a lens structure 818 with which the antenna 814 and the electronic circuit 816 are incorporated.
  • Figure 9 illustrates an exemplary inductive charging system 902 and an exemplary optical lens assembly 904, including a secondary inductive circuit 906 and an electronic circuit 914.
  • the inductive charging system 902 comprises a primary inductive circuit 908, an inductive transmitter circuit 910 and a battery 912.
  • the battery 912 provides a source of electrical potential energy to the inductive transmitter circuit 910.
  • the inductive transmitter circuit 910 generates and provides a drive signal to the primary inductive circuit 908 in order to generate an alternating magnetic field in the primary circuit 908.
  • the primary inductive circuit 908 may comprise any suitable design, for example, with either series or parallel circuit arrangements as is well known in the relevant art.
  • the optical lens assembly 904 comprises a secondary circuit 906 and an electronic circuit 914.
  • the secondary circuit 906 may be magnetically coupled to the primary circuit 908 such that the induced magnetic field induces a current in the secondary circuit 906 which is provided to the electronic circuit 914.
  • the electronic circuit 914 may comprise a circuit substantially similar to circuit 700 ( Figure 7 ) and the secondary circuit 906 may comprise any type of antenna such as those discussed herein.
  • the electronic circuit 914 and the secondary circuit 901 may be incorporated into an optical lens assembly 916 in any suitable manner such as any of the exemplary embodiments described herein.
  • FIG. 10 illustrates an exemplary contact lens case 1002 incorporating a charging system.
  • the exemplary contact lens case 1002 comprises lens holder 1004, a circuit board 1006, an inductive transmitter circuit 1008, a power-source 1010, and a primary inductive antenna structure 1012.
  • a contract lens 1014 comprises a circuit board 1016 and a secondary inductive antenna structure 1018.
  • the lens 1014 is illustrated in profile and thus the optical structure is not shown. In operation, a user simply places the lens 1014 into the lens holder 1004.
  • the lens holder 1004 is shaped in a manner to optimally align and achieve a desired amount of magnetic coupling between the secondary inductive antenna structure 1018 with the primary inductive antenna structure 1012 an indicated by magnetic field lines 1001.
  • Energy harvesting is a process hereby energy is derived from any number of external sources, captured and then stored for use.
  • a typical example is an RFID system, wherein a radio transmitter broadcasts RF energy to power remote devices.
  • the FCC and/or other similar regulatory agencies set forth specific guidelines for transmission, including power levels, which address various issues including safe levels of energy.
  • lenses may be constructed wherein the lens itself responds to the energization and de-energization of an antenna rather than use additional electronics.
  • an antenna 1400 as illustrated in Figure 14 , may be mounted in a lens 1402 in a manner such that when it is energized it may cause the lens 1402 to assume one specific shape and/or configuration and another or resting shape and/or configuration when it is de-energized. Its operation may be similar to the use of a piezoelectric material.
  • the antennas 1400 may directly connect to an electro-optic lens such that the current induced in the antenna when energized by an external electromagnetic field coupled to the lens 1402 causes it to activate.
  • all that is required to implement such a system would be a convenient transmit power source and a receive antenna which may be implemented within the constraints of a contact lens.
  • only the antenna would be required with no additional tuning components.
  • antenna of the present invention may be utilized for a number of applications, including actuation of other elements, including vision correction, dispensing therapeutic agents and photochromatic diming, charging onboard batteries and similar energy storage devices, continuous powering from a remote source and energy harvesting, transmitting data to and/or from the lens, and sensing on the eye itself.
  • the transmission of data to and/or from the lens may include any type of information, including biometric data.
  • the antennas may take on any number of forms, including traces on a circuit board, turns of wire embedded in the lens, printed on the lens and as a layer in a stacked die arrangement.
  • antenna related circuits Associated with the antennas are antenna related circuits. Radio frequency matching may be realized with discrete components, integrated circuits, integrated passive devices, MEMS tuners and switches.
  • Resonating and load structures include parallel resistance to define the load and Q factor, series and/or parallel resonance, and tunable structures to adapt to the environment.
  • Any antenna designed preferably is designed to work on-body and be embedded in a saline environment with limited area and volume available. Accordingly, small magnetic loop devices are preferred, as monopoles and dipoles as well as similar antennas are not good on-body or in saline.
  • any of the antennas set forth herein, e.g. coils, as well as any other antenna design may be realized using a fractal design, as is known in the relevant art, to optimize performance, including size, efficiency, input impedance, bandwidth and multiband usage.
  • a fractal antenna is any antenna structure that uses a fractal, self-similar design to maximize the length or increase the perimeter of a material that is able to transmit and/or receive electromagnetic radiation within a given total surface area or volume.
  • Antenna tuning units are generally not required for use with fractal antennas due to their wide bandwidth and complex resonance.
  • antennas function by transmitting and/or receiving electromagnetic waves.
  • factors which must be addressed in any antenna design and they include, gain, efficiency, impedance, bandwidth, polarization, directionality and radiation pattern. These factors are all important and can be varied depending on the application.
  • the antenna is preferably designed as a directional antenna with the bulk of radiated power travelling out of the eye and away from the head. Desired frequency and bandwidth may be selected or chosen depending on availability and desired functionality.
  • Impedance i.e. the voltage to current ratio at the input of the antenna may also be determined by the specific design.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Transplantation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aerials With Secondary Devices (AREA)
  • Near-Field Transmission Systems (AREA)
  • Details Of Aerials (AREA)
  • Eyeglasses (AREA)
EP13152733.5A 2012-01-26 2013-01-25 Ophthalmic lens assembly having an integrated antenna structure Withdrawn EP2620802A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/358,579 US8857983B2 (en) 2012-01-26 2012-01-26 Ophthalmic lens assembly having an integrated antenna structure

Publications (1)

Publication Number Publication Date
EP2620802A1 true EP2620802A1 (en) 2013-07-31

Family

ID=47630188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13152733.5A Withdrawn EP2620802A1 (en) 2012-01-26 2013-01-25 Ophthalmic lens assembly having an integrated antenna structure

Country Status (12)

Country Link
US (2) US8857983B2 (enrdf_load_stackoverflow)
EP (1) EP2620802A1 (enrdf_load_stackoverflow)
JP (1) JP2013156632A (enrdf_load_stackoverflow)
KR (1) KR20130086984A (enrdf_load_stackoverflow)
CN (1) CN103257457B (enrdf_load_stackoverflow)
AU (2) AU2013101735A4 (enrdf_load_stackoverflow)
BR (1) BR102013002078A2 (enrdf_load_stackoverflow)
CA (1) CA2802144A1 (enrdf_load_stackoverflow)
IL (1) IL224267A (enrdf_load_stackoverflow)
RU (1) RU2621483C2 (enrdf_load_stackoverflow)
SG (1) SG192368A1 (enrdf_load_stackoverflow)
TW (1) TWI585487B (enrdf_load_stackoverflow)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014186501A1 (en) * 2013-05-17 2014-11-20 Johnson & Johnson Vision Care, Inc. System and method for a processor controlled ophthalmic lens
EP2846182A3 (en) * 2013-09-04 2015-06-10 Johnson & Johnson Vision Care, Inc. Ophthalmic lens system capable of interfacing with an external device
WO2015094484A1 (en) * 2013-12-19 2015-06-25 Google Inc. Packaging for an active contact lens
EP2979622A1 (en) * 2014-07-31 2016-02-03 Ophtimalia Passive sensing means for a contact lens
WO2016022665A1 (en) * 2014-08-05 2016-02-11 Coopervision International Holding Company, Lp Electronic medical devices and methods
EP2988363A1 (en) * 2014-08-21 2016-02-24 Johnson & Johnson Vision Care Inc. Components with multiple energization elements for biomedical devices
GB2502881B (en) * 2012-04-23 2016-03-16 E Vision Smart Optics Inc Systems, devices, and/or methods for managing implantable devices
RU2597069C2 (ru) * 2013-09-23 2016-09-10 Джонсон Энд Джонсон Вижн Кэа, Инк. Система офтальмологической линзы, выполненная с возможностью беспроводной связи с множеством внешних устройств
EP3070516A1 (en) * 2015-03-19 2016-09-21 Johnson & Johnson Vision Care Inc. Thinned and flexible circuit boards on three-dimensional surfaces
US9535268B2 (en) 2011-03-18 2017-01-03 Johnson & Johnson Vision Care, Inc. Multiple energization elements in stacked integrated component devices
CN106415373A (zh) * 2014-06-13 2017-02-15 威里利生命科学有限责任公司 用于在隐形眼镜内使用的柔性导体
WO2017103734A1 (en) * 2015-12-14 2017-06-22 Novartis Ag Flexible, hermetic electrical interconnect for electronic and optoelectronic devices for in vivo use
WO2017168122A1 (en) * 2016-03-28 2017-10-05 Coopervision International Holding Company, Lp Contact lens blister package, base member for a contact lens blister, sealing member for a contact lens blister and related methods
EP3155477A4 (en) * 2014-06-13 2018-01-03 Verily Life Sciences LLC Eye-mountable device to provide automatic accommodation and method of making same
WO2019067479A1 (en) * 2017-09-26 2019-04-04 Verily Life Sciences Llc OPHTHALMIC DEVICES COMPRISING POLYDOPAMINE LAYERS AND METHODS OF DEPOSITION OF METAL LAYER ON OPHTHALMIC DEVICES COMPRISING A POLYDOPAMINE LAYER
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10367233B2 (en) 2014-08-21 2019-07-30 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10374216B2 (en) 2014-08-21 2019-08-06 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US10386656B2 (en) 2014-08-21 2019-08-20 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US10416477B2 (en) 2014-06-13 2019-09-17 Verily Life Sciences Llc Ophthalmic system having adjustable accommodation based on photodetection
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US10558062B2 (en) 2014-08-21 2020-02-11 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical device
US10598958B2 (en) 2014-08-21 2020-03-24 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
DE102021121166A1 (de) 2021-06-15 2022-12-15 Carl Zeiss Meditec Ag Ophthalmisches Implantat und Verfahren zur Herstellung eines Solchen
WO2022263495A1 (de) 2021-06-15 2022-12-22 Carl Zeiss Meditec Ag Ophthalmisches implantat und verfahren zur herstellung eines solchen
CN116207489A (zh) * 2023-02-17 2023-06-02 西安电子科技大学 一种基于分形介质加载和超材料吸波结构的平面螺旋天线
DE102022213287A1 (de) 2022-12-08 2024-06-13 Carl Zeiss Meditec Ag System und verfahren zum auslesen von daten aus einem ophthalmischen implantat
US12153285B2 (en) 2015-09-16 2024-11-26 E-Vision Smart Optics, Inc. Systems, apparatus, and methods for ophthalmic lenses with wireless charging

