CN112646181A - 原位聚合的聚酰亚胺基有机高分子正极材料及其制备方法 - Google Patents

原位聚合的聚酰亚胺基有机高分子正极材料及其制备方法 Download PDF

Info

Publication number
CN112646181A
CN112646181A CN202011502548.8A CN202011502548A CN112646181A CN 112646181 A CN112646181 A CN 112646181A CN 202011502548 A CN202011502548 A CN 202011502548A CN 112646181 A CN112646181 A CN 112646181A
Authority
CN
China
Prior art keywords
polyimide
organic polymer
based organic
carbon nano
black powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011502548.8A
Other languages
English (en)
Inventor
刘逸骏
刘兴江
丁飞
宗军
宁凡雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 18 Research Institute
Original Assignee
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 18 Research Institute filed Critical CETC 18 Research Institute
Priority to CN202011502548.8A priority Critical patent/CN112646181A/zh
Publication of CN112646181A publication Critical patent/CN112646181A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明公开了一种原位聚合的聚酰亚胺基有机高分子正极材料及其制备方法,该材料由等摩尔1,4,5,8‑萘四酸二酐和对苯二胺在分散了碳纳米管的溶剂N‑甲基吡咯烷酮(NMP)中加热回流反应6小时,过滤后用乙醇清洗5次,在烘箱中120℃干燥12小时,然后在氩气氛中300℃加热8小时,以确保完全成环,之后即得最终产物聚酰亚胺‑碳纳米管复合材料PI@CNT。本发明通过使用碳纳米管作为负载基底,形成三维导电网络,有效地增加了正极材料的导电性和活性位点的利用率,极大地提高了该正极材料在锂离子电池中的电化学性能。

