CN105940479A - 使用宽离子场穿孔二维材料 - Google Patents

使用宽离子场穿孔二维材料 Download PDF

Info

Publication number
CN105940479A
CN105940479A CN201580006829.5A CN201580006829A CN105940479A CN 105940479 A CN105940479 A CN 105940479A CN 201580006829 A CN201580006829 A CN 201580006829A CN 105940479 A CN105940479 A CN 105940479A
Authority
CN
China
Prior art keywords
ion
layer
graphene
hole
dimensional material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580006829.5A
Other languages
English (en)
Inventor
P·V·贝得沃斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lockheed Martin Corp
Original Assignee
Lockheed Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lockheed Corp filed Critical Lockheed Corp
Publication of CN105940479A publication Critical patent/CN105940479A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/31Electron-beam or ion-beam tubes for localised treatment of objects for cutting or drilling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/02Molecular or atomic beam generation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02831Pore size less than 1 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon

Abstract

具有期望的尺寸范围、窄的尺寸分布以及高孔密度的、其内含孔的穿孔石墨烯和其他二维材料是难以获得的。与石墨烯、石墨烯基体材料和其他二维材料连续接触的薄层有助于促进孔的形成。对二维材料进行穿孔的方法可以包括:将二维材料暴露于离子源下,其中所述二维材料连续接触于至少一层;以及将来自于离子源的大量离子与二维材料和所述至少一层相互作用。所述离子源可以为宽离子束。