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9823737B2 (en) * 2008-04-07 2017-11-21 Mohammad A Mazed Augmented reality personal assistant apparatus
US8325045B2 (en) * 2007-09-06 2012-12-04 Deka Products Limited Partnership RFID system and method
US9675443B2 (en) 2009-09-10 2017-06-13 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
US9475709B2 (en) 2010-08-25 2016-10-25 Lockheed Martin Corporation Perforated graphene deionization or desalination
US8950862B2 (en) 2011-02-28 2015-02-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for an ophthalmic lens with functional insert layers
US9698129B2 (en) 2011-03-18 2017-07-04 Johnson & Johnson Vision Care, Inc. Stacked integrated component devices with energization
US9889615B2 (en) 2011-03-18 2018-02-13 Johnson & Johnson Vision Care, Inc. Stacked integrated component media insert for an ophthalmic device
US9102111B2 (en) 2011-03-21 2015-08-11 Johnson & Johnson Vision Care, Inc. Method of forming a functionalized insert with segmented ring layers for an ophthalmic lens
US9804418B2 (en) 2011-03-21 2017-10-31 Johnson & Johnson Vision Care, Inc. Methods and apparatus for functional insert with power layer
US9195075B2 (en) * 2011-03-21 2015-11-24 Johnson & Johnson Vision Care, Inc. Full rings for a functionalized layer insert of an ophthalmic lens
US9931203B2 (en) 2011-08-02 2018-04-03 Valdemar Portney Presbyopia correcting wireless optical system
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
US20130215380A1 (en) * 2012-02-22 2013-08-22 Randall B. Pugh Method of using full rings for a functionalized layer insert of an ophthalmic device
US9134546B2 (en) * 2012-02-22 2015-09-15 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with segmented ring layers in a functionalized insert
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US9610546B2 (en) 2014-03-12 2017-04-04 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US10213746B2 (en) 2016-04-14 2019-02-26 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US10017852B2 (en) 2016-04-14 2018-07-10 Lockheed Martin Corporation Method for treating graphene sheets for large-scale transfer using free-float method
US9241669B2 (en) * 2012-07-18 2016-01-26 Johnson & Johnson Vision Care, Inc. Neuromuscular sensing for variable-optic electronic ophthalmic lens
US8857981B2 (en) * 2012-07-26 2014-10-14 Google Inc. Facilitation of contact lenses with capacitive sensors
US10820986B2 (en) * 2013-01-09 2020-11-03 Sloan Kettering Institute For Cancer Research Ocular prosthesis with display device
US10302968B2 (en) 2013-01-28 2019-05-28 Onefocus Vision, Inc. Fluidic module for accommodating soft contact lens
US10379383B2 (en) 2013-01-30 2019-08-13 Onefocus Technology, Llc Manufacturing process of an accommodating soft contact lens
US9333368B2 (en) * 2013-02-01 2016-05-10 Old Dominion University Research Foundation Treatment of biological tissues using subnanosecond electric pulses
EP2953542A4 (en) 2013-02-06 2016-10-05 California Inst Of Techn MINIATURIZED IMPLANTABLE ELECTROCHEMICAL SENSORS
TW201504140A (zh) 2013-03-12 2015-02-01 Lockheed Corp 形成具有均勻孔尺寸之多孔石墨烯之方法
US20140371560A1 (en) * 2013-06-14 2014-12-18 Google Inc. Body-Mountable Devices and Methods for Embedding a Structure in a Body-Mountable Device
US9572918B2 (en) 2013-06-21 2017-02-21 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
US10025118B1 (en) * 2013-07-20 2018-07-17 David T. Markus Piezoelectric energy harvesting contact lens
US9251455B2 (en) 2013-08-22 2016-02-02 Verily Life Sciences Llc Using unique identifiers to retrieve configuration data for tag devices
US20150065824A1 (en) * 2013-08-28 2015-03-05 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form ophthalmic devices incorporating fluorescence detectors
US9448421B2 (en) 2013-09-04 2016-09-20 Johnson & Johnson Vision Care, Inc. Ophthalmic lens system capable of communication between lenses utilizing a secondary external device
DE102013017837A1 (de) * 2013-10-07 2015-04-09 Rodenstock Gmbh Modul(e) zur Verbesserung oder alleinigen Energieversorgung eines am Kopf getragenen elektrischen Gerätes, das auf das Sehfeld des Trägers einwirkt
US10244954B2 (en) * 2013-10-28 2019-04-02 Arkis Biosciences Inc. Implantable bio-pressure transponder
US9662199B2 (en) * 2013-11-26 2017-05-30 Strathspey Crown Holdings, LLC Intraocular lens having input and output electronics
EP3084486A4 (en) 2013-12-20 2017-11-22 Onefocus Vision, LLC Fluidic module for accomodating soft contact lens
US9572522B2 (en) 2013-12-20 2017-02-21 Verily Life Sciences Llc Tear fluid conductivity sensor
US10039447B2 (en) * 2013-12-23 2018-08-07 Verily Life Sciences Llc Molded electronic structures in body-mountable devices
US9973238B2 (en) 2013-12-30 2018-05-15 Verily Life Sciences, LLC Methods for adjusting the power of an external reader
US9495567B2 (en) 2013-12-30 2016-11-15 Verily Life Sciences Llc Use of a tag and reader antenna for a simulated theremin effect
WO2015116857A2 (en) 2014-01-31 2015-08-06 Lockheed Martin Corporation Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
CN105940479A (zh) 2014-01-31 2016-09-14 洛克希德马丁公司 使用宽离子场穿孔二维材料
US9632333B2 (en) 2014-02-13 2017-04-25 David T. Markus Piezoelectric sensor for vision correction
EP3116443A4 (en) * 2014-03-11 2017-12-06 Valdemar Portney Presbyopia correcting wireless optical system
AU2015229331A1 (en) 2014-03-12 2016-10-27 Lockheed Martin Corporation Separation membranes formed from perforated graphene
US9459469B2 (en) * 2014-03-25 2016-10-04 David T. Markus System for contact lens wireless communication
US20150303733A1 (en) * 2014-04-18 2015-10-22 Songnan Yang Reducing magnetic field variation in a charging device
US10499822B2 (en) * 2014-05-09 2019-12-10 The Royal Institution For The Advancement Of Learning / Mcgill University Methods and systems relating to biological systems with embedded mems sensors
US9825364B2 (en) 2014-06-12 2017-11-21 Verily Life Sciences Llc Adaptive antenna tuning based on measured antenna impedance
US9818005B2 (en) 2014-06-13 2017-11-14 Verily Life Sciences Llc Zero-power wireless device programming
US9400904B2 (en) 2014-06-13 2016-07-26 Verily Life Sciences Llc System for aligning a handheld RFID reader
EP2979662A1 (en) * 2014-08-01 2016-02-03 Akkolens International B.V. Intraocular lens with electricity generator and additional functional systems
EA201790508A1 (ru) 2014-09-02 2017-08-31 Локхид Мартин Корпорейшн Мембраны гемодиализа и гемофильтрации на основе двумерного мембранного материала и способы их применения
US9907498B2 (en) * 2014-09-04 2018-03-06 Verily Life Sciences Llc Channel formation
US9687181B2 (en) * 2014-09-17 2017-06-27 International Business Machines Corporation Semiconductor device to be embedded within a contact lens
KR102271817B1 (ko) * 2014-09-26 2021-07-01 삼성전자주식회사 증강현실을 위한 스마트 콘택렌즈와 그 제조 및 동작방법
WO2016067433A1 (ja) * 2014-10-30 2016-05-06 株式会社ニコン レンズシステム及びコンタクトレンズ
MX2017009193A (es) 2015-01-22 2017-12-12 Eyegate Pharmaceuticals Inc Lente de contacto iontoforetica.
JP6077036B2 (ja) * 2015-03-18 2017-02-08 日本電信電話株式会社 ループアンテナ
EP3273842A1 (en) * 2015-03-26 2018-01-31 Koninklijke Philips N.V. Contact lens for analyzing ocular fluid
WO2016173620A1 (en) * 2015-04-28 2016-11-03 Optotune Ag Contact and intraocular lenses comprising an adjustable focus length
US10820844B2 (en) 2015-07-23 2020-11-03 California Institute Of Technology Canary on a chip: embedded sensors with bio-chemical interfaces
US10413182B2 (en) 2015-07-24 2019-09-17 Johnson & Johnson Vision Care, Inc. Biomedical devices for biometric based information communication
WO2017023376A1 (en) 2015-08-05 2017-02-09 Lockheed Martin Corporation Perforatable sheets of graphene-based material
KR20180037991A (ko) 2015-08-06 2018-04-13 록히드 마틴 코포레이션 그래핀의 나노 입자 변형 및 천공
US9922525B2 (en) * 2015-08-14 2018-03-20 Gregory J. Hummer Monitoring system for use with mobile communication device
US10211663B2 (en) * 2015-08-21 2019-02-19 Apple Inc. 3D shaped inductive charging coil and method of making the same
EP3344187A1 (en) * 2015-09-03 2018-07-11 Elenza, Inc. Rechargeable intraocular implant
US9728494B2 (en) * 2015-09-24 2017-08-08 Verily Life Sciences Llc Body-mountable device with a common substrate for electronics and battery
US9985334B2 (en) * 2015-10-21 2018-05-29 Johnson & Johnson Vision Care, Inc. Antenna mandrel with multiple antennas
US10855146B2 (en) 2016-03-11 2020-12-01 Itt Manufacturing Enterprises Llc Motor drive unit
US11043988B2 (en) 2016-03-15 2021-06-22 Verily Life Sciences LLP Systems for providing wireless power to deep implanted devices
WO2017180135A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Membranes with tunable selectivity
SG11201808961QA (en) 2016-04-14 2018-11-29 Lockheed Corp Methods for in situ monitoring and control of defect formation or healing
JP2019517909A (ja) 2016-04-14 2019-06-27 ロッキード・マーチン・コーポレーション 流路を有する二次元膜構造体
WO2017180134A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials
US10670656B2 (en) * 2016-05-09 2020-06-02 International Business Machines Corporation Integrated electro-optical module assembly
EP3487581A1 (en) * 2016-07-21 2019-05-29 Johnson & Johnson Vision Care Inc. Biomedical device including encapsulation
US10386655B2 (en) * 2016-07-27 2019-08-20 Verily Life Sciences Llc Device, system and method for detecting overlap of an ophthalmic device by an eyelid
US9983418B2 (en) * 2016-08-04 2018-05-29 Verily Life Sciences Llc Tactile interface for eye-mountable device
EP3282304B1 (fr) * 2016-08-08 2023-10-04 Essilor International Equipement ophtalmique; procédé d'alimentation d'un équipement ophtalmique
TWI588563B (zh) * 2016-08-11 2017-06-21 清弘生醫股份有限公司 傳輸電能至隱形眼鏡之方法及其系統
US11309744B2 (en) * 2016-09-11 2022-04-19 Verily Life Sciences Llc Systems and methods for providing wireless power to deep implanted devices
US10436018B2 (en) * 2016-10-07 2019-10-08 Baker Hughes, A Ge Company, Llc Downhole electromagnetic acoustic transducer sensors
US10345621B2 (en) 2017-02-22 2019-07-09 Johnson & Johnson Vision Care, Inc. Electronic ophthalmic device with extreme gaze angle detection
US11547608B2 (en) * 2017-06-10 2023-01-10 Manjinder Saini Comprehensive intraocular vision advancement
US10624791B2 (en) 2017-06-10 2020-04-21 Manjinder Saini Artificial vision intraocular implant device
KR101891668B1 (ko) * 2017-07-27 2018-08-24 한국과학기술연구원 전고상 박막 이차 전지가 장착된 스마트 웨어러블 렌즈 및 그 제조 방법
US11143885B2 (en) * 2017-09-25 2021-10-12 Verily Life Sciences Llc Smart contact lens with antenna and sensor
CN107874901B (zh) * 2017-10-26 2024-09-13 杨铭轲 角膜接触镜和眼内照明系统
US11076946B2 (en) * 2017-11-16 2021-08-03 Verily Life Sciences Llc Flexible barrier layer including superelastic alloys
DE112018005738T5 (de) * 2017-12-15 2020-07-23 Sony Corporation Kontaktlinse und kommunikationssystem
CN108232400A (zh) * 2017-12-31 2018-06-29 福建省卓展信息科技股份有限公司 天线及其智能眼镜
DE102018120612A1 (de) * 2018-02-23 2019-08-29 Kathrein Se Multibandantennenanordnung für Mobilfunkanwendungen
WO2019177540A1 (en) 2018-03-14 2019-09-19 Menicon Singapore Pte Ltd. Wearable device for communication with an ophthalmic device
US10892643B2 (en) 2018-03-14 2021-01-12 International Business Machines Corporation Facilitation of charge of and communication with an electronic device
US11129563B2 (en) * 2018-04-04 2021-09-28 Verily Life Sciences Llc Eye-mountable device with muscle sensor
CN112135589A (zh) 2018-05-10 2020-12-25 奥克塞拉有限公司 治疗眼睛屈光不正的方法和装置
US11989056B2 (en) * 2018-06-02 2024-05-21 Apparao BODDEDA Smart contact lens for performing wireless operations and a method of producing the same
KR102075143B1 (ko) * 2018-06-08 2020-03-02 울산과학기술원 안압 모니터링용 스마트 콘택트 렌즈 및 이의 제조방법
EP3817808A4 (en) 2018-07-07 2022-04-06 Acucela Inc. Device to prevent retinal hypoxia
US11681164B2 (en) 2018-07-27 2023-06-20 Tectus Corporation Electrical interconnects within electronic contact lenses
EP3830636A4 (en) 2018-07-30 2022-04-13 Acucela Inc. OPTICAL DESIGNS OF AN ELECTRONIC CONTACT LENS TO REDUCE MYOPIA PROGRESSION
US11311373B2 (en) 2018-11-05 2022-04-26 Verily Life Sciences Llc Ophthalmic system including accommodating intraocular lens and remote component and related methods of use
CN109498180A (zh) * 2018-11-26 2019-03-22 杨松 柔性电路板、角膜接触镜及其加工方法
AU2018454225A1 (en) * 2018-12-19 2021-07-08 Ares Trading S.A. Communication apparatus for use with electronic communication element, electronic communication element and uses thereof
US11607172B2 (en) 2018-12-21 2023-03-21 Verily Life Sciences Llc Impedance sensor for ophthalmic device using shared antenna electrode
US11043745B2 (en) 2019-02-11 2021-06-22 Old Dominion University Research Foundation Resistively loaded dielectric biconical antennas for non-invasive treatment
US11733546B1 (en) 2019-03-01 2023-08-22 Verily Life Sciences Llc Wirelessly loaded impedance sensor for self-test
WO2021022193A1 (en) 2019-07-31 2021-02-04 Acucela Inc. Device for projecting images on the retina
US10985464B2 (en) * 2019-07-31 2021-04-20 Verily Life Sciences Llc Miniaturized inductive loop antenna with distributed reactive loads
US11237410B2 (en) 2019-08-28 2022-02-01 Tectus Corporation Electronics assembly for use in electronic contact lens
WO2021056018A1 (en) 2019-09-16 2021-03-25 Acucela Inc. Assembly process for an electronic soft contact lens designed to inhibit progression of myopia
US11349191B1 (en) * 2019-09-17 2022-05-31 Amazon Technologies, Inc. Ring-shaped devices with combined battery and antenna assemblies
US11448225B2 (en) 2020-01-21 2022-09-20 Itt Manufacturing Enterprises Llc Motor assembly for driving a pump or rotary device having a cooling duct
US11451156B2 (en) 2020-01-21 2022-09-20 Itt Manufacturing Enterprises Llc Overvoltage clamp for a matrix converter
US11394264B2 (en) 2020-01-21 2022-07-19 Itt Manufacturing Enterprises Llc Motor assembly for driving a pump or rotary device with a low inductance resistor for a matrix converter
TW202203521A (zh) * 2020-02-21 2022-01-16 美商艾尤席拉有限公司 電子隱形眼鏡之充電盒
EP4099968A4 (en) * 2020-03-23 2024-03-06 Tectus Corporation Electronic intraocular devices
JP2023526048A (ja) 2020-05-13 2023-06-20 アキュセラ インコーポレイテッド 近視治療のための電気切替可能眼鏡
AU2021289593A1 (en) 2020-06-08 2022-10-20 Acucela Inc. Projection of defocused images on the peripheral retina to treat refractive error
JP2023528307A (ja) 2020-06-08 2023-07-04 アキュセラ インコーポレイテッド 周辺脱焦点化を使用して進行性屈折異常を治療するための貼付式デバイス
AU2021288457A1 (en) 2020-06-08 2023-01-05 Acucela Inc. Lens with asymmetric projection to treat astigmatism
US11281022B2 (en) 2020-06-10 2022-03-22 Acucela Inc. Apparatus and methods for the treatment of refractive error using active stimulation
CN112002526B (zh) * 2020-09-02 2021-06-29 南方电网电力科技股份有限公司 一种高压无线电能传输线圈
CN116615867A (zh) * 2020-11-18 2023-08-18 布林克能源公司 为眼用装置提供电力和通信的系统
US11516392B2 (en) 2020-11-24 2022-11-29 Strathspey Crown, LLC Privacy controls for implanted electronics
US11353960B1 (en) 2020-11-24 2022-06-07 Strathspey Crown, LLC Intraocular brain interface
US11771374B2 (en) 2020-11-30 2023-10-03 Ceyeber Corp. Cranial implant
US11809019B2 (en) * 2021-01-08 2023-11-07 Tectus Corporation Contact lens power supply with movable generator
US11209672B1 (en) * 2021-04-06 2021-12-28 Acucela Inc. Supporting pillars for encapsulating a flexible PCB within a soft hydrogel contact lens
US11366341B1 (en) 2021-05-04 2022-06-21 Acucela Inc. Electronic case for electronic spectacles
EP4224191A1 (en) * 2022-02-08 2023-08-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Field modification device
TWI837020B (zh) * 2023-06-15 2024-03-21 和碩聯合科技股份有限公司 智慧型隱形眼鏡
TWI852866B (zh) * 2023-12-25 2024-08-11 宏達國際電子股份有限公司 隱形眼鏡裝置和通訊方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060095128A1 (en) * 2004-11-02 2006-05-04 Blum Ronald D Electro-active intraocular lenses
WO2007050402A2 (en) * 2005-10-26 2007-05-03 Motorola Inc. Combined power source and printed transistor circuit apparatus and method
WO2008091859A1 (en) * 2007-01-22 2008-07-31 E-Vision, Llc Flexible electro-active lens
WO2008109867A2 (en) * 2007-03-07 2008-09-12 University Of Washington Active contact lens
US20090033863A1 (en) * 2007-02-23 2009-02-05 Blum Ronald D Ophthalmic dynamic aperture
DE102007048859A1 (de) 2007-10-11 2009-04-16 Robert Bosch Gmbh Intraokularlinse sowie System
US20090244477A1 (en) * 2008-03-31 2009-10-01 Pugh Randall B Ophthalmic lens media insert

