US8486709B2 - Optical nanosensors comprising photoluminescent nanostructures - Google Patents
Optical nanosensors comprising photoluminescent nanostructures Download PDFInfo
- Publication number
- US8486709B2 US8486709B2 US12/860,752 US86075210A US8486709B2 US 8486709 B2 US8486709 B2 US 8486709B2 US 86075210 A US86075210 A US 86075210A US 8486709 B2 US8486709 B2 US 8486709B2
- Authority
- US
- United States
- Prior art keywords
- analyte
- swnt
- nanosensor
- fluorescence
- nanostructure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 138
- 230000003287 optical effect Effects 0.000 title abstract description 16
- 239000012491 analyte Substances 0.000 claims abstract description 135
- 238000000034 method Methods 0.000 claims abstract description 93
- 229920000642 polymer Polymers 0.000 claims abstract description 68
- 230000003993 interaction Effects 0.000 claims abstract description 46
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical group O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 465
- 239000002109 single walled nanotube Substances 0.000 claims description 239
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 227
- 238000001514 detection method Methods 0.000 claims description 33
- 239000002041 carbon nanotube Substances 0.000 claims description 29
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 29
- 230000005670 electromagnetic radiation Effects 0.000 claims description 27
- 230000005855 radiation Effects 0.000 claims description 17
- 206010028980 Neoplasm Diseases 0.000 claims description 4
- 208000006673 asthma Diseases 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- 150000004676 glycans Chemical class 0.000 claims description 4
- 229920001282 polysaccharide Polymers 0.000 claims description 4
- 239000005017 polysaccharide Substances 0.000 claims description 4
- 208000024827 Alzheimer disease Diseases 0.000 claims description 3
- 201000006417 multiple sclerosis Diseases 0.000 claims description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 3
- 201000008827 tuberculosis Diseases 0.000 claims description 3
- 238000003745 diagnosis Methods 0.000 claims description 2
- 230000002441 reversible effect Effects 0.000 abstract description 13
- 150000003384 small molecules Chemical class 0.000 abstract description 7
- 210000004027 cell Anatomy 0.000 description 81
- 238000010791 quenching Methods 0.000 description 38
- 230000004044 response Effects 0.000 description 37
- 230000007704 transition Effects 0.000 description 37
- 239000000243 solution Substances 0.000 description 36
- 230000000171 quenching effect Effects 0.000 description 34
- 239000002071 nanotube Substances 0.000 description 32
- 229960003753 nitric oxide Drugs 0.000 description 31
- 230000008569 process Effects 0.000 description 30
- 238000001179 sorption measurement Methods 0.000 description 28
- 238000004061 bleaching Methods 0.000 description 26
- -1 for example Polymers 0.000 description 25
- FFKUHGONCHRHPE-UHFFFAOYSA-N 5-methyl-1h-pyrimidine-2,4-dione;7h-purin-6-amine Chemical compound CC1=CNC(=O)NC1=O.NC1=NC=NC2=C1NC=N2 FFKUHGONCHRHPE-UHFFFAOYSA-N 0.000 description 24
- 239000000523 sample Substances 0.000 description 22
- 239000000203 mixture Substances 0.000 description 20
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 description 20
- 230000007246 mechanism Effects 0.000 description 19
- 108020004414 DNA Proteins 0.000 description 18
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 18
- 238000003795 desorption Methods 0.000 description 18
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 18
- 238000002474 experimental method Methods 0.000 description 17
- 210000002540 macrophage Anatomy 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 16
- 241000894007 species Species 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 239000012530 fluid Substances 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 238000000502 dialysis Methods 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 229940052665 nadh Drugs 0.000 description 13
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 13
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 13
- 239000002953 phosphate buffered saline Substances 0.000 description 13
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 12
- 229920002307 Dextran Polymers 0.000 description 12
- 108091034117 Oligonucleotide Proteins 0.000 description 12
- 230000007423 decrease Effects 0.000 description 12
- 239000000725 suspension Substances 0.000 description 12
- 238000004630 atomic force microscopy Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 10
- 230000034994 death Effects 0.000 description 10
- 231100000517 death Toxicity 0.000 description 10
- 238000002189 fluorescence spectrum Methods 0.000 description 10
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 10
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 102100037850 Interferon gamma Human genes 0.000 description 9
- 108010074328 Interferon-gamma Proteins 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 229960003638 dopamine Drugs 0.000 description 9
- 239000002158 endotoxin Substances 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 9
- 229920006008 lipopolysaccharide Polymers 0.000 description 9
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- 102100029438 Nitric oxide synthase, inducible Human genes 0.000 description 8
- 101710089543 Nitric oxide synthase, inducible Proteins 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000004891 communication Methods 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 238000005424 photoluminescence Methods 0.000 description 8
- 230000027756 respiratory electron transport chain Effects 0.000 description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 230000005284 excitation Effects 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000002096 quantum dot Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000007476 Maximum Likelihood Methods 0.000 description 6
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 229960005070 ascorbic acid Drugs 0.000 description 6
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 6
- 230000005281 excited state Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 description 6
- 229960003987 melatonin Drugs 0.000 description 6
- 239000002048 multi walled nanotube Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 235000002639 sodium chloride Nutrition 0.000 description 6
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- DZGWFCGJZKJUFP-UHFFFAOYSA-N tyramine Chemical compound NCCC1=CC=C(O)C=C1 DZGWFCGJZKJUFP-UHFFFAOYSA-N 0.000 description 6
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 5
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 5
- 239000002211 L-ascorbic acid Substances 0.000 description 5
- 235000000069 L-ascorbic acid Nutrition 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 239000007983 Tris buffer Substances 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 239000002079 double walled nanotube Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910021389 graphene Inorganic materials 0.000 description 5
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229960002477 riboflavin Drugs 0.000 description 5
- 235000019192 riboflavin Nutrition 0.000 description 5
- 239000002151 riboflavin Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 5
- SXGMVGOVILIERA-UHFFFAOYSA-N (2R,3S)-2,3-diaminobutanoic acid Natural products CC(N)C(N)C(O)=O SXGMVGOVILIERA-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 4
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 150000004985 diamines Chemical class 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 229960001340 histamine Drugs 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000000386 microscopy Methods 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 108091033319 polynucleotide Proteins 0.000 description 4
- 102000040430 polynucleotide Human genes 0.000 description 4
- 239000002157 polynucleotide Substances 0.000 description 4
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 3
- CKLJMWTZIZZHCS-UWTATZPHSA-N D-aspartic acid Chemical compound OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 3
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 3
- 238000005411 Van der Waals force Methods 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 229960005305 adenosine Drugs 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000000089 atomic force micrograph Methods 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 229940109239 creatinine Drugs 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000002073 fluorescence micrograph Methods 0.000 description 3
- 229960002885 histidine Drugs 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002070 nanowire Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 229940068984 polyvinyl alcohol Drugs 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229940054269 sodium pyruvate Drugs 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229960003732 tyramine Drugs 0.000 description 3
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 2
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 2
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 235000001258 Cinchona calisaya Nutrition 0.000 description 2
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 2
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 238000004435 EPR spectroscopy Methods 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 2
- XUIIKFGFIJCVMT-LBPRGKRZSA-N L-thyroxine Chemical compound IC1=CC(C[C@H]([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-LBPRGKRZSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 description 2
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 229910004679 ONO2 Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 239000005700 Putrescine Substances 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- JUGOREOARAHOCO-UHFFFAOYSA-M acetylcholine chloride Chemical compound [Cl-].CC(=O)OCC[N+](C)(C)C JUGOREOARAHOCO-UHFFFAOYSA-M 0.000 description 2
- 229960004266 acetylcholine chloride Drugs 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 2
- 229960002173 citrulline Drugs 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 2
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000001917 fluorescence detection Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229960002449 glycine Drugs 0.000 description 2
- 229940029575 guanosine Drugs 0.000 description 2
- 238000012188 high-throughput screening assay Methods 0.000 description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229950008325 levothyroxine Drugs 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000329 molecular dynamics simulation Methods 0.000 description 2
- 125000001893 nitrooxy group Chemical group [O-][N+](=O)O* 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 229960000948 quinine Drugs 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 229940076279 serotonin Drugs 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000001392 ultraviolet--visible--near infrared spectroscopy Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- 229930182834 17alpha-Estradiol Natural products 0.000 description 1
- VOXZDWNPVJITMN-SFFUCWETSA-N 17α-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-SFFUCWETSA-N 0.000 description 1
- JNJFONBBNLVENC-UHFFFAOYSA-N 1h-imidazole;trifluoromethanesulfonic acid Chemical compound C1=CNC=N1.OS(=O)(=O)C(F)(F)F JNJFONBBNLVENC-UHFFFAOYSA-N 0.000 description 1
- JTTIOYHBNXDJOD-UHFFFAOYSA-N 2,4,6-triaminopyrimidine Chemical compound NC1=CC(N)=NC(N)=N1 JTTIOYHBNXDJOD-UHFFFAOYSA-N 0.000 description 1
- MKKDSIYTXTZFAU-UHFFFAOYSA-N 2-amino-3,7-dihydropurin-6-one;5-methyl-1h-pyrimidine-2,4-dione Chemical compound CC1=CNC(=O)NC1=O.O=C1NC(N)=NC2=C1NC=N2 MKKDSIYTXTZFAU-UHFFFAOYSA-N 0.000 description 1
- MEVXSUZBFYZPHZ-UHFFFAOYSA-N 2-amino-3-methyl-4h-imidazol-5-one;sulfuric acid Chemical compound OS(O)(=O)=O.CN1CC(=O)N=C1N MEVXSUZBFYZPHZ-UHFFFAOYSA-N 0.000 description 1
- HEMGYNNCNNODNX-UHFFFAOYSA-N 3,4-diaminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1N HEMGYNNCNNODNX-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 241000224489 Amoeba Species 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 125000006847 BOC protecting group Chemical group 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- SWPFGXDTJRERQW-UHFFFAOYSA-N C.C.C.N=O Chemical compound C.C.C.N=O SWPFGXDTJRERQW-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- RFSUNEUAIZKAJO-VRPWFDPXSA-N D-Fructose Natural products OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-VRPWFDPXSA-N 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- CTENFNNZBMHDDG-UHFFFAOYSA-N Dopamine hydrochloride Chemical compound Cl.NCCC1=CC=C(O)C(O)=C1 CTENFNNZBMHDDG-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000724418 Homo sapiens Neutral amino acid transporter B(0) Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- 102100028267 Neutral amino acid transporter B(0) Human genes 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 238000001632 acidimetric titration Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- LGEQQWMQCRIYKG-DOFZRALJSA-N anandamide Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)NCCO LGEQQWMQCRIYKG-DOFZRALJSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- LGEQQWMQCRIYKG-UHFFFAOYSA-N arachidonic acid ethanolamide Natural products CCCCCC=CCC=CCC=CCC=CCCCC(=O)NCCO LGEQQWMQCRIYKG-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 239000002717 carbon nanostructure Substances 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 208000029771 childhood onset asthma Diseases 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229960003624 creatine Drugs 0.000 description 1
- 239000006046 creatine Substances 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 230000000445 cytocidal effect Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 1
- ZFTFAPZRGNKQPU-UHFFFAOYSA-N dicarbonic acid Chemical compound OC(=O)OC(O)=O ZFTFAPZRGNKQPU-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229960001149 dopamine hydrochloride Drugs 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 238000012203 high throughput assay Methods 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229960002163 hydrogen peroxide Drugs 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229940125369 inhaled corticosteroids Drugs 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229960002337 magnesium chloride Drugs 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229940041290 mannose Drugs 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 229950006238 nadide Drugs 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000004409 osteocyte Anatomy 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000005887 phenylation reaction Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 238000004375 physisorption Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 229920000885 poly(2-vinylpyridine) Polymers 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002468 redox effect Effects 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000003335 steric effect Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000005309 stochastic process Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 231100000747 viability assay Toxicity 0.000 description 1
- 238000003026 viability measurement method Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/84—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/54346—Nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54373—Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N2021/7769—Measurement method of reaction-produced change in sensor
- G01N2021/7786—Fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6489—Photoluminescence of semiconductors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/17—Nitrogen containing
- Y10T436/177692—Oxides of nitrogen
Definitions
- Small molecules can play roles as intracellular messengers for signaling pathways within the human body.
- nitric oxide (NO) can participate in signaling in the cardiovascular and nervous systems, and can be employed in the human immune response system. Detection of small molecules has traditionally been relatively difficult, and becomes even more difficult at low concentrations.
- tools that may be used to detect such species include, for example, visible-fluorescence probes, chemiluminescence-based devices, and X-ray photoelectron and electron paramagnetic resonance (EPR) spectroscopy.
- EPR electron paramagnetic resonance
- diaminofluoresceins generally detect molecules indirectly (e.g., via oxidation products).
- Other limitations include photobleaching and lack of optical penetration through biological tissues for metal-fluorophore complexes. Therefore, the design of more robust schemes for the biological detection of relatively small molecules is still an active area of research.
- optical nanosensors comprising photoluminescent nanostructures for the determination of, for example, nitric oxide
- the subject matter of the present invention involves, in some cases, interrelated products, alternative solutions to a particular problem, and/or a plurality of different uses of one or more systems and/or articles.
- a nanosensor can include a photoluminescent nanostructure and a polymer interacting with the photoluminescent nanostructure.
- the polymer can include a phenyl group.
- the nanosensor can emit a first emission of electromagnetic radiation in the absence of an analyte, and the nanosensor can emit a second emission of electromagnetic radiation upon interacting with the analyte.
- the analyte concentration can be less than about 100 micromolar.
- a nanosensor in another aspect, can comprise a photoluminescent nanostructure, and a polymer interacting with the photoluminescent nanostructure.
- the nanosensor can emit a first emission of electromagnetic radiation in the absence of nitric oxide, and the nanosensor can emit a second emission of electromagnetic radiation upon interacting with nitric oxide at concentrations of less than about 100 micromolar.
- the interaction between the nitric oxide and the nanosensor can be reversible.
- a nanosensor can include a photoluminescent nanostructure, and a polymer interacting with the photoluminescent nanostructure.
- the nanosensor can emit a first emission of electromagnetic radiation in the absence of an analyte, and the nanosensor can emit a second emission of electromagnetic radiation upon interacting with the analyte at analyte concentrations of less than about 100 micromolar.
- the analyte has a molecular weight of less than about 1000 g/mol.
