JP2017512129A - 有孔グラフェンから形成された分離膜 - Google Patents
有孔グラフェンから形成された分離膜 Download PDFInfo
- Publication number
- JP2017512129A JP2017512129A JP2016557080A JP2016557080A JP2017512129A JP 2017512129 A JP2017512129 A JP 2017512129A JP 2016557080 A JP2016557080 A JP 2016557080A JP 2016557080 A JP2016557080 A JP 2016557080A JP 2017512129 A JP2017512129 A JP 2017512129A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- graphene
- composite membrane
- density polymer
- perforated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 187
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 174
- 239000012528 membrane Substances 0.000 title claims abstract description 121
- 238000000926 separation method Methods 0.000 title claims abstract description 86
- 239000007789 gas Substances 0.000 claims abstract description 157
- 238000000034 method Methods 0.000 claims abstract description 68
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims description 139
- 239000010410 layer Substances 0.000 claims description 105
- 239000002131 composite material Substances 0.000 claims description 68
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 52
- 229920005597 polymer membrane Polymers 0.000 claims description 49
- 230000035699 permeability Effects 0.000 claims description 31
- 229920006254 polymer film Polymers 0.000 claims description 29
- 239000000126 substance Substances 0.000 claims description 19
- 239000003345 natural gas Substances 0.000 claims description 14
- 238000009792 diffusion process Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 8
- 239000004215 Carbon black (E152) Substances 0.000 claims description 7
- 238000000746 purification Methods 0.000 claims description 7
- 229910052582 BN Inorganic materials 0.000 claims description 6
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 6
- 239000004642 Polyimide Substances 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 229920002301 cellulose acetate Polymers 0.000 claims description 5
- 238000004090 dissolution Methods 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229920001721 polyimide Polymers 0.000 claims description 5
- 239000000047 product Substances 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 5
- 239000002808 molecular sieve Substances 0.000 claims description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052723 transition metal Inorganic materials 0.000 claims description 4
- 150000003624 transition metals Chemical class 0.000 claims description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- 230000009477 glass transition Effects 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 230000007420 reactivation Effects 0.000 claims description 3
- 229910021428 silicene Inorganic materials 0.000 claims description 3
- 239000004809 Teflon Substances 0.000 claims description 2
- 229920006362 Teflon® Polymers 0.000 claims description 2
- 239000006227 byproduct Substances 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000006731 degradation reaction Methods 0.000 claims description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000004695 Polyether sulfone Substances 0.000 claims 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims 1
- 229920006393 polyether sulfone Polymers 0.000 claims 1
- 229920005591 polysilicon Polymers 0.000 claims 1
- 230000009919 sequestration Effects 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 39
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 description 14
- 230000008901 benefit Effects 0.000 description 10
- 230000007547 defect Effects 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 239000003575 carbonaceous material Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 230000004907 flux Effects 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 150000004770 chalcogenides Chemical class 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- 238000007306 functionalization reaction Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- 239000004945 silicone rubber Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0053—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
- B01D67/006—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
- B01D67/0062—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by micromachining techniques, e.g. using masking and etching steps, photolithography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
- B01D67/00791—Different components in separate layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/021—Carbon
- B01D71/0211—Graphene or derivates thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/24—Hydrocarbons
- B01D2256/245—Methane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/304—Hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/548—Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/102—Removal of contaminants of acid contaminants
- C10L3/103—Sulfur containing contaminants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/102—Removal of contaminants of acid contaminants
- C10L3/104—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/106—Removal of contaminants of water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Organic Chemistry (AREA)
Abstract
有孔グラフェンシートは、分離膜の形成において使用することができる。本開示の分離膜は、いくつかの実施態様ではガス分離プロセスにおいて使用することができ、1つ以上のポリマー層と有孔グラフェンの1つ以上の層を含むことができる。ガス混合物を分離するための方法は、ガス混合物を分離膜と接触させること、および、分離に影響を及ぼすように有孔グラフェンを通してそれらのガスの1種以上を移動させることを含むことができる。
Description
本出願は、2014年3月12日に出願された、米国仮出願第61/951,930号の、米国特許法第119条に基づく優先権の利益を主張するものであり、この米国仮出願は全体として引用することにより本明細書の一部とされる。
連邦支援の研究開発に関する記述
該当事項なし。
該当事項なし。
本開示は、全体として、分離プロセス、さらに詳しくは、グラフェンまたは他の二次元材料を含有する分離膜ならびにその使用および製造のための方法に関する。
混合物からのガス種(species)の分離は産業および経済の重要なプロセスとなる。天然ガス生産産業では、例えば、ほぼ総ての生の(生産されたままの状態の)天然ガスは、下流での利用、例えば、それを製品としてパイプライン輸送システム中へ導入する前に、様々な汚染物質および価値のないガスを除去するために処理される。例えば、同時生産されるガス、例えば、特に、水と組み合わさった、二酸化炭素および硫化水素などは、生産されたままの状態の天然ガスの価値に大きな影響を与える可能性がある。シェールプレイおよび炭層などの非在来型ガス源の産出が増加しており、より遠隔の場所においてかつより高い汚染ガスレベル処理能力を有するより効率的で購入しやすい処理システムが必要になってきている。他の種類のガス中の汚染物質もまた問題となり得、それらの評価だけでなく、様々な産業プロセスの適用性にも影響を与える可能性がある。例えば、産業燃焼排ガス、水素精製プロセスおよび回収プロセス、合成ガス生産、ならびに燃料電池からのCO2および汚染物質の捕捉は、ガス分離技術から利益を得ることができる限定されない領域となる。
分離膜は、天然ガスのスペシエーションを含む、様々な産業環境でのガス分離プロセスに一般的に使用される。ガス分離膜は、それらが可動部品を一般的に全くまたはほとんど備えず、必要なメンテナンスが少なく、低エネルギー消費量を示し、非常に優れた信頼性を有することから、気相分離プロセスでの使用に魅力的である。しかしながら、多くの従来の膜は、それほど効率的ではなく、場合によっては化学的に不安定であり、バルク分離法(非膜)とあまり競合しない。例えば、バルク二酸化炭素分離技術例としては、深冷分離、圧力−温度吸着サイクル、アミンによるCO2捕捉などを挙げることができる。CO2分離膜は、それに対して、高CO2濃度で良好に動作することができるが、あまり高くないH2S濃度では効果が低いことがある。それにもかかわらず、適切なプロセス設計により、膜ベースのガス分離法は、プロセス設計全体を単純にし、遠隔フィールド位置での配置により都合よくするために、使用することができる。
特殊なポリマー膜は特定のガス分離用途での使用のために開発されている。例としては、「サワーガス」条件でのCO2分離用セルロースアセテート膜、ポリイミド膜、およびポリアミド膜が挙げられる。多くの異なるポリマーがこれに関連して使用されるが、それは、異なるガス種とともに使用するために有用性および親和性を有するポリマーが異なり、特定のガスが他のものに優先して膜を通過することが可能になることからである。通過機構は、ポリマーを通るガスの溶解および拡散に影響を与える、ガスとポリマー分子と間の特定の相互作用に依存し得る。ポリマーは、一般的に、対象のガスについてのこれらの相互作用を増強し、所望のガスの透過速度を望ましくないガスの透過速度と比べて向上するように選択される。一般的に、2種のガスの透過比が約10:1以上であるならば、膜は2種のガスを相互に十分に分離すると考えられるが、他の透過比もガスが使用される目的の用途に応じて十分である場合がある。広く使用されているが、既存のポリマー膜は、特定のガス混合物に不十分な性能を示す場合や、特定のタイプのプロセス条件に適用できない場合がある。例えば、特定のプロセス条件下でのポリマー膜の化学安定性は懸念事項となり得る。
上記の観点から、特に、膜技術を用いた、ガス分離のための改良された技術は、当技術分野においてかなり有益であろう。本開示はこの必要性を満たし、関連する利点も提供する。
本開示は、ポリマーの少なくとも1つの層と、有孔二次元材料、特に、有孔グラフェンの少なくとも1つの層とを含む分離膜を記載する。その分離膜を調製する方法は、ポリマーの1つ以上の層と前記二次元材料の1つ以上の層を互いの上に積み重ねることを含み得る。前記二次元材料は、ポリマー層とともに積み重ねられる前または後に穿孔することができる。具体的な実施態様では、前記二次元材料は、グラフェン系材料、例えば、グラフェン系シートなどである。ある実施態様では、ポリマーの少なくとも1つの層は、1種以上の他のガスに対し、第1の選出されたガスに対する選択された透過性を示す。具体的な実施態様では、ポリマーの少なくとも1つの層は非多孔性または高密度である。具体的な実施態様では、ポリマーの少なくとも1つの層は、1つ以上の溶解拡散プロセス(solution diffusion processes)を経て1種以上のガスのパーミアンス(permeance)を示す。
本明細書に記載する分離膜を用いた分離プロセスは、ガス混合物をその分離膜と接触させることによって達成することができる。ある実施態様では、ガス混合物は第1のガスと第2のガスを含んでなる。前記二次元材料、例えば、グラフェンなどを穿孔することにより、所望のガスの膜の通過が1種以上の望ましくないガスの通過と比べて増加すること可能にするまたはその逆の場合に十分なサイズの穿孔(perforations)または開口部を用いて、ガス混合物の分離を行うことができる。混合物中の2つ以上の種の分離は、混合物が有孔二次元材料または本明細書における複合分離膜を通って通過した後のガス混合物中の2つ以上の種の比率(重量比またはモル比)の少なくとも1つの変化を含む。所望のガス成分の望ましくない成分からの分離は、望ましくない種の通過を所望の種に対して遅らせることによりまたは所望の種の通過を望ましくない種に対して遅らせることにより達成されることが理解されるであろう。本明細書における分離プロセスは、所与のガス混合物の所与の分離膜を通る複数回の通過またはガス混合物の複数の分離膜を通る通過を含み得る。
ある側面では、本発明は、少なくとも1つの高密度ポリマー膜と、有孔二次元材料の少なくとも1つの層とを含んでなる分離膜を提供する。高密度ポリマー膜は、溶解拡散プロセスによって正常に動作することができ、ガス種の何らかの初期分離を行う。有孔二次元材料のフィルター(すなわち、有孔グラフェン層)は、その二次元材料中の穴よりも大きい分子の通過を遮断または制限することができ、同時に、より小さい分子の通過を可能にする。従って、その複合膜は、2つの補完機構によってガス種を分離することができる:ポリマーでの溶解拡散(すなわち、分子−ポリマー相互作用)および分子分画(molecule size sieving)。これに関連して、二次元篩障壁は、閾値の分子サイズで非常に高い透過性対比を提供することができ、実現されるサイズに基づいて高分離比率(例えば、メタンに対するCO2)を可能にする。グラフェン層中の穴サイズ密度が十分に高い場合には、グラフェン層は小分子の透過に対してほんの少しの追加抵抗をもたらすことができる。従って、グラフェン層によって提供されるより高い選択性により、単独でポリマーを含有する膜と比べて、非常に薄いポリマー膜の使用を可能にすることができる。
本開示は、第1のガスを第2のガスから分離するための複合膜であって、前記分離膜は、前記第1のガスに対して透過性の少なくとも1つの高密度ポリマー膜と、有孔二次元材料の少なくとも1つの層とを含んでなり、前記複合膜は、前記少なくとも1つの高密度ポリマー膜および前記有孔二次元材料の前記少なくとも1つの層を通して、前記第2のガスと比べて前記第1のガスの優先的な輸送を提供するように配置される、複合膜を提供する。実施態様では、高密度ポリマー膜の、少なくとも1つまたは各々は、独立して、1バーラー(Barrer)(7.5×10−11cm3cm−2s−1kPa−1)、10バーラー(7.5×10−10cm3cm−2s−1kPa−1)または100バーラー(7.5×10−9cm3cm−2s−1kPa−1)以上の(greater or equal to than)、前記第1のガスに対する透過性を特徴とする。実施態様では、高密度ポリマー膜の、少なくとも1つまたは各々は、独立して、前記第1のガスに対する透過性が独立して(is independ)1バーラー〜100,000バーラー、10バーラー〜100,000バーラーまたは100バーラー〜100,000バーラーであることを特徴とする。実施態様では、前記複合膜は、1バーラー(7.5×10−11cm3cm−2s−1kPa−1)、10バーラー(7.5×10−10cm3cm−2s−1kPa−1)または100バーラー(7.5×10−9cm3cm−2s−1kPa−1)以上の(greater or equal to than)、前記第1のガスに対する正味または総透過性を特徴とする。実施態様では、前記複合膜の前記第1のガスに対する正味の透過性は1バーラー〜100,000バーラー、10バーラー〜100,000バーラーまたは100バーラー〜100,000バーラーである。
前記複合膜の分離選択性または効率は、前記第2のガスに対する前記複合膜の正味の透過性に対する前記第1のガスに対する前記複合膜の正味の透過性の比率とし得る。実施態様では、前記複合膜の正味の分離選択性は10より大きく、2より大きく、50より大きくまたは100より大きい。
ある態様では、本開示は、少なくとも1つの高密度ポリマー膜と、前記有孔二次元材料の少なくとも1つの層とを含んでなる複合膜であって、前記少なくとも1つの高密度ポリマー膜および前記有孔二次元材料の少なくとも1つの層は、相互に物理的接触して提供されるかまたは前記少なくとも1つの高密度ポリマー膜および前記有孔二次元材料の前記少なくとも1つの層と物理的接触して設けられた1つ以上の中間構造によって隔てられている、複合膜を提供する。ある実施態様では、前記少なくとも1つの高密度ポリマー膜と前記有孔二次元材料の前記少なくとも1つの層は、積層多層配置で提供される。実施態様では、前記積層多層配置は、1〜100層の高密度ポリマー膜と1〜100層の前記有孔二次元材料、1〜50層の前記高密度ポリマー膜と1〜50層の前記有孔二次元材料、1〜25層の前記高密度ポリマー膜と1〜25層の前記有孔二次元材料、1〜10層の前記高密度ポリマー膜と1〜10層の前記有孔二次元材料または1〜5層の高密度ポリマー膜と1〜5層の前記有孔二次元材料を含んでなる。ある実施態様では、前記積層多層配置は、前記第1のガスおよび前記第2のガスと物理的接触する前記複合膜の外部表面上に位置づけられた少なくとも1つの高密度ポリマー膜を含んでなる。ある実施態様では、前記積層多層配置で提供される前記有孔二次元材料の前記層の各々は、独立して、第1および第2の隣接する高密度ポリマー膜の間に位置づけられる。ある実施態様では、前記積層多層配置は、前記有孔二次元材料の第1の層と物理的接触する第1の高密度ポリマー膜を含んでなる。ある実施態様では、前記積層多層配置は、第2の高密度ポリマー膜をさらに含んでなり、ここで、前記有孔二次元材料の前記第1の層は前記第1および第2の高密度ポリマー膜の間に、前記第1および第2の高密度ポリマー膜と物理的接触して提供される。ある実施態様では、前記積層多層配置は複数の前記高密度ポリマー膜を含んでなり、ここで、前記高密度ポリマー膜の少なくとも一部は異なる化学組成、厚さまたは両方を有する。ある実施態様では、前記積層多層配置は、前記有孔二次元材料の前記層を複数含んでなり、ここで、前記有孔二次元材料の前記層の少なくとも一部は異なる化学組成、穴断面寸法、穴密度またはこれらの任意の組合せを有する。
ある実施態様では、有孔二次元材料の前記層の各々は、独立して、分子篩プロセスを経て前記第1のガスと第2のガスの分離を提供する。ある実施態様では、有孔二次元材料の前記層の各々は、独立して、1000以上の、前記第2のガスに対するパーミアンスに対する前記第1のガスに対するパーミアンスの比率を特徴とする。ある実施態様では、有孔二次元材料の前記層の各々は、独立して、0.3〜5nmの範囲から選択される厚さを特徴とする。ある実施態様では、有孔二次元材料の前記層の各々は、独立して、50MPa以上の引張強さを特徴とする。ある実施態様では、有孔二次元材料の前記層の各々は、独立して、15オングストローム以下、10オングストローム以下、または5オングストローム以下の断面寸法を独立して有する複数の穴を特徴とする。ある実施態様では、前記複数の穴は、独立して、3〜5オングストローム、3〜10オングストロームまたは3〜15オングストロームの範囲にわたって選択される断面寸法を有する。
ある実施態様では、有孔二次元材料の前記層の各々は、独立して、グラフェン、グラフェン系材料、遷移金属ジカルコゲニド、硫化モリブデン、α−窒化ホウ素、シリセン(silicene)、ゲルマネン、またはそれらの組合せを含んでなる。ある実施態様では、有孔二次元材料の前記層の各々は、独立して、有孔グラフェン系材料を含んでなる。ある実施態様では、前記有孔グラフェン系材料は単層グラフェンまたは多層グラフェンを含んでなる。ある実施態様では、前記有孔グラフェン系材料は2〜20層のグラフェンを含んでなる。ある実施態様では、前記有孔グラフェン系材料は少なくとも70%のグラフェンを含んでなる。ある実施態様では、前記有孔グラフェン系は、0.34〜5nmの範囲から選択される厚さを有する。
ある実施態様では、前記高密度ポリマー膜は、原料混合物の1つの成分に対して別のものと比べてより高い流束、パーミアンスまたは透過性を提供するように選択される。ある実施態様では、前記高密度ポリマー膜の各々は、独立して、1つ以上の溶解拡散プロセスを経て前記第1のガスと第2のガスの分離を提供する。ある実施態様では、前記高密度ポリマー膜の各々は、独立して、10以上の、前記第2のガスに対する透過性に対する前記第1のガスに対する透過性の比率を特徴とする。ある実施態様では、前記高密度ポリマー膜の各々は、独立して、1%以下の多孔度を特徴とする。
ある実施態様では、前記高密度ポリマー膜は、一次ガス輸送が前記高密度ポリマー材料と二次元材料の層を通って(層間界面での膜アセンブリーからの漏出ではなく)起こるように二次元材料の層と接触する。ある実施態様では、前記高密度ポリマー膜は均質な膜である。実施態様では、前記高密度ポリマー膜の各々の厚さは50μm以下、0.1μm〜50μm、0.1μm〜20μm、1.0μm〜15μm、0.25μm〜5μm、または5μm〜10μmである。
ガス透過用の高密度ポリマー膜としては、限定されるものではないが、 が挙げられる。ある実施態様では、前記高密度ポリマー膜の前記各々は、独立して、フルオロカーボン、炭化水素、ポリシリコーン、ポリイミド(PI)、セルロースアセテート(CA)、ポリスルホン(PSf)、ポリエーテルスルホン(PES)、およびポリカーボネート(PC)またはこれらの任意の組合せを含んでなる。ポリシリコーンはまた、シリコーンゴムとも呼ばれ得る。実施態様では、前記高密度ポリマー膜は、ポリイミドまたはセルロースアセテートからなる群から選択される。ある実施態様では、前記高密度ポリマー膜の各々は、独立して、テフロン(Teflon)(商標)AF、シルガード(Sylgard)(商標)およびこれらの任意の組合せからなる群から選択される材料を含んでなる。
ある実施態様では、前記高密度ポリマー膜の各々は、機械的故障を受けることなく50psi、100psi、500psi、1000psiまたは1500psiまたは2000psiの圧力への曝露が可能である。ある実施態様では、前記高密度ポリマー膜の各々は、独立して、20MPa以上の引張強さを特徴とする。実施態様では、前記高密度ポリマー膜の各々は、化学的または物理的な分解を受けることなく300K、400K、500Kまたは600Kまでの温度への曝露が可能である。実施態様では、前記高密度ポリマー膜の前記各々は(each said each of)、独立して、300K、400K、500Kまたは600K以上のガラス転移温度を特徴とする。ある実施態様では、前記高密度ポリマー膜の各々は、H2O、CO2、H2S、1〜9個の炭素原子を有する炭化水素またはこれらの任意の組合せとの化学反応に耐性がある。炭化水素はアルカン、アルケン、またはアルキンであり得る。ある実施態様では、炭化水素は、式CnH2n+2、CnH2n、またはCnH2n−2(式中、nは1〜9の整数である)を有する。
ある側面では、本開示は、第1のガスを第2のガスから分離するための方法であって、
前記第1のガスに対して透過性の少なくとも1つの高密度ポリマー膜と、有孔二次元材料の少なくとも1つの層とを含んでなる複合膜を準備すること、および
前記複合膜の外部表面を前記第1のガスおよび前記第2のガスと接触させ、ここで、前記複合膜は、前記少なくとも1つの高密度ポリマー膜および有孔二次元材料の前記少なくとも1つの層を通して、前記第2のガスと比べて前記第1のガスの優先的な輸送を提供し、それによって、前記第1のガスを前記第2のガスから分離すること
を含む方法を提供する。
実施態様では、前記高密度ポリマー膜の、少なくとも1つまたは各々は、1バーラー(7.5×10−11cm3cm−2s−1kPa−1)、10バーラー(7.5×10−10cm3cm−2s−1kPa−1)または100バーラー(7.5×10−9cm3cm−2s−1kPa−1)以上の(greater or equal to than)、前記第1のガスに対する透過性を特徴とする。実施態様では、前記高密度ポリマー膜の、少なくとも1つまたは各々の前記第1のガスに対する透過性は、1バーラー〜100,000バーラー、10バーラー〜100,000バーラーまたは100バーラー〜100,000バーラーである。実施態様では、前記複合膜は、1バーラー(7.5×10−11cm3cm−2s−1kPa−1)、10バーラー(7.5×10−10cm3cm−2s−1kPa−1)または100バーラー(7.5×10−9cm3cm−2s−1kPa−1)以上の(greater or equal to than)、前記第1のガスに対する正味のまたは総透過性を特徴とする。実施態様では、前記第1のガスに対する複合膜の正味の透過性は、1バーラー〜100,000バーラー、10バーラー〜100,000バーラーまたは100バーラー〜100,000バーラーである。
前記第1のガスに対して透過性の少なくとも1つの高密度ポリマー膜と、有孔二次元材料の少なくとも1つの層とを含んでなる複合膜を準備すること、および
前記複合膜の外部表面を前記第1のガスおよび前記第2のガスと接触させ、ここで、前記複合膜は、前記少なくとも1つの高密度ポリマー膜および有孔二次元材料の前記少なくとも1つの層を通して、前記第2のガスと比べて前記第1のガスの優先的な輸送を提供し、それによって、前記第1のガスを前記第2のガスから分離すること
を含む方法を提供する。
実施態様では、前記高密度ポリマー膜の、少なくとも1つまたは各々は、1バーラー(7.5×10−11cm3cm−2s−1kPa−1)、10バーラー(7.5×10−10cm3cm−2s−1kPa−1)または100バーラー(7.5×10−9cm3cm−2s−1kPa−1)以上の(greater or equal to than)、前記第1のガスに対する透過性を特徴とする。実施態様では、前記高密度ポリマー膜の、少なくとも1つまたは各々の前記第1のガスに対する透過性は、1バーラー〜100,000バーラー、10バーラー〜100,000バーラーまたは100バーラー〜100,000バーラーである。実施態様では、前記複合膜は、1バーラー(7.5×10−11cm3cm−2s−1kPa−1)、10バーラー(7.5×10−10cm3cm−2s−1kPa−1)または100バーラー(7.5×10−9cm3cm−2s−1kPa−1)以上の(greater or equal to than)、前記第1のガスに対する正味のまたは総透過性を特徴とする。実施態様では、前記第1のガスに対する複合膜の正味の透過性は、1バーラー〜100,000バーラー、10バーラー〜100,000バーラーまたは100バーラー〜100,000バーラーである。