Family Cites Families (412)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US754804A (en) 1903-12-07 1904-03-15 Charles A Pratt Speed-regulating magnetic clutch.
US787657A (en) 1904-12-13 1905-04-18 Quimby S Backus Gas fireplace-heater.
US1390765A (en) 1919-04-12 1921-09-13 New Jersey Patent Co Galvanic battery
US1559562A (en) 1923-05-25 1925-11-03 Thomas A Edison Storage battery
DE1042681B (de) 1953-03-21 1958-11-06 Dr H C Hans Vogt Staendig gasdicht verschlossener, alkalischer Akkumulator
GB743731A (en) 1953-05-19 1956-01-25 Dunlop Rubber Co Adhesive butyl rubber compositions
NL113265C (enrdf_load_stackoverflow) 1956-11-16
US3306776A (en) 1964-02-27 1967-02-28 Pentti J Tamminen Galvanic primary cell
US3431327A (en) 1964-08-31 1969-03-04 George F Tsuetaki Method of making a bifocal contact lens with an embedded metal weight
US3291296A (en) 1964-10-26 1966-12-13 Lemkelde Russell Pipe nipple holder
US3353998A (en) 1965-02-02 1967-11-21 Sonotone Corp Alkaline battery cells with silver-oxide or silver electrodes
US3375136A (en) 1965-05-24 1968-03-26 Army Usa Laminated thin film flexible alkaline battery
DE2007518A1 (de) 1969-02-20 1971-02-04 Union Carbide Corp , New York,N Y (V St A) Elektrolyt fur Pnmarzellen
JPS485185B1 (enrdf_load_stackoverflow) 1969-05-16 1973-02-14
GB1583193A (en) 1976-05-28 1981-01-21 Poler S Intra-ocular lens mounting assembly and method of making it
US4254191A (en) 1977-01-24 1981-03-03 Polaroid Corporation Method for manufacturing battery vents and vented batteries
US4118860A (en) 1977-01-27 1978-10-10 Polaroid Corporation Method of making a flat battery
US4125686A (en) 1977-06-30 1978-11-14 Polaroid Corporation Laminar cells and methods for making the same
US4268132A (en) 1979-09-24 1981-05-19 Neefe Charles W Oxygen generating contact lens
US4294891A (en) 1980-03-12 1981-10-13 The Montefiore Hospital Association Of Western Pennsylvania Intermittently refuelable implantable bio-oxidant fuel cell
US4408023A (en) 1980-11-12 1983-10-04 Tyndale Plains-Hunter, Ltd. Polyurethane diacrylate compositions useful for contact lenses and the like
JPS57136774A (en) 1981-02-17 1982-08-23 Toshiba Battery Co Ltd Alkaly cell
JPS58116764A (ja) 1981-12-30 1983-07-12 Fujitsu Ltd 半導体装置の製造方法
US4977046A (en) 1982-04-26 1990-12-11 Polaroid Corporation Lithium batteries
US4592944A (en) 1982-05-24 1986-06-03 International Business Machines Corporation Method for providing a top seal coating on a substrate containing an electrically conductive pattern and coated article
GB8316325D0 (en) 1983-06-15 1983-07-20 Ici Plc Catalyst component production
US4522897A (en) 1983-10-14 1985-06-11 Cape Cod Research, Inc. Rope batteries
US4783237A (en) 1983-12-01 1988-11-08 Harry E. Aine Solid state transducer and method of making same
JPS60200626A (ja) * 1984-03-26 1985-10-11 Matsushita Electric Ind Co Ltd ラジオ受信機
US4601545A (en) 1984-05-16 1986-07-22 Kern Seymour P Variable power lens system
DE3506659A1 (de) 1985-02-26 1986-08-28 Basf Ag, 6700 Ludwigshafen Verbundelektrode
US4787903A (en) 1985-07-24 1988-11-29 Grendahl Dennis T Intraocular lens
DE3727945A1 (de) 1986-08-22 1988-02-25 Ricoh Kk Fluessigkristallelement
JPH0621218Y2 (ja) 1986-12-26 1994-06-01 ミドリ安全工業株式会社 変流器
US5219497A (en) 1987-10-30 1993-06-15 Innotech, Inc. Method for manufacturing lenses using thin coatings
US4873029A (en) 1987-10-30 1989-10-10 Blum Ronald D Method for manufacturing lenses
US4846031A (en) 1987-11-04 1989-07-11 Jl Tool And Machine Co. Method and apparatus for blanking molded parts
US4816031A (en) 1988-01-29 1989-03-28 Pfoff David S Intraocular lens system
US4939000A (en) 1989-08-22 1990-07-03 Sony Corporation Carbon slurry regeneration method
US5227805A (en) 1989-10-26 1993-07-13 Motorola, Inc. Antenna loop/battery spring
US5168018A (en) 1990-05-17 1992-12-01 Matsushita Electric Industrial Co., Ltd. Method of manufacturing zinc-alkaline batteries
US5112703A (en) 1990-07-03 1992-05-12 Beta Power, Inc. Electrochemical battery cell having a monolithic bipolar flat plate beta" al
JPH05225989A (ja) 1992-02-14 1993-09-03 Yuasa Corp 薄形電池の製造方法
US5358539A (en) 1992-10-29 1994-10-25 Valence Technology, Inc. Method for making a battery assembly
US6322589B1 (en) 1995-10-06 2001-11-27 J. Stuart Cumming Intraocular lenses with fixated haptics
US5540741A (en) 1993-03-05 1996-07-30 Bell Communications Research, Inc. Lithium secondary battery extraction method
US5418091A (en) 1993-03-05 1995-05-23 Bell Communications Research, Inc. Polymeric electrolytic cell separator membrane
AU6434594A (en) 1993-04-07 1994-10-24 Technology Partnership Plc, The Switchable lens
JPH0765817A (ja) 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd アルカリ電池
DE9315669U1 (de) 1993-10-14 1995-02-09 Junghans Uhren Gmbh, 78713 Schramberg Kleine Funkuhr
US5435874A (en) 1993-11-01 1995-07-25 Wilson Greatbatch Ltd. Process for making cathode components for use in electrochemical cells
JPH0837190A (ja) 1994-07-22 1996-02-06 Nec Corp 半導体装置
US5478420A (en) 1994-07-28 1995-12-26 International Business Machines Corporation Process for forming open-centered multilayer ceramic substrates
US5492782A (en) 1994-12-06 1996-02-20 Hughes Aircraft Company Battery having fiber electrodes
US5549988A (en) 1995-03-10 1996-08-27 Motorola, Inc. Polymer electrolytes and electrochemical cells using same
US5596567A (en) 1995-03-31 1997-01-21 Motorola, Inc. Wireless battery charging system
US5568353A (en) 1995-04-03 1996-10-22 Motorola, Inc. Electrochemical capacitor and method of making same
US6004691A (en) 1995-10-30 1999-12-21 Eshraghi; Ray R. Fibrous battery cells
AU3769095A (en) 1995-11-06 1997-05-29 Battery Technologies Inc. Rechargeable alkaline cells containing zinc anodes without added mercury
US5682210A (en) 1995-12-08 1997-10-28 Weirich; John Eye contact lens video display system
US5792574A (en) 1996-03-04 1998-08-11 Sharp Kabushiki Kaisha Nonaqueous secondary battery
JPH09266636A (ja) 1996-03-28 1997-10-07 Nippon Zeon Co Ltd 医療機器用駆動装置のバッテリー装置
US6933331B2 (en) 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
JPH10209185A (ja) 1997-01-24 1998-08-07 Matsushita Electric Works Ltd 半導体パッケージの搬送方法
JP3787208B2 (ja) 1997-02-05 2006-06-21 新日鐵化学株式会社 塗料ベース剤及び重防食用塗料組成物
KR19980067735A (ko) 1997-02-11 1998-10-15 문정환 반도체 패키지의 제조방법
DE19714937A1 (de) 1997-04-10 1998-10-15 Bayerische Motoren Werke Ag Datenbussystem für Kraftfahrzeuge
US6242132B1 (en) 1997-04-16 2001-06-05 Ut-Battelle, Llc Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery
DE29714185U1 (de) 1997-08-08 1998-12-03 Gebrüder Junghans GmbH, 78713 Schramberg Funkarmbanduhr
JP3001481B2 (ja) 1997-10-27 2000-01-24 九州日本電気株式会社 半導体装置およびその製造方法
GB9727222D0 (en) 1997-12-23 1998-02-25 Aea Technology Plc Cell recycling
US6517974B1 (en) 1998-01-30 2003-02-11 Canon Kabushiki Kaisha Lithium secondary battery and method of manufacturing the lithium secondary battery
US6610440B1 (en) 1998-03-10 2003-08-26 Bipolar Technologies, Inc Microscopic batteries for MEMS systems
US6217171B1 (en) 1998-05-26 2001-04-17 Novartis Ag Composite ophthamic lens
JP2002520803A (ja) 1998-07-16 2002-07-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ リチウム2次電池
DE19837912C1 (de) 1998-08-20 1999-10-28 Implex Hear Tech Ag Energieversorgungsmodul für eine implantierbare Vorrichtung
DE19844296A1 (de) 1998-09-18 2000-03-23 Biotronik Mess & Therapieg Anordnung zur Patientenüberwachung
US20070285385A1 (en) 1998-11-02 2007-12-13 E Ink Corporation Broadcast system for electronic ink signs
DE19858172A1 (de) 1998-12-16 2000-06-21 Campus Micro Technologies Gmbh Implantat zur Messung des Augeninnendrucks
US6373447B1 (en) 1998-12-28 2002-04-16 Kawasaki Steel Corporation On-chip antenna, and systems utilizing same
US6379835B1 (en) 1999-01-12 2002-04-30 Morgan Adhesives Company Method of making a thin film battery
JP2000228213A (ja) 1999-02-04 2000-08-15 Fuji Electric Co Ltd エネルギー貯蔵素子およびその製造方法
EP1161706A4 (en) 1999-02-17 2004-07-07 Univ Kent State Ohio ELECTRICALLY ADJUSTABLE LIQUID CRYSTAL MICROSTRUCTURES
US6273904B1 (en) 1999-03-02 2001-08-14 Light Sciences Corporation Polymer battery for internal light device
US6477410B1 (en) 2000-05-31 2002-11-05 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery of medicaments
US6277520B1 (en) 1999-03-19 2001-08-21 Ntk Powerdex, Inc. Thin lithium battery with slurry cathode
US6316142B1 (en) 1999-03-31 2001-11-13 Imra America, Inc. Electrode containing a polymeric binder material, method of formation thereof and electrochemical cell
US6168884B1 (en) 1999-04-02 2001-01-02 Lockheed Martin Energy Research Corporation Battery with an in-situ activation plated lithium anode
JP2000299542A (ja) 1999-04-13 2000-10-24 Mitsui High Tec Inc 積層型回路基板およびその製造方法
US6619799B1 (en) 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6986579B2 (en) 1999-07-02 2006-01-17 E-Vision, Llc Method of manufacturing an electro-active lens
DE19930241A1 (de) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg Verfahren zur Datenübertragung bei der Implantatsüberwachung
DE19930263A1 (de) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg Verfahren und Vorrichtung zur Datenübertragung zwischen einem elektromedizinischen Implantat und einem externen Gerät
DE19930262A1 (de) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg Sender für die Telemetrieeinrichtung eines Implantats
DE19930240A1 (de) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg Verfahren zur Datenabfrage bei der Implantatsnachsorge
DE19930256A1 (de) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg Implantat mit Nah- und Fernfeldtelemetrie
DE19930250A1 (de) 1999-06-25 2001-02-15 Biotronik Mess & Therapieg Vorrichtung zur Überwachung von Daten insbesondere aus einem elektromedizinischen Implantat
US7404636B2 (en) 1999-07-02 2008-07-29 E-Vision, Llc Electro-active spectacle employing modal liquid crystal lenses
US6851805B2 (en) 1999-07-02 2005-02-08 E-Vision, Llc Stabilized electro-active contact lens
JP3557130B2 (ja) 1999-07-14 2004-08-25 新光電気工業株式会社 半導体装置の製造方法
JP2001110445A (ja) 1999-10-12 2001-04-20 Sony Corp コード型バッテリ
US6364482B1 (en) 1999-11-03 2002-04-02 Johnson & Johnson Vision Care, Inc. Contact lens useful for avoiding dry eye
DE10008917A1 (de) 2000-02-25 2001-08-30 Biotronik Mess & Therapieg Anordnung zur Überwachung und Lokalisierung von Patienten
US6391069B1 (en) 2000-03-29 2002-05-21 Valence Technology (Nevada), Inc. Method of making bonded-electrode rechargeable electrochemical cells
SG103298A1 (en) 2000-06-16 2004-04-29 Nisshin Spinning Polymer battery and method of manufacture
US7462194B1 (en) 2000-08-04 2008-12-09 Blake Larry W Two part “L”-shaped phakic IOL
JP5103693B2 (ja) 2000-09-19 2012-12-19 大日本印刷株式会社 電池用積層フィルムおよびそれを用いた電池用容器
JP4172566B2 (ja) 2000-09-21 2008-10-29 Tdk株式会社 セラミック多層基板の表面電極構造及び表面電極の製造方法
US6355501B1 (en) 2000-09-21 2002-03-12 International Business Machines Corporation Three-dimensional chip stacking assembly
US6781817B2 (en) 2000-10-02 2004-08-24 Biosource, Inc. Fringe-field capacitor electrode for electrochemical device
JP3854054B2 (ja) 2000-10-10 2006-12-06 株式会社東芝 半導体装置
US6795250B2 (en) 2000-12-29 2004-09-21 Lenticlear Lenticular Lens, Inc. Lenticular lens array
US7550230B2 (en) 2001-03-15 2009-06-23 Powergenix Systems, Inc. Electrolyte composition for nickel-zinc batteries
