WO2013097553A1 - 导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法 - Google Patents

导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法 Download PDF

Info

Publication number
WO2013097553A1
WO2013097553A1 PCT/CN2012/084559 CN2012084559W WO2013097553A1 WO 2013097553 A1 WO2013097553 A1 WO 2013097553A1 CN 2012084559 W CN2012084559 W CN 2012084559W WO 2013097553 A1 WO2013097553 A1 WO 2013097553A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
conductive polymer
pss
lithium ion
ion battery
Prior art date
Application number
PCT/CN2012/084559
Other languages
English (en)
French (fr)
Inventor
张灵志
赵欣悦
赵雪玲
王素清
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2013097553A1 publication Critical patent/WO2013097553A1/zh
Priority to US14/318,731 priority Critical patent/US20140315081A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to the field of processing of electrode materials for lithium ion batteries, and in particular to a lithium ion battery composite electrode material coated with a conductive polymer and a preparation method thereof.
  • Lithium-ion batteries have the advantages of high open circuit voltage, high energy density, small size, long service life, no memory effect, less pollution, and low self-discharge rate. They are superior to other conventional secondary batteries in overall performance, and are consistently considered to be The most ideal power source for all kinds of portable electronic equipment and electric vehicles.
  • cathode materials are LiCo0 2 , LiFeP0 4 , LiMn 2 0 4 , LiNio.5Mm.5O4, etc.
  • the anode materials are graphite, Li 4 Ti 5 0 12, etc.
  • other electrode materials have a problem of low electronic conductance.
  • surface coating and the addition of conductive additives are usually employed.
  • there are generally disadvantages such as long operation time, uneven mixing, high heat treatment temperature, and inert gas protection.
  • the doped state has excellent electrical conductivity, high stability in air structure and electrical conductivity, and thus becomes a new research hotspot of conductive polymers.
  • the eigenstate PEDOT has poor conductivity and is insoluble and insoluble.
  • the poly(p-styrenesulfonic acid (PSS) anion doping can be dispersed and dissolved in an aqueous solution, and it is very stable in air and high in coating.
  • the electrical conductivity, and its aqueous solution can be further processed, thus greatly promoting the application of PEDOT.
  • PEDOT or PEDOT:PSS has been mainly used as a positive electrode material for lithium ion batteries (Electrochim.
  • the material obtained by the composite of the polymer conductive polymer/electrode material is processed to improve the conductivity of the electrode material, and the method is also applicable to other conductive polymer solutions; at the same time, the problem that the nano-scale electrode powder material is easy to agglomerate can be solved, and the processing is solved.
  • the electrode sheet is easily coated uniformly, thereby improving the discharge capacity and cycle stability of the electrode material. Summary of the invention
  • An object of the present invention is to provide a high performance lithium ion battery composite electrode material prepared by dip coating a polymer conductive polymer solution.
  • the invention also provides a preparation method of the above composite electrode material, wherein the preparation method has the advantages of simple process, effective effect, low cost, easy industrial implementation and green environmental protection process.
  • the composite electrode material of the present invention is: a polymer conductive polymer coated on a lithium ion battery electrode material, the polymer conductive polymer being a conductive polymer which is easily dispersed in a water and an organic solution through a dispersion medium.
  • the aqueous solution conductive polymer is preferably poly(3,4-ethylenedioxythiophene) PEDOT, polyaniline PANI or polypyrrole PPy, and the dispersion medium is selected from the aqueous solution of polystyrenesulfonic acid (PSS), abbreviated as PEDOT:PSS, respectively.
  • PSS polystyrenesulfonic acid
  • PSS polystyrenesulfonic acid
  • PANI PSS
  • PPy PSS
  • the organic solution conductive polymer is preferably polyaniline (emeraldine salt), and the dispersion medium is xylene, abbreviated as PANI (xylene).
  • the solid content of the PEDOT:PSS aqueous solution is 0.9 to 1.3 wt%; the solid content of the PANLPSS aqueous solution and the PPy:PSS aqueous solution is 2 to 2.2 wt%.
  • the mass ratio of polyaniline (emergency salt) in the xylene solution [PANI (xylene)] of polyaniline (aqua-imidine salt) in the solution is 2 to 3 wt%.
  • the active material in the polymer conductive polymer-coated composite electrode material is an electrode material of a conventional product.
  • the polymer conductive polymer/electrode material composite material is obtained by a simple impregnation treatment of the polymer conductive polymer solution of the electrode material.
  • the preparation principle of the conductive polymer-coated lithium ion electrode material provided by the invention is that the lithium ion positive electrode material or the negative electrode material is immersed in a solution of the polymer conductive polymer, and the surface coating is obtained by the simple process of immersion coating. Covered lithium ion battery composite electrode material.
  • the preparation method is simple, and no subsequent high temperature heat treatment is required. Due to the solution immersion method, the surface of the electrode material particles is easily covered, so that the coating is relatively uniform, the polymer conductive polymer film is densely combined with the electrode material powder particles, and the coating is highly coated due to the high conductivity of the polymer conductive polymer.
  • Conductive properties and electrochemical properties of the composite electrode material It has been greatly improved, and a lithium ion battery composite electrode material having high specific capacity, high charge and discharge efficiency, and long cycle life is obtained.
  • the preparation of the polymer conductive polymer coated composite electrode material of the invention is that water or an organic solvent is used as a dispersion medium, and the polymer conductive polymer is uniformly covered on the surface of the electrode material under ultrasonic dispersion, and is evenly distributed on the surface of the electrode material after drying. A layer of conductive polymer is coated.
  • the specific steps of the preparation method are as follows:
  • Ammonia or lithium hydroxide aqueous solution is added dropwise to the aqueous solution or organic solution of the polymer conductive polymer, adjust the pH value of the solution, adjust the pH value of the solution to 6-9;
  • step (3) Centrifuge/filter the mixture of step (2) to remove excess aqueous solution or organic solution; this step can recover the soaking liquid to reduce the cost;
  • the optimum product is obtained by adjusting the amount of the reactant added, the time of ultrasonic dispersion, and the pH of the reaction solution.
  • the preferred parameters range is as follows:
  • the aqueous solution of the polymer conductive polymer means PEDOT:PSS, PANI:PSS,
  • PPy PSS, PEDOT: PSS aqueous solution has a solid content of 0.9 ⁇ 1.3wt%; PANLPSS aqueous solution and PPy:PSS aqueous solution have a solid content of 2 ⁇ 2.2wt%.
  • the organic solution of the polymer conductive polymer refers to a xylene solution of polyaniline (april imine salt), and the mass ratio of polyaniline (aqua-imide salt) in the solution is 2 to 3 wt%.
  • the lithium ion battery electrode material used may be LiCo0 2 , LiNio.5Mm.5O4,
  • PEDOT PSS aqueous solution is completely immersed powder
  • PANI PSS solution or PPy: PSS solution is used in different proportions of lithium ion battery electrode material and PANI: PSS or PPy: PSS mass ratio is 50_100:1
  • the amount of the organic solution of the polymer conductive polymer is: [PANI(xyl ene )]
  • the amount of xylene used is the solid mass ratio of the electrode material of the lithium ion battery to the polyaniline (the green imide salt).
  • 100-200:1 ultrasonic dispersion time is preferably 0.2 ⁇ 3h.
  • the powder can be dried in an oven or evaporated to dryness using a rotary evaporator.
  • the advantages of the present invention over the prior art are: 1.
  • the present invention is carried out in room temperature water or an organic solution, which consumes less energy and does not require inert gas protection.
  • the invention adopts a polymer conductive polymer solution to impregnate the electrode material, and the mixture liquid adopts water or an organic solution, which easily covers the surface of the electrode material particles, and is uniformly coated, which is beneficial to improving the conductivity of the electrode material, and obtaining an electrochemical of the composite electrode material. Performance and cycle performance are significantly improved.
  • the preparation method of the invention has the advantages of low raw materials, simple process, low requirements on equipment, no need for subsequent high-temperature heat treatment, low cost and easy large-scale industrial promotion, and has a good application prospect on lithium ion batteries.
  • the invention can also be applied to other electrochemical energy storage devices (such as supercapacitors) and organic solar cells (such as Ti0 2 electrodes in dye-sensitized solar cells) in which the electrode material is combined with a conductive polymer.
  • electrochemical energy storage devices such as supercapacitors
  • organic solar cells such as Ti0 2 electrodes in dye-sensitized solar cells
  • Example 3 is a Fourier-transformed infrared spectrum of a sample of PEDOT: PSS before and after coating according to Example 3 of the present invention, which is an infrared spectrum of LiMn 2 0 4 and LiMn 2 (VPEDOT: PSS).
  • Example 6 is a Fourier-transformed infrared spectrum of a sample of Example 6 of the present invention before and after PEDOT: PSS coating, which is an infrared spectrum of C and C/PEDOT:PSS.
  • Example 3 is a Fourier-converted infrared spectrum of a PANI:PSS coated sample and Example 9 PPy:PSS coated sample before and after the present invention, and is an infrared spectrum of Li4Ti5012/PANI:PSS and Li4Ti5012/PPy:PSS.
  • Example 4 is an X-ray diffraction chart of a sample PEDOT: PSS before and after coating according to Example 5 of the present invention, which is an X-ray diffraction spectrum of MoS 2 and MoS 2 /PEDOT:PSS.
  • Fig. 5 (a-b) are X-ray diffraction patterns of electrode materials of the samples prepared in Example 8 and Example 10 of the present invention, coated in different ratios.
  • Fig. 5(a) is a comparison of X-ray diffraction spectra of different coating ratios (50:1; 100:1) of Li4Ti5012 and Li4Ti5012/PANI:PSS, and
  • Fig. 5(b) is Li4Ti5012 and Li4Ti5012/PANI(xylene) Comparison of X-ray diffraction spectra of different coating ratios (100:1; 200:1).
  • Fig. 6 is a scanning electron micrograph of a sample of Example 6 of the present invention before and after PANLPSS coating, which is a photograph of the surface topography of the graphite C and C/PEDOT:PSS electrode sheets after 50 cycles.
  • FIG. 7(ag) is the first three charge and discharge voltage platform curves of the electrode prepared in the sample of Example 1-7 of the present invention at a charge/discharge current density of C/10, and FIG. 7(a) is LiCo0 2 /PEDOT:PSS, FIG.
  • FIG. 7(b) is LiNi 05 Mn 1 5 O 4 /PEDOT:PSS
  • Figure 7(c) is LiMn 2 04/PEDOT:PSS
  • Figure 7(d) is Li 4 Ti 5 Oi2/PEDOT:PSS
  • Figure 7(e) is LiFePCVPEDCJTPSS
  • Figure 7(f) shows the first charge-discharge voltage platform curve of the MoS 2 /PEDOT:PSS electrode at 50 mA/g charge and discharge current
  • Figure 7(g) shows the C/5 charge-discharge current density, C/PEDOT: PSS.
  • FIG. 9(ag) is a long-cycle performance test curve of the electrode prepared by the sample of the embodiment 1-7 of the present invention and the related sample at a charge-discharge current density of C/5:
  • FIG. 9(a) is a comparison of cycle performance before and after LiCo02 coating;
  • Figure 9 (b) is a comparison of cycle performance before and after LiNi0.5Mnl.5O4 coating;
  • Figure 9 (c) is a comparison of cycle performance before and after LiMn204 coating;
  • Figure 9 (d) is a comparison of cycle performance before and after Li4Ti5012 coating;
  • Figure 9 (e) The cycle performance comparison before and after coating of LiFeP04;
  • Figure 9(f) is a comparison of the cycle performance of MoS2 at 50 mA/g before and after coating.
  • Figure 9 (g) is a comparison of cycle performance at C/2 current density before and after graphite C coating.
  • FIG. 10(ac) is a long cycle performance test curve of the electrode prepared in the sample of Example 8-10 of the present invention at a charge/discharge current density of C/10
  • Fig. 11 is a graph showing the rate performance test of the electrode prepared in the sample of Example 6 of the present invention at different charge and discharge current densities.