Description

原位聚合的聚酰亚胺基有机高分子正极材料及其制备方法
技术领域
本发明属于锂离子电池正极材料的技术领域,具体涉及一种原位聚合的聚酰亚胺基有机高分子正极材料及其制备方法。
背景技术
目前使用广泛的无机正极材料,包括各式锂过渡金属氧化物如LiCoO2,LiNiO2,LiMn2O4,LiFePO4等,具有一些固有的缺点,比如:理论比容量不高,均在300mAh/g以下;倍率性能欠佳;同时,原料均为不可再生矿藏,且回收困难,不符合可持续发展要求;更重要的是,它们具有一定的安全隐患:过充容易产生高价金属氧化物,释放氧气与电解液剧烈反应放热。
相比之下,有机正极材料则具备一些先天的优点:理论比容量高,可达约1000mAh/g;基于快速的化学吸脱附因而倍率性能好;同时,原料丰富,环境友好;而且结构可设计性强;体系也相对安全。因此,有机正极材料是具有广泛应用前景的绿色能源材料。
当前,有机正极材料取得了相当的进展,逐渐吸引了越来越多研究者的兴趣,但是总体而言,相较于传统的无极正极材料尚无性能上的明显优势,尤其是在体积能量密度等关键参数上,以及易溶解等问题,很大程度上制约了有机正极材料的发展与应用,因此目前主要以实验室研究为主,暂无实际应用。
然而,我们也不能忽视有机正极材料的独特优势,比如基于快速的化学吸脱附因而倍率性能好这一特质,就可以用于超级电容器的开发,且其兼具先天的柔性,可以在柔性器件中得到很好的应用,同时其具有的原料丰富及环境友好特质赋予其绿色能源材料的属性,有望未来推广。未来的研究应在现有研究的基础上"扬长避短"设计一些特殊官能团结构的有机化合物,比如将含氧共轭基团取代到大环共轭结构体系中,既能实现锂离子在充电和放电过程的入嵌与脱嵌,采用多取代活性点位又实现较高的理论比容量。大环共轭体系一方面可以降低在电解液中的溶解性能,进一步提高锂离子电池放电容量和循环稳定性能,另一方面还能提高导电性能。
从应用的角度出发,聚酰亚胺基有机高分子材料具有良好的稳定性和优异的机械性能,便于制备及加工,同时综合考虑原料成本较低等经济因素,有着良好的应用前景。
发明内容
针对现有技术存在的问题,本发明而提供了一种原位聚合的聚酰亚胺基有机高分子正极材料及其制备方法。该材料由等摩尔1,4,5,8-萘四酸二酐和对苯二胺在分散了碳纳米管的溶剂NMP中原位聚合生成,由于使用碳纳米管作为负载基底,利用共轭结构的层间相互作用,实现分子自组装,使材料内部形成了良好的三维导电网络,从而确保了电化学反应活性位点的充分利用,使体系导电性、循环稳定性大幅提升。
本发明为解决公知技术中存在的技术问题所采取的技术方案是:
一种原位聚合的聚酰亚胺基有机高分子正极材料,该材料由等摩尔1,4,5,8-萘四酸二酐和对苯二胺在分散了碳纳米管的溶剂NMP中原位聚合生成。
进一步,上述原位聚合的聚酰亚胺基有机高分子正极材料的制备方法,其特征在于:包括如下步骤:
步骤一、在充满氩气的环境中,碳纳米管加入溶剂NMP进行超声分散,碳纳米管的质量浓度为40g/L,然后将等摩尔1,4,5,8-萘四酸二酐和对苯二胺加入分散了碳纳米管的NMP溶剂中制得溶液;
步骤二、将整个溶液加热回流搅拌反应制得黑色粉末,
步骤三、将所得产物黑色粉末过滤后用乙醇清洗多次,然后空气氛烘干;
步骤四、干燥后的粉末氩气氛中加热直至完全成环,之后即得最终产物PI@CNT。
进一步,所述碳纳米管的占比为1,4,5,8-萘四酸二酐和对苯二胺质量之和的15-25wt%。
进一步,步骤二中加热的温度梯度依次为:25℃下加热2小时,40℃下加热2小时,80℃下加热2小时。
进一步,步骤三是将所得产物黑色粉末过滤后用乙醇清洗5次,然后在120℃空气氛烘箱中干燥12小时。
更进一步,步骤四中干燥后的粉末在300℃氩气氛中加热8小时。
本发明具有的优点和积极效果:
本发明由于使用碳纳米管作为负载基底,利用共轭结构的层间相互作用,实现分子自组装,使材料内部形成了良好的三维导电网络,从而确保了电化学反应活性位点的充分利用,使体系导电性、循环稳定性大幅提升。
附图说明
图1为本发明实施例1中得到的原位聚合的聚酰亚胺基有机高分子正极材料扫描电镜图;
图2为本发明实施例1中得到的原位聚合的聚酰亚胺基有机高分子正极材料红外光谱图;
图3为本发明实施例2中得到的原位聚合的聚酰亚胺基有机高分子正极材料CV曲线图;
图4为本发明实施例3中得到的原位聚合的聚酰亚胺基有机高分子正极材料充放电循环电压-比容量曲线图;
图5为本发明实施例3中得到的原位聚合的聚酰亚胺基有机高分子正极材料充放电循环比容量曲线图。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并结合附图详细说明如下:
本发明的一种原位聚合的聚酰亚胺基有机高分子正极材料,该材料由等摩尔1,4,5,8-萘四酸二酐和对苯二胺在分散了碳纳米管(CNT)的溶剂NMP中原位聚合生成,由于使用碳纳米管作为负载基底,利用共轭结构的层间相互作用,实现分子自组装,使材料内部形成了良好的三维导电网络,从而确保了电化学反应活性位点的充分利用,使体系导电性、循环稳定性大幅提升。
以下通过3个实施例对该正极材料的制备方法进行详细说明:
实施例1
本实施例的原位聚合的聚酰亚胺基有机高分子正极材料的制备方法包括如下步骤:
S1、在充满氩气的环境中,将碳纳米管(CNT)加入溶剂NMP(按CNT质量浓度40g/L加入)超声分散1小时,然后将等摩尔1,4,5,8-萘四酸二酐和对苯二胺加入分散了碳纳米管(CNT)的溶剂NMP中制得溶液;碳纳米管(CNT)的占比为1,4,5,8-萘四酸二酐和对苯二胺质量之和的15wt%;
S2、将整个溶液加热回流搅拌反应6小时制得黑色粉末,温度梯度依次为:25℃2小时,40℃2小时,80℃2小时;
S3、将所得产物黑色粉末过滤后用乙醇清洗5次,然后在120℃空气氛烘箱中干燥12小时;
S4、干燥后的粉末在300℃氩气氛中加热8小时,以确保完全成环,之后即得最终产物PI@CNT。
实施例2
本实施例的原位聚合的聚酰亚胺基有机高分子正极材料的制备方法包括如下步骤:
S1、在充满氩气的环境中,将碳纳米管(CNT)加入溶剂NMP(按CNT质量浓度40g/L加入)超声分散1小时,将等摩尔1,4,5,8-萘四酸二酐和对苯二胺加入分散了碳纳米管(CNT)的溶剂NMP中制得溶液,碳纳米管(CNT)的比例为1,4,5,8-萘四酸二酐和对苯二胺质量之和的20wt%;
S2、将整个溶液加热回流搅拌反应6小时制得黑色粉末,温度梯度依次为:25℃2小时,40℃2小时,80℃2小时;
S3、将所得产物黑色粉末过滤后用乙醇清洗5次,然后在120℃空气氛烘箱中干燥12小时;
S4、干燥后的粉末在氩气氛中300℃加热8小时,以确保完全成环,之后即得最终产物PI@CNT。
实施例3
本实施例的原位聚合的聚酰亚胺基有机高分子正极材料的制备方法包括如下步骤:
S1、在充满氩气的环境中,将碳纳米管(CNT)加入溶剂NMP(按CNT质量浓度40g/L加入)超声分散1小时,将等摩尔1,4,5,8-萘四酸二酐和对苯二胺加入分散了碳纳米管(CNT)的溶剂NMP中制得溶液,碳纳米管(CNT)的比例为1,4,5,8-萘四酸二酐和对苯二胺质量之和的25wt%;
S2、将整个加热回流搅拌反应6小时制得黑色粉末,温度梯度依次为:25℃2小时,40℃2小时,80℃2小时;
S3、将所得产物黑色粉末过滤后用乙醇清洗5次,然后在120℃空气氛烘箱中干燥12小时;
S4、干燥后的粉末在氩气氛中300℃加热8小时,以确保完全成环,之后即得最终产物PI@CNT。
试验实施例
电池制备与测试:
正极的制备:将实施例1-3所得产物PI@CNT、导电剂SP和粘接剂PVdF按质量比8:1:1的比例混合,经过匀浆、涂布、辊压等工序制成正极片;
负极:以金属锂片为负极片;
电解液的制备:将1M LiN(CF3SO2)2(LiTFSI)溶于1,3-二氧环烷(DOL)和二甲氧基乙烷(DME)的混合溶剂中之得电解液,其中1,3-二氧环烷(DOL)和二甲氧基乙烷(DME)的质量比为2:1;
将上述正极、负极和电解液按要求组装成纽扣电池,充放电测试电压范围为1.5-3.5V。
图1所示为本发明实施例1中得到的原位聚合的聚酰亚胺基有机高分子正极材料扫描电镜图,可以清晰地看到,碳纳米管与聚酰亚胺基材料交织链接,使材料内部形成了良好的三维导电网络;
图2所示为本发明实施例1中得到的原位聚合的聚酰亚胺基有机高分子正极材料红外光谱图,可以明显看到1676cm-1、1716cm-1处的C=O伸缩振动峰以及1345cm-1处的C-N伸缩振动峰等特征峰,均与预期的聚酰亚胺基材料相吻合;
图3所示为本发明实施例2中得到的原位聚合的聚酰亚胺基有机高分子正极材料CV曲线图,可以看出,该材料具有高度可逆的电化学氧化还原反应行为,这对于电池充放电的循环稳定性是非常有利的;
图4所示为本发明实施例3中得到的原位聚合的聚酰亚胺基有机高分子正极材料充放电循环电压-比容量曲线图,可以看到,0.05C倍率下该材料放电比容量可达175mAh/g,平均放电电压约为2.35V;
图5所示为本发明实施例3中得到的原位聚合的聚酰亚胺基有机高分子正极材料充放电循环比容量曲线图,可以看到,1C倍率下该材料容量衰减缓慢,循环1000圈后容量保持率仍达95%以上。
本文所述实施例只是本发明的部分实施例,并非全部。根据上述说明书的解释和指导,本领域的技术人员基于本发明及实施例,能够对实施方式进行变更、改进、替换等,但在没有做出创新性研究前提下所获得的所有其他实施例,均属于本发明的保护范畴。