US6748994B2 (en) 2001-04-11 2004-06-15 Avery Dennison Corporation Label applicator, method and label therefor
US6769767B2 (en) 2001-04-30 2004-08-03 Qr Spex, Inc. Eyewear with exchangeable temples housing a transceiver forming ad hoc networks with other devices
US6811805B2 (en) 2001-05-30 2004-11-02 Novatis Ag Method for applying a coating
EP1408071A4 (en) 2001-06-28 2008-09-03 Hitoshi Kanazawa METHOD OF MODIFYING POLYMERIC MATERIALS AND USE OF SAID MATERIALS
US6638304B2 (en) 2001-07-20 2003-10-28 Massachusetts Eye & Ear Infirmary Vision prosthesis
US6885818B2 (en) 2001-07-30 2005-04-26 Hewlett-Packard Development Company, L.P. System and method for controlling electronic devices
DE10143898B4 (de) 2001-09-07 2005-07-14 Carl Freudenberg Kg Alkalische Zelle oder Batterie
TW560102B (en) 2001-09-12 2003-11-01 Itn Energy Systems Inc Thin-film electrochemical devices on fibrous or ribbon-like substrates and methd for their manufacture and design
US20030059526A1 (en) 2001-09-12 2003-03-27 Benson Martin H. Apparatus and method for the design and manufacture of patterned multilayer thin films and devices on fibrous or ribbon-like substrates
US20030068559A1 (en) 2001-09-12 2003-04-10 Armstrong Joseph H. Apparatus and method for the design and manufacture of multifunctional composite materials with power integration
EP1304193A3 (de) 2001-10-10 2004-12-01 imt robot AG Verfahren zum automatisierten Auflegen von Objekten auf einen Träger
JP2005506158A (ja) 2001-10-24 2005-03-03 パワー ペーパー リミティド 経皮パッチ
US6727022B2 (en) 2001-11-19 2004-04-27 Wilson Greatbatch Ltd. Powder process for double current collector screen cathode preparation
EP1316419A3 (en) 2001-11-30 2004-01-28 General Electric Company Weatherable multilayer articles and method for their preparation
US6599778B2 (en) 2001-12-19 2003-07-29 International Business Machines Corporation Chip and wafer integration process using vertical connections
US7324007B2 (en) 2001-12-31 2008-01-29 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Instrumented rock bolt, data logger and user interface system
JP2003202525A (ja) 2002-01-09 2003-07-18 Sun-Lux Optical Co Ltd レンズ、玉型、及び眼鏡
US7763069B2 (en) 2002-01-14 2010-07-27 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
DE10201936A1 (de) 2002-01-19 2003-07-31 Fortu Bat Batterien Gmbh Wiederaufladbare elektrochemische Batteriezelle
KR100878519B1 (ko) 2002-01-19 2009-01-13 삼성전자주식회사 광디스크 제조 방법
KR20030065074A (ko) 2002-01-29 2003-08-06 주식회사 뉴턴에너지 전기화학셀 및 이의 제조방법
US6780347B2 (en) 2002-02-04 2004-08-24 Rayovac Corporation Manganese oxide based electrode for alkaline electrochemical system and method of its production
EP2276092B1 (en) 2002-02-12 2013-02-13 Eveready Battery Company, Inc. Flexible thin printed battery with gelled electrolyte and method of manufacturing same
ITMI20020403A1 (it) 2002-02-28 2003-08-28 Ausimont Spa Dispersioni acquose a base di ptfe
US20030164563A1 (en) 2002-03-04 2003-09-04 Olin Calvin Use of microwave energy to disassemble, release, and hydrate contact lenses
EP1736291A3 (en) 2002-03-04 2007-03-07 Johnson and Johnson Vision Care, Inc. Use of a microwave energy to disassemble, release and hydrate contact lenses
KR20030075815A (ko) 2002-03-18 2003-09-26 이기방 Mems용 마이크로배터리와 이를 이용한 시스템
JP2005523483A (ja) 2002-04-25 2005-08-04 イー・ビジョン・エルエルシー 電気活性な多重焦点眼鏡レンズ
CA2389907A1 (en) 2002-06-07 2003-12-07 Battery Technologies Inc. Small format, high current density flat plate rechargeable electrochemical cell
US6852254B2 (en) 2002-06-26 2005-02-08 Johnson & Johnson Vision Care, Inc. Methods for the production of tinted contact lenses
US6770176B2 (en) 2002-08-02 2004-08-03 Itn Energy Systems. Inc. Apparatus and method for fracture absorption layer
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
CA2494934A1 (en) 2002-08-09 2004-02-19 E-Vision, Llc Electro-active contact lens system
US7062708B2 (en) 2002-09-19 2006-06-13 International Business Machines Corporation Tree construction for XML to XML document transformation
US20040062985A1 (en) 2002-09-30 2004-04-01 Aamodt Paul B. Contoured battery for implantable medical devices and method of manufacture
US20040081860A1 (en) 2002-10-29 2004-04-29 Stmicroelectronics, Inc. Thin-film battery equipment
US7205072B2 (en) 2002-11-01 2007-04-17 The University Of Chicago Layered cathode materials for lithium ion rechargeable batteries
US20040091613A1 (en) 2002-11-13 2004-05-13 Wood Joe M. Methods for the extraction of contact lenses
KR20050092384A (ko) 2003-01-02 2005-09-21 사임베트 코퍼레이션 고체배터리 작동소자 및 그 제조방법
US6906436B2 (en) 2003-01-02 2005-06-14 Cymbet Corporation Solid state activity-activated battery device and method
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
JP3981034B2 (ja) 2003-03-25 2007-09-26 富士フイルム株式会社 カラー画像取得装置およびカラー電子カメラ
JP4379778B2 (ja) 2003-04-03 2009-12-09 株式会社シード 薬物徐放性眼用レンズ
US20040242770A1 (en) 2003-04-16 2004-12-02 Feldstein Mikhail M. Covalent and non-covalent crosslinking of hydrophilic polymers and adhesive compositions prepared therewith
JP2006524901A (ja) 2003-04-23 2006-11-02 リチャージャブル バッテリー コーポレイション 内部電極が埋込まれた電極ペレットを用いたバッテリ
US7160637B2 (en) 2003-05-27 2007-01-09 The Regents Of The University Of California Implantable, miniaturized microbial fuel cell
US20040241550A1 (en) 2003-05-28 2004-12-02 Wensley C. Glen Battery separator for lithium polymer battery
US6869998B2 (en) 2003-06-23 2005-03-22 Geo Specialty Chemicals, Inc. Concrete or cement dispersant and method of use
JP2005056714A (ja) 2003-08-05 2005-03-03 Matsushita Electric Ind Co Ltd 正極合剤およびそれを用いたアルカリ乾電池
AU2004266005A1 (en) 2003-08-15 2005-02-24 E-Vision, Llc Enhanced electro-active lens system
US7581124B1 (en) 2003-09-19 2009-08-25 Xilinx, Inc. Method and mechanism for controlling power consumption of an integrated circuit
JP4404300B2 (ja) 2003-09-30 2010-01-27 日立マクセル株式会社 密閉角形電池
WO2005033782A2 (en) 2003-10-03 2005-04-14 Invisia Ltd. Multifocal lens
EP1760515A3 (en) 2003-10-03 2011-08-31 Invisia Ltd. Multifocal ophthalmic lens
US7557433B2 (en) 2004-10-25 2009-07-07 Mccain Joseph H Microelectronic device with integrated energy source
JP4848613B2 (ja) 2003-11-07 2011-12-28 株式会社Gsユアサ 電池用集電体及びこれを用いた非水電解質電池
TWI262614B (en) 2003-12-30 2006-09-21 Lg Chemical Ltd Ionic liquid-modified cathode and electrochemical device using the same
EP1714333A2 (en) 2004-01-06 2006-10-25 Cymbet Corporation Layered barrier structure having one or more definable layers and method
EP1728117A1 (en) 2004-03-05 2006-12-06 Koninklijke Philips Electronics N.V. Variable focus lens
US7531271B2 (en) 2004-03-18 2009-05-12 The Gillette Company Wafer alkaline cell
US7776468B2 (en) 2004-03-18 2010-08-17 The Gillette Company Wafer alkaline cell
KR100625892B1 (ko) 2004-04-12 2006-09-20 경상대학교산학협력단 실형태의 가변형 전지
BRPI0509809A (pt) 2004-04-13 2007-09-18 Univ Arizona eletrodos padronizados para dispositivos oftálmicos eletroativos de cristal lìquido
JP2008505434A (ja) 2004-04-27 2008-02-21 テル アビブ ユニバーシティ フューチャー テクノロジー ディベロップメント リミティド パートナーシップ インターレース型のマイクロコンテナ構造に基づく3−dマイクロ電池
CA2467321A1 (en) 2004-05-14 2005-11-14 Paul J. Santerre Polymeric coupling agents and pharmaceutically-active polymers made therefrom
FR2871586B1 (fr) 2004-06-11 2006-09-29 Essilor Int Verre ophtalmique a fonction electro-optique
ES2573845T3 (es) 2004-06-25 2016-06-10 Janssen Pharmaceutica Nv Antagonistas de CCR2 de sales cuaternarias
US8766435B2 (en) 2004-06-30 2014-07-01 Stmicroelectronics, Inc. Integrated circuit package including embedded thin-film battery
US8153344B2 (en) 2004-07-16 2012-04-10 Ppg Industries Ohio, Inc. Methods for producing photosensitive microparticles, aqueous compositions thereof and articles prepared therewith
US8563213B2 (en) 2004-07-16 2013-10-22 Transitions Optical, Inc. Methods for producing photosensitive microparticles
EP1622009A1 (en) 2004-07-27 2006-02-01 Texas Instruments Incorporated JSM architecture and systems
US7846575B2 (en) 2004-07-30 2010-12-07 Medtronic, Inc. Anode cup and methods of fabrication for medical grade electrochemical cells
CN1989747B (zh) 2004-09-21 2011-06-08 株式会社日立制作所 节点装置、数据包控制装置、无线通信装置和发送控制方法
US20060066808A1 (en) 2004-09-27 2006-03-30 Blum Ronald D Ophthalmic lenses incorporating a diffractive element
US20060065989A1 (en) 2004-09-29 2006-03-30 Thad Druffel Lens forming systems and methods
US7781758B2 (en) 2004-10-22 2010-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20060099496A1 (en) 2004-10-29 2006-05-11 Aamodt Paul B Separator container
BRPI0517249A (pt) 2004-11-02 2008-10-07 E Vision Llc sistema de lente intra-ocular
CN101094626A (zh) * 2004-11-02 2007-12-26 E-视觉有限公司 电激活眼内透镜
BRPI0518058A (pt) 2004-11-02 2008-10-28 E-Vision Llc óculos eletroativos e métodos de fabricação dos mesmos
WO2006048664A2 (en) * 2004-11-04 2006-05-11 L & P 100 Limited Medical devices
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
WO2006063836A1 (en) 2004-12-17 2006-06-22 Novartis Ag Colored contact lenses for enhancing a wearer’s natural eye color
US8368096B2 (en) 2005-01-04 2013-02-05 Aac Technologies Japan R&D Center Co., Ltd. Solid state image pick-up device and method for manufacturing the same with increased structural integrity
KR101430578B1 (ko) 2005-01-06 2014-08-14 룻거스, 더 스테이트 유니버시티 오브 뉴저지 전기화학적으로 자체 조립되는 배터리
DE102005001148B3 (de) 2005-01-10 2006-05-18 Siemens Ag Elektronikeinheit mit EMV-Schirmung
CN101107736B (zh) 2005-01-20 2010-05-26 奥迪康有限公司 具有可再充电电池的助听器及可再充电电池
KR100877816B1 (ko) 2005-01-21 2009-01-12 주식회사 엘지화학 안전성이 향상된 전지팩
US20060166088A1 (en) 2005-01-26 2006-07-27 Hokanson Karl E Electrode connector tabs
US7928591B2 (en) 2005-02-11 2011-04-19 Wintec Industries, Inc. Apparatus and method for predetermined component placement to a target platform
US20060210877A1 (en) 2005-03-15 2006-09-21 Rechargable Battery Corporation Flexible pasted anode, primary cell with pasted anode, and method for making same
US7364945B2 (en) 2005-03-31 2008-04-29 Stats Chippac Ltd. Method of mounting an integrated circuit package in an encapsulant cavity
JP4790297B2 (ja) 2005-04-06 2011-10-12 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US7976577B2 (en) 2005-04-14 2011-07-12 Acufocus, Inc. Corneal optic formed of degradation resistant polymer
US7776471B2 (en) 2005-04-15 2010-08-17 Rocket Electric Co., Ltd. Electrode of ultra thin manganese battery and manufacturing method therefor
US7163839B2 (en) 2005-04-27 2007-01-16 Spansion Llc Multi-chip module and method of manufacture
JP4492432B2 (ja) 2005-05-13 2010-06-30 株式会社デンソー 物理量センサ装置の製造方法
CA2548232A1 (en) 2005-05-24 2006-11-24 Anton Sabeta A method & system for tracking the wearable life of an ophthalmic product
KR100742739B1 (ko) 2005-07-15 2007-07-25 경상대학교산학협력단 직조가 쉬운 실 형태의 가변형 전지
US7548040B2 (en) 2005-07-28 2009-06-16 Zerog Wireless, Inc. Wireless battery charging of electronic devices such as wireless headsets/headphones
DE102005038542A1 (de) 2005-08-16 2007-02-22 Forschungszentrum Karlsruhe Gmbh Künstliches Akkommodationssystem
WO2007035432A2 (en) 2005-09-15 2007-03-29 Board Of Regents, The University Of Texas System Reduction of the loss of zinc by its reaction with oxygen in galvanized steel and batteries
US7835160B2 (en) 2005-09-28 2010-11-16 Panasonic Corporation Electronic circuit connection structure and its manufacturing method
US7540886B2 (en) 2005-10-11 2009-06-02 Excellatron Solid State, Llc Method of manufacturing lithium battery