  • Figure 12 (ac) is a graph showing the rate performance test of the electrodes prepared in the samples of Example 8, Example 9, and Example 10 of the present invention at different charge and discharge current densities.
  • Fig. 13 (ab) is an impedance test curve of the electrode prepared in the samples of Example 8 and Example 9 of the present invention after 5 times of charge and discharge. detailed description The invention is further illustrated by the following examples and the accompanying drawings:
  • the PEDOT: PSS solution of the commercially available products in the existing market has a solid content of 0.9 to 1.3%
  • the PANI:PSS solution and the BPPy:PSS solution have a solid content of 2 to 2.2 wt%, and polyaniline (green).
  • the xylene solution of the imine salt has a solid content of 2 to 3 wt%.
  • the lithium ion battery electrode material used is selected from the group consisting of graphite, LiCo0 2 , LiNio.5Mn1.5O4, LiMn 2 0 4 , LiFeP0 4 , Li 4 Ti 5 0 12 or MoS 2 which are commercially available in the prior art.
  • 2 g of LiCo0 2 powder was slowly added to a PEDOT: PSS aqueous solution (10 mL), ultrasonically dispersed for 30 min, stirred for 2 hours, filtered, dried at 80 ° C for 3 hours, thoroughly ground, and then dried at 120 ° C for 2 hours. After the prepared material was sufficiently ground, it was uniformly mixed with a block of black and PVDF at a ratio of 80:10:10, and dried at 80 ° C for 24 h after coating, to obtain a 0) 0 2 electrode sheet.
  • Current charge and discharge test, voltage range is 3.0-4.2 V.
  • Ammonia water is used to mediate PEDOT:
  • 0.5 g of LiNia 5 M ni . 5 0 4 powder was slowly added to an aqueous solution of PEDOT: PSS (2 mL), sonicated for 30 min, allowed to settle naturally, centrifuged, and then dried at 60 ° C to 120 ° C for 24 hours. After the prepared material was sufficiently ground, it was uniformly mixed with a block of black and PVDF at a ratio of 80:10:10, and dried at 80 ° C for 24 h after coating, to prepare a LiNi Q . 5 M ni . 5 0 4 electrode.
  • 0.5 g of LiMn 2 0 4 powder was slowly added to an aqueous solution of PEDOT: PSS (2 mL), ultrasonically dispersed for 30 min, allowed to settle naturally, centrifuged, and then dried at 60 ° C to 120 ° C for 24 hours. After the prepared material is fully ground, and the black block And PVDF was uniformly mixed according to the ratio of 80:10:10, and dried at 80 ° C for 24 h after coating, to prepare a LiMn 2 0 4 electrode.
  • 0.5 g of LiFeP0 4 powder was slowly added to PEDOT: PSS aqueous solution (1 mL), ultrasonically dispersed for 30 min, allowed to settle naturally, centrifuged, and then dried at 60 ° C ⁇ 120 ° C for 24 ho.
  • the black and PVDF were mixed uniformly according to the ratio of 80:10:10, and dried at 80 ° C for 24 hours after coating, to prepare a LiFeP0 4 electrode.
  • Ammonia water is used to mediate PEDOT:
  • 0.4 g of MoS 2 and 5 g of PEDOT/PSS aqueous solution were placed in a small beaker, and 25 ml of deionized water was added thereto, followed by ultrasonic immersion treatment with an ultrasonic cell disrupter, followed by drying at 80 ° C overnight to obtain a black powder.
  • the prepared material was sufficiently ground, it was uniformly mixed with a block of black and PVDF at a ratio of 70:20:10, and dried at 80 ° C for 24 hours after coating, to prepare a LiFeP0 4 electrode.
  • the range is from 0.01 to 3.0 V.
  • 3 g of Li 4 Ti 5 0 12 powder was slowly added to PEDOT: PSS aqueous solution (5 mL), ultrasonically dispersed for 30 min, allowed to settle naturally, centrifuged, and then dried at 60 ° C ⁇ 120 ° C for 24 ho. After the material was sufficiently ground, it was uniformly mixed with B black and PVDF in a ratio of 80:10:10, and dried at 80 ° C for 24 hours after coating, to prepare a Li 4 Ti 5 0 12 electrode.
  • Li4Ti5012/PANI:PSS (abbreviated as LTO/PANI:PSS)
  • Li4Ti5012 electrode After the prepared material was sufficiently ground, it was uniformly mixed with a block of black and PVDF at a ratio of 80:10:10, and dried at 80 ° C for 24 hours after coating, to prepare a Li4Ti5012 electrode.
  • Lithium plate is used as the counter electrode
  • polyethylene film is used as the separator
  • Li4Ti5012/PPy:PSS (abbreviated as LTO/PPy:PSS)
  • Li 4 Ti 5 0i 2 /PANI (xylene) (abbreviated as LTO/PANI(xylene))
  • the range is 1.0-2.5 V.
  • the composite electrode materials prepared by the present invention were tested and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and electrochemical tests.
  • FT-IR Fourier transform infrared spectroscopy
  • XRD X-ray diffraction
  • SEM field emission scanning electron microscopy
  • FIG. 2 is a comparison chart of infrared spectra of C/PEDOT:PSS and C prepared according to the present invention. It can be seen from the figure that C immersed in PEDOT: PSS solution has two small peaks at 980 cm-l and 1338 cm-l, which are characteristic peaks of PEDOT: PSS, indicating that PEDOT: PSS is combined with graphite.
  • Fig. 3 (a, b) is a Fourier transform infrared spectrum of LTO/PANI:PSS and LTO/PPy:PSS prepared according to the present invention. According to the literature, 1130 cm-l corresponds to the vibration of PANI:PSS and PPy:PSS plane skeleton (Adv. Mater. 19 (2007), 1772).
  • Figure 4 is an X-ray diffraction pattern of a portion of the sample prepared in the present invention, which is an X-ray diffraction pattern comparison of untreated ⁇ 1 0 3 2 and MoS 2 /PEDOT:PSS. It can be seen from the figure that after the PEDOT: PSS coating, the (002) crystal plane diffraction peak of ⁇ 1 ( ⁇ 2 is masked, indicating that the surface layer is coated.
  • Fig. 5 (a, b) is an X-ray diffraction pattern of LTO/PANI:PSS and LTO/PANI(xylene) prepared by the present invention. From the figure, because LTO itself has good crystallinity, the conductive polymer PANI is amorphous, and the amount of PANI is very small. Before and after coating, the XRD pattern of the sample does not change significantly, and the coated material still retains LTO. Good crystallinity.
  • Figure 6 is an SEM image of C/PEDOT:PSS prepared by the present invention, as can be seen from the figure,
  • PEDOT: PSS-impregnated graphite C-electrode sheet After 50 cycles of charge and discharge, the surface layer of the pole piece is not uniformly coated, and the arrow is the area where the graphite is deintercalated with lithium, and the layer is loose and porous. After 50 times of charge and discharge cycles of the PEDOT:PSS dip-coated graphite electrode, the surface coating of the electrode is even and smooth, and the sheet structure of graphite is maintained.
  • Figure 7 is a voltage platform curve (first three cycles) of the electrode prepared by the sample prepared in the present invention and the related sample at a charge/discharge current density of C/10. It can be seen from the figure that these commercial electrode material powders (LiCo0 2 , LiNio.5Mn1.5O4, LiMn 2 0 4 , Li 4 Ti 5 0 12 , LiFeP0 4 , MoS 2 , graphite C) undergo polymer conductive polymerization.
  • PEDOT After the simple immersion treatment of the PSS solution, the capacity of the electrode material did not change greatly, and even the capacity of some samples increased.
  • the initial discharge capacity of LiCo0 2 changed from 130.1 mAh/g to 119.2 mAh/g; LiNio.5M .5O4 initial discharge capacity changed from 132.8 mAh/g to 130.2 mAh/g; LiMn 2 0 4 initial discharge capacity increased from 115.2 mAh/g to IJ118.4 mAh/g; Li 4 Ti 5 0 12 initial discharge capacity
  • the initial discharge capacity of LiFeP0 4 increased from 137.9 mAh/g to IJ 140.5 mAh/g
  • the initial discharge capacity of MoS 2 changed from 1074.9 mAh/g to 980.8 mAh/g
  • Graphite C increased the initial charge capacity from 328 mAh/g to 347 mAh/g at 1/5 C charge current density. It can be seen from the figure that the voltage platform of the battery fabricated by these electrode materials has not changed, and it can be seen that the coating treatment of the polymer conductive polymer PEDOT: PSS does
  • Figure 8 is a graph showing the first three cycles of Li 4 Ti 5 0 12 prepared by the present invention after ultrasonic impregnation of different amounts of PANI:PSS, PPy:PSS at a current density of 1/10C. After the coating treatment, the sample has the first increase in the specific capacity.
  • LTO/PANI: PSS 50:1
  • LTO/PANI:PSS 100:1
  • LTO/PPy:PSS 50:l
  • Fig. 9 is a graph showing the cycle performance test of the electrode prepared by the sample prepared in the present invention and the related sample at a charge and discharge current density of C/5.
  • these commercial electrode material powders LiCo0 2 , LiNio.5Mm.5O4, LiMn 2 0 4 , Li 4 Ti 5 0 12 , LiFeP0 4 , graphite C
  • PEDOT polymer conductive polymer
  • LiCo0 2 increased the capacity cycle retention rate from 82.17% to 92.54% after 100 cycles, and the 100th discharge capacity increased from 102.7mAh/g to 114.2 mAh/g.
  • LiNio .5M .5O4 After 120 cycles, the capacity retention rate increased from 86.58% to 91.64%, and the 120th discharge capacity increased from 110.6 mAh/g to Ijll7.3 mAh/g; after coating treatment, LiMn 2 0 4 passed In 60 cycles, the capacity retention rate increased from 88.28% to 90.45%, and the 60th discharge capacity increased from 97.9 mAh/g to 104.3 mAh/g.
  • Li 4 Ti 5 0 12 passed 150 cycles.
  • the retention rate increased from 94.9% to 97.2%, the 150th discharge capacity increased from 147.0 mAh/g to 158.8 mAh/g; LiFeP0 4 after 90 cycles, the capacity retention rate increased from 79.18% to 83.36%, the 90th discharge capacity From 104.7 mAh/g to 112.1 mAh/g; after 35 cycles of MoS2, the capacity retention rate increased from 30.65% to 65.16%, and the 35th discharge capacity increased from 260.9 mAh/g to 519.3 mAh/g; At C/2 current density, after 50 cycles, the capacity retention rate increased from 98.4% to nearly 100%, 50th Charge capacity increases from 305mAh / g to 335mAh / g.
  • Figure 11 is a graph showing the constant current charge and discharge curves of C/PEDOT:PSS samples prepared at different times in the present invention. It can be seen from the figure that after the dip coating, the rate performance of the C/PEDOT:PSS electrode material is significantly improved, and the capacity of the battery is increased by 230 mAh/g from 197 mAh/g at a current density of 2C.
  • Fig. 12 (a, b, c) is a constant current charge and discharge curve of electrodes prepared by the samples prepared in the present invention at different magnifications.
  • the capacity is increased from 90 mAh/g to 117 mAh/g.
  • the LTO/PANI (xylene) coated electrode material can be seen.
  • the polymer coating ratio is smaller, the rate performance of the battery is more obvious, and the cycle is more stable, indicating that the electrode material table is in the organic solvent.
  • Figure 13 is a sample prepared by the invention, LTO / PANI: PSS and LTO / PPy: PSS prepared by the electrode
  • the test frequency ranges from lO mHZ to 100 kHZ, the disturbance amplitude is 5mV, and the open circuit voltage is 1.0V.
  • the semi-circle of the high-frequency region corresponds to the migration of the SEI film formed between the electrolyte and the electrode material
  • the oblique line of the low-frequency region corresponds to the diffusion process of lithium ions in the electrode, indicating that lithium ions diffuse to the electrode material crystal.
  • the SEI film formed on the surface of the material is thin and dense, and the membrane resistance is significantly reduced, which confirms the coating. It is beneficial to increase the conductivity of the electrode material, and is advantageous for forming a dense SEI film layer and improving the rate performance of the LTO.
  • the lithium ion battery composite electrode material prepared by the invention a plurality of commercial electrode material powders are successfully coated on the surface thereof by simple impregnation treatment in a polymer conductive polymer aqueous solution or an organic solution.
  • the conductive polymer film layer improves the conductivity of the electrode material, and can solve the problem that the nano electrode material powder is easy to agglomerate (such as Li 4 Ti 5 0 12 nanometer powder), so that the electrode material can be easily coated to prepare the electrode sheet, thereby improving The charge-discharge ratio of the battery and the cycle performance.
  • the method for preparing an electrode composite by impregnating a conductive polymer solution provided by the invention can also be applied to electrodes in other electrochemical energy storage devices (such as super capacitors) and organic solar cells (such as Ti0 2 electrodes in dye-sensitized solar cells).
  • the material is compounded with a conductive polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法。所述复合电极材料在锂离子电池电极材料上包覆高分子导电聚合物,所述导电聚合物为易于在水或有机溶液中通过分散介质分散的导电聚合物。其制备是将锂离子正极材料或负极材料浸泡到高分子导电聚合物的水溶液或有机溶液中,通过浸渍包覆处理,获得表面包覆的锂离子电池复合电极材料,导电聚合物包覆的量可以通过导电聚合物浓度与电极材料的配比来控制。本发明制备原料便宜,所述新型复合电极材料表面包覆均匀,具有高比容量、高充放电效率、长循环寿命。与之前的技术相比,其制备方法工艺简单,成本低廉,效果好,生产过程绿色环保,易于工业推广,这种方法便于大规模工业化生产。