Description

使用宽离子场穿孔二维材料
相关申请的交叉引用
本申请基于35U.S.C.§119要求2014年1月31日提交的美国临时专利申请号61/934,530的优先权,其全部内容通过引用纳入本文。
关于联邦资助研发下所作出发明的权利的声明
不适用。
领域
本发明公开内容普遍地涉及二维材料,以及,更具体地,涉及穿孔二维材料的方法。
背景
石墨烯代表碳的一种形式,其中,碳原子存在于六元稠环的单个原子厚的薄层或多个层状薄片(例如,约20或更小),形成延伸的平面晶格。石墨烯以其各种形态在许多用途中获得了广泛关注,主要是由于它的高电导率和热导值的有利组合、良好的面内机械强度,以及独特的光学和电学特性。在许多方面,石墨烯的性能可与碳纳米管匹敌,因为这两种纳米材料都是基于延伸的sp2-杂化的碳框架。其它具有几个或更小的纳米厚度以及延伸的平面晶格的二维材料,也在许多用途中得到关注。在一个实施例中,所述二维材料具有0.3至1.2nm的厚度。在其他实施例中,所述二维材料具有0.3至3nm的厚度。
由于它的延伸平面结构,石墨烯提供了一些不与碳纳米管共享的功能。产业界特别感兴趣的是大面积石墨烯薄膜,可用于例如,特殊的阻挡层、涂层、大面积导电元件(例如,射频辐射器(RF radiator)或天线)、集成电路、透明电极、太阳能电池、气体屏障、柔性电子器件等。此外,与碳纳米管相比,目前石墨烯膜可以更廉价地大批量生产。
一些对于石墨烯和其他二维材料的预期应用,是基于在这些纳米材料的平面结构中形成多个纳米级孔洞来预测的。在石墨烯和其他二维材料中形成孔洞的方法在本文中被称为“穿孔(perforation)”,并且在本文中将此类纳米材料称为“穿孔的(perforated)”。在石墨烯薄片中,由片层中的各六元碳原子环结构形成了填隙孔径,并且该填隙孔径少于一纳米跨度。特别地,沿其最长尺寸方向,该填隙孔径被认为是约0.3纳米(碳原子间的中心至中心距离约为0.28nm,并且孔径稍微小于该距离)。典型地,对具有二维网络结构的薄层进行穿孔,是指在网络结构中形成大于填隙孔径的孔洞。
石墨烯和其他二维材料的穿孔可以改变材料的电性能和对流过材料的流体的阻力。例如,穿孔的石墨烯的孔密度可用于调节纳米材料的导电性,并且,某些情况下,可用于调节其带隙。过滤用途是穿孔的石墨烯和其他穿孔的二维材料已经引起相当兴趣的另一领域。由于石墨烯和其他二维材料的原子级薄度,在过滤过程中实现高液体通量流量是可能的,即使存在的孔洞仅具有单纳米尺寸。
高性能、高选择性的过滤用途,取决于过滤膜中存在足够数量的期望尺寸的孔洞。尽管已知对石墨烯和其他二维材料进行穿孔的许多方法,但是生产具有期望尺寸范围的、窄的尺寸分布和高的孔密度的孔洞仍然是一个挑战。在常规的穿孔方法中,通常至少缺乏这些参数中的某个参数。
可以使用化学技术在石墨烯和其他二维材料中创建孔洞。石墨烯和其他二维材料暴露于臭氧或常压等离子体(例如,氧气/氩气或氮气/氩气等离子体)可实现穿孔,但是这些孔洞通常在密度和尺寸分布上有所不足。在许多情况下,难以分别控制孔洞成核和孔洞生长,因此,这些方法通常产生了孔洞尺寸的宽分布。此外,许多化学穿孔技术产生的孔是极端的:1)低孔密度以及小的孔洞尺寸的极端孔,和2)高孔密度以及大的孔洞尺寸的极端孔。这些极端孔对于过滤用途都是特别不理想的。第一种极端孔对于通量是不利的,第二种极端孔对于选择性地排除比孔径小的杂质是不利的。
也可使用物理技术从二维材料的平面结构中除去物质以创建孔洞。高热离子束趋向在石墨烯和其他二维材料中产生孔洞,这些孔洞的尺寸太小以至于不能发生有效过滤,这主要是因为石墨烯和其他二维材料与在高热速度的离子的反应相当差。高热能量范围被定为介于热能量范围和低能量范围之间。例如,高热能量范围包括1eV和500eV之间的能量范围。相反地,聚焦离子束往往形成数量过少的孔洞。由于它们有很高的能量通量,聚焦离子束对于许多放置二维材料的基板而言,也是极其破坏性的。由于它们的高能量需求和小光束尺寸,使用聚焦离子束来穿孔大尺寸区域也是不切实际的。
具有约0.3nm至约10nm尺寸范围、高孔密度和窄孔尺寸分布的孔洞的穿孔纳米材料,是尤其难制备的。具有这个尺寸范围内的孔洞,对于多种不同过滤应用尤其有效,其中包括,例如,反渗透、分子过滤、超滤和纳滤过程。举个例子,尺寸范围在0.3nm至0.5nm的孔洞可用于某些气体分离工艺。尺寸范围在0.7nm至1.2nm的孔洞可用于某些脱盐工艺。
鉴于以上所述,本领域很需要规模化的、用于对石墨烯和其他二维材料进行穿孔方法,以便生产具有高孔密度、窄尺寸分布和小孔尺寸的孔洞。尤其地,本领域非常需要用于产生具有适于不同过滤应用的尺寸、孔密度和尺寸分布的孔洞的规模化方法。本发明公布内容满足上述需求,并提供了相关优点。
概述
在不同实施例中,本文描述了对二维材料穿孔的方法。一方面,将含有二维材料层和另一种材料层的复合材料暴露于离子源,会在二维材料中产生多个孔洞,即使在离子的能量和/或通量相对较低时。在一个实施例中,其他材料层不是二维材料的片层或薄层。
在一些实施例中,穿孔的方法可包括:(1)将二维材料暴露于离子源,其中所述二维材料与不同于所述二维材料的至少一个材料层相接触,和(2)将来自于离子源的多个离子与所述二维材料以及与所述的至少一个材料层相互作用。在一个实施例中,所述的至少一层与所述二维材料是连续接触的,当该二维材料暴露于离子源时。在一个实施例中,该离子在二维材料中引进了大量缺陷,并且该离子与所述的至少一层的相互作用,促进了所述缺陷膨胀成为所述限定于二维材料中的大量孔。在一些实施例中,该离子源提供了以下离子能量范围:从0.75keV至10keV、从1keV至10keV、从1keV至5keV、从2keV至10keV、或从5keV至10keV。在一些实施例中,该离子源提供了以下离子剂量范围,从1x1010个离子/cm2至1x1017个离子/cm2、从1x1011个离子/cm2至1x1015个离子/cm2、或从1x1013个离子/cm2至1x1019个离子/cm2
在一个实施例中,所述方法包括步骤:将复合多层材料暴露于离子源产生的离子,该多层材料包括含二维第一材料的第一层,和与第一层接触的第二材料的第二层;并且通过来自离子源的大量离子、来自离子源的中和离子、或其组合与所述二维第一材料和所述第二材料的相互作用,从而在二维第一材料中产生大量孔。在一个实施例中,所述离子源为宽射束或泛源。在一些实施例中,就中和离子而言,当与多层材料相互作用时,至少一部分来源于离子源的离子是被中和的。例如,离子可以在给定层表面附近或在层内碰撞过程中被中和。在一个实施例中,所述第一层具有第一侧和第二侧,其中第一侧面向离子源。所述第一层的第一侧可被称为第一层的“正面”。
在一个实施例中,第二层为置于所述第一层的第一侧上的正面层。在多层材料暴露于离子源期间,至少一部分离子和/或中和离子与正面层的材料相互作用,并且,大量离子和/或中和离子穿过正面层,随后与包含二维材料的层反应。在一个实施例中,在穿孔之后除去正面层。当第二层为置于所述第一层的第二侧上的“背面层”时,至少一部分离子和/或中和离子与第一层的二维材料相互作用,并且,大量离子和/或中和离子穿过第一层,随后与背面层反应。所述多层材料可进一步包括第三材料的第三层。在一个实施例中,第三层置于第一层的相对于第二层的对侧,因此含有二维材料的第一层与其他材料的正面层和背面层都接触。
在一个实施例中,选取第二材料,以便离子和/或中和离子与第二材料的相互作用有助于穿孔过程。在一个实施例中,第二材料与离子和/或中和离子的相互作用会形成碎片。形成的碎片类型至少部分取决于第二材料。所述碎片可以是原子、离子或分子碎片(例如,聚合物链的一部分)。
当第二材料的层为正面层时,所述层的厚度足够薄,以允许离子和/或中和离子穿透到含有二维材料的层中。在一个实施例中,第二材料的层的平均厚度为1至10nm。正面层可以是连续的或不连续的。在一些实施例中,所述的至少一层可以为,例如,沉积硅、沉积聚合物、冷凝气体或冷凝有机化合物、或其任意组合。在一些实施例中,所述聚合物包括碳元素和氢元素,和任选地,进一步包括一种或多种选自下组的元素:硅、氧、氮、氟、氯和溴。在一些实施例中,所述聚合物为聚碳酸酯、聚丙烯酸酯、聚环氧乙烷、环氧化物、硅酮、聚四氟乙烯(PTFE)或聚氯乙烯(PVC)。在一个实施例中,所述冷凝气体为惰性气体,如氙气。在实施例中,所述冷凝有机化合物是硫醇、胺或醇。在一个实施例中,所述有机化合物包括具有2至15个、2至10个或5至15个碳原子的烷基基团。
当第二材料的层为背面层时,该层可以比含有二维材料的层更厚。在一个实施例中,所述背面层为1微米至10微米厚。在另一实施例中,所述背面层为5微米至10微米厚。在一个实施例中,该层提供用于二维材料层的基板。在一个实施例中,该背面层是石墨烯或其他二维材料在其上生长的生长基板。在一个实施例中,所述生长基板为金属生长基板。在一个实施例中,所述金属生长基板为基本连续的金属层,而不是网格或网眼。与石墨烯以及基于石墨烯的材料的生长相兼容的金属生长基板,包括过渡金属及其合金。在一些实施例中,所述金属生长基板为铜基或镍基的基板。在一些实施例中,所述金属生长基板为铜或镍。在另一个实施例中,所述背面层可以是二级基板,而石墨烯或其他二维材料在生长之后已经转移到该二级基板上。
在一些实施例中,离子能量范围从0.01keV至10keV、0.5keV至10keV、0.75keV至10keV、从1keV至10keV、从1keV至5keV、从2keV至10keV、或从5keV至10keV。在一些实施例中,当所述二维材料包括石墨烯基体材料薄层并进一步包括至少一些非石墨烯的碳基材料时,超过0.75keV或1keV的离子能量是较佳的。在一些实施例中,所述离子源提供给多层材料的离子剂量范围,为从1x1010个离子/cm2至1x1017个离子/cm2、从1x1011个离子/cm2至1x1015个离子/cm2、或从1x1013个离子/cm2至1x1019个离子/cm2。在一个实施例中,离子剂量基于离子进行调整,其中对于较轻的离子(较低质量的离子)提供较高的剂量。在一些实施例中,离子通量或离子束流密度范围为从0.1nA/mm2至100nA/mm2、从0.1nA/mm2至10nA/mm2、0.1nA/mm2至1nA/mm2、从1nA/mm2至10nA/mm2、或从10nA/mm2至100nA/mm2
在不同实施例中,二维材料包括石墨烯基体材料的薄层。在一个实施例中,第一层包括石墨烯基体材料薄层。在一个实施例中,石墨烯基体材料薄层为单层或多层石墨烯薄层,或者为含有大量互连的单层或多层石墨烯域的薄层。在一些实施例中,多层石墨烯域具有2至5层或2至10层。在一个实施例中,含有石墨烯基体材料的薄层的层,进一步包括位于石墨烯基体材料薄层表面上的非石墨烯的碳基材料。在一个实施例中,非石墨烯的碳基材料的数量少于石墨烯的数量。在一些实施例中,在石墨烯基体材料中的石墨烯的数量为从60%至95%或从75%至100%。
在一些实施例中,穿孔的特征性尺寸是从0.3至10nm,从0.3到0.5nm、从0.4至10nm、从0.5至2.5nm、从0.5至10nm、从5nm至20nm、从0.7nm至1.2nm、从10nm至50nm、从50nm至100nm、从50nm至150nm、或从100nm至200nm。在一个实施例中,平均孔尺寸在特定范围内。在一些实施例中,70%至99%、80%至99%、85%至99%或90至99%的穿孔落在特定范围内,但是其它孔落在特定范围之外。如果落在特定范围之外的孔洞比落在特定范围之内的孔洞大时,这些孔洞可被称为“非选择性的”。
在更具体的实施例中,所述方法可以包括:提供在金属生长基板上的石墨烯基体材料薄层;将该石墨烯基体材料薄层暴露于离子源,该离子源提供的离子剂量范围为从1x1010个离子/cm2至1x1017个离子/cm2、从1x1011个离子/cm2至1x1015个离子/cm2、或从1x1013个离子/cm2至1x1019个离子/cm2,并且具有以下的离子能量范围,从0.75keV至10keV、从1keV至10keV、从1keV至5keV、从2keV至10keV、或从5keV至10keV;将来自离子源的大量离子和/或中和离子与石墨烯以及与金属生长基板相互作用,其中,所述离子在石墨烯中引进了大量缺陷,并且离子和/或中和离子与金属生长基板的相互作用,使得从金属生长基板向石墨烯喷射出大量层碎片;以及用所述层碎片使石墨烯中的所述缺陷膨胀,从而在石墨烯中形成多个孔洞。所述金属生长基板置于石墨烯的相对于离子源的对面一侧,并且构成背面层。在一个实施例中,当该层为金属生长基板时,所述层碎片构成金属原子或金属离子。
在其他更具体的实施例中,所述方法包括:将其上具有正面层的石墨烯基体材料薄层暴露于离子源,所述离子源提供的离子剂量范围为从1x1010个离子/cm2至1x1017个离子/cm2、从1x1011个离子/cm2至1x1015个离子/cm2、或从1x1013个离子/cm2至1x1019个离子/cm2,并且具有以下的离子能量范围,从0.75keV至10keV、从1keV至10keV、从1keV至5keV、从2keV至10keV、或从5keV至10keV;将来自离子源的大量离子和/或中和离子与石墨烯以及与正面层相互作用,从而在石墨烯中引进大量缺陷。在一个实施例中,离子和/或中和离子与正面层的相互作用导致向石墨烯喷射出大量层碎片,以及用所述层碎片使石墨烯中这些缺陷膨胀,从而在石墨烯中形成多个孔洞。所述正面层与离子源置于石墨烯的相同侧。
在另一些更具体的更多实施例中,所述方法可包括:将位于背面层上的石墨烯基体材料暴露于离子源中,所述离子源提供的离子剂量范围为从1x1010个离子/cm2至1x1017个离子/cm2、从1x1011个离子/cm2至1x1015个离子/cm2、或从1x1013个离子/cm2至1x1019个离子/cm2,并且具有以下的离子能量范围,从0.75keV至10keV、从1keV至10keV、从1keV至5keV、从2keV至10keV、或从5keV至10keV;将来自离子源的大量离子和/或中和离子与石墨烯以及与背面层相互作用,从而在石墨烯中引进大量缺陷。所述背面层位于石墨烯一侧上,背向离子源。在一个实施例中,所述背面层将离子和/或中和离子与背面层的冲击能量分散给所述缺陷的周围的石墨烯区域,并促进所述缺陷膨胀成为孔洞,其中所述缺陷是离子和/或中和离子与石墨烯反应所形成的。
前述内容已经相当广泛地概述了本发明内容的特征,以便使得随后的详细描述可以更好地被理解。下文将描述本发明的附加技术特征以及优点。通过以下描述并结合附图,这些和其他的优点和特征会更加明显。
附图简述
为了更全面理解本发明以及其优点,现在结合附图参考以下说明来描述本发明的具体实施方案,其中:
图1和图2显示了与石墨烯或其他二维材料连续接触的正面层的示例性简图;
图3A、3B和3C显示了演示离子与正面层以及与石墨烯或其他二维材料的相互作用是如何在石墨烯或其他二维材料中界定出孔洞的示例性简图;以及
图4A、图4B和图4C显示了演示离子与背面层以及与石墨烯或其他二维材料的相互作用是如何在石墨烯或其他二维材料中界定出孔洞的示例性简图。
详细描述
本发明公开的内容部分地针对在石墨烯、石墨烯基体材料或其他二维材料中产生大量孔洞的方法。在一个实施例中,第一层包括石墨烯基体材料薄层。所述石墨烯基体材料包括但不限于:单层石墨烯、多层石墨烯或互联的单层或多层石墨烯域、及其组合。在一个实施例中,石墨烯基体材料还包括由堆积的单层或多层石墨烯薄层形成的材料。在一些实施例中,多层石墨烯包括2至20层、2至10层或2至5层。在一些实施例中,石墨烯是石墨烯基体材料中的主要材料。例如,石墨烯基体材料包括至少30%石墨烯、或至少40%石墨烯、或至少50%石墨烯、或至少60%石墨烯、或至少70%石墨烯、或至少80%石墨烯、或至少90%石墨烯、或至少95%石墨烯。在一些实施例中,石墨烯基体材料包括选自下组范围的石墨烯:从30%至95%、或从40%至80%、从50%至70%、从60%至95%、或从75%至100%。
如本文所用,“域”指的是材料区域,其中原子均匀有序地进入晶格。所述域在其边界范围内是均匀有序的,但是不同于相邻的区域。例如,单晶材料具有有序原子的单一域。在一个实施例中,至少一些石墨烯域是纳米晶体,具有从1至100nm或10-100nm的结构域尺寸。在一个实施例中,至少一些石墨烯域具有超过100nm至1微米、或从200nm至800nm、或从300nm至500nm的结构域尺寸。在每个域的边界由晶体缺陷形成的“晶界”,将相邻的晶格之间区分开。在一些实施例中,第一晶格可相对于第二晶格绕垂直于薄层平面的旋转轴旋转,以使得两种晶格在“晶格取向”上有所不同。
在一个实施例中,石墨烯基体材料薄层包括单层或多层石墨烯薄层、或其组合。在一个实施例中,石墨烯基体材料薄层为单层或多层石墨烯薄层、或其组合。在另一个实施例中,石墨烯基体材料的薄层为包含多个互联的单层或多层石墨烯域的薄层。在一个实施例中,互联的域共价结合在一起形成薄层。当薄层中的域晶格取向不同时,该薄层是多晶的。
在一些实施例中,所述石墨烯基体材料薄层的厚度为从0.34至10nm、从0.34至5nm、或从0.34至3nm。在一个实施例中,石墨烯基体材料薄层包括本征缺陷。与通过穿孔选择性地在石墨烯基体材料薄层或石墨烯薄层中引入的缺陷不同,本征缺陷是由石墨烯基体材料的制备所造成的。这些本征缺陷包括但不限于:晶格反常、孔、开口、裂纹或皱纹。晶格反常可包括但不限于:除了6元之外的碳环(例如5、7或9元环)、空位、填隙缺陷(包括晶格内掺入非碳原子),以及晶界。
在一个实施例中,包括石墨烯基体材料薄层的所述层,可进一步包括位于石墨烯基体材料薄层表面的、非石墨烯的碳基材料。在一个实施例中,非石墨烯的碳基材料不具有长程有序性,并且可被归类为是无定形的。在一些实施例中,非石墨烯的碳基材料进一步包括除碳和/或碳氢化合物之外的元素。可掺入非石墨烯的碳的非碳元素包括但不限于:氢、氧、硅、铜和铁。在一些实施例中,所述非石墨烯的碳基材料包括碳氢化合物。在一些实施例中,碳是非石墨烯的碳基材料中的主要材料。例如,非石墨烯的碳基材料包括至少30%的碳、或至少40%的碳、或至少50%的碳、或至少60%的碳、或至少70%的碳、或至少80%的碳、或至少90%的碳、或至少95%的碳。在一些实施例中,非石墨烯的碳基材料包括选自下组范围的碳:从30%至95%、或从40%至80%、或从50%至70%。
本文中,这种有意地创建孔隙的纳米材料被称为“穿孔石墨烯”、“穿孔石墨烯基体材料”或“穿孔二维材料”。本发明还部分针对含有大量范围从0.3nm至10nm尺寸大小的孔洞的穿孔石墨烯、穿孔石墨烯基体材料和其他穿孔二维材料。本发明进一步部分针对含有大量范围从约0.3nm至约10nm尺寸大小的、具有窄尺寸分布的孔洞的穿孔石墨烯、穿孔石墨烯基体材料和其他穿孔二维材料,其中包括但不限于:1-10%的尺寸偏差或1-20%的尺寸偏差。在一个实施例中,所述孔洞的特征尺寸从0.5nm至10nm。对于圆孔,特征尺寸为孔直径。在一些实施例中,相对于非圆形的孔洞,特征尺寸可认为是横跨孔的最大距离、横跨孔的最小距离、横跨孔的最大距离和最小距离的平均值、或者基于孔面内区域的等效直径。如本文所用,穿孔石墨烯基体材料包括那些非碳原子已经掺入到孔边缘的材料。
如上所述,对石墨烯和其他二维材料进行穿孔以形成大量孔的常规方法,在获得的孔密度、孔尺寸和孔分布方面存在局限性。具有约10nm或更少的有效尺寸的小孔的穿孔的纳米材料,是特别难以生产的,以便其具有足够孔密度和尺寸分布以支持许多预期的应用。例如,无法产生选定尺寸和孔密度的孔洞,那么会显著妨碍过滤应用,因为选择性和通过流量会受到严重影响。此外,目前用于穿孔石墨烯和其他二维材料的技术,据信是无法规模放大到大尺寸的区域(例如,一到几十平方厘米或更大),以便支撑商业化生产应用。
穿孔石墨烯和其他二维材料的现行方法包括化学和物理方法。化学方法通常涉及孔洞成核和孔洞生长阶段。然而,孔洞成核和孔洞生长通常难以彼此分离,从而导致了孔洞尺寸的宽分布。物理过程通常涉及用强力将原子从二维材料平面结构上脱除。然而,物理方法在能量上是相当低效的,尤其是考虑到对其进行规模放大以便应用于商业生产时。此外,高能离子实际上与石墨烯和其他二维材料的相互作用非常弱,这导致了脱除过程中被溅射原子的产率低。
在一个实施例中,对石墨烯、石墨烯基体材料和其他二维材料的能量离子穿孔过程可显著增强,这是通过在其暴露于宽射束或泛源离子源期间,用至少一层第二材料连续接触于石墨烯或其他二维材料,从而进行穿孔过程。宽射束或泛源离子源可提供与聚焦离子束相比显著降低的离子通量。在一个实施例中,离子通量为从0.1nA/mm2至100nA/mm2。通过利用宽离子场并结合与石墨烯或其他二维材料连续接触的所述至少一层,可以获得在小的孔尺寸、窄的尺寸分布和高的孔密度方面显著改善的穿孔。在一个实施例中,所述孔密度由孔之间的间距所表征。在一个实施例中,其中平均孔尺寸为从0.5nm至2.5nm,孔之间的平均间距为从0.5nm至5nm。本发明的方法可容易地与聚焦离子束方法区分开来,聚焦离子束方法具有更高的离子通量和/或离子能量。就工业化生产过程的面积覆盖率来说,本发明的宽离子场方法相当具有规模扩展性。如在下文中讨论的,取决于它们的位置,连续接触石墨烯或其他二维材料的所述层可以以几种不同的方式影响穿孔方法。
在一些实施例中,本文所描述的高能离子穿孔方法利用物理穿孔方法的脱除方法,同时也像化学方法一样促进了离散孔生长阶段。然而,不同于传统的化学和物理穿孔方法,本发明的穿孔方法有利地将孔成核和孔生长阶段区分开来,同时仍然允许以高度协调的方式发生成核和生长。在一些实施例中,与石墨烯或其他二维材料的连续接触的单层或多层,允许进行高度协调的成核和生长。具体地,由于单入射离子与石墨烯或其他二维材料发生碰撞,所述单层或多层使得孔成核之后立即进行孔生长。在传统方法中,孔成核和孔生长是不协调的。因为在本发明的方法中,孔成核和孔生长是分开的但协调的阶段,因此可获得窄的孔尺寸分布。此外,本发明的方法更有利地适于产生那些约10nm尺寸或更小的孔洞,这对于许多应用是有利的,其中包括过滤。进一步地,孔尺寸和/或孔密度可调整为适应特定应用的需要。在一个实施例中,更高的能量密度(fluence)或暴露时间增加了孔的数量(直至孔开始重叠)。取决于相互作用的详情,更高的离子能量可以增加或减少孔尺寸。孔密度可通过调整石墨烯或其他二维材料暴露于离子源的暴露时间来调节。
因此,本发明的方法能够提供对穿孔石墨烯、石墨烯基体材料和其他二维材料的所有三种关键需求(小的孔尺寸、窄的尺寸分布和高的孔密度)。此外,因为它们采用宽离子场来实现穿孔,本发明方法有利地规模扩大至大维度区域,并能够支撑商业生产应用。
如上所述,在本发明方法实施例中用于影响穿孔的宽离子场提供了具有0.75keV和约10keV之间的离子能量范围的离子。在一个实施例中,离子能量范围为从1keV至10keV。在一个额外的实施例中,离子能量范围从1keV至5keV。在进一步的实施例中,离子能量范围从2keV至10keV。在一个额外的实施例中,离子能量范围从5keV至10keV。一些具有该范围能量的离子可能与石墨烯和其他二维材料的相互作用弱,以每个入射离子仅脱除1-2个原子的形式在平面结构产生点缺陷(单空位和双空位)。在一个实施例中,由本发明方法生成的孔洞产生了比此类点缺陷尺寸更大的孔。本发明的方法,尤其是连续接触于石墨烯或其他二维材料的所述层,能够产生比单独基于离子能量所能预测的更大尺寸的孔。不希望受任何观点的约束,通过将高能入射离子转换成石墨烯或其他二维材料的热碰撞,正面层或背面层与二维材料在离子辐射期间的接触,被认为有利地促进了将缺陷膨胀形成有意义的尺寸的孔。如下文进一步讨论,相对于所述离子源的而言处于不同位置中的所述层,可以通过结合能失配以多种方式协助这种效果。
