CN101659789B - 碳纳米管/导电聚合物复合材料的制备方法 - Google Patents

碳纳米管/导电聚合物复合材料的制备方法 Download PDF

Info

Publication number
CN101659789B
CN101659789B CN2008101417632A CN200810141763A CN101659789B CN 101659789 B CN101659789 B CN 101659789B CN 2008101417632 A CN2008101417632 A CN 2008101417632A CN 200810141763 A CN200810141763 A CN 200810141763A CN 101659789 B CN101659789 B CN 101659789B
Authority
CN
China
Prior art keywords
carbon nano
tube
conducting polymer
composite material
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008101417632A
Other languages
English (en)
Other versions
CN101659789A (zh
Inventor
孟垂舟
刘长洪
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN2008101417632A priority Critical patent/CN101659789B/zh
Priority to US12/487,284 priority patent/US8262943B2/en
Priority to JP2009200015A priority patent/JP5091208B2/ja
Publication of CN101659789A publication Critical patent/CN101659789A/zh
Application granted granted Critical
Publication of CN101659789B publication Critical patent/CN101659789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/58Polymerisation initiated by direct application of electric current
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3327Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkene-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/44Electrochemical polymerisation, i.e. oxidative or reductive coupling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L49/00Compositions of homopolymers or copolymers of compounds having one or more carbon-to-carbon triple bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • C08L65/02Polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • C08L65/04Polyxylenes

Abstract

一种碳纳米管/导电聚合物复合材料的制备方法,其包括以下步骤:提供一碳纳米管薄膜;以及采用电化学原位聚合法将导电聚合物复合在所述碳纳米管薄膜上,获得一碳纳米管/导电聚合物复合材料。