Description

导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法 技术领域
本发明涉及锂离子电池电极材料的加工领域,具体涉及一种导电聚合物包覆 的锂离子电池复合电极材料及其制备方法。 技术背景
锂离子电池具有开路电压高、 能量密度大、 体积小、 使用寿命长、 无记忆效 果、 少污染以及自放电率小等优点, 它在总体性能上优于其它传统二次电池, 一 致被认为是各种便携式电子设备及电动汽车用最为理想的电源。
发展高性能锂离子电池的关键技术是电极材料的研发, 常用的正极材料有 LiCo02, LiFeP04, LiMn204, LiNio.5Mm.5O4等, 负极材料有石墨, Li4Ti5012等, 其中除了石墨外,其他电极材料都存在电子电导低的问题。目前为了提高电导率, 通常采用表面包覆和添加导电添加剂的办法。 目前在表面碳包覆方法上, 通常存 在操作时间长、 混合不均匀、 后续热处理温度高、 需要惰性气体保护等缺点。
近年来, 导电聚合物如聚苯胺、 聚吡咯等, 由于其自身电导率高、 晶格弹性 好等, 也被尝试作为锂离子电池电极材料的复合 /表面包覆对象, 如聚吡咯通过 电化学聚合与 LiFeP04形成复合电极材料 (J. Power Sources 195, 5351-5359,2010) 。 本发明中选用的导电聚合物聚二氧乙基噻吩 (PEDOT) ,聚吡咯 (PPy) ,聚苯胺 (PANI) 由于其广泛的应用前景, 已经引起了人们的高度关注。 其中的掺杂态 具有电导率高、在空气中结构和电导率高度稳定等卓越性能因而成为导电高分子 新的研究热点。 本征态的 PEDOT导电性很差, 而且不熔不溶, 聚对苯乙烯磺酸 (PSS) 根阴离子掺杂的可以分散溶解在水溶液中, 涂布成膜后在空气中非常稳 定, 同时具有高电导率, 且其水溶液可以进一步加工处理, 因而大大地促进了 PEDOT的应用。 直到目前为止, PEDOT或 PEDOT:PSS主要被用来作为锂离子电 池的正极材料 (Electrochim. Acta, 53(2008): 8319-8323) ,或是作为正极的复合材 料进行相关的研究 (Electrochem. Commun., 4(2002): 545-549) 。 或者通过 EDOT 单体电化学聚合, 工艺步骤麻烦, 难以量产往工业化推广(J. Power Sources, 157 (2006) 457-463 因此, 可以通过对电极材料的 PEDOT:PSS溶液的简单的浸渍 处理获得高分子导电聚合物 /电极材料复合的材料, 从而改进电极材料的导电性, 这种方法也适用于其他导电聚合物溶液; 同时, 也可解决纳米级电极粉末材料易 于团聚的问题,加工电极片时易于均匀涂布, 从而提高电极材料的放电容量及循 环稳定性。 发明内容
本发明的目的是提供一种利用高分子导电聚合物溶液浸渍包覆制备的高性 能锂离子电池复合电极材料。
本发明同时提供了上述复合电极材料的制备方法,其制备方法工艺简单、有 效, 成本低廉, 易于工业化实施和生产过程绿色环保。
本发明复合电极材料是: 在锂离子电池电极材料上包覆高分子导电聚合物, 所述高分子导电聚合物为易于在水和有机溶液中通过分散介质分散的导电聚合 物。 水溶液导电聚合物优选为聚 (3,4-乙撑二氧噻吩) PEDOT、 聚苯胺 PANI或聚 吡咯 PPy,分散介质选自聚苯乙烯磺酸(PSS)的水溶液,分别简写为 PEDOT:PSS、 PANI:PSS、 PPy:PSS; 有机溶液导电聚合物优选为聚苯胺 (翠绿亚胺盐), 分散介 质为二甲苯, 简写为 PANI(xylene)。
所述水溶液导电聚合物溶液中, PEDOT:PSS水溶液固含量为 0.9~1.3wt%; PANLPSS水溶液和 PPy:PSS水溶液固含量为 2~2.2wt%。
所述有机溶液导电聚合物中, 聚苯胺(翠绿亚胺盐)的二甲苯溶液 [PANI(xylene)]中聚苯胺 (翠绿亚胺盐) 在溶液中的质量比为 2~3wt%。
所述的高分子导电聚合物包覆复合电极材料中活性物质为现有商品的电极 材料。通过对电极材料的高分子导电聚合物溶液的简单的浸渍处理获得高分子导 电聚合物 /电极材料复合的材料。
本发明提供的导电聚合物包覆锂离子电极材料的制备原理是将锂离子正极 材料或负极材料浸泡到高分子导电聚合物的溶液中,通过浸渍包覆这种简单的工 艺处理, 获得表面包覆的锂离子电池复合电极材料。制备方法简单, 无需后续高 温热处理。 由于采用溶液浸泡方法, 容易覆盖电极材料颗粒表面, 因此包覆比较 均匀, 高分子导电聚合物薄膜跟电极材料粉体颗粒结合致密, 并且由于高分子导 电聚合物高导电性的特性,使包覆后的复合电极材料的导电性能以及电化学性能 得到大大改善, 获得具有高比容量、 高充放电效率、 长循环寿命的锂离子电池复 合电极材料。
本发明高分子导电聚合物包覆复合电极材料的制备,是以水或有机溶剂为分 散介质,在超声分散作用下使得高分子导电聚合物在电极材料表层均匀覆盖, 干 燥后在电极材料表面均匀包覆一层导电聚合物层。 制备方法具体步骤为:
(1)将氨水或氢氧化锂水溶液逐滴加入到高分子导电聚合物的水溶液或有机 溶液中, 调节溶液的 pH值, 将溶液 PH值调节至 6-9;
(2) 将锂离子电池电极材料粉体加入步骤 (1) 配制的溶液中, 超声分散, 搅 拌, 使混合均匀;
(3) 将步骤 (2) 的混合液离心 /过滤去掉多余的水溶液或有机溶液;此步骤可 回收浸泡液, 以降低成本;
(4) 将步骤 (3) 中获得的粉体烘干。
制备过程中, 通过调节反应物的添加量, 超声分散的时间, 反应液的 pH值 来获得最佳产物。 优选参数范围如下:
步骤( 1 )中,所述高分子导电聚合物的水溶液是指 PEDOT:PSS、 PANI:PSS、
PPy:PSS, PEDOT:PSS水溶液固含量为 0.9~1.3wt%; PANLPSS水溶液和 PPy:PSS 水溶液固含量为 2~2.2wt%。
所述所述高分子导电聚合物的有机溶液是指聚苯胺 (翠绿亚胺盐)的二甲苯 溶液, 聚苯胺 (翠绿亚胺盐) 在溶液中的质量比为 2~3wt%。
步骤 (2) 中, 所用的锂离子电池电极材料可选用 LiCo02, LiNio.5Mm.5O4,
LiMn204,, LiFeP04及三元正极材料, 或 MoS2, 石墨及 Li4Ti5012 负极材料等电 极材料, 用量为 0.1~2 g/mL; 所述高分子导电聚合物水溶液用量为: PEDOT:PSS 水溶液用量为完全浸没粉体; PANI:PSS溶液或 PPy:PSS溶液的用量按不同比例 为锂离子电池电极材料与 PANI:PSS或 PPy:PSS的质量比为 50_100:1;所述高分 子导电聚合物有机溶液的用量为: 【PANI(xylene)】 中二甲苯用量为使有机溶液 液面浸没粉末, 锂离子电池电极材料与聚苯胺 (翠绿亚胺盐)的固体质量比为为 100-200:1 超声分散时间优选为 0.2~3h。
步骤 (4) 中粉体可在烘箱中烘干, 亦可以使用旋转蒸发仪蒸干。
与现有技术相比, 本发明的优点在于: 1、 本发明在室温水或有机溶液中进行, 耗能少, 不需要惰性气体保护。
2、 本发明采用高分子导电聚合物溶液浸渍电极材料, 混合物液体采用水或 有机溶液, 容易覆盖电极材料颗粒表面, 包覆均匀, 有利于提高电极材料的导电 性能, 获得复合电极材料的电化学性能和循环性能得到明显改善。
3、 本发明制备方法原料便宜, 工艺简单, 对设备要求不高, 不需要后续的 高温热处理,成本低廉易于大规模工业推广,在锂离子电池上有很好的应用前景。
4、 本发明中对电极材料的加工处理过程中无有毒有害的中间产物生成, 生 产过程绿色环保。
5、 本发明也可以应用于其他电化学储能器件 (如超级电容) 和有机太阳能 电池 (如染料敏化太阳嫩电池中 Ti02电极) 中电极材料与导电聚合物复合。 附图说明
图 1为本发明实施例 3样品 PEDOT: PSS包覆前后的傅立叶转换红外光谱图, 为 LiMn204和 LiMn2(VPEDOT:PSS的红外光谱图。
图 2为本发明实施例 6样品 PEDOT: PSS包覆前后的傅立叶转换红外光谱图, 为 C和 C/PEDOT:PSS的红外光谱图。
图 3为本发明实施例 8 PANI:PSS包覆样品和实施例 9 PPy:PSS包覆样品前后 的傅立叶转换红外光谱图, 为 Li4Ti5012/PANI:PSS和 Li4Ti5012/PPy:PSS的红外 光谱图。
图 4为本发明实施例 5样品 PEDOT: PSS包覆前后的 X射线衍射图, 为 MoS2 和 MoS2/PEDOT:PSS的 X射线衍射谱图。