ある実施態様では、本開示は、原料ガス、排ガス、再活性化ガスまたは市販の化学製品を処理する方法を提供する。実施態様では、その方法は、化学精製もしくは生物エネルギー生産において生成された生成物もしくは副生成物を処理する方法、N2精製もしくはCO2精製の方法、CO2の捕捉もしくは隔離の方法または空気を再活性化する方法である。ある実施態様では、前記方法は、15PSI〜2000PSIの範囲にわたって選択される前記外部表面での圧力で行われる。ある実施態様では、前記方法は、200K〜600Kの範囲にわたって選択される前記外部表面での温度で行われる。
さらなる実施態様では、メタンを非メタン成分から分離することにより天然ガスを処理する方法が提供される。ある実施態様では、メタンは、CO2、H2O、H2Sまたはこれらの任意の組合せから分離される。ある実施態様では、メタンは前記第2のガスであり、前記第1のガスはCO2、H2O、H2Sまたはこれらの任意の組合せからなる群から選択される。ある実施態様では、前記処理は前記天然ガスの供給源で行われる。ある実施態様では、前記天然ガスは高CO2ガス田からのものである
上記は、以下の詳細な説明がより良く理解できるように、本開示の特徴をかなり広く概説した。本開示の追加の特徴および利点は、以下に記載する。これらおよび他の利点および特徴は、以下の説明からより明らかになるであろう。
本開示およびその利点をより完全に理解するために、ここで、本開示の具体的な実施態様を説明する添付の図面と合わせて以下の説明を参照する。
本発明において有用な様々な二次元材料は当技術分野で公知である。様々な実施態様では、前記二次元材料は、グラフェン、硫化モリブデン、または窒化ホウ素を含んでなる。ある実施態様では、前記二次元材料はグラフェン系材料である。より特定の実施態様では、前記二次元材料はグラフェンである。本開示の実施態様によるグラフェンは、単層グラフェン、多層グラフェン、またはそれらの任意の組合せを含み得る。拡張二次元分子構造を有する他のナノ材料もまた、本開示の様々な実施態様において二次元材料を構成することができる。例えば、硫化モリブデンは、二次元分子構造を有する代表的なカルコゲニドであり、他の様々なカルコゲニドは、本開示の実施態様において二次元材料を構成することができる。特定の用途に好適な二次元材料の選択は、グラフェンまたは他の二次元材料が最終的に配置される化学的および物理的環境を含む複数の要因によって決定することができる。
ある実施態様では、本明細書における膜に有用な二次元材料はグラフェン系材料のシートである。グラフェン系材料としては、限定されるものではないが、単層グラフェン、多層グラフェンまたは相互接続された単層もしくは多層グラフェンドメインおよびそれらの組合せが挙げられる。ある実施態様では、グラフェン系材料はまた、単層または多層グラフェンシートを積み重ねることにより形成された材料を含む。実施態様では、多層グラフェンは、2〜20層、2〜10層または2〜5層を含む。実施態様では、グラフェンは、グラフェン系材料中の主要な材料である。例えば、グラフェン系材料は、少なくとも30%のグラフェン、または少なくとも40%のグラフェン、または少なくとも50%のグラフェン、または少なくとも60%のグラフェン、または少なくとも70%のグラフェン、または少なくとも80%のグラフェン、または少なくとも90%のグラフェン、または少なくとも95%のグラフェンを含んでなる。実施態様では、グラフェン系材料は、選択されたグラフェンの範囲、30%〜95%、または40%〜80% 50%〜70%、60%〜95%または75%〜100%を含んでなる。
本明細書で使用される場合、「ドメイン」とは、原子が結晶格子中に均一に配列された材料の領域を指す。ドメインは、その境界内で均一であるが、隣接領域とは異なる。例えば、単結晶材料は、配列された原子の単一ドメインを有する。ある実施態様では、グラフェンドメインの少なくともいくつかは、1〜100nmまたは10〜100nmのドメインサイズを有するナノ結晶である。ある実施態様では、グラフェンドメインの少なくともいくつかは、100nmより大きく1ミクロンまで、または200nm〜800nm、または300nm〜500nmのドメインサイズを有する。各ドメインの縁での結晶学的欠陥により形成された「結晶粒境界」により隣接結晶格子間は区別される。いくつかの実施態様では、第1の結晶格子は、第2の結晶格子に対して、2つの格子の「結晶格子配向」が異なるように、シートの面に垂直な軸の周りの回転により回転し得る。
ある実施態様では、グラフェン系材料のシートは、単層または多層グラフェンまたはそれらの組合せのシートを含んでなる。ある実施態様では、グラフェン系材料のシートは、単層または多層グラフェンまたはそれらの組合せのシートである。別の実施態様では、グラフェン系材料のシートは、複数の相互接続された単層または多層グラフェンドメインを含んでなるシートである。ある実施態様では、相互接続されたドメインは、共有結合により結合され、シートを形成している。シート中のドメインの結晶格子配向が異なる場合、そのシートは多結晶である。
実施態様では、グラフェン系材料のシートの厚さは0.34〜10nm、0.34〜5nm、または0.34〜3nmである。ある実施態様では、グラフェン系材料のシートは本質的な欠陥を含んでなる。本質的な欠陥は、グラフェン系材料のシートまたはグラフェンのシート中に選択的に導入される穿孔に対し、グラフェン系材料の調製から生じるものである。このような本質的な欠陥としては、限定されるものではないが、格子異常、孔、裂け、亀裂またはしわが挙げられる。格子異常としては、限定されるものではないが、6員以外の炭素環(例えば、5員環、7員環または9員環)、空孔(vacancies)、格子間欠陥(格子中への非炭素原子の組込みを含む)、および結晶粒境界を挙げることができる。
ある実施態様では、グラフェン系材料のシートを含んでなる膜は、グラフェン系材料のシートの表面に位置する非グラフェン炭素系材料をさらに含んでなる。ある実施態様では、前記非グラフェン炭素系材料は、長距離秩序(long range order)を有さず、非晶質として分類され得る。実施態様では、前記非グラフェン炭素系材料は、炭素および/または炭化水素以外の元素をさらに含んでなる。前記非グラフェン炭素中に組み込まれ得る非炭素元素としては、限定されるものではないが、水素、酸素、ケイ素、銅および鉄が挙げられる。実施態様では、前記非グラフェン炭素系材料は炭化水素を含んでなる。実施態様では、炭素は非グラフェン炭素系材料中の主要な材料である。例えば、非グラフェン炭素系材料は、少なくとも30%の炭素、または少なくとも40%の炭素、または少なくとも50%の炭素、または少なくとも60%の炭素、または少なくとも70%の炭素、または少なくとも80%の炭素、または少なくとも90%の炭素、または少なくとも95%の炭素を含んでなる。実施態様では、非グラフェン炭素系材料は、選択された炭素の範囲、30%〜95%、または40%〜80%、または50%〜70%を含んでなる。
孔が意図的に作られた二次元材料を、本明細書において、「有孔」、例えば、「有孔グラフェン系材料」、「有孔二次元材料」または「有孔グラフェン」などと呼ぶ。二次元材料は、最も一般的には、単層のサブナノメートルの厚さから数ナノメートルまでの原子的に薄い厚さを有するものであり、一般的に高い表面積を有する。二次元材料としては、金属カロゲニド(metal chalogenides)(例えば、遷移金属ジカロゲニド(transition metal dichalogenides))、遷移金属酸化物、六方晶窒化ホウ素、グラフェン、シリコーンおよびゲルマネン(参照: Xu et al. (2013) “Graphene-like Two-Dimensional Materials) Chemical Reviews 113:3766-3798)が挙げられる。
二次元材料としては、グラフェン、グラフェン系材料、遷移金属ジカルコゲニド、硫化モリブデン、α−窒化ホウ素、シリセン、ゲルマネン、またはそれらの組合せが挙げられる。拡張(extended)二次元平面分子構造を有する他のナノ材料もまた、本開示の様々な実施態様において二次元材料を構成することができる。例えば、硫化モリブデンは、二次元分子構造を有する代表的なカルコゲニドであり、他の様々なカルコゲニドは、本開示の実施態様において二次元材料を構成することができる。別の例では、二次元窒化ホウ素は、本発明のある実施態様において二次元材料を構成することができる。特定の用途に好適な二次元材料の選択は、グラフェン、グラフェン系または他の二次元材料が配置される化学的および物理的環境を含む複数の要因によって決定することができる。
本明細書に記載する実施態様における二次元材料、グラフェンまたはグラフェン系材料の形成に使用される技術は、特に限定されるとは考えられない。例えば、いくつかの実施態様では、CVDグラフェンまたはグラフェン系材料を使用することができる。様々な実施態様では、CVDグラフェンまたはグラフェン系材料は、その成長基体(例えば、Cu)から離し、ポリマー裏打ちに転写することができる。同様に、グラフェンまたはグラフェン系材料に穿孔を導入するための技術もまた、所望のサイズ範囲内の穿孔を作出するように選択されること以外、特に限定されるとは考えられない。穿孔は、所与のガス分離用途のためにある種類(原子または分子)の所望の選択的透過性を提供するようにサイズ設定される。選択的透過性は、1つ以上の種類を他の種類より容易にまたはより速く通過させる(または輸送する)ことを可能にする多孔性材料または有孔二次元材料の性質に関係する。選択的透過性は、異なる通過または輸送速度を示す種類の分離を可能にする。二次元材料では、選択的透過性は、開口部の寸法またはサイズ(例えば、直径)および種類の相対的有効サイズと相関する。グラフェン系材料などの二次元材料中の穿孔の選択的透過性はまた、穿孔の官能化(もしあれば)および分離される特定の種類にも依存し得る。ガスの選択的透過性はまた、濾過材料、例えば、グラフェンへのガス種の吸着にも依存し得る。吸着は、少なくともある程度は、濾過材料の表面でガス種の局所濃度を増加することができ、開口部の通過速度を向上させる。混合物中の2つ以上の種類の分離は、混合物が有孔二次元材料を通って通過した後の混合物中の2つ以上の種類の比率(重量比またはモル比)の変化を含む。
例えば、ガスの分離のための用途では、例えば、動力学的直径などの場合、パーミアンスはガス原子または分子のサイズと相関する[Materials Science of Membranes for Gas and Vapor Separation. (Yu et al.編) John Wiley & Sons (ニューヨーク)におけるMarreucci et al. (2006) "Transport of gases and Vapors in Glass and Rubbery Polymers"参照。
本開示はまた、1つには、サイズが約3〜15オングストロームの範囲の複数の開口部(または穴)を有する有孔グラフェン、有孔グラフェン系材料および他の有孔二次元材料に向けられる。さらなる実施態様では、穴サイズは、サイズが3〜10オングストロームまたは3〜6オングストロームの範囲である。本開示はさらに、1つには、サイズが約3〜15オングストロームの範囲であり、限定されるものではないが、サイズの偏差1〜10%またはサイズの偏差1〜20%を含む、狭いサイズ分布を有する複数の穴を有する有孔グラフェン、有孔グラフェン系材料および他の有孔二次元材料に向けられる。ある実施態様では、穴の特徴的な寸法は、サイズが約3〜15オングストロームである。円形の穴の場合、特徴的な寸法は穴の直径である。非円形孔に関する実施態様では、特徴的な寸法は、穴に広がる最大距離、穴に広がる最小距離、穴に広がる最大距離と最小距離の平均、または孔の面内面積に基づいた相当直径とみなすことができる。本明細書で使用される場合、有孔グラフェン系材料は、非炭素原子が孔の縁に組み込まれた材料を含む。
本開示は、1つには、有孔グラフェンまたは別の二次元材料を用いたガス分離を行うための方法に向けられる。本開示はまた、1つには、グラフェンまたは別の二次元材料から形成された分離膜に向けられる。本開示はまた、1つには、グラフェンまたは別の二次元材料を含有する分離膜を製造するための方法に向けられる。
グラフェンは、有望な機械的、熱的および電子的特性から複数の用途での使用のために広く関心を集めている。グラフェンは、炭素原子が規則正しい格子位置に近接した原子として存在する炭素の原子的薄層を表す。規則正しい格子位置はそれらの中に複数の欠陥が存在し得、それらの欠陥は自然に発生し得またはグラフェン基底面に意図的に導入され得る。そのような欠陥はまた、本明細書において「開口部」、「穿孔(perforations)」、または「穴」と同等に呼ぶ。用語「有孔グラフェン(perforated graphene)」は、欠陥が自然に存在するかまたは意図的に作出されたかには関係なくその基底面中に欠陥を有するグラフェンシートを表すために本明細書において使用される。そのような開口部を除いて、グラフェンおよび他の二次元材料は多くの物質に対して不透過性の層となることができる。従って、それらを適切なサイズにすることができる場合、不透過性層中の開口部は、不透過性層を通して特定のサイズ基準を満たす物質を許可することにのみ有用であり得る。
ある実施態様では、高密度ポリマー膜は、実質的に非多孔性である。ある実施態様では、非多孔質膜を通るガス輸送は、少なくとも一部は、溶解拡散機構を通じて起こる。本発明者らは、ポリマー膜の性能は、ポリマー中に分子篩障壁、具体的には、グラフェンまたは類似の二次元材料から形成された分子篩障壁を挿入することによって改善することができることを認識した。具体的には、本発明者らは、改善されたガス分離特性を提供するために、有孔グラフェンをガス分離膜に使用することができることを認識した。有孔グラフェンは、共同所有の米国特許出願公開第2012/0048804号に開示されているような、任意の好適な技術によって生産することができ、この米国特許出願公開は全体として引用することにより本明細書の一部とされる。これに関連して、グラフェンの極端な薄さは、膜を横断する分子輸送が必要とし得る推進エネルギーが最小限であることを表しており、その原子格子を横断する輸送の間に関与する明確な「溶解」および「蒸発」工程があることは考えられていない。
ガス分離プロセスにグラフェンを使用することにより、様々なガスに関し、非常に選択力のある分離プロセスが起こることが可能になり得る。例えば、CO2とメタンの混合物の分離にグラフェンを使用することにより、約10,000:1の選択比となり得る。グラフェン基底面内部の穿孔サイズを慎重に選択することにより、グラフェンは、既存のプロセスを用いて効率的に取り扱うことができない複雑なガス混合物の分離を可能にすることができる。
上記の利益に加えて、グラフェンの透過速度は、グラフェンの、例えば、その縁に沿った、特定の化学官能化を介して、「調整する」ことができ、それによって、特定の分離用途のための膜を設計する追加の手段を提供する。さらに、本明細書に記載する膜は、グラフェンの原子的薄層がその中に埋め込まれた層状構造となるため、改善されたガス分離性能を達成しながらもなお、本膜の質量およびフットプリントは既存のポリマー膜と大きな違いがない。
上記に加えて、グラフェンを含有するガス分離膜はさらに、圧力感受性要件の低下、化学的不活性の改善、およびグラフェンの表面を官能化する機会を提供することができる。官能化は、特に、様々な分離操作中のグラフェンの性能を調整するために使用することができる。
様々な実施態様では、本明細書に記載するガス分離膜は、ポリマーの1つ以上の層と有孔グラフェンの1つ以上の層とを含み得る。ガス分離膜における使用に好適なポリマーは従来のガス分離膜に使用されているものを含み得る。有孔グラフェンは、グラフェン中に複数の穴を導入するために使用される、公知または現在未知の任意の技術により生産することができる。好適な技術としては、プラズマ処理、イオンまたは他の粒子ビーム、化学修飾などを挙げることができる。グラフェン中の穴は、それらの穴によってグラフェンが穴サイズより大きいガスに対して不透過性になるようなサイズにすることができる。様々な実施態様では、穿孔は、サイズが約0.2nm〜約15nmの間、サイズが3〜15オングストローム、サイズが3〜10オングストロームまたはサイズが3〜6オングストロームの範囲であり得る。
ガス分離膜中のポリマーによってもたらされ得る利益としては、グラフェンの支持およびそれら自体でのいくつかのガス分離特性の伝達を挙げることができる。例示的な実施態様では、ポリマーは、フルオロカーボンポリマー、例えば、ポリテトラフルオロエチレンなど、またはシリコーンポリマーを含み得る。加えて、ポリマーは良好な引張強さ特性と良好な引張伸び特性を提供することができる。さらに、いくつかのポリマーは薄層として軟質であり、高ガラス転移温度を示し得る。これらの特性の総てが、グラフェンおよびその特性と補完的であり、ガス分離膜の形成においてそれと組み合せることを裏付けることができる。
ガス分離膜中のグラフェンによってもたらされ得る利益としては、高透過性での極端な分子分離能力を挙げることができる。グラフェンの極端な薄さ(例えば、0.3〜3nm)によりこれらの特徴を強化することができる。さらに、グラフェンは、高引張強さ(約106GPa)、優れた化学安定性、および400℃を超えての熱安定性を示す。この場合もまた、グラフェンの特性は、ガス分離膜の形成においてポリマーの特性を十分に補完することができる。
膜を通る輸送を特徴づけるために、いくつかのパラメーターが当技術分野で公知である。本明細書で使用される場合、流束(Ji)とは、厚さ方向に垂直な単位膜表面積を通って単位時間当たりに通過する明記した成分iのモル数、容量または質量(SI単位:m3m−2s−1)を指す。本明細書で使用される場合、パーミアンスまたは透過流束(pressure normalized flux)とは、単位透過推進力当たりの輸送流束(SI単位:m3m−2s−1kPa−1を指す。本明細書で使用される場合、透過性とは、単位膜厚当たり単位透過推進力当たりの輸送流束(Pi=Ji/成分iの透過推進力 SI単位:m3mm−2s−1kPa−1)を指す。透過性についての他の単位としては、1バーラー=10−10cm3cmcm−2s−1cmHg−1と定義されるバーラーが挙げられ、これは7.5×10−11cm3cmcm−2s−1kPa−1に等しい。従来の膜についてのこれらのパラメーターを測定するための技術は当業者に公知である。
図1は、本開示のグラフェン系ガス分離膜の例とその製造のための例示的な方法の概略図を示す。図示するように、グラフェン層(10)は銅の層(50)上に形成される。次に、グラフェン層(10)上にポリマー層(20)がスピンオンされ(is then spun on)、アニールされる。ポリマー層にスタンプ(60)が塗布され、その後、エッチングにより銅が除去される。グラフェン層が穿孔され、その後、基体(80)に転写される。その後、スタンプが取り除かれ、基体上に互いの上に層状に積み重ねられたポリマーとグラフェンがもたらされる。図1はXeイオンでのグラフェンの穿孔を示しているが、他の穿孔法を使用することができる。さらに、グラフェンは、ポリマーとともに層を形成する前またはその後に穿孔することができる。
図1をさらに参照すると、グラフェンの大部分をポリマーマトリックス、例えば、例示的なシロキサン(PDMS)ゴムマトリックスなどの中に埋め込むために、簡単な成形法を使用することができる。上記のように、グラフェン層が複合膜に新たな分離性能を加える一方で、ゴムマトリックスはグラフェンを機械的に支持し保護することができる。また、ポリマースタックの中に非穿孔グラフェン層を埋め込むことにより実質的に不透過性の膜も可能である。
バルクポリマー膜は、溶解拡散プロセスによって正常に動作することができ、ガス種の何らかの分離を行う。埋め込まれたグラフェン篩フィルター(すなわち、有孔グラフェン層)は、そのグラフェン中の穴よりも大きい分子の拡散を遮断または阻止することができ、同時に、より小さい分子の拡散を可能にする。従って、その複合膜は、2つの補完機構によってガス種を分離することができる:ポリマーでの溶解拡散(すなわち、分子−ポリマー相互作用)および分子分画。これに関連して、二次元篩障壁は、閾値の分子サイズで非常に高い透過性対比を提供することができ、実現されるサイズに基づいて高分離比率(例えば、メタンに対するCO2)を可能にする。グラフェン層中の穴サイズ密度が十分に高い場合には、グラフェン層は小分子の透過に対してほんの少しの追加抵抗をもたらすことができる。従って、グラフェン層によって提供されるより高い選択性により、単独でポリマーを含有する膜と比べて、非常に薄いポリマー膜の使用を可能にすることができる。
ポリマーによって提供される補完的な溶解拡散分離により、強化された分離性能をさらに実現することができる。例えば、メタンからH2Sを分離する場合、グラフェン層がこれらの種を効率的に分離しない場合でも、シリコーンゴムポリマー中でH2Sの分離が行われ得る(シリコーンゴムはH2S分離に対して高親和性を有する)。ポリマーのタイプ、ポリマーの厚さ、グラフェンの穴サイズ、グラフェンの穴密度、およびグラフェンの穴の官能化を適切に選択することにより、(それを通過する分離種の流束に関して)総分離効率を維持あるいは向上させながら、広い範囲の分子タイプにわたって高選択性が可能であるこのタイプの複合膜を設計することができる。
高いCO2およびH2Sガス濃度の両方を同時に取り扱うことができる膜は、天然ガス処理における膜分離のための用途の範囲を広げることになり得る。そのような膜が単一工程段階で天然ガスからこれらのガスを同時に除去することができる場合、これらの汚染物質について別々の洗浄プロセスの必要性がなくなり、それによって、総処理費および複雑性は低減する。これに関連して、本明細書に記載する様々なガス分離膜は、天然ガスをその中の様々な汚染ガスから分離するのに使用することができる。それらの方法は、生産されたままの状態のまたは部分的に精製された天然ガスを、記載する分離膜と接触させることを含み得る。他のガス混合物は、グラフェン層中の穴を適切にサイズ決定することにより、同様の方法で精製することができる。
上記の複合膜アプローチにより、他の新たな機能性もまた可能である。例えば、グラフェンは導電性であり、多層複合材料スタックに組み込むことができ、その場合、グラフェン層は誘電体層によって隔てられ、電圧源と電気的に接続され、層間の容量充電が可能である。そのような配置は、帯電グラフェン電極層間の荷電または極性粒子の移動を電気泳動的にまたは誘電泳動的に制御するために使用することができる。グラフェン層が穿孔されている場合、グラフェン孔から入る(entering thorough)分子の運動は、グラフェン層に適当な電圧波形を印加することによりグラフェン層の間で制御することができる。従って、グラフェン層間の分子の輸送は、これらの実施態様によれば、制御可能な形で遅らせまたは増強することができる。そのような配置は、事実上、それを通る輸送を自由に減少または増強することができる切り替え可能な膜「ゲート」となり得る。また、非荷電もしくは非極性粒子または非常に小さい粒子(分子)の場合には他の変形も可能である。例えば、埋め込まれたグラフェン層の電気加熱は、中間層の材料の相転移(例えば、ガラス状態から液体へまたは逆)を進めるために使用することができ、それによって層間の分子輸送についてのさらなる制御選択肢を提供する。
以上に記載するガス分離における上記の使用に加えて、本明細書に記載する膜はまた他の様々な用途にも使用することができることを認識すべきである。例示的なプロセスとしては、例えば、気相および液相の両方における、逆浸透フィルター、集積回路、フラットパネルディスプレイ、電極、フレキシブル太陽電池、脱塩、および他の分子濾過プロセスを挙げることができる。
開示した実施態様を参照して本開示を説明してきたが、当業者には、これらが本開示の単なる例示であることが容易に理解されるであろう。本開示の趣旨から逸脱することなく様々な変更を行うことができるものと理解すべきである。本開示は、これまでに記載していないが本開示の趣旨および範囲に相応した任意の数の変形、改変、置換または同等の配置を組み込むように変更することができる。加えて、本開示の様々な実施態様を説明してきたが、本開示の側面が、記載した実施態様の一部のみを含み得るものと理解すべきである。従って、本開示は、上記の説明によって限定されるとみなすべきではない。
記載または例示した成分の総ての処方または組合せは、特に断りのない限り、本発明を実施するために使用することができる。当業者は同じ化合物を別に命名することができることが知られているように、化合物の具体的な名称は例示であることが意図されている。化合物が本明細書に記載され、その化合物の特定の異性体または鏡像異性体が、例えば、式でまたは化学名で、明記されていないようになっている場合、その記載は、個別に(individual)または任意の組合せで記載された化合物の各異性体および鏡像異性体を含むことが意図されている。当業者には、具体的に例示したもの以外の方法、デバイス要素、出発材料および合成方法は、過度の実験を行うことなく、本発明の実施において採用することができることが理解されるであろう。そのような任意の方法、デバイス要素、出発材料および合成方法の、当該技術分野で公知の総ての機能的等価物は、本発明に含まれることが意図されている。本明細書中に範囲が記載されている場合は必ず、例えば、温度範囲、時間範囲、または組成範囲、総ての中間範囲および部分範囲、ならびに記載された範囲に含まれる総ての個別値は、本開示に含まれることが意図されている。マーカッシュ群または他の群が本明細書において使用される場合、その群ならびにその群の可能な総ての組合せおよび部分的組合せの総ての個々のメンバーは、本開示に個別に含まれることが意図されている。
本明細書で使用される場合、「含んでなる(comprising)」は、「含む(including)」、「含有する(containing)」、または「を特徴とする(characterized by)」と同義であり、包括的またはオープンエンドであり、追加の、列挙されていない要素または方法ステップを排除するものではない。本明細書で使用される場合、「からなる(consisting of)」は、請求項の要素に明記されていない任意の要素、ステップ、または成分を排除する。本明細書で使用される場合、「から本質的になる(consisting essentially of)」は、請求項の基本的および新規な特徴に実質的に影響を及ぼさない材料またはステップを排除するものではない。特に、組成物の成分の説明またはデバイスの要素の説明における用語「含んでなる(comprising)」の本明細書における任意の列挙は、列挙された成分または要素から本質的になるおよびからなる組成物および方法を包含するものと理解される。本明細書に例示的に記載した本発明は、好適には、本明細書に具体的に開示されていない任意の要素(単数または複数)、限定(単数または複数)の不在下で実施し得る。
採用してきた用語および表現は、限定ではなく説明の用語として使用され、そのような用語および表現の使用において、示され記載された特徴またはそれらの一部の任意の等価物を排除する意図はないが、特許請求する本発明の範囲内で様々な変更が可能であることは認識されている。従って、本発明を好ましい実施態様および任意選択の特徴によって具体的に開示してきたが、本明細書における開示された概念の変更および変形は当業者によって再分類され得ること、ならびにそのような変更および変形は、添付の特許請求の範囲によって定義される本発明の範囲内であると考えられるものと理解すべきである。
一般的に、本明細書において使用される用語およびフレーズは当技術分野で認められているそれらの意味を有し、それらは、当業者に公知の標準テキスト、雑誌の参考文献および文脈を参照することによって見出すことができる。前述の定義は、本発明の文脈においてそれらの具体的な使用を明らかにするために与えられている。
本出願全体にわたる総ての参考文献、例えば、発行もしくは付与された特許または等価物を含む特許文書、特許出願公開、および非特許文献文書または他の資料は、各参考文献が少なくとも部分的に本出願における開示と矛盾しない程度に、あたかも個別に引用することにより一部とされる(例えば、部分的に矛盾した参考文献は、その参考文献のその部分的に矛盾した部分を除いて、引用することにより一部とされる)ように、全体として引用することにより本明細書の一部とされる。
本明細書において言及される総ての特許および刊行物は、本発明が属する分野の当業者レベルの指標である。本明細書において引用される参考文献は、一部の場合ではそれらの出願日時点での技術水準を示すために、全体として引用することにより本明細書の一部とされ、必要に応じて、先行技術にある具体的な実施態様を排除するために(例えば、権利を要求しないように)、この情報を本明細書において採用することができることが意図されている。例えば、化合物が特許請求される場合、本明細書に開示された参考文献(特に、参照された特許文献)に開示された特定の化合物を含む、先行技術で知られている化合物は、特許請求の範囲に含まれることを意図するものではないものと理解すべきである。
Claims (50)
- 第1のガスを第2のガスから分離するための複合膜であって、前記分離膜は、
7.5×10−11cm3cm−2s−1kPa−1以上の、前記第1のガスに対する透過性を特徴とする少なくとも1つの高密度ポリマー膜と、
有孔二次元材料の少なくとも1つの層と
を含んでなり、
前記複合膜は、前記少なくとも1つの高密度ポリマー膜および前記有孔二次元材料の前記少なくとも1つの層を通して、前記第2のガスと比べて前記第1のガスの優先的な輸送を提供するように配置される、複合膜。 - 7.5×10−10m3cm−2s−1kPa−1以上の、前記第1のガスの正味の透過性を提供する、請求項1に記載の複合膜。
- 100以上の、前記第2のガスと比べて前記第1のガスに対する正味のガス分離選択性を提供する、請求項1〜2のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の各々が、独立して、1つ以上の溶解拡散プロセスを経て前記第1のガスと第2のガスの分離を提供する、請求項1〜3のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の各々が、独立して、7.5×10−10cm3cm−2s−1kPa−1〜7.5×10−6cm3cm−2s−1kPa−1の範囲にわたって選択される前記第1のガスに対する透過性を特徴とする、請求項1〜4のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の各々が、独立して、10以上の、前記第2のガスに対する透過性に対する前記第1のガスに対する透過性の比率を特徴とする、請求項1〜5のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の各々が、独立して、1%以下の多孔度を特徴とする、請求項1〜6のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の各々が、独立して、20MPa以上の引張強さを特徴とする、請求項1〜7のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の各々が、機械的故障を受けることなく500psiの圧力への曝露が可能である、請求項1〜8のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の各々が、化学的または物理的な分解を受けることなく300Kまでの温度への曝露が可能である、請求項1〜9のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の前記各々が、独立して、300K以上のガラス転移温度を特徴とする、請求項1〜10のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の前記各々が、H2O、CO2、H2S、1〜9個の炭素原子を有する炭化水素、またはこれらの任意の組合せとの化学反応に耐性がある、請求項1〜11のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の前記各々が、独立して、50ミクロン以下の厚さを有する、請求項1〜12のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の前記各々が、独立して、0.1〜50ミクロンの範囲にわたって選択される厚さを有する、請求項1〜13のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の前記各々が、独立して、フルオロカーボン、炭化水素、ポリシリコーン、ポリイミド、セルロースアセテート、ポリスルホン、ポリエーテルスルホン、およびポリカーボネートまたはこれらの任意の組合せを含んでなる、請求項1〜14のいずれか一項に記載の複合膜。