- a nanosensor for detecting an analyte can include a photoluminescent nanostructure and a polymer, which can interact with the photoluminescent nanostructure, where the nanosensor can emit a first emission of electromagnetic radiation in the absence of the analyte, and the nanosensor can emit a second emission of electromagnetic radiation upon interacting with the analyte at concentrations of less than about 100 micromolar.
- a method can include exposing a nanosensor including a photoluminescent nanostructure and a polymer interacting with the photoluminescent nanostructure to a solution containing nitric oxide at a concentration of less than about 100 micromolar. The method may further include determining the nitric oxide based upon an interaction between the nitric oxide and the nanosensor.
- a method can include exposing a nanosensor including a photoluminescent nanostructure and a polymer interacting with the photoluminescent nanostructure to a solution containing an analyte at a concentration of less than about 100 micromolar and determining the analyte based upon an interaction between the analyte and the nanosensor.
- the interaction between the analyte and the nanosensor can be reversible.
- the interaction between the polymer and the photoluminescent nanostructure can be reversible without breaking any covalent bonds.
- the interaction between the polymer and the photoluminescent nanostructure can be reversible via dialysis.
- the interaction between the analyte and the nanosensor includes an interaction between the analyte and the photoluminescent nanostructure.
- the photoluminescent nanostructure can include a carbon nanotube.
- the carbon nanotube can be a single-walled carbon nanotube, such as a semiconductive single-walled carbon nanotube.
- the polymer can include a polysaccharide, for example, dextran.
- the polymer can include an oligonucleotide or a polynucleotide.
- the oligonucleotide can include oligo(AT), or the polynucleotide can include poly(AT).
- the photoluminescent nanostructure can emit near-infrared radiation in the absence of the analyte or in the presence of the analyte.
- the nanosensor can emit electromagnetic radiation of a first intensity in the absence of the analyte, and the nanosensor can emit electromagnetic radiation of a second intensity that is less than the first intensity upon interacting with the analyte.
- the analyte can be analyte within a cell. In some embodiments, the analyte can be produced by a cell. The analyte can have a molecular weight of less than 1000 g/mol, of less than 100 g/mol, or less than 30 g/mol. In some embodiments, the analyte can be nitric oxide.
- the concentration of the analyte can be less than 100 micromolar, less than 10 micromolar or less than 1 micromolar. In some embodiments, a single molecule of the analyte can be present.
- a method can further include exposing the photoluminescent nanostructure to the interior of a cell.
- the method can further include determining an analyte within a cell.
- the method can further include determining an analyte produced by a cell.
- the method can further include determining an analyte for the diagnosis or management of at least one of asthma, rheumatoid arthritis, multiple sclerosis, tuberculosis, Alzheimer's disease, and cancer.
- a method can further include determining the presence of a single analyte molecule.
- FIGS. 1A-1B include schematic illustrations of nanosensors, according to one set of embodiments
- FIGS. 2A-2B include schematic illustrations of (A) the synthesis of DAP-dex and (B) the preparation of SWNT/DAP-dex by dialysis and a mechanism for nIR fluorescence bleaching, according to one set of embodiments;
- FIGS. 3A-3C include plots of the nIR fluorescence response of SWNT/DAP-dex nanosensors to NO, according to one set of embodiments;
- FIGS. 4A-4D include plots of (A) the fluorescence intensity of a plurality of nanosensors, (B) fluorescence bleaching rates of a plurality of nanosensors, (C) fluorescence bleaching rates for NO as a function of emission energy for SWNT/DAP-dex and SWNT/PhO-dex, and (D) the fluorescence intensity of SWNT/DAP-dex as a function of NO concentration, according to one set of embodiments;
- FIGS. 5A-5D include (A) absorption spectra of SWNT/DAP-dex after the addition of 30 micromolar NO solution, (B) Raman spectra of SWNT/DAP-dex after the addition of 30 micromolar NO solution, (C) recovered fluorescence spectra of bleached SWNT/DAP-dex after the addition of NADH (150 micromolar), and (D) fluorescence intensity as a function of time, according to one set of embodiments;
- FIGS. 6A-6E illustrate (A) nIR fluorescence images and direct NO mappings of Raw 264.7 cells incorporating SWNT/DAP-dex before and after NO addition, (B) real-time tracking of nIR fluorescence response within Raw 264.7 cells for solutions of NO (5 and 0.5 micromolar), (C) nIR fluorescence response to NO produced by iNOS in Raw 264.7 cells stimulated with LPS (20 ng ml ⁇ 1 ) and IFN-gamma (20 U ml ⁇ 1 ), (D) average fluorescence intensity from each cell region responding to NO produced by iNOS in Raw 264.7 cells stimulated with LPS and IFN-gamma, and (E) a mouse placed on the optical stage of a nIR fluorescence spectrometer and fluorescence response to NO (60 micromolar) within the mouse, according to one set of embodiments;
- FIGS. 7A-7E include (A) a schematic illustration of a high-throughput assay scheme, and (B-E) responses of various nanotube sensors to a collection of compounds, according to one set of embodiments;
- FIGS. 8A-8B include (A) a schematic illustration of an experimental configuration used for single-molecule NO detection, and (B) the fluorescence emission from d(AT) 15 -SWNT, according to one set of embodiments; and
- FIGS. 9A-9F include (A) a schematic illustration of NO adsorption on a d(AT) 15 -SWNT complex, resulting in a fluorescence quenching, (B-C) representative fluorescence intensity of a 2 ⁇ 2 pixel spatial binning region on two different individual SWNTs that show B) stepwise quenching and C) stepwise restoration, (D) an exemplary transition density plot (TDP) generated from HMM corresponding to the experiments in B) and C), (E) the algorithm used to correlate transition probabilities between any two distinct states to quenching and de-quenching rate constants, and (F) NO adsorption and desorption rate constants, and equilibrium constants as functions of NO concentration, according to one set of embodiments.
- TDP transition density plot
- FIG. 10A nIR fluorescence spectrum (solid green) of AT15-SWNT recorded with a 50 ⁇ objective upon 785 nm laser excitation. The spectral deconvolution reveals 7 nanotube species and a Raman peak (solid black), and convoluted spectrum (dotted red) as a sum of the individual peaks overlap the actual data.
- FIG. 10B Complete quenching (solid blue) of AT15-SWNT fluorescence is observed once the SWNT sample is exposed to NO (60 ⁇ M, in 1 ⁇ PBS).
- FIGS. 11A-11B Stepwise fluorescence quenching response of a diffraction-limited segment from the individual SWNT in the sensor array to NO at four different concentrations. Actual experimental data is in red, and the fitted traces (Chi-squared fitting method) is drawn in black.
- FIG. 12 State transition-rate diagram of the birth-and-death process.
- the numbers in the circle indicate the states, or the population sizes of the birth-and-death process at any instant; and in the case of single-molecule adsorption, those numbers also indicate the number of empty sites on a single SWNT.
- Green arrows represent possible birth transitions between states with a birth rate of (N-i) ⁇ for a population size of i
- red arrows represent possible death transitions between states with a death rate of i, ⁇ for a population size of i.
- Each panel represents kf,MLE value obtained with a different observation time (top, 600 s; middle, 1200 s; bottom, 3000 s).
- FIG. 14A Calibration of the AT15-SWNT sensor Array. Histogram of the kf,MLE from the stochastic analysis at different concentrations of NO. Rates that are lower than 0.00001 s ⁇ 1.
- FIG. 14B Mean and variance of the kf,MLE estimated from the birth-and-death Markov model as a function of concentration of NO.
- FIG. 14C Mean (square) and standard deviation (error bar) of kf,MLE is plotted against concentration of NO in a log-log scale.
- the red dotted line shows the linearly fitted curve in log-log scale.
- the nanosensors comprise a photoluminescent nanostructure and a polymer that interacts with the photoluminescent nanostructure.
- the interaction between the polymer and the nanostructure can be non-covalent (e.g., via van der Waals interactions).
- the nanosensors comprising a polymer and a photoluminescent nanostructure may be particularly useful in determining the presence and/or concentration of relatively small molecules (e.g., nitric oxide), in some embodiments.
- the nanosensors may be capable of determining relatively low concentrations of analytes, in some cases determining as little as a single molecule.
- the interaction between the analyte and the nanosensor e.g., between the analyte and the photoluminescent nanostructure
- the interaction between the analyte and the nanosensor can be reversible, which may allow, for example, for the reuse of a nanosensor after it has been exposed to an analyte.
- Nitric oxide is a key molecule associated with many bio-functions including cell signaling, host defense, vasodilation, and sometimes cause disorders such as carcinogenesis[1-2].
- One difficulty in NO research is that even within one single disease, there are can be conflicting hypotheses regarding the role of NO with no clear answers.
- the two fundamental factors of NO effects are the amount of NO as well as the location where it is produced[3-4]. Being a radical, NO is difficult to detect and even more difficult to quantify because of its rapid diffusivity and its high reactivity to species such as oxygen (in vitro) and hemoglobin (in vivo)[5].
- An analytical probe capable of directly quantifying NO concentration with high spatial resolution promises the potential of both accurately measuring NO at single cell level and studying NO-mediated signaling in vitro.
- the most widely used measuring method, Greiss assay is robust but indirect, as it only measures the oxidation product of NO, nitrite, instead of NO itself.
- techniques such as NO electrodes (reviewed in reference[5]), electron paramagnetic resonance[5-6] and chemiluminescence[5, 7-8] have shown to quantify NO directly with high sensitivity, but they generally lack spatial resolution, and the latter two usually require complex instrumentation.
- Another alternative to quantify NO with good spatial resolution is the commonly used fluorescent probes[9-12] combined with microscopy. Although easy to use, organic fluorescence-based probes suffer from photobleaching threshold[9-12] preventing them from long-term imaging, and most of them are indirect[9-11] or non-quantitative[12].
- SWNT Single-walled carbon nanotubes
- NIR near-infrared
- SWNT Single-walled carbon nanotubes
- NIR near-infrared
- their one-dimensional electronic structure results in great sensitivity to analytes of interest, and even single-molecule adsorption on the sidewall of the SWNT can be recorded through quenching of excitons, or in other words, changes in fluorescence[20-25].
- the recorded fluorescence modulation supplemented with proper calibration provides a sensitive determination of the concentration of the quencher molecule[18-19, 23-24].
- non-diffusive SWNTs allows otherwise impossible quantification of molecules with precise spatial resolution.
- the nanosensors described herein may exhibit one or more advantageous properties relative to traditional sensors.
- the nanosensors described herein generally determine the analyte via a direct interaction between the analyte and a component of the nanosensor (e.g., the photoluminescent nanostructure), rather than via an interaction between a by-product of a reaction involving an analyte and a component of the nanosensor.
- the ability to determine the analyte based upon such a direct interaction can be useful in reducing or effectively eliminating unwanted interference between the analyte of interest and a background species.
- the nanosensors described herein can also exhibit relatively low amounts of undesired photobleaching, which can reduce or effectively eliminate distortions in the signal produced by the photoluminescent nanosensor.
- the nanosensors may also exhibit little or no overlapping with auto-fluorescence from endogenous fluorophores, in some cases.
- the nanosensors described herein can emit wavelengths capable of penetrating human tissue (e.g., near-infrared radiation), making the nanosensors particularly suitable, for example, for in vivo testing in humans.
- the nanosensors described herein can be capable of determining relatively small analytes, optionally at very low concentrations.
- the nanosensors described herein may be useful in a wide variety of applications, and may be particularly useful in determining the presence and/or concentration of nitric oxide (NO) in some embodiments.
- the nanosensors can be used to determine NO as a pollutant.
- accumulating evidence suggests that elevated levels of NO during inflammation may be associated with numerous disorders such as, for example, asthma, rheumatoid arthritis, multiple sclerosis, tuberculosis, Alzheimer's disease, and cancer.
- the ability to determine nitric oxide may be helpful in diagnosing and/or managing such conditions.
- the amount of nitric oxide in exhaled air can be useful in the treatment of asthma by providing information that can be used to diagnose subjects, distinguish subjects who will benefit from inhaled corticosteroids from those who will not, predict exacerbations, predict successful steroid reduction or withdrawal, and/or adjust steroid doses.
- Such applications are described, for example, in Pijnenburg, M. W. H., et al., “Exhaled nitric oxide in childhood asthma: a review,” Clinical and Experimental Allergy, 38, pp. 246-259, which is incorporated herein by reference in its entirety.
- the nanosensors described herein may also be useful in determining the amount of NO released by NO-releasing drugs.
- NO moieties have been attached to non-steroidal anti-inflammatory drugs (NSAIDs) to counteract side-effects associated with the use of NSAIDs.
- NSAIDs non-steroidal anti-inflammatory drugs
- the resulting new chemical entities, termed ‘NO-NSAIDs’ have been shown to not only reduce the side effects associated with conventional NSAIDs, but have also exhibited significantly higher cytostatic and cytocidal activity than that of the native molecule in different cancer cell lines in pre-clinical mice models.
- NO-donating compounds may also be useful in the treatment of cardiovascular disease, among others.
- the use of the nanosensors described herein to quantify the effects of such drugs may be useful, for example, in studying the effects of such drugs in clinical trials.
- nanosensors comprising photoluminescent nanostructures.
- the term “nanostructure” refers to articles having at least one cross-sectional dimension of less than about 1 micron.
- nanostructures can have at least one cross-sectional dimension of less than about 500 nm, less than about 250 nm, less than about 100 nm, less than about 75 nm, less than about 50 nm, less than about 25 nm, less than about 10 nm, or, in some cases, less than about 1 nm
- Examples of nanostructures include nanotubes (e.g., carbon nanotubes), nanowires (e.g., carbon nanowires), graphene, and quantum dots, among others.
- the nanostructures include a fused network of atomic rings, the atomic rings comprising a plurality of double bonds.
- a “photoluminescent nanostructure,” as used herein, refers to a class of nanostructures that are capable of exhibiting photoluminescence.
- photoluminescent nanostructures exhibit fluorescence.
- photoluminescent nanostructures exhibit phosphorescence.
- Examples of photoluminescent nanostructures suitable for use include, but are not limited to, single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), multi-walled carbon nanotubes (MWCNTs), semi-conductor quantum dots, semi-conductor nanowires, and graphene, among others.
- the systems and methods described herein may allow for selective determination of an analyte.
- selective is used to indicate an interaction that is sufficiently specific that it can be used to distinguish the analyte in practice from other chemical species in the system in which the nanosensor is to be employed.