Description

碳纳米管/导电聚合物复合材料的制备方法
技术领域
本技术方案涉及一种碳纳米管/聚合物复合材料的制备方法,尤其涉及一种碳纳米管/导电聚合物复合材料的制备方法。
背景技术
自1991年日本NEC公司的Iijima发现碳纳米管(Carbon Nanotube,CNT)以来(Iilima S.,Nature,1991,354,56-58),立即引起科学界及产业界的极大重视。碳纳米管具有优良的机械和光电性能,被认为是复合材料的理想添加物。碳纳米管/聚合物复合材料已成为世界科学研究的热点(Ajjayan P.M.,StephanO.,Colliex C.,Tranth D.Science.1994,265,1212-1215:Calvert P.,Nature,1999,399,210-211)。碳纳米管作为增强体和导电体,形成的复合材料具有抗静电,微波吸收和电磁屏蔽等性能,具有广泛的应用前景。
现有技术中的碳纳米管/导电聚合物复合材料中的碳纳米管多为棒状物,而导电聚合物以颗粒的形式分布在碳纳米管的间隙中。当所述碳纳米管/导电聚合物复合材料应用于超级电容器、太阳能电池的电极时,其中的导电聚合物充放电时会引起体积收缩和膨胀,而碳纳米管的中空结构可缓解由上述导电聚合物的体积收缩和膨胀引起的碳纳米管/导电聚合物复合材料的体积收缩和膨胀,而且碳纳米管的高导电性可降低导电聚合物的电阻。因此,现有技术中的碳纳米管/导电聚合物复合材料具有较好的导电性和较高的比电容量(大于200法拉/克)。然而,现有技术中的碳纳米管/导电聚合物复合材料通常采用将碳纳米管分散于硫酸及硝酸等强氧化性酸或表面活性剂中,之后再与导电聚合物的单体进行电化学反应,并最终在工作电极上得到一碳纳米管/导电聚合物复合材料的薄膜。通过强酸处理,会使得所述碳纳米管受到一定程度的破坏,而使用表面活性剂处理会使得表面活性剂在最终的碳纳米管/导电聚合物复合材料中不易除去。因而,经强氧化性酸或表面活性剂处理后得到的碳纳米管/导电聚合物复合材料的性能会受到影响。另外,由于碳纳米管易团聚,目前一直不能很好的分散,故,现有技术所制备得到的碳纳米管/导电聚合物复合材料中的碳纳米管间通常没有形成良好的导电网络,且有些相邻碳纳米管之间间距较大,相互间接触性较差,因而不能充分发挥碳纳米管的优良导电性及导热性能,造成所述碳纳米管/导电聚合物复合材料的内阻较大、比电容量较低。
有鉴于此,确有必要提供一种能够使碳纳米管均匀分散、并且不破坏碳纳米管结构的碳纳米管/导电聚合物复合材料的制备方法。
发明内容
一种碳纳米管/导电聚合物复合材料的制备方法,其包括以下步骤:制备一碳纳米管薄膜;以及采用电化学原位聚合法将导电聚合物复合在所述碳纳米管薄膜上,获得一碳纳米管/导电聚合物复合材料。
与现有技术相比较,本技术方案提供的碳纳米管/导电聚合物复合材料的制备方法具有以下优点:其一,由于碳纳米管薄膜中的多个碳纳米管均匀分散且相互连接形成导电网络,故采用电化学原位聚合法将所述碳纳米管薄膜与导电聚合物单体复合,所制得的碳纳米管/导电聚合物复合材料中碳纳米管均匀分散。其二,由于采用电化学原位聚合法将所述碳纳米管薄膜与导电聚合物单体复合,无需添加表面活性剂,使得碳纳米管/导电聚合物复合材料中不包含表面活性剂。其三,本技术方案提供的碳纳米管/导电聚合物复合材料的制备方法,不需要用强酸氧化碳纳米管,碳纳米管的结构完整,在制备过程中不会破坏碳纳米管的结构。其四,采用电化学原位聚合法将所述碳纳米管薄膜与导电聚合物复合,制备工艺简单,可实现连续、规模化生产,且成本较低。
附图说明
图1是本技术方案实施例的碳纳米管/导电聚合物复合材料制备方法的流程图。
图2是本技术方案实施例的包含无序碳纳米管的碳纳米管/导电聚合物复合材料的结构示意图。
具体实施方式
以下将结合附图详细说明本技术方案提供的碳纳米管/导电聚合物复合材料的制备方法。
请参阅图1,本技术方案实施例提供一种碳纳米管/导电聚合物复合材料的制备方法,具体包括以下步骤:
步骤一,制备一碳纳米管薄膜。
所述制备碳纳米管薄膜的方法包括直接生长法、絮化法、碾压法或拉膜法等其它方法。所述碳纳米管薄膜包括多个均匀分布的碳纳米管,且该多个碳纳米管相互连接形成导电网络结构。
本实施例采用絮化法制备所述碳纳米管薄膜,该方法具体包括以下步骤:
(一)提供一碳纳米管原料。
本实施例中,所述碳纳米管原料的制备方法具体包括以下步骤:(a)提供一平整基底,该基底可选用P型或N型硅基底,或选用形成有氧化层的硅基底,本实施例优选为采用4英寸的硅基底;(b)在基底表面均匀形成一催化剂层,该催化剂层材料可选用铁(Fe)、钴(Co)、镍(Ni)或其任意组合的合金之一;(c)将上述形成有催化剂层的基底在700~900℃的空气中退火约30分钟~90分钟;(d)将处理过的基底置于反应炉中,在保护气体环境下加热到500~740℃,然后通入碳源气体反应约5~30分钟,生长得到碳纳米管阵列,其高度大于100纳米,优选为100纳米~10毫米;(e)使碳纳米管阵列脱离基底,获得碳纳米管原料。
该碳纳米管阵列为多个彼此平行且垂直于基底生长的碳纳米管形成的纯碳纳米管阵列,由于生成的碳纳米管长度较长,部分碳纳米管会相互缠绕。通过上述控制生长条件,该超顺排碳纳米管阵列中基本不含有杂质,如无定型碳或残留的催化剂金属颗粒等。本实施例中碳源气可选用乙炔等化学性质较活泼的碳氢化合物,保护气体可选用氮气、氨气或惰性气体。可以理解的是,本实施例提供的碳纳米管阵列不限于上述制备方法。本实施例优选采用刀片或其他工具将碳纳米管从基底刮落,获得碳纳米管原料,其中碳纳米管一定程度上保持相互缠绕的状态。
所述碳纳米管包括单壁碳纳米管、双壁碳纳米管及多壁碳纳米管中的一种或几种。该单壁碳纳米管的直径为0.5纳米~50纳米,该双壁碳纳米管的直径为1.0纳米~50纳米,该多壁碳纳米管的直径为1.5纳米~50纳米。所述碳纳米管的长度在100纳米到10毫米之间。
(二)将上述碳纳米管原料添加到一溶剂中并进行絮化处理获得碳纳米管絮状结构。