图 5(a-b)为本发明实施例 8和实施例 10所制备样品的电极材料,不同比例包覆 的的 X射线衍射图。 图 5(a)为 Li4Ti5012和 Li4Ti5012/PANI:PSS的不同包覆比例 (50:1; 100: 1)的 X射线衍射谱图对比,图 5(b)为 Li4Ti5012和 Li4Ti5012/PANI(xylene) 的不同包覆比例 (100:1 ; 200:1)的 X射线衍射谱图对比.
图 6为本发明实施例 6样品 PANLPSS包覆前后的扫描电镜照片, 为石墨 C和 C/PEDOT:PSS电极片 50次循环后的表面形貌照片。
图 7(a-g)为本发明实施例 1-7样品所制备电极在 C/10的充放电电流密度下的 前三次充放电电压平台曲线, 图 7(a)为 LiCo02/PEDOT:PSS, 图 7(b)为 LiNi05Mn1 5O4/PEDOT:PSS , 图 7(c) 为 LiMn204/PEDOT:PSS , 图 7(d) 为 Li4Ti5Oi2/PEDOT:PSS; 图 7(e)为 LiFePCVPEDCJTPSS; 图 7(f)为 MoS2/PEDOT:PSS 电极在 50 mA/g的充放电电流下的首次充放电电压平台曲线; 图 7(g)为 C/5充放电 电流密度下, C/PEDOT: PSS。
图 8(a-d)为本发明实施例 8-9样品所制备电极在 C/10的充放电电流密度下的 前三次充放电电压平台曲线, 图 8(a)为 LTO/PANI:PSS=50:1, 图 8(b)为 LTO/PANI:PSS=100:1,图 8(c)为 LTO/PPy:PSS=50:l,图 8(d)为 LTO/PPy:PSS=100:l。
图 9(a-g)为本发明实施例 1-7样品及相关样品所制备电极在 C/5的充放电电 流密度下长循环性能测试曲线:图 9(a)为 LiCo02包覆前后循环性能比较;图 9 (b) 为 LiNi0.5Mnl.5O4包覆前后循环性能比较; 图 9(c)为 LiMn204包覆前后循环性 能比较; 图 9 (d)为 Li4Ti5012包覆前后循环性能比较; 图 9(e)为 LiFeP04包覆 前后循环性能比较; 图 9(f)为包覆前后 MoS2在 50 mA/g的充放电电流下循环性 能比较。 图 9 (g)为石墨 C包覆前后在 C/2电流密度下的循环性能比较。
图 lO(a-c)为本发明实施例 8-10样品所制备电极在 C/10的充放电电流密度下 长循环性能测试 曲线 , 图 10(a)为 LTO 、 LTO/PANI:PSS=50:1 和 LTO/PANI:PSS=100:1 的循环性能比较, 图 10(b)为 LTO、 LTO/PPy:PSS=50:l和 LTO/PPy:PSS=100:l的循环性能比较, 图 10(c)为 LTO、 LTO/ PANI(xylene)= 100:1 禾口 LTO/ PANI(xylene)=200:l的循环性能比较。
图 11为本发明实施例 6样品所制备电极在不同充放电电流密度下的倍率性 能测试曲线。
图 12(a-c)为本发明实施例 8、 实施例 9和实施例 10样品所制备电极在不同 充放电电流密度下的倍率性能测试曲线. 图 12(a)为 LTO、 LTO/PANI:PSS=50:1 禾口 LTO/PANI:PSS=100:1 的倍率性能比较, 图 12(b)为 LTO、 LTO/PPy:PSS=50:l 禾口 LTO/PPy:PSS=100:l 的倍率性能 比较, 图 12(c)为 LTO 、 LTO/ PANI(xylene)=100:l和 LTO/ PANI(xylene)=200:l的倍率性能比较。
图 13(a-b)为本发明实施例 8和实施例 9样品所制备电极在 5次充放电后的阻抗 测试曲线。 具体实施方式 以下通过实施例和附图对本发明做进一步说明:
以下实施例中, 采用现有市场公开出售的商品的 PEDOT: PSS溶液, 其固含 量为 0.9~1.3%, PANI:PSS溶液禾 BPPy:PSS溶液固含量为 2~2.2wt%, 聚苯胺 (翠绿 亚胺盐)的二甲苯溶液固含量为 2~3wt%。 所用的锂离子电池电极材料选自现有市 场公开出售的商品的石墨, LiCo02, LiNio.5Mn1.5O4, LiMn204, LiFeP04, Li4Ti5012 或 MoS2等电极材料。
实施例 1
LiCo02/PEDOT:PSS
用氨水调解 PEDOT: PSS水溶液的 pH值为偏中性 (pH=6~9)。 将 2 g LiCo02 粉体缓慢加入到 PEDOT: PSS的水溶液 (10 mL) 中, 超声分散 30 min, 搅拌 2小 时, 过滤, 80°C干燥 3小时, 充分研磨, 然后 120°C干燥 2小时。 将制备的材料充 分研磨后, 和乙块黑及 PVDF按照 80:10:10的比例, 混合均匀, 涂膜后 80°C干燥 24 h,制备得到 0)02电极片。以锂片为对电极,以聚乙烯膜为隔膜,以 1 M LiPF6 /EC: DEC: DMC (v: v: v=l : 1: 1) 为电解液组装扣式电池 (CR2025 ) 进行 恒电流充放电测试, 电压范围为 3.0-4.2 V。
实施例 2
LiNi0 5Mn1 5O4/PEDOT:PSS
用氨水调解 PEDOT : PSS水溶液的 pH值为偏中性 (pH=6~9 )。 将 0.5 g LiNia5Mni.504粉体缓慢加入到 PEDOT: PSS的水溶液 (2 mL) 中, 超声分散 30 min, 自然沉降, 离心分离, 然后 60°C~120°C干燥 24 小时。 将制备的材料充分 研磨后,和乙块黑及 PVDF按照 80:10:10的比例,混合均匀,涂膜后 80°C干燥 24 h, 制备得到 LiNiQ.5Mni.504电极。 以锂片为对电极, 以聚乙烯膜为隔膜, 以 l M LiPF6 /EC: DEC (v: v=l : 1) 为电解液组装扣式电池 (CR2025 )进行恒电流充放电测 试, 电压范围为 3.5-5.0 V。
实施例 3
LiMn204/PEDOT:PSS
用氨水调解 PEDOT: PSS水溶液的 pH值为偏中性(pH=6~9)。将 0.5 g LiMn204 粉体缓慢加入到 PEDOT: PSS的水溶液 (2 mL) 中, 超声分散 30 min, 自然沉降, 离心分离, 然后 60°C~120°C干燥 24小时。 将制备的材料充分研磨后, 和乙块黑 及 PVDF按照 80:10:10的比例,混合均匀,涂膜后 80°C干燥 24 h,制备得到 LiMn204 电极。 以锂片为对电极, 以聚乙烯膜为隔膜, 以 l M LiPF6 /EC: DEC (v: v=l : 1) 为电解液组装扣式电池(CR2025 )进行恒电流充放电测试, 电压范围为 3.5-4.3 V。
实施例 4
LiFeP04/PEDOT:PSS
用氨水调解 PEDOT: PSS水溶液的 pH值为偏中性(pH=6~9)。将 0.5 g LiFeP04 粉体缓慢加入到 PEDOT: PSS的水溶液 (l mL) 中, 超声分散 30 min, 自然沉降, 离心分离, 然后 60°C~120°C干燥 24 ho 将制备的材料充分研磨后, 和乙块黑及 PVDF按照 80:10:10的比例,混合均匀,涂膜后 80°C干燥 24小时,制备得到 LiFeP04 电极。 以锂片为对电极, 以聚乙烯膜为隔膜, 以 l M LiPF6 /EC: DEC (v: v=l : 1) 为电解液组装扣式电池(CR2025 )进行恒电流充放电测试, 电压范围为 2.7-4.0 V。
实施例 5
MoS2/PEDOT: PSS
用氨水调解 PEDOT: PSS水溶液的 pH值为偏中性 (pH=6~9)。 取 0.4g MoS2 与 5g PEDOT/PSS水溶液放入小烧杯中, 并往里加 25ml去离子水, 然后用超声细 胞破碎仪进行超声浸渍处理, 接着在 80°C下干燥一夜, 得到黑色粉末。将制备的 材料充分研磨后, 和乙块黑及 PVDF按照 70:20:10的比例, 混合均匀, 涂膜后 80°C 干燥 24小时, 制备得到 LiFeP04电极。 以锂片为对电极, 以聚乙烯膜为隔膜, 以 1 M LiPF6 /EC: DEC (v: v=l : 1) 为电解液组装扣式电池 (CR2025 ) 进行恒电流 充放电测试, 电压范围为 0.01-3.0 V。
实施例 6
石墨/ PEDOT: PSS
用氢氧化锂水溶液调解 PEDOT: PSS水溶液的 pH值为偏中性(pH=7~8)。 取