- 前記高密度ポリマー膜の前記各々が、独立して、テフロン(商標)AF、シルガード(商標)およびこれらの任意の組合せからなる群から選択される材料を含んでなる、請求項1〜15のいずれか一項に記載の複合膜。
- 有孔二次元材料の前記層の各々が、独立して、分子篩プロセスを経て前記第1のガスと第2のガスの分離を提供する、請求項1〜16のいずれか一項に記載の複合膜。
- 有孔二次元材料の前記層の各々が、独立して、1000以上の、前記第2のガスに対する透過性に対する前記第1のガスに対する透過性の比率を特徴とする、請求項1〜17のいずれか一項に記載の複合膜。
- 有孔二次元材料の前記層の各々が、独立して、0.3〜5nmの範囲から選択される厚さを特徴とする、請求項1〜18のいずれか一項に記載の複合膜。
- 有孔二次元材料の前記層の各々が、独立して、50MPa以上の引張強さを特徴とする、請求項1〜19のいずれか一項に記載の複合膜。
- 有孔二次元材料の前記層の各々が、独立して、10オングストローム以下の断面寸法を独立して有する複数の穴を特徴とする、請求項1〜20のいずれか一項に記載の複合膜。
- 前記複数の穴が、独立して、3〜5オングストロームの範囲にわたって選択される断面寸法を有する、請求項21に記載の複合膜。
- 有孔二次元材料の前記層の各々が、独立して、グラフェン、グラフェン系材料、遷移金属ジカルコゲニド、硫化モリブデン、α−窒化ホウ素、シリセン、ゲルマネン、またはそれらの組合せを含んでなる、請求項1〜22のいずれか一項に記載の複合膜。
- 有孔二次元材料の前記層の各々が、独立して、有孔グラフェン系材料を含んでなる、請求項1〜23のいずれか一項に記載の複合膜。
- 前記有孔グラフェン系材料が単層グラフェンまたは多層グラフェンを含んでなる、請求項1〜24のいずれか一項に記載の複合膜。
- 前記有孔グラフェン系材料が2〜20層のグラフェンを含んでなる、請求項1〜25のいずれか一項に記載の複合膜。
- 前記有孔グラフェン系材料が少なくとも70%のグラフェンを含んでなる、請求項1〜26のいずれか一項に記載の複合膜。
- 前記有孔グラフェン系が、0.34〜5nmの範囲から選択される厚さを有する、請求項1〜27のいずれか一項に記載の複合膜。
- 少なくとも1つの高密度ポリマー膜および前記有孔二次元材料の少なくとも1つの層が、相互に物理的接触して提供されるかまたは前記少なくとも1つの高密度ポリマー膜および前記有孔二次元材料の前記少なくとも1つの層と物理的接触して設けられた1つ以上の中間構造によって隔てられている、請求項1〜28のいずれか一項に記載の複合膜。
- 前記少なくとも1つの高密度ポリマー膜および前記有孔二次元材料の前記少なくとも1つの層が、積層多層配置で提供される、請求項1〜29のいずれか一項に記載の複合膜。
- 前記積層多層配置が1〜100層の前記高密度ポリマー膜と1〜100層の前記有孔二次元材料とを含んでなる、請求項1〜30のいずれか一項に記載の複合膜。
- 前記積層多層配置が、前記第1のガスおよび前記第2のガスと物理的接触する前記複合膜の外部表面上に位置づけられた少なくとも1つの高密度ポリマー膜を含んでなる、請求項1〜31のいずれか一項に記載の複合膜。
- 前記積層多層配置で提供される前記有孔二次元材料の前記層の前記各々が、独立して、第1および第2の隣接する高密度ポリマー膜の間に位置づけられる、請求項1〜32のいずれか一項に記載の複合膜。
- 前記積層多層配置が、前記有孔二次元材料の第1の層と物理的接触する第1の高密度ポリマー膜を含んでなる、請求項1〜33のいずれか一項に記載の複合膜。
- 前記積層多層配置が第2の高密度ポリマー膜をさらに含んでなり、ここで、前記有孔二次元材料の前記第1の層が、前記第1および第2の高密度ポリマー膜の間に、前記第1および第2の高密度ポリマー膜と物理的接触して提供される、請求項1〜34のいずれか一項に記載の複合膜。
- 前記積層多層配置が複数の前記高密度ポリマー膜を含んでなり、ここで、前記高密度ポリマー膜の少なくとも一部が異なる化学組成、厚さまたは両方を有する、請求項1〜35のいずれか一項に記載の複合膜。
- 前記積層多層配置が前記有孔二次元材料の前記層を複数含んでなり、ここで、前記有孔二次元材料の前記層の少なくとも一部が異なる化学組成、穴断面寸法、穴密度またはこれらの任意の組合せを有する、請求項1〜36のいずれか一項に記載の複合膜。
- 第1のガスを第2のガスから分離するための方法であって、以下の工程:
7.5×10−11cm3cm−2s−1kPa−1以上の、前記第1のガスに対する透過性を特徴とする少なくとも1つの高密度ポリマー膜と、
有孔二次元材料の少なくとも1つの層と
を含んでなる複合膜を提供すること、
前記複合膜の外部表面を前記第1のガスおよび前記第2のガスと接触させ、ここで、前記複合膜は、前記少なくとも1つの高密度ポリマー膜および有孔二次元材料の前記少なくとも1つの層を通して、前記第2のガスと比べて前記第1のガスの優先的な輸送を提供し、それによって、前記第1のガスを前記第2のガスから分離すること
を含む、方法。 - 原料ガス、排ガス、再活性化ガスまたは市販の化学製品を処理する方法を提供する、請求項38に記載の方法。
- メタンを非メタン成分から分離することにより天然ガスを処理する方法を提供する、請求項38に記載の方法。
- メタンがCO2、H2O、H2Sまたはこれらの任意の組合せから分離される、請求項40に記載の方法。
- メタンが前記第2のガスであり、前記第1のガスがCO2、H2O、H2Sまたはこれらの任意の組合せからなる群から選択される、請求項40に記載の方法。
- 前記処理が前記天然ガスの供給源で行われる、請求項40〜42のいずれか一項に記載の方法。
- 前記天然ガスが高CO2ガス田からのものである、請求項40〜43のいずれか一項に記載の方法。
- 化学精製または生物エネルギー生産において生成された生成物または副生成物を処理する方法を提供する、請求項38に記載の方法。
- N2精製またはCO2精製の方法を提供する、請求項38に記載の方法。
- CO2の捕捉または隔離の方法を提供する、請求項38に記載の方法。
- 空気を再活性化する方法を提供する、請求項38に記載の方法。
- 前記方法が、15PSI〜2000PSIの範囲にわたって選択される前記外部表面での圧力で行われる、請求項38〜48のいずれか一項に記載の方法。
- 前記方法が、200K〜600Kの範囲にわたって選択される前記外部表面での温度で行われる、請求項38〜49のいずれか一項に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461951930P | 2014-03-12 | 2014-03-12 | |
US61/951,930 | 2014-03-12 | ||
PCT/US2015/020246 WO2015138771A1 (en) | 2014-03-12 | 2015-03-12 | Separation membranes formed from perforated graphene |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017512129A true JP2017512129A (ja) | 2017-05-18 |
Family
ID=54067922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016557080A Pending JP2017512129A (ja) | 2014-03-12 | 2015-03-12 | 有孔グラフェンから形成された分離膜 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9844757B2 (ja) |
EP (1) | EP3116625A4 (ja) |
JP (1) | JP2017512129A (ja) |
CN (1) | CN106232205A (ja) |
AU (1) | AU2015229331A1 (ja) |
CA (1) | CA2942496A1 (ja) |
WO (1) | WO2015138771A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019136623A (ja) * | 2018-02-06 | 2019-08-22 | 京セラ株式会社 | 電極付き分離膜、分離装置および流体分離方法 |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9475709B2 (en) | 2010-08-25 | 2016-10-25 | Lockheed Martin Corporation | Perforated graphene deionization or desalination |
EP2828196A1 (en) | 2012-03-21 | 2015-01-28 | Lockheed Martin Corporation | Methods for perforating graphene using an activated gas stream and perforated graphene produced therefrom |
US9463421B2 (en) | 2012-03-29 | 2016-10-11 | Lockheed Martin Corporation | Planar filtration and selective isolation and recovery device |
US9744617B2 (en) | 2014-01-31 | 2017-08-29 | Lockheed Martin Corporation | Methods for perforating multi-layer graphene through ion bombardment |
US9834809B2 (en) | 2014-02-28 | 2017-12-05 | Lockheed Martin Corporation | Syringe for obtaining nano-sized materials for selective assays and related methods of use |
US10418143B2 (en) | 2015-08-05 | 2019-09-17 | Lockheed Martin Corporation | Perforatable sheets of graphene-based material |
US10376845B2 (en) | 2016-04-14 | 2019-08-13 | Lockheed Martin Corporation | Membranes with tunable selectivity |
US10980919B2 (en) | 2016-04-14 | 2021-04-20 | Lockheed Martin Corporation | Methods for in vivo and in vitro use of graphene and other two-dimensional materials |
US9610546B2 (en) | 2014-03-12 | 2017-04-04 | Lockheed Martin Corporation | Separation membranes formed from perforated graphene and methods for use thereof |
US10653824B2 (en) | 2012-05-25 | 2020-05-19 | Lockheed Martin Corporation | Two-dimensional materials and uses thereof |
WO2014164621A1 (en) | 2013-03-12 | 2014-10-09 | Lockheed Martin Corporation | Method for forming filter with uniform aperture size |
EP2969153A1 (en) | 2013-03-13 | 2016-01-20 | Lockheed Martin Corporation | Nanoporous membranes and methods for making the same |
US9480952B2 (en) | 2013-03-14 | 2016-11-01 | Lockheed Martin Corporation | Methods for chemical reaction perforation of atomically thin materials |
US9572918B2 (en) | 2013-06-21 | 2017-02-21 | Lockheed Martin Corporation | Graphene-based filter for isolating a substance from blood |
CA2938305A1 (en) | 2014-01-31 | 2015-08-06 | Lockheed Martin Corporation | Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer |
CN105940479A (zh) | 2014-01-31 | 2016-09-14 | 洛克希德马丁公司 | 使用宽离子场穿孔二维材料 |
CA2942496A1 (en) | 2014-03-12 | 2015-09-17 | Lockheed Martin Corporation | Separation membranes formed from perforated graphene |
EA201790508A1 (ru) | 2014-09-02 | 2017-08-31 | Локхид Мартин Корпорейшн | Мембраны гемодиализа и гемофильтрации на основе двумерного мембранного материала и способы их применения |
US10266677B2 (en) | 2015-01-05 | 2019-04-23 | The Boeing Company | Graphene-augmented composite materials |
US9421739B2 (en) * | 2015-01-05 | 2016-08-23 | The Boeing Company | Graphene aerospace composites |
EP3269004B1 (en) * | 2015-03-09 | 2021-05-05 | The Regents of the University of California | Solvated graphene frameworks as high-performance anodes for lithium-ion batteries |
JP2018530499A (ja) | 2015-08-06 | 2018-10-18 | ロッキード・マーチン・コーポレーション | グラフェンのナノ粒子変性及び穿孔 |
WO2017049005A1 (en) * | 2015-09-16 | 2017-03-23 | Lockheed Martin Corporation | Separation membranes formed from perforated graphene and methods for use thereof |
SG11201808961QA (en) | 2016-04-14 | 2018-11-29 | Lockheed Corp | Methods for in situ monitoring and control of defect formation or healing |
WO2017180141A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Selective interfacial mitigation of graphene defects |
JP2019511451A (ja) | 2016-04-14 | 2019-04-25 | ロッキード・マーチン・コーポレーション | 浮遊法を用いてグラフェンシートを大判転写用に処理する方法 |
WO2017180139A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Two-dimensional membrane structures having flow passages |
BR112019020035B1 (pt) * | 2017-03-27 | 2022-08-02 | Paris Sciences Et Lettres | Método para extração de um composto orgânico a partir de uma mistura fluida do dito composto orgânico com água |
US11285704B2 (en) * | 2017-09-07 | 2022-03-29 | Lawrence Livermore National Security, Llc. | Ultrathin graphene/polymer laminate films |
EP3539644B1 (en) * | 2018-03-13 | 2024-04-03 | Gaznat SA | Graphene membrane filter for gas separation |
CN110385048A (zh) * | 2019-06-24 | 2019-10-29 | 大连理工大学 | 一种二维多孔碳纳米片混合基质膜及其制备方法 |
CN111229164B (zh) * | 2020-02-21 | 2022-03-08 | 大连理工大学 | 一种分离烯烃烷烃的微孔炭吸附剂及其制备方法和应用 |
CN114931864B (zh) * | 2021-05-08 | 2023-11-24 | 淮阴师范学院 | 一种二维材料复合分离膜、制备方法和用途 |
Family Cites Families (539)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2187417A (en) | 1938-12-30 | 1940-01-16 | Ralph N Doble | Tea bag, coffee bag, and the like |
US3024153A (en) | 1958-08-25 | 1962-03-06 | Kennedy Ted | Method of forming a pipe covering |
US3303085A (en) | 1962-02-28 | 1967-02-07 | Gen Electric | Molecular sieves and methods for producing same |
US3501831A (en) | 1968-06-17 | 1970-03-24 | Rogers Corp | Eyelet |
GB1271423A (en) | 1968-06-27 | 1972-04-19 | Gen Electric | Improvements relating to the manufacture of sheets having holes therein by an etching process |
DE1928052A1 (de) | 1969-12-05 | 1970-12-10 | Swank Dr Roy Laver | Methode und Geraet fuer Blut-Praeparation |
US3701433A (en) | 1970-11-10 | 1972-10-31 | Pall Corp | Filter for use in the filtration of blood |
AR205025A1 (es) | 1974-04-19 | 1976-03-31 | Johnson & Johnson | Medios para filtrar sangre |
US4162220A (en) | 1977-01-03 | 1979-07-24 | Johnson & Johnson | Blood filter |
US4303530A (en) | 1977-10-26 | 1981-12-01 | Medical Incorporated | Blood filter |
US4159954A (en) | 1978-02-24 | 1979-07-03 | Gangemi Ronald J | Isolator filter |
US4277344A (en) | 1979-02-22 | 1981-07-07 | Filmtec Corporation | Interfacially synthesized reverse osmosis membrane |
GB2130377B (en) | 1982-11-15 | 1985-12-11 | Marconi Avionics | Inertial systems |
US4743371A (en) | 1983-04-08 | 1988-05-10 | Shiley, Inc. | Blood filter |
US4935207A (en) | 1986-04-01 | 1990-06-19 | The Johns Hopkins University | Capacitive chemical sensor using an ion exchange surface |
US4855058A (en) | 1986-06-24 | 1989-08-08 | Hydranautics | High recovery spiral wound membrane element |
US5052444A (en) | 1987-04-30 | 1991-10-01 | The Fluorocarbon Company | Reinforced fluid hose having on-bonded tape |
US5580530A (en) | 1987-07-30 | 1996-12-03 | Johnson & Johnson Medical, Inc. | Device for vapor sterilization of articles having lumens |
US4976858A (en) | 1987-08-12 | 1990-12-11 | Toyo Roki Seizo Kabushiki Kaisha | Multi-layer filter medium |
US5182111A (en) | 1987-11-17 | 1993-01-26 | Boston University Research Foundation | In vivo delivery of active factors by co-cultured cell implants |
US4891134A (en) | 1988-01-25 | 1990-01-02 | Abbott Laboratories | Sample filtration device |
US4880440A (en) | 1988-09-12 | 1989-11-14 | Union Carbide Corporation | Hollow fiber multimembrane cells and permeators |
ATE141825T1 (de) | 1988-10-19 | 1996-09-15 | Joopary Arastoo Khodai | Membrantrennverfahren für gase, isotope und flüssigkeiten |
US4889626A (en) | 1988-11-17 | 1989-12-26 | Memron, Inc. | Filter cartridge having a tunable asymmetric fluoropolymer alloy filter membrane |
US4925560A (en) | 1989-02-02 | 1990-05-15 | Sorrick Charles H | Clog resistant high efficiency filter media |
US5080770A (en) | 1989-09-11 | 1992-01-14 | Culkin Joseph B | Apparatus and method for separating particles |
US5244981A (en) | 1990-04-10 | 1993-09-14 | Permeable Technologies, Inc. | Silicone-containing contact lens polymers, oxygen permeable contact lenses and methods for making these lenses and treating patients with visual impairment |
US5314960A (en) | 1990-04-10 | 1994-05-24 | Permeable Technologies, Inc. | Silicone-containing polymers, oxygen permeable hydrophilic contact lenses and methods for making these lenses and treating patients with visual impairment |
US5371147A (en) | 1990-10-11 | 1994-12-06 | Permeable Technologies, Inc. | Silicone-containing acrylic star polymers, block copolymers and macromonomers |
US5314961A (en) | 1990-10-11 | 1994-05-24 | Permeable Technologies, Inc. | Silicone-containing polymers, compositions and improved oxygen permeable hydrophilic contact lenses |
US5344454A (en) | 1991-07-24 | 1994-09-06 | Baxter International Inc. | Closed porous chambers for implanting tissue in a host |
DE4040106A1 (de) | 1990-12-12 | 1992-06-17 | Mecron Med Prod Gmbh | Hohlschaftprothese |
CA2037988A1 (en) | 1991-03-11 | 1992-09-12 | Otto Sova | Continuous flow method and apparatus for separating substances in solution |
DE69221484T2 (de) | 1991-04-25 | 1998-02-19 | Univ Brown Res Found | Implantierbare, biokompatible immunisolator-trägersubstanz zum abgeben ausgesuchter, therapeutischer produkte |
US5201767A (en) | 1991-07-15 | 1993-04-13 | Johnson & Johnson Orthopaedics, Inc. | Fluted-wedge osteal prosthetic component |
US5185086A (en) | 1991-07-16 | 1993-02-09 | Steven Kaali | Method and system for treatment of blood and/or other body fluids and/or synthetic fluids using combined filter elements and electric field forces |
AU2502592A (en) | 1991-08-23 | 1993-03-16 | Denise Faustman | Implantable immunoisolated therapeutic devices |
US5679249A (en) | 1991-12-24 | 1997-10-21 | Pall Corporation | Dynamic filter system |
EP0618834A4 (en) | 1991-12-24 | 1995-11-02 | Pall Corp | Dynamic filter system. |
GB9206504D0 (en) | 1992-03-25 | 1992-05-06 | Jevco Ltd | Heteromorphic sponges as wound implants |
US5314492A (en) | 1992-05-11 | 1994-05-24 | Johnson & Johnson Orthopaedics, Inc. | Composite prosthesis |
US5565210A (en) | 1993-03-22 | 1996-10-15 | Johnson & Johnson Medical, Inc. | Bioabsorbable wound implant materials |
US5679232A (en) | 1993-04-19 | 1997-10-21 | Electrocopper Products Limited | Process for making wire |
US6213124B1 (en) | 1993-04-23 | 2001-04-10 | Johnson & Johnson Medical, Inc. | Surgical drape with a sealable pouch |