US20070128420A1 (en) * 2005-12-07 2007-06-07 Mariam Maghribi Hybrid composite for biological tissue interface devices
CN1808744A (zh) 2005-12-09 2006-07-26 水新国 一种以铝合金为负极材料的化学电池
NZ569756A (en) 2005-12-12 2011-07-29 Allaccem Inc Methods and systems for preparing antimicrobial films and coatings utilising polycyclic bridged ammonium salts
EP1961057B1 (en) 2005-12-15 2017-03-08 Cardiac Pacemakers, Inc. Method and apparatus for flexible battery for implantable device
RU2310952C2 (ru) 2005-12-16 2007-11-20 Общество с ограниченной ответственностью "Национальная инновационная компания "Новые энергетические проекты" Трубчатый элемент (его варианты), батарея трубчатых элементов с токопроходом по образующей и способ его изготовления
WO2007072781A1 (ja) 2005-12-20 2007-06-28 Nec Corporation 蓄電装置
US20070141463A1 (en) 2005-12-21 2007-06-21 Maya Stevanovic Cathode for battery
US20080020874A1 (en) 2006-01-09 2008-01-24 Yao-Jen Huang Structure of softball
US20070159562A1 (en) 2006-01-10 2007-07-12 Haddock Joshua N Device and method for manufacturing an electro-active spectacle lens involving a mechanically flexible integration insert
CN101395520A (zh) 2006-01-10 2009-03-25 E-视觉有限公司 包含可机械弯曲集成插件的电激活眼镜镜片的改进制造装置和方法
CN101375075B (zh) 2006-02-21 2011-05-18 博格华纳公司 分段式芯片和摩擦盘
EP1994585B1 (en) 2006-03-08 2014-04-02 LG Chem, Ltd. Lithium secondary battery of improved performance
US7794643B2 (en) 2006-03-24 2010-09-14 Ricoh Company, Ltd. Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same
FR2899388B1 (fr) * 2006-03-28 2008-12-05 Saint Gobain Substrat muni d'un element electroconducteur a fonction d'antenne
CN100456274C (zh) 2006-03-29 2009-01-28 深圳迈瑞生物医疗电子股份有限公司 易于扩展的多cpu系统
JP4171922B2 (ja) 2006-04-12 2008-10-29 船井電機株式会社 ミュート装置、液晶ディスプレイテレビ、及びミュート方法
RU2307429C1 (ru) 2006-04-20 2007-09-27 Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Способ получения поверхностно-модифицированного катодного материала со слоистой структурой для литиевых и литий-ионных аккумуляторов
JP4923704B2 (ja) 2006-04-28 2012-04-25 ソニー株式会社 光学素子の成形装置および成形方法
JP4918373B2 (ja) 2006-04-28 2012-04-18 オリンパス株式会社 積層実装構造体
US8197539B2 (en) 2006-05-05 2012-06-12 University Of Southern California Intraocular camera for retinal prostheses
JP5011820B2 (ja) 2006-05-24 2012-08-29 オムロン株式会社 積層デバイス、およびその製造方法
US7755583B2 (en) 2006-06-12 2010-07-13 Johnson & Johnson Vision Care Inc Method to reduce power consumption with electro-optic lenses
US7878650B2 (en) 2006-06-29 2011-02-01 Fritsch Michael H Contact lens materials, designs, substances, and methods
JP5014695B2 (ja) 2006-07-19 2012-08-29 カルソニックカンセイ株式会社 エキゾーストマニホールドの集合部構造
JP2008033021A (ja) 2006-07-28 2008-02-14 Fuji Xerox Co Ltd ホログラム記録方法及びホログラム記録装置
JP2008078119A (ja) 2006-08-25 2008-04-03 Ngk Insulators Ltd 全固体蓄電素子
US20090204454A1 (en) 2006-08-28 2009-08-13 Frankie James Lagudi Online hosted customisable merchant directory with search function
JP5352787B2 (ja) 2006-08-28 2013-11-27 国立大学法人京都大学 2次元フォトニック結晶熱輻射光源
CN101548224A (zh) 2006-09-01 2009-09-30 庄臣及庄臣视力保护公司 采用电阻性电极的电光透镜
WO2008039806A2 (en) 2006-09-25 2008-04-03 Board Of Regents, The University Of Texas System Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss
US7839124B2 (en) 2006-09-29 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Wireless power storage device comprising battery, semiconductor device including battery, and method for operating the wireless power storage device
JP5147345B2 (ja) * 2006-09-29 2013-02-20 株式会社半導体エネルギー研究所 半導体装置
JP2008088019A (ja) 2006-10-02 2008-04-17 Ohara Inc ガラス組成物
WO2008053789A1 (en) 2006-10-31 2008-05-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7324287B1 (en) 2006-11-07 2008-01-29 Corning Incorporated Multi-fluid lenses and optical devices incorporating the same
TWI324380B (en) 2006-12-06 2010-05-01 Princo Corp Hybrid structure of multi-layer substrates and manufacture method thereof
JP2008178226A (ja) 2007-01-18 2008-07-31 Fujitsu Ltd 電源装置および負荷装置への電源電圧の供給方法
US7976976B2 (en) 2007-02-07 2011-07-12 Rosecreek Technologies Inc. Composite current collector
US8446341B2 (en) 2007-03-07 2013-05-21 University Of Washington Contact lens with integrated light-emitting component
US20090091818A1 (en) 2007-10-05 2009-04-09 Haddock Joshua N Electro-active insert
KR20090113388A (ko) 2007-03-12 2009-10-30 픽셀옵틱스, 인크. 전기-활성 회절성 옵틱용 전기 절연층, uv 보호 및 전압 스파이킹
JP2008227068A (ja) 2007-03-12 2008-09-25 Toshiba Corp 半導体装置およびその製造方法
US8586244B2 (en) 2007-04-02 2013-11-19 Eveready Battery Co., Inc. Alkaline electrochemical cell having a negative electrode with solid zinc oxide and a surfactant
TWI335652B (en) 2007-04-04 2011-01-01 Unimicron Technology Corp Stacked packing module
WO2008124167A1 (en) 2007-04-10 2008-10-16 The Regents Of The University Of California Charge storage devices containing carbon nanotube films as electrodes and charge collectors
TW200842996A (en) 2007-04-17 2008-11-01 Advanced Semiconductor Eng Method for forming bumps on under bump metallurgy
JP5181526B2 (ja) 2007-05-08 2013-04-10 ソニー株式会社 燃料電池、燃料電池の製造方法および電子機器
JP2008281095A (ja) 2007-05-10 2008-11-20 Nsk Ltd シンクロナイザリングの製造方法
JP5219065B2 (ja) 2007-06-28 2013-06-26 株式会社神戸製鋼所 フェライト組織予測方法
US7818698B2 (en) 2007-06-29 2010-10-19 Taiwan Semiconductor Manufacturing Company, Ltd. Accurate parasitic capacitance extraction for ultra large scale integrated circuits
US8317321B2 (en) 2007-07-03 2012-11-27 Pixeloptics, Inc. Multifocal lens with a diffractive optical power region
US8441411B2 (en) 2007-07-18 2013-05-14 Blue Spark Technologies, Inc. Integrated electronic device and methods of making the same
EP2181468A4 (en) 2007-08-01 2012-01-18 Blue Spark Technologies Inc INTEGRATED ELECTRONIC DEVICE AND METHODS OF MANUFACTURING THE SAME
WO2009020648A1 (en) 2007-08-09 2009-02-12 The Regents Of The University Of California Electroactive polymer actuation of implants
US7816031B2 (en) 2007-08-10 2010-10-19 The Board Of Trustees Of The Leland Stanford Junior University Nanowire battery methods and arrangements
US20090042065A1 (en) 2007-08-10 2009-02-12 Mphase Technologies, Inc. Event Activated Micro Control Devices
US20090042066A1 (en) 2007-08-10 2009-02-12 Mphase Technologies, Inc. Adjustable Barrier For Regulating Flow Of A Fluid
US20090050267A1 (en) 2007-08-11 2009-02-26 Maverick Enterprises, Inc. Customizable item labeling system for use in manufacturing, packaging, product shipment-fulfillment, distribution, and on-site operations, adaptable for validation of variable-shaped items
WO2009025763A2 (en) 2007-08-16 2009-02-26 Schepens Eye Research Institute Therapeutic compositions for treatment of inflammation of ocular and adnexal tissues
US20090092903A1 (en) 2007-08-29 2009-04-09 Johnson Lonnie G Low Cost Solid State Rechargeable Battery and Method of Manufacturing Same
US20090057289A1 (en) 2007-09-05 2009-03-05 Cole Williams Electrically heated articles of apparel having variable heating characteristics and methods of making same
JP2009087895A (ja) 2007-10-03 2009-04-23 Panasonic Corp アルカリ乾電池
TW200916832A (en) 2007-10-11 2009-04-16 Pixeloptics Inc Alignment of liquid crystalline materials to surface relief diffractive structures
US8608310B2 (en) 2007-11-07 2013-12-17 University Of Washington Through Its Center For Commercialization Wireless powered contact lens with biosensor
WO2009073401A2 (en) 2007-11-28 2009-06-11 The Polymer Technology Group Inc. Silicone hydrogels for tissue adhesives and tissue dressing applications
JP5439757B2 (ja) 2007-12-07 2014-03-12 ソニー株式会社 燃料電池および電子機器
US8574754B2 (en) 2007-12-19 2013-11-05 Blue Spark Technologies, Inc. High current thin electrochemical cell and methods of making the same
US20090175016A1 (en) 2008-01-04 2009-07-09 Qimonda Ag Clip for attaching panels
WO2009089036A2 (en) 2008-01-09 2009-07-16 Schepens Eye Research Institute Therapeutic compositions for treatment of ocular inflammatory disorders
WO2009091911A1 (en) * 2008-01-15 2009-07-23 Cardiac Pacemakers, Inc. Implantable medical device with antenna
US20090202899A1 (en) 2008-02-11 2009-08-13 Pyszczek Michael F Electrical apparatus with integral thin film solid state battery and methods of manufacture
TWI511869B (zh) 2008-02-20 2015-12-11 Johnson & Johnson Vision Care 激能生醫裝置
EP2099165A1 (en) 2008-03-03 2009-09-09 Thomson Licensing Deterministic back-off method and apparatus for peer-to-peer communications
WO2009113296A1 (ja) 2008-03-14 2009-09-17 住友ベークライト株式会社 半導体素子接着フィルム形成用樹脂ワニス、半導体素子接着フィルム、および半導体装置
WO2009117506A2 (en) 2008-03-18 2009-09-24 Pixeloptics, Inc. Advanced electro-active optic device
US20090243125A1 (en) 2008-03-26 2009-10-01 Pugh Randall B Methods and apparatus for ink jet provided energy receptor
US8523354B2 (en) 2008-04-11 2013-09-03 Pixeloptics Inc. Electro-active diffractive lens and method for making the same
US8361492B2 (en) 2008-04-29 2013-01-29 Ocugenics, LLC Drug delivery system and methods of use
JP4484936B2 (ja) 2008-05-13 2010-06-16 シャープ株式会社 燃料電池および燃料電池スタック
FR2934056B1 (fr) 2008-07-21 2011-01-07 Essilor Int Procede de transfert d'une portion de film fonctionnel
JP2010034254A (ja) 2008-07-29 2010-02-12 Mitsubishi Chemicals Corp 三次元lsi
US8014166B2 (en) 2008-09-06 2011-09-06 Broadpak Corporation Stacking integrated circuits containing serializer and deserializer blocks using through silicon via
US20100062342A1 (en) 2008-09-09 2010-03-11 Lin-Feng Li Polymer membrane utilized as a separator in rechargeable zinc cells
JP2010073533A (ja) 2008-09-19 2010-04-02 National Institute Of Advanced Industrial Science & Technology 充放電可能な電池
US9296158B2 (en) 2008-09-22 2016-03-29 Johnson & Johnson Vision Care, Inc. Binder of energized components in an ophthalmic lens
US20100076553A1 (en) * 2008-09-22 2010-03-25 Pugh Randall B Energized ophthalmic lens
US9675443B2 (en) 2009-09-10 2017-06-13 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
JP4764942B2 (ja) 2008-09-25 2011-09-07 シャープ株式会社 光学素子、光学素子ウエハ、光学素子ウエハモジュール、光学素子モジュール、光学素子モジュールの製造方法、電子素子ウエハモジュール、電子素子モジュールの製造方法、電子素子モジュールおよび電子情報機器
US20100078837A1 (en) * 2008-09-29 2010-04-01 Pugh Randall B Apparatus and method for formation of an energized ophthalmic device
US9427920B2 (en) 2008-09-30 2016-08-30 Johnson & Johnson Vision Care, Inc. Energized media for an ophthalmic device
US8348424B2 (en) 2008-09-30 2013-01-08 Johnson & Johnson Vision Care, Inc. Variable focus ophthalmic device
RU2380794C1 (ru) 2008-10-10 2010-01-27 Эрика Александровна Алисова Электрохимический элемент с твердым электролитом
US8092013B2 (en) 2008-10-28 2012-01-10 Johnson & Johnson Vision Care, Inc. Apparatus and method for activation of components of an energized ophthalmic lens
US9375886B2 (en) 2008-10-31 2016-06-28 Johnson & Johnson Vision Care Inc. Ophthalmic device with embedded microcontroller
US9375885B2 (en) 2008-10-31 2016-06-28 Johnson & Johnson Vision Care, Inc. Processor controlled ophthalmic device
US9620770B2 (en) 2008-11-19 2017-04-11 National Institute Of Advanced Industrial Science And Technology Nickel positive electrode for fiber battery
AU2009318158B2 (en) 2008-11-20 2016-01-14 Insight Innovations, Llc Biocompatible biodegradable intraocular implant system
JP5694947B2 (ja) 2008-12-11 2015-04-01 エムシー10 インコーポレイテッドMc10,Inc. 医療用途のための伸張性電子部品を使用する装置
JP5056779B2 (ja) 2009-03-11 2012-10-24 株式会社富士通ゼネラル ロータリ圧縮機
KR20100102969A (ko) 2009-03-12 2010-09-27 한전케이피에스 주식회사 터빈 설비의 윤활계통 오일여과 장치