Claims (6)

1.一种原位聚合的聚酰亚胺基有机高分子正极材料,其特征在于:该材料由等摩尔1,4,5,8-萘四酸二酐和对苯二胺在分散了碳纳米管的NMP溶剂中原位聚合生成。
2.如权利要求1所述的原位聚合的聚酰亚胺基有机高分子正极材料的制备方法,其特征在于:包括如下步骤:
步骤一、在充满氩气的环境中,碳纳米管加入NMP溶剂进行超声分散,碳纳米管的质量浓度为40g/L,然后将等摩尔1,4,5,8-萘四酸二酐和对苯二胺加入分散了碳纳米管的NMP溶剂中制得溶液;
步骤二、将整个溶液加热回流搅拌反应制得黑色粉末;
步骤三、将所得产物黑色粉末过滤后用乙醇清洗多次,然后空气氛烘干;
步骤四、干燥后的粉末氩气氛中加热直至完全成环,之后即得最终产物PI@CNT。
3.如权利要求2所述的原位聚合的聚酰亚胺基有机高分子正极材料的制备方法,其特征在于:碳纳米管的占比为1,4,5,8-萘四酸二酐和对苯二胺质量之和的15-25wt%。
4.如权利要求2所述的原位聚合的聚酰亚胺基有机高分子正极材料的制备方法,其特征在于:步骤二中加热的温度梯度依次为:25℃下加热2小时,40℃下加热2小时,80℃下加热2小时。
5.如权利要求2所述的原位聚合的聚酰亚胺基有机高分子正极材料的制备方法,其特征在于:步骤三是将所得产物黑色粉末过滤后用乙醇清洗5次,然后在120℃空气氛烘箱中干燥12小时。
6.如权利要求2所述的原位聚合的聚酰亚胺基有机高分子正极材料的制备方法,其特征在于:步骤四中干燥后的粉末在300℃氩气氛中加热8小时。
CN202011502548.8A 2020-12-18 2020-12-18 原位聚合的聚酰亚胺基有机高分子正极材料及其制备方法 Pending CN112646181A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011502548.8A CN112646181A (zh) 2020-12-18 2020-12-18 原位聚合的聚酰亚胺基有机高分子正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011502548.8A CN112646181A (zh) 2020-12-18 2020-12-18 原位聚合的聚酰亚胺基有机高分子正极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112646181A true CN112646181A (zh) 2021-04-13

Family

ID=75355005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011502548.8A Pending CN112646181A (zh) 2020-12-18 2020-12-18 原位聚合的聚酰亚胺基有机高分子正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112646181A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501956A (zh) * 2021-07-08 2021-10-15 兰州大学 具有高倍率性能的d-a型苝基共轭聚合物锂离子电池正极材料及其制备方法
CN115895255A (zh) * 2022-11-24 2023-04-04 浙江锂宸新材料科技有限公司 一种碳纳米管改性的氧化亚硅复合材料的制备方法及其产品和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101659789A (zh) * 2008-08-29 2010-03-03 清华大学 碳纳米管/导电聚合物复合材料的制备方法
CN103151180A (zh) * 2013-03-21 2013-06-12 兰州理工大学 有机高分子超级电容器电极材料及其制备方法
CN104103812A (zh) * 2014-07-21 2014-10-15 国家纳米科学中心 一种复合柔性电极材料及其制备方法和用途
CN107845798A (zh) * 2017-11-03 2018-03-27 南京工业大学 一种锂离子电池正极材料的制备办法
CN108091861A (zh) * 2017-12-14 2018-05-29 东华大学 一种基于聚酰亚胺结构的有机电极材料的制备方法
CN109546137A (zh) * 2018-12-14 2019-03-29 中南民族大学 碳基支撑聚酰亚胺阵列及其制备方法与储能应用
EP3470368A1 (fr) * 2017-10-12 2019-04-17 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de dopage de nanotubes de carbone
CN110183655A (zh) * 2019-05-05 2019-08-30 上海应用技术大学 一种二维碳化物晶体基聚酰亚胺有机正极材料的制备方法
CN111446448A (zh) * 2020-03-09 2020-07-24 武汉理工大学 一种基于共轭羰基的聚酰亚胺/石墨烯复合锂离子电池负极材料的制备方法
CN111490233A (zh) * 2019-01-25 2020-08-04 南京大学 一种基于聚酰亚胺与石墨烯复合的可充电镁电池正极材料及其制备方法
CN111710840A (zh) * 2020-06-04 2020-09-25 东华大学 一种含酮羰基键链结构聚酰亚胺复合电极材料的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101659789A (zh) * 2008-08-29 2010-03-03 清华大学 碳纳米管/导电聚合物复合材料的制备方法
CN103151180A (zh) * 2013-03-21 2013-06-12 兰州理工大学 有机高分子超级电容器电极材料及其制备方法
CN104103812A (zh) * 2014-07-21 2014-10-15 国家纳米科学中心 一种复合柔性电极材料及其制备方法和用途
EP3470368A1 (fr) * 2017-10-12 2019-04-17 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de dopage de nanotubes de carbone
CN107845798A (zh) * 2017-11-03 2018-03-27 南京工业大学 一种锂离子电池正极材料的制备办法
CN108091861A (zh) * 2017-12-14 2018-05-29 东华大学 一种基于聚酰亚胺结构的有机电极材料的制备方法
CN109546137A (zh) * 2018-12-14 2019-03-29 中南民族大学 碳基支撑聚酰亚胺阵列及其制备方法与储能应用
CN111490233A (zh) * 2019-01-25 2020-08-04 南京大学 一种基于聚酰亚胺与石墨烯复合的可充电镁电池正极材料及其制备方法
CN110183655A (zh) * 2019-05-05 2019-08-30 上海应用技术大学 一种二维碳化物晶体基聚酰亚胺有机正极材料的制备方法
CN111446448A (zh) * 2020-03-09 2020-07-24 武汉理工大学 一种基于共轭羰基的聚酰亚胺/石墨烯复合锂离子电池负极材料的制备方法
CN111710840A (zh) * 2020-06-04 2020-09-25 东华大学 一种含酮羰基键链结构聚酰亚胺复合电极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈朝逸: "《萘酐类聚酰亚胺正极材料的制备与电化学性能研究》", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501956A (zh) * 2021-07-08 2021-10-15 兰州大学 具有高倍率性能的d-a型苝基共轭聚合物锂离子电池正极材料及其制备方法
CN115895255A (zh) * 2022-11-24 2023-04-04 浙江锂宸新材料科技有限公司 一种碳纳米管改性的氧化亚硅复合材料的制备方法及其产品和应用
CN115895255B (zh) * 2022-11-24 2024-05-17 浙江锂宸新材料科技有限公司 一种碳纳米管改性的氧化亚硅复合材料的制备方法及其产品和应用