EP0938893B1 (en) | 1993-08-10 | 2004-08-25 | W.L. Gore & Associates, Inc. | Cell encapsulating device |
DE69430824T2 (de) | 1993-08-12 | 2003-01-23 | Neurotech S.A., Evry | Biokompatible immunoisolatorische Kapseln, die genetisch veränderte Zellen enthalten |
US5932185A (en) | 1993-08-23 | 1999-08-03 | The Regents Of The University Of California | Method for making thin carbon foam electrodes |
GB2282328B (en) | 1993-09-29 | 1997-10-08 | Johnson & Johnson Medical | Absorbable structures for ligament and tendon repair |
CA2142636C (en) | 1994-02-18 | 2005-09-20 | Salvatore Caldarise | Implantable articles with as-cast macrotextured surface regions and method of manufacturing the same |
US5665118A (en) | 1994-02-18 | 1997-09-09 | Johnson & Johnson Professional, Inc. | Bone prostheses with direct cast macrotextured surface regions and method for manufacturing the same |
CA2142634C (en) | 1994-02-18 | 2005-09-20 | Salvatore Caldarise | Self-lubricating implantable articulation member |
US5516522A (en) | 1994-03-14 | 1996-05-14 | Board Of Supervisors Of Louisiana State University | Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same |
US6105235A (en) | 1994-04-28 | 2000-08-22 | Johnson & Johnson Professional, Inc. | Ceramic/metallic articulation component and prosthesis |
US6309532B1 (en) | 1994-05-20 | 2001-10-30 | Regents Of The University Of California | Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes |
US5425858A (en) | 1994-05-20 | 1995-06-20 | The Regents Of The University Of California | Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes |
ATE196127T1 (de) | 1994-06-29 | 2000-09-15 | Procter & Gamble | Kern für aufgerollte papierprodukte mit besonderer stossnaht-konstruktion |
AU3633295A (en) | 1994-09-07 | 1996-03-27 | Johnson & Johnson Consumer Products, Inc. | Retinoid compositions |
US5976555A (en) | 1994-09-07 | 1999-11-02 | Johnson & Johnson Consumer Products, Inc. | Topical oil-in-water emulsions containing retinoids |
US6461622B2 (en) | 1994-09-07 | 2002-10-08 | Johnson & Johnson Consumer Companies, Inc. | Topical compositions |
US5549697A (en) | 1994-09-22 | 1996-08-27 | Johnson & Johnson Professional, Inc. | Hip joint prostheses and methods for manufacturing the same |
US5636437A (en) | 1995-05-12 | 1997-06-10 | Regents Of The University Of California | Fabricating solid carbon porous electrodes from powders |
AU6251196A (en) | 1995-06-07 | 1996-12-30 | Gore Hybrid Technologies, Inc. | An implantable containment apparatus for a therapeutical dev ice and method for loading and reloading the device therein |
US6156323A (en) | 1995-06-08 | 2000-12-05 | Johnson & Johnson Consumer Companies, Inc. | Tricot-like pouch for the delivery of topical drugs and cosmetics |
IN187897B (ja) | 1995-06-15 | 2002-07-20 | Johnson & Johnson Inc | |
US6209621B1 (en) | 1995-07-07 | 2001-04-03 | Depuy Orthopaedics, Inc. | Implantable prostheses with metallic porous bead preforms applied during casting and method of forming the same |
JPH0990607A (ja) | 1995-07-14 | 1997-04-04 | Canon Inc | 原版検査修正装置及び方法 |
US5562944A (en) | 1995-08-28 | 1996-10-08 | Johnson & Johnson Professional, Inc. | Process for the protection of metallic surfaces |
AU6423796A (en) | 1995-08-29 | 1997-03-06 | Johnson & Johnson Professional, Inc. | Bone prosthesis with protected coating for penetrating bone intergrowth |
US5725586A (en) | 1995-09-29 | 1998-03-10 | Johnson & Johnson Professional, Inc. | Hollow bone prosthesis with tailored flexibility |
DE19536560C1 (de) | 1995-10-02 | 1997-03-13 | Mft Membran Filtrations Techni | Membranelement |
IL125424A0 (en) | 1998-07-20 | 1999-03-12 | New Technologies Sa Ysy Ltd | Pacing with hemodynamic enhancement |
AR006049A1 (es) | 1996-03-01 | 1999-07-21 | Johnson & Johnson Consumer | Una emulsion de aceite en agua |
US5731360A (en) | 1996-03-05 | 1998-03-24 | Regents Of The University Of California | Compression molding of aerogel microspheres |
US6495100B1 (en) | 1996-04-04 | 2002-12-17 | Ethicon, Inc. | Method for sterilizing devices in a container |
US5935172A (en) | 1996-06-28 | 1999-08-10 | Johnson & Johnson Professional, Inc. | Prosthesis with variable fit and strain distribution |
US5716412A (en) | 1996-09-30 | 1998-02-10 | Johnson & Johnson Professional, Inc. | Implantable article with ablated surface |
US5782289A (en) | 1996-09-30 | 1998-07-21 | Johnson & Johnson Professional, Inc. | Investment casting |
US5906234A (en) | 1996-10-22 | 1999-05-25 | Johnson & Johnson Professional, Inc. | Investment casting |
MA26028A1 (fr) | 1997-01-09 | 2004-04-01 | Garfield Int Invest Ltd | Dessalement de l'eau |
US20080063585A1 (en) | 1997-03-07 | 2008-03-13 | William Marsh Rice University, A Texas University | Fullerene nanotube compositions |
US6683783B1 (en) | 1997-03-07 | 2004-01-27 | William Marsh Rice University | Carbon fibers formed from single-wall carbon nanotubes |
US5902762A (en) | 1997-04-04 | 1999-05-11 | Ucar Carbon Technology Corporation | Flexible graphite composite |
EP1052013A1 (fr) | 1997-04-09 | 2000-11-15 | Societe Des Ceramiques Techniques | Support macroporeux à gradient de perméabilite et son procédé de fabrication |
DE19720551A1 (de) | 1997-05-16 | 1998-11-19 | Heidelberger Druckmasch Ag | Basisträgerhülse für Rotationsdruckmaschinen |
US5910172A (en) | 1997-05-20 | 1999-06-08 | Johnson & Johnson | Apparatus for, and method of, preparing hip prosthesis implantation |
US6391216B1 (en) | 1997-09-22 | 2002-05-21 | National Research Institute For Metals | Method for reactive ion etching and apparatus therefor |
US5935084A (en) | 1997-09-30 | 1999-08-10 | Johnson & Johnson Professional, Inc. | Inflatable pressure indicator |
US6013080A (en) | 1997-10-30 | 2000-01-11 | Johnson & Johnson Professional, Inc. | Tamp with horizontal steps used for impaction bone grafting in revision femur |
US6022733A (en) | 1997-12-02 | 2000-02-08 | Tam; Yun K. | Simulated biological dissolution and absorption system |
US6139585A (en) | 1998-03-11 | 2000-10-31 | Depuy Orthopaedics, Inc. | Bioactive ceramic coating and method |
US6052608A (en) | 1998-03-30 | 2000-04-18 | Johnson & Johnson Professional, Inc. | Implantable medical electrode contacts |
US5980718A (en) | 1998-05-04 | 1999-11-09 | The Regents Of The University Of California | Means for limiting and ameliorating electrode shorting |
US6228123B1 (en) | 1998-08-19 | 2001-05-08 | Depuy Orthopaedics, Inc. | Variable modulus prosthetic hip stem |
US6093209A (en) | 1998-08-20 | 2000-07-25 | Johnson & Johnson Professional, Inc. | Proximally holllow prosthesis |
EP1109594B1 (en) | 1998-08-31 | 2004-10-27 | Johnson & Johnson Consumer Companies, Inc. | Electrotransport device comprising blades |
US6022509A (en) | 1998-09-18 | 2000-02-08 | Johnson & Johnson Professional, Inc. | Precision powder injection molded implant with preferentially leached texture surface and method of manufacture |
US20010036556A1 (en) | 1998-10-20 | 2001-11-01 | James S. Jen | Coatings for biomedical devices |
US6264699B1 (en) | 1998-11-23 | 2001-07-24 | Depuy Orthopaedics, Inc. | Modular stem and sleeve prosthesis |
US6346187B1 (en) | 1999-01-21 | 2002-02-12 | The Regents Of The University Of California | Alternating-polarity operation for complete regeneration of electrochemical deionization system |
US6152882A (en) | 1999-01-26 | 2000-11-28 | Impulse Dynamics N.V. | Apparatus and method for chronic measurement of monophasic action potentials |
AUPQ034399A0 (en) | 1999-05-14 | 1999-06-03 | Panbio Pty Ltd | Metal chelating filters and metal chelate filters |
US6292704B1 (en) | 1999-05-25 | 2001-09-18 | Impulse Dynamics N. V. | High capacitance myocardial electrodes |
US7092753B2 (en) | 1999-06-04 | 2006-08-15 | Impulse Dynamics Nv | Drug delivery device |
US7171263B2 (en) | 1999-06-04 | 2007-01-30 | Impulse Dynamics Nv | Drug delivery device |
US7190997B1 (en) | 1999-06-04 | 2007-03-13 | Impulse Dynamics Nv | Drug delivery device |
DE10000196B4 (de) | 2000-01-05 | 2013-10-10 | Sartorius Stedim Biotech Gmbh | Verbesserte Crossflow-Filtrationseinheit |
CA2399807A1 (en) | 2000-02-14 | 2001-08-23 | Johnson & Johnson Consumer Companies, Inc. | Delivery system for topical skin care agents |
JP2001232158A (ja) | 2000-02-24 | 2001-08-28 | Shinko Pantec Co Ltd | ダイアフィルトレーション方法 |
AUPQ691400A0 (en) | 2000-04-14 | 2000-05-11 | Life Therapeutics Limited | Separation of micromolecules |
EP1278480A2 (en) | 2000-04-25 | 2003-01-29 | Impres Medical, Inc. | Method and apparatus for creating intrauterine adhesions |
US6454095B1 (en) | 2000-05-12 | 2002-09-24 | Johnson & Johnson Inc. | Visual reference system for sanitary absorbent article |
US6544316B2 (en) | 2000-05-19 | 2003-04-08 | Membrane Technology And Research, Inc. | Hydrogen gas separation using organic-vapor-resistant membranes |
US6455115B1 (en) | 2001-01-26 | 2002-09-24 | Milliken & Company | Textile reinforced thermoplastic or thermoset pipes |
DE10034386A1 (de) | 2000-07-14 | 2002-01-24 | Creavis Tech & Innovation Gmbh | Verfahren und Vorrichtung zur Elektrofiltration |
US6692627B1 (en) | 2000-09-26 | 2004-02-17 | Boise State University | Electrical field flow fractionation (EFFF) using an electrically insulated flow channel |
US6695880B1 (en) | 2000-10-24 | 2004-02-24 | Johnson & Johnson Vision Care, Inc. | Intraocular lenses and methods for their manufacture |
US6552401B1 (en) | 2000-11-27 | 2003-04-22 | Micron Technology | Use of gate electrode workfunction to improve DRAM refresh |
JP3590765B2 (ja) | 2000-12-21 | 2004-11-17 | Smc株式会社 | 電磁弁 |
GB0100513D0 (en) | 2001-01-09 | 2001-02-21 | Smithkline Beecham Plc | Process |
US6641773B2 (en) | 2001-01-10 | 2003-11-04 | The United States Of America As Represented By The Secretary Of The Army | Electro spinning of submicron diameter polymer filaments |
US6462935B1 (en) | 2001-09-07 | 2002-10-08 | Lih-Ren Shiue | Replaceable flow-through capacitors for removing charged species from liquids |
US6580598B2 (en) | 2001-02-15 | 2003-06-17 | Luxon Energy Devices Corporation | Deionizers with energy recovery |
JP2002353075A (ja) | 2001-03-21 | 2002-12-06 | Morinobu Endo | 電気二重層コンデンサの電極材料およびこれを用いた電気二重層コンデンサ |
US6521865B1 (en) | 2001-06-14 | 2003-02-18 | Advanced Cardiovascular Systems, Inc. | Pulsed fiber laser cutting system for medical implants |
IL144213A0 (en) | 2001-07-09 | 2002-05-23 | Mind Guard Ltd | Implantable filter |
US6702857B2 (en) | 2001-07-27 | 2004-03-09 | Dexcom, Inc. | Membrane for use with implantable devices |
JP3939943B2 (ja) | 2001-08-29 | 2007-07-04 | 株式会社Gsiクレオス | 気相成長法による炭素繊維からなるフィルター材 |
CN2570208Y (zh) | 2001-09-03 | 2003-09-03 | 珠海中富聚酯啤酒瓶有限公司 | 聚酯啤酒瓶 |
US20030134281A1 (en) | 2001-09-20 | 2003-07-17 | Evans Glen A. | Nanomachine compositions and methods of use |
US20040063097A1 (en) | 2002-09-20 | 2004-04-01 | Evans Glen A. | Nanomachine compositions and methods of use |
US20030138777A1 (en) | 2001-09-20 | 2003-07-24 | Evans Glen A. | Nanomachine compositions and methods of use |
US20050053563A1 (en) | 2001-09-27 | 2005-03-10 | Patricia Manissier | Stable compositions containing ethanolamine derivatives and glucosides |
GB2380135B (en) | 2001-09-27 | 2005-01-12 | Johnson & Johnson Medical Ltd | Therapeutic wound dressing |
US7166443B2 (en) | 2001-10-11 | 2007-01-23 | Aviva Biosciences Corporation | Methods, compositions, and automated systems for separating rare cells from fluid samples |
US20050238730A1 (en) | 2001-11-21 | 2005-10-27 | Agnes Le Fur | Compositions comprising an ethanolamine derivative and organic metal salts |
US20030146221A1 (en) | 2001-12-10 | 2003-08-07 | Lauer Robert W. | Waste container assembly and modular product system |
US6908552B2 (en) | 2002-02-26 | 2005-06-21 | Gesellschaft Fuer Schwerionenforschung Mbh | Method of producing nanostructures in membrances, and asymmetrical membrane |
US20080185293A1 (en) | 2002-03-27 | 2008-08-07 | Giselher Klose | Method and Apparatus for Decontamination of Fluid with One or More High Purity Electrodes |
US6905612B2 (en) | 2003-03-21 | 2005-06-14 | Hanuman Llc | Plasma concentrate apparatus and method |
JP4369153B2 (ja) | 2002-05-16 | 2009-11-18 | 株式会社神鋼環境ソリューション | 膜分離装置及び膜分離方法 |
KR100734684B1 (ko) | 2002-07-01 | 2007-07-02 | 제이에프이 엔지니어링 가부시키가이샤 | 카본 나노튜브를 함유하는 테이프상 물질, 카본나노튜브의 제조 방법, 그 테이프상 물질을 함유하는 전계방출형 전극 및 그 제조 방법 |
US7235164B2 (en) | 2002-10-18 | 2007-06-26 | Eksigent Technologies, Llc | Electrokinetic pump having capacitive electrodes |
US6699684B2 (en) | 2002-07-23 | 2004-03-02 | Nalco Company | Method of monitoring biofouling in membrane separation systems |
AU2003256742A1 (en) | 2002-07-24 | 2004-02-09 | Board Of Regents, The University Of Texas System | Capture and detection of microbes by membrane methods |
AU2003267094A1 (en) | 2002-09-11 | 2004-04-30 | Temple University - Of The Commonwealth System Of Higher Education | System and methods for electrophoretic separation of proteins on protein binding membranes |
CA2499913A1 (en) | 2002-10-10 | 2004-04-22 | Irm, Llc | Capacity altering device, holder and methods of sample processing |
CA2502943A1 (en) | 2002-10-22 | 2004-05-06 | Danny Marshal Day | The production and use of a soil amendment made by the combined production of hydrogen, sequestered carbon and utilizing off gases containing carbon dioxide |
US6889715B2 (en) | 2002-11-27 | 2005-05-10 | Wellstream International Limited | Flexible tubular member with sealed tape layer |
JP2004179014A (ja) | 2002-11-28 | 2004-06-24 | Matsushita Electric Ind Co Ltd | プラズマ加工方法及び装置 |
US7081208B2 (en) | 2002-12-16 | 2006-07-25 | International Business Machines Corporation | Method to build a microfilter |
DE20302819U1 (de) | 2003-02-21 | 2003-05-08 | Filtertek, S.A., Plailly | Filter für medizinische und Laborzwecke, insbesondere für Blutanalysen u.dgl. |
FR2852515B1 (fr) | 2003-03-17 | 2005-11-18 | Dispositif et procede de traitement de sang avec extraction selective de solutes | |
US20040185730A1 (en) | 2003-03-17 | 2004-09-23 | Lambino Danilo L. | Expandable skin cleansing implement |