WO2010120816A2 (en) 2009-04-13 2010-10-21 Applied Materials, Inc. Metallized fibers for electrochemical energy storage
WO2010133317A1 (en) 2009-05-17 2010-11-25 Helmut Binder Lens with variable refraction power for the human eye
EP2254149B1 (en) 2009-05-22 2014-08-06 Unisantis Electronics Singapore Pte. Ltd. SRAM using vertical transistors with a diffusion layer for reducing leakage currents
FR2946461B1 (fr) 2009-06-09 2011-07-22 Commissariat Energie Atomique Dispositif d'encapsulation flexible d'une micro-batterie
KR20170116207A (ko) 2009-07-06 2017-10-18 하우징 앤드 디벨로프먼트 보드 식물 트레이
US9281539B2 (en) 2009-07-14 2016-03-08 Kawasakai Jukogyo Kabushiki Kaisha Electrical storage device including fiber electrode, and method of fabricating the same
US8982313B2 (en) 2009-07-31 2015-03-17 North Carolina State University Beam steering devices including stacked liquid crystal polarization gratings and related methods of operation
SI2459220T1 (sl) 2009-07-31 2020-12-31 Ascendis Pharma A/S Biorazgradljivi v vodi netopni hidrogeli na osnovi polietilenglikola
GB0913722D0 (en) 2009-08-06 2009-09-16 Bac2 Ltd Electrical device
US20110039150A1 (en) 2009-08-14 2011-02-17 Yichun Wang Alkaline primary cells
TW201108493A (en) 2009-08-20 2011-03-01 Battery Energy Technology Inc Synthesizing method for manufacturing cathode material with high tap density olivine structure
EP2299515B1 (fr) 2009-08-28 2013-04-03 STMicroelectronics (Tours) SAS Procédé d'encapsulation d'une batterie de type lithium-ion en couches minces directement sur le substrat
WO2011030139A1 (en) 2009-09-11 2011-03-17 Astrazeneca Ab 4- (pyrimidin-2-yl) -piperazine and 4- (pyrimidin-2-yl) -piperidine derivatives as gpr119 modulators
EP2306579A1 (fr) 2009-09-28 2011-04-06 STMicroelectronics (Tours) SAS Procédé de formation d'une batterie lithium-ion en couches minces
JP5725510B2 (ja) 2009-09-28 2015-05-27 国立大学法人静岡大学 電解液用溶媒、電解液、及びゲル状電解質
US8784511B2 (en) 2009-09-28 2014-07-22 Stmicroelectronics (Tours) Sas Method for forming a thin-film lithium-ion battery
PT104766A (pt) 2009-09-29 2011-03-29 Univ Nova De Lisboa Dispositivo de produção e /ou armazenamento de energia baseado em fibras e filmes finos.
US8137148B2 (en) 2009-09-30 2012-03-20 General Electric Company Method of manufacturing monolithic parallel interconnect structure
EP2490288A1 (en) 2009-10-16 2012-08-22 Olympus Corporation Fuel cell, battery, and electrode for fuel cell
KR101861980B1 (ko) 2009-11-06 2018-05-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
RU2550688C2 (ru) * 2010-01-05 2015-05-10 Сенсимед Са Устройство для контроля внутриглазного давления
US20110183203A1 (en) 2010-01-27 2011-07-28 Molecular Nanosystems, Inc. Polymer supported electrodes
US8433409B2 (en) 2010-01-29 2013-04-30 Medtronic, Inc. Implantable medical device battery
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
JP5591567B2 (ja) 2010-03-17 2014-09-17 富士フイルム株式会社 インクセット、及びこれを用いた画像形成方法
WO2011135818A1 (ja) 2010-04-28 2011-11-03 パナソニック株式会社 二次電池
WO2011137239A1 (en) 2010-04-28 2011-11-03 Flexel, Llc A thin flexible electrochemical energy cell
JP5209075B2 (ja) 2010-05-21 2013-06-12 有限会社 ナプラ 電子デバイス及びその製造方法
SG186700A1 (en) 2010-06-01 2013-02-28 Elenza Inc Implantable ophthalmic device with an aspheric lens
JP2012003970A (ja) 2010-06-17 2012-01-05 Finecs Kk 二次電池用金属箔および二次電池
CN103037790A (zh) 2010-06-20 2013-04-10 伊兰扎公司 具有专用集成电路的眼科装置和方法
CA2806421A1 (en) 2010-07-26 2012-02-09 Elenza, Inc. Hermetically sealed implantable ophthalmic devices and methods of making same
DE102010032784A1 (de) 2010-07-29 2012-02-02 Robert Bosch Gmbh Bedienvorrichtung
US8634145B2 (en) 2010-07-29 2014-01-21 Johnson & Johnson Vision Care, Inc. Liquid meniscus lens with concave torus-segment meniscus wall
US20120024295A1 (en) 2010-07-30 2012-02-02 Mihin Chiropractic Clinic, LLC Orthopedic device
EP2412305A1 (en) 2010-07-30 2012-02-01 Ophtimalia Integrated flexible passive sensor in a soft contact lens for IOP monitoring
KR101072292B1 (ko) 2010-08-14 2011-10-11 주식회사 샤인 섬유상의 구조체들을 포함하는 전극 조립체 및 이를 포함하는 전지
JP5777001B2 (ja) 2010-08-23 2015-09-09 セイコーインスツル株式会社 電子部品、電子装置、及び電子部品の製造方法
KR101322695B1 (ko) 2010-08-25 2013-10-25 주식회사 엘지화학 케이블형 이차전지
US9044316B2 (en) 2010-09-07 2015-06-02 Elenza, Inc. Installation and sealing of a battery on a thin glass wafer to supply power to an intraocular implant
US8767309B2 (en) 2010-09-08 2014-07-01 Johnson & Johnson Vision Care, Inc. Lens with multi-convex meniscus wall
JP5664048B2 (ja) 2010-09-13 2015-02-04 セイコーエプソン株式会社 仕分装置
JP2012099470A (ja) 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd リチウム二次電池用正極材料前駆体の製造方法およびリチウム二次電池用正極材料の製造方法
JP5803931B2 (ja) 2010-10-28 2015-11-04 日本ゼオン株式会社 二次電池多孔膜、二次電池多孔膜用スラリー及び二次電池
AR084497A1 (es) 2010-11-15 2013-05-22 Elenza Inc Lente intraocular adaptativa
US8950862B2 (en) 2011-02-28 2015-02-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for an ophthalmic lens with functional insert layers
US9698129B2 (en) 2011-03-18 2017-07-04 Johnson & Johnson Vision Care, Inc. Stacked integrated component devices with energization
US9889615B2 (en) 2011-03-18 2018-02-13 Johnson & Johnson Vision Care, Inc. Stacked integrated component media insert for an ophthalmic device
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US9110310B2 (en) 2011-03-18 2015-08-18 Johnson & Johnson Vision Care, Inc. Multiple energization elements in stacked integrated component devices
US9102111B2 (en) 2011-03-21 2015-08-11 Johnson & Johnson Vision Care, Inc. Method of forming a functionalized insert with segmented ring layers for an ophthalmic lens
US9804418B2 (en) 2011-03-21 2017-10-31 Johnson & Johnson Vision Care, Inc. Methods and apparatus for functional insert with power layer
US9195075B2 (en) 2011-03-21 2015-11-24 Johnson & Johnson Vision Care, Inc. Full rings for a functionalized layer insert of an ophthalmic lens
EP2508935A1 (en) 2011-04-08 2012-10-10 Nxp B.V. Flexible eye insert and glucose measuring system
US20120282519A1 (en) 2011-05-06 2012-11-08 Greatbatch Ltd. Dissimilar Material Battery Enclosure for Improved Weld Structure
WO2012161180A1 (ja) 2011-05-23 2012-11-29 株式会社カネカ 複層導電性フィルム、これを用いた集電体、電池および双極型電池
US9559375B2 (en) 2011-06-01 2017-01-31 Case Western Reserve University Iron flow batteries
US9900351B2 (en) 2011-07-20 2018-02-20 Genband Us Llc Methods, systems, and computer readable media for providing legacy devices access to a session initiation protocol (SIP) based network
US8648297B2 (en) 2011-07-21 2014-02-11 Ohio University Coupling of liquid chromatography with mass spectrometry by liquid sample desorption electrospray ionization (DESI)
US9115505B2 (en) 2011-07-22 2015-08-25 Irwin Seating Company Nosemount seating system
US20170229730A1 (en) 2011-08-02 2017-08-10 Johnson & Johnson Vision Care, Inc. Method for manufacturing a biocompatible cathode slurry for use in biocompatible batteries for a contact lens
US9812730B2 (en) 2011-08-02 2017-11-07 Johnson & Johnson Vision Care, Inc. Biocompatible wire battery
US9203092B2 (en) 2011-09-07 2015-12-01 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
WO2013090813A1 (en) 2011-12-14 2013-06-20 Semprus Biosciences Corp. Redox processes for contact lens modification
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
CN110095885A (zh) 2012-01-26 2019-08-06 庄臣及庄臣视力保护公司 包括堆叠式集成元件的通电眼科镜片
US9059435B2 (en) 2012-01-27 2015-06-16 Medtronic, Inc. Medical device battery enclosure
IL224797A (en) 2012-02-22 2017-03-30 Johnson & Johnson Vision Care An eyepiece lens with annular layers divided by a functional implant
US20130215380A1 (en) 2012-02-22 2013-08-22 Randall B. Pugh Method of using full rings for a functionalized layer insert of an ophthalmic device
US9134546B2 (en) 2012-02-22 2015-09-15 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with segmented ring layers in a functionalized insert
GB201203713D0 (en) 2012-03-02 2012-04-18 Energy Diagnostic Ltd Energy storage battery
KR101328585B1 (ko) 2012-04-06 2013-11-12 한국과학기술연구원 양극활물질의 재활용을 통한 리튬이온 이차전지용 양극의 제조 방법 및 이에 따라 제조된 리튬이온 이차전지
JP5441279B2 (ja) 2012-05-11 2014-03-12 レーザーテック株式会社 リチウムイオン電池の観察方法、試験用リチウムイオン電池及びその製造方法
US9178200B2 (en) 2012-05-18 2015-11-03 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US20140000101A1 (en) 2012-06-29 2014-01-02 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form printed batteries on ophthalmic devices
JP2015167065A (ja) 2012-07-11 2015-09-24 シャープ株式会社 非水電解質二次電池
US20140017558A1 (en) 2012-07-16 2014-01-16 Nthdegree Technologies Worldwide Inc. Diatomaceous Ionic Gel Separation Layer for Energy Storage Devices and Printable Composition Therefor
US20140047742A1 (en) 2012-08-14 2014-02-20 Ben Schloss Edge Lit Magnetic Sign
US20150250386A1 (en) 2012-09-28 2015-09-10 Csem Centre Suisse D'electronique Et De Microtechnique Sa -Recherche Et Developpement Implantable devices
JP6316305B2 (ja) 2012-11-01 2018-04-25 ブルー スパーク テクノロジーズ,インク. 体温ロギング用パッチ
WO2014071571A1 (en) 2012-11-07 2014-05-15 Empire Technology Development Llc Liquid-activated hydrogel battery
US10033029B2 (en) 2012-11-27 2018-07-24 Apple Inc. Battery with increased energy density and method of manufacturing the same
AU2014201529A1 (en) 2013-03-15 2014-10-02 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form three-dimensional biocompatible energization elements
US9406969B2 (en) 2013-03-15 2016-08-02 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form three-dimensional biocompatible energization elements
EP2984910B1 (en) 2013-04-12 2020-01-01 The Board of Trustees of the University of Illionis Inorganic and organic transient electronic devices
US10297835B2 (en) 2013-05-17 2019-05-21 Massachusetts Institute Of Technology Flexible and implantable glucose fuel cell
EP3005461B8 (en) 2013-06-05 2018-12-26 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Complete oxidation of sugars to electricity by using cell-free synthetic enzymatic pathways
CN203300756U (zh) 2013-06-07 2013-11-20 广东国光电子有限公司 一种软包装聚合物锂离子电池手工封装装置
CN203733888U (zh) 2013-11-27 2014-07-23 中科宇图天下科技有限公司 应用于微生物燃料电池的控制装置
US9455423B2 (en) 2014-01-24 2016-09-27 Verily Life Sciences Llc Battery
US10096802B2 (en) 2014-04-08 2018-10-09 International Business Machines Corporation Homogeneous solid metallic anode for thin film microbattery
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US9383593B2 (en) 2014-08-21 2016-07-05 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators
US9715130B2 (en) 2014-08-21 2017-07-25 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US9577259B2 (en) 2014-08-21 2017-02-21 Johnson & Johnson Vision Care, Inc. Cathode mixture for use in a biocompatible battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060095128A1 (en) * 2004-11-02 2006-05-04 Blum Ronald D Electro-active intraocular lenses
WO2007050402A2 (en) * 2005-10-26 2007-05-03 Motorola Inc. Combined power source and printed transistor circuit apparatus and method
WO2008091859A1 (en) * 2007-01-22 2008-07-31 E-Vision, Llc Flexible electro-active lens
US20090033863A1 (en) * 2007-02-23 2009-02-05 Blum Ronald D Ophthalmic dynamic aperture
WO2008109867A2 (en) * 2007-03-07 2008-09-12 University Of Washington Active contact lens
DE102007048859A1 (de) 2007-10-11 2009-04-16 Robert Bosch Gmbh Intraokularlinse sowie System
US20090244477A1 (en) * 2008-03-31 2009-10-01 Pugh Randall B Ophthalmic lens media insert