本实施例中,溶剂可选用水、易挥发的有机溶剂等。絮化处理可通过采用超声波分散处理或高强度搅拌等方法。优选地,本实施例采用超声波将碳纳米管在溶剂中分散10~30分钟。由于碳纳米管具有极大的比表面积,相互缠绕的碳纳米管之间具有较大的范德华力。上述絮化处理并不会将碳纳米管原料中的碳纳米管完全分散在溶剂中,碳纳米管之间通过范德华力相互吸引、缠绕,形成网络状结构。
(三)将上述碳纳米管絮状结构从溶剂中分离,并对该碳纳米管絮状结构定型处理以获得碳纳米管薄膜。
本实施例中,分离碳纳米管絮状结构的方法具体包括以下步骤:将上述含有碳纳米管絮状结构的溶剂倒入放有滤纸的漏斗中;静置干燥一段时间从而获得分离的碳纳米管絮状结构。
所述定型处理具体包括以下步骤:将上述碳纳米管絮状结构置于一容器中;将碳纳米管絮状结构按照预定形状摊开;施加一定压力于摊开的碳纳米管絮状结构;以及,将碳纳米管絮状结构中残留的溶剂烘干或等溶剂自然挥发后获得碳纳米管薄膜。可以理解,本实施例可通过控制碳纳米管絮状结构摊片的面积来控制碳纳米管薄膜的厚度和面密度。碳纳米管絮状结构摊片的面积越大,则碳纳米管薄膜的厚度和面密度就越小。本实施例中获得的碳纳米管薄膜的厚度为1微米至2毫米。
另外,上述分离与定型处理步骤也可直接通过抽滤的方式获得碳纳米管薄膜,具体包括以下步骤:提供一微孔滤膜及一抽气漏斗;将上述含有碳纳米管絮状结构的溶剂经过微孔滤膜倒入抽气漏斗中;以及抽滤并干燥后获得碳纳米管薄膜。该微孔滤膜为一表面光滑、孔径为0.22微米的滤膜。由于抽滤方式本身将提供一较大的气压作用于碳纳米管絮状结构,该碳纳米管絮状结构经过抽滤会直接形成一均匀的碳纳米管薄膜。且,由于微孔滤膜表面光滑,该碳纳米管薄膜容易剥离。
采用所述絮化法制备的碳纳米管薄膜,其包括多个均匀分布的碳纳米管,该多个均匀分布的碳纳米管通过范德华力相互连接形成网络结构,从而形成一具有自支撑结构的碳纳米管薄膜,该碳纳米管薄膜具有较好的柔韧性。
可以理解,所述碳纳米管薄膜的制备方法还可以为直接生长法、碾压法或拉膜法等其它方法。所述直接生长法为用化学气相沉积法于一基板上生长碳纳米管薄膜。该碳纳米管薄膜为无序碳纳米管薄膜,该碳纳米管薄膜包括多个无序排列的碳纳米管。所述采用碾压法制备碳纳米管薄膜的方法包括以下步骤:提供一碳纳米管阵列形成于一基底;以及提供一施压装置挤压上述碳纳米管阵列,从而得到碳纳米管薄膜。该碳纳米管薄膜为无序碳纳米管薄膜,且包括多个沿一个或多个方向择优取向排列的碳纳米管。所述采用拉膜法制备碳纳米管薄膜的方法包括以下步骤:制备一碳纳米管阵列;从上述碳纳米管阵列中选定一定宽度的多个碳纳米管片断,优选为采用具有一定宽度的胶带接触碳纳米管阵列以选定一定宽度的多个碳纳米管片断;以及以一定速度沿基本垂直于碳纳米管阵列生长方向拉伸该多个碳纳米管片断,以形成一连续的碳纳米管薄膜。
步骤二,采用电化学原位聚合法将导电聚合物复合在所述碳纳米管薄膜上,获得一碳纳米管/导电聚合物复合材料。
本技术方案采用电化学原位聚合法将所述碳纳米管薄膜与导电聚合物单体复合的方法具体包括以下步骤:
首先,制备一导电聚合物单体的酸溶液。
所述制备导电聚合物单体的酸溶液的方法具体包括以下步骤:提供20~40质量份的导电聚合物单体;配制摩尔浓度为0.1~5摩尔/升的酸溶液;将所述导电聚合物单体溶于酸溶液中,得到摩尔浓度为0.1~5摩尔/升的导电聚合物单体的酸溶液;以及将所述导电聚合物单体的酸溶液置于一容器中,将该导电聚合物单体的酸溶液作为电解液。所述导电聚合物单体包括苯胺、吡咯、噻吩、乙炔、对苯及对苯撑乙烯中的一种或几种。所述酸溶液为盐酸溶液、硫酸溶液、硝酸溶液、磷酸溶液或乙酸溶液中的一种或几种的混合。本实施例中,所述导电聚合物单体为苯胺,所述酸溶液为硫酸溶液。
本实施例中,所述制备一导电聚合物单体的酸溶液,将所述碳纳米管薄膜浸入所述聚合物单体的酸溶液中的方法具体包括以下步骤:取一容器,于该容器中配制40毫升1摩尔/升的硫酸溶液;用称量天平称量0.74504克的苯胺单体油状物(0.74504克苯胺单体油状物的物质的量为0.008摩尔),并放入一容器内,向该容器内注入40毫升1摩尔/升的硫酸溶液,使所述苯胺单体油状物溶于所述硫酸溶液中,制备成0.2摩尔/升的苯胺的硫酸溶液,该苯胺的硫酸溶液用作电解液。
其次,提供一个阴极电极片。
所述阴极电极片包括惰性石墨电极片、铂电极片、不锈钢电极片及层状碳纳米管结构,其面积大于等于碳纳米管薄膜的面积。所述阴极电极片起到电极的作用,只要导电性好,且具有惰性即可满足要求。所述层状碳纳米管结构既可以为由直接生长法、絮化法、碾压法或拉膜法等其它方法所制得的碳纳米管薄膜,也可为碳纳米管线组成的层状结构或碳纳米管长线与碳纳米管薄膜复合组成的层状碳纳米管结构,也可以为碳纳米管。所述层状碳纳米管结构还可以为由碳纳米管结构与其他材料组成的层状碳纳米管复合结构,所述其他材料包括高分子材料、金属、非金属。所述高分子材料为热固性高分子材料或热塑性高分子材料,热固性高分子材料包括酚醛树脂、环氧树脂、双马来酰亚胺树脂、聚苯并恶嗪树脂、氰酸酯树脂、聚酰亚胺树脂和不饱和聚酰树脂中的一种或者几种的混合物。该热塑性高分子材料包括聚乙烯、聚氯乙烯、聚四氟乙烯、聚丙烯,聚苯乙烯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二酯、聚碳酸酯、聚对苯二甲酸丁二酯、聚酰胺、聚醚酮、聚砜、聚醚砜、热塑性聚酰亚胺、聚醚酰亚胺、聚苯醚、聚苯硫醚、聚乙酸乙烯酯、聚对苯撑苯并双恶唑的一种或者几种的混合物。所述金属包括铜、金或银等导电性好的金属或其合金。所述非金属为陶瓷、粘土等。总之,只要该层状碳纳米管结构具有较好的导电性即可。本实施例中,所述阴极电极片为碳纳米管薄膜。
再次,将一个碳纳米管薄膜及一个阴极电极片平行且间隔浸入导电聚合物单体的酸溶液中。
所述碳纳米管薄膜的质量份均为50~90,所述导电聚合物单体的酸溶液中的导电聚合物单体与所述碳纳米管薄膜的质量比为2:9~4:5。所述碳纳米管薄膜与阴极电极片之间的距离为0.5厘米~3厘米。所述碳纳米管薄膜的形状不限,可以为各种平面几何图形。