2g石墨与 4g PEDOT/PSS水溶液放入小烧杯中, 使 C:(PEODT:PSS)=50:1(质量比), 再加入 25ml去离子水, 然后将混合液磁力搅拌 2h后, 过滤, 再依次用无水乙醇、 去离子水、无水乙醇过滤, 将过滤后的产物在 90°C下真空干燥一夜, 得到的包覆 粉末。将制备的材料充分研磨后,和乙块黑及 PVDF按照 90:5:5的比例,混合均匀, 涂膜后 80°C干燥 24小时, 制备得到石墨电极。 以锂片为对电极, 以聚乙烯膜为隔 膜,以 1 M LiPF6 /EC: DEC: DMC (v: v: v=l : 1 : 1)为电解液组装扣式电池(CR2025) 进行恒电流充放电测试, 电压范围为 0.01~3 V。
实施例 7
Li4Ti5Oi2/PEDOT:PSS
用氨水调解 PEDOT: PSS水溶液的 pH值为偏中性(pH=6~9)。将 3 g Li4Ti5012 粉体缓慢加入到 PEDOT: PSS的水溶液 (5 mL) 中, 超声分散 30 min, 自然沉降, 离心分离, 然后 60°C~120°C干燥 24 ho 将制备的材料充分研磨后, 和乙块黑及 PVDF按照 80:10:10的比例,混合均匀,涂膜后 80°C干燥 24小时,制备得到 Li4Ti5012 电极。 以锂片为对电极, 以聚乙烯膜为隔膜, 以 l M LiPF6 /EC: DEC (v: v=l : 1) 为电解液组装扣式电池(CR2025 )进行恒电流充放电测试, 电压范围为 1.0-2.5 V。
实施例 8
Li4Ti5012/PANI:PSS (简写为 LTO/PANI:PSS)
用氢氧化锂调节 PPy:PSS水溶液的 PH值为偏中性(PH=8-9)。将一份 l.OO g 的
Li4Ti5012粉体缓慢加入到 PANI:PSS的水溶液 (0.94 g) 中, 即 0.02 g PANI:PSS, 使得① LTO/PANI:PSS=50:1 (质量比); 将另一份 1.00 g 的 Li4Ti5012粉体缓慢加 入到 PANI:PSS 的水溶液 (0.47 g) 中 , 即 0.01 g PPy:PSS , 使得 ② LTO/PPy:PSS=100:l (质量比)。 搅拌 2h, 超声分散 lh, 再搅拌 2h, 然后 70°C 干燥 20 h。 将制备的材料充分研磨后, 和乙块黑及 PVDF按照 80:10:10的比例, 混 合均匀, 涂膜后 80°C干燥 24小时, 制备得到 Li4Ti5012电极。 以锂片为对电极, 以聚乙烯膜为隔膜, 以 l M LiPF6 /EC: DMC (v: v=l : 1) 为电解液组装扣式电 池 (CR2025) 进行恒电流充放电测试, 电压范围为 1.0-2.5 V。
实施例 9
Li4Ti5012/PPy:PSS (简写为 LTO/PPy:PSS)
用氢氧化锂调节 PPy:PSS水溶液的 PH值为偏中性(PH=8-9)。将一份 1.00 g 的 Li4Ti5012粉体缓慢加入至 IJPPy:PSS的水溶液 (4.9 g) 中, 即 0.1 g PPy:PSS, 使得 ① LTO/ PPy:PSS =10:1 (质量比); 将一份 1.00 g 的 Li4Ti5012粉体缓慢加入到 PPy:PSS的水溶液 (0.98 g) 中,即 0.02 g PPy:PSS,使得② LTO/ PPy:PSS =50:1 (质 量比); 将另一份 1.00 g 的 Li4Ti5012粉体缓慢加入到 PPy:PSS的水溶液 (0.49 g) 中, 即 0.01 g PPy:PSS, 使得③ LTO/PPy:PSS=100:l (质量比)。 搅拌 2h, 超声分 散 lh,再搅拌 2h,然后 70°C干燥 20 h。将制备的材料充分研磨后,和乙块黑及 PVDF 按照 80:10:10的比例, 混合均匀, 涂膜后 80°C干燥 24小时, 制备得到 Li4Ti5012 电极。 以锂片为对电极, 以聚乙烯膜为隔膜, 以 l M LiPF6 /EC: DMC (v: v=l : 1) 为电解液组装扣式电池(CR2025 )进行恒电流充放电测试, 电压范围为 1.0-2.5 V。
实施例 10
Li4Ti50i2/PANI (xylene) (简写为 LTO/PANI(xylene))
将一份 1.00 g 的 Li4Ti5012粉体加入到 PANI(xylene)的分散液 (0.40 g) 中, 即
0.01 g PANI(xylene), 使得① LTO/PANI(xylene)= 100:1 (质量比); 将另一份 1.00 g 的 4115012粉体缓慢加入到 PANI(xylene) 的分散液(0.20 g) 中, 即 0.005g PANI(xylene), 使得② LTO/PANI(xylene)=200:l (质量比)。搅拌 2h, 超声分散 lh, 再搅拌 2h, 然后 70°C干燥 20 ho 将制备的材料充分研磨后, 和乙块黑及 PVDF按 照 80:10:10的比例, 混合均匀, 涂膜后 80°C干燥 24小时, 制备得到 Li4Ti5012电极。 以锂片为对电极, 以聚乙烯膜为隔膜, 以 l M LiPF6 /EC: DMC (v: v=l : 1) 为 电解液组装扣式电池 (CR2025) 进行恒电流充放电测试, 电压范围为 1.0-2.5 V。
下面通过傅立叶转换红外光谱图 (FT-IR), X射线衍射 (XRD), 场发射扫描 电镜 (SEM) 及电化学测试对本发明制备的部分复合电极材料进行测试和表征。
1、 傅立叶转换红外光谱图分析
图 1为本发明所制备的 LiMn204/PEDOT:PSS与 LiMn204的红外光谱比较图。 从文献得知, 在 980 cm- 1对应的是 -C-S-峰, 1090 cm- 1对应的是 -C-0-C-的伸縮振 动峰, 1338 cm- 1对应的是 C-C, C=C醌基的伸縮振动峰 (Polym. Adv. Technol., 21 (2010) 651 ; Phys. Stat. Sol., 205 (2008) 1451 )。 从图 1可以看出经过 PEDOT: PSS 溶液浸渍处理的 LiMn204样品在 980 cm- 1和 1338 cm- 1两处均有小峰出现, 表明经 过浸渍处理 PEDOT: PSS成功的与商品 LiMn204电极粉复合;
图 2为本发明所制备的 C/PEDOT:PSS与 C的红外光谱比较图。 从图中可以看 出经过 PEDOT: PSS溶液浸渍处理的 C在 980cm-l和 1338cm-l两处有两个小峰, 为 PEDOT: PSS的特征峰, 表明 PEDOT: PSS与石墨复合。 图 3 (a, b) 为本发明所制备的 LTO/PANI:PSS和 LTO/PPy:PSS的傅立叶转换 红外光谱图。据文献报道, 1130 cm-l对应的是 PANI:PSS以及 PPy:PSS平面骨架的 振动 (Adv. Mater. 19 (2007), 1772)。 从图 3可以看出, 虽然导电聚合物的用量很 少, 但经过 PANI:PSS, PPy:PSS水溶液浸渍处理后的 LTO在 1128 cm-l处有小峰, 表明 PANI:PSS, PPy:PSS成功的与 LTO电极粉复合。
2、 X射线衍射谱图分析
图 4为本发明所制备部分样品的 X射线衍射图谱, 为未处理的 ^1032与 MoS2/PEDOT:PSS的 X射线衍射图谱比较图。 从图中可以看出经过 PEDOT: PSS 包覆后, ^1(^2的(002)晶面衍射峰被掩盖, 说明表层被包覆。
图 5(a, b)为本发明所制备的 LTO/PANI:PSS和 LTO/PANI(xylene)的 X射线衍射 图样。 从图上看, 由于 LTO本身结晶性良好, 而导电聚合物 PANI属于无定形态, 并 PANI用量很少, 包覆前后, 样品的 XRD图谱没有明显变化, 包覆后的材料任 然保持了 LTO良好的结晶性。
3、 场发射扫描电镜谱图分析
图 6为本发明所制备的 C/PEDOT:PSS的 SEM图, 从图可以看出, 未经过
PEDOT:PSS浸渍包覆的石墨 C电极片经过 50次充放电循环后, 极片表面界面膜层 包覆不均匀,箭头处为石墨脱嵌锂后明显片层脱落区,疏松多孔。经过 PEDOT:PSS 浸渍包覆处理的石墨电极经过 50次充放电循环后, 电极表面包覆层均匀平滑, 保 持石墨的片层结构。
4、 电压平台曲线