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US9535268B2 (en) 2011-03-18 2017-01-03 Johnson & Johnson Vision Care, Inc. Multiple energization elements in stacked integrated component devices
US10695167B2 (en) 2012-04-23 2020-06-30 E-Vision Smart Optics, Inc. Systems, devices, and/or methods for managing implantable devices
US11007051B2 (en) 2012-04-23 2021-05-18 E-Vision Smart Optics, Inc. Systems, devices, and/or methods for managing implantable devices
GB2502881B (en) * 2012-04-23 2016-03-16 E Vision Smart Optics Inc Systems, devices, and/or methods for managing implantable devices
WO2014186501A1 (en) * 2013-05-17 2014-11-20 Johnson & Johnson Vision Care, Inc. System and method for a processor controlled ophthalmic lens
KR20160009661A (ko) * 2013-05-17 2016-01-26 존슨 앤드 존슨 비젼 케어, 인코포레이티드 프로세서 제어식 안과용 렌즈를 위한 시스템 및 방법
US8941488B2 (en) 2013-05-17 2015-01-27 Johnson & Johnson Vision Care, Inc. System and method for a processor controlled ophthalmic lens
KR102229735B1 (ko) 2013-05-17 2021-03-22 존슨 앤드 존슨 비젼 케어, 인코포레이티드 프로세서 제어식 안과용 렌즈를 위한 시스템 및 방법
US9170646B2 (en) 2013-09-04 2015-10-27 Johnson & Johnson Vision Care, Inc. Ophthalmic lens system capable of interfacing with an external device
RU2585422C2 (ru) * 2013-09-04 2016-05-27 Джонсон Энд Джонсон Вижн Кэа, Инк. Система офтальмологической линзы, выполненная с возможностью взаимодействия с внешним устройством
EP2846182A3 (en) * 2013-09-04 2015-06-10 Johnson & Johnson Vision Care, Inc. Ophthalmic lens system capable of interfacing with an external device
RU2597069C2 (ru) * 2013-09-23 2016-09-10 Джонсон Энд Джонсон Вижн Кэа, Инк. Система офтальмологической линзы, выполненная с возможностью беспроводной связи с множеством внешних устройств
US10577166B2 (en) 2013-12-19 2020-03-03 Verily Life Sciences Llc Packaging for an active contact lens
US9701458B2 (en) 2013-12-19 2017-07-11 Verily Life Sciences Llc Packaging for an active contact lens
WO2015094484A1 (en) * 2013-12-19 2015-06-25 Google Inc. Packaging for an active contact lens
EP3155477A4 (en) * 2014-06-13 2018-01-03 Verily Life Sciences LLC Eye-mountable device to provide automatic accommodation and method of making same
CN106415373A (zh) * 2014-06-13 2017-02-15 威里利生命科学有限责任公司 用于在隐形眼镜内使用的柔性导体
US10416477B2 (en) 2014-06-13 2019-09-17 Verily Life Sciences Llc Ophthalmic system having adjustable accommodation based on photodetection
CN106415373B (zh) * 2014-06-13 2020-06-02 威里利生命科学有限责任公司 用于在隐形眼镜内使用的柔性导体
US11199727B2 (en) 2014-06-13 2021-12-14 Verily Life Sciences Llc Eye-mountable device to provide automatic accommodation and method of making same
US10268051B2 (en) 2014-06-13 2019-04-23 Verily Life Sciences Llc Eye-mountable device to provide automatic accommodation and method of making same
EP2979622A1 (en) * 2014-07-31 2016-02-03 Ophtimalia Passive sensing means for a contact lens
WO2016022665A1 (en) * 2014-08-05 2016-02-11 Coopervision International Holding Company, Lp Electronic medical devices and methods
US10598958B2 (en) 2014-08-21 2020-03-24 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10367233B2 (en) 2014-08-21 2019-07-30 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10374216B2 (en) 2014-08-21 2019-08-06 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US10386656B2 (en) 2014-08-21 2019-08-20 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
EP2988363A1 (en) * 2014-08-21 2016-02-24 Johnson & Johnson Vision Care Inc. Components with multiple energization elements for biomedical devices
US10558062B2 (en) 2014-08-21 2020-02-11 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical device
EP3070516A1 (en) * 2015-03-19 2016-09-21 Johnson & Johnson Vision Care Inc. Thinned and flexible circuit boards on three-dimensional surfaces
US10345619B2 (en) 2015-03-19 2019-07-09 Johnson & Johnson Vision Care, Inc. Thinned and flexible circuit boards on three-dimensional surfaces
US12153285B2 (en) 2015-09-16 2024-11-26 E-Vision Smart Optics, Inc. Systems, apparatus, and methods for ophthalmic lenses with wireless charging
CN108472126A (zh) * 2015-12-14 2018-08-31 诺华股份有限公司 用于体内使用的电子和光电设备的柔性的气密性电互连件
WO2017103734A1 (en) * 2015-12-14 2017-06-22 Novartis Ag Flexible, hermetic electrical interconnect for electronic and optoelectronic devices for in vivo use
US10092396B2 (en) 2015-12-14 2018-10-09 Novartis Ag Flexible, hermetic electrical interconnect for electronic and optoelectronic devices for in vivo use
AU2016372797B2 (en) * 2015-12-14 2021-12-16 Alcon Inc. Flexible, hermetic electrical interconnect for electronic and optoelectronic devices for in vivo use
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
AU2017240274B2 (en) * 2016-03-28 2019-05-23 Coopervision International Limited Contact lens blister package, base member for a contact lens blister, sealing member for a contact lens blister and related methods
WO2017168122A1 (en) * 2016-03-28 2017-10-05 Coopervision International Holding Company, Lp Contact lens blister package, base member for a contact lens blister, sealing member for a contact lens blister and related methods
US11338976B2 (en) * 2016-03-28 2022-05-24 Coopervision International Limited Contact lens blister package, base member for a contact lens blister, sealing member for a contact lens blister and related methods
WO2019067479A1 (en) * 2017-09-26 2019-04-04 Verily Life Sciences Llc OPHTHALMIC DEVICES COMPRISING POLYDOPAMINE LAYERS AND METHODS OF DEPOSITION OF METAL LAYER ON OPHTHALMIC DEVICES COMPRISING A POLYDOPAMINE LAYER
DE102021121166A1 (de) 2021-06-15 2022-12-15 Carl Zeiss Meditec Ag Ophthalmisches Implantat und Verfahren zur Herstellung eines Solchen
WO2022263495A1 (de) 2021-06-15 2022-12-22 Carl Zeiss Meditec Ag Ophthalmisches implantat und verfahren zur herstellung eines solchen
DE102022213287A1 (de) 2022-12-08 2024-06-13 Carl Zeiss Meditec Ag System und verfahren zum auslesen von daten aus einem ophthalmischen implantat
CN116207489A (zh) * 2023-02-17 2023-06-02 西安电子科技大学 一种基于分形介质加载和超材料吸波结构的平面螺旋天线