本实施例中,可采用两个面积相等的碳纳米管薄膜,并用称量天平称量,使得所述两个碳纳米管薄膜的质量均为40.1毫克,再将所述两个碳纳米管薄膜平行且间隔浸入所述苯胺单体的硫酸溶液中,使其中一个碳纳米管作阴极电极片,并使得两个碳纳米管薄膜之间保持1厘米的距离。
最后,在碳纳米管薄膜与阴极电极片之间形成一电势差,并使碳纳米管薄膜与电源正极相连作阳极,阴极电极片与电源负极相连作阴极,导电聚合物单体在作为阳极的碳纳米管薄膜上发生氧化聚合反应,导电聚合物单体均匀聚合形成导电聚合物纤维,导电聚合物纤维复合在所述碳纳米管薄膜中碳纳米管的表面或/和附着在所述碳纳米管的管壁上,导电聚合物纤维还可以彼此相互连结后再复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上。
所述导电聚合物纤维的长度为100纳米~10毫米,直径为30纳米~120纳米。所述在阳极与阴极之间形成电势差的方法包括在阳极与阴极之间施加恒流、恒压或扫描电势等。当阳极与阴极之间形成电势差的方法为施加扫描电势时,电势范围-0.2伏特~1.2伏特之间,扫描速度为1毫伏/秒~1000毫伏/秒,扫描时间为0.5小时~4小时,或扫描10~10000次。当阳极与阴极之间形成电势差的方法为施加恒流时,电流范围为10毫安/克~10安/克,恒流时间为0.5小时~4小时。本实施例中,在正电极与负电极之间形成电势差的方法为施加恒压,阳极与阴极之间施加的电压为0.5~1.2伏特,时间为0.5小时~4小时,导电聚合物单体在阳极发生氧化聚合。
本实施例中,碳纳米管薄膜与聚合物单体复合的方法具体包括以下步骤:首先,将作为阳极的碳纳米管薄膜与电源的正极电连接,将作为阴极电极片的碳纳米管薄膜与电源的负极电连接;然后,在正电极与负电极之间施加0.75伏特的电压2~3小时,在苯胺单体的酸溶液中,正电极为阳极,负电极为阴极,苯胺单体在阳极失电子被氧化,从而聚合成为聚苯胺纤维,复合在所述作为阳极的碳纳米管薄膜中的碳纳米管的表面和/或附着在所述碳纳米管的管壁上,从而获得碳纳米管/聚苯胺复合材料。所述聚苯胺纤维的长度为200纳米~1毫米,直径为50纳米~80纳米。作为阴极电极片的碳纳米管薄膜与电源负极相连,因此仅起到电极的作用,并无聚苯胺纤维复合在该碳纳米管薄膜上。
可以理解,当采用碳纳米管薄膜作阴极电极片时,导电聚合物单体在作为阳极的碳纳米管薄膜上充分聚合形成导电聚合物复合在碳纳米管薄膜上后,还可以通过使已获得的碳纳米管/导电聚合物复合材料与电源负极相连作阴极,使碳纳米管薄膜与电源正极相连作阳极,由于碳纳米管/导电聚合物复合材料具有较好得导电性,从而使导电聚合物单体被氧化,聚合成导电聚合物并复合在作为阳极的碳纳米管薄膜上。
所述制备碳纳米管/导电聚合物复合材料的制备方法还可以进一步包括一采用清洗溶液清洗并烘干所述碳纳米管/导电聚合物复合材料的步骤。具体地,该步骤为:首先,将碳纳米管/导电聚合物复合材料从电解液中取出,将其放入盛有去离子水的容器内清洗多次,以除去碳纳米管/导电聚合物复合材料中的离子。其次,再将其放入盛有乙醇的容器中清洗多次以去除碳纳米管/导电聚合物复合材料中残留的有机杂质。最后,将碳纳米管/导电聚合物复合材料取出,放入烘箱内,在80摄氏度下烘干4小时,将碳纳米管/导电聚合物复合材料中的乙醇蒸发出来。所述清洗碳纳米管/导电聚合物复合材料10的目的是去除碳纳米管/导电聚合物复合材料10中存在的其他离子杂质,以及残留的其它有机杂质。
本技术方案碳纳米管/导电聚合物复合材料的制备方法中,采用将两个50~90质量份的碳纳米管薄膜平行间隔放置在20~40质量份导电聚合物单体配置的导电聚合物单体的酸溶液中,在两个碳纳米管薄膜之间形成一电势差,使导电聚合物单体在阳极氧化聚合成导电聚合物,从而与碳纳米管薄膜复合形成碳纳米管/导电聚合物复合材料。上述碳纳米管薄膜、导电聚合物单体以及的质量比例关系有利于确保本技术方案制备的碳纳米管/导电聚合物复合材料中导电聚合物纤维直接或相连接后复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上。本技术方案由于采用了两个相同的碳纳米管薄膜采用电化学聚合法制备碳纳米管/导电聚合物复合材料,可以通过改变碳纳米管薄膜与碳纳米管/导电聚合物复合材料上的电极,一次制备获得两个碳纳米管/导电聚合物复合材料薄膜,大大提高了生产效率。
请参阅图2,本技术方案所制备的碳纳米管/导电聚合物复合材料10包括多个碳纳米管12及多个导电聚合物纤维14。所述多个碳纳米管12相互连接形成一碳纳米管薄膜16,多个导电聚合物纤维14复合在所述碳纳米管12的表面或/和附着在所述碳纳米管12的管壁上。在上述的碳纳米管/导电聚合物复合材料10中,碳纳米管12形成的碳纳米管薄膜16起到了骨架作用,导电聚合物纤维14依附在所述的碳纳米管薄膜16骨架上。进一步地,所述碳纳米管12和导电聚合物纤维14均匀分布于所述碳纳米管/导电聚合物复合材料中。
本技术方案所提供的碳纳米管/导电聚合物复合材料的制备方法具有以下优点:其一,由于碳纳米管薄膜中的多个碳纳米管均匀分散且相互连接形成导电网络,故采用电化学原位聚合法将所述碳纳米管薄膜与导电聚合物单体复合,所制得的碳纳米管/导电聚合物复合材料中碳纳米管均匀分散。其二,由于采用电化学原位聚合法将所述碳纳米管薄膜与导电聚合物单体复合,无需添加表面活性剂,使得碳纳米管/导电聚合物复合材料中不包含表面活性剂。其三,本技术方案提供的碳纳米管/导电聚合物复合材料的制备方法,不需要用强酸氧化碳纳米管,碳纳米管的结构完整,在制备过程中不会破坏碳纳米管的结构。其四,采用电化学原位聚合法将所述碳纳米管薄膜与导电聚合物复合,制备工艺简单,可实现连续、规模化生产,且成本较低。
另外,本领域技术人员还可以在本技术方案精神内做其它变化,当然,这些依据本技术方案精神所做的变化,都应包含在本技术方案所要求保护的范围之内。