图 7为本发明所制备样品及相关样品所制备电极在 C/10的充放电电流密度下 的电压平台曲线 (前三次循环) 。 图上可以看出, 这几种商品电极材料粉体 (LiCo02, LiNio.5Mn1.5O4, LiMn204, Li4Ti5012, LiFeP04, MoS2, 石墨 C)经过 高分子导电聚合物 PEDOT: PSS溶液的简单浸渍处理后, 电极材料的容量没有发 生大的变化,甚至部分样品的容量还有所增加,如 LiCo02的初始放电容量从 130.1 mAh/g 变为 119.2 mAh/g; LiNio.5M .5O4初始放电容量从 132.8 mAh/g变为 130.2 mAh/g; LiMn204初始放电容量从 115.2 mAh/g提高至 IJ118.4 mAh/g; Li4Ti5012初始 放电容量从 163.7 mAh/g提高到 168.1 mAh/g ; LiFeP04初始放电容量从 137.9 mAh/g提高至 IJ 140.5 mAh/g; MoS2初始放电容量从 1074.9 mAh/g变为 980.8 mAh/g; 石墨 C在 1/5C充点电电流密度下, 初始充电容量从 328mAh/g提高到 347mAh/g。 且从图中可以看出, 这几种电极材料所制作的电池的电压平台均未发生变化, 可 见这种高分子导电聚合物 PEDOT: PSS的包覆处理不会损害电极材料本征的电化 学性质。
图 8为本发明所制备 Li4Ti5012经过不同量的 PANI:PSS, PPy:PSS超声浸渍包覆 后在 1/10C电流密度下的前三次循环曲线。 包覆处理后样品首次放比电容量都有 所增加。 与 LTO相比, 对于 LTO/PANI:PSS=50:1, LTO/PANI:PSS=100:1, LTO/PPy:PSS=50:l , LTO/PPy:PSS=100:l , 首次放电容量从 162 mAh/g 分别提高 到了 176 mAh/g, 167 mAh/g, 169 mAh/g, 168 mAh/g 并且, 从电压平台看, 均 未发生明显变化。
5、 循环性能测试
图 9为本发明所制备样品及相关样品所制备电极在 C/5的充放电电流密度下 的循环性能测试曲线。 从图中可以看出, 这几种商品电极材料粉体 (LiCo02, LiNio.5Mm.5O4, LiMn204, Li4Ti5012, LiFeP04, 石墨 C) 经过高分子导电聚合物 PEDOT: PSS溶液的简单浸渍处理后, 电极材料的容量均有所增加, 循环性能均 得到明显的改善。 如经过包覆处理后, LiCo02经过 100次循环, 容量循环保持率 从 82.17%提高到 92.54%, 第 100次放电容量从 102.7mAh/g 提高到 114.2 mAh/g; 经过包覆处理后, LiNio.5M .5O4经过 120次循环, 容量保持率从 86.58%提高到 91.64%,第 120次放电容量从 110.6 mAh/g 提高至 Ijll7.3 mAh/g;经过包覆处理后, LiMn204经过 60次循环, 容量保持率从 88.28%提高到 90.45%, 第 60次放电容量从 97.9 mAh/g 提高到 104.3 mAh/g; 经过包覆处理后, Li4Ti5012经过 150次循环, 容 量保持率从 94.9%提高到 97.2%, 第 150次放电容量从 147.0 mAh/g 提高到 158.8 mAh/g; LiFeP04经过 90次循环, 容量保持率从 79.18%提高到 83.36%, 第 90次放 电容量从 104.7 mAh/g 提高到 112.1 mAh/g; MoS2经过 35次循环后, 容量保持率 从 30.65%提高到 65.16%, 第 35次放电容量从 260.9 mAh/g 提高到 519.3 mAh/g; 石墨 C在 C/2电流密度下, 经过 50次循环, 容量保持率从 98.4%提高到接近 100%, 第 50次充电容量从 305mAh/g 提高到 335mAh/g。
图 10(a, b, c)为本发明所制备样品 4115012所制备的电极在 C/10 ( lC=175mAh/g) 的充放电电流密度下的循环性能测试曲线。 从图 (a, b)中可以 看出, 用少量的导电聚合物 PANI:PSS, PPy:PSS水溶液对 LTO进行简单超声浸渍 包覆后, 电极材料的容量均有所增加, 循环性能均得到明显改善; 而当包覆量较 大时, 如 LTO/PPy:PSS=10:l, 由于 PPy:PSS本身不能储锂, 包覆层过厚, 会使得 容量反而降低。 用 PANI:PSS对 LTO包覆后, 经过 32次循环后, 对于 LTO/PANI:PSS=50:1 , 容量保持率 从 93.79% 提高 到 94.12% ; 对于 LTO/PANI:PSS=100:1 , 容量保持率从 93.79%提高到 95.21%。 用 PPy:PSS对 LTO包 覆后, 经过 20次循环后, 对于 LTO/PPy:PSS=10:l容量保持率从 93.79%降低到 83.73%, 对于 LTO/PPy:PSS=50:l, LTO/PPy:PSS=100:l , 容量保持率从 93.79%分 别提高到 94.12%和 100%。 20次循环后, LTO的比容量为 151 mAh/g , 而对于 LTO/PANI:PSS=50:1 , LTO/PANI:PSS=100:1 , LTO/PPy:PSS=50:l , LTO/PPy:PSS=100:l , 其容量则分别提高到 158 mAh/g, 161 mAh/g, 160 mAh/g, 164 mAh/g
图 10(c)中可以看出, 用少量的导电聚合物 PANI(xylene)溶液对 LTO进行简单 超声浸渍包覆后, 同样电极材料的容量均明显增加, 循环稳定性明显提高。 电池 经过 27次循环后, 相对于未经过包覆的 LTO而言, LTO/PANI:xylene=100:l, 容量 保持率从 93.79%提高到 95.81%; LTO/PANI:xylene=200: 1 , 容量保持率从 93.79% 提高到 99.07%。
6、 倍率性能测试
图 11为本发明所制备 C/PEDOT:PSS样品在不同倍率下恒流充放电曲线。从图 中可以看出,经过浸渍包覆后,对于 C/PEDOT:PSS电极材料的倍率性能明显的提 高, 对比曲线在 2C的电流密度下, 电池的容量从 197mAh/g提高 230mAh/g。
图 12(a, b, c)为本发明所制备样品所制备的电极在不同倍率下恒流充放电曲 线。 由图 12(a, b)中可以看出, 经过浸渍包覆后, 对于 LTO/PANI:PSS=50:1, LTO/PANI:PSS=100:1, LTO/PPy:PSS=50:l, LTO/PPy:PSS=100:l, 电极材料的倍 率性能都得到了明显的提高; LTO与 PANI:PSS或 PPy:PSS比例为 50:1的复合样品 材料的倍率性能表现最好。 对于 LTO/PANI:PSS=50:1, 其倍率性能相对于 LTO的 改善更为明显, 如在 3C电流密度下, 容量从 90 mAh/g提高到了 117 mAh/g。
图 12(c)中可以看出 LTO/PANI(xylene)包覆的电极材料, 聚合物包覆比例更 小, 电池的倍率性能提高更为明显, 循环更稳定, 表明在有机溶剂中电极材料表 面包覆效果更好。 如在 3C电流密度下, 相对于 LTO的容量 90mAh/g和 LTO/PANI:PSS=50: 1的容量 117mAh/g, LTO/PANI(xylene)= 100:1的复合材料的容 量提高到 130mAh/g。
7、 阻抗测试
图 13为本发明所制备样品 LTO/PANI:PSS和 LTO/PPy :PSS所制备的电极在
C/10 ( lC=175mAh/g) 的充放电电流密度下的循环 5次后交流阻抗测试图谱。 测 试频率范围从 lO mHZ到 100 kHZ, 扰动振幅为 5mV, 开路电压为 1.0 V。 阻抗谱 图中, 高频区域半圆对应着电荷在电解液与电极材料之间形成的 SEI膜的迁移, 低频区域斜线对应着锂离子在电极中的扩散过程,表示锂离子扩散至电极材料晶 格过程所引起的 Warburg阻抗。 从图中可以看出, LTO经过导电聚合物 LTO/PANI:PSS和 LTO/PPy:PSS包覆后, 材料表面形成的 SEI膜层薄且致密, 膜阻 抗明显降低, 这也就证实了包覆有利于增加电极材料的导电性, 有利于形成致密 的 SEI膜层, 改善 LTO的倍率性能。
综上所述,本发明制备的锂离子电池复合电极材料中, 多种商品电极材料粉 体通过在高分子导电聚合物水溶液或有机溶液中的简单浸渍处理,成功的在其表 面包覆一层导电聚合物膜层,使得电极材料的导电性能得到提高, 并能解决纳米 电极材料粉末易团聚的问题 (如 Li4Ti5012纳米粉末), 使电极材料易于涂布制备 电极片, 从而提高电池的充放电比容量和循环性能。本发明提供的导电聚合物溶 液浸渍制备电极复合材料的方法也可以应用于其他电化学储能器件 (如超级电 容)和有机太阳能电池(如染料敏化太阳嫩电池中 Ti02电极) 中的电极材料与导 电聚合物复合。