尽管本文所述特定实施例中以石墨烯作为二维材料,应该认识到的是,除非另有说明,其他二维材料可同样用于替代实施例中。因此,实行本发明具有相当大的灵活性,以产生特定的具有期望性能的穿孔二维材料。
在不同实施例中,本发明所述方法可包括:将与至少一层连续接触的二维材料暴露于离子源,并且将来自离子源的多个离子和/或中和离子与二维材料以及与至少一层相互作用。在一些实施例中,所述离子和/或中和离子在二维材料中引进大量缺陷,并且离子和/或中和离子与至少一层的相互作用,促进所述缺陷膨胀形成限定在二维材料中的大量孔洞。当所述二维材料暴露于离子源时,所述至少一层与二维材料连续接触。
在不同实施例中,所述二维材料包括石墨烯、硫化钼、或氮化硼。在更具体的实施例中,所述二维材料可以为石墨烯。根据本发明实施例的石墨烯可包括:单层石墨烯、多层石墨烯、或其组合。其他具有扩展的二维分子结构的纳米材料也可以构成本发明不同实施例中的二维材料。例如,硫化钼是代表性的具有二维分子结构的硫族化物,并且其他各种不同硫族化物可构成本发明实施例中的二维材料。合适的用于特定应用的二维材料的选择可由许多因素决定,其中包括石墨烯或其他二维材料最终应用的化学和物理环境。
在本发明的不同实施例中,石墨烯或其他二维材料中产生的孔的尺寸范围可从约0.3nm至约10nm。在更具体的实施例中,所述孔的尺寸范围可从0.5nm至约2.5nm。在另外的实施例中,所述孔尺寸是0.3至0.5nm。在一个进一步的实施例中,孔尺寸是0.5至10nm。在一个额外的实施例中,孔尺寸是5nm至20nm。在一个进一步的实施例中,孔尺寸是0.7nm至1.2nm。在一个额外的实施例中,孔尺寸是10nm至50nm。在优选更大孔尺寸的实施例中,所述孔尺寸是从50nm至100nm,从50nm至150nm,或从100nm至200nm。这些尺寸范围内的孔对于过滤应用的是特别有利的。0.5nm至2.5nm的尺寸范围对反渗透过滤是特别有效的。
石墨烯或其它二维材料与离子源的接触时间,可在约0.1秒-约120秒的范围内,以产生足够生成这些孔密度的离子通量。如果需要,为了调节平面结构中获得的孔数量,可以使用更长的接触时间。
本发明实施例中,引发针对石墨烯或其他二维材料的穿孔的离子源被认为是提供宽离子场,也通常被认为是泛源离子源。在一个实施例中,所述泛源离子源不包括聚焦透镜。在一些实施例中,所述离子源在低于大气压下运转,例如10-3至10-5托或10-4至10-6托。在一个实施例中,所述环境还包括背景量(例如,大约10-5托数量级)的氧气(O2)、氮气(N2)或二氧化碳(CO2)。如上所述,在一个实施例中,所述离子源提供从1x1010个离子/cm2至1x1017个离子/cm2的离子剂量范围,具有从0.75keV至10keV的离子能量范围。在更具体的实施例中,所述离子能量范围从1keV至10keV或从5keV至10keV。在一些实施例中,所述离子剂量范围在约1x1011个离子/cm2和约1x1015个离子/cm2之间,在约1x1012个离子/cm2和约1x1014个离子/cm2之间,在约1x1013个离子/cm2和约1x1019个离子/cm2之间。在一个实施例中,所述离子剂量范围在约1x1010个离子/cm2和约1x1017个离子/cm2之间。在一个额外的实施例中,所述离子剂量范围在约1x1011个离子/cm2和约1x1015个离子/cm2之间。在进一步的实施例中,所述离子剂量范围在约1x1013个离子/cm2和约1x1019个离子/cm2之间。在一个实施例中,通量或离子束电流密度是从10nA/nm2至100nA/nm2。在一些实施例中,离子束可垂直于多层材料的层表面(入射角为0度),或者入射角可以是1至45度、0至20度、0至15度或0至10度。
所述离子源可提供各种各样的适于在石墨烯、石墨烯基体材料和其他二维材料中引发穿孔的离子。在一个实施例中,所述离子为单电荷。在另一个实施例中,所述离子为多电荷。在一个实施例中,所述离子为稀有气体离子(来自周期表第18族元素的离子)。在一个实施例中,所述离子为非氦离子。在一个实施例中,所述离子为有机离子或有机金属离子。在一个实施例中,所述有机离子或有机金属离子具有芳香成分。在一个实施例中,所述有机离子或有机金属离子的分子量为从75至200或90至200。在示例性的实施例中,可从离子源提供的以引发石墨烯或其他二维材料穿孔的离子可包括:Xe+离子、Ne+离子、Ar+离子、环庚三烯鎓正离子(C7H7 +)和二茂铁离子[(C5H5)2Fe+]。在一些实施例中,当所述离子为Xe+离子、Ne+离子、Ar+离子时,所述剂量为1x1011个离子/cm2至1x1015个离子/cm2。在一些实施例中,当所述离子包括多种元素(例如环庚三烯鎓和二茂铁),所述能量密度为1x1011个离子/cm2至1x1015个离子/cm2。在一个实施例中,提供从1x1013个离子/cm2至1x1019个离子/cm2剂量的氦离子。选取的离子和其能量,能够决定(至少部分决定)在石墨烯或其他二维材料中得到的孔的尺寸。在特定实施例中,对选取的离子或其能量进行选择,以便其能够从朝向石墨烯或其他二维材料的所述至少一层喷射出碎片。
在一个实施例中,在离子撞击期间,控制多层复合材料的温度。在一些实施例中,所述温度控制从-130℃至200℃或从-130℃至100℃。在一个实施例中,可以选取温度使得气体在二维材料的正面侧冷凝。在一个实施例中,其中存在金属背面层,所述温度可控制在从50℃至80℃。与石墨烯或其他二维材料连续接触的一层或多层,可以是正面层或背面层,或两者都存在。术语“正面侧”指的是二维材料朝向离子源的同一侧的情况。术语“背面侧”指的是背离离子源的二维材料对侧的情况。取决于其位置,至少一层可天然地或外源地存在于石墨烯或其他二维材料上,或所述至少一层是在石墨烯或其他二维材料形成后有意地沉积的。例如,本发明不同实施例中,所述金属生长基板可构成所述背面层。
一般地,所述的至少一层具有弱于石墨烯或二维材料的键能,而该石墨烯或二维材料的特征是强键。也就是说,当至少一层与离子源相互作用时,由于键能失配,优先于石墨烯或其他二维材料中,在所述的至少一层中发生键断裂。在一些实施例中,所述至少一层可以是沉积层,例如沉积硅、沉积聚合物、或其组合。如果石墨烯或其他二维材料仍然存在于其金属生长基板上,所述沉积层可构成正面层。然而,如果石墨烯或其他二维材料已经从其金属生长基板上取下,那么沉积层可构成正面层或背面层。沉积聚合物可包含任意的聚合物材料,而所述聚合物材料可适当地附着在石墨烯基体材料或其他二维材料,例如硅氧烷聚合物。在一个实施例中,离子碰撞期间,沉积聚合物不完全地从石墨烯基体材料脱层。本领域技术人员可预见其他适当的聚合物层。
在一些实施例中,所述沉积于石墨烯或其他二维材料上的正面层可具有约1nm至约10nm之间的厚度范围。如果需要的话,也可存在更厚的正面层。尽管所述正面层可在石墨烯或其他二维材料合成期间外源地沉积,其他实施例中,所述正面层也可在单独操作中进行沉积。例如,在一些实施例中,可通过溅射、喷涂、旋涂、原子层沉积、分子束外延或类似技术来沉积所述正面层。
根据它们的位置和功能,将会进一步描述不同的层。
在一些实施例中,至少一层可以为位于与离子源同侧的二维材料上的至少一个正面层。示例性的正面层可包括如上所描述的那些。当存在一个正面层时,与石墨烯或其他二维材料相互作用之前,来自离子源的离子与正面层相互作用。如下文所述,这种相互作用的类型仍然可以促进石墨烯或其他二维材料平面结构中产生孔以及膨胀孔,通过从正面层喷射出层碎片并且用石墨烯或其他二维材料碰撞所述层碎片,从而在其中产生孔。因为正面层相对薄,其具有低的制动能力,并且允许离子和/或中和离子穿透正面层,从而进一步与石墨烯相互作用。
在一个实施例中,正面层的离子碰撞产生羽状的、更多的但是更低能量的颗粒,并对石墨烯或其他二维材料进行撞击。在更具体的实施例中,本发明的方法可包括:基于随后的离子和/或中和离子的相互作用,从正面层向二维材料喷射大量的层碎片;并且在环绕缺陷的二维材料区域中,所述层碎片与二维材料进行碰撞,而所述缺陷是基于离子和/或中和离子与二维材料的相互作用产生的;以及促进所述缺陷膨胀成孔。层碎片类型可以包括原子、离子、分子或分子碎片,所述分子碎片是在高能离子与正面层相互作用时从正面层上释放出的。所述正面层可与背面层结合存在,或者,所述正面层可单独存在。以下将进一步讨论背面层的功能。
不受理论或机理的约束,据信,在正面层存在时,孔的界定或产生可基于一些协同效应发生。首先,在最初由高能离子和/或中和离子产生的初始缺陷附近,石墨烯或其他二维材料具有更高的化学反应性。其次,来自于正面层的层碎片可将正面层的单一撞击事件转化成石墨烯或其他二维材料上的多个撞击事件。第三,所述层碎片具有比入射高能量离子更低的能量,从而增强了成功地与石墨烯或其他二维材料相互作用的可能性,以界定所述孔。最终,因为正面层和石墨烯或其他二维材料彼此连续接触,在层碎片被转运给石墨烯或其他二维材料的过程中,层碎片的几何扩散是最小的,由此限定了孔的尺寸。因此,缺陷附近中的增强的化学反应性以及层碎片与石墨烯或其他二维材料间的更高效的相互作用的结合,可导致产生了孔。
图1和图2显示了正面层2连续接触于石墨烯4或其他二维材料的示例性简图。在图1中,只存在正面层2,而在图2中,正面层2和背面层6都存在。配置离子源8提供一定剂量的离子10,用于对石墨烯4进行穿孔。
图3A、3B和3C显示了离子与正面层和石墨烯或其他二维材料的相互作用,是如何在石墨烯或其他二维材料中界定出孔洞的示例性简图。为了清晰描述和叙述,正面层2和石墨烯4显示在部件分解图中,在图3A和3B中以分开的方式进行显示,而不是以它们真正的彼此连续接触的方式来显示。图3A显示了在离子10已经撞击和通过正面层之后的正面层2和石墨烯4。层碎片12从正面层2上喷射出,并且以热速度/能量和/或高热速度/能量向石墨烯4散射。在一个实施例中,这种喷射可能是指弹道式散射。在正面层中产生缺陷13。当离子10通过石墨烯4的平面结构时,缺陷14(没有显示在图3A中)可被引入石墨烯4中。此外,强调的是,正面层2和石墨烯4实际上彼此连续接触,因此减少了层碎片12从正面层2向石墨烯4移动发生的弹道散射的角度。在一个实施例中,层碎片12撞击石墨烯4,非常接近于缺陷14,在此处化学反应性被增强。在一个实施例中,层碎片12接着导致了缺陷14膨胀形成孔16,如图3B所示。图3C显示了正面层12和石墨烯4在孔16生成后的真正的连续接触布局。如图3A-3C所示,孔成核的阶段(即,石墨烯中通过离子的直接相互作用形成缺陷)以及孔生长(即,层碎片12对石墨烯4的撞击)是分开的,然而仍是高度协调的过程。因此,可以获得限定尺寸的孔16并具有窄的尺寸分布。
如图3B所示,在孔形成之后,正面层2可至少部分地覆盖孔16。在一些实施例中,可在孔16界定之后除去正面层2,以增强石墨烯4的实际渗透率。示例性的正面层去除技术可以包括,例如,氧化、溶剂清洗、加热,或其组合。氧化技术包括但不限于,使用活性氧进行紫外线臭氧(UVO)处理。根据正面层2的构成,本领域技术人员将能够选择适当的除去过程。
在一些实施例中,至少与石墨烯或其他二维材料连续接触的一层是位于石墨烯或其他二维材料一侧上的、位于离子源对面的背面层。在一个实施例中,所述背面层是石墨烯或其他二维材料在其上生长的金属生长基板,或者,所述背面层可以是石墨烯或其他二维材料生长之后所转移到的第二基板。在一个实施例中,所述第二基板是聚合物的,包括多孔高分子膜。在另一情况中,所述背面层可具有显著大于石墨烯或其他二维材料的厚度。因此,所述背面层比石墨烯或其他二维材料对能量离子和/或中和离子可具有更高的制动能力。一旦停止能量离子,当离子与二维材料相互作用形成缺陷时,所述背面层可将背面层的离子和/或中和离子的撞击能量分散进入产生的缺陷附近的石墨烯或其他二维材料的区域,从而促进缺陷膨胀成孔。在更具体的实施例中,所述背面层以某种程度类似于上文描述的正面层的方式促进二维材料中的缺陷膨胀成孔,其中碎片是朝向二维材料的。所述背面层还可以促进二维材料中缺陷的形成。例如,即使当离子或中和离子在穿过二维材料时不产生孔的情况下,离子和/或中和离子对背面层的撞击可能引起背面层小范围快速升温并膨胀,从而在石墨烯或其他二维材料中开孔。
图4A、4B和4C显示了演示离子与背面层和石墨烯或其他二维材料的相互作用,是如何在石墨烯或其他二维材料中界定出孔洞的示例性简图。此外,为了清晰描述和叙述,背面层6和石墨烯4显示在部件分解图中,在图4A和4B中以分开的方式进行显示,而不是以它们真正的彼此连续接触的方式来显示。图4A显示了紧接在离子已经通过石墨烯4并且撞击了背面层6之后的石墨烯4或其他二维材料和背面层6。当离子通过时,石墨烯4中产生缺陷14。至于背面层6,离子嵌入撞击区域20,因此从中产生了层碎片12’的喷射。在图4A中,撞击区域20显示为坑状。层碎片12’可包括如上关于正面层2所述的那些种类。例如,当背面层6为其上生长石墨烯4或其他二维材料的金属生长基板时,当动能从离子向背面层6转移时,层碎片12’可以为从金属生长基板喷溅出的金属原子或金属离子。以热能速度向石墨烯4喷射层碎片12’,并且再一次在很接近地撞击缺陷14以使得其膨胀成孔16,如图4B所描述。在图4A和4B的布局中,层碎片12’从下面撞击石墨烯4,而不是如图3A和3B所描述从其顶面。此外,需要强调的是,背面层6和石墨烯4实际上是彼此连续基础的,因此当层碎片12’从背面层6转移至石墨烯4时,减小了发生的散射角度。如图所示,层碎片12’接近地撞击缺陷14附近,而此处化学反应性是增强的。图4C显示了在孔16产生后,背面层6和石墨烯4的真正连续接触结构。如图4A-4C所示,孔成核阶段(即缺陷14的形成)和孔生长(即层碎片12’对石墨烯4的撞击)再一次分离,然而还是高度协调的过程。因为当层碎片12’在背面层6和石墨烯4之间转移时,存在最小限度的几何散射,因此可以获得具有限定尺寸和窄尺寸分布的孔16。
示例性的用于供石墨烯、石墨烯基体材料和其他二维材料生长并且在本发明实施例中可作为背面层的金属生长基板,包括含过渡金属的各种金属表面。对于石墨烯,例如,铜或镍可以特别有效地促进外延石墨烯生长。在一些实施例中,所述金属生长基板可以基本上完全由金属形成,例如金属箔或金属板。在其他实施例中,所述金属生长基板可包括在一种位于不同的表面下材料上的金属表面。例如,在本发明实施例中,一种具有金属表面的陶瓷基板可被用作金属生长基板和背面层。
因此,在一些实施例中,本发明的方法可包括:一旦发生离子和/或中和离子与二维材料的相互作用,从背面层向二维材料(例如石墨烯)喷射多个层碎片,以及用所述层碎片在环绕着缺陷的二维材料区域碰撞二维材料,从而促进所述缺陷膨胀成为孔。也就是说,所述背面层可促进能量以具有热速度的层碎片的形式转移至石墨烯或其他二维材料,从而促进石墨烯或其他二维材料中孔洞的形成。
在一些实施例中,所述正面层和背面层都可与石墨烯或其他二维材料连续接触,当所述石墨烯或其他二维材料与来自离子源的离子和/或中和离子相互作用时。从正面层和背面层产生的层碎片可彼此协调作用,以将石墨烯或其他二维材料中产生的缺陷膨胀成为大量孔洞。例如,在一些实施例中,产生于适当的正面层的层碎片与产生于背面金属生长基板的金属原子及金属离子,可从其平面结构的两侧撞击石墨烯,以促进其中孔洞的产生。这对于穿孔的多层二维材料(例如多层石墨烯)尤其有效,例如通过将粒子保持在局部区域。
因此,在正面层和背面层都存在的实施例中,本发明的方法可包括:基于离子和/或中和离子与其的相互作用,从正面层向石墨烯或其他二维材料喷射多个层碎片,以及基于离子和/或中和离子与其的相互作用,从背面层向石墨烯或其他二维材料喷射多个层碎片,并且所述来自两层的层碎片在环绕着缺陷的区域碰撞石墨烯或其他二维材料,并促进所述缺陷膨胀成为孔,而所述缺陷是由离子和/或中和离子与石墨烯或其他二维材料相互作用而产生的。
在特定的实施例中,本发明的方法可包括:提供金属生长基板上的石墨烯;将石墨烯暴露于离子源;将来自离子源的大量离子与石墨烯和金属生长基板相互作用,从而在石墨烯中引进大量缺陷;以及,离子和/或中和离子与金属生长基板的相互作用导致向石墨烯喷射多个来自于金属生长基板的含有金属离子或金属原子的层碎片;以及,用所述层碎片膨胀石墨烯中的所述缺陷,从而界定出在石墨烯中的大量孔洞。在一个实施例中,所述离子源向石墨烯提供的离子剂量范围在约1x1011个离子/cm2和约1x1017个离子/cm2之间,并具有在约0.75keV和约10keV之间的离子能量范围。所述金属生长基板位于石墨烯的背向离子源的一侧,并构成背面层。
在一些实施例中,所述石墨烯表面包覆有在金属生长基板对面的正面层,所述正面层同离子源一样位于石墨烯同侧(例如,参见图2)。所述正面层可用不同材料形成,并且可具有例如约1nm和约10nm之间范围的厚度。在一些实施例中,所述方法可进一步包括:在石墨烯中形成大量孔之后,除去正面层。
在其他特定的实施例中,本发明的方法可包括:将石墨烯暴露于离子源,所述石墨烯其上具有同离子源一样位于石墨烯同侧的正面层;将来自于离子源的大量离子和/或中和离子与石墨烯以及正面层相互作用,从而在石墨烯中引入大量缺陷;以及,离子和/或中和离子与正面层的相互作用导致向石墨烯喷射大量层碎片;以及用所述层碎片在石墨烯中膨胀这些缺陷,从而在石墨烯中界定出大量孔。在一个实施例中,所述离子源向石墨烯提供范围在约1x1011个离子/cm2和约1x1017个离子/cm2之间的离子剂量,并且具有约0.75keV和约10keV之间的离子能量范围。
在另一特定的实施例中,本发明的方法可包括:将石墨烯暴露于离子源,所述石墨烯中存在位于石墨烯一侧并背向离子源的背面层;将来自于离子源的大量离子和/或中和离子与石墨烯和所述背面层相互作用,从而在石墨烯中引入大量缺陷;以及,离子和/或中和离子与背面层的相互作用,导致将背面层上的离子和/或中和离子的冲击能分散进入环绕着缺陷的石墨烯区域中,而所述缺陷是由离子与石墨烯的相互作用而产生的;以及促进这些缺陷膨胀成孔。在一个实施例中,所述离子源向石墨烯提供范围在约1x1010个离子/cm2和约1x1017个离子/cm2之间的离子剂量,并且具有约0.75keV和约10keV之间的离子能量范围。
在更特定的实施例中,本发明的方法可包括:将石墨烯暴露于离子源,所述石墨烯中存在位于石墨烯一侧并背向离子源的背面层;将来自于离子源的大量离子和/或中和离子与石墨烯和所述背面层相互作用,从而在石墨烯中引入大量缺陷;以及,离子和/或中和离子与背面层的相互作用导致向石墨烯喷射大量层碎片;以及用所述层碎片在石墨烯中膨胀这些缺陷,从而在石墨烯中界定出大量孔。在一个实施例中,所述离子源向石墨烯提供范围在约1x1010个离子/cm2和约1x1017个离子/cm2之间的离子剂量,并且具有约0.75keV和约10keV之间的离子能量范围。
本文所述的穿孔石墨烯、石墨烯基体材料和其他二维材料可用于许多应用中,包括过滤、电子工业、阻挡层和薄膜、气体屏障,等等。可使用穿孔石墨烯、石墨烯基体材料和其他穿孔二维材料的示例性过滤应用包括:例如,反渗透、分子过滤、超滤和纳滤过程。当在不同的过滤过程中使用时,穿孔石墨烯或其他穿孔二维材料可以被穿孔,然后转移至多孔的第二基板,其中穿孔石墨烯或其他穿孔二维过滤被用作活性过滤膜。
尽管本发明已经参照所公开的实施例进行描述,本领域技术人员将容易地理解这些仅仅是本发明的示例。应当理解的是,可以在不脱离本发明实质的前提下进行各种修改。可以修改本发明以吸收任意数量的前述未提到的变化、替代、替换或等效安排,但需与本发明的实质和范围相称。此外,虽然已经描述了本发明不同的实施例,应当理解的是,本发明的方面可仅包含一些描述的实施例。因此,本发明不应视为受前述描述的限制。
除非另有说明,可使用所描述或示例的每个构思或部件的组合来实施本发明。化合物的具体名称旨在是示例性的,因为众所周知本领域技术人员可以另外地命名这些同样的化合物。当某种如本文所描述的化合物,例如,在化学式中或在化学名称中,并未指定化合物的特定异构体或对映体时,该描述旨在包括所述化合物的单独的或任意组合的每个异构体和每个对映体。本领域技术人员将会理解的是,无需采取过度实验,除了那些特别指定的之外的方法、设备组件、起始材料和合成方法都可用于本发明实施中。任何此类方法、设备组件、起始材料和合成方法的所有已知的功能等价物都意图被包含在本发明中。每当说明书中给出一个范围,例如,温度范围、时间范围、或组成范围,所有的中间区域和子范围,还有包含在所给范围内的所有个别数值都意图包含在本发明中。如果本文采用马库斯基团或其他基团,该基团所有的个体组成和所有可能的组合以及亚组合,都被包含在本发明中。
如本文所用,“包含”与“包括”、“含有”或“特征是”同义,并且,为兼容的或开放式的,不排除额外的、未列举的部件或方法步骤。如本文所用,“构成”排除了任何没有在权利要求中指定的部件、步骤或要素。如本文所用,“基本由…构成”并不排除那些实质上不影响权利要求的基本的和新颖的特性的材料或步骤。任何本文列举的术语“包含”,尤其是在复合物成分的描述或设备部件的描述中,被理解为包含基本上由那些所述组分或要素构成,以及由所述组分或要素构成的复合物和方法。示例性地进行描述的本发明,可以在缺少任一要素或多个要素,或缺少某一限制或多个限制要素的情况下合适地实施,这在本文中没有具体披露。
所用的术语和解释是描述性的术语,而非限制性的,并且不意图在这些术语和解释的使用中,排除任何所示及所描述的特征的等同物、或其部分,但是应当认识到在本发明要求的范围内做出的各种修改是可能的。因此,应当理解的是,尽管本发明已经通过优选的例子是任选的特征进行具体公开,本领域技术人员可对本文所披露的概念进行修改和变动,并且此类修改和变动被认为是在所附权利要求限定的本发明的范围内。
通常地,本发明所用的术语和短语具有本领域公知的意义,可以通过参考本领域技术人员已知的标准教科书、期刊文献和上下文来确定含义。提供了前述的定义,以便明确它们在本发明上下文中的具体应用。
在整个申请中,所有参考文献,例如专利文件(包括公布的或授权的专利或其等同专利),专利申请公开;以及非专利文献或其它来源材料,以整体引用的方式纳入本文参考,好像单独引用纳入一样,达到每篇参考文献至少部分与本申请公开的内容不一致(例如,部分不一致的参考文献中除了部分不一致的内容,都纳入本文参考)。
本说明书中提到的所有专利和出版物都表明本发明相关的领域技术人员的水平。本文引用的参考文献以整体引用的方式纳入本文,表明在某些情况下截止申请日的现有技术的状态,并且,如果需要的话,此类信息可以在本文使用,并且如果需要,可用于排除(例如,放弃)现有技术的特定实施方式。例如,当要求一种化合物权利时,应当理解的是,现有技术中已知的化合物,包括参考文献中披露的特定化合物(尤其是在引用的专利文件中的),不意图包含在权利要求中。