Claims (14)

1.一种碳纳米管/导电聚合物复合材料的制备方法,其包括以下步骤:
制备一碳纳米管薄膜;
采用电化学原位聚合法将导电聚合物单体在所述碳纳米管薄膜上发生聚合反应,其中,所述碳纳米管薄膜的制备具体包括:
提供一生长于基底的碳纳米管阵列;
将脱离基底的碳纳米管阵列作为碳纳米管原料;
将上述碳纳米管原料添加到一溶剂中并进行絮化处理获得碳纳米管絮状结构;以及
将上述碳纳米管絮状结构从溶剂中分离,并对该碳纳米管絮状结构定型处理。
2.如权利要求1所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述采用电化学原位聚合法将导电聚合物单体在所述碳纳米管薄膜上发生聚合反应的方法具体包括以下步骤:
制备一导电聚合物单体的酸溶液;
提供一个阴极电极片;
将一个碳纳米管薄膜与所述阴极电极片平行间隔浸入所述导电聚合物单体的酸溶液中;以及
在所述碳纳米管薄膜及阴极电极片之间一形成一电势差,导电聚合物单体在碳纳米管薄膜上氧化,导电聚合物单体均匀聚合形成导电聚合物纤维,导电聚合物纤维直接或相互连结后复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上。
3.如权利要求2所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述形成一电势差的方法为在所述碳纳米管薄膜及阴极电极片之间施加恒流,其电流范围为10毫安/克~10安/克,恒流时间为0.5小时~4小时。
4.如权利要求2所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述形成一电势差的方法为在所述碳纳米管薄膜及阴极电极片之间施加恒压,其电压范围为0.5伏特~1.2伏特,恒压时间为0.5小时~4小时。
5.如权利要求2所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述形成一电势差的方法为在所述碳纳米管薄膜及阴极电极片之间施加扫描电势,其电势范围为-0.2伏特~1.2伏特,扫描时间为0.5小时~4小时或扫描次数为10~10000次。
6.如权利要求2所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述阴极电极片为石墨电极片、铂电极片、不锈钢电极片或层状碳纳米管结构。
7.如权利要求6所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述层状碳纳米管结构包括碳纳米管薄膜、碳纳米管长线及其组合及层状碳纳米管复合结构。
8.如权利要求2所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述导电聚合物单体为苯胺、吡咯、噻吩、乙炔、对苯及对苯撑乙烯中的一种或几种。
9.如权利要求2所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述聚合物单体与碳纳米管薄膜的质量比为2∶9~4∶5。
10.如权利要求9所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述制备导电聚合物单体的酸溶液的方法具体包括以下步骤:
提供20~40质量份导电聚合物单体;
配制0.1~5摩尔/升的酸溶液;以及
将所述导电聚合物单体溶于酸溶液中,得到摩尔比浓度0.1~5摩尔/升的导电聚合物单体的酸溶液。
11.如权利要求10所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述碳纳米管薄膜的质量份为50~90。
12.如权利要求10所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述酸溶液为盐酸溶液、硫酸溶液、硝酸溶液、磷酸溶液或乙酸溶液中的一种或几种的混合。
13.如权利要求2所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述导电聚合物纤维的长度为100纳米~10毫米,直径为30纳米~120纳米。
14.如权利要求2所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述制备碳纳米管/导电聚合物复合材料的方法进一步包括用清洗溶剂清洗所述碳纳米管/导电聚合物复合材料并烘干,其具体包括以下步骤:
将碳纳米管/导电聚合物复合材料从混合液中取出,将其放入盛有去离子水的容器内清洗多次;
再将其放入盛有乙醇的容器中清洗多次;以及
取出碳纳米管/导电聚合物复合材料,放入烘箱内,在80摄氏度下烘干2~6小时。
CN2008101417632A 2008-08-29 2008-08-29 碳纳米管/导电聚合物复合材料的制备方法 Active CN101659789B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008101417632A CN101659789B (zh) 2008-08-29 2008-08-29 碳纳米管/导电聚合物复合材料的制备方法
US12/487,284 US8262943B2 (en) 2008-08-29 2009-06-18 Method for manufacturing carbon nanotube-conducting polymer composite
JP2009200015A JP5091208B2 (ja) 2008-08-29 2009-08-31 カーボンナノチューブ/ポリマー複合材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101417632A CN101659789B (zh) 2008-08-29 2008-08-29 碳纳米管/导电聚合物复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN101659789A CN101659789A (zh) 2010-03-03
CN101659789B true CN101659789B (zh) 2012-07-18