- the nanosensors described herein can determine the presence of NO without substantial interference from other compounds such as NO 2 ⁇ , NO 3 ⁇ , ONO 2 ⁇ , HNO, OCl ⁇ , hydroxyl radicals, H 2 O 2 , and the like.
- the analyte may produce a change in photoluminescence of a nanostructure that is at least about 2 times, at least about 5 times, at least about 10 times, at least about 50 times, or at least about 100 times greater than the largest change in photoluminescence produced by another entity (e.g., a background molecule).
- another entity e.g., a background molecule
- FIGS. 1A-1B include schematic diagrams of a nanosensor, according to one set of embodiments.
- nanosensor 10 comprises photoluminescent nanostructure 12 and polymer 14 that interacts with the photoluminescent nanostructure.
- the photoluminescent nanostructure and the polymer can interact with each other, in some embodiments, via van der Waals forces (e.g., physisorption).
- the photoluminescent nanostructure and the polymer are not covalently bonded to each other.
- polymer 14 is shown in FIGS. 1A-1B as being helically wrapped around nanostructure 12 , it should be understood that the polymer may assume any suitable shape or conformation when interacting with the nanostructure.
- the polymer may at least partially surround the nanostructure.
- a first entity is said to “at least partially surround” a second entity if a closed loop can be drawn around the second entity through only the first entity.
- the polymer may be positioned proximate to the nanostructure such that it completely surrounds the nanostructure with the exception of relatively small volumes.
- a first entity is said to “completely surround” a second entity if closed loops going through only the first entity can be drawn around the second entity regardless of direction.
- incident electromagnetic radiation 16 interacts with the photoluminescent nanostructure, in the absence of the analyte, resulting in a first emission of radiation 18 .
- the emission of radiation can be produced, for example, via photo-induced band gap fluorescence.
- single-walled carbon nanotubes e.g., semi-conductive single-walled carbon nanotubes
- the emission of radiation from a nanostructure can occur despite the substantial absence of a dopant or the substantial absence of a p-n junction within the nanostructure.
- single-walled carbon nanotubes can exhibit photo-induced band gap fluorescence despite comprising no p-n junction or dopants.
- the photoluminescent nanostructure may be substantially free of covalent bonds with other entities (e.g., other nanostructures, a current collector, the surface of a container, a polymer, an analyte, etc.).
- the absence of covalent bonding between the photoluminescent nanostructure and another entity may, for example, preserve the photoluminescent character of the nanostructure.
- single-walled carbon nanotubes may exhibit modified or substantially no fluorescence upon forming a covalent bond with another entity (e.g., another nanotube, a current collector, a surface of a container, and the like).
- analyte 20 is interacts with photoluminescent nanostructure 12 .
- the term “analyte” generally refers to any chemical species which is to be determined (e.g., quantitatively or qualitatively).
- Analyte 20 can, in some cases, interact with photoluminescent nanostructure 12 such that no covalent bonds are formed between the analyte and the photoluminescent nanostructure.
- the analyte and the photoluminescent nanostructure may interact via van der Waals forces.
- the interaction between the analyte and the nanosensor may be reversible.
- the reversibility of the interaction between the analyte and the nanosensor may be due, in some cases, to the non-covalent interaction between the analyte and the nanosensor.
- the interaction between the analyte and the nanosensor can be reversed without breaking any covalent bonds between the analyte and the nanosensor.
- the interaction between the nanosensor and the analyte can be reversed via dialysis of the analyte-adsorbed nanosensor.
- dialysis generally refers to the process of separating entities (e.g., analyte and nanosensor) in a fluid (e.g., in solution) based upon differences in their rates of diffusion through a membrane (e.g., a semipermeable membrane).
- entities e.g., analyte and nanosensor
- a membrane e.g., a semipermeable membrane
- incident electromagnetic radiation 16 can interact with a photoluminescent nanostructure that is interacting with analyte 20 to produce a second emission of radiation 22 , which can be substantially different than first emission of radiation 18 .
- the second emission of radiation produced by the nanostructure in association with the analyte is of a different intensity (e.g., larger or smaller intensity) or different wavelength (e.g., shorter or longer wavelength) relative to the first emission of radiation produced by the nanostructure in the absence of an interaction with the analyte.
- the nanostructure may exhibit photoluminescence bleaching (i.e., a decrease in photoluminescent intensity) when associated with the analyte.
- substantially no radiation is emitted by the nanostructure (e.g., after interacting with incident electromagnetic radiation) when it is interacting with an analyte.
- the analyte can be, in some cases, in electrical communication with the photoluminescent nanostructure.
- the photoluminescent nanostructure and the polymer are in direct electrical communication with each other.
- two entities are said to be in “direct electrical communication” with each other when they are capable of directly exchanging electrons with each other, without the electrons passing through a third entity.
- indirect electrical communication refers to situations in which first and second entities are capable of exchanging electrons with each other only via a third entity.
- the polymer may donate electrons to the photoluminescent nanostructure, producing excess electrons on the nanostructure. Such electron transfer may alter the way in which the nanostructure participates in direct electrical communication with an analyte.
- the polymer may comprise lone pairs of electrons on a pendant group (e.g., an amine) which can be transferred to the nanostructure and subsequently transferred to the analyte.
- a pendant group e.g., an amine
- Such electron transfer from the nanostructure to the analyte can produce, in some embodiments, a change in the luminescent nature of the nanostructure (e.g., photoluminescent bleaching).
- pendant groups that may be suitable for such electron transfer include, but are not limited to, amine groups (e.g., amino groups, diamino groups, etc.), imine, potassium, cesium, and the like.
- the polymer can adopt a shape such that it allows the analyte to interact with the photoluminescent nanostructure, but inhibits other molecules from interacting with the photoluminescent nanostructure.
- interactions between the analyte and the photoluminescent nanostructure can be relatively energetically favored, while interactions between the photoluminescent nanostructure and non-analyte entities can be relatively energetically disfavored (e.g., due to steric hindrance).
- the polymer may comprise pendant groups that, upon interacting with the photoluminescent nanostructure, transform the shape of the polymer relative to the shape the polymer would possess in the absence of the interaction with the photoluminescent nanostructure, such that the polymer at least partially surrounds the photoluminescent nanostructure.
- the transformed shape of the polymer may comprise openings through which the analyte can pass (e.g., due to being energetically favored) and interact with the photoluminescent nanostructure, in some cases.
- the openings may reduce or eliminate interaction between the photoluminescent nanostructure and at least one or substantially all background entities (e.g., due to being energetically disfavored).
- the polymer can comprise pendant groups that enhance the selective passage of the analyte described above (e.g., via steric effects) without interacting with the photoluminescent nanostructure.
- dextran can be modified to contain pendant groups capable of participating in pi-pi interactions with the aromatic groups on carbon nanotubes (e.g., phenyl groups).
- the dextran which may not generally adsorb to carbon nanotubes in the absence of the pendant groups, may interact with the carbon nanotube via the pi-pi interactions between the pendant groups and the aromatic rings within the nanotube. This can result in perturbations to the dextran structure such that interactions with analyte (e.g., NO) are energetically favored, while interactions with other molecules are not energetically favored.
- analyte e.g., NO
- nanosensors may be useful in determining relatively small analytes.
- the analyte can have a molecular weight of about 1000 g/mol or less, about 500 g/mol or less, about 100 g/mol or less, or about 30 g/mol or less.
- the nanosensors can be used to determine nitric oxide, which has a molecular weight of about 30 g/mol.
- Exemplary analytes that can be determined using the systems and methods described herein include, for example, nitric oxide, hydrogen peroxide, hydroxyl radical, glutamate, aspartate, serine, g-aminobutyric acid, glycine, dopamine, norepinephrine, epinephrine, serotonin, melatonin, acetylcholine, adenosine, anandamide, histamine, and the like.
- the systems and methods described herein may be capable of determining relatively low concentrations of an analyte.
- the ability to determine low concentrations of an analyte may be useful, for example, in detecting trace pollutants or trace amounts of toxins within a subject.
- nanosensors can determine analyte concentrations of less than about 100 micromolar, less than about 10 micromolar, less than about 1 micromolar, less than about 100 nanomolar, less than about 10 nanomolar, or less than about 1 nanomolar.
- nanosensors can be used to determine a single molecule of an analyte.
- the polymer may comprise a polysaccharide such as, for example, dextran, amylose, chitin, or cellulose.
- the polymer may comprise a protein. Examples of suitable proteins include, but are not limited to glucose oxidase, bovine serum albumin and alcohol dehydrogenase.
- the polymer may also comprise a synthetic polymer (e.g., polyvinyl aclohol, poly(acrylic acid), poly(ethylene oxide), poly(vinyl pyrrolidinone), poly(allyl amine), poly(2-vinylpyridine), poly(maleic acid), and the like), in some embodiments.
- the polymer may comprise a polynucleotide.
- the polymer may comprise a series of repeated base pairs (e.g., repeated adenine-thymine (AT) base pairs, repeated guanine-thymine (GT) base pairs, etc.)
- the polymer may comprise at least about 5, at least about 15, at least about 25, at least about 50, or at least about 100, between 5 and 30, or between 10 and 20, or about 15 repeated base pairs (e.g., AT, GT, and the like) in succession.
- methods for sensing an analyte using nanosensors comprising photoluminescent nanostructures comprising photoluminescent nanostructures.
- the method can comprise providing a photoluminescent nanosensor comprising a photoluminescent nanostructure and a polymer that interacts with the photoluminescent nanostructure.
- the polymer may interact with the photoluminescent nanostructure, for example, via any of the mechanisms described above.
- the method may further comprise exposing the photoluminescent nanosensor to a composition containing an analyte (e.g., any of the analytes described above including, for example, nitric oxide).
- the method may also comprise determining the analyte based upon the interaction between the analyte and the photoluminescent nanosensor.
- the method may comprise determining an analyte with a relatively low molecular weight (e.g., about 1000 g/mol or less, about 500 g/mol or less, about 100 g/mol or less, or about 30 g/mol or less).
- the concentration of the analyte may be relatively low (e.g., less than about 100 micromolar, less than about 10 micromolar, less than about 1 micromolar, less than about 100 nanomolar, less than about 10 nanomolar, less than about 1 nanomolar, or about a single molecule of the analyte).
- the method may comprise exposing the nanosensor to electromagnetic radiation.
- Sources of electromagnetic radiation that can be used include, but are not limited to, a lamp (e.g., an infrared lamp, ultraviolet lamp, etc.), a laser, LED, or any other suitable source.
- the method may further comprise sensing electromagnetic radiation (e.g., the intensity and/or wavelength) or the absorption of electromagnetic radiation, for example, emitted by the nanosensor. Sensing can be performed using, for example, a UV-vis-nIR spectrometer, a florometer, a fluorescence microscope, visual inspection (e.g., via observation by a person) or any other suitable instrument or technique.
- a method of making a photoluminescent nanosensor may comprise, in some cases, exposing a photoluminescent nanostructure to a polymer capable of interacting with the photoluminescent nanostructure (e.g., via any of the mechanisms described above).
- the photoluminescent nanostructure, the polymer or both may be provided within a fluid (e.g., a liquid).
- exposing a photoluminescent nanostructure to the polymer can comprise adding the polymer to a fluid containing a photoluminescent nanostructure.
- Exposing a photoluminescent nanostructure to a polymer can also comprise adding a photoluminescent nanostructure to a fluid containing a polymer, in some cases.
- One of ordinary skill in the art will be able to identify other suitable methods for exposing a photoluminescent nanostructure to a polymer.
- fluid generally refers to a substance that tends to flow and to conform to the outline of its container.
- fluids are materials that are unable to withstand a static shear stress, and when a shear stress is applied, the fluid experiences a continuing and permanent distortion.
- the fluid may have any suitable viscosity that permits at least some flow of the fluid.
- Non-limiting examples of fluids include liquids and gases, but may also include free-flowing solid particles (e.g., cells, vesicles, etc.), viscoelastic fluids, and the like.
- the fluid may comprise water, chloroform, acetonitrile, N-methyl pyrrolidone (NMP), or any other suitable fluid in which nanostructures (e.g., carbon nanotubes) can be suspended.
- NMP N-methyl pyrrolidone
- a fluid may be selected that is capable of forming a stable suspension of photoluminescent nanostructures (e.g., single-walled carbon nanotubes).
- Certain embodiments of the present invention are generally directed to the use of nanosensors to determine an analyte (e.g., nitric oxide) within a cell, produced by a cell, and/or consumed by a cell.
- a “cell” is given its ordinary meaning as used in biology.
- the cell may be any cell or cell type.
- the cell is a human cell.
- the cell may be a bacterium or other single-cell organism, a plant cell, or an animal cell. If the cell is a single-cell organism, then the cell may be, for example, a protozoan, a trypanosome, an amoeba, a yeast cell, algae, etc.
- the cell may be, for example, an invertebrate cell (e.g., a cell from a fruit fly), a fish cell (e.g., a zebrafish cell), an amphibian cell (e.g., a frog cell), a reptile cell, a bird cell, or a mammalian cell such as a primate cell, a bovine cell, a horse cell, a porcine cell, a goat cell, a dog cell, a cat cell, or a cell from a rodent such as a rat or a mouse.
- the cell is from a multicellular organism, the cell may be from any part of the organism.
- the cell may be a cardiac cell, a fibroblast, a keratinocyte, a heptaocyte, a chondracyte, a neural cell, a osteocyte, a muscle cell, a blood cell, an endothelial cell, an immune cell (e.g., a T-cell, a B-cell, a macrophage, a neutrophil, a basophil, a mast cell, an eosinophil), a stem cell, etc.
- the cell may be a genetically engineered cell.
- the cell may be a Chinese hamster ovarian (“CHO”) cell or a 3T3 cell.
- determining generally refers to the analysis or measurement of a species (e.g., an analyte), for example, quantitatively or qualitatively, and/or the detection of the presence or absence of the species. “Determining” may also refer to the analysis or measurement of an interaction between two or more species, for example, quantitatively or qualitatively, or by detecting the presence or absence of the interaction.
- a species e.g., an analyte
- Determining may also refer to the analysis or measurement of an interaction between two or more species, for example, quantitatively or qualitatively, or by detecting the presence or absence of the interaction.
- a variety of nanostructures can be used in association with the nanosensors described herein.
- carbon-based nanostructures are described.