Similar Documents

Publication Publication Date Title
Park et al. Hierarchically mesoporous carbon nanofiber/Mn3O4 coaxial nanocables as anodes in lithium ion batteries
CN109736092B (zh) 一种导电聚苯胺包覆聚酰亚胺基多孔有机纳米复合纤维膜
CN104466134B (zh) 自支撑石墨烯/碳纳米管杂化物泡沫负载氨基蒽醌类聚合物的制备方法
Liu et al. Synchronous-ultrahigh conductive-reactive N-atoms doping strategy of carbon nanofibers networks for high‐performance flexible energy storage
WO2013097553A1 (zh) 导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法
CN109817963B (zh) Fe7Se8纳米粒子/氮掺杂碳纳米纤维复合材料的制备方法及其应用
Zhao et al. A polyimide cathode with superior stability and rate capability for lithium-ion batteries
Büyükyazi et al. 3D nanoarchitectures of α-LiFeO2 and α-LiFeO2/C nanofibers for high power lithium-ion batteries
Deng et al. Strongly coupled perylene bisimide/reduced graphene oxide as organic cathode materials for lithium ion batteries
CN104973596A (zh) 一种杂原子掺杂空心球石墨烯复合材料及制备方法与应用
He et al. Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor
CN110416539B (zh) 聚吡咯包覆三维石墨烯四氧化三钴锂电池负极材料制备方法
Song et al. Functionalization of graphene oxide with naphthalenediimide diamine for high-performance cathode materials of lithium-ion batteries
Wang et al. Carbon-coated SnO2@ carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteries
Cang et al. A new perylene-based tetracarboxylate as anode and LiMn2O4 as cathode in aqueous Mg-Li batteries with excellent capacity
CN112646181A (zh) 原位聚合的聚酰亚胺基有机高分子正极材料及其制备方法
Zhang et al. Investigation of capacity increase in schiff-base networks as the organic anode for lithium-ion batteries
Chen et al. Biomass-mediated synthesis of carbon-supported ZnMn2O4 nanoparticles as high-performance anode materials for lithium-ion batteries
Liu et al. Structure and electrochemical performance of LiFePO4 cathode materials modified with carbon coating and metal doping
CN114085377A (zh) 聚苯胺/碳纳米管复合材料的制备及在钠基双离子电池中的应用
CN109560267B (zh) 一种复合改性三元材料及其制备方法
CN111146423A (zh) 预锂化的二元拓扑结构磷/碳复合材料及制法和应用
Mo et al. Flexible polytriphenylamine-based cathodes with reinforced energy-storage capacity for high-performance sodium-ion batteries
Shi et al. High rate capability of Fe/FeO/Fe 3 O 4 composite as anode material for lithium-ion batteries
Zhao et al. Li 4 Mn 5 O 12 prepared using l-lysine as additive and its electrochemical performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210413