Claims

权利要求书
1、 导电聚合物浸渍包覆的锂离子电池复合电极材料, 其特征在于, 在锂离 子电池电极材料上浸渍包覆高分子导电聚合物,所述导电聚合物为易于在水或有 机溶液中通过分散介质分散的导电聚合物。
2、 如权利要求 1所述的导电聚合物包覆的锂离子电池复合电极材料, 其特 征在于: 所述导电聚合物选自聚 (3,4-乙撑二氧噻吩), 聚苯胺或聚吡咯, 其分散 介质为聚苯乙烯磺酸的水溶液; 或者所述导电聚合物为聚苯胺翠绿亚胺盐, 其分 散介质为二甲苯。
3、 如权利要求 1所述的导电聚合物包覆的锂离子电池复合电极材料的制备 方法,其特征在于: 将锂离子正极材料或负极材料浸泡到高分子导电聚合物的水 溶液或有机溶液中,在超声分散作用下使得高分子导电聚合物在电极材料表层均 匀覆盖,干燥后在电极材料表面均匀包覆一层导电聚合物层, 获得表面包覆的锂 离子电池复合电极材料。
4、 如权利要求 3所述的导电聚合物包覆的锂离子电池复合电极材料的制备 方法, 其特征在于包括如下步骤:
(1) 将氨水或氢氧化锂水溶液逐滴加入到导电聚合物的水溶液或有机溶液 中, 将溶液 PH值调节至 6-9;
(2) 将锂离子电池电极材料粉体加入步骤 (1) 配制的溶液中, 超声分散, 搅 拌使混合均匀;
(3) 将步骤 (2) 的混合液离心 /过滤去掉多余的水溶液或有机溶液;
(4) 将步骤 (3) 中获得的粉体烘干。
5、 如权利要求 4所述的导电聚合物包覆的锂离子电池复合电极材料的制备 方法, 其特征在于所述步骤 (1 ) 中导电聚合物的水溶液是指 PEDOT:PSS、 PANI:PSS、 PPy:PSS; 导电聚合物的有机溶液是指聚苯胺翠绿亚胺盐的二甲苯溶 液。
6、 如权利要求 5所述的导电聚合物包覆的锂离子电池复合电极材料的制备 方法, 其特征在于: 所述导电聚合物的水溶液中, PEDOT:PSS 水溶液固含量为 0.9-1.3wt ; PANI:PSS水溶液和 PPy:PSS水溶液固含量为 2~2.2wt%; 所述导电 聚合物有机溶液中,聚苯胺翠绿亚胺盐的二甲苯溶液中聚苯胺翠绿亚胺盐在溶液 中的质量比为 2~3wt%。
7、 如权利要求 6所述的导电聚合物包覆的锂离子电池复合电极材料的制备 方法, 其特征在于: 所述高分子导电聚合物水溶液用量为: PEDOT:PSS水溶液 用量为完全浸没粉体; PANLPSS溶液或 PPy:PSS溶液的用量为: 电极材料与导 电聚合物的质量比为 10— 100:1。
8、 如权利要求 6所述的导电聚合物包覆的锂离子电池复合电极材料的制备 方法, 其特征在于: 所述高分子导电聚合物有机溶液的用量为: 聚苯胺翠绿亚胺 盐的二甲苯溶液用量为使有机溶液液面浸没粉末,电极材料与导电聚合物的质量 比为 100— 200:1。
9、 如权利要求 5所述的导电聚合物包覆的锂离子电池复合电极材料的制备 方法,其特征在于:所述步骤(2)中锂离子电池电极材料在溶液中的用量为 0.1~2 g/mL。
10、根据权利要求 5至 8之任一所述的锂离子电池导电聚合物包覆复合电极 材料的制备方法, 其特征在于锂离子电池电极材料选自以下之一: LiCo02, LiNio.5Mn1.5O4, LiMn204,, LiFeP04及三元正极材料, 或 MoS2, 石墨及 Li4Ti5012 负极材料。
PCT/CN2012/084559 2011-12-30 2012-11-14 导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法 WO2013097553A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/318,731 US20140315081A1 (en) 2011-12-30 2014-06-30 Composite electrode material for lithium ion battery and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110459817.1 2011-12-30
CN2011104598171A CN102522563A (zh) 2011-12-30 2011-12-30 导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/318,731 Continuation-In-Part US20140315081A1 (en) 2011-12-30 2014-06-30 Composite electrode material for lithium ion battery and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2013097553A1 true WO2013097553A1 (zh) 2013-07-04

Family

ID=46293403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084559 WO2013097553A1 (zh) 2011-12-30 2012-11-14 导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法

Country Status (3)