US8993327B2 (en) | 2003-04-07 | 2015-03-31 | Ut-Battelle, Llc | Parallel macromolecular delivery and biochemical/electrochemical interface to cells employing nanostructures |
US6708826B1 (en) | 2003-04-30 | 2004-03-23 | Warner-Lambert Company, Llc | Packaged supply of individual doses of a personal care product |
US7875293B2 (en) | 2003-05-21 | 2011-01-25 | Dexcom, Inc. | Biointerface membranes incorporating bioactive agents |
US7150813B2 (en) | 2003-06-12 | 2006-12-19 | Palo Alto Research Center Incorporated | Isoelectric focusing (IEF) of proteins with sequential and oppositely directed traveling waves in gel electrophoresis |
US7477939B2 (en) | 2003-06-30 | 2009-01-13 | Johnson & Johnson Consumer Companies, Inc. | Methods of treating a wound with galvanic generated electricity |
US7479133B2 (en) | 2003-06-30 | 2009-01-20 | Johnson & Johnson Consumer Companies, Inc. | Methods of treating acne and rosacea with galvanic generated electricity |
US7477941B2 (en) | 2003-06-30 | 2009-01-13 | Johnson & Johnson Consumer Companies, Inc. | Methods of exfoliating the skin with electricity |
US8734421B2 (en) | 2003-06-30 | 2014-05-27 | Johnson & Johnson Consumer Companies, Inc. | Methods of treating pores on the skin with electricity |
US7477940B2 (en) | 2003-06-30 | 2009-01-13 | J&J Consumer Companies, Inc. | Methods of administering an active agent to a human barrier membrane with galvanic generated electricity |
US7476222B2 (en) | 2003-06-30 | 2009-01-13 | Johnson & Johnson Consumer Companies, Inc. | Methods of reducing the appearance of pigmentation with galvanic generated electricity |
US7175783B2 (en) | 2003-08-19 | 2007-02-13 | Patrick Michael Curran | Carbon electrode for use in aqueous electrochemical devices and method of preparation |
JP2005126966A (ja) | 2003-10-22 | 2005-05-19 | Tachikawa Blind Mfg Co Ltd | スライドスクリーン |
WO2005047857A2 (en) | 2003-11-04 | 2005-05-26 | Porex Corporation | Composite porous materials and methods of making and using the same |
US7674477B1 (en) | 2003-11-06 | 2010-03-09 | University Of Notre Dame Du Lac | Bone and tissue scaffolding for delivery of therapeutic agents |
CA2545788A1 (en) | 2003-11-13 | 2005-06-02 | Galileo Pharmaceuticals, Inc. | Plant-derived protein extract compositions and methods |
US7935331B2 (en) | 2003-12-12 | 2011-05-03 | Johnson & Johnson Consumer Companies, Inc. | Vanillin polymers for use in darkening the skin |
EP1709213A4 (en) | 2004-01-15 | 2012-09-05 | Nanocomp Technologies Inc | SYSTEMS AND METHODS FOR SYNTHESIZING LONG LENGTH NANOSTRUCTURES |
KR100569188B1 (ko) | 2004-01-16 | 2006-04-10 | 한국과학기술연구원 | 탄소-다공성 지지체 복합 전극 및 그 제조방법 |
US20050189673A1 (en) | 2004-02-26 | 2005-09-01 | Jeremy Klug | Treatment of flexible graphite material and method thereof |
US7410574B2 (en) | 2004-03-03 | 2008-08-12 | Patent Innovations Llc | Magnetic particle filtration apparatus |
US7452547B2 (en) | 2004-03-31 | 2008-11-18 | Johnson&Johnson Consumer Co., Inc. | Product for treating the skin comprising a polyamine microcapsule wall and a skin lightening agent |
US7600567B2 (en) | 2004-05-28 | 2009-10-13 | Bp Exploration Operating Company Limited | Desalination method |
GB0414837D0 (en) | 2004-07-02 | 2004-08-04 | Booth John P | Improvements in or relating to tubular bodies and methods of forming same |
US7459121B2 (en) | 2004-07-21 | 2008-12-02 | Florida State University Research Foundation | Method for continuous fabrication of carbon nanotube networks or membrane materials |
US8765488B2 (en) | 2004-07-22 | 2014-07-01 | The Board Of Trustees Of The University Of Illinois | Sensors employing single-walled carbon nanotubes |
US7083653B2 (en) | 2004-08-12 | 2006-08-01 | Charles Edward Jennings | Implantable human kidney replacement unit |
US7374677B2 (en) | 2004-08-20 | 2008-05-20 | Kkj, Inc. | Two stage hemofiltration that generates replacement fluid |
US8785013B2 (en) | 2004-08-20 | 2014-07-22 | E I Du Pont De Nemours And Company | Compositions containing modified fullerenes |
US20060093885A1 (en) | 2004-08-20 | 2006-05-04 | Krusic Paul J | Compositions containing functionalized carbon materials |
US7786086B2 (en) | 2004-09-08 | 2010-08-31 | Ramot At Tel-Aviv University Ltd. | Peptide nanostructures containing end-capping modified peptides and methods of generating and using the same |
CN108425170B (zh) | 2004-11-09 | 2021-02-26 | 得克萨斯大学体系董事会 | 纳米纤维纱线、带和板的制造和应用 |
US7842271B2 (en) | 2004-12-07 | 2010-11-30 | Petrik Viktor I | Mass production of carbon nanostructures |
DE102004062535A1 (de) | 2004-12-24 | 2006-07-06 | Forschungszentrum Karlsruhe Gmbh | Semipermeables Membransystem für magnetische Partikelfraktionen |
JP2006188393A (ja) | 2005-01-06 | 2006-07-20 | Japan Science & Technology Agency | カーボン物質の加工方法 |
US20060151382A1 (en) | 2005-01-12 | 2006-07-13 | Petrik Viktor I | Contact devices with nanostructured materials |
EP1841854A4 (en) | 2005-01-27 | 2009-10-21 | Applera Corp | DEVICES AND METHODS FOR PREPARING SAMPLES |
DE602006020985D1 (de) | 2005-02-14 | 2011-05-12 | Mcneil Ppc Inc | Verpackung für ein körperpflegeprodukt |
US9169579B2 (en) | 2005-03-11 | 2015-10-27 | New Jersey Institute Of Technology | Carbon nanotube mediated membrane extraction |
DE102005012594A1 (de) | 2005-03-18 | 2006-09-21 | Bayer Technology Services Gmbh | Elektrofiltrationsverfahren |
US7382601B2 (en) | 2005-03-28 | 2008-06-03 | Saga Sanyo Industries Co., Ltd. | Electric double layer capacitor and method of manufacturing same |
WO2006104703A1 (en) | 2005-03-29 | 2006-10-05 | Mcneil-Ppc, Inc. | Compositions with hydrophilic drugs in a hydrophobic medium |
US20060253079A1 (en) | 2005-04-25 | 2006-11-09 | Mcdonough Justin | Stratum corneum piercing device |
EP1874443A4 (en) | 2005-04-29 | 2009-09-16 | Univ Rochester | ULTRA-THAN POROUS NANOSCAL MEMBRANES, MANUFACTURING METHOD AND USES THEREOF |
US7381707B2 (en) | 2005-06-30 | 2008-06-03 | Johnson & Johnson Consumer Companies, Inc. | Treatment of dry eye |
US8246917B2 (en) | 2006-06-23 | 2012-08-21 | Johns Hopkins University | Self-assembled, micropatterned, and radio frequency (RF) shielded biocontainers and their uses for remote spatially controlled chemical delivery |
US7323401B2 (en) | 2005-08-08 | 2008-01-29 | Applied Materials, Inc. | Semiconductor substrate process using a low temperature deposited carbon-containing hard mask |
WO2007024619A1 (en) | 2005-08-26 | 2007-03-01 | Entegris, Inc. | Porous membranes containing exchange resin |
CA2619793A1 (en) | 2005-09-09 | 2007-03-15 | Tangenx Technology Corporation | Laminated cassette device and methods for making same |
US7650805B2 (en) | 2005-10-11 | 2010-01-26 | Millipore Corporation | Integrity testable multilayered filter device |
DE102005049388A1 (de) | 2005-10-15 | 2007-04-19 | Dechema Gesellschaft Für Chemische Technik Und Biotechnologie E.V. | Verfahren zur Vermeidung oder Verminderung von Biofilmen auf einer Oberfläche |
US20070099813A1 (en) | 2005-10-27 | 2007-05-03 | Luizzi Joseph M | Effervescent cleansing article |
JP5082101B2 (ja) | 2005-11-14 | 2012-11-28 | 国立大学法人東京工業大学 | ナノポーラス基板の製造方法 |
US7883839B2 (en) | 2005-12-08 | 2011-02-08 | University Of Houston | Method and apparatus for nano-pantography |
US8715221B2 (en) | 2006-03-08 | 2014-05-06 | Fresenius Medical Care Holdings, Inc. | Wearable kidney |
US7761809B2 (en) | 2006-03-30 | 2010-07-20 | Microsoft Corporation | Targeted user interface fall-through |
DE102006022502A1 (de) | 2006-05-08 | 2007-11-29 | Ltn Nanovation Ag | Filtereinheit für die Abwasseraufbereitung und die Trinkwassergewinnung |
WO2007136472A1 (en) | 2006-05-18 | 2007-11-29 | Dow Global Technologies Inc. | Use of special screens in the preparation of cellulose powder |
WO2007140252A1 (en) | 2006-05-25 | 2007-12-06 | Drexel University | Filled nanoporous polymer membrane composites for protective clothing and methods for making them |
US7833355B2 (en) | 2006-06-02 | 2010-11-16 | Peter David Capizzo | Carbon nanotube (CNT) extrusion methods and CNT wire and composites |
US7866475B2 (en) | 2006-06-12 | 2011-01-11 | Mcneil-Ppc, Inc. | Blister package |
ITBO20060493A1 (it) | 2006-06-27 | 2007-12-28 | Bellco Srl | Macchina di dialisi con controllo della glicemia |
CA2657317C (en) | 2006-07-10 | 2012-10-02 | Convergent Bioscience Ltd. | Method and apparatus for precise selection and extraction of a focused component in isoelectric focusing performed in micro-channels |
KR101464006B1 (ko) | 2006-07-14 | 2014-11-20 | 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 | 혼합된 기-액 공급물을 사용하는 개선된 막 분리 방법 |
US20080045877A1 (en) | 2006-08-15 | 2008-02-21 | G&L Consulting, Llc | Blood exchange dialysis method and apparatus |
US20100016778A1 (en) | 2006-08-23 | 2010-01-21 | Budhaditya Chattopadhyay | Apparatus for purification of blood and a process thereof |
US7931838B2 (en) | 2006-08-31 | 2011-04-26 | Virginia Tech Intellectual Properties, Inc. | Method for making oriented single-walled carbon nanotube/polymer nano-composite membranes |
US20080081323A1 (en) | 2006-09-29 | 2008-04-03 | Daniel Keeley | Regenerative Medicine Devices and Melt-Blown Methods of Manufacture |
US20080081362A1 (en) | 2006-09-29 | 2008-04-03 | Daniel Keeley | Multilayered Composite for Organ Augmentation and Repair |
US20090048685A1 (en) | 2006-10-12 | 2009-02-19 | Impres Medical, Inc. | Method And Apparatus For Occluding A Lumen |
US20130153440A9 (en) | 2006-11-13 | 2013-06-20 | Kc Energy, Llc | Rf systems and methods for processing salt water |
KR100834729B1 (ko) | 2006-11-30 | 2008-06-09 | 포항공과대학교 산학협력단 | 반사 방지용 나노 다공성 필름 및 블록 공중합체를 이용한그 제조방법 |
US8231013B2 (en) | 2006-12-05 | 2012-07-31 | The Research Foundation Of State University Of New York | Articles comprising a fibrous support |
US7998246B2 (en) * | 2006-12-18 | 2011-08-16 | Uop Llc | Gas separations using high performance mixed matrix membranes |
EP2114510A4 (en) | 2006-12-19 | 2014-04-16 | Arnold J Lande | CHRONIC ACCESS SYSTEM FOR EXTRACORPOREAL TREATMENT OF BLOOD WITH A CONTINUOUSLY PORTABLE HEMODIALYSER |
WO2008079997A2 (en) | 2006-12-22 | 2008-07-03 | Medtronic, Inc. | Implantable device, angiogenesis mechanism and methods |
US8187255B2 (en) | 2007-02-02 | 2012-05-29 | Boston Scientific Scimed, Inc. | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
US7960708B2 (en) | 2007-03-13 | 2011-06-14 | University Of Houston | Device and method for manufacturing a particulate filter with regularly spaced micropores |
US20080241085A1 (en) | 2007-03-29 | 2008-10-02 | Lin Connie B | Compositions for use in darkening the skin |
EP2148706A2 (en) | 2007-04-24 | 2010-02-03 | Advanced Technologies and Regenerative Medicine, LLC | Engineered renal tissue |
WO2008143829A2 (en) | 2007-05-14 | 2008-11-27 | Northwestern University | Graphene oxide sheet laminate and method |
CN101108194B (zh) | 2007-06-30 | 2010-12-01 | 广西壮族自治区化工研究院 | 一种除去右旋糖酐铁络合物水溶液中氯化钠的方法及装置 |
WO2009012185A1 (en) | 2007-07-13 | 2009-01-22 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US20100059378A1 (en) | 2007-07-18 | 2010-03-11 | The Water Company Llc | Apparatus and method for removal of ions from a porous electrode that is part of a deionization system |
US8535726B2 (en) | 2007-07-27 | 2013-09-17 | The Board Of Trustees Of The Leland Stanford Junior University | Supramolecular functionalization of graphitic nanoparticles for drug delivery |
EP2195648B1 (en) | 2007-09-12 | 2019-05-08 | President and Fellows of Harvard College | High-resolution molecular graphene sensor comprising an aperture in the graphene layer |
US20090075371A1 (en) | 2007-09-18 | 2009-03-19 | Daniel Keeley | Regenerative Medicine Devices and Foam Methods of Manufacture |
AU2008302086A1 (en) | 2007-09-21 | 2009-03-26 | The Regents Of The University Of California | Nanocomposite membranes and methods of making and using same |
CN101861155A (zh) | 2007-09-28 | 2010-10-13 | 强生消费者公司 | 产生电流的颗粒及其用途 |
US20090087395A1 (en) | 2007-10-01 | 2009-04-02 | Lin Connie B | Compositions for use in darkening the skin |
US20110263912A1 (en) | 2007-11-07 | 2011-10-27 | Air Products And Chemicals, Inc. | Control Of Kinetic Decomposition In Mixed Conducting Ion Transport Membranes |
EP2060286B1 (en) | 2007-11-13 | 2011-01-12 | Acuros GmbH | Osmotic pump |
US7706128B2 (en) | 2007-11-29 | 2010-04-27 | Corning Incorporated | Capacitive device |
US20090148495A1 (en) | 2007-12-11 | 2009-06-11 | Hammer Joseph J | Optimum Density Fibrous Matrix |
US8419828B2 (en) * | 2008-01-08 | 2013-04-16 | Shell Oil Company | Multi-stage membrane separation process |
US8435676B2 (en) | 2008-01-09 | 2013-05-07 | Nanotek Instruments, Inc. | Mixed nano-filament electrode materials for lithium ion batteries |
KR100964504B1 (ko) | 2008-02-14 | 2010-06-21 | 포항공과대학교 산학협력단 | 나노다공성 멤브레인, 이의 제조 방법 및 이를 구비한 서방성 약물 전달 장치 |
MX2010009308A (es) | 2008-02-25 | 2012-09-28 | Mcneil Ppc Inc | Dispositivo para tratamiento termico. |
US8658178B2 (en) | 2008-03-19 | 2014-02-25 | Yale University | Carbon nanotube compositions and methods of use thereof |
US9737593B2 (en) | 2008-03-19 | 2017-08-22 | Yale University | Carbon nanotube compositions and methods of use thereof |
US8409450B2 (en) | 2008-03-24 | 2013-04-02 | The Regents Of The University Of California | Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane |
US20090241242A1 (en) | 2008-03-31 | 2009-10-01 | Heidi Beatty | Facial mask |
US8535553B2 (en) | 2008-04-14 | 2013-09-17 | Massachusetts Institute Of Technology | Large-area single- and few-layer graphene on arbitrary substrates |
GB0807267D0 (en) | 2008-04-21 | 2008-05-28 | Ntnu Technology Transfer As | Carbon membranes from cellulose esters |
EP2278883A4 (en) | 2008-04-25 | 2012-11-28 | Encapsulife Inc | IMMUNIZATION PATCH SYSTEM FOR CELL TRANSPLANT |
WO2009137722A1 (en) | 2008-05-07 | 2009-11-12 | Nanocomp Technologies, Inc. | Carbon nanotube-based coaxial electrical cables and wiring harness |
WO2009139531A1 (en) | 2008-05-15 | 2009-11-19 | Woongjincoway Co., Ltd. | Spiral wound type filter cartridge |
DE102008024106A1 (de) | 2008-05-17 | 2009-11-19 | Heinrich, Hans-Werner, Prof. Dr. | Vorrichtung zum Abscheiden von Partikeln in und aus Flüssigkeiten und deren Anwendung in Biotechnologie, biologische Forschung, Diagnostik und Krankheitsbehandlung |