Claims (23)

1.一种方法,包括:
将多层材料暴露于离子源提供的离子下,所述多层材料包括含二维第一材料的第一层,以及与所述第一层接触的第二材料的第二层,所述提供的离子具有从1.0keV至10keV范围的离子能量以及从0.1nA/mm2至100nA/mm2的通量;以及
通过将由离子源提供的大量离子、中和离子或其组合与所述二维第一材料以及与第二材料的相互作用,在所述二维第一材料中产生多个孔。
2.如权利要求1所述的方法,其特征在于,所述离子能量为从1.0keV至5keV。
3.如权利要求1所述的方法,其特征在于,所述离子源为宽射束源。
4.如权利要求1所述的方法,其特征在于,所述多层材料暴露于从1x1011个离子/cm2至1x1015个离子/cm2范围的离子剂量下,并且所述离子源提供选自下组的离子:Xe+离子、Ne+离子或Ar+离子。
5.如权利要求1所述的方法,其特征在于,所述多层材料暴露于从1x1011个离子/cm2至1x1015个离子/cm2范围的离子剂量下,并且所述离子源提供具有从90至200的分子量的有机离子或有机金属离子。
6.如权利要求5所述的方法,其特征在于,所述离子选自下组:环庚三烯鎓离子和二茂铁离子。
7.如权利要求1所述的方法,其特征在于,所述二维第一材料包括石墨烯。
8.如权利要求7所述的方法,其特征在于,所述第一层包括石墨烯基体材料薄层。
9.如权利要求1所述的方法,其特征在于,所述孔的特征尺寸为从0.5nm至2.5nm。
10.如权利要求1所述的方法,其特征在于,所述孔的特征尺寸为从1nm至10nm。
11.如权利要求1-10任一项所述的方法,其特征在于,所述第一层具有第一侧和第二侧,其中第一侧面向离子源,并且,所述第二层位于所述第一层的第二侧上并且具有大于第一层的厚度。
12.如权利要求11所述的方法,其特征在于,所述第二材料包括金属。
13.如权利要求12所述的方法,其特征在于,所述第二层包括用于二维第一材料的金属生长基板,并且所述碎片包括喷射自所述金属生长基板的金属原子或金属离子。
14.如权利要求11所述的方法,其特征在于,至少一部分离子、中和离子、或其组合与第一材料的相互作用,在第一材料中引入了多个缺陷;多个离子、中和离子或其组合穿过含有第一材料的第一层,并与第二材料相互作用,并且,所述离子、中和离子、或其组合与第二层的第二材料的相互作用,促进了所述缺陷膨胀成孔。
15.如权利要求14所述的方法,其特征在于,所述第二材料与所述离子、中和离子或其组合相互作用,从而产生第二材料的碎片,其中至少一些来自第二材料的碎片被朝向所述二维材料。
16.如权利要求11所述的方法,其特征在于,所述多层材料进一步包括位于第一层的第一侧上的第三材料的第三层,所述第三层具有从1nm至10nm范围的平均厚度。
17.如权利要求16所述的方法,其特征在于,所述第三层包括沉积硅、沉积聚合物、冷凝气、冷凝有机化合物、或其组合。
18.如权利要求16所述的方法,其特征在于,多个离子、中和离子、或其组合穿过所述第三材料的第三层,与第一材料相互作用;所述离子、中和离子、或其组合与第一材料(2D)的相互作用在第一材料中引入多个缺陷,多个离子、中和离子或其组合穿过含有第一材料的第一层并与第二材料相互作用,并且,至少一部分离子、中和离子、或其组合与所述第二材料和第三材料的相互作用促进了所述缺陷膨胀成孔。
19.如权利要求18所述的方法,其特征在于,所述第三材料与离子、中和离子、或其组合相互作用,从而产生第三材料的碎片,至少一些来自第三材料的碎片被朝向所述二维材料。
20.如权利要求1-10任一项所述的方法,其特征在于,所述第一层具有第一侧和第二侧,其中第一侧面向离子源,并且,所述第二层位于所述第一层的第一侧上并且具有从1nm至10nm的平均厚度。
21.如权利要求20所述的方法,其特征在于,所述第二层包括沉积硅、沉积聚合物、冷凝气、冷凝有机化合物、或其组合。
22.如权利要求20所述的方法,其特征在于,多个离子、中和离子、或其组合穿过所述第二材料的第二层,与二维材料相互作用;所述离子、中和离子、或其组合与第一材料的相互作用在第一材料中引入多个缺陷;以及至少部分的离子、中和离子或其组合与第二材料的相互作用,促进所述缺陷膨胀成孔。
23.如权利要求22所述的方法,其特征在于,所述第二材料与离子、中和离子、或其组合相互作用,从而产生第二材料的碎片,至少一些来自第二材料的碎片被朝向第一材料。
CN201580006829.5A 2014-01-31 2015-01-30 使用宽离子场穿孔二维材料 Pending CN105940479A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461934530P 2014-01-31 2014-01-31
US61/934,530 2014-01-31
PCT/US2015/013805 WO2015116946A1 (en) 2014-01-31 2015-01-30 Perforating two-dimensional materials using broad ion field

Publications (1)

Publication Number Publication Date
CN105940479A true CN105940479A (zh) 2016-09-14

Family

ID=53755425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580006829.5A Pending CN105940479A (zh) 2014-01-31 2015-01-30 使用宽离子场穿孔二维材料

Country Status (10)

Country Link
US (1) US9870895B2 (zh)
EP (1) EP3100297A4 (zh)
JP (1) JP2017510461A (zh)
KR (1) KR20160142820A (zh)
CN (1) CN105940479A (zh)
AU (1) AU2015210785A1 (zh)
CA (1) CA2938273A1 (zh)
IL (1) IL247005A0 (zh)
SG (1) SG11201606289RA (zh)
WO (1) WO2015116946A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708278B (zh) * 2017-08-01 2020-10-21 倍疆科技股份有限公司 在二維層狀半導體以及功能層之間形成高潔淨接面的方法及系統

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9475709B2 (en) 2010-08-25 2016-10-25 Lockheed Martin Corporation Perforated graphene deionization or desalination
WO2013142133A1 (en) 2012-03-21 2013-09-26 Lockheed Martin Corporation Methods for perforating graphene using an activated gas stream and perforated graphene produced therefrom
US9463421B2 (en) 2012-03-29 2016-10-11 Lockheed Martin Corporation Planar filtration and selective isolation and recovery device
US10980919B2 (en) 2016-04-14 2021-04-20 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US9610546B2 (en) 2014-03-12 2017-04-04 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US10376845B2 (en) 2016-04-14 2019-08-13 Lockheed Martin Corporation Membranes with tunable selectivity
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US9592475B2 (en) 2013-03-12 2017-03-14 Lockheed Martin Corporation Method for forming perforated graphene with uniform aperture size
US9505192B2 (en) 2013-03-13 2016-11-29 Lockheed Martin Corporation Nanoporous membranes and methods for making the same
US9480952B2 (en) 2013-03-14 2016-11-01 Lockheed Martin Corporation Methods for chemical reaction perforation of atomically thin materials
US9572918B2 (en) 2013-06-21 2017-02-21 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
SG11201606287VA (en) 2014-01-31 2016-08-30 Lockheed Corp Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
EP3100297A4 (en) * 2014-01-31 2017-12-13 Lockheed Martin Corporation Perforating two-dimensional materials using broad ion field
JP2017512129A (ja) 2014-03-12 2017-05-18 ロッキード・マーチン・コーポレーション 有孔グラフェンから形成された分離膜
WO2016036888A1 (en) 2014-09-02 2016-03-10 Lockheed Martin Corporation Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same
WO2017023380A1 (en) 2015-08-05 2017-02-09 Lockheed Martin Corporation Two-dimensional materials and uses thereof
EP3331588A4 (en) * 2015-08-05 2019-04-03 Lockheed Martin Corporation BI-DIMENSIONAL MATERIALS AND USES THEREOF
CN107847835A (zh) * 2015-08-05 2018-03-27 洛克希德马丁公司 石墨烯基材料的可穿孔片
JP2018528144A (ja) 2015-08-05 2018-09-27 ロッキード・マーチン・コーポレーション グラフェン系材料の穿孔可能なシート
MX2018001559A (es) 2015-08-06 2018-09-27 Lockheed Corp Modificacion de nanoparticula y perforacion de grafeno.
US10124299B2 (en) * 2015-09-08 2018-11-13 Gwangju Institute Of Science And Technology Membrane based on graphene and method of manufacturing same
JP2017187443A (ja) * 2016-04-08 2017-10-12 Towa株式会社 分析装置用ポリマー膜、分析装置、分析装置用基板、分析装置用ポリマー膜の製造方法、および分析装置用基板の製造方法
JP2019521055A (ja) 2016-04-14 2019-07-25 ロッキード・マーチン・コーポレーション グラフェン欠陥の選択的界面緩和
WO2017180140A1 (en) * 2016-04-14 2017-10-19 Lockheed Martin Corporation Method for making two-dimensional materials and composite membranes thereof having size-selective perforations
EP3442739A4 (en) 2016-04-14 2020-03-04 Lockheed Martin Corporation PROCESS FOR PROCESSING GRAPHENE SHEETS FOR LARGE SCALE TRANSFER USING A FREE FLOATING PROCESS
JP2019517909A (ja) 2016-04-14 2019-06-27 ロッキード・マーチン・コーポレーション 流路を有する二次元膜構造体
JP2019519756A (ja) 2016-04-14 2019-07-11 ロッキード・マーチン・コーポレーション 欠陥形成または欠陥修復をその場で監視して制御する方法
US11946895B2 (en) * 2017-07-31 2024-04-02 New York University Engineering carbon-based structures for sensing applications
US11335975B1 (en) * 2019-06-25 2022-05-17 Nm Devices Llc Proton selective membranes based on two dimensional materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020079054A1 (en) * 1997-09-22 2002-06-27 Isao Nakatani Method for reactive ion etching and apparatus therefor
CN101243544A (zh) * 2005-08-08 2008-08-13 应用材料股份有限公司 使用低温沉积含碳硬掩膜的半导体基材制程
WO2012125770A2 (en) * 2011-03-15 2012-09-20 President And Fellows Of Harvard College Controlled fabrication of nanopores in nanometric solid state materials
CN103153441A (zh) * 2010-08-25 2013-06-12 洛克希德马丁公司 穿孔石墨去离子或脱盐
WO2013138698A1 (en) * 2012-03-15 2013-09-19 Massachusetts Institute Of Technology Graphene based filter