Also Published As

Publication number Publication date
TWI585487B (zh) 2017-06-01
US8857983B2 (en) 2014-10-14
IL224267A (en) 2017-07-31
US20130194540A1 (en) 2013-08-01
RU2621483C2 (ru) 2017-06-06
SG192368A1 (en) 2013-08-30
TW201337380A (zh) 2013-09-16
US10775644B2 (en) 2020-09-15
CN103257457B (zh) 2018-09-11
CA2802144A1 (en) 2013-07-26
AU2013200244A2 (en) 2015-08-27
AU2013200244A1 (en) 2013-08-15
BR102013002078A2 (pt) 2018-01-02
KR20130086984A (ko) 2013-08-05
US20140306361A1 (en) 2014-10-16
AU2013101735A4 (en) 2016-01-28
CN103257457A (zh) 2013-08-21
RU2013103491A (ru) 2014-07-27
JP2013156632A (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
AU2013101735A4 (en) Ophthalmic lens assembly having an integrated antenna structure
JP7034582B2 (ja) 複数のアンテナを有するアンテナマンドレル
EP3826104B1 (en) Antenna designs for communication between a wirelessly powered implant to an external device outside the body
US20170063164A1 (en) Mobile wireless power system
AU2008351351A1 (en) Printed circuit board communication coil for use in an implantable medical device system
ITTO20101095A1 (it) Protesi retinica
JP2013514053A (ja) 無線電力伝送装置及びその方法
US20180133487A1 (en) Hermetic package with inductors and capacitors integrated into ceramic housing
CN112955096B (zh) 包括调节性眼内透镜和远程部件的眼科系统以及相关使用方法
WO2021021385A1 (en) Miniaturized inductive loop antenna with distributed reactive loads
HK1187115A (en) Ophthalmic lens assembly having an integrated antenna structure
WO2003073959A2 (en) Implantable passive intraocular pressure sensor
Abiri et al. Wirelessly Powered Medical Implants via Radio Frequency
Yuan et al. Wireless Power Transfer in Wearable Smart Contact Lenses [Open access]

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140124

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1187115

Country of ref document: HK

17Q First examination report despatched

Effective date: 20180713

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190809

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1187115

Country of ref document: HK