WO2009148959A2 (en) | 2008-05-29 | 2009-12-10 | Lawrence Livermore National Security, Llc | Membranes with functionalized carbon nanotube pores for selective transport |
US7993524B2 (en) | 2008-06-30 | 2011-08-09 | Nanoasis Technologies, Inc. | Membranes with embedded nanotubes for selective permeability |
TWI412493B (en) | 2008-07-08 | 2013-10-21 | Graphene and hexagonal boron nitride planes and associated methods | |
US8316865B2 (en) | 2008-07-31 | 2012-11-27 | Mcneil-Ppc, Inc. | Process for winding dental tape |
US20100024722A1 (en) | 2008-07-31 | 2010-02-04 | Harold Ochs | Apparatus for Coating Dental Tape |
TW201012749A (en) | 2008-08-19 | 2010-04-01 | Univ Rice William M | Methods for preparation of graphene nanoribbons from carbon nanotubes and compositions, thin films and devices derived therefrom |
CN101659789B (zh) | 2008-08-29 | 2012-07-18 | 清华大学 | 碳纳米管/导电聚合物复合材料的制备方法 |
US9187330B2 (en) | 2008-09-15 | 2015-11-17 | The Invention Science Fund I, Llc | Tubular nanostructure targeted to cell membrane |
US9296158B2 (en) | 2008-09-22 | 2016-03-29 | Johnson & Johnson Vision Care, Inc. | Binder of energized components in an ophthalmic lens |
US9675443B2 (en) | 2009-09-10 | 2017-06-13 | Johnson & Johnson Vision Care, Inc. | Energized ophthalmic lens including stacked integrated components |
US20100076553A1 (en) | 2008-09-22 | 2010-03-25 | Pugh Randall B | Energized ophthalmic lens |
US9388048B1 (en) | 2008-10-08 | 2016-07-12 | University Of Southern California | Synthesis of graphene by chemical vapor deposition |
US9375886B2 (en) | 2008-10-31 | 2016-06-28 | Johnson & Johnson Vision Care Inc. | Ophthalmic device with embedded microcontroller |
EP4176888A1 (en) | 2008-11-14 | 2023-05-10 | ViaCyte, Inc. | Encapsulation of pancreatic cells derived from human pluripotent stem cells |
US8487296B2 (en) | 2008-11-26 | 2013-07-16 | New Jersey Institute Of Technology | Graphene deposition and graphenated substrates |
US20100161014A1 (en) | 2008-12-23 | 2010-06-24 | Lynch Joseph M | Thermal treatment device |
US8293013B2 (en) | 2008-12-30 | 2012-10-23 | Intermolecular, Inc. | Dual path gas distribution device |
CA2691390A1 (en) | 2009-01-29 | 2010-07-29 | Johnson & Johnson Consumer Companies, Inc. | Facial treatment mask comprising an isolation layer |
US8147599B2 (en) | 2009-02-17 | 2012-04-03 | Mcalister Technologies, Llc | Apparatuses and methods for storing and/or filtering a substance |
WO2010099122A1 (en) | 2009-02-24 | 2010-09-02 | Ultradian Diagnostics, Llc | Microsecond response electrochemical sensors and methods thereof |
EP2230511B1 (en) | 2009-03-20 | 2017-04-26 | Ecole Polytechnique | Method for varying the diameter of a nanopore contained in a nanoporous membrane functionalised with a ph-dependent polyelectrolyte |
JP2012522002A (ja) | 2009-03-27 | 2012-09-20 | ジョンソン・アンド・ジョンソン・コンシューマー・カンパニーズ・インコーポレイテッド | 二元及び三元ガルバーニ微粒子並びにその製造方法及び用途 |
US20100249273A1 (en) | 2009-03-31 | 2010-09-30 | Scales Charles W | Polymeric articles comprising oxygen permeability enhancing particles |
IT1393689B1 (it) | 2009-04-06 | 2012-05-08 | Envitech S R L Sa | Processo e reattore di elettrocoagulazione con elettrodi di materiale nanostrutturato a base di carbonio per la rimozione di contaminanti dai liquidi |
US20100258111A1 (en) | 2009-04-07 | 2010-10-14 | Lockheed Martin Corporation | Solar receiver utilizing carbon nanotube infused coatings |
US9017937B1 (en) | 2009-04-10 | 2015-04-28 | Pacific Biosciences Of California, Inc. | Nanopore sequencing using ratiometric impedance |
JP5449852B2 (ja) | 2009-05-08 | 2014-03-19 | 株式会社東芝 | 超音波診断装置 |
FI122495B (fi) | 2009-05-22 | 2012-02-29 | Teknologian Tutkimuskeskus Vtt | Näyteportti, monikerrossuodatin, näytteenottomenetelmä ja näyteportin käyttö näytteenotossa |
US20110139707A1 (en) | 2009-06-17 | 2011-06-16 | The Regents Of The University Of California | Nanoporous inorganic membranes and films, methods of making and usage thereof |
JP5626969B2 (ja) | 2009-07-02 | 2014-11-19 | 日本原料株式会社 | 濾過材洗浄装置 |
US8796908B2 (en) | 2009-07-22 | 2014-08-05 | Konica Minolta Medical & Graphic, Inc. | Piezoelectric body, ultrasound transducer, medical ultrasound diagnostic system, and nondestructive ultrasound test system |
US8993294B2 (en) | 2009-08-10 | 2015-03-31 | Danisco Us Inc. | Cross-flow membrane filtration-based process for protein recovery |
WO2011020035A2 (en) | 2009-08-14 | 2011-02-17 | Northwestern University | Sorting two-dimensional nanomaterials by thickness |
US8864970B2 (en) | 2009-08-18 | 2014-10-21 | Technion Research & Development Foundation Limited | Methods and devices of separating molecular analytes |
CN101996853B (zh) | 2009-08-19 | 2012-08-08 | 中国科学院物理研究所 | 一种对石墨或石墨烯进行各向异性刻蚀的方法 |
US8486709B2 (en) | 2009-08-21 | 2013-07-16 | Massachusetts Institute Oftechnology | Optical nanosensors comprising photoluminescent nanostructures |
US8753468B2 (en) | 2009-08-27 | 2014-06-17 | The United States Of America, As Represented By The Secretary Of The Navy | Method for the reduction of graphene film thickness and the removal and transfer of epitaxial graphene films from SiC substrates |
US8697230B2 (en) | 2009-08-31 | 2014-04-15 | Kyushu University | Graphene sheet and method for producing the same |
US8808257B2 (en) | 2009-08-31 | 2014-08-19 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus for pulsatile release of medicaments from a punctal plug |
US20110054576A1 (en) | 2009-09-03 | 2011-03-03 | Robinson Ronni L | Combined Portable Thermal and Vibratory Treatment Device |
US8292092B2 (en) | 2009-09-08 | 2012-10-23 | Teledyne Scientific & Imaging, Llc | Macrocyclic pore-apertured carbon nanotube apparatus |
JP5612695B2 (ja) | 2009-09-18 | 2014-10-22 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 高感度分子検出及び分析を可能にする、ナノポアを有するベアの単層グラフェン膜 |
US20110073563A1 (en) | 2009-09-25 | 2011-03-31 | Industrial Technology Research Institute | Patterning Method for Carbon-Based Substrate |
WO2011046415A2 (ko) | 2009-10-16 | 2011-04-21 | 성균관대학교산학협력단 | 그래핀의 롤투롤 전사 방법, 그에 의한 그래핀 롤, 및 그래핀의 롤투롤 전사 장치 |
KR20110042952A (ko) | 2009-10-20 | 2011-04-27 | 삼성전자주식회사 | 레이저 광을 이용한 그라핀의 힐링방법 및 전자소자 제조방법 |
US8449504B2 (en) | 2009-11-11 | 2013-05-28 | Calibra Medical, Inc. | Wearable infusion device and system |
ES2617760T3 (es) | 2009-11-13 | 2017-06-19 | Johnson & Johnson Consumer Inc. | Dispositivo galvánico para tratamiento de la piel |
US9591852B2 (en) | 2009-11-23 | 2017-03-14 | Mcneil-Ppc, Inc. | Biofilm disruptive compositions |
US20110124253A1 (en) | 2009-11-23 | 2011-05-26 | Applied Nanostructured Solutions, Llc | Cnt-infused fibers in carbon-carbon composites |
AU2010324532B2 (en) | 2009-11-25 | 2015-02-26 | Cms Innovations Pty Ltd | Membrane and membrane separation system |
US8808810B2 (en) | 2009-12-15 | 2014-08-19 | Guardian Industries Corp. | Large area deposition of graphene on substrates, and products including the same |
US20110152795A1 (en) | 2009-12-21 | 2011-06-23 | Aledo Eduardo C A | Transparent facial treatment mask |
JP5574543B2 (ja) * | 2009-12-28 | 2014-08-20 | 日東電工株式会社 | ポリエステル系粘着剤組成物 |
WO2011087301A2 (ko) | 2010-01-15 | 2011-07-21 | 성균관대학교산학협력단 | 기체 및 수분 차단용 그래핀 보호막, 이의 형성 방법 및 그의 용도 |
GB201000743D0 (en) * | 2010-01-18 | 2010-03-03 | Univ Manchester | Graphene polymer composite |
US8268180B2 (en) | 2010-01-26 | 2012-09-18 | Wisconsin Alumni Research Foundation | Methods of fabricating large-area, semiconducting nanoperforated graphene materials |
US20110195207A1 (en) | 2010-02-08 | 2011-08-11 | Sungkyunkwan University Foundation For Corporate Collaboration | Graphene roll-to-roll coating apparatus and graphene roll-to-roll coating method using the same |
EP2535903B1 (en) | 2010-02-09 | 2018-12-05 | Graphene Square Inc. | Method for manufacturing a graphene fiber |
WO2011100458A2 (en) | 2010-02-10 | 2011-08-18 | Bioo Scientific Corporation | Methods for fractionating and processing microparticles from biological samples and using them for biomarker discovery |
US20110202201A1 (en) | 2010-02-12 | 2011-08-18 | Fujitsu Ten Limited | Remote starting device and remote starting method |
JP5407921B2 (ja) | 2010-02-19 | 2014-02-05 | 富士電機株式会社 | グラフェン膜の製造方法 |
US9096437B2 (en) | 2010-03-08 | 2015-08-04 | William Marsh Rice University | Growth of graphene films from non-gaseous carbon sources |
EP2974673B1 (en) | 2010-03-17 | 2017-03-22 | The Board of Trustees of the University of Illionis | Implantable biomedical devices on bioresorbable substrates |
US8592291B2 (en) | 2010-04-07 | 2013-11-26 | Massachusetts Institute Of Technology | Fabrication of large-area hexagonal boron nitride thin films |
US8652779B2 (en) | 2010-04-09 | 2014-02-18 | Pacific Biosciences Of California, Inc. | Nanopore sequencing using charge blockade labels |
US8308702B2 (en) | 2010-04-21 | 2012-11-13 | Johnson & Johnson Consumer Companies, Inc. | Foaming porous pad for use with a motorized device |
US20110269919A1 (en) * | 2010-04-28 | 2011-11-03 | Nanomaterial Innovation Ltd. | CO2 reservoir |
EP2566535A4 (en) | 2010-05-03 | 2013-12-18 | Izhar Halahmi | DISTRIBUTION DEVICE FOR THE ADMINISTRATION OF AN ORGANIC ACTIVE AGENT |
GB2492729A (en) | 2010-05-11 | 2013-01-09 | Univ Boston | Use of Nanopore arrays for multiplex sequencing of nucleic acids |
KR101537638B1 (ko) | 2010-05-18 | 2015-07-17 | 삼성전자 주식회사 | 그라펜 박막을 이용한 수지의 도금 방법 |
US9075009B2 (en) | 2010-05-20 | 2015-07-07 | Sungkyunkwan University Foundation For Corporation Collaboration | Surface plasmon resonance sensor using metallic graphene, preparing method of the same, and surface plasmon resonance sensor system |
CN103154729B (zh) | 2010-06-08 | 2015-01-07 | 哈佛大学校长及研究员协会 | 具有由石墨烯支持的人工脂质膜的纳米孔装置 |
US9005565B2 (en) | 2010-06-24 | 2015-04-14 | Hamid-Reza Jahangiri-Famenini | Method and apparatus for forming graphene |
US9751763B2 (en) | 2010-07-14 | 2017-09-05 | Monash University | Material and applications therefor |
US9216390B2 (en) | 2010-07-15 | 2015-12-22 | Ohio State Innovation Foundation | Systems, compositions, and methods for fluid purification |
EP2598527A4 (en) | 2010-07-28 | 2014-01-08 | Smartcells Inc | RECOMBINANT EXPRESSED INSULIN POLYPEPTIDES AND APPLICATIONS THEREOF |
KR101227453B1 (ko) | 2010-07-29 | 2013-01-29 | 서강대학교산학협력단 | 인공 신단위 장치 |
WO2012021801A2 (en) | 2010-08-13 | 2012-02-16 | Seventh Sense Biosystems, Inc. | Systems and techniques for monitoring subjects |
US8361321B2 (en) | 2010-08-25 | 2013-01-29 | Lockheed Martin Corporation | Perforated graphene deionization or desalination |
US9475709B2 (en) | 2010-08-25 | 2016-10-25 | Lockheed Martin Corporation | Perforated graphene deionization or desalination |
KR101211850B1 (ko) | 2010-09-01 | 2012-12-12 | 연세대학교 산학협력단 | 그라핀 나노 필터 망, 그라핀 나노 필터 및 그 제조방법 |
WO2012028695A2 (en) | 2010-09-01 | 2012-03-08 | Facultes Universitaires Notre-Dame De La Paix | Method for depositing nanoparticles on substrates |
WO2012030368A1 (en) | 2010-09-01 | 2012-03-08 | Lawrence Curtin | Application of radio frequency to fluidized beds |
US9522161B2 (en) | 2010-10-26 | 2016-12-20 | Advanced Bio Development, Inc. | Performance enhancing composition and method of delivering nutrients |
WO2012074506A1 (en) | 2010-11-29 | 2012-06-07 | Empire Technology Development Llc | Graphene production using laser heated crystal growth |
WO2012075120A2 (en) | 2010-11-30 | 2012-06-07 | University Of South Florida | Graphene electrodes on a planar cubic silicon carbide (3c-sic) long term implantable neuronal prosthetic device |
US8354296B2 (en) | 2011-01-19 | 2013-01-15 | International Business Machines Corporation | Semiconductor structure and circuit including ordered arrangement of graphene nanoribbons, and methods of forming same |
JP5699872B2 (ja) | 2011-01-24 | 2015-04-15 | 日立金属株式会社 | 差動信号伝送用ケーブル |
US20120211367A1 (en) | 2011-01-25 | 2012-08-23 | President And Fellows Of Harvard College | Electrochemical carbon nanotube filter and method |
US9162885B2 (en) | 2011-02-17 | 2015-10-20 | Rutgers, The State University Of New Jersey | Graphene-encapsulated nanoparticle-based biosensor for the selective detection of biomarkers |
US8950862B2 (en) | 2011-02-28 | 2015-02-10 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus for an ophthalmic lens with functional insert layers |
KR101979038B1 (ko) | 2011-03-15 | 2019-05-15 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | 나노미터 고체 상태 재료에서의 나노포어의 제어된 제조법 |
US9889615B2 (en) | 2011-03-18 | 2018-02-13 | Johnson & Johnson Vision Care, Inc. | Stacked integrated component media insert for an ophthalmic device |
US10451897B2 (en) | 2011-03-18 | 2019-10-22 | Johnson & Johnson Vision Care, Inc. | Components with multiple energization elements for biomedical devices |
US9698129B2 (en) | 2011-03-18 | 2017-07-04 | Johnson & Johnson Vision Care, Inc. | Stacked integrated component devices with energization |
US9110310B2 (en) | 2011-03-18 | 2015-08-18 | Johnson & Johnson Vision Care, Inc. | Multiple energization elements in stacked integrated component devices |
US9804418B2 (en) | 2011-03-21 | 2017-10-31 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus for functional insert with power layer |
US9102111B2 (en) | 2011-03-21 | 2015-08-11 | Johnson & Johnson Vision Care, Inc. | Method of forming a functionalized insert with segmented ring layers for an ophthalmic lens |
US9195075B2 (en) | 2011-03-21 | 2015-11-24 | Johnson & Johnson Vision Care, Inc. | Full rings for a functionalized layer insert of an ophthalmic lens |
US9216391B2 (en) | 2011-03-25 | 2015-12-22 | Porifera, Inc. | Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation |
US10138169B2 (en) | 2011-04-04 | 2018-11-27 | The Regents Of The University Of Colorado, A Body Corporate | Highly porous ceramic material and method of using and forming same |
CN103842519B (zh) | 2011-04-04 | 2018-02-06 | 哈佛大学校长及研究员协会 | 通过局部电位测量进行的纳米孔感测 |
KR101813170B1 (ko) | 2011-04-11 | 2017-12-28 | 삼성전자주식회사 | 그래핀 함유 분리막 |
CN102242062B (zh) | 2011-04-19 | 2012-12-19 | 浙江大学 | 一种高分辨率的生物传感器 |
US10335519B2 (en) | 2011-04-20 | 2019-07-02 | Trustees Of Tufts College | Dynamic silk coatings for implantable devices |