Country Link
US (1) US20140315081A1 (zh)
CN (2) CN102522563A (zh)
WO (1) WO2013097553A1 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522563A (zh) * 2011-12-30 2012-06-27 中国科学院广州能源研究所 导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法
DE102012022976A1 (de) 2012-11-26 2014-05-28 Ewe-Forschungszentrum Für Energietechnologie E. V. Einsatz leitfähiger Polymere in Batterie-Elektroden
KR20140121953A (ko) * 2013-04-08 2014-10-17 주식회사 엘지화학 리튬 이차전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차 전지
CN103872305B (zh) * 2014-03-24 2016-01-20 四川兴能新材料有限公司 聚电解质包覆Li4Ti5O12负极材料的制备方法
CN103996845A (zh) * 2014-05-26 2014-08-20 东莞市迈科科技有限公司 一种复合富锂正极材料及其制备方法
CN103996844A (zh) * 2014-05-26 2014-08-20 东莞市迈科科技有限公司 一种复合镍锰酸锂正极材料及其制备方法
CN104466135B (zh) * 2014-12-15 2017-01-25 中信大锰矿业有限责任公司大新锰矿分公司 一种导电聚合物包覆镍钴锰酸锂正极材料的方法
RU2584678C1 (ru) * 2014-12-30 2016-05-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) Композитный катодный материал для литий-ионных батарей
CN104876277B (zh) * 2015-04-22 2017-03-01 石家庄学院 一种钒酸锰纳米材料及其合成方法、应用
CN104835963B (zh) * 2015-04-24 2017-05-10 中南大学 一种锂离子电池复合负极材料及其制备方法
US20160322638A1 (en) * 2015-05-01 2016-11-03 A123 Systems Llc Heat-treated polymer coated electrode active materials
CN105047876B (zh) * 2015-07-06 2020-09-29 江西师范大学 一种高铁电池复合正极材料的制备方法
US10763512B2 (en) * 2015-08-28 2020-09-01 Toyota Motor Engineering & Manufacturing North America, Inc. Lithium deposition with multilayer nanomebrane
CN105390678B (zh) * 2015-11-03 2018-05-01 宁德新能源科技有限公司 负极材料以及包括该负极材料的锂离子电池
CN105789606A (zh) * 2016-04-28 2016-07-20 山东玉皇新能源科技有限公司 钛酸锂包覆锂离子电池镍钴锰正极材料的制备方法
CN106299529A (zh) * 2016-09-27 2017-01-04 荆门市格林美新材料有限公司 一种从废旧电池中回收再生高压实正极材料的方法
US11302924B2 (en) 2016-10-17 2022-04-12 Massachusetts Institute Of Technology Dual electron-ion conductive polymer composite
CN106450170A (zh) * 2016-10-25 2017-02-22 东莞市联洲知识产权运营管理有限公司 一种低成本高质量锂离子电池的制备方法
CN106571457A (zh) * 2016-11-11 2017-04-19 深圳市鑫永丰科技有限公司 一种硅基负极材料及其制备方法
CN107507961B (zh) * 2017-07-17 2022-04-29 河南师范大学 一种导电聚合物修饰锂离子电池正极极片的制备方法
CN107611358A (zh) * 2017-07-24 2018-01-19 中南大学 一种液相原位聚合包覆尖晶石锰酸锂正极材料的方法
AU2018326235A1 (en) * 2017-08-31 2020-03-05 A123 Systems Llc Process for metallization of electrochemically active powders
KR102315399B1 (ko) * 2017-09-28 2021-10-20 주식회사 엘지화학 리튬 이차전지용 고분자 재료 및 그 제조방법
WO2019070814A1 (en) * 2017-10-03 2019-04-11 University Of South Florida SOLID SUPERCAPACITOR WITH HIGH SPECIFIC CAPABILITY AND METHOD OF MANUFACTURE
CN107732246A (zh) * 2017-10-30 2018-02-23 中南大学 一种锂离子电池正极材料溶液浸渍包覆的改性方法
WO2019094907A2 (en) * 2017-11-13 2019-05-16 The University Of New Hampshire PREPARATION OF: I. INTERCALATIVE METAL OXIDE/CONDUCTIVE POLYMER COMPOSITES AS ELECTRODE MATERIALS FOR RECHARGEABLE BATTERS; II. SODIUM RICH MANGANESE OXIDE HYDRATE WITH CAPACITY FOR AQUEOUS Na-ion ELECTROCHEMICAL ENERGY STORAGE
US11233241B2 (en) * 2017-11-13 2022-01-25 The University Of New Hampshire Preparation of: I. intercalative metal oxide/conductive polymer composites as electrode materials for rechargeable batteries; II. sodium rich manganese oxide hydrate with capacity for aqueous Na-ion electrochemical energy storage
KR102534625B1 (ko) * 2017-11-20 2023-05-18 주식회사 엘지에너지솔루션 도전성 고분자가 코팅된 금속 산화물, 이를 포함하는 전기 화학 소자용 전극, 및 도전성 고분자가 코팅된 금속 산화물의 제조방법
CN107845802B (zh) * 2017-11-22 2018-10-19 江门市科恒实业股份有限公司 一种用于锂电池的导电聚合物包覆钴酸锂及其制备方法
CN108511744A (zh) * 2018-03-23 2018-09-07 安普瑞斯(无锡)有限公司 一种复合包覆改性的锂离子电池正极材料及其制备方法
CN109037604A (zh) * 2018-06-13 2018-12-18 福建翔丰华新能源材料有限公司 一种聚苯胺包覆钛酸锂负极材料的制备方法
CN109065852A (zh) * 2018-07-04 2018-12-21 上海电气集团股份有限公司 一种正极材料及其制备方法
CN109192958A (zh) * 2018-09-14 2019-01-11 储天新能源科技(长春)有限公司 一种表面改性的锂离子电池正极材料及其制备方法和锂离子电池
CN109244418B (zh) * 2018-09-29 2021-02-05 湖北文理学院 表面包覆的锂离子电池正极材料、制备方法和锂离子电池
CN109473659B (zh) * 2018-12-07 2020-09-25 杭州电子科技大学 一种聚吡咯纳米管/Co3O4颗粒复合材料及制备方法
CN110165191A (zh) * 2019-06-11 2019-08-23 武汉理工大学 一种空气稳定型红磷基复合负极材料及其制备方法
JPWO2021060322A1 (zh) * 2019-09-26 2021-04-01
CN110854363B (zh) * 2019-10-21 2021-04-06 珠海冠宇电池股份有限公司 一种改性电极材料、其制备方法及锂离子电池
CN111048742A (zh) * 2019-12-19 2020-04-21 惠州亿纬锂能股份有限公司 一种含有核壳式硅负极材料的极片、其制备方法和用途
CN111261860B (zh) * 2020-01-22 2022-08-16 佛山科学技术学院 一种导电聚合物包覆的红磷/石墨复合结构负极材料及其制备方法
CN111254282B (zh) * 2020-02-05 2021-11-09 东华理工大学 一种聚吡咯/磷掺杂石墨化碳复合导电膜电极的制备方法
US20210351409A1 (en) * 2020-05-07 2021-11-11 Global Graphene Group, Inc. Conducting polymer network-protected phosphorus anode active material for lithium-ion or sodium-ion batteries
CN111653778A (zh) * 2020-05-20 2020-09-11 佛山科学技术学院 一种锂锰电池用正极复合材料及其制备方法
CN114639878A (zh) * 2020-12-16 2022-06-17 中国科学院理化技术研究所 一种基于低聚物的水系锂离子电池电解液及其应用
CN112382746B (zh) * 2021-01-15 2021-04-23 湖南省正源储能材料与器件研究所 一种具有热关闭和自愈功能的锂离子电池正极材料的制备方法
CN114005970B (zh) * 2021-10-12 2023-06-02 合肥国轩高科动力能源有限公司 一种碳/导电聚合物包覆三元正极材料及其制备方法
CN114122316B (zh) * 2021-11-22 2024-01-30 远景动力技术(江苏)有限公司 负极及其用途
CN114243009B (zh) * 2021-12-20 2024-03-29 蜂巢能源科技股份有限公司 一种正极材料及其制备方法和应用
CN114361395A (zh) * 2021-12-29 2022-04-15 北京理工大学 球磨包覆导电聚合物的氧化物正极材料及制备方法和应用
CN114824193B (zh) * 2022-03-17 2023-12-29 合肥国轩高科动力能源有限公司 一种α-Fe2O3引发导电聚合物包覆的锂离子三元正极材料及其制备方法
CN115050951B (zh) * 2022-08-17 2022-10-28 潍坊科技学院 一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料及其制备方法和应用
CN115571929B (zh) * 2022-12-07 2023-03-14 深圳中芯能科技有限公司 一种镍锰二元复合正极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210119A (zh) * 2006-12-29 2008-07-02 比亚迪股份有限公司 一种含硅复合材料及其制备方法和用途
CN102034971A (zh) * 2010-10-29 2011-04-27 华南理工大学 锂离子电池磷酸铁锂/聚并吡啶复合正极材料及其制备方法
CN102299306A (zh) * 2011-07-15 2011-12-28 中国科学院广州能源研究所 聚(3,4-乙撑二氧噻吩)包覆及其为碳源的纳米硅复合锂离子电池负极材料及其制备方法
CN102522563A (zh) * 2011-12-30 2012-06-27 中国科学院广州能源研究所 导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096487C (zh) * 1999-07-12 2002-12-18 武汉工业大学 聚苯胺-Fe3O4纳米复合材料及其制备方法
US7087348B2 (en) * 2002-07-26 2006-08-08 A123 Systems, Inc. Coated electrode particles for composite electrodes and electrochemical cells
CN101237036B (zh) * 2008-01-21 2010-06-02 湘潭大学 聚苯胺包覆锂离子电池正极材料LiFePO4的制备方法
CN101284931B (zh) * 2008-06-06 2011-01-26 北京大学 一种有机电致发光器件的空穴注入材料
CN101894939B (zh) * 2010-07-02 2014-04-16 重庆大学 锂离子电池含纳米硅或锡复合负极材料及其制备方法
CN101916846B (zh) * 2010-08-19 2012-12-05 深圳市贝特瑞新能源材料股份有限公司 锂离子电池负极复合材料及其制备方法
JP5817754B2 (ja) * 2013-02-25 2015-11-18 株式会社豊田自動織機 非水系二次電池用負極とその製造方法及び非水系二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210119A (zh) * 2006-12-29 2008-07-02 比亚迪股份有限公司 一种含硅复合材料及其制备方法和用途
CN102034971A (zh) * 2010-10-29 2011-04-27 华南理工大学 锂离子电池磷酸铁锂/聚并吡啶复合正极材料及其制备方法
CN102299306A (zh) * 2011-07-15 2011-12-28 中国科学院广州能源研究所 聚(3,4-乙撑二氧噻吩)包覆及其为碳源的纳米硅复合锂离子电池负极材料及其制备方法
CN102522563A (zh) * 2011-12-30 2012-06-27 中国科学院广州能源研究所 导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法

Also Published As

Publication number Publication date
CN102723491A (zh) 2012-10-10
CN102522563A (zh) 2012-06-27
US20140315081A1 (en) 2014-10-23
CN102723491B (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2013097553A1 (zh) 导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法
US9437870B2 (en) Nano-silicon composite lithium ion battery anode material coated with poly (3,4-ethylenedioxythiophene) as carbon source and preparation method thereof
CN108711613B (zh) 一种聚苯胺/聚乙二醇共包裹的复合三元正极材料及其制备和应用
CN111244438B (zh) 一种石墨烯/碳包覆钛酸锂复合材料及其制备方法
CN106058192B (zh) 一种包覆改性锂离子电池层状正极材料及其制备方法
Sun et al. Effect of poly (acrylic acid)/poly (vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes
CN110635137B (zh) 导电聚合物粘结剂及其制备方法、硅基负极片及其应用
CN107507961B (zh) 一种导电聚合物修饰锂离子电池正极极片的制备方法
Wu et al. Ionic network for aqueous-polymer binders to enhance the electrochemical performance of Li-Ion batteries
Liu et al. Facile synthesis of nanostructured Li 4 Ti 5 O 12/PEDOT: PSS composite as anode material for lithium-ion batteries
CN109167036B (zh) 一种TiN与导电聚合物复合改性的锂离子层状三元正极材料及其制备方法
CN103545109A (zh) 石墨烯复合材料及其制备方法、锂离子电容器
CN113690420B (zh) 一种氮硫掺杂硅碳复合材料及其制备方法和应用
CN103730631B (zh) 一种锂离子电池负极材料及其制备方法
CN112467086A (zh) 一种基于聚酰胺酸基电极粘结剂的硅基负极材料的制备方法
CN110556537B (zh) 一种改善阴离子嵌入型电极材料电化学性能的方法
CN115132984B (zh) 一种复合正极材料及其制备方法与应用
Huang et al. Electrochemical properties of hollow spherical Na3V2 (PO4) 3/C cathode materials for sodium-ion batteries
CN101527370A (zh) 一种动力锂离子电池
CN114220975A (zh) 一种富锂锰基正极极片及其制备方法和应用
CN112635768A (zh) 一种应用于锂电池负极的聚苯胺包覆Ti2Nb10O29复合微球材料的制备方法
CN104835954B (zh) LiV3O8分级纳米线网络材料及其制备方法和应用
CN112271293A (zh) 一种高导电性磷酸铁锂正极材料的制备方法
CN110828780A (zh) 一种石墨烯/TiO2复合正极的制备方法
Xu et al. PEDOT-PSS-Coated FeFe (CN) 6 Composite Cathode for Lithium-Ion Batteries with the Improved Electrochemical Performances

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861080

Country of ref document: EP

Kind code of ref document: A1