- a “carbon-based nanostructure” comprises a fused network of aromatic rings wherein the nanostructure comprises primarily carbon atoms.
- the nanostructures have a cylindrical, pseudo-cylindrical, or horn shape.
- a carbon-based nanostructure can comprises a fused network of at least about 10, at least about 50, at least about 100, at least about 1000, at least about 10,000, or, in some cases, at least about 100,000 aromatic rings.
- Carbon-based nanostructures may be substantially planar or substantially non-planar, or may comprise a planar or non-planar portion.
- Carbon-based nanostructures may optionally comprise a border at which the fused network terminates.
- a sheet of graphene comprises a planar carbon-containing molecule comprising a border at which the fused network terminates, while a carbon nanotube comprises a nonplanar carbon-based nanostructure with borders at either end.
- the border may be substituted with hydrogen atoms.
- the border may be substituted with groups comprising oxygen atoms (e.g., hydroxyl). In other cases, the border may be substituted as described herein.
- the nanostructures described herein may comprise nanotubes.
- the term “nanotube” is given its ordinary meaning in the art and refers to a substantially cylindrical molecule or nanostructure comprising a fused network of primarily six-membered rings (e.g., six-membered aromatic rings). In some cases, nanotubes may resemble a sheet of graphite formed into a seamless cylindrical structure. It should be understood that the nanotube may also comprise rings or lattice structures other than six-membered rings. Typically, at least one end of the nanotube may be capped, i.e., with a curved or nonplanar aromatic group.
- Nanotubes may have a diameter of the order of nanometers and a length on the order of microns, tens of microns, hundreds of microns, or millimeters, resulting in an aspect ratio greater than about 100, about 1000, about 10,000, or greater.
- a nanotube can have a diameter of less than about 1 micron, less than about 500 nm, less than about 250 nm, less than about 100 nm, less than about 75 nm, less than about 50 nm, less than about 25 nm, less than about 10 nm, or, in some cases, less than about 1 nm.
- a nanotube may comprise a carbon nanotube.
- carbon nanotube refers to nanotubes comprising primarily carbon atoms. Examples of carbon nanotubes include single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), multi-walled carbon nanotubes (MWNTs) (e.g., concentric carbon nanotubes), inorganic derivatives thereof, and the like.
- the carbon nanotube is a single-walled carbon nanotube.
- the carbon nanotube is a multi-walled carbon nanotube (e.g., a double-walled carbon nanotube).
- the nanostructures comprise non-carbon nanotubes.
- Non-carbon nanotubes may be of any of the shapes and dimensions outlined above with respect to carbon nanotubes.
- the non-carbon nanotube material may be selected from polymer, ceramic, metal and other suitable materials.
- the non-carbon nanotube may comprise a metal such as Co, Fe, Ni, Mo, Cu, Au, Ag, Pt, Pd, Al, Zn, or alloys of these metals, among others.
- the non-carbon nanotube may be formed of a semi-conductor such as, for example, Si.
- the non-carbon nanotubes may be Group II-VI nanotubes, wherein Group II consists of Zn, Cd, and Hg, and Group VI consists of O, S, Se, Te, and Po.
- non-carbon nanotubes may comprise Group III-V nanotubes, wherein Group III consists of B, Al, Ga, In, and Tl, and Group V consists of N, P, As, Sb, and Bi.
- the non-carbon nanotubes may comprise boron-nitride nanotubes.
- the nanotube may comprise both carbon and another material.
- a multi-walled nanotube may comprise at least one carbon-based wall (e.g., a conventional graphene sheet joined along a vector) and at least one non-carbon wall (e.g., a wall comprising a metal, silicon, boron nitride, etc.).
- the carbon-based wall may surround at least one non-carbon wall.
- a non-carbon wall may surround at least one carbon-based wall.
- quantum dot is given its normal meaning in the art and is used to refer to semi-conducting nanostructures that exhibit quantum confinement effects.
- energy e.g., light
- quantum dot will emit energy corresponding to the energy band gap between its excited state and its ground state.
- materials from which quantum dots can be made include PbS, PbSe, CdS, CdSe, ZnS, and ZnSe, among others.
- the photoluminescent nanostructures described herein can be, in some cases, substantially free of dopants, impurities, or other non-nanostructure atoms.
- the nanostructure can comprise a carbon nanostructure that is substantially free of dopants.
- the nanostructures may comprise single-walled carbon nanotube that contain only aromatic rings (each of which contains only carbon atoms) within the shell portion of the nanotube.
- the photoluminescent nanostructures described herein may emit radiation within a desired range of wavelengths.
- the photoluminescent nanostructures may emit radiation with a wavelength between about 750 nm and about 1600 nm, or between about 900 nm and about 1400 nm (e.g., in the near-infrared range of wavelenths).
- the photoluminescent nanostructures may emit radiation with a wavelength within the visible range of the spectrum (e.g., between about 400 nm and about 700 nm).
- kits including one or more of the compositions previously discussed e.g., a kit including a nanosensor, a kit including a polymer and a photoluminescent nanostructure from which a nanosensor can be produced, etc.
- a “kit,” as used herein typically defines a package or an assembly including one or more of the compositions of the invention, and/or other compositions associated with the invention, for example, as previously described.
- Each of the compositions of the kit may be provided in liquid form (e.g., a suspension of nanosensors, etc.), or in solid form.
- compositions may be constitutable or otherwise processable, for example, by the addition of a suitable solvent, other species, or source of energy (e.g., electromagnetic radiation), which may or may not be provided with the kit.
- suitable solvent other species, or source of energy (e.g., electromagnetic radiation)
- suitable solvent other species, or source of energy (e.g., electromagnetic radiation)
- suitable solvent other species, or source of energy (e.g., electromagnetic radiation)
- emulsifiers e.g., electromagnetic radiation
- chelating agents fillers, antioxidants, binding agents, bulking agents, preservatives, drying agents, antimicrobials, needles, syringes, packaging materials, tubes, bottles, flasks, beakers, dishes, frits, filters, rings, clamps, wraps, patches, containers, tapes, adhesives, and the like, for example, for using, administering, modifying, assembling, storing, packaging, preparing, mixing, diluting, and/or preserving the compositions components for
- a kit of the invention may, in some cases, include instructions in any form that are provided in connection with the compositions of the invention in such a manner that one of ordinary skill in the art would recognize that the instructions are to be associated with the compositions of the invention.
- the instructions may include instructions for the use, modification, mixing, diluting, preserving, administering, assembly, storage, packaging, and/or preparation of the compositions and/or other compositions associated with the kit.
- the instructions may also include instructions for the delivery and/or administration of the compositions, for example, for a particular use, e.g., to a sample and/or a subject.
- the instructions may be provided in any form recognizable by one of ordinary skill in the art as a suitable vehicle for containing such instructions, for example, written or published, verbal, audible (e.g., telephonic), digital, optical, visual (e.g., videotape, DVD, etc.) or electronic communications (including Internet or web-based communications), provided in any manner
- This example describes a 3,4-diaminophenyl-functionalized dextran (DAP-dex) wrapping for SWNTs that imparts rapid and selective fluorescence detection of nitric oxide (NO) in the near infrared (nIR).
- DAP-dex 3,4-diaminophenyl-functionalized dextran
- the donation of lone-pair electrons in amines can increase electron density and mobility in SWNTs.
- the SWNT/DAP-dex hybrid can function as an assay for NO based on transition bleaching.
- the SWNT/DAP-dex hybrid can exhibit enhanced selectivity to NO relative to other reactive nitrogen and oxygen species.
- the NO binding appeared to be non-covalent, and the SWNT/DAP-dex nanosensor can reversibly detect NO via the fluorescence bleaching mechanism.
- SWNT/DAP-dex nanosensor can be used for the real-time and spatially resolved detection of NO within living cells at nanomolar concentrations. NO produced by stimulating inducible NO synthase (iNOS) in Raw 264.7 macrophage cells was detected in real time using the fluorescence bleaching of SWNT/DAP-dex.
- iNOS inducible NO synthase
- the potential for the SWNT nanosensor to be used for the in vivo detection of NO using any platform has been demonstrated by injecting nanosensor complexes into a recently deceased mouse as a tissue phantom.
- DAP-dex 5 in FIG. 2A was synthesized as shown in FIG. E 1 A.
- DABA 3,4-diaminobenzoic acid
- BOC t-butyloxycarbonyl
- DABA 3,4-diaminobenzoic acid
- DMF N,N-dimethylformamide
- DIEA N,N-diisopropylethylamine
- Dextran (9-11 kDa) was carboxymethylated using chloroacetic acid in an aqueous solution of sodium hydroxide for 1.5 hours at 60° C. From the results of acidimetric titration and mass increase, 24 wt % of carboxylic acid (4.19 mmol carboxylic acid per gram) was introduced onto dextran (CM-dex, 4 in FIG. 2A ).
- the BOC protecting group was removed in an aqueous solution of 2.46 g H 3 PO 4 (25.14 mmol) over 20 hours at 25° C.
- the DAP group in DAP-dex was indicated by a feature at 260 nm in the ultraviolet-visible (UV-vis) spectrum.
- the amount of substituted DAP group was determined by measuring the absorbance at 260 nm and comparing the result to a calibration curve. According to the UV-vis analysis, 11 wt % DAP was introduced onto CM-dex.
- the DAP-dex was also analyzed using Fourier transform infrared (FTIR) spectroscopy. Two specific bands at 1,650 cm ⁇ 1 and 1,530 cm ⁇ 1 were observed in FTIR spectra of DAP-dex, which corresponded to the (C ⁇ O) stretching band and the (—NH) bending vibration bend, respectively.
- FTIR Fourier transform infrared
- DAP-dex is very soluble in water, the amount of substituent did not diminish the solubility of the original dextran in water.
- DAP-dex with a diaminophenyl content of 11 wt % was used.
- FIG. 2B includes a schematic illustration of the preparation of SWNT/DAP-dex ( 6 in FIG. 2B ) by dialysis, as well as a mechanism for nIR fluorescence bleaching by NO. (In FIG.
- SWNT/DAP-dex The normalized fluorescence intensity of SWNT/DAP-dex was lower compared to SWNTs suspended in sodium cholate, although the absorption intensities were similar to each other (see inset in FIG. 3A ). This behavior observed in SWNT/DAP-dex was consistent with a mechanism of photoinduced excited-state electron transfer from the nanotube conduction band to the LUMO of an adsorbing molecule. Further, the reduction potential of the DAP group measured by cyclic voltammetry was ⁇ 0.15 V (versus a normal hydrogen electrode), lying within the gap between the valence and conduction bands of SWNTs in this range, supporting the mechanism for the initial diminution of nIR fluorescence. In spite of this initial diminution, the residual nIR fluorescence of SWNT/DAP-dex was adequate for NO detection, as described below.
- nIR fluorescence responses of SWNT/DAP-dex and SWNT/SC to NO were investigated. nIR fluorescence spectra were acquired for one second using 785 nm excitation (85mW).
- the NO solution was prepared by bubbling pure NO gas through PBS (50 mM, pH 7.4) that had been reoxidized by bubbling argon through it for two hours before the NO introduction. The concentration of NO was measured by a horseradish peroxidase assay.
- Each SWNT solution (in PBS, pH 7.4 , 50 mM) was also bubbled with argon for two hours to remove dissolved oxygen prior to NO addition. As shown in FIG.
- SWNT-wrapping molecules on NO detection was further investigated in terms of selectivity and transition bleaching rate.
- Phenoxy-modified carboxymethylated dextran (PhO-dex) was synthesized, which does not include amine and amide groups.
- the SWNTs were resuspended with PhO-dex via dialysis.
- the fluorescence responses of SWNT/DAP-dex, SWNT/PhO-dex, and SWNT/SC for NO were investigated.
- the fluorescence intensity was measured as I/I o (current intensity/initial intensity based on ( 10 , 5 ) SWNT).
- the fluorescence intensities were measured ten minutes after the addition of a 30 micromolar solution of each analyte (shown on the x-axis of FIG. 4A ) in PBS solution (pH 7.4, 50 mM).
- nIR fluorescence of SWNT/DAP-dex was bleached selectively by NO more than by many other reactive nitrogen and oxygen species present in typical biological systems, including NO 2 ⁇ , NO 3 ⁇ , ONO 2 ⁇ , HNO, OCl ⁇ , hydroxyl radicals, and H 2 O 2 ( FIG. 4A ).
- Other oxidative species such as b-nicotinamide adenine dinucleotide (NAD + ) and ferric iron (Fe 3+ ), that exist in physiological systems and interfere with the selectivity for NO detection in other systems were also investigated at similar concentrations (30 micromolar) as the tested NO. NAD + and Fe 3+ did not bleach the fluorescence of SWNT/DAP-dex appreciably.
- SWNT/PhO-dex A smaller, less selective, and slower response was observed from SWNTs suspended with Pho-dex (SWNT/PhO-dex). In addition, little selectivity for NO was observed with SWNT/SC. The effect of wrapping functionalities on NO detection was more obviously observed in the transition bleaching rates of nIR fluorescence, as shown in FIGS. 4B-4C , which include plots of fluorescence intensity as a function of time for various nanosensors at a 2.7 micromolar concentration of NO. For these measurements, the intensity of ( 10 , 5 ) SWNT was measured. It was found that the fluorescence of SWNT/DAP-dex was bleached by NO significantly faster than those from SWNT/PhO-dex and SWNT/SC.
- FIG. 4D includes a plot of fluorescence intensity (based on ( 10 , 5 ) SWNT) as a function of NO concentration, measured ten minutes after the addition of each NO solution. The error bars in FIG. 4D were determined from the mean and standard deviation. The smallest concentration of NO detected using SWNT/DAP-dex was 100 nM ( FIG. 4D ). However, based on a calibration curve from FIG. 4D , the concentration at three times the noise value for a typical experiment with a signal-to-noise ratio of seven was 70 nM of NO.
- FIG. 5A includes absorption spectra of SWNT/DAP-dex after the addition of 30 micromolar NO solution, showing a large decrease in absorbance for SWNTs with small bandgaps. In particular, the first van Hove transitions almost disappeared ( FIG. 5A ). The selectivity for nanotubes of small bandgap identified this as a transition photobleaching mechanism.
- FIG. 5B includes Raman spectra of SWNT/DAP-dex after the addition of 30 micromolar NO solution.
- FIG. 5D includes a plot of fluorescence intensity (based on ( 10 , 5 ) SWNT) as a function of time.