Family

ID=41723716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101417632A Active CN101659789B (zh) 2008-08-29 2008-08-29 碳纳米管/导电聚合物复合材料的制备方法

Country Status (3)

Country Link
US (1) US8262943B2 (zh)
JP (1) JP5091208B2 (zh)
CN (1) CN101659789B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626212B (zh) * 2017-05-22 2018-06-11 鴻海精密工業股份有限公司 奈米碳管複合結構及其製備方法

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654555B (zh) * 2008-08-22 2013-01-09 清华大学 碳纳米管/导电聚合物复合材料的制备方法
JP5308379B2 (ja) * 2010-03-08 2013-10-09 株式会社クラレ π電子系共役重合体組成物及びそれを用いるエレクトロクロミック表示素子
CN101880035A (zh) 2010-06-29 2010-11-10 清华大学 碳纳米管结构
FR2962450B1 (fr) 2010-07-07 2014-10-31 Commissariat Energie Atomique Procede de preparation d'un materiau composite, materiau ainsi obtenu et ses utilisations
US9475709B2 (en) 2010-08-25 2016-10-25 Lockheed Martin Corporation Perforated graphene deionization or desalination
US20130274159A1 (en) 2010-10-25 2013-10-17 Jeroen Bongaerts Dry lubricant containing fibers and method of using the same
US20120162146A1 (en) * 2010-12-27 2012-06-28 Hon Hai Precision Industry Co., Ltd. Touch pen
KR101043273B1 (ko) * 2011-01-19 2011-06-21 주식회사 한나노텍 열가소성 수지층으로 둘러싸인 탄소나노튜브 마이크로캡슐을 포함하는 전도성 고분자 충전제 및 그 제조방법
US8648004B2 (en) * 2011-04-07 2014-02-11 National Cheng Kung University Methods of preparing carbinized nanotube composite and metal-nanotube composite catalyst
CN102856495B (zh) * 2011-06-30 2014-12-31 清华大学 压力调控薄膜晶体管及其应用
CN103094525B (zh) 2011-10-28 2016-08-03 清华大学 锂离子电池负极及其制备方法
CN103094526B (zh) 2011-10-28 2015-07-29 清华大学 锂离子电池正极的制备方法
CN103187575B (zh) 2011-12-28 2015-11-25 清华大学 薄膜锂离子电池的制备方法
CN103187572B (zh) 2011-12-28 2016-01-20 清华大学 薄膜锂离子电池
CN103187573B (zh) 2011-12-28 2016-01-20 清华大学 锂离子电池电极
CN103187574B (zh) 2011-12-28 2015-07-29 清华大学 锂离子电池电极的制备方法
CN103187586B (zh) 2011-12-28 2016-01-20 清华大学 锂离子电池
US10418143B2 (en) 2015-08-05 2019-09-17 Lockheed Martin Corporation Perforatable sheets of graphene-based material
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
KR101384324B1 (ko) * 2012-09-26 2014-04-10 롯데케미칼 주식회사 칸덕티브 수지 조성물
WO2014164621A1 (en) 2013-03-12 2014-10-09 Lockheed Martin Corporation Method for forming filter with uniform aperture size
US9572918B2 (en) 2013-06-21 2017-02-21 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
CN103450682B (zh) * 2013-08-23 2016-01-13 清华大学 一种碳纳米管/聚吡咯复合海绵及其制备方法
CN103708584A (zh) * 2013-12-24 2014-04-09 常州和方环保科技有限公司 苯胺废水处理工艺及其产物的应用
CN103788619B (zh) * 2014-01-21 2016-02-10 西南石油大学 一种聚芳醚酮纳米复合材料及其制备方法
CN104788952B (zh) * 2014-01-22 2017-04-26 清华大学 碳纳米管复合结构的制备方法
AU2015210875A1 (en) 2014-01-31 2016-09-15 Lockheed Martin Corporation Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
KR20160142820A (ko) 2014-01-31 2016-12-13 록히드 마틴 코포레이션 브로드 이온 필드를 사용한 2차원 물질 천공
AU2015229331A1 (en) 2014-03-12 2016-10-27 Lockheed Martin Corporation Separation membranes formed from perforated graphene
CN105098293A (zh) * 2014-05-19 2015-11-25 清华大学 混合储能器件
US10368401B2 (en) 2014-06-03 2019-07-30 Aurora Flight Sciences Corporation Multi-functional composite structures
US10167550B2 (en) 2014-06-03 2019-01-01 Aurora Flight Sciences Corporation Multi-functional composite structures
CN104078248B (zh) * 2014-06-10 2018-01-16 北京大学深圳研究生院 一种柔性电极的制备方法和柔性电极
WO2017136806A1 (en) 2016-02-04 2017-08-10 General Nano Llc Carbon nanotube sheet structure and method for its making
CN107000366B (zh) 2014-07-30 2019-04-23 一般纳米有限责任公司 碳纳米管片结构及其制造方法
WO2016036888A1 (en) 2014-09-02 2016-03-10 Lockheed Martin Corporation Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same
US10285219B2 (en) * 2014-09-25 2019-05-07 Aurora Flight Sciences Corporation Electrical curing of composite structures
CN104616838B (zh) 2015-02-10 2018-02-06 京东方科技集团股份有限公司 一种电子器件的制作方法及电子器件
CN104731413B (zh) * 2015-04-02 2018-11-23 京东方科技集团股份有限公司 触控单元及其制作方法和柔性触控显示装置
CN106283149A (zh) * 2015-05-29 2017-01-04 中国科学院苏州纳米技术与纳米仿生研究所 碳纳米管阵列与导电高分子复合材料的制备方法
CA2994664A1 (en) 2015-08-06 2017-02-09 Lockheed Martin Corporation Nanoparticle modification and perforation of graphene
CN105244189A (zh) * 2015-10-21 2016-01-13 山东科技大学 一种碳纳米管增强导电聚合物水凝胶的制备方法
SG11201809015WA (en) 2016-04-14 2018-11-29 Lockheed Corp Two-dimensional membrane structures having flow passages
WO2017180137A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Method for treating graphene sheets for large-scale transfer using free-float method
CA3020880A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
EP3443329A4 (en) 2016-04-14 2020-04-08 Lockheed Martin Corporation METHODS FOR PROVIDING IN SITU MONITORING AND CONTROL OF DEFECT TRAINING OR HEALING
WO2017180134A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials
WO2017180135A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Membranes with tunable selectivity
CN108666532B (zh) * 2017-04-01 2021-12-03 清华大学 锂离子电池阳极的制备方法