Family Cites Families (526)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2187417A (en) 1938-12-30 1940-01-16 Ralph N Doble Tea bag, coffee bag, and the like
US3024153A (en) 1958-08-25 1962-03-06 Kennedy Ted Method of forming a pipe covering
US3303085A (en) 1962-02-28 1967-02-07 Gen Electric Molecular sieves and methods for producing same
US3501831A (en) * 1968-06-17 1970-03-24 Rogers Corp Eyelet
GB1271423A (en) 1968-06-27 1972-04-19 Gen Electric Improvements relating to the manufacture of sheets having holes therein by an etching process
GB1242493A (en) 1969-12-05 1971-08-11 Roy Laver Swank Blood treating method and apparatus
US3701433A (en) 1970-11-10 1972-10-31 Pall Corp Filter for use in the filtration of blood
AR205025A1 (es) 1974-04-19 1976-03-31 Johnson & Johnson Medios para filtrar sangre
US4162220A (en) 1977-01-03 1979-07-24 Johnson & Johnson Blood filter
US4303530A (en) 1977-10-26 1981-12-01 Medical Incorporated Blood filter
US4159954A (en) 1978-02-24 1979-07-03 Gangemi Ronald J Isolator filter
US4277344A (en) 1979-02-22 1981-07-07 Filmtec Corporation Interfacially synthesized reverse osmosis membrane
DE3370990D1 (en) 1982-11-15 1987-05-21 Gec Avionics Inertial systems
US4743371A (en) 1983-04-08 1988-05-10 Shiley, Inc. Blood filter
US4935207A (en) 1986-04-01 1990-06-19 The Johns Hopkins University Capacitive chemical sensor using an ion exchange surface
US4855058A (en) 1986-06-24 1989-08-08 Hydranautics High recovery spiral wound membrane element
US5052444A (en) 1987-04-30 1991-10-01 The Fluorocarbon Company Reinforced fluid hose having on-bonded tape
US5580530A (en) 1987-07-30 1996-12-03 Johnson & Johnson Medical, Inc. Device for vapor sterilization of articles having lumens
US4976858A (en) 1987-08-12 1990-12-11 Toyo Roki Seizo Kabushiki Kaisha Multi-layer filter medium
US5182111A (en) 1987-11-17 1993-01-26 Boston University Research Foundation In vivo delivery of active factors by co-cultured cell implants
US4891134A (en) 1988-01-25 1990-01-02 Abbott Laboratories Sample filtration device
US4880440A (en) 1988-09-12 1989-11-14 Union Carbide Corporation Hollow fiber multimembrane cells and permeators
DE3855498D1 (de) 1988-10-19 1996-10-02 Khodai Joopary Arastoo Membrantrennverfahren für Gase, Isotope und Flüssigkeiten
US4889626A (en) 1988-11-17 1989-12-26 Memron, Inc. Filter cartridge having a tunable asymmetric fluoropolymer alloy filter membrane
US4925560A (en) 1989-02-02 1990-05-15 Sorrick Charles H Clog resistant high efficiency filter media
US5080770A (en) 1989-09-11 1992-01-14 Culkin Joseph B Apparatus and method for separating particles
US5244981A (en) 1990-04-10 1993-09-14 Permeable Technologies, Inc. Silicone-containing contact lens polymers, oxygen permeable contact lenses and methods for making these lenses and treating patients with visual impairment
US5314960A (en) 1990-04-10 1994-05-24 Permeable Technologies, Inc. Silicone-containing polymers, oxygen permeable hydrophilic contact lenses and methods for making these lenses and treating patients with visual impairment
US5314961A (en) 1990-10-11 1994-05-24 Permeable Technologies, Inc. Silicone-containing polymers, compositions and improved oxygen permeable hydrophilic contact lenses
US5371147A (en) 1990-10-11 1994-12-06 Permeable Technologies, Inc. Silicone-containing acrylic star polymers, block copolymers and macromonomers
US5344454A (en) 1991-07-24 1994-09-06 Baxter International Inc. Closed porous chambers for implanting tissue in a host
DE4040106A1 (de) 1990-12-12 1992-06-17 Mecron Med Prod Gmbh Hohlschaftprothese
CA2037988A1 (en) 1991-03-11 1992-09-12 Otto Sova Continuous flow method and apparatus for separating substances in solution
AU666118B2 (en) 1991-04-25 1996-02-01 Brown University Research Foundation Implantable biocompatible immunoisolatory vehicle for delivery of selected therapeutic products
US5201767A (en) 1991-07-15 1993-04-13 Johnson & Johnson Orthopaedics, Inc. Fluted-wedge osteal prosthetic component
US5185086A (en) 1991-07-16 1993-02-09 Steven Kaali Method and system for treatment of blood and/or other body fluids and/or synthetic fluids using combined filter elements and electric field forces
WO1993003901A1 (en) 1991-08-23 1993-03-04 W.R. Grace & Co. - Conn. Implantable immunoisolated therapeutic devices
DE4294639T1 (de) 1991-12-24 1996-03-07 Pall Corp Dynamisches Filtersystem
US5679249A (en) 1991-12-24 1997-10-21 Pall Corporation Dynamic filter system
GB9206504D0 (en) 1992-03-25 1992-05-06 Jevco Ltd Heteromorphic sponges as wound implants
US5314492A (en) 1992-05-11 1994-05-24 Johnson & Johnson Orthopaedics, Inc. Composite prosthesis
US5565210A (en) 1993-03-22 1996-10-15 Johnson & Johnson Medical, Inc. Bioabsorbable wound implant materials
US5679232A (en) 1993-04-19 1997-10-21 Electrocopper Products Limited Process for making wire
US6213124B1 (en) 1993-04-23 2001-04-10 Johnson & Johnson Medical, Inc. Surgical drape with a sealable pouch
DK0663817T3 (da) 1993-08-10 2000-03-13 Gore & Ass Celleindkapslingsindretning
DE69430824T2 (de) 1993-08-12 2003-01-23 Neurotech Sa Biokompatible immunoisolatorische Kapseln, die genetisch veränderte Zellen enthalten
US5932185A (en) 1993-08-23 1999-08-03 The Regents Of The University Of California Method for making thin carbon foam electrodes
GB2282328B (en) 1993-09-29 1997-10-08 Johnson & Johnson Medical Absorbable structures for ligament and tendon repair
CA2142636C (en) 1994-02-18 2005-09-20 Salvatore Caldarise Implantable articles with as-cast macrotextured surface regions and method of manufacturing the same
CA2142634C (en) 1994-02-18 2005-09-20 Salvatore Caldarise Self-lubricating implantable articulation member
US5665118A (en) 1994-02-18 1997-09-09 Johnson & Johnson Professional, Inc. Bone prostheses with direct cast macrotextured surface regions and method for manufacturing the same
US5516522A (en) 1994-03-14 1996-05-14 Board Of Supervisors Of Louisiana State University Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same
US6105235A (en) 1994-04-28 2000-08-22 Johnson & Johnson Professional, Inc. Ceramic/metallic articulation component and prosthesis
US6309532B1 (en) 1994-05-20 2001-10-30 Regents Of The University Of California Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes
US5425858A (en) 1994-05-20 1995-06-20 The Regents Of The University Of California Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes
JPH10502041A (ja) 1994-06-29 1998-02-24 ザ、プロクター、エンド、ギャンブル、カンパニー コアに巻き付けられる紙製品のための好ましいシーム構造を有するコア
US6461622B2 (en) 1994-09-07 2002-10-08 Johnson & Johnson Consumer Companies, Inc. Topical compositions
US5976555A (en) 1994-09-07 1999-11-02 Johnson & Johnson Consumer Products, Inc. Topical oil-in-water emulsions containing retinoids
AU3633295A (en) 1994-09-07 1996-03-27 Johnson & Johnson Consumer Products, Inc. Retinoid compositions
US5549697A (en) 1994-09-22 1996-08-27 Johnson & Johnson Professional, Inc. Hip joint prostheses and methods for manufacturing the same
US5636437A (en) 1995-05-12 1997-06-10 Regents Of The University Of California Fabricating solid carbon porous electrodes from powders
WO1996039993A1 (en) 1995-06-07 1996-12-19 Gore Hybrid Technologies, Inc. An implantable containment apparatus for a therapeutical device and method for loading and reloading the device therein
US6156323A (en) 1995-06-08 2000-12-05 Johnson & Johnson Consumer Companies, Inc. Tricot-like pouch for the delivery of topical drugs and cosmetics
IN187897B (zh) 1995-06-15 2002-07-20 Johnson & Johnson Inc
US6209621B1 (en) 1995-07-07 2001-04-03 Depuy Orthopaedics, Inc. Implantable prostheses with metallic porous bead preforms applied during casting and method of forming the same
JPH0990607A (ja) * 1995-07-14 1997-04-04 Canon Inc 原版検査修正装置及び方法
US5562944A (en) 1995-08-28 1996-10-08 Johnson & Johnson Professional, Inc. Process for the protection of metallic surfaces
AU6423796A (en) 1995-08-29 1997-03-06 Johnson & Johnson Professional, Inc. Bone prosthesis with protected coating for penetrating bone intergrowth
US5725586A (en) 1995-09-29 1998-03-10 Johnson & Johnson Professional, Inc. Hollow bone prosthesis with tailored flexibility
DE19536560C1 (de) 1995-10-02 1997-03-13 Mft Membran Filtrations Techni Membranelement
IL125424A0 (en) 1998-07-20 1999-03-12 New Technologies Sa Ysy Ltd Pacing with hemodynamic enhancement
AR006049A1 (es) 1996-03-01 1999-07-21 Johnson & Johnson Consumer Una emulsion de aceite en agua
US5731360A (en) 1996-03-05 1998-03-24 Regents Of The University Of California Compression molding of aerogel microspheres
US6495100B1 (en) 1996-04-04 2002-12-17 Ethicon, Inc. Method for sterilizing devices in a container
US5935172A (en) 1996-06-28 1999-08-10 Johnson & Johnson Professional, Inc. Prosthesis with variable fit and strain distribution
US5746272A (en) 1996-09-30 1998-05-05 Johnson & Johnson Professional, Inc. Investment casting
US5716412A (en) 1996-09-30 1998-02-10 Johnson & Johnson Professional, Inc. Implantable article with ablated surface
US5906234A (en) 1996-10-22 1999-05-25 Johnson & Johnson Professional, Inc. Investment casting
MA26028A1 (fr) 1997-01-09 2004-04-01 Garfield Int Invest Ltd Dessalement de l'eau
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US20080063585A1 (en) 1997-03-07 2008-03-13 William Marsh Rice University, A Texas University Fullerene nanotube compositions
US5902762A (en) 1997-04-04 1999-05-11 Ucar Carbon Technology Corporation Flexible graphite composite
EP0870534B1 (fr) 1997-04-09 2001-02-21 Societe Des Ceramiques Techniques Support macroporeux à gradient de porosité et son procédé de fabrication
DE19720551A1 (de) 1997-05-16 1998-11-19 Heidelberger Druckmasch Ag Basisträgerhülse für Rotationsdruckmaschinen
US5910172A (en) 1997-05-20 1999-06-08 Johnson & Johnson Apparatus for, and method of, preparing hip prosthesis implantation
US5935084A (en) 1997-09-30 1999-08-10 Johnson & Johnson Professional, Inc. Inflatable pressure indicator
US6013080A (en) 1997-10-30 2000-01-11 Johnson & Johnson Professional, Inc. Tamp with horizontal steps used for impaction bone grafting in revision femur
US6022733A (en) 1997-12-02 2000-02-08 Tam; Yun K. Simulated biological dissolution and absorption system
US6139585A (en) 1998-03-11 2000-10-31 Depuy Orthopaedics, Inc. Bioactive ceramic coating and method
US6052608A (en) 1998-03-30 2000-04-18 Johnson & Johnson Professional, Inc. Implantable medical electrode contacts
US5980718A (en) 1998-05-04 1999-11-09 The Regents Of The University Of California Means for limiting and ameliorating electrode shorting
US6228123B1 (en) 1998-08-19 2001-05-08 Depuy Orthopaedics, Inc. Variable modulus prosthetic hip stem
US6093209A (en) 1998-08-20 2000-07-25 Johnson & Johnson Professional, Inc. Proximally holllow prosthesis
US6532386B2 (en) 1998-08-31 2003-03-11 Johnson & Johnson Consumer Companies, Inc. Electrotransort device comprising blades
US6022509A (en) 1998-09-18 2000-02-08 Johnson & Johnson Professional, Inc. Precision powder injection molded implant with preferentially leached texture surface and method of manufacture
US20010036556A1 (en) 1998-10-20 2001-11-01 James S. Jen Coatings for biomedical devices
US6264699B1 (en) 1998-11-23 2001-07-24 Depuy Orthopaedics, Inc. Modular stem and sleeve prosthesis
US6346187B1 (en) 1999-01-21 2002-02-12 The Regents Of The University Of California Alternating-polarity operation for complete regeneration of electrochemical deionization system
US6152882A (en) 1999-01-26 2000-11-28 Impulse Dynamics N.V. Apparatus and method for chronic measurement of monophasic action potentials
AUPQ034399A0 (en) 1999-05-14 1999-06-03 Panbio Pty Ltd Metal chelating filters and metal chelate filters
US6292704B1 (en) 1999-05-25 2001-09-18 Impulse Dynamics N. V. High capacitance myocardial electrodes
US7092753B2 (en) 1999-06-04 2006-08-15 Impulse Dynamics Nv Drug delivery device
US7190997B1 (en) 1999-06-04 2007-03-13 Impulse Dynamics Nv Drug delivery device
US7171263B2 (en) 1999-06-04 2007-01-30 Impulse Dynamics Nv Drug delivery device
DE10000196B4 (de) 2000-01-05 2013-10-10 Sartorius Stedim Biotech Gmbh Verbesserte Crossflow-Filtrationseinheit
EP1263408B1 (en) 2000-02-14 2004-12-15 JOHNSON & JOHNSON CONSUMER COMPANIES, INC. Delivery system for topical skin care agents
JP2001232158A (ja) 2000-02-24 2001-08-28 Shinko Pantec Co Ltd ダイアフィルトレーション方法
AUPQ691400A0 (en) 2000-04-14 2000-05-11 Life Therapeutics Limited Separation of micromolecules
AU2001257212B9 (en) 2000-04-25 2007-03-29 Impres Medical, Inc. Method and apparatus for creating intrauterine adhesions
US6454095B1 (en) 2000-05-12 2002-09-24 Johnson & Johnson Inc. Visual reference system for sanitary absorbent article
US6544316B2 (en) 2000-05-19 2003-04-08 Membrane Technology And Research, Inc. Hydrogen gas separation using organic-vapor-resistant membranes
US6455115B1 (en) 2001-01-26 2002-09-24 Milliken & Company Textile reinforced thermoplastic or thermoset pipes
DE10034386A1 (de) 2000-07-14 2002-01-24 Creavis Tech & Innovation Gmbh Verfahren und Vorrichtung zur Elektrofiltration
US6692627B1 (en) 2000-09-26 2004-02-17 Boise State University Electrical field flow fractionation (EFFF) using an electrically insulated flow channel
US6695880B1 (en) 2000-10-24 2004-02-24 Johnson & Johnson Vision Care, Inc. Intraocular lenses and methods for their manufacture
US6552401B1 (en) 2000-11-27 2003-04-22 Micron Technology Use of gate electrode workfunction to improve DRAM refresh
JP3590765B2 (ja) * 2000-12-21 2004-11-17 Smc株式会社 電磁弁
GB0100513D0 (en) 2001-01-09 2001-02-21 Smithkline Beecham Plc Process
US6641773B2 (en) 2001-01-10 2003-11-04 The United States Of America As Represented By The Secretary Of The Army Electro spinning of submicron diameter polymer filaments
US6462935B1 (en) 2001-09-07 2002-10-08 Lih-Ren Shiue Replaceable flow-through capacitors for removing charged species from liquids
US6580598B2 (en) 2001-02-15 2003-06-17 Luxon Energy Devices Corporation Deionizers with energy recovery
JP2002353075A (ja) 2001-03-21 2002-12-06 Morinobu Endo 電気二重層コンデンサの電極材料およびこれを用いた電気二重層コンデンサ
US6521865B1 (en) 2001-06-14 2003-02-18 Advanced Cardiovascular Systems, Inc. Pulsed fiber laser cutting system for medical implants
IL144213A0 (en) 2001-07-09 2002-05-23 Mind Guard Ltd Implantable filter
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
JP3939943B2 (ja) 2001-08-29 2007-07-04 株式会社Gsiクレオス 気相成長法による炭素繊維からなるフィルター材
CN2570208Y (zh) 2001-09-03 2003-09-03 珠海中富聚酯啤酒瓶有限公司 聚酯啤酒瓶
US20030138777A1 (en) 2001-09-20 2003-07-24 Evans Glen A. Nanomachine compositions and methods of use
US20030134281A1 (en) 2001-09-20 2003-07-17 Evans Glen A. Nanomachine compositions and methods of use
US20040063097A1 (en) 2002-09-20 2004-04-01 Evans Glen A. Nanomachine compositions and methods of use
WO2003028691A2 (en) 2001-09-27 2003-04-10 Johnson & Johnson Consumer France S.A.S. Stable compositions containing ethanolamine derivatives and glucosides
GB2380135B (en) 2001-09-27 2005-01-12 Johnson & Johnson Medical Ltd Therapeutic wound dressing
US7166443B2 (en) 2001-10-11 2007-01-23 Aviva Biosciences Corporation Methods, compositions, and automated systems for separating rare cells from fluid samples
US20050238730A1 (en) 2001-11-21 2005-10-27 Agnes Le Fur Compositions comprising an ethanolamine derivative and organic metal salts
WO2003050015A2 (en) 2001-12-10 2003-06-19 Rubbermaid Commercial Products Waste container assembly and modular product system
US6908552B2 (en) 2002-02-26 2005-06-21 Gesellschaft Fuer Schwerionenforschung Mbh Method of producing nanostructures in membrances, and asymmetrical membrane
US20080185293A1 (en) 2002-03-27 2008-08-07 Giselher Klose Method and Apparatus for Decontamination of Fluid with One or More High Purity Electrodes
US6905612B2 (en) 2003-03-21 2005-06-14 Hanuman Llc Plasma concentrate apparatus and method
JP4369153B2 (ja) 2002-05-16 2009-11-18 株式会社神鋼環境ソリューション 膜分離装置及び膜分離方法
US7625545B2 (en) 2002-07-01 2009-12-01 Jfe Engineering Corporation Process for producing carbon nanotubes by arc discharge
US7235164B2 (en) 2002-10-18 2007-06-26 Eksigent Technologies, Llc Electrokinetic pump having capacitive electrodes
US6699684B2 (en) 2002-07-23 2004-03-02 Nalco Company Method of monitoring biofouling in membrane separation systems
JP2005533502A (ja) 2002-07-24 2005-11-10 ボード オブ レジェンツ,ザ ユニバーシティー オブ テキサス システム 膜法による微生物の捕捉と検出
US7326326B2 (en) 2002-09-11 2008-02-05 Temple University-Of The Commonwealth System Of Higher Education System and methods for electrophoretic separation of proteins on protein binding membranes
AU2003284031A1 (en) 2002-10-10 2004-05-04 Irm, Llc Capacity altering device, holder and methods of sample processing
KR20050083800A (ko) 2002-10-22 2005-08-26 대니 마샬 데이 수소, 격리 탄소 및 이산화탄소를 함유하는 활용 오프가스의 복합 생산에 의해 제조된 토양 개량제의 생산 및용도
US6889715B2 (en) 2002-11-27 2005-05-10 Wellstream International Limited Flexible tubular member with sealed tape layer
JP2004179014A (ja) 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd プラズマ加工方法及び装置
US7081208B2 (en) 2002-12-16 2006-07-25 International Business Machines Corporation Method to build a microfilter
DE20302819U1 (de) 2003-02-21 2003-05-08 Filtertek Sa Filter für medizinische und Laborzwecke, insbesondere für Blutanalysen u.dgl.
US20040185730A1 (en) 2003-03-17 2004-09-23 Lambino Danilo L. Expandable skin cleansing implement
FR2852515B1 (fr) 2003-03-17 2005-11-18 Dispositif et procede de traitement de sang avec extraction selective de solutes
US8993327B2 (en) 2003-04-07 2015-03-31 Ut-Battelle, Llc Parallel macromolecular delivery and biochemical/electrochemical interface to cells employing nanostructures
US6708826B1 (en) 2003-04-30 2004-03-23 Warner-Lambert Company, Llc Packaged supply of individual doses of a personal care product
US7875293B2 (en) 2003-05-21 2011-01-25 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US7150813B2 (en) 2003-06-12 2006-12-19 Palo Alto Research Center Incorporated Isoelectric focusing (IEF) of proteins with sequential and oppositely directed traveling waves in gel electrophoresis
US7477941B2 (en) 2003-06-30 2009-01-13 Johnson & Johnson Consumer Companies, Inc. Methods of exfoliating the skin with electricity
US7477939B2 (en) 2003-06-30 2009-01-13 Johnson & Johnson Consumer Companies, Inc. Methods of treating a wound with galvanic generated electricity
US7477940B2 (en) 2003-06-30 2009-01-13 J&J Consumer Companies, Inc. Methods of administering an active agent to a human barrier membrane with galvanic generated electricity
US7479133B2 (en) 2003-06-30 2009-01-20 Johnson & Johnson Consumer Companies, Inc. Methods of treating acne and rosacea with galvanic generated electricity
US7476222B2 (en) 2003-06-30 2009-01-13 Johnson & Johnson Consumer Companies, Inc. Methods of reducing the appearance of pigmentation with galvanic generated electricity
US8734421B2 (en) 2003-06-30 2014-05-27 Johnson & Johnson Consumer Companies, Inc. Methods of treating pores on the skin with electricity
US7175783B2 (en) 2003-08-19 2007-02-13 Patrick Michael Curran Carbon electrode for use in aqueous electrochemical devices and method of preparation
JP2005126966A (ja) 2003-10-22 2005-05-19 Tachikawa Blind Mfg Co Ltd スライドスクリーン
PL1687133T3 (pl) 2003-11-04 2011-05-31 Porex Corp Porowate materiały kompozytowe oraz sposoby ich wytwarzania i zastosowania
US7674477B1 (en) 2003-11-06 2010-03-09 University Of Notre Dame Du Lac Bone and tissue scaffolding for delivery of therapeutic agents
CA2545788A1 (en) 2003-11-13 2005-06-02 Galileo Pharmaceuticals, Inc. Plant-derived protein extract compositions and methods
US7935331B2 (en) 2003-12-12 2011-05-03 Johnson & Johnson Consumer Companies, Inc. Vanillin polymers for use in darkening the skin
JP2007523822A (ja) 2004-01-15 2007-08-23 ナノコンプ テクノロジーズ インコーポレイテッド 伸長した長さのナノ構造の合成のためのシステム及び方法
KR100569188B1 (ko) 2004-01-16 2006-04-10 한국과학기술연구원 탄소-다공성 지지체 복합 전극 및 그 제조방법
US20050189673A1 (en) 2004-02-26 2005-09-01 Jeremy Klug Treatment of flexible graphite material and method thereof
US7410574B2 (en) 2004-03-03 2008-08-12 Patent Innovations Llc Magnetic particle filtration apparatus
US7452547B2 (en) 2004-03-31 2008-11-18 Johnson&Johnson Consumer Co., Inc. Product for treating the skin comprising a polyamine microcapsule wall and a skin lightening agent
BRPI0511628B8 (pt) 2004-05-28 2017-03-28 Bp Corp North America Inc método de recuperação de hidrocarbonetos a partir de uma formação subterrânea porosa contendo hidrocarbonetos por injeção de uma água de salinidade baixa para dentro da formação a partir de um poço de injeção e poço de injeção
GB0414837D0 (en) 2004-07-02 2004-08-04 Booth John P Improvements in or relating to tubular bodies and methods of forming same
US7459121B2 (en) 2004-07-21 2008-12-02 Florida State University Research Foundation Method for continuous fabrication of carbon nanotube networks or membrane materials
US8765488B2 (en) 2004-07-22 2014-07-01 The Board Of Trustees Of The University Of Illinois Sensors employing single-walled carbon nanotubes
US7083653B2 (en) 2004-08-12 2006-08-01 Charles Edward Jennings Implantable human kidney replacement unit
US20060093885A1 (en) 2004-08-20 2006-05-04 Krusic Paul J Compositions containing functionalized carbon materials
US8785013B2 (en) 2004-08-20 2014-07-22 E I Du Pont De Nemours And Company Compositions containing modified fullerenes
US7374677B2 (en) 2004-08-20 2008-05-20 Kkj, Inc. Two stage hemofiltration that generates replacement fluid
US7786086B2 (en) 2004-09-08 2010-08-31 Ramot At Tel-Aviv University Ltd. Peptide nanostructures containing end-capping modified peptides and methods of generating and using the same
WO2007015710A2 (en) 2004-11-09 2007-02-08 Board Of Regents, The University Of Texas System The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