US8551650B2 (en) | 2011-05-12 | 2013-10-08 | Northwestern University | Graphene materials having randomly distributed two-dimensional structural defects |
CN102344132B (zh) | 2011-07-08 | 2013-06-19 | 中国科学院上海微系统与信息技术研究所 | 一种逐层减薄石墨烯的方法 |
US9193587B2 (en) | 2011-07-13 | 2015-11-24 | Lockheed Martin Corporation | System and method for water purification and desalination |
US8617411B2 (en) | 2011-07-20 | 2013-12-31 | Lam Research Corporation | Methods and apparatus for atomic layer etching |
US10761043B2 (en) | 2011-07-22 | 2020-09-01 | The Trustees Of The University Of Pennsylvania | Graphene-based nanopore and nanostructure devices and methods for macromolecular analysis |
US20130025907A1 (en) | 2011-07-26 | 2013-01-31 | Tyco Electronics Corporation | Carbon-based substrate conductor |
KR102023754B1 (ko) | 2011-07-27 | 2019-09-20 | 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 | 생체분자 특성규명용 나노포어 센서 |
US9812730B2 (en) | 2011-08-02 | 2017-11-07 | Johnson & Johnson Vision Care, Inc. | Biocompatible wire battery |
US9132389B2 (en) | 2011-08-08 | 2015-09-15 | Colorado State University Research Foundation | Magnetically responsive membranes |
DE112012003329T5 (de) | 2011-08-11 | 2014-04-30 | National University Of Singapore | Tandem-Solarzelle mit Graphen-Zwischenschicht und Verfahren zum Herstellen davon |
US8586324B2 (en) | 2011-08-15 | 2013-11-19 | Biomet Biologics, Llc | Method and apparatus to create autologous clotting serum |
AU2012301868B2 (en) | 2011-08-31 | 2017-02-02 | Johnson & Johnson Vision Care, Inc. | Processor controlled intraocular lens system |
US8759153B2 (en) | 2011-09-06 | 2014-06-24 | Infineon Technologies Ag | Method for making a sensor device using a graphene layer |
WO2013036278A1 (en) | 2011-09-06 | 2013-03-14 | Nanotech Biomachines, Inc. | Integrated sensing device and related methods |
US8925736B2 (en) | 2011-09-12 | 2015-01-06 | University Of Houston | Nanocomposite polymer-carbon based nanomaterial filters for the simultaneous removal of bacteria and heavy metals |
US8747947B2 (en) | 2011-09-16 | 2014-06-10 | Empire Technology Development, Llc | Graphene defect alteration |
CN103733051B (zh) | 2011-09-16 | 2016-09-14 | 英派尔科技开发有限公司 | 石墨烯缺陷检测 |
CN102423272B (zh) | 2011-09-20 | 2016-03-30 | 复旦大学 | 一种具有网络通道的多孔支架及其制备方法 |
EP2574923A1 (en) | 2011-09-28 | 2013-04-03 | Koninklijke Philips Electronics N.V. | Apparatus for the processing of single molecules |
KR101858642B1 (ko) | 2011-09-29 | 2018-05-16 | 한화테크윈 주식회사 | 그래핀의 전사 방법 |
WO2013049636A1 (en) | 2011-09-30 | 2013-04-04 | The Regents Of The University Of Michigan | System for detecting rare cells |
US8808645B2 (en) | 2011-10-25 | 2014-08-19 | Hewlett-Packard Development Company, L.P. | Molecular filters |
US9394177B2 (en) | 2011-10-27 | 2016-07-19 | Wisconsin Alumni Research Foundation | Nanostructured graphene with atomically-smooth edges |
US8721074B2 (en) | 2011-11-30 | 2014-05-13 | Johnson & Johnson Vision Care, Inc. | Electrical interconnects in an electronic contact lens |
US20130323295A1 (en) | 2011-12-08 | 2013-12-05 | Johnson & Johnson Vision Care, Inc. | Monomer systems with dispersed silicone-based engineered particles |
US20130146221A1 (en) | 2011-12-13 | 2013-06-13 | Southern Illinois University Carbondale | Graphene-based membranes as electron transparent windows for ambient pressure x-ray photoelectron spectroscopy |
US20130152386A1 (en) | 2011-12-15 | 2013-06-20 | Praveen Pandojirao-S | Methods and apparatus to form electrical interconnects on ophthalmic devices |
CA2861604A1 (en) | 2011-12-28 | 2013-07-04 | Hollister Incorporated | Sound absorbing non-woven material, sound absorbing multilayer film, and laminates made thereof |
CN103182249B (zh) | 2011-12-30 | 2016-10-05 | 财团法人工业技术研究院 | 多孔基材的修饰方法及经修饰的多孔基材 |
US9425571B2 (en) | 2012-01-06 | 2016-08-23 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus to form electrical interconnects on ophthalmic devices |
US9149806B2 (en) | 2012-01-10 | 2015-10-06 | Biopico Systems Inc | Microfluidic devices and methods for cell sorting, cell culture and cells based diagnostics and therapeutics |
BR112014018419A8 (pt) | 2012-01-26 | 2017-07-11 | Johnson & Johnson Vision Care | Lente oftálmica energizada que inclui componentes integrados empilhados |
KR101638060B1 (ko) * | 2012-01-26 | 2016-07-08 | 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 | 주기적인 옹스트롬 단위의 구멍을 갖는 그래핀 멤브레인 |
US8857983B2 (en) | 2012-01-26 | 2014-10-14 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens assembly having an integrated antenna structure |
WO2013115762A1 (en) | 2012-01-27 | 2013-08-08 | Empire Technology Development, Llc | Accelerating transport through graphene membranes |
US8686249B1 (en) | 2012-02-15 | 2014-04-01 | Pioneer Hi Bred International Inc | Maize hybrid X08C971 |
US20130215380A1 (en) | 2012-02-22 | 2013-08-22 | Randall B. Pugh | Method of using full rings for a functionalized layer insert of an ophthalmic device |
US9134546B2 (en) | 2012-02-22 | 2015-09-15 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens with segmented ring layers in a functionalized insert |
JP5504298B2 (ja) | 2012-02-22 | 2014-05-28 | アオイ電子株式会社 | 振動発電素子およびその製造方法 |
CN102592720A (zh) | 2012-03-14 | 2012-07-18 | 于庆文 | 非金属电缆、制作方法及用途 |
AU2013231930B2 (en) * | 2012-03-15 | 2017-05-25 | King Fahd University Of Petroleum & Minerals | Graphene based filter |
US20130240355A1 (en) | 2012-03-16 | 2013-09-19 | Lockheed Martin Corporation | Functionalization of graphene holes for deionization |
EP2828196A1 (en) | 2012-03-21 | 2015-01-28 | Lockheed Martin Corporation | Methods for perforating graphene using an activated gas stream and perforated graphene produced therefrom |
US9028663B2 (en) | 2012-03-21 | 2015-05-12 | Lockheed Martin Corporation | Molecular separation device |
US8906245B2 (en) | 2012-03-21 | 2014-12-09 | Richard S. PLOSS, JR. | Material trivial transfer graphene |
DE102012005978A1 (de) | 2012-03-23 | 2013-09-26 | Johnson & Johnson Medical Gmbh | Chirurgisches Implantat |
US9463421B2 (en) | 2012-03-29 | 2016-10-11 | Lockheed Martin Corporation | Planar filtration and selective isolation and recovery device |
US9095823B2 (en) | 2012-03-29 | 2015-08-04 | Lockheed Martin Corporation | Tunable layered membrane configuration for filtration and selective isolation and recovery devices |
US20130256139A1 (en) | 2012-03-30 | 2013-10-03 | International Business Machines Corporation | Functionalized graphene or graphene oxide nanopore for bio-molecular sensing and dna sequencing |
US9675755B2 (en) | 2012-04-04 | 2017-06-13 | National Scientific Company | Syringe filter |
EP3939572B1 (en) | 2012-04-12 | 2024-03-27 | Yale University | Vehicles for controlled delivery of different pharmaceutical agents |
US9758674B2 (en) | 2012-04-13 | 2017-09-12 | Ticona Llc | Polyarylene sulfide for oil and gas flowlines |
US9494260B2 (en) | 2012-04-13 | 2016-11-15 | Ticona Llc | Dynamically vulcanized polyarylene sulfide composition |
US9758821B2 (en) | 2012-04-17 | 2017-09-12 | International Business Machines Corporation | Graphene transistor gated by charges through a nanopore for bio-molecular sensing and DNA sequencing |
US20130277305A1 (en) | 2012-04-19 | 2013-10-24 | Lockheed Martin Corporation | Selectively perforated graphene membranes for compound harvest, capture and retention |
CN102637584B (zh) | 2012-04-20 | 2014-07-02 | 兰州大学 | 一种图形化石墨烯的转移制备方法 |
US9834809B2 (en) | 2014-02-28 | 2017-12-05 | Lockheed Martin Corporation | Syringe for obtaining nano-sized materials for selective assays and related methods of use |
US9244196B2 (en) | 2012-05-25 | 2016-01-26 | Johnson & Johnson Vision Care, Inc. | Polymers and nanogel materials and methods for making and using the same |
US9067811B1 (en) | 2012-05-25 | 2015-06-30 | Lockheed Martin Corporation | System, method, and control for graphenoid desalination |
US20160067390A1 (en) | 2014-03-12 | 2016-03-10 | Lockheed Martin Corporation | Methods for in vivo and in vitro use of graphene and other two-dimensional materials |
US10653824B2 (en) | 2012-05-25 | 2020-05-19 | Lockheed Martin Corporation | Two-dimensional materials and uses thereof |
US9610546B2 (en) | 2014-03-12 | 2017-04-04 | Lockheed Martin Corporation | Separation membranes formed from perforated graphene and methods for use thereof |
US9744617B2 (en) | 2014-01-31 | 2017-08-29 | Lockheed Martin Corporation | Methods for perforating multi-layer graphene through ion bombardment |
US10073192B2 (en) | 2012-05-25 | 2018-09-11 | Johnson & Johnson Vision Care, Inc. | Polymers and nanogel materials and methods for making and using the same |
US9297929B2 (en) | 2012-05-25 | 2016-03-29 | Johnson & Johnson Vision Care, Inc. | Contact lenses comprising water soluble N-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers |
US9403112B2 (en) | 2012-06-12 | 2016-08-02 | The United States Of America As Represented By The Secretary Of The Air Force | Graphene oxide filters and methods of use |
EP2866885A1 (en) | 2012-06-29 | 2015-05-06 | Johnson & Johnson Vision Care, Inc. | Method and ophthalmic device for galvanic healing of an eye |
US20140000101A1 (en) | 2012-06-29 | 2014-01-02 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus to form printed batteries on ophthalmic devices |
EP2679540A1 (en) | 2012-06-29 | 2014-01-01 | Graphenea, S.A. | Method of manufacturing a graphene monolayer on insulating substrates |
DE102012016090A1 (de) | 2012-08-14 | 2014-02-20 | Johnson & Johnson Medical Gmbh | Chirurgisches Implantat |
GB201214565D0 (en) | 2012-08-15 | 2012-09-26 | Univ Manchester | Membrane |
KR101556360B1 (ko) | 2012-08-16 | 2015-09-30 | 삼성전자주식회사 | 그래핀 물성 복귀 방법 및 장치 |
US20140093728A1 (en) | 2012-09-28 | 2014-04-03 | Applied Nanostructured Solutions, Llc | Carbon nanostructures and methods of making the same |
DE102012021547A1 (de) | 2012-11-02 | 2014-05-08 | Johnson & Johnson Medical Gmbh | Chirurgisches Implantat |
GB201220804D0 (en) | 2012-11-20 | 2013-01-02 | Provost Fellows Foundation Scholars And The Other Members Of Board Of | Asymetric bottom contacted 2D layer devices |
US20140154464A1 (en) | 2012-11-30 | 2014-06-05 | Empire Technology Development, Llc | Graphene membrane with size-tunable nanoscale pores |
WO2014084861A1 (en) | 2012-11-30 | 2014-06-05 | Empire Technology Development, Llc | Selective membrane supported on nanoporous graphene |
US9656214B2 (en) | 2012-11-30 | 2017-05-23 | Empire Technology Development Llc | Graphene membrane laminated to porous woven or nonwoven support |
WO2014100412A1 (en) | 2012-12-19 | 2014-06-26 | Robert Mcginnis | Selective membranes formed by alignment of porous materials |
AU2013362950B2 (en) | 2012-12-19 | 2017-04-13 | Johnson & Johnson Consumer Companies, Inc. | Anhydrous powder-to-liquid particles |
US9835390B2 (en) | 2013-01-07 | 2017-12-05 | Nanotek Instruments, Inc. | Unitary graphene material-based integrated finned heat sink |
SG2013091087A (en) | 2013-01-09 | 2014-08-28 | Johnson & Johnson Vision Care | Multi-piece insert device with glue seal for ophthalmic devices |
SG2013091095A (en) | 2013-01-09 | 2014-08-28 | Johnson & Johnson Vision Care | Method of forming a multi-piece insert device with seal for ophthalmic devices |
SG2013091079A (en) | 2013-01-09 | 2014-08-28 | Johnson & Johnson Vision Care | Multi-piece insert device with locking seal for ophthalmic devices |
US10898865B2 (en) | 2013-01-31 | 2021-01-26 | American University In Cairo (AUC) | Polymer-carbon nanotube nanocomposite porous membranes |
US9108158B2 (en) | 2013-02-14 | 2015-08-18 | University Of South Carolina | Ultrathin, molecular-sieving graphene oxide membranes for separations along with their methods of formation and use |
US9169575B1 (en) | 2013-03-04 | 2015-10-27 | Lockheed Martin Corporation | Methods for releasing graphene from a metal substrate by electrowetting |
US9242865B2 (en) | 2013-03-05 | 2016-01-26 | Lockheed Martin Corporation | Systems and methods for production of graphene by plasma-enhanced chemical vapor deposition |
DE102013004573A1 (de) | 2013-03-11 | 2014-09-11 | Johnson & Johnson Medical Gmbh | Chirurgisches Implantat |
DE102013004574A1 (de) | 2013-03-11 | 2014-09-11 | Johnson & Johnson Medical Gmbh | Chirurgisches Implantat |
WO2014164621A1 (en) | 2013-03-12 | 2014-10-09 | Lockheed Martin Corporation | Method for forming filter with uniform aperture size |
EP2969153A1 (en) | 2013-03-13 | 2016-01-20 | Lockheed Martin Corporation | Nanoporous membranes and methods for making the same |
US20160009049A1 (en) | 2013-03-13 | 2016-01-14 | Lockheed Martin Corporation | Nanoporous membranes and methods for making the same |
US9480952B2 (en) | 2013-03-14 | 2016-11-01 | Lockheed Martin Corporation | Methods for chemical reaction perforation of atomically thin materials |
DE102013004486A1 (de) | 2013-03-14 | 2014-09-18 | Johnson & Johnson Medical Gmbh | Chirurgisches Implantat |
US8894201B2 (en) | 2013-03-15 | 2014-11-25 | Johnson & Johnson Vision Care, Inc. | Methods and ophthalmic devices with thin film transistors |
US9406969B2 (en) | 2013-03-15 | 2016-08-02 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus to form three-dimensional biocompatible energization elements |
US9329410B2 (en) | 2013-03-15 | 2016-05-03 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lenses with colorant patterned inserts |
US9977260B2 (en) | 2013-03-15 | 2018-05-22 | Johnson & Johnson Vision Care, Inc. | Sealing and encapsulation in energized ophthalmic devices with annular inserts |
US9481138B2 (en) | 2013-03-15 | 2016-11-01 | Johnson & Johnson Vision Care, Inc. | Sealing and encapsulation in energized ophthalmic devices with annular inserts |
US8974055B2 (en) | 2013-03-15 | 2015-03-10 | Johnson & Johnson Vision Care, Inc. | Method and apparatus for encapsulating a rigid insert in a contact lens for correcting vision in astigmatic patients |
US9307654B2 (en) | 2013-03-15 | 2016-04-05 | Johnson & Johnson Vision Care, Inc. | Method of forming a patterned multi-piece insert for an ophthalmic lens |