- the bleached fluorescence was restored after simply removing NO from SWNT by dialysis, which indicated that NO detection was reversible.
- the restoration occurred at the diffusion limit through the dialysis membrane, and it was therefore prohibitively difficult to estimate the desorption rate constant from this experiment.
- Molecules of comparable size have been found to have desorption rate constants between 600 ⁇ s ⁇ 1 and 1,130 ⁇ s ⁇ 1 for collagen-wrapped SWNTs (Jin, et al., Nano Lett.
- SWNT/DAP-dex optical nanosensor was evaluated for both the real-time and spatially resolved detection of NO within cells.
- Raw 264.7 murine macrophage cells were grown in Dulbecco's modified Eagles' media (DMEM) that contained 10% (v/v) fetal bovine serum, 100 U ml ⁇ 1 penicillin and 100 micrograms ml ⁇ 1 streptomycin at 37° C. in a humidified atmosphere of 5% CO 2 .
- DMEM Dulbecco's modified Eagles' media
- SWNT/DAP-dex (1 microgram ml ⁇ 1 ) was added to macrophage cells dispersed in 2 ml DMEM, and then incubated for 12 hours at 37° C. to enable adhesion of the cells and uptake of SWNTs. After washing the cells with PBS several times, LPS (20 ng ml ⁇ 1 ) and IFN-gamma (20 U ml ⁇ 1 ) were added into the cells. After incubation for six hours at 37° C., the fluorescence response within the cells was monitored using a nIR fluorescence microscope.
- macrophage cells that incorporated SWNT/DAP-dex within them showed bright and photostable nIR fluorescence ( FIG. 6A , control).
- nIR fluorescence generated from the macrophage cells was monitored in real time for 330 seconds, and the NO solution (5 micromolar, PBS) was added to the macrophage cells.
- the fluorescence images of macrophage cells showed a decrease of fluorescence intensity on the addition of NO, and almost complete bleaching was observed 30 seconds after NO treatment ( FIG. 6A ), which demonstrated that SWNT/DAP-dex could detect NO within the cells in real time.
- the SWNT/DAP-dex optical nanosensor can enable one to quantitatively track real-time nIR fluorescence within the cells, as shown in FIG. 6B .
- the nIR fluorescence intensity of SWNT/DAP-dex within the cells suddenly decreased on the addition of NO solution ( FIG. 6B ), with a detection of down to approximately 200 nM of NO within the cells.
- FIG. 6A Raw 264.7 macrophage cells that incorporated SWNT/DAP-dex within them were monitored in the absence of NO for ten minutes ( FIG. 6A , control).
- Bright nIR fluorescence of SWNT/DAP-dex within the macrophage cells was still observed without photobleaching during laser irradiation for ten minutes. This was more clearly demonstrated in the quantitative tracking of fluorescence intensity ( FIG. 6B , control), which indicated that the fluorescence bleaching was caused by NO production in the macrophage cells.
- FIG. 6E The potential for the in vivo detection of NO using SWNT/DAP-dex ( FIG. 6E ) was also investigated.
- a dialysis membrane loaded with a SWNT/DAP-dex solution was inserted into a slit in the abdomen of a CO 2 -asphyxiated mouse.
- a NO solution 60 micromolar was injected in the region of the slit and the fluorescence response was monitored in real time.
- the nIR fluorescence was able to penetrate through tissue with a relatively high signal-to-noise ratio.
- the fluorescence of SWNT/DAP-dex was bleached completely.
- the experiment demonstrated that the major barriers to optical detection of NO in vivo e.g., tissue penetration, scattering, and autofluorescence
- the major barriers to optical detection of NO in vivo e.g., tissue penetration, scattering, and autofluorescence
- the LIVE/DEAD viability and cytotoxicity assay that provides simultaneous determination of live and dead cells with two probes (See Pike, C. J., et al., J. Biol. Chem. 270, 23895-23898 (1995)) was carried out on Raw 264.7 cells after 12 hours of incubation with SWNT/DAP-dex (1 and 2 micrograms ml ⁇ 1 ). According to the results of the test, the survival and death rates of macrophage cells were 100 ⁇ 19% and 2.4 ⁇ 19%, respectively, within the margins of error of the control samples. This indicated that SWNT/DAP-dex was clearly not cytotoxic at all the tested concentrations.
- SWNT/DAP-dex The ability of SWNT/DAP-dex to induce an activation response in Raw 264.7 cells without LPS and IFN- ⁇ was also investigated. Such a response would make the use of the nanosensor in vitro and in vivo difficult in this capacity, because the probe itself would stimulate NO from the host immune system.
- the Griess assay was used to independently assess the activation of cells exposed to SWNT/DAP-dex, and none were detected. The lack of cytotoxicity and immunogenicity is promising for practical applications of the nanosensor.
- the preferential reaction of NO through these diamine sites may explain both the increase in rate and selectivity of NO for SWNT/DAP-dex. This also may illustrate that engineering a SWNT nanosensor in this manner requires suppression of any non-selective response from interfering molecules.
- the hypothesized mechanism suggests how one may use SWNTs rationally to design nanosensors for other analytes.
- the adsorbents may be characterized, for example, through molecular penetration experiments.
- the dextran backbone alone generally does not adsorb onto SWNTs; phenylation of the dextran can lead to adsorption.
- the phenyl ring has a favorable energy configuration in the pi-stacking position, and the rings can tether a dextran backbone to the SWNTs with dextran-facing solution.
- the addition of the diamine can do two things. It can n-dope the carbon nanotube, which can raise the Fermi level, as for many other amine species. It can also perturb the structure of the dextran polymer, altering its conformation to yield a binding site on the nanotube that is more favorable for NO binding. The best evidence for this is simply the selectivity towards NO, which increases dramatically with diamine addition. This effect is not what the diamine construct does for conventional NO nanosensors.
- a photoluminescent nanosensor comprising a polynucleotide and a carbon nanotube.
- the nanosensor included a single-walled carbon nanotube (SWNT) partially encapsulated by a poly d(AT) 15 DNA oligonucleotide (an oligonucleotide comprising 15 AT base pairs in succession) to form a d(AT) 15 -SWNT nanosensor.
- SWNT single-walled carbon nanotube
- the nanosensor in this example exhibited sensitivity to nitric oxide and substantially no other analyte during screening.
- the d(AT) 15 -SWNT nanosensor was screened against the following compounds (listed in order as they appear in FIGS. 7B-7E , from left to right): 2,4-dinitrophenol, acetylcholine chloride, adenosine, alpha-tocophenol, ascorbic acid, ATP, beta-NAD, calcium chloride, cAMP, citruline, creatine, cytidine, D-aspartic acid, dopamine hydrochloride, glucose, glutamine, glycine, guanosine, histamine, histidine, hydrogen peroxide, L-deoxy-D-glucose, lithium chloride, nitric oxide (NO), L-thyroxine, magnesium chloride, mannose, melatonin, a pesticides mixture, potassium carbonate, potassium chloride, quinine sulfate dihydrate, riboflavin, salicylic acid, seratonin/creatinine s
- the nanosensors were screened against creatinine, dopamine, DMSO, ethanol, and methanol, the results of which are not shown in FIGS. 7B-7E .
- the nanosensors were screened for near-infrared spectroscopic responses. As illustrated in FIG. 7A , the nanosensors were suspended in Tris buffer (20 mM Tris, 100 mM NaCl, pH 7.3) and were placed in a well plate array containing 48 analytes, incubated for 1 hr, and placed on an automated microscope translation stage.
- the nanotubes were excited by a 785 nm laser and SWNT near-infrared photoluminescence was collected via fluorescence microscope, dispersed in a 250 cm spectrograph, and detected by a 512 pixel InGaAs array.
- the spectra were deconvoluted into a series of Lorentzian curves; the intensities and center wavelengths were recorded. The resulting outputs are illustrated in FIGS. 9B-9C .
- FIGS. 7B-7E Several polymers were tested including a poly d(AT) 15 oligonucleotide, a poly d(GT) 15 oligonucleotide, phenylated dextran, and polyvinyl alcohol, as illustrated in FIGS. 7B-7E .
- the nanosensor comprising the poly d(AT) 15 DNA oligonucleotide exhibited sensitivity to NO, but was not sensitive to any other tested analyte ( FIG. 7B ).
- the poly d(GT) 15 sequence responded to dopamine, NO and tyramine ( FIG. 7C ).
- the phenylated dextran scaffold exhibited a similar response, with inclusion of some additional amine-baring analytes ( FIG. 7D ).
- the poly vinyl alcohol exhibited a substantially complete barrier to nitric oxide, but was sensitive to other neurotransmitters ( FIG. 7E ).
- a photoluminescent nanosensor comprising SWNTs capable of determining single molecule adsorption and desorption of NO molecules.
- a Petri dish was treated with aminopropyltriethoxysilane (APTES) substrates commonly used for AFM, and buffered by PBS (0.0067 M PO 4 3 ⁇ , pH 7.4) ( FIG. 8A ).
- APTES aminopropyltriethoxysilane
- FIG. 8B Upon laser excitation (658 nm wavelength), d(AT) 15 -SWNT fluoresced at near infrared wavelengths.
- the emitted light was collected by a 2D InGaAs imaging array ( FIGS. 8A-8B ).
- a 2D InGaAs imaging array FIGS. 8A-8B .
- single NO molecule adsorption and desorption events on nanotubes were transduced to a stepwise increase and decrease of SWNT complex fluorescence, as the mobile excitons on the SWNT sidewalls were attacked by the quencher molecule NO.
- Movies at 200 ms/frame were taken to monitor florescence modulation in real time through the course of 10 min.
- the image in FIG. 8B was taken with 1mW laser power at the sample through Alpha Plan-Apo 100 ⁇ /1.46 oil immersion objective.
- each step was essentially a single molecule event.
- a stepwise increase (FIG. E 8 B) indicated single molecule NO adsorption on the SWNT
- a stepwise decrease indicated NO desorption from the SWNT.
- each step should remain the same size (or height).
- the NO adsorption rate is faster than the sampling rate (5 s ⁇ 1 in this example)
- several quenching events could happen in a period of time short enough that only bigger steps would be observed, and the step size of those bigger steps could be essentially multiples of a single small step.
- HMM Hidden Markov Modeling
- Rate constants and concentrations of NO were correlated to transition probabilities given by HMM.
- a transition density plot (TDP) was used to further analyze the modeling results from HMM by populating frequent transitions between states. It was found that the d(AT) 15 -SWNT nanosensor exhibited 7 quenchable sites, giving rise to 8 different states ( FIG. 9D ), where 0 represents the lowest state and 1 represents the highest state. Transition probabilities between any given states were obtained from the HMM and TDP, and further used to calculate single site transition probability.
- rate constants were calculated from single site transition probabilities ( FIG. 9E ). The results indicated that the NO desorption rate was concentration independent, but the NO adsorption rate increased as the concentration of NO increased ( FIG. 9F ). The relationship between rate constants and NO concentration can be used to calibrate the nanosensor for detection of low concentrations of NO.
- ss(AT) 15 DNA oligonucleotides wrapped SWNT (AT 15 -SWNT) were prepared by suspending HiPCO SWNT in AT 15 -containing 0.1 M NaCl solution. Individually suspended SWNT was confirmed through atomic force microscopy (AFM). In addition, molecular dynamics simulation on the AT 15 -SWNT indicated that bases stacked on the sidewall of the SWNT, while the sugar-phosphate backbone extends away from the surface, which yields the colloidally stabile SWNT suspension.
- AFM atomic force microscopy
- SWNT fluorescence emission spectrum was taken with a home-built near-infrared (nIR) fluorescence microscope. Briefly, upon 785nm laser excitation, the AT 15 -SWNT (2 mg/l, in 50 mM PBS) sample emits nIR light (900-1300 nm), which is captured by an InGaAs array through a spectrometer. In order to determine individual SWNT species in the SWNT suspension, 2D excitation-emission profile was taken following techniques similar in literature[34]. Using the identified emission peak center of each species, the intensity of each species can be obtained by deconvoluting the fluorescence spectrum using a custom-written Matlab program ( FIG. 10A ). Upon exposure to nitric oxide (60 ⁇ M, in 1 ⁇ PBS), the fluorescence of all the SWNT species is completely quenched ( FIG. 10B ).
- SWNTs were suspended with both d(AT) 15 and d(GT) 15 oligonucleotides using methods similar to those published[16]. Briefly, HiPCO SWNTs purchased from Unidym were suspended with a 30-base (dAdT) or (dGdT) sequence of ssDNA in a 2:1 SWNT:DNA mass ratio in 0.1 M NaCl in distilled water. Samples were sonicated with a 6 mm probe tip (Cole-parmer) for 10 min at power of 10 watts followed by a 180 minute benchtop centrifugation (Eppendorf Centrifuge 5415D) at 16,100 ⁇ g afterwards the pellet discarded.
- dAdT 30-base
- dGdT dGdT sequence of ssDNA in a 2:1 SWNT:DNA mass ratio in 0.1 M NaCl in distilled water. Samples were sonicated with a 6 mm probe tip (Cole-parmer) for 10 min at power of 10 watts followed by a 180 minute bench
- SWNTs were first suspended in a 2 wt % sodium cholate (SC) aqueous solution using previously published methods[18, 60]. Briefly, 1 mg/mL NanoC SWNTs were added to 40 mL 2 wt % SC in NanoPure H 2 O and were sonicated with a 6 mm probe tip at 40% amplitude ( ⁇ 12 W) for 1 hr in an ice bath. The resulting dark black solution was ultracentrifuged in an SW32 Ti rotor (Beckman Coulter) at 153,700 RCF (max) for 4 hrs to remove unsuspended SWNT aggregates and catalyst particles.
- SW32 Ti rotor Beckman Coulter
- the desired polymer for SWNT suspension was then dissolved, at 1 wt %, in the SC-SWNT and the mixture was placed in a 12-14 kD MWCO dialysis bag and dialyzed against 2 L 1 ⁇ Tris buffer (20 mM, pH 7.3) for 24 hours to remove free SC and allow the polymer to self-assemble on the nanotube surface.
- the dialysis buffer was changed after 4 hrs to ensure SC removal.
- the resulting suspensions were clear to the eye and were free of SWNT aggregates, indicating successful suspension[61].
- AT 15 -SWNT allows selective quenching only to NO.
- a high-throughput screening assay where the AT 15 -SWNT was exposed to 36 biological molecules was designed (Table 1), and found that NO was the only molecule that caused complete fluorescence quenching. Notice that concentrations of the majority of the bio-molecules ( ⁇ 500 ⁇ M) were much higher than NO (60 ⁇ M) in the screening, and others were constrained by their solubility.
- ss(GT) 15 differed from ss(AT) 15 by only a small change in the one of the bases, but it responded to many more molecules including dopamine, histamine, L-ascorbic acid, melatonin, NADH, NO and riboflavin.
- ss(AT) 15 variants including ss(AAAAT) 6 , ss(AAATT) 6 , ss(AAT) 10 , ss(ATT) 10 , ss(AAAT) 7 , ss(AATTT) 6 , ss(AATT) 7 showed similar response profiles compared to ss(AAT) 10 , where many other molecules apart from NO also greatly modulated SWNT fluorescence.
- PVA-SWNT poly-vinyl alcohol wrapped SWNT appeared to be the only polymer-SWNT complexes among over thirty polymers tested that was not quenched by NO.
- dopamine induced similar quenching to PVA-SWNT in the typical DNA response profile; however, other reducing agents including NADH, L-ascorbic acid and melatonin that were previously shown to enhance fluorescence of the DNA-SWNT caused quenching of the PVA-SWNT.
- the selectivity of d(AT) 15 -SWNT included three components: redox, non-radiative energy loss, and steric.
- DNA-SWNTs have previously shown selective electrochemical responses to odor gases[35-38], ad specific recognition for SWNT structures[39], although efforts on understanding the recognition mechanisms is still underway. In fact, most of the responses resulted from interaction between redox-active molecules and polymer-SWNT complexes. For instance, LUMO levels of NO ( ⁇ 0.5 vs NHE)[40] and riboflavin ( ⁇ 0.318 vs NHE)[41] were close to conduction band of SWNT, so it is possible that they cause quenching through excited-state electron quenching[42].
- fluorescence enhancement response caused by reducing agents including NADH, L-ascorbic acid and melatonin on DNA-SWNT was likely because NADH reduces DNA wrapping, recovering DNA-induced pre-quenched fluorescence. More specifically, the LUMO band DNA was below the Fermi level of semiconducting SWNT[43], quenching excited state electrons[42]. HOMO electrons of NADH can compete with excited state electrons for the LUMO level of DNA, inhibiting SWNT excitons from quenching.
- the DNA-SWNT fluorescence enhancement caused by NADH was weakened as the energy gap between condition band of SWNT and LUMO of DNA molecule decreases, or the diameter of the SWNT increases, supporting the fluorescence enhancing mechanism proposed.
- Nitric Oxide (NO) Solution Nitric Oxide (NO) Solution:
- Phosphate buffer saline (PBS, 1 ⁇ ) was contained in a 5 ml round bottom flask and sealed with a septum with two needles inserted providing an inlet and an outlet respectively. After Argon (Airgas) gas was purged for 2 hours to remove dissolved oxygen in the buffer, nitric oxide gas (99.99%, Electronicfluorocarbons) was induced for 20 min at outlet pressure of 2 psi. The concentration of NO was measured using horseradish peroxidase assay[62-63].
- AFM images were taken using SWNT samples that were deposited on silicon dioxide surface pre-treated with APTES.
- the same procedure was used as in the sample required for fluorescence detection, except that the silicon dioxide surface was used for depositing instead of the glass slide, in order to obtain a smoother surface for AFM imaging.
- SWNT solutions were diluted to a final SWNT concentration of 2 mg/l.
- the following analytes were initially dissolved in DMSO, including ATP, cAMP, creatinine, d-aspartic acid, glycine, 1-citrulline, 1-histidine, quinine, sodium pyruvate; all other analytes dissolved in 1 ⁇ Tris (20 mM, pH 7.3).
- Analyte solutions were added to the SWNT, such that the final DMSO concentration was 1 vol %, the mixture was incubated for 1 hr and the resulting SWNT PL was measured with a home-built near infrared (nIR) fluorescence microscope.
- nIR near infrared
- a Zeiss AxioVision inverted microscope was coupled to a Princeton Instruments InGaAs OMA V array detector through a PI Acton SP2500 spectrometer.
- Sample excitation was from a 785 nm photodiode laser, 450 mW at the source and 150 mW at the sample.
- the fluorescence intensity at any energy, E, is a sum over the contributions of all the species present in solution:
- Each ⁇ i (E 0,i ) was constrained within a 10 meV (50 meV) window to maintain the physical validity of the fit.
- the shifting response is set to zero due to the difficulty in distinguishing between actual shifting and relative intensity change of different species.
- FIG. 6 describes the NO detection scheme.
- the SWNT on the array Upon 658 nm laser excitation, the SWNT on the array emits stable near-infrared light, which is collected in real-time by a near-infrared two-dimensional array detector through an inverted microscope with 100 ⁇ objective at a frame rate of 0.2 s/frame.
- each individual AT 15 -SWNT is shown as a diffraction-limited fluorescent spot of approximately 2 ⁇ 2 pixelated size. Each pixel is 290 nm.
- Atomic force microscopy (AFM) image confirms that AT 15 -SWNT is individually deposited on the substrate.
- stepwise photoluminescence quenching of fluorescence of each SWNT in the array is observed over time ( FIGS. 11 A- 11 B).
- Each trace is normalized to the difference between the starting intensity of the SWNT and the baseline intensity which is obtained through averaging intensity over a 20 ⁇ 20 spot that does not contain SWNTs at the beginning of each movie.
- NO adsorbs on the unwrapped areas on the SWNT, excitons that formed near the NO adsorption site and within one exciton diffusion length are non-radiatively quenched when they reach the site.
- 11A-11B indicated that within 600 s, around 40%, 60%, 100% and 100% of quenching were observed when the sensor was exposed to 0.2 ⁇ M, 1 ⁇ M, 5 ⁇ M, and 25 ⁇ M of NO respectively. In addition, 100% quenching of the SWNT occurs much faster in the case of 25 ⁇ M exposure than that of the 5 ⁇ M exposure. Moreover, only at low concentration were desorption steps observed, which indicates that k f becomes less dominant as concentration of NO decreases, and this observation is consistent with that is predicted by equation (2) and (3). This experimental observation motivates us to look into a generic analysis method that is capable of relating NO concentration to the rate of quenching. Materials and Methods: Microscopy and Data Collection for Single Molecule NO Detection:
- AT 15 -SWNTs were deposited onto a Petri dish pre-treated with 3-aminopropyltriethoxysilane (APTES) substrate, and 3 times of washing removed suspended SWNT as free DNA in the sample.
- APTES 3-aminopropyltriethoxysilane
- the charge-charge interaction between AT 15 -SWNT and APTES is enough to keep the construct stable at physiological pH.
- the microscopy technique is similar to that reported in the literature[23]. Briefly, samples were excited by a 658 nm laser (LDM-OPT-A6-13, Newport Corp) at 35 mW.
- the fluorescence of AT 15 -SWNT was imaged and monitored in real time through a 100 ⁇ TIRF objective for hours using an inverted microscope (Carl Zeiss, Axiovert 200), with a 2D InGaAs array (Princeton Instruments OMA 2D) attached. Movies were acquired at 0.2 s/frame using the WinSpec data acquisition program (Princeton Instruments). Before the experiment, a control movie (same movie length as the experiment movie) was taken to ensure a stable baseline. In the experiment, nitric oxide (200 nM) in Tris (1 ⁇ , pH 7.3) buffer was injected through a fine hole, allowing minimal exposure to air.
- HMM Hidden Markov Model
- a single SWNT can be simply visualized as a 1D array that contain N reactive sites.
- a single SWNT is a population with both starting and maximum population size of N. Notice that the exact length of exciton-diffusion does not affect the analysis.
- a quenching adsorption event as a “death” event since it results in a fluorescence decrease, and a desorption event therefore as a “birth” event. How the population size changes over time is of our interest, because it directly relates to the fluorescence response in time.
- ⁇ circumflex over ( ⁇ ) ⁇ MLE and ⁇ circumflex over ( ⁇ ) ⁇ MLE to denote MLE estimator for ⁇ and ⁇ .
- B t +D t equals the total number of transition events.
- S t is defined as ⁇ o t X u du, the total time lived by the population in the time interval [0, t].
- birth-and-death model employed in this work was derived from the differential equation (2), therefore it correctly reflects the very nature of the underlying process; whereas the HMM is just an approximation relying on various ideal assumptions.
- the time that the underlying process stays at each particular state before next transition is a random variable whose distribution is obviously state-dependent. While being neglected by HMM, this dependency is explicitly captured by the linear birth-death process.
- the process parameter ⁇ right arrow over ( ⁇ ) ⁇ max is also named as maximum likelihood estimator (MLE).
- ⁇ is the parameter space
- equation (2) is equivalent to
- B t and D t being the number of birth and death in the time interval [0,t]
- B t +D t n(t).
- S t is defined as ⁇ 0 t X u du, the total time lived by the population in the time interval [0, t].
- the maximum likelihood estimators (MLE) of ( ⁇ , ⁇ ) are obtained by maximizing L t ( ⁇ )
- a k f,MLE can be obtained through the stochastic analysis described above, and histogram shows the frequency of occurrence of each k f,MLE for 100 traces. Fitted with a normal, the mean and standard deviation of the k f,MLE at each k f,Input can be calculated, and plotted against the input rate, k f,Input . A slope of 1 indicated that k f,MLE indeed can be used to calibrate k f,Input , and the relatively large standard deviation (plot is in log 10 scale) can be attributed to many zero-transition traces, and the MLE estimation method breaks down when there is no transition occurs.
- FIG. 13B summarizes the estimated k f,MLE as a function of k f,Input using increasing number of traces, and each panel represents a different option of observation time (a) 600 s, b) 1200 s and c) 3000 s respectively).
- Linear fitting yields a slope approaching 1 with less than 0.4% error as the number of traces reaches 1000, suggests that k f,MLE can provide a decent calibration for any unknown k f within the range we tested. It is also interesting to notice that although increasing the number traces produces a more consistent slope ( FIG. 13B ), the effect on the standard deviation is minimal.
- k f,MLE estimated from 10, 100 and 1000 traces superimpose on each other, and stochastic mean of k f,MLE exactly matches k f,Input , which validates the consistency of this MLE estimation method.
- Calibration of the AT 15 -SWNT sensor array was carried out by exposing the array to NO solution at different concentrations, ranging from 0.16 ⁇ M to 19.4 ⁇ M, and the fluorescence quenching response from each individual SWNT was recorded over 600 s at 0.2 s/frame.
- a custom-written MATLAB program automatically selects 50 brightest diffraction-limited spot with each representing a single SWNT, and extracts the fluorescence intensity in time.
- We chose the brightest SWNTs to ensure they have less defects chemically and structurally [20, 58], and therefore are sensitive to the changes in the environment and the population of SWNTs we choose is less likely to be heterogeneous.
- Each trace is subjected to another custom-written MATLAB routine based on the step fitting algorithm described in Ref[59] to distinguish real transition events from noise.
- the algorithm starts by fitting the data with a single large step and locates this first step by computing and minimizing error (Chi-squared) between the fit and the actual data. Subsequent steps are found through fitting new steps to the plateaus generated from previous steps, and the whole process continues.
- a ‘counter fit’ is generated by placing fits between plateaus in between the current best-fitted steps, and iteration process ends when the ratio between the Chi-squared of the current best fit and the Chi-squared of the ‘counter fit’ becomes minimal.
- each SWNT reports NO concentration in the vicinity of the SWNT with great accuracy ( FIG. 14 ).
- each sensor detects a slightly different concentration of NO locally.
- the mean value of the rates well describes concentration of the NO with one standard deviation at 1-20 ⁇ M, providing a good calibration of the sensor.
- the stochastic nature of the process explains the increasing trend of the width of histogram as the concentration decreases. As the concentration of NO decreases, some sensors do not receive any NO molecules, thus reporting a zero forward rate constant, and the width of the histogram is expected to be fairly wide. At this concentration level, reporting the mean value of rate constant is not meaningful.
- the linear trend observed experimentally is surprisingly nice, and it reflects the low detection limit of this sensing platform.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Inorganic Chemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
TABLE 1 | |||
analyte | concentration (mM) | ||
17-α-estradiol | 0.10 | ||
2,4-dinitrophenol | 0.48 | ||
acetylcholine chloride | 0.54 | ||
α-tocopherol | 0.51 | ||
adenosine | 0.51 | ||
ATP | 0.11 | ||
cAMP | 0.10 | ||
creatinine | 0.10 | ||
cytidine | 0.48 | ||
D-aspartic acid | 0.02 | ||
D-fructose | 10.80 | ||
D-galactose | 5.00 | ||
D-glucose | 10.90 | ||
D-mannose | 10.30 | ||
dopamine | 0.49 | ||
glycine | 0.50 | ||
guanosine | 0.51 | ||
histamine | 0.51 | ||
L-ascorbic acid | 0.50 | ||
L-citrulline | 0.11 | ||
L-histidine | 0.10 | ||
L-thyroxine | 0.10 | ||
melatonin | 0.49 | ||
NADH | 0.51 | ||
nitric oxide | 0.06 | ||
quinine | 0.01 | ||
riboflavin | 0.10 | ||
salicylic acid | 0.49 | ||
serotonin | 0.11 | ||
sodium azide | 0.51 | ||
sodium pyruvate | 0.50 | ||
sucrose | 0.10 | ||
thymidine | 0.52 | ||
tryptophan | 0.25 | ||
tyramine | 0.49 | ||
urea | 0.49 | ||
k f =k f,single site [NO] (3)
based on the assumption that there are many more NO molecules than SWNT segments in our experiments, and adsorption and desorption of NO on the SWNT will not affect the concentration of NO in bulk. We are more interested in kf than kr because the former provides a measure of concentration of NO in this case, although both kf and kr will affect the fluorescence response. Note that the concentration of NO determines both the degree of quenching of the fluorescence over the observation time, as well as the rate it quenches. The representative traces in
Materials and Methods: Microscopy and Data Collection for Single Molecule NO Detection:
More specifically, the probability of a birth event (the number of sites goes from i to i+1) happening in the next small time interval is proportional (N−i)λ, and the probability of a death event (the number of sites goes from i to i−1) is proportional to iμ. Note that μ, or the single-site adsorption rate constant, is linearly dependent of the concentration of quencher; while λ, or the single-site desorption rate constant, is a constant. Therefore, accurate estimation of μ provides a proper calibration of the quencher's concentration. Notice that the process mentioned above is not a typical linear birth-and-death process that is well described in literature where both birth and death rates are proportional to population size, i. However, applying the theory of the maximum likelihood estimation (MLE)[56-57] to this process allows one to estimate the only two process parameters μ and λ from the observation on the change of site population in a single SWNT. Briefly, the parameter space for a birth-and-death process, {right arrow over (θ)}=(μ,λ), can be estimated through deriving the likelihood function, Lt({right arrow over (θ)}), and computing {right arrow over (θ)}max that maximizes Lt({right arrow over (θ)}) by taking the first order derivative. The process parameter {right arrow over (θ)}max is also named as maximum likelihood estimator (MLE), and in this case is a two dimensional vector,
where Dt and Bt being the number of birth and death in the time interval [0, t]. a We use {circumflex over (μ)}MLE and {circumflex over (λ)}MLE to denote MLE estimator for μ and λ. And Bt+Dt equals the total number of transition events. St is defined as ∫o tXudu, the total time lived by the population in the time interval [0, t].
τ(X i)=(N−X i)λ+X iμ
- 1. Garthwaite, J. and C. L. Boulton, NITRIC-OXIDE SIGNALING IN THE CENTRAL-NERVOUS-SYSTEM. Annual Review of Physiology, 1995. 57: p. 683-706.
- 2. Moncada, S., R. M. Palmer, and E. A. Higgs, Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacological Reviews, 1991. 43(2): p. 109-142.
- 3. Wink, D. A. and J. B. Mitchell, Nitric oxide and cancer: An introduction. Free Radical Biology and Medicine, 2003. 34(8): p. 951-954.
- 4. Rivot, J. P., et al., Nitric oxide (NO): in vivo electrochemical monitoring in the dorsal horn of the spinal cord of the rat. Brain research, 1997. 773(1-2): p. 66-75.
- 5. Yao, D., A. G. Vlessidis, and N. P. Evmiridis, Determination of nitric oxide in biological samples. Microchimica Acta, 2004. 147(1): p. 1-20.
- 6. Nagano, T. and T. Yoshimura, Bioimaging of nitric oxide. Chemical Reviews, 2002. 102(4): p. 1235-1269.
- 7. Robinson, J. K., M. J. Bollinger, and J. W. Birks, Luminol/H2O2 chemiluminescence detector for the analysis of nitric oxide in exhaled breath. Analytical Chemistry, 1999. 71(22): p. 5131-5136.
- 8. McMurtry, M. S., et al., Measurement of nitric oxide, nitrite and nitrate using a chemiluminescence assay: an update for the
year 2000. Analusis, 2000. 28(6): p. 455-465. - 9. Kojima, H., et al., Detection and imaging of nitric oxide with novel fluorescent indicators: Diaminofluoresceins. Analytical Chemistry, 1998. 70(13): p. 2446-2453.
- 10. Kojima, H., et al., Fluorescent indicators for imaging nitric oxide production. Angewandte Chemie International Edition, 1999. 38(21): p. 3209-3212.
- 11. Sasaki, E., et al., Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. Journal of the American Chemical Society, 2005. 127(11): p. 3684-3685.
- 12. Lim, M. H., D. Xu, and S. J. Lippard, Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nature Chemical Biology, 2006. 2(7): p. 375-380.
- 13. O'Connell, M. J., et al., Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002. 297(5581): p. 593-596.
- 14. Saito, R., M. S. Dresselhaus, and G. Dresselhaus, Physical Properties of Carbon Nanotubes. 1998, London: Imperial College Press.
- 15. Heller, D. A., et al., Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Advanced Materials, 2005. 17(23): p. 2793-2798.
- 16. Heller, D. A., et al., Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science, 2006. 311(5760): p. 508.
- 17. Barone, P. W., R. S. Parker, and M. S. Strano, In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: Design, fluorophore properties, advantages, and disadvantages. Anal. Chem, 2005. 77(23): p. 7556-7562.
- 18. Barone, P. W., et al., Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials, 2005. 4(1): p. 86-92.
- 19. Kim, J., et al., The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nature Chemistry, 2009. 1(6): p. 473-481.
- 20. Cognet, L., et al., Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science, 2007. 316(5830): p. 1465.
- 21. Siitonen, A., et al., Dependence of Exciton Mobility on Structure in Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry Letters, 2010. 1: p. 2189-2192.
- 22. Siitonen, A. J., et al., Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions. Nano Letters, 2010. 10(5): p. 1595-9.
- 23. Jin, H., et al., Stochastic analysis of stepwise fluorescence quenching reactions on single-walled carbon nanotubes: single molecule sensors. Nano letters, 2008. 8(12): p. 4299-4304.
- 24. Jin, H., et al., Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat Nano, 2010. 5(4): p. 302-309.
- 25. Heller, D. A., et al., Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nature Nanotechnology, 2009. 4(2): p. 114-120.
- 26. Zheng, M., et al., Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science, 2003. 302(5650): p. 1545-1548.
- 27. Jin, H., et al., Divalent Ion and Thermally Induced DNA Conformational Polymorphism on Single-walled Carbon Nanotubes. Macromolecules, 2007. 40(18): p. 6731-6739.
- 28. Hughes, M. E., E. Brandin, and J. A. Golovchenko, Optical Absorption of DNA—Carbon Nanotube Structures. Nano Letters, 2007. 7(5): p. 1191-1194.
- 29. Zheng, M., et al., DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials, 2003. 2(5): p. 338-342.
- 30. Meng, S., et al., DNA Nucleoside Interaction and Identification with Carbon Nanotubes. Nano Letters, 2006. 7(1): p. 45-50.
- 31. Manohar, S., T. Tang, and A. Jagota, Structure of Homopolymer DNA—CNT Hybrids. The Journal of Physical Chemistry C, 2007. 111(48): p. 17835-17845.
- 32. Johnson, R. R., A. T. C. Johnson, and M. L. Klein, Probing the Structure of DNA-Carbon Nanotube Hybrids with Molecular Dynamics. Nano Letters, 2008. 8(1): p. 69-75.
- 33. Johnson, R. R., et al., Free Energy Landscape of a DNA—Carbon Nanotube Hybrid Using Replica Exchange Molecular Dynamics. Nano Letters, 2009. 9(2): p. 537-541.
- 34. Bachilo, S. M., et al., Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002. 298(5602): p. 2361-2366.
- 35. Johnson, A. T. C., et al., DNA-decorated carbon nanotubes for chemical sensing. Semiconductor Science and Technology, 2006. 21(11): p. S17-S21.
- 36. Johnson, A. J. C., et al., Employing DNA-Functionalized Carbon Nanotubes to Detect Biologically-Derived Odorants. Chemical Senses, 2008. 33(8): p. S163-S164.
- 37. Johnson, A. T. C., et al., DNA-Coated Nanosensors for Breath Analysis. Ieee Sensors Journal, 2010. 10(1): p. 159-166.
- 38. Khamis, S. M., et al., Homo-DNA functionalized carbon nanotube chemical sensors. Journal of Physics and Chemistry of Solids, 2010. 71(4): p. 476-479.
- 39. Tu, X., et al., DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature, 2009. 460(7252): p. 250-253.
- 40. Bartberger, M. D., et al., The reduction potential of nitric oxide (NO) and its importance to NO biochemistry. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(17): p. 10958-10963.
- 41. Anderson, R. F., Energetics of the one-electron reduction steps of riboflavin, FMN and FAD to their fully reduced forms. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1983. 722(1): p. 158-162.
- 42. Satishkumar, B. C., et al., Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing. Nat Nano, 2007. 2(9): p. 560-564.
- 43. Shoda, M., et al., Probing Interaction between ssDNA and Carbon Nanotubes by Raman Scattering and Electron Microscopy. The Journal of Physical Chemistry C, 2009. 113(15): p. 6033-6036.
- 44. Anderson, R. F., ENERGETICS OF THE ONE-ELECTRON STEPS IN THE NAD+-NADH REDOX COUPLE. Biochimica Et Biophysica Acta, 1980. 590(2): p. 277-281.
- 45. Mahal, H. S., H. S. Sharma, and T. Mukherjee, Antioxidant properties of melatonin: A pulse radiolysis study. Free Radical Biology and Medicine, 1999. 26(5-6): p. 557-565.
- 46. Li, Q. W., Y. M. Wang, and G. A. Luo, Voltammetric separation of dopamine and ascorbic acid with graphite electrodes modified with ultrafine TiO2. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2000. 11(1): p. 71-74.
- 47. Turyan, Y. I. and R. Kohen, FORMAL REDOX POTENTIALS OF THE DEHYDRO-L-ASCORBIC ACID L-ASCORBIC-ACID SYSTEM. Journal of Electroanalytical Chemistry, 1995. 380(1-2): p. 273-277.
- 48. Tanaka, Y., et al., Experimentally Determined Redox Potentials of Individual (n,m) Single-Walled Carbon Nanotubes. Angewandte Chemie-International Edition, 2009. 48(41): p. 7655-7659.
- 49. Tanaka, Y., et al., Determination of electronic states of individually dissolved (n,m) single-walled carbon nanotubes in solution. Chemical Physics Letters, 2009. 482(1-3): p. 114-117.
- 50. O'Connell, M., E. Eibergen, and S. Doorn, Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nature Materials, 2005. 4(5): p. 412-418.
- 51. Zheng, M. and B. A. Diner, Solution redox chemistry of carbon nanotubes. Journal of the American Chemical Society, 2004. 126(47): p. 15490-4.
- 52. Wang, F., et al., Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes. Physical Review B, 2004. 70(24): p. 241403.
- 53. Dukovic, G., et al., Reversible Surface Oxidation and Efficient Luminescence Quenching in Semiconductor Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2004. 126(46): p. 15269-15276.
- 54. McKinney, S. A., C. Joo, and T. Ha, Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophysical journal, 2006. 91(5): p. 1941-1951.
- 55. Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem, 1977. 81(25): p. 2340-2361.
- 56. Keiding, N., MAXIMUM LIKELIHOOD ESTIMATION IN BIRTH-AND-DEATH PROCESS. Annals of Statistics, 1975. 3(2): p. 363-372.
- 57. Feigin, P. D., MAXIMUM LIKELIHOOD ESTIMATION FOR CONTINUOUS-TIME STOCHASTIC-PROCESSES. Advances in Applied Probability, 1976. 8(4): p. 712-736.
- 58. Siitonen, A. J., et al., Surfactant-Dependent Exciton Mobility in Single-Walled Carbon Nanotubes Studied by Single-Molecule Reactions. Nano Letters, 2010. 10(5): p. 1595-1599.
- 59. Kerssemakers, J. W. J., et al., Assembly dynamics of microtubules at molecular resolution. Nature, 2006. 442(7103): p. 709-712.
- 60. O'Connell, M. J., et al., Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002. 297(5581): p. 593.
- 61. Barone, P. W. and M. S. Strano, Reversible control of carbon nanotube aggregation for a glucose affinity sensor. ANGEWANDTE CHEMIE, 2006. 118(48): p. 8318.
- 62. Kojima, H., et al., Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators: Diaminofluoresceins. Analytical Chemistry, 1998. 70(13): p. 2446-2453.
- 63. Kikuchi, K., T. Nagano, and M. Hirobe, Novel detection method of nitric oxide using horseradish peroxidase. Biological & Pharmaceutical Bulletin, 1996. 19(4): p. 649-651.
- 64. Inoue, T., et al., Diameter dependence of exciton-phonon interaction in individual single-walled carbon nanotubes studied by microphotoluminescence spectroscopy. Physical Review B, 2006. 73(23): p. 233401.
- 65. Siitonen, A. J., et al., Dependence of Exciton Mobility on Structure in Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry Letters, 2010. 1(14): p. 2189-2192.
Claims (29)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/860,752 US8486709B2 (en) | 2009-08-21 | 2010-08-20 | Optical nanosensors comprising photoluminescent nanostructures |
US13/942,241 US10012657B2 (en) | 2009-08-21 | 2013-07-15 | Optical nanosensors comprising photoluminescent nanostructures |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23592109P | 2009-08-21 | 2009-08-21 | |
US12/860,752 US8486709B2 (en) | 2009-08-21 | 2010-08-20 | Optical nanosensors comprising photoluminescent nanostructures |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/942,241 Continuation US10012657B2 (en) | 2009-08-21 | 2013-07-15 | Optical nanosensors comprising photoluminescent nanostructures |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110045523A1 US20110045523A1 (en) | 2011-02-24 |
US8486709B2 true US8486709B2 (en) | 2013-07-16 |
Family
ID=42829570
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/860,752 Expired - Fee Related US8486709B2 (en) | 2009-08-21 | 2010-08-20 | Optical nanosensors comprising photoluminescent nanostructures |
US13/942,241 Active 2031-12-06 US10012657B2 (en) | 2009-08-21 | 2013-07-15 | Optical nanosensors comprising photoluminescent nanostructures |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/942,241 Active 2031-12-06 US10012657B2 (en) | 2009-08-21 | 2013-07-15 | Optical nanosensors comprising photoluminescent nanostructures |
Country Status (2)
Country | Link |
---|---|
US (2) | US8486709B2 (en) |
WO (1) | WO2011022677A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103399056A (en) * | 2013-08-15 | 2013-11-20 | 无锡百灵传感技术有限公司 | Preparation method of electrochemical sensor for simultaneously detecting ascorbic acid, epinephrine and uric acid |
US20170299601A1 (en) * | 2014-09-19 | 2017-10-19 | Massachusetts Institute Of Technology | Ratiometric and multiplexed sensors from single chirality carbon nanotubes |
US20220003682A1 (en) * | 2018-11-07 | 2022-01-06 | Massachusetts Institute Of Technology | Substrate-immobilized optical nanosensors |
US11474102B2 (en) * | 2015-11-23 | 2022-10-18 | Massachusetts Institute Of Technology | Protein corona phase molecular recognition |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011081884A1 (en) * | 2009-12-14 | 2011-07-07 | Massachusetts Institute Of Technology | Systems and methods related to optical nanosensors including photoluminescent nanostructures |
US9475709B2 (en) | 2010-08-25 | 2016-10-25 | Lockheed Martin Corporation | Perforated graphene deionization or desalination |
WO2012129283A1 (en) * | 2011-03-21 | 2012-09-27 | Kramer Theodore J | On-substrate fabrication of high-surface area polymer morphology for photoactive applications |
EP2510958B2 (en) * | 2011-04-11 | 2023-02-15 | Fresenius Medical Care Deutschland GmbH | Method and apparatus for monitoring a treatment of a patient, preferably for monitoring hemodialysis, hemodiafiltration and/or peritoneal dialysis |
WO2012167218A2 (en) * | 2011-06-03 | 2012-12-06 | Dxupclose | Device and method for identifying microbes and counting microbes and determining antimicrobial sensitivity |
US8552381B2 (en) | 2011-07-08 | 2013-10-08 | The Johns Hopkins University | Agile IR scene projector |
US8945935B2 (en) * | 2011-08-04 | 2015-02-03 | Technion Research & Development Foundation Ltd. | Diagnosing, prognosing and monitoring multiple sclerosis |
US20130201316A1 (en) | 2012-01-09 | 2013-08-08 | May Patents Ltd. | System and method for server based control |
US10653824B2 (en) | 2012-05-25 | 2020-05-19 | Lockheed Martin Corporation | Two-dimensional materials and uses thereof |
US10418143B2 (en) | 2015-08-05 | 2019-09-17 | Lockheed Martin Corporation | Perforatable sheets of graphene-based material |
US9834809B2 (en) | 2014-02-28 | 2017-12-05 | Lockheed Martin Corporation | Syringe for obtaining nano-sized materials for selective assays and related methods of use |
US10213746B2 (en) | 2016-04-14 | 2019-02-26 | Lockheed Martin Corporation | Selective interfacial mitigation of graphene defects |
US10376845B2 (en) | 2016-04-14 | 2019-08-13 | Lockheed Martin Corporation | Membranes with tunable selectivity |
US9744617B2 (en) | 2014-01-31 | 2017-08-29 | Lockheed Martin Corporation | Methods for perforating multi-layer graphene through ion bombardment |
US10696554B2 (en) | 2015-08-06 | 2020-06-30 | Lockheed Martin Corporation | Nanoparticle modification and perforation of graphene |
CN110542753A (en) | 2012-10-29 | 2019-12-06 | 犹他大学研究基金会 | Functionalized nanotube sensors and related methods |
TW201504140A (en) | 2013-03-12 | 2015-02-01 | Lockheed Corp | Method for forming perforated graphene with uniform aperture size |
US9572918B2 (en) | 2013-06-21 | 2017-02-21 | Lockheed Martin Corporation | Graphene-based filter for isolating a substance from blood |
WO2015039121A1 (en) * | 2013-09-16 | 2015-03-19 | Massachusetts Institute Of Technology | Near infrared fluorescent single walled carbon nanotubes as tissue localizable biosensors |
US20150075667A1 (en) * | 2013-09-19 | 2015-03-19 | Lockheed Martin Corporation | Carbon macrotubes and methods for making the same |
CN103760143B (en) * | 2014-01-17 | 2015-12-09 | 上海交通大学 | Preparation of Nitric Oxide Fluorescent Probe Based on Necklace-like Gold Nanoparticle Self-Assembly System |
AU2015210785A1 (en) | 2014-01-31 | 2016-09-08 | Lockheed Martin Corporation | Perforating two-dimensional materials using broad ion field |
WO2015116857A2 (en) | 2014-01-31 | 2015-08-06 | Lockheed Martin Corporation | Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer |
JP2017512129A (en) | 2014-03-12 | 2017-05-18 | ロッキード・マーチン・コーポレーション | Separation membranes formed from perforated graphene |
WO2015184096A1 (en) * | 2014-05-28 | 2015-12-03 | Memorial Sloan-Kettering Cancer Center | Compositon and method for monitoring lipid |
CN104004378B (en) * | 2014-06-11 | 2015-12-09 | 南方医科大学 | A kind of benzindole hemicyanine dye and its application |
CA2973472A1 (en) | 2014-09-02 | 2016-03-10 | Lockheed Martin Corporation | Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same |
US20160087148A1 (en) | 2014-09-19 | 2016-03-24 | National Cheng Kung University | Non-metallic semiconductor quantum dot and method of carrying out chemical reaction or photoluminescence reaction by using the same |
CN105092551B (en) * | 2015-08-14 | 2017-10-10 | 上海交通大学 | Nitric oxide production method is detected based on the fluorescence noble-metal nanoclusters that bovine serum albumin is modified |
JP6613736B2 (en) * | 2015-09-07 | 2019-12-04 | セイコーエプソン株式会社 | Substance detection method and substance detection apparatus |
CN105241868B (en) * | 2015-09-18 | 2018-11-02 | 福建医科大学 | Electrochemiluminescsensor sensor based on methionine-gold nano cluster |
CN106809815B (en) * | 2015-11-27 | 2019-10-08 | 中国科学院过程工程研究所 | A kind of carbon quantum dot, its preparation method and application |
CA3020874A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Two-dimensional membrane structures having flow passages |
JP2019511451A (en) | 2016-04-14 | 2019-04-25 | ロッキード・マーチン・コーポレーション | Method of processing graphene sheet for large transfer using floatation method |
WO2017180134A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Methods for in vivo and in vitro use of graphene and other two-dimensional materials |
WO2017180133A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Methods for in situ monitoring and control of defect formation or healing |
KR20180124470A (en) * | 2017-05-12 | 2018-11-21 | 이진규 | Photoluminescent Molecule Quantum Qunching Based Aritifical Neuron |
US20200294401A1 (en) | 2017-09-04 | 2020-09-17 | Nng Software Developing And Commercial Llc. | A Method and Apparatus for Collecting and Using Sensor Data from a Vehicle |
CN108896750B (en) * | 2018-05-11 | 2021-05-25 | 江苏大学 | Preparation method and application of BSA-Au/Ag NCs/OPD/HRP proportional type fluorescence sensor |
CN112867533A (en) | 2018-08-14 | 2021-05-28 | 神经触发有限公司 | Method and apparatus for percutaneous facial nerve stimulation and application thereof |
CN109187511B (en) * | 2018-09-10 | 2021-04-20 | 浙江理工大学 | Method for detecting ancient silk fabric based on electrochemical luminescence method |
EP3888346A4 (en) | 2019-02-19 | 2022-08-24 | Edgy Bees Ltd. | Estimating real-time delay of a video data stream |
KR102757938B1 (en) | 2020-05-20 | 2025-01-23 | 와이에스아이 인코포레이티드 | Extended solid angle turbidity sensor |
EP4158319A1 (en) * | 2020-05-26 | 2023-04-05 | Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. | A nanoscale optical biosensor based on material-associated single walled carbon nanotubes |
JP7553802B2 (en) * | 2020-12-15 | 2024-09-19 | 富士通株式会社 | OPTIMIZATION PROGRAM, OPTIMIZATION METHOD, AND INFORMATION PROCESSING APPARATUS |
WO2022212932A1 (en) * | 2021-04-02 | 2022-10-06 | Glyciome, Llc | Dysbiotic measurement |
CN113777087B (en) * | 2021-07-23 | 2022-07-01 | 华南农业大学 | A Ratiometric Fluorescence Analysis Method for Detecting Nitrite |
IL309988A (en) | 2021-07-26 | 2024-03-01 | Bright Data Ltd | Emulating web browser in a dedicated intermediary box |
KR102844754B1 (en) * | 2023-01-26 | 2025-08-08 | 부산대학교 산학협력단 | Sensor for detecting biomolecules and manufacturing method for the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070292896A1 (en) * | 2004-07-22 | 2007-12-20 | Strano Michael S | Sensors employing single-walled carbon nanotubes |
-
2010
- 2010-08-20 WO PCT/US2010/046206 patent/WO2011022677A1/en active Application Filing
- 2010-08-20 US US12/860,752 patent/US8486709B2/en not_active Expired - Fee Related
-
2013
- 2013-07-15 US US13/942,241 patent/US10012657B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070292896A1 (en) * | 2004-07-22 | 2007-12-20 | Strano Michael S | Sensors employing single-walled carbon nanotubes |
Non-Patent Citations (9)
Title |
---|
Barone, Paul W. et al., "In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages," Analytical Chemistry, American Chemical Society, US, vol. 77, No. 23, Dec. 2005, pp. 7556-7562. |
Barone, Paul W. et al., "Single walled carbon nanotubes as reporters for the optical detection of glucose" Journal of Diabetes Science and Technology , Diabetes Technology Society, US, vol. 3, No. 2 Jan. 1, 2009,pp. 242-252. |
Heller D A et al., "Single-walled carbon nanotube spectroscopy in live cells: Toward long-term labels and optical sensors" Advanced Materials 20051205 Wiley-VCH Verlag DE, vol. 17, No. 23, Dec. 5, 2005, pp. 2793-2799. |
Heller, D A et al., "Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes," Nature Nanotechnology 200902 GB, vol. 4, No. 2, Feb. 2009, pp. 114-120. |
International Preliminary Report on Patentability dated Mar. 1, 2012 for PCT/US2010/046206. |
International Search Report and Written Opinion of the International Searching Authority dated Nov. 8, 2010 for PCT/US2010/046206. |
Kim, Jong-Ho et al, "The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection," Nature Chemistry, vol. 1, No. 6, Sep. 2009, pp. 473-481. |
Zheng, Ming et al. "DNA-assisted dispersion and separation of carbon nanotubes." Nature Materials (2003) 338-342. * |
Zheng, Ming et al. "Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly." Science (2003) 1545-1548. * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103399056A (en) * | 2013-08-15 | 2013-11-20 | 无锡百灵传感技术有限公司 | Preparation method of electrochemical sensor for simultaneously detecting ascorbic acid, epinephrine and uric acid |
CN103399056B (en) * | 2013-08-15 | 2015-06-17 | 无锡百灵传感技术有限公司 | Preparation method of electrochemical sensor for simultaneously detecting ascorbic acid, epinephrine and uric acid |
US20170299601A1 (en) * | 2014-09-19 | 2017-10-19 | Massachusetts Institute Of Technology | Ratiometric and multiplexed sensors from single chirality carbon nanotubes |
US11002741B2 (en) * | 2014-09-19 | 2021-05-11 | Massachusetts Institute Of Technology | Ratiometric and multiplexed sensors from single chirality carbon nanotubes |
US11474102B2 (en) * | 2015-11-23 | 2022-10-18 | Massachusetts Institute Of Technology | Protein corona phase molecular recognition |
US20220003682A1 (en) * | 2018-11-07 | 2022-01-06 | Massachusetts Institute Of Technology | Substrate-immobilized optical nanosensors |
US12105024B2 (en) * | 2018-11-07 | 2024-10-01 | Massachusetts Institute Of Technology | Substrate-immobilized optical nanosensors |
Also Published As
Publication number | Publication date |
---|---|
WO2011022677A1 (en) | 2011-02-24 |
US20140080122A1 (en) | 2014-03-20 |
US20110045523A1 (en) | 2011-02-24 |
US10012657B2 (en) | 2018-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8486709B2 (en) | Optical nanosensors comprising photoluminescent nanostructures | |
Kim et al. | The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection | |
Li et al. | Hexagonal cobalt oxyhydroxide–carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia | |
US10338051B2 (en) | Systems and methods related to optical nanosensors comprising photoluminescent nanostructures | |
Yang et al. | Reversible “off–on” fluorescence of Zn2+-passivated carbon dots: mechanism and potential for the detection of EDTA and Zn2+ | |
US11255848B2 (en) | Polymer-nanostructure composition for selective molecular recognition | |
Baptista et al. | Recent developments in carbon nanomaterial sensors | |
Polo et al. | Impact of redox-active molecules on the fluorescence of polymer-wrapped carbon nanotubes | |
Yu et al. | Saccharomyces-derived carbon dots for biosensing pH and vitamin B 12 | |
Ji et al. | On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine | |
Zhang et al. | Nitrogen-doped carbon quantum dots as a “turn off-on” fluorescence sensor based on the redox reaction mechanism for the sensitive detection of dopamine and alpha lipoic acid | |
Jiang et al. | Ratiometric electrochemiluminescence sensing platform for sensitive glucose detection based on in situ generation and conversion of coreactants | |
Omer et al. | Carbon nanodots as sensitive and selective nanomaterials in pharmaceutical analysis | |
Wen et al. | Ternary electrochemiluminescence biosensor based on black phosphorus quantum dots doped perylene derivative and metal organic frameworks as a coreaction accelerator for the detection of chloramphenicol | |
Şenocak et al. | Highly selective and ultra-sensitive electrochemical sensor behavior of 3D SWCNT-BODIPY hybrid material for eserine detection | |
Pina-Coronado et al. | Methylene Blue functionalized carbon nanodots combined with different shape gold nanostructures for sensitive and selective SARS-CoV-2 sensing | |
Chen et al. | Aggregatable thiol-functionalized carbon dots-based fluorescence strategy for highly sensitive detection of glucose based on target-initiated catalytic oxidation | |
Arora et al. | Organic–inorganic porphyrinoid frameworks for biomolecule sensing | |
Karachevtsev et al. | Glucose sensing based on NIR fluorescence of DNA-wrapped single-walled carbon nanotubes | |
He et al. | Photoluminescence response in carbon nanomaterials to enzymatic degradation | |
Rateb et al. | A multifunctional sensing of two carbon dots based on diaminonaphthalenes for detection of ofloxacin drug | |
Nelson et al. | Turn-off fluorometric determination of Bilirubin using Facile Synthesized Nitrogen-Doped Carbon dots as a fluorescent probe | |
Cai et al. | Carbon dot and FITC conjugated dual-emission nanoprobe and its electrospun film for the sensing of ammonia | |
Othman et al. | Synthesis, characterization, and applications of carbon Dots for determination of Pharmacological and biological samples: A review | |
El-Said et al. | Design and green synthesis of carbon Dots/Gold nanoparticles Composites and their applications for neurotransmitters sensing based on emission Spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MASSACHUSET Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STRANO, MICHAEL S.;KIM, JONG-HO;ZHANG, JINGQING;AND OTHERS;SIGNING DATES FROM 20100929 TO 20101012;REEL/FRAME:025234/0693 |
|
AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:MASSACHUSETTS INSTITUTE OF TECHNOLOGY;REEL/FRAME:028727/0130 Effective date: 20120717 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PATENT HOLDER CLAIMS MICRO ENTITY STATUS, ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: STOM); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20210716 |