US11421090B2 (en) 2018-10-24 2022-08-23 Massachusetts Institute Of Technology Systems, devices, and methods for promoting in situ polymerization within nanomaterial assemblies
JP6849264B2 (ja) * 2018-12-18 2021-03-24 大連理工大学 導電性ポリマー/カーボンナノチューブ複合ナノろ過膜の作製方法及び応用
CN111430690B (zh) * 2020-03-31 2021-11-23 中国汽车技术研究中心有限公司 一种自支撑硅/碳纳米管复合负极材料及其制备方法
CN112646181A (zh) * 2020-12-18 2021-04-13 中国电子科技集团公司第十八研究所 原位聚合的聚酰亚胺基有机高分子正极材料及其制备方法
CN114685785A (zh) * 2022-03-08 2022-07-01 青岛大学 锚固铕碳纳米管掺杂氰酸酯树脂发光材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030143453A1 (en) * 2001-11-30 2003-07-31 Zhifeng Ren Coated carbon nanotube array electrodes
CN1750210A (zh) * 2004-09-14 2006-03-22 三星电机株式会社 场发射电极的制造方法
CN1786036A (zh) * 2004-12-08 2006-06-14 北京大学 一种高分子/碳纳米管复合物膜及其制备方法
CN1844176A (zh) * 2006-03-14 2006-10-11 同济大学 原位合成两亲性聚合物修饰碳纳米管的制备方法
CN1923888A (zh) * 2006-09-27 2007-03-07 北京交通大学 一种制备聚噻吩或其衍生物-多壁碳纳米管复合材料的方法
CN1995132A (zh) * 2006-12-26 2007-07-11 西安交通大学 导电高分子与碳纳米管复合电极材料的制备方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800155B2 (en) * 2000-02-24 2004-10-05 The United States Of America As Represented By The Secretary Of The Army Conductive (electrical, ionic and photoelectric) membrane articlers, and method for producing same
AU2001273580B2 (en) * 2000-06-14 2006-12-21 Hyperion Catalysis International, Inc. Multilayered polymeric structure
JP2004506530A (ja) * 2000-08-24 2004-03-04 ウィリアム・マーシュ・ライス・ユニバーシティ ポリマー巻き付け単層カーボンナノチューブ
JP2003034751A (ja) * 2001-07-24 2003-02-07 Mitsubishi Electric Corp 導電性樹脂組成物
CA2471842A1 (en) * 2001-07-27 2003-02-13 Eikos, Inc. Conformal coatings comprising carbon nanotubes
US7001556B1 (en) * 2001-08-16 2006-02-21 The Board Of Regents University Of Oklahoma Nanotube/matrix composites and methods of production and use
US7022776B2 (en) * 2001-11-07 2006-04-04 General Electric Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom
US6811724B2 (en) * 2001-12-26 2004-11-02 Eastman Kodak Company Composition for antistat layer
JP3962376B2 (ja) * 2002-03-14 2007-08-22 カーボン ナノテクノロジーズ インコーポレーテッド 極性重合体及び単層壁炭素ナノチューブを含有する複合体材料
US8294025B2 (en) * 2002-06-08 2012-10-23 Solarity, Llc Lateral collection photovoltaics
US7153903B1 (en) * 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
KR100704795B1 (ko) * 2002-11-01 2007-04-09 미츠비시 레이온 가부시키가이샤 탄소 나노튜브 함유 조성물, 이를 포함하는 도막을 갖는복합체, 및 이들의 제조 방법
CN1813023A (zh) * 2003-05-22 2006-08-02 塞威公司 纳米复合材料和生产方法
US20080093224A1 (en) * 2003-07-29 2008-04-24 Tour James M Process for derivatizing carbon nanotubes with diazonium species and compositions thereof
US7455793B2 (en) * 2004-03-31 2008-11-25 E.I. Du Pont De Nemours And Company Non-aqueous dispersions comprising electrically doped conductive polymers and colloid-forming polymeric acids
US7960037B2 (en) * 2004-12-03 2011-06-14 The Regents Of The University Of California Carbon nanotube polymer composition and devices
US7462656B2 (en) * 2005-02-15 2008-12-09 Sabic Innovative Plastics Ip B.V. Electrically conductive compositions and method of manufacture thereof
WO2006091823A2 (en) * 2005-02-25 2006-08-31 The Regents Of The University Of California Electronic devices with carbon nanotube components
US20090053512A1 (en) * 2006-03-10 2009-02-26 The Arizona Bd Of Reg On Behalf Of The Univ Of Az Multifunctional polymer coated magnetic nanocomposite materials
CN101121791B (zh) * 2006-08-09 2010-12-08 清华大学 碳纳米管/聚合物复合材料的制备方法
EP2062275A2 (en) * 2006-09-12 2009-05-27 University of Florida Research Foundation, Incorporated Highly accessible, nanotube electrodes for large surface area contact applications
CN101003909A (zh) 2006-12-21 2007-07-25 上海交通大学 电化学组合沉积制备碳纳米管-金属复合膜结构的方法
CN101009222A (zh) 2007-01-26 2007-08-01 北京大学 一种制备碳纳米管电子器件的方法
WO2009003150A2 (en) * 2007-06-26 2008-12-31 Solarity, Inc. Lateral collection photovoltaics
GB0715077D0 (en) 2007-08-02 2007-09-12 Univ Warwick Carbon nanotube electrochemistry
CN101480858B (zh) * 2008-01-11 2014-12-10 清华大学 碳纳米管复合材料及其制备方法
JP2009155570A (ja) * 2007-12-27 2009-07-16 Mitsubishi Rayon Co Ltd カーボンナノチューブ含有組成物、これからなる塗膜を有する複合体およびその製造方法
JP4973569B2 (ja) * 2008-03-28 2012-07-11 株式会社豊田中央研究所 繊維状炭素系材料絶縁物、それを含む樹脂複合材、および繊維状炭素系材料絶縁物の製造方法
CN101712468B (zh) * 2008-09-30 2014-08-20 清华大学 碳纳米管复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030143453A1 (en) * 2001-11-30 2003-07-31 Zhifeng Ren Coated carbon nanotube array electrodes
CN1750210A (zh) * 2004-09-14 2006-03-22 三星电机株式会社 场发射电极的制造方法
CN1786036A (zh) * 2004-12-08 2006-06-14 北京大学 一种高分子/碳纳米管复合物膜及其制备方法
CN1844176A (zh) * 2006-03-14 2006-10-11 同济大学 原位合成两亲性聚合物修饰碳纳米管的制备方法
CN1923888A (zh) * 2006-09-27 2007-03-07 北京交通大学 一种制备聚噻吩或其衍生物-多壁碳纳米管复合材料的方法
CN1995132A (zh) * 2006-12-26 2007-07-11 西安交通大学 导电高分子与碳纳米管复合电极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W.Feng et al.Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization.《Carbon》.2003,第41卷(第8期),第1551-1557页. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626212B (zh) * 2017-05-22 2018-06-11 鴻海精密工業股份有限公司 奈米碳管複合結構及其製備方法