US9581832B2 (en) | 2013-03-15 | 2017-02-28 | Johnson & Johnson Vision Care, Inc. | Method and apparatus for encapsulating a rigid insert in a contact lens for correcting vision in astigmatic patients |
US8940552B2 (en) | 2013-03-15 | 2015-01-27 | Johnson & Johnson Vision Care, Inc. | Methods and ophthalmic devices with organic semiconductor layer |
TW201505845A (zh) | 2013-03-15 | 2015-02-16 | Lockheed Corp | 從基板分離原子級薄材料的方法 |
US9310626B2 (en) | 2013-03-15 | 2016-04-12 | Johnson & Johnson Vision Care, Inc. | Ophthalmic devices with organic semiconductor transistors |
US9096050B2 (en) | 2013-04-02 | 2015-08-04 | International Business Machines Corporation | Wafer scale epitaxial graphene transfer |
US20160354729A1 (en) | 2013-04-12 | 2016-12-08 | General Electric Company | Membranes comprising graphene |
CN105122044B (zh) | 2013-04-18 | 2018-01-02 | 英派尔科技开发有限公司 | 标记和检测石墨烯层中的缺陷的方法和系统 |
KR101421219B1 (ko) * | 2013-04-24 | 2014-07-30 | 한양대학교 산학협력단 | 그래핀 옥사이드 코팅층을 포함하는 복합 분리막 및 그 제조방법 |
US9370749B2 (en) * | 2013-04-24 | 2016-06-21 | Battelle Memorial Institute | Porous multi-component material for the capture and separation of species of interest |
US9358508B2 (en) | 2013-04-25 | 2016-06-07 | Lockheed Martin Corporation | Dryer and water recovery/purification unit employing graphene oxide or perforated graphene monolayer membranes |
WO2014182063A1 (ko) | 2013-05-07 | 2014-11-13 | 주식회사 엘지화학 | 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지 |
US8975121B2 (en) | 2013-05-09 | 2015-03-10 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus to form thin film nanocrystal integrated circuits on ophthalmic devices |
US9429769B2 (en) | 2013-05-09 | 2016-08-30 | Johnson & Johnson Vision Care, Inc. | Ophthalmic device with thin film nanocrystal integrated circuits |
DE102013208924A1 (de) | 2013-05-14 | 2014-12-04 | Johnson & Johnson Medical Gmbh | Chirurgisches Implantat umfassend einer Lage mit Öffnungen |
US9337274B2 (en) | 2013-05-15 | 2016-05-10 | Globalfoundries Inc. | Formation of large scale single crystalline graphene |
RU2652493C2 (ru) | 2013-05-21 | 2018-04-26 | Джонсон энд Джонсон Консьюмер Инк. | Упаковка с функцией защиты от вскрытия детьми |
US9804416B2 (en) | 2013-05-21 | 2017-10-31 | Johnson & Johnson Vision Care, Inc. | Energizable ophthalmic lens with an event-based coloration system |
US9572918B2 (en) | 2013-06-21 | 2017-02-21 | Lockheed Martin Corporation | Graphene-based filter for isolating a substance from blood |
US9014639B2 (en) | 2013-07-11 | 2015-04-21 | Johnson & Johnson Vision Care, Inc. | Methods of using and smartphone event notification utilizing an energizable ophthalmic lens with a smartphone event indicator mechanism |
US9052533B2 (en) | 2013-07-11 | 2015-06-09 | Johnson & Johnson Vision Care, Inc. | Energizable ophthalmic lens with a smartphone event indicator mechanism |
DE102013014295A1 (de) | 2013-08-22 | 2015-02-26 | Johnson & Johnson Medical Gmbh | Chirurgisches Implantat |
US9185486B2 (en) | 2013-08-27 | 2015-11-10 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens with micro-acoustic elements |
KR20160092987A (ko) | 2013-08-28 | 2016-08-05 | 내셔날 인스티튜트 오프 에어로스페이스 어소시에이츠 | 제어 촉매 산화를 통한 다공성 탄소 동소체의 벌크 제조방법 |
US9448421B2 (en) | 2013-09-04 | 2016-09-20 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens system capable of communication between lenses utilizing a secondary external device |
US9170646B2 (en) | 2013-09-04 | 2015-10-27 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens system capable of interfacing with an external device |
US9442309B2 (en) | 2013-09-17 | 2016-09-13 | Johnson & Johnson Vision Care, Inc. | Method and apparatus for ophthalmic devices comprising dielectrics and nano-scaled droplets of liquid crystal |
US9869885B2 (en) | 2013-09-17 | 2018-01-16 | Johnson & Johnson Vision Care, Inc. | Method and apparatus for ophthalmic devices including gradient-indexed liquid crystal layers and shaped dielectric layers |
US9500882B2 (en) | 2013-09-17 | 2016-11-22 | Johnson & Johnson Vision Care, Inc. | Variable optic ophthalmic device including shaped liquid crystal elements with nano-scaled droplets of liquid crystal |
US20150077658A1 (en) | 2013-09-17 | 2015-03-19 | Johnson & Johnson Vision Care, Inc. | Variable optic ophthalmic device including shaped liquid crystal elements and polarizing elements |
US9335562B2 (en) | 2013-09-17 | 2016-05-10 | Johnson & Johnson Vision Care, Inc. | Method and apparatus for ophthalmic devices comprising dielectrics and liquid crystal polymer networks |
US9268154B2 (en) | 2013-09-17 | 2016-02-23 | Johnson & Johnson Vision Care, Inc. | Method and apparatus for ophthalmic devices including hybrid alignment layers and shaped liquid crystal layers |
US9366881B2 (en) | 2013-09-17 | 2016-06-14 | Johnson & Johnson Vision Care, Inc. | Method and apparatus for ophthalmic devices including shaped liquid crystal polymer networked regions of liquid crystal |
SG10201405242WA (en) | 2013-09-17 | 2015-04-29 | Johnson & Johnson Vision Care | Variable optic ophthalmic device including liquid crystal elements |
US20150075667A1 (en) | 2013-09-19 | 2015-03-19 | Lockheed Martin Corporation | Carbon macrotubes and methods for making the same |
US9225375B2 (en) | 2013-09-23 | 2015-12-29 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens system capable of wireless communication with multiple external devices |
US20150096935A1 (en) | 2013-10-04 | 2015-04-09 | Somenath Mitra | Nanocarbon immobilized membranes |
US10166386B2 (en) | 2013-10-14 | 2019-01-01 | The Board Of Regents Of The University Of Oklahoma | Implantable electrode assembly |
CN106413859B (zh) | 2013-11-01 | 2019-07-05 | 麻省理工学院 | 减轻膜中的渗漏 |
WO2015102746A2 (en) | 2013-11-04 | 2015-07-09 | Massachusetts Institute Of Technology | Electronics including graphene-based hybrid structures |
US9731437B2 (en) | 2013-11-22 | 2017-08-15 | Johnson & Johnson Vision Care, Inc. | Method of manufacturing hydrogel ophthalmic devices with electronic elements |
EP3074551B1 (en) | 2013-11-25 | 2023-11-22 | Northeastern University | Freestanding ultra thin membranes and transfer-free fabrication thereof |
CN103603706A (zh) | 2013-11-25 | 2014-02-26 | 广西玉柴机器股份有限公司 | 发动机曲轴箱油气分离装置 |
WO2015095267A1 (en) | 2013-12-18 | 2015-06-25 | Ticona Llc | Conductive thermoplastic compositions for use in tubular applications |
US9522189B2 (en) | 2013-12-20 | 2016-12-20 | Johnson & Johnson Consumer Inc. | Topical gel compositions including poly(monostearoyl glycerol-co-succinate) polymer and methods for enhancing the topical application of a benefit agent |
US20150174254A1 (en) | 2013-12-23 | 2015-06-25 | Mcneil-Ppc, Inc. | Topical gel compositions including polycaprolactone polymer and methods for enhancing the topical application of a benefit agent |
US9347911B2 (en) | 2013-12-30 | 2016-05-24 | Infineon Technologies Ag | Fluid sensor chip and method for manufacturing the same |
US20150182473A1 (en) | 2013-12-30 | 2015-07-02 | Molecular Rebar Design, Llc | Transdermal patches with discrete carbon nanotubes |
CA2938305A1 (en) | 2014-01-31 | 2015-08-06 | Lockheed Martin Corporation | Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer |
CN105940479A (zh) | 2014-01-31 | 2016-09-14 | 洛克希德马丁公司 | 使用宽离子场穿孔二维材料 |
WO2015138752A1 (en) | 2014-03-12 | 2015-09-17 | Lockheed Martin Corporation | Coating of a porous substrate for disposition of graphene and other two-dimensional materials thereon |
WO2015138736A1 (en) | 2014-03-12 | 2015-09-17 | Lockheed Martin Corporation | In vivo and in vitro use of graphene |
CA2942496A1 (en) | 2014-03-12 | 2015-09-17 | Lockheed Martin Corporation | Separation membranes formed from perforated graphene |
US20150258525A1 (en) | 2014-03-12 | 2015-09-17 | Lockheed Martin Corporation | Graphene-based molecular sieves and methods for production thereof |
WO2015138808A1 (en) | 2014-03-12 | 2015-09-17 | Lockheed Martin Corporation | Graphene-based molecular separation and sequestration device |
US20150268150A1 (en) | 2014-03-24 | 2015-09-24 | Lockheed Martin Corporation | Large area membrane evaluation apparatuses and methods for use thereof |
US9468606B2 (en) | 2014-03-31 | 2016-10-18 | Johnson & Johnson Consumer Inc. | Compostions and methods for enhancing the topical application of an acidic benefit agent |
US9474699B2 (en) | 2014-03-31 | 2016-10-25 | Johnson & Johnson Consumer Inc. | Compostions and methods for enhancing the topical application of a basic benefit agent |
EP2937313B1 (en) | 2014-04-24 | 2019-04-03 | Graphenea, S.A. | Equipment and method to automatically transfer a graphene monolayer to a substrate |
AU2015255756A1 (en) | 2014-05-08 | 2016-12-22 | Lockheed Martin Corporation | Stacked two-dimensional materials and methods for producing structures incorporating same |
US9274245B2 (en) | 2014-05-30 | 2016-03-01 | Baker Hughes Incorporated | Measurement technique utilizing novel radiation detectors in and near pulsed neutron generator tubes for well logging applications using solid state materials |
US11607026B2 (en) | 2014-05-30 | 2023-03-21 | Johnson & Johnson Consumer Inc. | Device for delivery of skin care composition |
WO2015195304A1 (en) | 2014-06-17 | 2015-12-23 | Johnson & Johnson Consumer Companies, Inc. | Compositions and methods for enhancing the topical application of a benefit agent including powder to liquid particles and a second powder |
PL224343B1 (pl) | 2014-06-25 | 2016-12-30 | Inst Tech Materiałów Elektronicznych | Sposób przenoszenia warstwy grafenowej |
US9742001B2 (en) | 2014-08-07 | 2017-08-22 | Nanotek Instruments, Inc. | Graphene foam-protected anode active materials for lithium batteries |
US10456754B2 (en) | 2014-08-08 | 2019-10-29 | University Of Southern California | High performance membranes for water reclamation using polymeric and nanomaterials |
KR101595185B1 (ko) | 2014-09-01 | 2016-02-19 | 한국기계연구원 | 액체 여과 구조체 |
EA201790508A1 (ru) | 2014-09-02 | 2017-08-31 | Локхид Мартин Корпорейшн | Мембраны гемодиализа и гемофильтрации на основе двумерного мембранного материала и способы их применения |
KR102382566B1 (ko) | 2014-12-23 | 2022-04-05 | 다스-나노 테크 에스.엘. | 박막 재료의 품질 검사 |
EP3070053B1 (en) | 2015-03-17 | 2018-02-28 | Graphenea, S.A. | Method for obtaining graphene oxide |
US10354866B2 (en) | 2015-07-27 | 2019-07-16 | Graphenea, S.A. | Equipment and method to automatically transfer a graphene monolayer to a substrate |
WO2017023375A1 (en) | 2015-08-06 | 2017-02-09 | Lockheed Martin Corporation | Biologically-relevant selective enclosures for promoting growth and vascularization |
EP3135631B1 (en) | 2015-08-24 | 2024-04-10 | Graphenea Semiconductor S.L.U. | Method for transferring graphene |
-
2015
- 2015-03-12 CA CA2942496A patent/CA2942496A1/en not_active Abandoned
- 2015-03-12 AU AU2015229331A patent/AU2015229331A1/en not_active Abandoned
- 2015-03-12 WO PCT/US2015/020246 patent/WO2015138771A1/en active Application Filing
- 2015-03-12 CN CN201580020732.XA patent/CN106232205A/zh active Pending
- 2015-03-12 JP JP2016557080A patent/JP2017512129A/ja active Pending
- 2015-03-12 EP EP15762019.6A patent/EP3116625A4/en not_active Withdrawn
- 2015-03-12 US US14/656,580 patent/US9844757B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019136623A (ja) * | 2018-02-06 | 2019-08-22 | 京セラ株式会社 | 電極付き分離膜、分離装置および流体分離方法 |
JP7018778B2 (ja) | 2018-02-06 | 2022-02-14 | 京セラ株式会社 | 分離装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3116625A4 (en) | 2017-12-20 |
CN106232205A (zh) | 2016-12-14 |
US9844757B2 (en) | 2017-12-19 |
AU2015229331A1 (en) | 2016-10-27 |
EP3116625A1 (en) | 2017-01-18 |
WO2015138771A1 (en) | 2015-09-17 |
CA2942496A1 (en) | 2015-09-17 |
US20150258503A1 (en) | 2015-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9844757B2 (en) | Separation membranes formed from perforated graphene and methods for use thereof | |
US9610546B2 (en) | Separation membranes formed from perforated graphene and methods for use thereof | |
Su et al. | Graphene oxide membranes: controlling their transport pathways | |
Zhao et al. | Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation | |
Liu et al. | Two‐dimensional‐material membranes: a new family of high‐performance separation membranes | |
Zheng et al. | Synthetic two‐dimensional materials: a new paradigm of membranes for ultimate separation | |
Joshi et al. | Graphene oxide: the new membrane material | |
Kim et al. | Selective gas transport through few-layered graphene and graphene oxide membranes | |
Song et al. | Preparation of SSZ-13 membranes with enhanced fluxes using asymmetric alumina supports for N2/CH4 and CO2/CH4 separations | |
Liu et al. | Two-dimensional nanosheet-based gas separation membranes | |
Wang et al. | Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations | |
Sun et al. | Recent developments in graphene‐based membranes: structure, mass‐transport mechanism and potential applications | |
Centeno et al. | Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation | |
EP2511002B1 (en) | Separation membrane including graphene | |
Cheng et al. | Two‐dimensional membranes: new paradigms for high‐performance separation membranes | |
Zhong et al. | Aluminophosphate-17 and silicoaluminophosphate-17 membranes for CO2 separations | |
US20150258525A1 (en) | Graphene-based molecular sieves and methods for production thereof | |
Fuertes et al. | Preparation of supported carbon molecular sieve membranes | |
Weber et al. | Atomic layer deposition (ALD) on inorganic or polymeric membranes | |
Zhou et al. | Single-to few-layered, graphene-based separation membranes | |
WO2017049005A1 (en) | Separation membranes formed from perforated graphene and methods for use thereof | |
Yahaya et al. | Development of Thin‐Film Composite Membranes from Aromatic Cardo‐Type Co‐Polyimide for Mixed and Sour Gas Separations from Natural Gas | |
US20180036688A1 (en) | Separation of gases using reactive adsorbents and membranes | |
Lim et al. | First-principles modeling of water permeation through periodically porous graphene derivatives | |
Lee et al. | Tunable sieving of small gas molecules using horizontal graphene oxide membrane |