US7842271B2 (en) 2004-12-07 2010-11-30 Petrik Viktor I Mass production of carbon nanostructures
DE102004062535A1 (de) 2004-12-24 2006-07-06 Forschungszentrum Karlsruhe Gmbh Semipermeables Membransystem für magnetische Partikelfraktionen
JP2006188393A (ja) 2005-01-06 2006-07-20 Japan Science & Technology Agency カーボン物質の加工方法
US20060151382A1 (en) 2005-01-12 2006-07-13 Petrik Viktor I Contact devices with nanostructured materials
US20060166347A1 (en) 2005-01-27 2006-07-27 Applera Corporation Sample preparation devices and methods
CA2597484A1 (en) 2005-02-14 2006-08-17 Mcneil-Ppc, Inc. Package for a personal care product
US9169579B2 (en) 2005-03-11 2015-10-27 New Jersey Institute Of Technology Carbon nanotube mediated membrane extraction
DE102005012594A1 (de) 2005-03-18 2006-09-21 Bayer Technology Services Gmbh Elektrofiltrationsverfahren
US7382601B2 (en) 2005-03-28 2008-06-03 Saga Sanyo Industries Co., Ltd. Electric double layer capacitor and method of manufacturing same
RU2007139819A (ru) 2005-03-29 2009-05-10 МакНЕЙЛ-Пи-Пи-Си, ИНК. (US) Композиции с гидрофильными лекарствами в гидрофобной среде
US20060253078A1 (en) 2005-04-25 2006-11-09 Wu Jeffrey M Method of treating skin disorders with stratum corneum piercing device
JP2008540070A (ja) 2005-04-29 2008-11-20 ユニバーシティー オブ ロチェスター 超薄多孔質ナノスケール膜、その製造方法および使用
US7381707B2 (en) 2005-06-30 2008-06-03 Johnson & Johnson Consumer Companies, Inc. Treatment of dry eye
US8246917B2 (en) 2006-06-23 2012-08-21 Johns Hopkins University Self-assembled, micropatterned, and radio frequency (RF) shielded biocontainers and their uses for remote spatially controlled chemical delivery
EP1917096A4 (en) 2005-08-26 2010-03-31 Entegris Inc POROUS MEMBRANES CONTAINING AN EXCHANGE RESIN
EP2266682A3 (en) 2005-09-09 2014-08-20 Tangenx Technology Corporation Laminated cassette device and method for making same
US7650805B2 (en) 2005-10-11 2010-01-26 Millipore Corporation Integrity testable multilayered filter device
DE102005049388A1 (de) 2005-10-15 2007-04-19 Dechema Gesellschaft Für Chemische Technik Und Biotechnologie E.V. Verfahren zur Vermeidung oder Verminderung von Biofilmen auf einer Oberfläche
US20070099813A1 (en) 2005-10-27 2007-05-03 Luizzi Joseph M Effervescent cleansing article
WO2007055371A1 (ja) 2005-11-14 2007-05-18 Tokyo Institute Of Technology ナノポーラス基板の製造方法
US7883839B2 (en) 2005-12-08 2011-02-08 University Of Houston Method and apparatus for nano-pantography
US8715221B2 (en) 2006-03-08 2014-05-06 Fresenius Medical Care Holdings, Inc. Wearable kidney
US7761809B2 (en) 2006-03-30 2010-07-20 Microsoft Corporation Targeted user interface fall-through
DE102006022502A1 (de) 2006-05-08 2007-11-29 Ltn Nanovation Ag Filtereinheit für die Abwasseraufbereitung und die Trinkwassergewinnung
WO2007136472A1 (en) 2006-05-18 2007-11-29 Dow Global Technologies Inc. Use of special screens in the preparation of cellulose powder
US8173713B2 (en) 2006-05-25 2012-05-08 Drexel University Filled nanoporous polymer membrane composites for protective clothing and methods for making them
US7833355B2 (en) 2006-06-02 2010-11-16 Peter David Capizzo Carbon nanotube (CNT) extrusion methods and CNT wire and composites
US7866475B2 (en) 2006-06-12 2011-01-11 Mcneil-Ppc, Inc. Blister package
ITBO20060493A1 (it) 2006-06-27 2007-12-28 Bellco Srl Macchina di dialisi con controllo della glicemia
CA2657317C (en) 2006-07-10 2012-10-02 Convergent Bioscience Ltd. Method and apparatus for precise selection and extraction of a focused component in isoelectric focusing performed in micro-channels
CA2657630C (en) 2006-07-14 2014-08-19 Exxonmobil Research And Engineering Company Improved membrane separation process using mixed vapor-liquid feed
US20080045877A1 (en) 2006-08-15 2008-02-21 G&L Consulting, Llc Blood exchange dialysis method and apparatus
EP2053988A4 (en) 2006-08-23 2011-08-24 Budhaditya Chattopadhyay BLOOD PURIFYING APPARATUS AND METHOD THEREOF
US7931838B2 (en) 2006-08-31 2011-04-26 Virginia Tech Intellectual Properties, Inc. Method for making oriented single-walled carbon nanotube/polymer nano-composite membranes
US20080081362A1 (en) 2006-09-29 2008-04-03 Daniel Keeley Multilayered Composite for Organ Augmentation and Repair
US20080081323A1 (en) 2006-09-29 2008-04-03 Daniel Keeley Regenerative Medicine Devices and Melt-Blown Methods of Manufacture
WO2008046050A2 (en) 2006-10-12 2008-04-17 Impres Medical, Inc. Method and apparatus for occluding a lumen
US20130153440A9 (en) 2006-11-13 2013-06-20 Kc Energy, Llc Rf systems and methods for processing salt water
KR100834729B1 (ko) 2006-11-30 2008-06-09 포항공과대학교 산학협력단 반사 방지용 나노 다공성 필름 및 블록 공중합체를 이용한그 제조방법
WO2008118228A2 (en) 2006-12-05 2008-10-02 Stonybrook Water Purification Articles comprising a fibrous support
US7998246B2 (en) 2006-12-18 2011-08-16 Uop Llc Gas separations using high performance mixed matrix membranes
WO2008082528A1 (en) 2006-12-19 2008-07-10 Lande Arnold J Chronic access system for extracorporeal treatment of blood including a continuously wearable hemodialyzer
US20100196439A1 (en) 2006-12-22 2010-08-05 Medtronic, Inc. Angiogenesis Mechanism and Method, and Implantable Device
US8187255B2 (en) 2007-02-02 2012-05-29 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US7960708B2 (en) 2007-03-13 2011-06-14 University Of Houston Device and method for manufacturing a particulate filter with regularly spaced micropores
US20080241085A1 (en) 2007-03-29 2008-10-02 Lin Connie B Compositions for use in darkening the skin
AU2008245900B2 (en) 2007-04-24 2013-07-25 Advanced Technologies And Regenerative Medicine, Llc Engineered renal tissue
US20100323177A1 (en) 2007-05-14 2010-12-23 Northwestern University Graphene oxide sheet laminate and method
CN101108194B (zh) 2007-06-30 2010-12-01 广西壮族自治区化工研究院 一种除去右旋糖酐铁络合物水溶液中氯化钠的方法及装置
WO2009012185A1 (en) 2007-07-13 2009-01-22 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US20100059378A1 (en) 2007-07-18 2010-03-11 The Water Company Llc Apparatus and method for removal of ions from a porous electrode that is part of a deionization system
CA2708319A1 (en) 2007-07-27 2009-02-05 The Board Of Trustees Of The Leland Stanford Junior University Supramolecular functionalization of graphitic nanoparticles for drug delivery
US8698481B2 (en) 2007-09-12 2014-04-15 President And Fellows Of Harvard College High-resolution molecular sensor
US20090075371A1 (en) 2007-09-18 2009-03-19 Daniel Keeley Regenerative Medicine Devices and Foam Methods of Manufacture
AU2008302086A1 (en) 2007-09-21 2009-03-26 The Regents Of The University Of California Nanocomposite membranes and methods of making and using same
RU2471492C2 (ru) 2007-09-28 2013-01-10 Джонсон Энд Джонсон Конзьюмер Компаниз, Инк. Электрогенерирующие частицы и их применение
US20090087395A1 (en) 2007-10-01 2009-04-02 Lin Connie B Compositions for use in darkening the skin
US20110263912A1 (en) 2007-11-07 2011-10-27 Air Products And Chemicals, Inc. Control Of Kinetic Decomposition In Mixed Conducting Ion Transport Membranes
ATE494919T1 (de) 2007-11-13 2011-01-15 Acuros Gmbh Osmotische pumpe
US7706128B2 (en) 2007-11-29 2010-04-27 Corning Incorporated Capacitive device
US20090148495A1 (en) 2007-12-11 2009-06-11 Hammer Joseph J Optimum Density Fibrous Matrix
BRPI0906976B1 (pt) 2008-01-08 2019-04-24 Shell Internationale Research Maatschappij B.V. Processo para a remoção de contaminantes ácidos gasosos de uma corrente de alimentação hidrocarbônica gasosa
US8435676B2 (en) 2008-01-09 2013-05-07 Nanotek Instruments, Inc. Mixed nano-filament electrode materials for lithium ion batteries
KR100964504B1 (ko) 2008-02-14 2010-06-21 포항공과대학교 산학협력단 나노다공성 멤브레인, 이의 제조 방법 및 이를 구비한 서방성 약물 전달 장치
CN101945625A (zh) 2008-02-25 2011-01-12 麦克内尔-Ppc股份有限公司 热治疗装置
WO2009117616A2 (en) 2008-03-19 2009-09-24 Yale University Carbon nanotube compositions and methods of use thereof
US9737593B2 (en) 2008-03-19 2017-08-22 Yale University Carbon nanotube compositions and methods of use thereof
US8409450B2 (en) 2008-03-24 2013-04-02 The Regents Of The University Of California Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane
US20090241242A1 (en) 2008-03-31 2009-10-01 Heidi Beatty Facial mask
US8535553B2 (en) 2008-04-14 2013-09-17 Massachusetts Institute Of Technology Large-area single- and few-layer graphene on arbitrary substrates
GB0807267D0 (en) 2008-04-21 2008-05-28 Ntnu Technology Transfer As Carbon membranes from cellulose esters
CA2759833A1 (en) 2008-04-25 2009-10-29 Encapsulife, Inc. Immunoisolation patch system for cellular transplantation
EP2279512B1 (en) 2008-05-07 2019-10-23 Nanocomp Technologies, Inc. Carbon nanotube-based coaxial electrical cables and wiring harness
KR100977610B1 (ko) 2008-05-15 2010-08-23 웅진코웨이주식회사 나권형 필터 카트리지
DE102008024106A1 (de) 2008-05-17 2009-11-19 Heinrich, Hans-Werner, Prof. Dr. Vorrichtung zum Abscheiden von Partikeln in und aus Flüssigkeiten und deren Anwendung in Biotechnologie, biologische Forschung, Diagnostik und Krankheitsbehandlung
WO2009148959A2 (en) 2008-05-29 2009-12-10 Lawrence Livermore National Security, Llc Membranes with functionalized carbon nanotube pores for selective transport
US7993524B2 (en) 2008-06-30 2011-08-09 Nanoasis Technologies, Inc. Membranes with embedded nanotubes for selective permeability
CN102143908A (zh) 2008-07-08 2011-08-03 宋健民 石墨烯与六方氮化硼薄片及其相关方法
US8316865B2 (en) 2008-07-31 2012-11-27 Mcneil-Ppc, Inc. Process for winding dental tape
US20100024722A1 (en) 2008-07-31 2010-02-04 Harold Ochs Apparatus for Coating Dental Tape
TW201012749A (en) 2008-08-19 2010-04-01 Univ Rice William M Methods for preparation of graphene nanoribbons from carbon nanotubes and compositions, thin films and devices derived therefrom
CN101659789B (zh) 2008-08-29 2012-07-18 清华大学 碳纳米管/导电聚合物复合材料的制备方法
US20110177154A1 (en) 2008-09-15 2011-07-21 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Tubular nanostructure targeted to cell membrane
US9296158B2 (en) 2008-09-22 2016-03-29 Johnson & Johnson Vision Care, Inc. Binder of energized components in an ophthalmic lens
US20100076553A1 (en) 2008-09-22 2010-03-25 Pugh Randall B Energized ophthalmic lens
US9675443B2 (en) 2009-09-10 2017-06-13 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
US9388048B1 (en) 2008-10-08 2016-07-12 University Of Southern California Synthesis of graphene by chemical vapor deposition
US9375886B2 (en) 2008-10-31 2016-06-28 Johnson & Johnson Vision Care Inc. Ophthalmic device with embedded microcontroller
JP2012508584A (ja) 2008-11-14 2012-04-12 ヴィアサイト,インコーポレイテッド ヒト多能性幹細胞由来膵臓細胞のカプセル化
US8487296B2 (en) 2008-11-26 2013-07-16 New Jersey Institute Of Technology Graphene deposition and graphenated substrates
US20100161014A1 (en) 2008-12-23 2010-06-24 Lynch Joseph M Thermal treatment device
US8293013B2 (en) 2008-12-30 2012-10-23 Intermolecular, Inc. Dual path gas distribution device
CA2691390A1 (en) 2009-01-29 2010-07-29 Johnson & Johnson Consumer Companies, Inc. Facial treatment mask comprising an isolation layer
US8147599B2 (en) 2009-02-17 2012-04-03 Mcalister Technologies, Llc Apparatuses and methods for storing and/or filtering a substance
EP2416893B1 (en) 2009-02-24 2013-10-30 Ultradian Diagnostics LLC Microsecond response electrochemical sensors and methods thereof
EP2230511B1 (en) 2009-03-20 2017-04-26 Ecole Polytechnique Method for varying the diameter of a nanopore contained in a nanoporous membrane functionalised with a ph-dependent polyelectrolyte
US20120148633A1 (en) 2009-03-27 2012-06-14 Ying Sun Binary and tertiary galvanic particulates and methods of manufacturing and use thereof
US20100249273A1 (en) 2009-03-31 2010-09-30 Scales Charles W Polymeric articles comprising oxygen permeability enhancing particles
IT1393689B1 (it) 2009-04-06 2012-05-08 Envitech S R L Sa Processo e reattore di elettrocoagulazione con elettrodi di materiale nanostrutturato a base di carbonio per la rimozione di contaminanti dai liquidi
US20100258111A1 (en) 2009-04-07 2010-10-14 Lockheed Martin Corporation Solar receiver utilizing carbon nanotube infused coatings
US9017937B1 (en) 2009-04-10 2015-04-28 Pacific Biosciences Of California, Inc. Nanopore sequencing using ratiometric impedance
JP5449852B2 (ja) 2009-05-08 2014-03-19 株式会社東芝 超音波診断装置
FI122495B (fi) 2009-05-22 2012-02-29 Teknologian Tutkimuskeskus Vtt Näyteportti, monikerrossuodatin, näytteenottomenetelmä ja näyteportin käyttö näytteenotossa
US20110139707A1 (en) 2009-06-17 2011-06-16 The Regents Of The University Of California Nanoporous inorganic membranes and films, methods of making and usage thereof
JP5626969B2 (ja) 2009-07-02 2014-11-19 日本原料株式会社 濾過材洗浄装置
US8796908B2 (en) 2009-07-22 2014-08-05 Konica Minolta Medical & Graphic, Inc. Piezoelectric body, ultrasound transducer, medical ultrasound diagnostic system, and nondestructive ultrasound test system
CN102574059B (zh) 2009-08-10 2014-12-10 丹尼斯科美国公司 用于蛋白质回收的基于交叉流动膜过滤的方法
WO2011020035A2 (en) 2009-08-14 2011-02-17 Northwestern University Sorting two-dimensional nanomaterials by thickness
CN102472724B (zh) 2009-08-18 2014-08-13 工业研究与发展基金会有限公司 分离分子分析物的方法和装置
CN101996853B (zh) 2009-08-19 2012-08-08 中国科学院物理研究所 一种对石墨或石墨烯进行各向异性刻蚀的方法
WO2011022677A1 (en) 2009-08-21 2011-02-24 Massachusetts Institute Of Technology Optical nanosensors comprising photoluminescent nanostructures
US8753468B2 (en) 2009-08-27 2014-06-17 The United States Of America, As Represented By The Secretary Of The Navy Method for the reduction of graphene film thickness and the removal and transfer of epitaxial graphene films from SiC substrates
JP5641484B2 (ja) 2009-08-31 2014-12-17 国立大学法人九州大学 グラフェン薄膜とその製造方法
US8808257B2 (en) 2009-08-31 2014-08-19 Johnson & Johnson Vision Care, Inc. Methods and apparatus for pulsatile release of medicaments from a punctal plug
US20110054576A1 (en) 2009-09-03 2011-03-03 Robinson Ronni L Combined Portable Thermal and Vibratory Treatment Device
US8292092B2 (en) 2009-09-08 2012-10-23 Teledyne Scientific & Imaging, Llc Macrocyclic pore-apertured carbon nanotube apparatus
CA2772789C (en) 2009-09-18 2018-10-30 President And Fellows Of Harvard College Bare single-layer graphene membrane having a nanopore enabling high-sensitivity molecular detection and analysis
US20110073563A1 (en) 2009-09-25 2011-03-31 Industrial Technology Research Institute Patterning Method for Carbon-Based Substrate
CN102656016B (zh) 2009-10-16 2015-12-16 石墨烯广场株式会社 石墨烯卷对卷转印方法、由该方法制成的石墨烯卷及石墨烯卷对卷转印装置
US8449504B2 (en) 2009-11-11 2013-05-28 Calibra Medical, Inc. Wearable infusion device and system
ES2617760T3 (es) 2009-11-13 2017-06-19 Johnson & Johnson Consumer Inc. Dispositivo galvánico para tratamiento de la piel
US9591852B2 (en) 2009-11-23 2017-03-14 Mcneil-Ppc, Inc. Biofilm disruptive compositions
US20110124253A1 (en) 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in carbon-carbon composites
CN102781558B (zh) 2009-11-25 2015-06-24 悉尼大学 膜及膜分离系统
US8808810B2 (en) 2009-12-15 2014-08-19 Guardian Industries Corp. Large area deposition of graphene on substrates, and products including the same
US20110152795A1 (en) 2009-12-21 2011-06-23 Aledo Eduardo C A Transparent facial treatment mask
KR101405463B1 (ko) 2010-01-15 2014-06-27 그래핀스퀘어 주식회사 기체 및 수분 차단용 그래핀 보호막, 이의 형성 방법 및 그의 용도
WO2011094204A2 (en) 2010-01-26 2011-08-04 Wisconsin Alumni Research Foundation Methods of fabricating large-area, semiconducting nanoperforated graphene materials
US20110195207A1 (en) 2010-02-08 2011-08-11 Sungkyunkwan University Foundation For Corporate Collaboration Graphene roll-to-roll coating apparatus and graphene roll-to-roll coating method using the same
EP2535903B1 (en) 2010-02-09 2018-12-05 Graphene Square Inc. Method for manufacturing a graphene fiber
WO2011100458A2 (en) 2010-02-10 2011-08-18 Bioo Scientific Corporation Methods for fractionating and processing microparticles from biological samples and using them for biomarker discovery
US20110202201A1 (en) 2010-02-12 2011-08-18 Fujitsu Ten Limited Remote starting device and remote starting method
JP5407921B2 (ja) 2010-02-19 2014-02-05 富士電機株式会社 グラフェン膜の製造方法
US9096437B2 (en) 2010-03-08 2015-08-04 William Marsh Rice University Growth of graphene films from non-gaseous carbon sources
CN104224171B (zh) 2010-03-17 2017-06-09 伊利诺伊大学评议会 基于生物可吸收基质的可植入生物医学装置
US8592291B2 (en) 2010-04-07 2013-11-26 Massachusetts Institute Of Technology Fabrication of large-area hexagonal boron nitride thin films
US8652779B2 (en) 2010-04-09 2014-02-18 Pacific Biosciences Of California, Inc. Nanopore sequencing using charge blockade labels
US8308702B2 (en) 2010-04-21 2012-11-13 Johnson & Johnson Consumer Companies, Inc. Foaming porous pad for use with a motorized device
US20110269919A1 (en) 2010-04-28 2011-11-03 Nanomaterial Innovation Ltd. CO2 reservoir
EP2566535A4 (en) 2010-05-03 2013-12-18 Izhar Halahmi DISTRIBUTION DEVICE FOR THE ADMINISTRATION OF AN ORGANIC ACTIVE AGENT
JP2013526280A (ja) 2010-05-11 2013-06-24 トラスティーズ オブ ボストン ユニバーシティ 核酸の多重シーケンシングのためのナノ細孔アレイの使用
KR101537638B1 (ko) 2010-05-18 2015-07-17 삼성전자 주식회사 그라펜 박막을 이용한 수지의 도금 방법
US9075009B2 (en) 2010-05-20 2015-07-07 Sungkyunkwan University Foundation For Corporation Collaboration Surface plasmon resonance sensor using metallic graphene, preparing method of the same, and surface plasmon resonance sensor system
WO2012005857A1 (en) 2010-06-08 2012-01-12 President And Fellows Of Harvard College Nanopore device with graphene supported artificial lipid membrane
US9005565B2 (en) 2010-06-24 2015-04-14 Hamid-Reza Jahangiri-Famenini Method and apparatus for forming graphene
AU2011279530A1 (en) 2010-07-14 2013-01-31 Monash University Material and applications therefor
US9216390B2 (en) 2010-07-15 2015-12-22 Ohio State Innovation Foundation Systems, compositions, and methods for fluid purification
AU2011282988A1 (en) 2010-07-28 2013-01-31 Smartcells, Inc. Recombinantly expressed insulin polypeptides and uses thereof
KR101227453B1 (ko) 2010-07-29 2013-01-29 서강대학교산학협력단 인공 신단위 장치
WO2012021801A2 (en) 2010-08-13 2012-02-16 Seventh Sense Biosystems, Inc. Systems and techniques for monitoring subjects
US9475709B2 (en) 2010-08-25 2016-10-25 Lockheed Martin Corporation Perforated graphene deionization or desalination
WO2012028695A2 (en) 2010-09-01 2012-03-08 Facultes Universitaires Notre-Dame De La Paix Method for depositing nanoparticles on substrates
KR101211850B1 (ko) 2010-09-01 2012-12-12 연세대학교 산학협력단 그라핀 나노 필터 망, 그라핀 나노 필터 및 그 제조방법
WO2012030368A1 (en) 2010-09-01 2012-03-08 Lawrence Curtin Application of radio frequency to fluidized beds
US9522161B2 (en) 2010-10-26 2016-12-20 Advanced Bio Development, Inc. Performance enhancing composition and method of delivering nutrients
US8512669B2 (en) 2010-11-29 2013-08-20 Empire Technology Development Llc Graphene production using laser heated crystal growth
WO2012075120A2 (en) 2010-11-30 2012-06-07 University Of South Florida Graphene electrodes on a planar cubic silicon carbide (3c-sic) long term implantable neuronal prosthetic device
JP5699872B2 (ja) 2011-01-24 2015-04-15 日立金属株式会社 差動信号伝送用ケーブル
US20120211367A1 (en) 2011-01-25 2012-08-23 President And Fellows Of Harvard College Electrochemical carbon nanotube filter and method
US9162885B2 (en) 2011-02-17 2015-10-20 Rutgers, The State University Of New Jersey Graphene-encapsulated nanoparticle-based biosensor for the selective detection of biomarkers
US8950862B2 (en) 2011-02-28 2015-02-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for an ophthalmic lens with functional insert layers
US9110310B2 (en) 2011-03-18 2015-08-18 Johnson & Johnson Vision Care, Inc. Multiple energization elements in stacked integrated component devices
US9233513B2 (en) 2011-03-18 2016-01-12 Johnson & Johnson Vision Care, Inc. Apparatus for manufacturing stacked integrated component media inserts for ophthalmic devices
US9698129B2 (en) 2011-03-18 2017-07-04 Johnson & Johnson Vision Care, Inc. Stacked integrated component devices with energization
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US9102111B2 (en) 2011-03-21 2015-08-11 Johnson & Johnson Vision Care, Inc. Method of forming a functionalized insert with segmented ring layers for an ophthalmic lens
US9195075B2 (en) 2011-03-21 2015-11-24 Johnson & Johnson Vision Care, Inc. Full rings for a functionalized layer insert of an ophthalmic lens
US9804418B2 (en) 2011-03-21 2017-10-31 Johnson & Johnson Vision Care, Inc. Methods and apparatus for functional insert with power layer
WO2012135065A2 (en) 2011-03-25 2012-10-04 Porifera, Inc. Membranes having aligned 1-d nanoparticles in a matrix layer for improved fluid separation
WO2012138671A2 (en) 2011-04-04 2012-10-11 The Regents Of The University Of Colorado Highly porous ceramic material and method of use and forming same
KR101813170B1 (ko) 2011-04-11 2017-12-28 삼성전자주식회사 그래핀 함유 분리막
CN102242062B (zh) 2011-04-19 2012-12-19 浙江大学 一种高分辨率的生物传感器
WO2012145652A1 (en) 2011-04-20 2012-10-26 Trustees Of Tufts College Dynamic silk coatings for implantable devices
US8551650B2 (en) 2011-05-12 2013-10-08 Northwestern University Graphene materials having randomly distributed two-dimensional structural defects
CN102344132B (zh) 2011-07-08 2013-06-19 中国科学院上海微系统与信息技术研究所 一种逐层减薄石墨烯的方法
US9193587B2 (en) 2011-07-13 2015-11-24 Lockheed Martin Corporation System and method for water purification and desalination
US8617411B2 (en) 2011-07-20 2013-12-31 Lam Research Corporation Methods and apparatus for atomic layer etching
US10761043B2 (en) 2011-07-22 2020-09-01 The Trustees Of The University Of Pennsylvania Graphene-based nanopore and nanostructure devices and methods for macromolecular analysis
US20130025907A1 (en) 2011-07-26 2013-01-31 Tyco Electronics Corporation Carbon-based substrate conductor
EP2737536B1 (en) 2011-07-27 2018-05-09 The Board of Trustees of the University of Illionis Nanopore sensors for biomolecular characterization
US9812730B2 (en) 2011-08-02 2017-11-07 Johnson & Johnson Vision Care, Inc. Biocompatible wire battery
US9132389B2 (en) 2011-08-08 2015-09-15 Colorado State University Research Foundation Magnetically responsive membranes
DE112012003329T5 (de) 2011-08-11 2014-04-30 National University Of Singapore Tandem-Solarzelle mit Graphen-Zwischenschicht und Verfahren zum Herstellen davon
US8586324B2 (en) 2011-08-15 2013-11-19 Biomet Biologics, Llc Method and apparatus to create autologous clotting serum
CN103764070B (zh) 2011-08-31 2016-03-09 庄臣及庄臣视力保护公司 处理器控制的眼内透镜系统
WO2013036278A1 (en) 2011-09-06 2013-03-14 Nanotech Biomachines, Inc. Integrated sensing device and related methods
US8759153B2 (en) 2011-09-06 2014-06-24 Infineon Technologies Ag Method for making a sensor device using a graphene layer
US8925736B2 (en) 2011-09-12 2015-01-06 University Of Houston Nanocomposite polymer-carbon based nanomaterial filters for the simultaneous removal of bacteria and heavy metals
KR101405256B1 (ko) 2011-09-16 2014-06-10 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 그래핀 결함 변경
WO2013039507A1 (en) 2011-09-16 2013-03-21 Empire Technology Development Llc Graphene defect detection
CN102423272B (zh) 2011-09-20 2016-03-30 复旦大学 一种具有网络通道的多孔支架及其制备方法
EP2574923A1 (en) 2011-09-28 2013-04-03 Koninklijke Philips Electronics N.V. Apparatus for the processing of single molecules
KR101858642B1 (ko) 2011-09-29 2018-05-16 한화테크윈 주식회사 그래핀의 전사 방법
WO2013049636A1 (en) 2011-09-30 2013-04-04 The Regents Of The University Of Michigan System for detecting rare cells
US8808645B2 (en) 2011-10-25 2014-08-19 Hewlett-Packard Development Company, L.P. Molecular filters
US8721074B2 (en) 2011-11-30 2014-05-13 Johnson & Johnson Vision Care, Inc. Electrical interconnects in an electronic contact lens
US20130323295A1 (en) 2011-12-08 2013-12-05 Johnson & Johnson Vision Care, Inc. Monomer systems with dispersed silicone-based engineered particles
US20130146221A1 (en) 2011-12-13 2013-06-13 Southern Illinois University Carbondale Graphene-based membranes as electron transparent windows for ambient pressure x-ray photoelectron spectroscopy
US20130152386A1 (en) 2011-12-15 2013-06-20 Praveen Pandojirao-S Methods and apparatus to form electrical interconnects on ophthalmic devices
WO2013102009A1 (en) 2011-12-28 2013-07-04 Hollister Incorporated Sound absorbing non-woven material, sound absorbing multilayer film, and laminates made thereof
CN103182249B (zh) 2011-12-30 2016-10-05 财团法人工业技术研究院 多孔基材的修饰方法及经修饰的多孔基材
US9425571B2 (en) 2012-01-06 2016-08-23 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form electrical interconnects on ophthalmic devices
US9149806B2 (en) 2012-01-10 2015-10-06 Biopico Systems Inc Microfluidic devices and methods for cell sorting, cell culture and cells based diagnostics and therapeutics
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
CN104204913A (zh) 2012-01-26 2014-12-10 庄臣及庄臣视力保护公司 包括堆叠式集成元件的通电眼科镜片
KR101638060B1 (ko) 2012-01-26 2016-07-08 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 주기적인 옹스트롬 단위의 구멍을 갖는 그래핀 멤브레인
WO2013115762A1 (en) 2012-01-27 2013-08-08 Empire Technology Development, Llc Accelerating transport through graphene membranes
US8686249B1 (en) 2012-02-15 2014-04-01 Pioneer Hi Bred International Inc Maize hybrid X08C971
US20130215380A1 (en) 2012-02-22 2013-08-22 Randall B. Pugh Method of using full rings for a functionalized layer insert of an ophthalmic device
US9134546B2 (en) 2012-02-22 2015-09-15 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with segmented ring layers in a functionalized insert
JP5504298B2 (ja) 2012-02-22 2014-05-28 アオイ電子株式会社 振動発電素子およびその製造方法
CN102592720A (zh) 2012-03-14 2012-07-18 于庆文 非金属电缆、制作方法及用途
US20130240355A1 (en) 2012-03-16 2013-09-19 Lockheed Martin Corporation Functionalization of graphene holes for deionization
WO2013142133A1 (en) 2012-03-21 2013-09-26 Lockheed Martin Corporation Methods for perforating graphene using an activated gas stream and perforated graphene produced therefrom
US9028663B2 (en) 2012-03-21 2015-05-12 Lockheed Martin Corporation Molecular separation device
US8906245B2 (en) 2012-03-21 2014-12-09 Richard S. PLOSS, JR. Material trivial transfer graphene
DE102012005978A1 (de) 2012-03-23 2013-09-26 Johnson & Johnson Medical Gmbh Chirurgisches Implantat
US9463421B2 (en) 2012-03-29 2016-10-11 Lockheed Martin Corporation Planar filtration and selective isolation and recovery device
US9095823B2 (en) 2012-03-29 2015-08-04 Lockheed Martin Corporation Tunable layered membrane configuration for filtration and selective isolation and recovery devices
US20130256139A1 (en) 2012-03-30 2013-10-03 International Business Machines Corporation Functionalized graphene or graphene oxide nanopore for bio-molecular sensing and dna sequencing
US9675755B2 (en) 2012-04-04 2017-06-13 National Scientific Company Syringe filter
WO2013155493A1 (en) 2012-04-12 2013-10-17 Yale University Methods of treating inflammatory and autoimmune diseases and disorders
US9494260B2 (en) 2012-04-13 2016-11-15 Ticona Llc Dynamically vulcanized polyarylene sulfide composition
US9758674B2 (en) 2012-04-13 2017-09-12 Ticona Llc Polyarylene sulfide for oil and gas flowlines
US9758821B2 (en) 2012-04-17 2017-09-12 International Business Machines Corporation Graphene transistor gated by charges through a nanopore for bio-molecular sensing and DNA sequencing
US20130277305A1 (en) 2012-04-19 2013-10-24 Lockheed Martin Corporation Selectively perforated graphene membranes for compound harvest, capture and retention
CN102637584B (zh) 2012-04-20 2014-07-02 兰州大学 一种图形化石墨烯的转移制备方法
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US9297929B2 (en) 2012-05-25 2016-03-29 Johnson & Johnson Vision Care, Inc. Contact lenses comprising water soluble N-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers
US9744617B2 (en) * 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US10073192B2 (en) 2012-05-25 2018-09-11 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
US10653824B2 (en) * 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
US9610546B2 (en) * 2014-03-12 2017-04-04 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US9067811B1 (en) 2012-05-25 2015-06-30 Lockheed Martin Corporation System, method, and control for graphenoid desalination
US20160067390A1 (en) 2014-03-12 2016-03-10 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials
US9244196B2 (en) 2012-05-25 2016-01-26 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
US9403112B2 (en) 2012-06-12 2016-08-02 The United States Of America As Represented By The Secretary Of The Air Force Graphene oxide filters and methods of use
US20140000101A1 (en) 2012-06-29 2014-01-02 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form printed batteries on ophthalmic devices
EP2679540A1 (en) 2012-06-29 2014-01-01 Graphenea, S.A. Method of manufacturing a graphene monolayer on insulating substrates
CN104780970B (zh) 2012-06-29 2019-08-13 庄臣及庄臣视力保护公司 用于眼睛的电流愈合的方法和眼科装置
DE102012016090A1 (de) 2012-08-14 2014-02-20 Johnson & Johnson Medical Gmbh Chirurgisches Implantat
GB201214565D0 (en) 2012-08-15 2012-09-26 Univ Manchester Membrane
US20140093728A1 (en) 2012-09-28 2014-04-03 Applied Nanostructured Solutions, Llc Carbon nanostructures and methods of making the same
DE102012021547A1 (de) 2012-11-02 2014-05-08 Johnson & Johnson Medical Gmbh Chirurgisches Implantat
GB201220804D0 (en) 2012-11-20 2013-01-02 Provost Fellows Foundation Scholars And The Other Members Of Board Of Asymetric bottom contacted 2D layer devices
US20140154464A1 (en) 2012-11-30 2014-06-05 Empire Technology Development, Llc Graphene membrane with size-tunable nanoscale pores
US20150273401A1 (en) 2012-11-30 2015-10-01 Empire Technology Development Llc Selective membrane supported on nanoporous graphene
WO2014084860A1 (en) 2012-11-30 2014-06-05 Empire Technology Development, Llc Graphene membrane laminated to porous woven or nonwoven support
WO2014100412A1 (en) 2012-12-19 2014-06-26 Robert Mcginnis Selective membranes formed by alignment of porous materials
RU2640184C2 (ru) 2012-12-19 2017-12-26 Джонсон Энд Джонсон Конзьюмер Компаниз, Инк. Безводные порошкообразные и жидкие частицы
US9835390B2 (en) 2013-01-07 2017-12-05 Nanotek Instruments, Inc. Unitary graphene material-based integrated finned heat sink
SG2013091079A (en) 2013-01-09 2014-08-28 Johnson & Johnson Vision Care Multi-piece insert device with locking seal for ophthalmic devices
SG2013091095A (en) 2013-01-09 2014-08-28 Johnson & Johnson Vision Care Method of forming a multi-piece insert device with seal for ophthalmic devices
SG2013091087A (en) 2013-01-09 2014-08-28 Johnson & Johnson Vision Care Multi-piece insert device with glue seal for ophthalmic devices
US10898865B2 (en) 2013-01-31 2021-01-26 American University In Cairo (AUC) Polymer-carbon nanotube nanocomposite porous membranes
US9108158B2 (en) 2013-02-14 2015-08-18 University Of South Carolina Ultrathin, molecular-sieving graphene oxide membranes for separations along with their methods of formation and use
DE102013004573A1 (de) 2013-03-11 2014-09-11 Johnson & Johnson Medical Gmbh Chirurgisches Implantat
DE102013004574A1 (de) 2013-03-11 2014-09-11 Johnson & Johnson Medical Gmbh Chirurgisches Implantat
US9592475B2 (en) 2013-03-12 2017-03-14 Lockheed Martin Corporation Method for forming perforated graphene with uniform aperture size
US20160009049A1 (en) 2013-03-13 2016-01-14 Lockheed Martin Corporation Nanoporous membranes and methods for making the same
US9505192B2 (en) 2013-03-13 2016-11-29 Lockheed Martin Corporation Nanoporous membranes and methods for making the same
DE102013004486A1 (de) 2013-03-14 2014-09-18 Johnson & Johnson Medical Gmbh Chirurgisches Implantat
US9480952B2 (en) 2013-03-14 2016-11-01 Lockheed Martin Corporation Methods for chemical reaction perforation of atomically thin materials
US9406969B2 (en) 2013-03-15 2016-08-02 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form three-dimensional biocompatible energization elements
US9329410B2 (en) 2013-03-15 2016-05-03 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses with colorant patterned inserts
TW201505845A (zh) 2013-03-15 2015-02-16 Lockheed Corp 從基板分離原子級薄材料的方法
US9581832B2 (en) 2013-03-15 2017-02-28 Johnson & Johnson Vision Care, Inc. Method and apparatus for encapsulating a rigid insert in a contact lens for correcting vision in astigmatic patients
US9481138B2 (en) 2013-03-15 2016-11-01 Johnson & Johnson Vision Care, Inc. Sealing and encapsulation in energized ophthalmic devices with annular inserts
US9977260B2 (en) 2013-03-15 2018-05-22 Johnson & Johnson Vision Care, Inc. Sealing and encapsulation in energized ophthalmic devices with annular inserts
US9307654B2 (en) 2013-03-15 2016-04-05 Johnson & Johnson Vision Care, Inc. Method of forming a patterned multi-piece insert for an ophthalmic lens
US8940552B2 (en) 2013-03-15 2015-01-27 Johnson & Johnson Vision Care, Inc. Methods and ophthalmic devices with organic semiconductor layer
US8974055B2 (en) 2013-03-15 2015-03-10 Johnson & Johnson Vision Care, Inc. Method and apparatus for encapsulating a rigid insert in a contact lens for correcting vision in astigmatic patients
US9310626B2 (en) 2013-03-15 2016-04-12 Johnson & Johnson Vision Care, Inc. Ophthalmic devices with organic semiconductor transistors
US8894201B2 (en) 2013-03-15 2014-11-25 Johnson & Johnson Vision Care, Inc. Methods and ophthalmic devices with thin film transistors
US9096050B2 (en) 2013-04-02 2015-08-04 International Business Machines Corporation Wafer scale epitaxial graphene transfer
KR20150140823A (ko) 2013-04-12 2015-12-16 제네럴 일렉트릭 컴퍼니 그래핀을 포함하는 멤브레인
US9297768B2 (en) 2013-04-18 2016-03-29 Empire Technology Development Llc Methods and systems for labeling and detecting defects in a graphene layer
KR101421219B1 (ko) 2013-04-24 2014-07-30 한양대학교 산학협력단 그래핀 옥사이드 코팅층을 포함하는 복합 분리막 및 그 제조방법
US9370749B2 (en) 2013-04-24 2016-06-21 Battelle Memorial Institute Porous multi-component material for the capture and separation of species of interest
US9358508B2 (en) 2013-04-25 2016-06-07 Lockheed Martin Corporation Dryer and water recovery/purification unit employing graphene oxide or perforated graphene monolayer membranes
WO2014182063A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
US8975121B2 (en) 2013-05-09 2015-03-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form thin film nanocrystal integrated circuits on ophthalmic devices
US9429769B2 (en) 2013-05-09 2016-08-30 Johnson & Johnson Vision Care, Inc. Ophthalmic device with thin film nanocrystal integrated circuits
DE102013208924A1 (de) 2013-05-14 2014-12-04 Johnson & Johnson Medical Gmbh Chirurgisches Implantat umfassend einer Lage mit Öffnungen
US9337274B2 (en) 2013-05-15 2016-05-10 Globalfoundries Inc. Formation of large scale single crystalline graphene
CA2912999C (en) 2013-05-21 2021-03-16 Johnson & Johnson Consumer Inc. Child-resistant package
US9804416B2 (en) 2013-05-21 2017-10-31 Johnson & Johnson Vision Care, Inc. Energizable ophthalmic lens with an event-based coloration system
US9572918B2 (en) 2013-06-21 2017-02-21 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
US9052533B2 (en) 2013-07-11 2015-06-09 Johnson & Johnson Vision Care, Inc. Energizable ophthalmic lens with a smartphone event indicator mechanism
US9014639B2 (en) 2013-07-11 2015-04-21 Johnson & Johnson Vision Care, Inc. Methods of using and smartphone event notification utilizing an energizable ophthalmic lens with a smartphone event indicator mechanism
DE102013014295A1 (de) 2013-08-22 2015-02-26 Johnson & Johnson Medical Gmbh Chirurgisches Implantat
US9185486B2 (en) 2013-08-27 2015-11-10 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with micro-acoustic elements
KR20160092987A (ko) 2013-08-28 2016-08-05 내셔날 인스티튜트 오프 에어로스페이스 어소시에이츠 제어 촉매 산화를 통한 다공성 탄소 동소체의 벌크 제조방법
US9170646B2 (en) 2013-09-04 2015-10-27 Johnson & Johnson Vision Care, Inc. Ophthalmic lens system capable of interfacing with an external device
US9448421B2 (en) 2013-09-04 2016-09-20 Johnson & Johnson Vision Care, Inc. Ophthalmic lens system capable of communication between lenses utilizing a secondary external device
US20150077658A1 (en) 2013-09-17 2015-03-19 Johnson & Johnson Vision Care, Inc. Variable optic ophthalmic device including shaped liquid crystal elements and polarizing elements
US9268154B2 (en) 2013-09-17 2016-02-23 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices including hybrid alignment layers and shaped liquid crystal layers
US9442309B2 (en) 2013-09-17 2016-09-13 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices comprising dielectrics and nano-scaled droplets of liquid crystal
US9366881B2 (en) 2013-09-17 2016-06-14 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices including shaped liquid crystal polymer networked regions of liquid crystal
US9335562B2 (en) 2013-09-17 2016-05-10 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices comprising dielectrics and liquid crystal polymer networks
US9869885B2 (en) 2013-09-17 2018-01-16 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices including gradient-indexed liquid crystal layers and shaped dielectric layers
US9500882B2 (en) 2013-09-17 2016-11-22 Johnson & Johnson Vision Care, Inc. Variable optic ophthalmic device including shaped liquid crystal elements with nano-scaled droplets of liquid crystal
SG10201405242WA (en) 2013-09-17 2015-04-29 Johnson & Johnson Vision Care Variable optic ophthalmic device including liquid crystal elements
US20150075667A1 (en) 2013-09-19 2015-03-19 Lockheed Martin Corporation Carbon macrotubes and methods for making the same
US9225375B2 (en) 2013-09-23 2015-12-29 Johnson & Johnson Vision Care, Inc. Ophthalmic lens system capable of wireless communication with multiple external devices
US20150096935A1 (en) 2013-10-04 2015-04-09 Somenath Mitra Nanocarbon immobilized membranes
US10166386B2 (en) 2013-10-14 2019-01-01 The Board Of Regents Of The University Of Oklahoma Implantable electrode assembly
WO2015066404A1 (en) 2013-11-01 2015-05-07 Massachusetts Institute Of Technology Mitigating leaks in membranes
US20160284811A1 (en) 2013-11-04 2016-09-29 Massachusetts Institute Of Technology Electronics including graphene-based hybrid structures
US9731437B2 (en) 2013-11-22 2017-08-15 Johnson & Johnson Vision Care, Inc. Method of manufacturing hydrogel ophthalmic devices with electronic elements
CN103603706A (zh) 2013-11-25 2014-02-26 广西玉柴机器股份有限公司 发动机曲轴箱油气分离装置
EP3074551B1 (en) 2013-11-25 2023-11-22 Northeastern University Freestanding ultra thin membranes and transfer-free fabrication thereof
US20150170788A1 (en) 2013-12-18 2015-06-18 Ticona Llc Conductive Thermoplastic Compositions for Use in Tubular Applications
US9522189B2 (en) 2013-12-20 2016-12-20 Johnson & Johnson Consumer Inc. Topical gel compositions including poly(monostearoyl glycerol-co-succinate) polymer and methods for enhancing the topical application of a benefit agent
US20150174254A1 (en) 2013-12-23 2015-06-25 Mcneil-Ppc, Inc. Topical gel compositions including polycaprolactone polymer and methods for enhancing the topical application of a benefit agent
WO2015103214A1 (en) 2013-12-30 2015-07-09 Molecular Rebar Design, Llc Transdermal patches with discrete carbon nanotubes
US9347911B2 (en) 2013-12-30 2016-05-24 Infineon Technologies Ag Fluid sensor chip and method for manufacturing the same
SG11201606287VA (en) 2014-01-31 2016-08-30 Lockheed Corp Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
EP3100297A4 (en) * 2014-01-31 2017-12-13 Lockheed Martin Corporation Perforating two-dimensional materials using broad ion field
WO2015138808A1 (en) 2014-03-12 2015-09-17 Lockheed Martin Corporation Graphene-based molecular separation and sequestration device
US20150258525A1 (en) 2014-03-12 2015-09-17 Lockheed Martin Corporation Graphene-based molecular sieves and methods for production thereof
JP2017512129A (ja) * 2014-03-12 2017-05-18 ロッキード・マーチン・コーポレーション 有孔グラフェンから形成された分離膜
MX2016011812A (es) * 2014-03-12 2017-05-09 Lockheed Corp Uso in vivo e in vitro de grafeno.
WO2015138752A1 (en) 2014-03-12 2015-09-17 Lockheed Martin Corporation Coating of a porous substrate for disposition of graphene and other two-dimensional materials thereon
WO2015148548A2 (en) 2014-03-24 2015-10-01 Lockheed Martin Corporation Large area membrane evaluation apparatuses and methods for use thereof
US9468606B2 (en) 2014-03-31 2016-10-18 Johnson & Johnson Consumer Inc. Compostions and methods for enhancing the topical application of an acidic benefit agent
US9474699B2 (en) 2014-03-31 2016-10-25 Johnson & Johnson Consumer Inc. Compostions and methods for enhancing the topical application of a basic benefit agent
EP2937313B1 (en) 2014-04-24 2019-04-03 Graphenea, S.A. Equipment and method to automatically transfer a graphene monolayer to a substrate
US10148459B2 (en) 2014-04-29 2018-12-04 Hewlett Packard Enterprise Development Lp Network service insertion
AU2015255756A1 (en) 2014-05-08 2016-12-22 Lockheed Martin Corporation Stacked two-dimensional materials and methods for producing structures incorporating same
US11607026B2 (en) 2014-05-30 2023-03-21 Johnson & Johnson Consumer Inc. Device for delivery of skin care composition
US9274245B2 (en) 2014-05-30 2016-03-01 Baker Hughes Incorporated Measurement technique utilizing novel radiation detectors in and near pulsed neutron generator tubes for well logging applications using solid state materials
WO2015195304A1 (en) 2014-06-17 2015-12-23 Johnson & Johnson Consumer Companies, Inc. Compositions and methods for enhancing the topical application of a benefit agent including powder to liquid particles and a second powder
PL224343B1 (pl) 2014-06-25 2016-12-30 Inst Tech Materiałów Elektronicznych Sposób przenoszenia warstwy grafenowej
US9742001B2 (en) 2014-08-07 2017-08-22 Nanotek Instruments, Inc. Graphene foam-protected anode active materials for lithium batteries
US10456754B2 (en) 2014-08-08 2019-10-29 University Of Southern California High performance membranes for water reclamation using polymeric and nanomaterials
KR101595185B1 (ko) 2014-09-01 2016-02-19 한국기계연구원 액체 여과 구조체
WO2016036888A1 (en) 2014-09-02 2016-03-10 Lockheed Martin Corporation Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same
WO2016102003A1 (en) 2014-12-23 2016-06-30 Das-Nano, S.L. Quality inspection of thin film materials
ES2671498T3 (es) 2015-03-17 2018-06-06 Graphenea, S.A. Método para obtener óxido de grafeno
US10354866B2 (en) 2015-07-27 2019-07-16 Graphenea, S.A. Equipment and method to automatically transfer a graphene monolayer to a substrate
WO2017023375A1 (en) 2015-08-06 2017-02-09 Lockheed Martin Corporation Biologically-relevant selective enclosures for promoting growth and vascularization
EP3135631B1 (en) 2015-08-24 2024-04-10 Graphenea Semiconductor S.L.U. Method for transferring graphene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020079054A1 (en) * 1997-09-22 2002-06-27 Isao Nakatani Method for reactive ion etching and apparatus therefor
CN101243544A (zh) * 2005-08-08 2008-08-13 应用材料股份有限公司 使用低温沉积含碳硬掩膜的半导体基材制程
CN103153441A (zh) * 2010-08-25 2013-06-12 洛克希德马丁公司 穿孔石墨去离子或脱盐
WO2012125770A2 (en) * 2011-03-15 2012-09-20 President And Fellows Of Harvard College Controlled fabrication of nanopores in nanometric solid state materials
WO2013138698A1 (en) * 2012-03-15 2013-09-19 Massachusetts Institute Of Technology Graphene based filter
US20130270188A1 (en) * 2012-03-15 2013-10-17 Massachusetts Institute Of Technology Graphene based filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708278B (zh) * 2017-08-01 2020-10-21 倍疆科技股份有限公司 在二維層狀半導體以及功能層之間形成高潔淨接面的方法及系統

Also Published As

Publication number Publication date
SG11201606289RA (en) 2016-08-30
US20150221474A1 (en) 2015-08-06
JP2017510461A (ja) 2017-04-13
KR20160142820A (ko) 2016-12-13
EP3100297A4 (en) 2017-12-13
EP3100297A1 (en) 2016-12-07
IL247005A0 (en) 2016-09-29
CA2938273A1 (en) 2015-08-06
AU2015210785A1 (en) 2016-09-08
US9870895B2 (en) 2018-01-16
WO2015116946A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
CN105940479A (zh) 使用宽离子场穿孔二维材料
US9480952B2 (en) Methods for chemical reaction perforation of atomically thin materials
Kumar et al. Growth of MoS2–MoO3 hybrid microflowers via controlled vapor transport process for efficient gas sensing at room temperature
KR102396120B1 (ko) 다공성 그래핀 막의 제조 방법 및 상기 방법을 사용하여 제조된 막
Yuan et al. Nanoporous graphene materials
Ostrikov et al. Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids
KR101813172B1 (ko) 그래핀 다중층의 제조방법
Dhara Formation, dynamics, and characterization of nanostructures by ion beam irradiation
US20130249147A1 (en) Methods for perforating graphene using an activated gas stream and perforated graphene produced therefrom
Yun et al. 2D metal chalcogenide nanopatterns by block copolymer lithography
Huang et al. Large-area few-layer MoS2 deposited by sputtering
Levchenko et al. The production of self-organized carbon connections between Ag nanoparticles using atmospheric microplasma synthesis
Yin et al. Generating sub-nanometer pores in single-layer MoS2 by heavy-ion bombardment for gas separation: a theoretical perspective
KR20180037991A (ko) 그래핀의 나노 입자 변형 및 천공
Jurczyk et al. Focused electron beam-induced deposition and post-growth purification using the heteroleptic Ru complex (η3-C3H5) Ru (CO) 3Br
CN102701144B (zh) 一种刻蚀多层石墨烯的方法
Kim et al. Study on the formation of graphene by ion implantation on Cu, Ni and CuNi alloy
JP2006069817A (ja) 炭素元素からなる線状構造物質の形成体及び形成方法
US9725801B2 (en) Method for implanted-ion assisted growth of metal oxide nanowires and patterned device fabricated using the method
Shin et al. Study of selective graphene growth on non-catalytic hetero-substrates
JP6658121B2 (ja) グラフェンナノリボン及びその製造方法、デバイス
Song et al. Fabrication and characterization of nanostructures on insulator substrates by electron-beam-induced deposition
KR102222772B1 (ko) 다성분계 나노패턴의 제작방법
Takenaka et al. Directed self-assembly of block copolymers
KR20220112295A (ko) 다공성 그래핀 멤브레인의 제조 방법 및 이 방법을 사용하여 제조된 멤브레인

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1229066

Country of ref document: HK

WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160914

WD01 Invention patent application deemed withdrawn after publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1229066

Country of ref document: HK