Also Published As

Publication number Publication date
US8262943B2 (en) 2012-09-11
US20100051471A1 (en) 2010-03-04
JP5091208B2 (ja) 2012-12-05
CN101659789A (zh) 2010-03-03
JP2010053033A (ja) 2010-03-11

Similar Documents

Publication Publication Date Title
CN101659789B (zh) 碳纳米管/导电聚合物复合材料的制备方法
CN101654555B (zh) 碳纳米管/导电聚合物复合材料的制备方法
Wang et al. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications
Simotwo et al. Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline–carbon nanotube nanofibers
Heme et al. Recent progress in polyaniline composites for high capacity energy storage: A review
Wang et al. Enhanced electrical and mechanical properties of chemically cross-linked carbon-nanotube-based fibers and their application in high-performance supercapacitors
Di et al. Ultrastrong, foldable, and highly conductive carbon nanotube film
Goh et al. Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances
US7938996B2 (en) Polymer-free carbon nanotube assemblies (fibers, ropes, ribbons, films)
Xu et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage
CN101425381B (zh) 超级电容器及其制备方法
CN104078248B (zh) 一种柔性电极的制备方法和柔性电极
CN107492456B (zh) 碳基过渡金属硫化物自支撑聚苯胺复合膜的制备方法及应用
Sun et al. Interfacial synthesis and supercapacitive performance of hierarchical sulfonated carbon nanotubes/polyaniline nanocomposites
Bagherzadeh et al. Electrospun conductive nanofibers for electronics
JP2010245556A (ja) スーパーキャパシタ
KR20160139002A (ko) 도전성 다공체, 고체 고분자형 연료 전지, 및 도전성 다공체의 제조 방법
TW201010940A (en) Mathod for making carbon nanotube/conductive polymer composite
Wang et al. High-performance layer-by-layer self-assembly PANI/GQD-rGO/CFC electrodes for a flexible solid-state supercapacitor by a facile spraying technique
Yao et al. Selected functionalization of continuous graphene fibers for integrated energy conversion and storage
Saito et al. Electron-transfer reduction of cup-stacked carbon nanotubes affording cup-shaped carbons with controlled diameter and size
Wang et al. Graphene quantum dot-assisted preparation of water-borne reduced graphene oxide/polyaniline: from composite powder to layer-by-layer self-assembly film and performance enhancement
Wang et al. Synthesis of oriented coral-like polyaniline nano-arrays for flexible all-solid-state supercapacitor
Chen et al. Characterisations of carbon-fenced conductive silver nanowires-supported hierarchical polyaniline nanowires
CN109192521A (zh) 一种柔性电极及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant