EP0413348B1 - Halbleitende integrierte Schaltung - Google Patents

Halbleitende integrierte Schaltung Download PDF

Info

Publication number
EP0413348B1
EP0413348B1 EP90115799A EP90115799A EP0413348B1 EP 0413348 B1 EP0413348 B1 EP 0413348B1 EP 90115799 A EP90115799 A EP 90115799A EP 90115799 A EP90115799 A EP 90115799A EP 0413348 B1 EP0413348 B1 EP 0413348B1
Authority
EP
European Patent Office
Prior art keywords
spiral
semiconductor substrate
disposed
integrated circuit
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90115799A
Other languages
English (en)
French (fr)
Other versions
EP0413348A2 (de
EP0413348A3 (en
Inventor
Naoto C/O Mitsubishi Denki K.K. Andoh
Akira C/O Mitsubishi Denki K.K. Inoue
Yasuharu C/O Mitsubishi Denki K.K. Nakajima
Kazuhito C/O Mitsubishi Denki K.K. Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to EP94116852A priority Critical patent/EP0643403B1/de
Priority to EP95100214A priority patent/EP0649152B1/de
Priority to EP94116854A priority patent/EP0643404B1/de
Priority to EP94116851A priority patent/EP0643402B1/de
Publication of EP0413348A2 publication Critical patent/EP0413348A2/de
Publication of EP0413348A3 publication Critical patent/EP0413348A3/en
Application granted granted Critical
Publication of EP0413348B1 publication Critical patent/EP0413348B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/10Inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/02Variable inductances or transformers of the signal type continuously variable, e.g. variometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/02Variable inductances or transformers of the signal type continuously variable, e.g. variometers
    • H01F21/08Variable inductances or transformers of the signal type continuously variable, e.g. variometers by varying the permeability of the core, e.g. by varying magnetic bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/004Printed inductances with the coil helically wound around an axis without a core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0046Printed inductances with a conductive path having a bridge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0086Printed inductances on semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to a semiconductor integrated circuit as stated in the preamble of claim 1.
  • Such kind of semiconductor integrated circuit is already known from GB-A-2 173 956.
  • This known semiconductor integrated circuit comprising:
  • a search coil is already known suitable for detecting variations in flux.
  • coils of simple and complex coil-loop configurations are made by printed circuit techniques, and a specific coil structure can consist of different coil-loop configurations on different sides of a board which are connected by a wire running through the board.
  • a solid state inductor which is formed in a monocrystalline semiconductor body.
  • An electrically isolated helix comprised of conductive studs selectively interconnected by electrical contacts circumscribes an electrically isolated core material.
  • the studs are comprised of the semiconductor slice material, or are deposited conductor.
  • Such solid state inductor can also be part of an integrated circuit.
  • the present invention relates to a semiconductor integrated circuit having an inductive structure, particularly for use at high frequencies.
  • inductors are the most difficult to form in integrated circuits. Inductors present difficulties because they require relatively large areas and/or volumes to achieve useful values of inductance. In addition, the traditional three-dimension character of inductors is difficult to realize within integrated circuits that are essentially two-dimensional in character.
  • this object is achieved with a semiconductor integrated circuit, according to claim 1.
  • an electrically conducting spiral is disposed on a surface of a semiconductor substrate.
  • the spiral includes an external end disposed outside the spiral and an internal end disposed within the spiral.
  • An electrical lead on the first surface of the semiconductor substrate reaches the internal end of the spiral through two vias and an electrical conductor on the second surface of the semiconductor substrate.
  • Another electrical lead on the first surface of the semiconductor substrate reaches the external lead.
  • the semiconductor substrate is interposed between the cross over of the lead from the internal end and the spiral, thereby significantly reducing the parasitic capacitance.
  • Figure 1 is a perspective view of a prior art spiral inductor.
  • Figures 2(a) and 2(b) are plan and sectional views, respectively, of a prior art spiral inductor.
  • Figures 3(a), 3(b), and 3(c) are perspective, plan, and sectional views, respectively, of a prior art inductor employing two electrically interconnected spirals.
  • Figure 4 is a perspective view of a spiral inductor in an embodiment of the invention.
  • Figures 5(a), 5(b), and 5(c) are a perspective and two sectional views, respectively, of a spiral inductor in another embodiment of the invention.
  • Figure 1 is a perspective view of a prior art inductor disposed on a semiconductor substrate 1 that may be gallium arsenide.
  • an electrical conductor 2 arranged in a spiral pattern is disposed on a first surface of the substrate 1.
  • the term "spiral" means a winding that increases in diameter with reference to a central point as the conductor becomes longer.
  • the spiral may be smooth, gradually increasing in diameter like the shell of a nautilus, or have corners with angular turns like the ninety degree turns shown in Figure 1.
  • the spiral is formed of a metal that is deposited by evaporation or by plating and includes an external end 3 lying outside the spiral and an internal end 4 disposed at the inside of the spiral.
  • external end 3 is connected to a terminal 5 for ease of connection by wire bonding or other techniques to other circuit components.
  • Internal end 4 is connected through a lead 6 to a terminal 7 for making external connections.
  • Lead 6 must cross over and, therefore, be electrically insulated from windings of the conductor 2.
  • An electrically conducting ground plane 8 is disposed on the opposite side of substrate 1 from the conductor 2.
  • FIGS 2(a) and 2(b) a plan view and a sectional view of a prior art inductor similar in structure to the inductor of Figure 1 is shown.
  • An electrically insulating air bridge 9 including an air space 10 is part of lead 6, providing the electrical insulation from the turns of the conductor 2.
  • the air bridge is formed by conventional technology employing a temporary support, such as a polyimide or photoresist film, covering the windings 2 while the metal comprising air bridge 9 is deposited. After that metal is deposited, the temporary support is removed, for example, with a solvent, leaving a free standing air bridge.
  • the spacing between the metal of the air bridge and the conductors 2 is, at most, a few microns. Because of this close spacing, even though the dielectric constant of the air between lead 6 and windings 2 is relatively low, a significant parasitic capacitance exists between the windings 2 and the lead 6 at air bridge 9.
  • FIGs 3(a), 3(b), and 3(c) an inductive structure disclosed in Japanese Published Utility Model Application 60-136156 is shown in perspective, plan, and sectional views, respectively.
  • a substrate 1, that may be a semiconductor material, employed with the structure is not shown in Figure 3(a) for clarity.
  • the inductive structure of Figures 3(a)-3(c) includes two spiral electrical conductors 2 and 12 that are disposed opposite each other.
  • the internal end 4 of spiral 2 is electrically connected to an external end 13 of spiral 12 through an electrical conductor 15.
  • the inductive structure has a first terminal 5 electrically connected to the external end 3 of spiral 2 and a second terminal 7 connected to the internal end 14 of spiral 12.
  • FIG. 3(a) Realization of the inductive structure shown schematically in Figure 3(a) is indicated in the cross-sectional view of Figure 3(c).
  • the structure is produced by depositing patterns of metal in conjunction with insulating layers 20, 30, 40, and 50 successively disposed on substrate 1. Initially, after the deposition of insulating layer 20, a window is opened for establishing contact with a highly conductive region 1a in substrate 1. Then, spiral 2 is formed by depositing and patterning a metal. Thereafter, insulating layer 30 is deposited and a window is opened for making a connection to the internal end 4 of spiral 2. After a subsequent metal deposition and patterning to form an interconnection with conductor 15, insulating layer 40 is deposited and a window opened. After still another metal deposition and patterning to form spiral 12, making an electrical connection in the window at the external end 13 of spiral 12, a final, electrically insulating layer 50 is deposited.
  • the inductance of the structure shown in Figures 3(a)-3(c) is the inductance of the individual spirals plus a mutual inductance between the two spirals. Since the mutual inductance between the two spirals is greater than if they were side-by-side, the total inductance is increased over that of two side-by-side spirals and a smaller volume is occupied.
  • the fabrication process for the structure of Figures 3(a)-3(c) is extremely complex and, as in the prior art device described with respect to Figures 2(a) and 2(b), the spacing between the two spirals is limited by the thickness of the insulating layers 20, 30, 40, and 50. Therefore, a significantly increased parasitic capacitance is produced by the structure of Figures 3(a)-3(c), limiting its useful frequency range.
  • Figure 4 a perspective, schematic view of an embodiment of the invention is shown in which an intervening semiconductor substrate 1, illustrated in Figures 5(b) and 5(c), is omitted for clarity.
  • the inductive structure includes a spiral conductor 2 having an external end 3 and an internal end 4 disposed on a first surface of an electrically insulating semiconductor substrate (not shown). Internal end 4 is electrically connected to a lead 6 not by an air bridge structure but by a via and lead arrangement.
  • a via 21 includes a via hole penetrating the semiconductor substrate 1 from the surface of the substrate on which spiral 2 is disposed to the opposite surface of the semiconductor substrate and an electrically conductive material filling the via hole.
  • An electrical conductor 22 is disposed on the opposite surface of the semiconductor substrate from the spiral 2 and is in electrical contact with via 21.
  • a second electrically conducting via 23 outside spiral 2 also penetrates the semiconductor substrate. That via 23 is in electrical contact with conductor 22 and with lead 6 so that an external electrical connection can be made to internal end 4 of spiral 2 from the side of the semiconductor substrate on which spiral 2 is disposed.
  • the embodiment of the invention shown in Figures 4 and 5(a)-5(c) is produced by conventional techniques including preparing the via holes, filling them with metal to complete the vias, and subsequently depositing and patterning electrical conductors on both sides of the semiconductor substrate to complete the electrical connections. These processing steps can be carried out in various orders.
  • the spiral conductor 2 can be deposited and patterned first, the via holes then produced and filled with metal, and the structure completed by depositing and patterning conductor 22 at the rear surface of the semiconductor substrate 1.
  • the semiconductor substrate 1 may consist gallium arsenide or indium phosphide. Gallium arsenide is preferred for high frequency applications.
  • the invention has the advantage that the inductive structure is directly integrated into a semiconductor integrated circuit.
  • the semi-insulating semiconductor substrate on which the spiral is disposed and in which the vias are formed have formed on and in it active components, such as transistors and diodes, and other passive elements, together forming an integrated circuit.
  • a second electrically conducting spiral 12 is disposed on the surface of the semiconductor substrate opposite the surface bearing spiral 2.
  • the internal end of spiral 2 disposed on the first surface of the semiconductor substrate 1 is electrically connected by means of a via 21.
  • via 21 extends through the semiconductor substrate 1 and is electrically connected to the second spiral 12.
  • Spiral 12 is connected to a lead 6 through a second via 23.
  • the semiconductor substrate 1 is disposed between the spiral 2 and conductor 22 and, as indicated in Figures 5(a)-5(c), the second spiral 12.
  • the relatively large thickness of the semiconductor substrate significantly reduces the parasitic capacitance of the novel structure.
  • the dielectric constant of air employed in the air bridge 9 of the prior art structure shown in Figure 2(b) is one whereas for a semiconductor substrate 1, such as gallium arsenide, the dielectric constant is about twelve.
  • the increase in the spacing between the conductors in the invention hundreds of microns versus a few microns in the air bridge structure of Figures 2(a)-2(b), results in a substantial reduction in the parasitic capacitance in the invention.

Claims (4)

  1. Integrierte Halbleiterschaltung mit:
    - einem elektrisch isolierenden Halbleitersubstrat (1) mit einer ersten und einer zweiten Fläche, die voneinander abgewandt sind;
    - aktiven oder passiven Elementen auf oder innerhalb des Halbleitersubstrats (1);
    - einem elektrischen Leiter, der als erste Spirale (2) auf der ersten Fläche des Halbleitersubstrats (1) angeordnet ist, die ein außerhalb dieser ersten Spirale (2) angeordnetes äußeres Ende (3) als erste Zuleitung und ein innerhalb dieser ersten Spirale (2) angeordnetes inneres Ende (4) aufweist;
    - einer zweiten Zuleitung (6), die auf der ersten Fläche des Halbleitersubstrats (1) außerhalb der ersten Spirale (2) angeordnet ist, wobei elektrische Verbindungen zur ersten Spirale (2) auf der ersten Fläche des Halbleitersubstrats (1) vorgenommen werden können; und
    - einem elektrisch leitenden Verbinder (22), der unter der ersten Spirale (2) angeordnet ist, um die zweite Zuleitung (6) mit dem inneren Ende (4) der ersten Spirale (2) zu verbinden;
    dadurch gekennzeichnet, daß
    - ein erster und ein zweiter elektrisch leitender Durchgang (21, 23) von der ersten zur zweiten Fläche durch das Halbleitersubstrat (1) hindurchgehen;
    - der elektrisch leitende Verbinder (22) auf der zweiten Fläche des Halbleitersubstrats (1) angeordnet ist;
    - der erste Durchgang (21) das innere Ende (4) der ersten Spirale (2) mit dem Verbinder (22) verbindet und
    - der zweite Durchgang (23) den Verbinder (22) mit der zweiten Zuleitung (6) verbindet.
  2. Integrierte Halbleiterschaltung nach Anspruch 1, dadurch gekennzeichnet, daß der auf der zweiten Fläche des Substrats (1) angeordnete elektrisch leitende Verbinder (22) eine zweite Spirale (12) ist.
  3. Integrierte Halbleiterschaltung nach Anspruch 2, dadurch gekennzeichnet, daß die zweite Spirale (12), wenn sie auf die erste Fläche des Substrats (1) projiziert wird, mit der ersten Spirale (2) verschachtelt ist.
  4. Integrierte Halbleiterschaltung nach Anspruch 3, dadurch gekennzeichnet, daß das Substrat (1) aus der aus Galliumarsenid und Indiumphosphid bestehenden Gruppe ausgewählt ist.
EP90115799A 1989-08-18 1990-08-17 Halbleitende integrierte Schaltung Expired - Lifetime EP0413348B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP94116852A EP0643403B1 (de) 1989-08-18 1990-08-17 Induktive Strukturen für halbleitende integrierte Schaltungen
EP95100214A EP0649152B1 (de) 1989-08-18 1990-08-17 Transformator integrierbar mit integriertem halbleitendem Kreis und sein Herstellungsverfahren
EP94116854A EP0643404B1 (de) 1989-08-18 1990-08-17 Induktive Strukturen für halbleitende integrierte Schaltungen
EP94116851A EP0643402B1 (de) 1989-08-18 1990-08-17 Induktive Strukturen für halbleitende integrierte Schaltungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1213839A JPH0377360A (ja) 1989-08-18 1989-08-18 半導体装置
JP213839/89 1989-08-18

Related Child Applications (5)

Application Number Title Priority Date Filing Date
EP94116852.8 Division-Into 1990-08-17
EP94116851.0 Division-Into 1990-08-17
EP94116854.4 Division-Into 1990-08-17
EP95100214.6 Division-Into 1990-08-17
EP94116854A Division EP0643404B1 (de) 1989-08-18 1990-08-17 Induktive Strukturen für halbleitende integrierte Schaltungen

Publications (3)

Publication Number Publication Date
EP0413348A2 EP0413348A2 (de) 1991-02-20
EP0413348A3 EP0413348A3 (en) 1993-03-24
EP0413348B1 true EP0413348B1 (de) 1996-03-27

Family

ID=16645882

Family Applications (5)

Application Number Title Priority Date Filing Date
EP94116852A Expired - Lifetime EP0643403B1 (de) 1989-08-18 1990-08-17 Induktive Strukturen für halbleitende integrierte Schaltungen
EP94116851A Expired - Lifetime EP0643402B1 (de) 1989-08-18 1990-08-17 Induktive Strukturen für halbleitende integrierte Schaltungen
EP94116854A Expired - Lifetime EP0643404B1 (de) 1989-08-18 1990-08-17 Induktive Strukturen für halbleitende integrierte Schaltungen
EP90115799A Expired - Lifetime EP0413348B1 (de) 1989-08-18 1990-08-17 Halbleitende integrierte Schaltung
EP95100214A Expired - Lifetime EP0649152B1 (de) 1989-08-18 1990-08-17 Transformator integrierbar mit integriertem halbleitendem Kreis und sein Herstellungsverfahren

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP94116852A Expired - Lifetime EP0643403B1 (de) 1989-08-18 1990-08-17 Induktive Strukturen für halbleitende integrierte Schaltungen
EP94116851A Expired - Lifetime EP0643402B1 (de) 1989-08-18 1990-08-17 Induktive Strukturen für halbleitende integrierte Schaltungen
EP94116854A Expired - Lifetime EP0643404B1 (de) 1989-08-18 1990-08-17 Induktive Strukturen für halbleitende integrierte Schaltungen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP95100214A Expired - Lifetime EP0649152B1 (de) 1989-08-18 1990-08-17 Transformator integrierbar mit integriertem halbleitendem Kreis und sein Herstellungsverfahren

Country Status (4)

Country Link
US (1) US5095357A (de)
EP (5) EP0643403B1 (de)
JP (1) JPH0377360A (de)
DE (5) DE69030123T2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731793A (zh) * 2017-09-14 2018-02-23 建荣半导体(深圳)有限公司 一种半导体片上集成的8字形电感结构及半导体结构

Families Citing this family (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2941484B2 (ja) * 1991-05-31 1999-08-25 株式会社東芝 平面トランス
CA2072277A1 (en) * 1991-07-03 1993-01-04 Nobuo Shiga Inductance element
US5336921A (en) * 1992-01-27 1994-08-09 Motorola, Inc. Vertical trench inductor
JP3141562B2 (ja) * 1992-05-27 2001-03-05 富士電機株式会社 薄膜トランス装置
DE69321432T2 (de) * 1992-09-10 1999-05-27 Nat Semiconductor Corp Integrierte magnetische Speicherelementschaltung und ihr Herstellungsverfahren
EP0600540B1 (de) * 1992-11-30 1998-02-11 Koninklijke Philips Electronics N.V. Farbbildröhre mit Konvergenzkorrekturanordnung
WO1994017558A1 (en) * 1993-01-29 1994-08-04 The Regents Of The University Of California Monolithic passive component
TW275152B (de) * 1993-11-01 1996-05-01 Ikeda Takeshi
US5497028A (en) * 1993-11-10 1996-03-05 Ikeda; Takeshi LC element and semiconductor device having a signal transmission line and LC element manufacturing method
JP3463759B2 (ja) * 1993-12-29 2003-11-05 ソニー株式会社 磁気ヘッド及びその製造方法
US5478773A (en) * 1994-04-28 1995-12-26 Motorola, Inc. Method of making an electronic device having an integrated inductor
US5610433A (en) * 1995-03-13 1997-03-11 National Semiconductor Corporation Multi-turn, multi-level IC inductor with crossovers
US6911887B1 (en) 1994-09-12 2005-06-28 Matsushita Electric Industrial Co., Ltd. Inductor and method for producing the same
KR100231356B1 (ko) 1994-09-12 1999-11-15 모리시타요이찌 적층형 세라믹칩 인덕터 및 그 제조방법
US5446311A (en) * 1994-09-16 1995-08-29 International Business Machines Corporation High-Q inductors in silicon technology without expensive metalization
KR100276052B1 (ko) * 1994-10-04 2000-12-15 모리시타 요이찌 전사도체의 제조방법 및 적층용 그린시트의 제조방법
DE4437721A1 (de) * 1994-10-21 1996-04-25 Giesecke & Devrient Gmbh Kontaktloses elektronisches Modul
US5635892A (en) * 1994-12-06 1997-06-03 Lucent Technologies Inc. High Q integrated inductor
US5545916A (en) * 1994-12-06 1996-08-13 At&T Corp. High Q integrated inductor
US5716713A (en) * 1994-12-16 1998-02-10 Ceramic Packaging, Inc. Stacked planar transformer
US6033764A (en) * 1994-12-16 2000-03-07 Zecal Corp. Bumped substrate assembly
JP3487461B2 (ja) * 1994-12-17 2004-01-19 ソニー株式会社 変成器及び増幅器
AU4399996A (en) * 1995-01-12 1996-07-31 Takeshi Ikeda Tuning circuit
KR100396630B1 (ko) * 1995-01-12 2003-12-01 타케시 이케다 동조회로
EP0725407A1 (de) * 1995-02-03 1996-08-07 International Business Machines Corporation Dreidimensionale integrierte Induktivität
US6496382B1 (en) 1995-05-19 2002-12-17 Kasten Chase Applied Research Limited Radio frequency identification tag
CA2176625C (en) * 1995-05-19 2008-07-15 Donald Harold Fergusen Radio frequency identification tag
DE19522043A1 (de) * 1995-06-17 1996-12-19 Bosch Gmbh Robert Induktives Bauelement
DE19523521A1 (de) * 1995-06-30 1997-01-02 Licentia Gmbh Transponder-Drahtspule
US5742091A (en) * 1995-07-12 1998-04-21 National Semiconductor Corporation Semiconductor device having a passive device formed over one or more deep trenches
US5656849A (en) * 1995-09-22 1997-08-12 International Business Machines Corporation Two-level spiral inductor structure having a high inductance to area ratio
EP0778593B1 (de) * 1995-12-07 2000-11-22 Co.Ri.M.Me. Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Herstellungsverfahren für einen Magnetkreis in einem integrierten Kreis
US5760456A (en) * 1995-12-21 1998-06-02 Grzegorek; Andrew Z. Integrated circuit compatible planar inductors with increased Q
JP2904086B2 (ja) * 1995-12-27 1999-06-14 日本電気株式会社 半導体装置およびその製造方法
JP2765547B2 (ja) * 1995-12-27 1998-06-18 日本電気株式会社 半導体装置およびその製造方法
US5610569A (en) * 1996-01-31 1997-03-11 Hughes Electronics Staggered horizontal inductor for use with multilayer substrate
SE510443C2 (sv) * 1996-05-31 1999-05-25 Ericsson Telefon Ab L M Induktorer för integrerade kretsar
US6492705B1 (en) * 1996-06-04 2002-12-10 Intersil Corporation Integrated circuit air bridge structures and methods of fabricating same
US5793272A (en) * 1996-08-23 1998-08-11 International Business Machines Corporation Integrated circuit toroidal inductor
US5831331A (en) * 1996-11-22 1998-11-03 Philips Electronics North America Corporation Self-shielding inductor for multi-layer semiconductor integrated circuits
DE69720701T2 (de) * 1996-12-30 2004-01-15 Koninkl Philips Electronics Nv Anordnung mit einer integrierten spule
US5892425A (en) * 1997-04-10 1999-04-06 Virginia Tech Intellectual Properties, Inc. Interwound center-tapped spiral inductor
KR100233237B1 (ko) 1997-09-10 1999-12-01 정선종 삼차원 코일 구조 미세 인덕터 및 그 형성 방법
DE19739962C2 (de) * 1997-09-11 2000-05-18 Siemens Ag Planare, gekoppelte Spulenanordnung
DE69833960T2 (de) 1997-10-22 2006-11-30 Bae Systems Bofors Ab Integrierte elektroische schaltung mit einem oszillator und passiven schaltungsbauteilen
EP0915513A1 (de) 1997-10-23 1999-05-12 STMicroelectronics S.r.l. Integrierte Spule mit hohem Gütefaktor und deren Herstellungsverfahren
US20030042571A1 (en) * 1997-10-23 2003-03-06 Baoxing Chen Chip-scale coils and isolators based thereon
US5929729A (en) * 1997-10-24 1999-07-27 Com Dev Limited Printed lumped element stripline circuit ground-signal-ground structure
FR2771843B1 (fr) * 1997-11-28 2000-02-11 Sgs Thomson Microelectronics Transformateur en circuit integre
KR100279753B1 (ko) * 1997-12-03 2001-03-02 정선종 반도체 집적회로 제조공정을 이용한 인덕터 제조방법
US6169320B1 (en) 1998-01-22 2001-01-02 Raytheon Company Spiral-shaped inductor structure for monolithic microwave integrated circuits having air gaps in underlying pedestal
US5952893A (en) * 1998-03-06 1999-09-14 International Business Machines Corporation Integrated circuit inductors for use with electronic oscillators
JPH11273949A (ja) * 1998-03-24 1999-10-08 Tif:Kk インダクタ素子
SE512699C2 (sv) * 1998-03-24 2000-05-02 Ericsson Telefon Ab L M En induktansanordning
WO2000070629A1 (fr) * 1998-03-24 2000-11-23 Niigata Seimitsu Co., Ltd. Element d'inducteur
US6008102A (en) * 1998-04-09 1999-12-28 Motorola, Inc. Method of forming a three-dimensional integrated inductor
JPH11317621A (ja) 1998-05-07 1999-11-16 Tif:Kk Lc発振器
US6426267B2 (en) * 1998-06-19 2002-07-30 Winbond Electronics Corp. Method for fabricating high-Q inductance device in monolithic technology
US6472285B1 (en) * 1999-04-30 2002-10-29 Winbond Electronics Corporation Method for fabricating high-Q inductance device in monolithic technology
EP0969512B1 (de) * 1998-06-30 2009-05-13 Asulab S.A. Induktiver Sensor
EP0991123A1 (de) * 1998-10-01 2000-04-05 EM Microelectronic-Marin SA Mikrostruktur mit einer magnetischen Antenne oder einem magnetischen Detector
US6201287B1 (en) 1998-10-26 2001-03-13 Micron Technology, Inc. Monolithic inductance-enhancing integrated circuits, complementary metal oxide semiconductor (CMOS) inductance-enhancing integrated circuits, inductor assemblies, and inductance-multiplying methods
US6249191B1 (en) 1998-11-23 2001-06-19 Micron Technology, Inc. Monolithic integrated circuit oscillators, complementary metal oxide semiconductor (CMOS) voltage-controlled oscillators, integrated circuit oscillators, oscillator-forming methods, and oscillation methods
US6303423B1 (en) * 1998-12-21 2001-10-16 Megic Corporation Method for forming high performance system-on-chip using post passivation process
US8178435B2 (en) * 1998-12-21 2012-05-15 Megica Corporation High performance system-on-chip inductor using post passivation process
US7531417B2 (en) * 1998-12-21 2009-05-12 Megica Corporation High performance system-on-chip passive device using post passivation process
US6566731B2 (en) 1999-02-26 2003-05-20 Micron Technology, Inc. Open pattern inductor
FR2790328B1 (fr) * 1999-02-26 2001-04-20 Memscap Composant inductif, transformateur integre, notamment destines a etre incorpores dans un circuit radiofrequence,et circuit integre associe avec un tel composant inductif ou transformateur integre
US6239664B1 (en) 1999-03-05 2001-05-29 Rf Monolithics, Inc. Low phase noise, wide tuning range oscillator utilizing a one port saw resonator and method of operation
US6218729B1 (en) * 1999-03-11 2001-04-17 Atmel Corporation Apparatus and method for an integrated circuit having high Q reactive components
US6037649A (en) * 1999-04-01 2000-03-14 Winbond Electronics Corp. Three-dimension inductor structure in integrated circuit technology
US6180995B1 (en) * 1999-05-06 2001-01-30 Spectrian Corporation Integrated passive devices with reduced parasitic substrate capacitance
US6380608B1 (en) 1999-06-01 2002-04-30 Alcatel Usa Sourcing L.P. Multiple level spiral inductors used to form a filter in a printed circuit board
JP2001023821A (ja) * 1999-07-07 2001-01-26 Tif:Kk インダクタ素子
AU5711000A (en) * 1999-07-08 2001-01-30 Korea Advanced Institute Of Science And Technology Method for manufacturing a semiconductor device having a metal layer floating over a substrate
US6240622B1 (en) * 1999-07-09 2001-06-05 Micron Technology, Inc. Integrated circuit inductors
JP2001044754A (ja) * 1999-07-26 2001-02-16 Niigata Seimitsu Kk Lc発振器
JP2001052928A (ja) * 1999-08-17 2001-02-23 Tif:Kk インダクタ素子
WO2001037323A2 (en) * 1999-11-03 2001-05-25 Hwu R Jennifer Vertical transformer
US6476704B2 (en) 1999-11-18 2002-11-05 The Raytheon Company MMIC airbridge balun transformer
US6870456B2 (en) 1999-11-23 2005-03-22 Intel Corporation Integrated transformer
US6815220B2 (en) 1999-11-23 2004-11-09 Intel Corporation Magnetic layer processing
US6452247B1 (en) 1999-11-23 2002-09-17 Intel Corporation Inductor for integrated circuit
US6856228B2 (en) * 1999-11-23 2005-02-15 Intel Corporation Integrated inductor
US6891461B2 (en) * 1999-11-23 2005-05-10 Intel Corporation Integrated transformer
DE10029630C2 (de) * 2000-06-15 2002-04-18 Bosch Gmbh Robert Vorrichtung zum Schutz von elektronischen Baugruppen gegen Zerstörung durch elektrostatische Entladung
US6917245B2 (en) 2000-09-12 2005-07-12 Silicon Laboratories, Inc. Absolute power detector
US6549071B1 (en) 2000-09-12 2003-04-15 Silicon Laboratories, Inc. Power amplifier circuitry and method using an inductance coupled to power amplifier switching devices
US6437653B1 (en) * 2000-09-28 2002-08-20 Sun Microsystems, Inc. Method and apparatus for providing a variable inductor on a semiconductor chip
WO2002031967A2 (en) * 2000-10-10 2002-04-18 California Institute Of Technology Distributed circular geometry power amplifier architecture
US6890829B2 (en) * 2000-10-24 2005-05-10 Intel Corporation Fabrication of on-package and on-chip structure using build-up layer process
US6714113B1 (en) * 2000-11-14 2004-03-30 International Business Machines Corporation Inductor for integrated circuits
US6458611B1 (en) 2001-03-07 2002-10-01 Intel Corporation Integrated circuit device characterization
US6639298B2 (en) 2001-06-28 2003-10-28 Agere Systems Inc. Multi-layer inductor formed in a semiconductor substrate
US6667536B2 (en) 2001-06-28 2003-12-23 Agere Systems Inc. Thin film multi-layer high Q transformer formed in a semiconductor substrate
US6759275B1 (en) * 2001-09-04 2004-07-06 Megic Corporation Method for making high-performance RF integrated circuits
US20030112110A1 (en) * 2001-09-19 2003-06-19 Mark Pavier Embedded inductor for semiconductor device circuit
FR2830126B1 (fr) * 2001-09-26 2004-10-01 St Microelectronics Sa Inductance de circuit monolithique
US6635948B2 (en) * 2001-12-05 2003-10-21 Micron Technology, Inc. Semiconductor device with electrically coupled spiral inductors
US6614093B2 (en) * 2001-12-11 2003-09-02 Lsi Logic Corporation Integrated inductor in semiconductor manufacturing
JP3634305B2 (ja) 2001-12-14 2005-03-30 三菱電機株式会社 積層インダクタンス素子
DE10217387B4 (de) * 2002-04-18 2018-04-12 Snaptrack, Inc. Elektrisches Anpassungsnetzwerk mit einer Transformationsleitung
US20050242915A1 (en) * 2002-07-23 2005-11-03 Dolmans Wilhelmus M C Multi-tap coil
DE10262239B4 (de) 2002-09-18 2011-04-28 Infineon Technologies Ag Digitales Signalübertragungsverfahren
KR100466542B1 (ko) * 2002-11-13 2005-01-15 한국전자통신연구원 적층형 가변 인덕터
US6894565B1 (en) 2002-12-03 2005-05-17 Silicon Laboratories, Inc. Fast settling power amplifier regulator
US6894593B2 (en) * 2003-02-12 2005-05-17 Moog Inc. Torque motor
US6897730B2 (en) 2003-03-04 2005-05-24 Silicon Laboratories Inc. Method and apparatus for controlling the output power of a power amplifier
JP2004319763A (ja) * 2003-04-16 2004-11-11 Shinko Electric Ind Co Ltd インダクタ素子及び電子回路装置
US7075329B2 (en) * 2003-04-30 2006-07-11 Analog Devices, Inc. Signal isolators using micro-transformers
US7852185B2 (en) * 2003-05-05 2010-12-14 Intel Corporation On-die micro-transformer structures with magnetic materials
JP3983199B2 (ja) 2003-05-26 2007-09-26 沖電気工業株式会社 半導体装置及びその製造方法
TWI236763B (en) * 2003-05-27 2005-07-21 Megic Corp High performance system-on-chip inductor using post passivation process
DE10329143B4 (de) * 2003-06-27 2005-09-01 Infineon Technologies Ag Elektronisches Modul und Verfahren zur Herstellung desselben
JP2005236482A (ja) * 2004-02-18 2005-09-02 Fujitsu Ltd Lc発振器
DE102004022176B4 (de) 2004-05-05 2009-07-23 Atmel Germany Gmbh Verfahren zur Herstellung von passiven Bauelementen auf einem Substrat
CN1251255C (zh) * 2004-05-10 2006-04-12 阎跃军 可调电感器
US7738568B2 (en) * 2004-06-03 2010-06-15 Silicon Laboratories Inc. Multiplexed RF isolator
US8441325B2 (en) * 2004-06-03 2013-05-14 Silicon Laboratories Inc. Isolator with complementary configurable memory
US7737871B2 (en) * 2004-06-03 2010-06-15 Silicon Laboratories Inc. MCU with integrated voltage isolator to provide a galvanic isolation between input and output
US7302247B2 (en) * 2004-06-03 2007-11-27 Silicon Laboratories Inc. Spread spectrum isolator
US8198951B2 (en) * 2004-06-03 2012-06-12 Silicon Laboratories Inc. Capacitive isolation circuitry
US7821428B2 (en) 2004-06-03 2010-10-26 Silicon Laboratories Inc. MCU with integrated voltage isolator and integrated galvanically isolated asynchronous serial data link
US7376212B2 (en) * 2004-06-03 2008-05-20 Silicon Laboratories Inc. RF isolator with differential input/output
US7460604B2 (en) * 2004-06-03 2008-12-02 Silicon Laboratories Inc. RF isolator for isolating voltage sensing and gate drivers
US7902627B2 (en) * 2004-06-03 2011-03-08 Silicon Laboratories Inc. Capacitive isolation circuitry with improved common mode detector
US7577223B2 (en) * 2004-06-03 2009-08-18 Silicon Laboratories Inc. Multiplexed RF isolator circuit
US7447492B2 (en) * 2004-06-03 2008-11-04 Silicon Laboratories Inc. On chip transformer isolator
US8169108B2 (en) 2004-06-03 2012-05-01 Silicon Laboratories Inc. Capacitive isolator
US7421028B2 (en) * 2004-06-03 2008-09-02 Silicon Laboratories Inc. Transformer isolator for digital power supply
KR100548388B1 (ko) * 2004-07-20 2006-02-02 삼성전자주식회사 저손실 인덕터소자 및 그의 제조방법
US7355282B2 (en) * 2004-09-09 2008-04-08 Megica Corporation Post passivation interconnection process and structures
US8008775B2 (en) 2004-09-09 2011-08-30 Megica Corporation Post passivation interconnection structures
US20060077029A1 (en) * 2004-10-07 2006-04-13 Freescale Semiconductor, Inc. Apparatus and method for constructions of stacked inductive components
US7533068B2 (en) 2004-12-23 2009-05-12 D-Wave Systems, Inc. Analog processor comprising quantum devices
US7750434B2 (en) * 2005-01-31 2010-07-06 Sanyo Electric Co., Ltd. Circuit substrate structure and circuit apparatus
US7262681B2 (en) * 2005-02-11 2007-08-28 Semiconductor Components Industries, L.L.C. Integrated semiconductor inductor and method therefor
JP4509826B2 (ja) * 2005-03-03 2010-07-21 日本電信電話株式会社 インダクタ
US8384189B2 (en) 2005-03-29 2013-02-26 Megica Corporation High performance system-on-chip using post passivation process
US7499124B2 (en) * 2005-05-05 2009-03-03 Industrial Technology Research Institute Polymer dispersed liquid crystal device conditioned with a predetermined anchoring energy, a predetermined polymer concentration by weight percent and a predetermined cell gap to enhance phase separation and to make smaller and more uniform liquid crystal droplets
US7257882B2 (en) * 2005-05-19 2007-08-21 International Business Machines Corporation Multilayer coil assembly and method of production
US8134548B2 (en) 2005-06-30 2012-03-13 Micron Technology, Inc. DC-DC converter switching transistor current measurement technique
US7443362B2 (en) 2005-07-19 2008-10-28 3M Innovative Properties Company Solenoid antenna
US7960269B2 (en) * 2005-07-22 2011-06-14 Megica Corporation Method for forming a double embossing structure
US7511356B2 (en) * 2005-08-31 2009-03-31 Micron Technology, Inc. Voltage-controlled semiconductor inductor and method
TW200735138A (en) * 2005-10-05 2007-09-16 Koninkl Philips Electronics Nv Multi-layer inductive element for integrated circuit
JP4712615B2 (ja) * 2006-06-01 2011-06-29 アルプス電気株式会社 近接非接触通信機器
US7719305B2 (en) * 2006-07-06 2010-05-18 Analog Devices, Inc. Signal isolator using micro-transformers
US7999383B2 (en) * 2006-07-21 2011-08-16 Bae Systems Information And Electronic Systems Integration Inc. High speed, high density, low power die interconnect system
US7498908B2 (en) * 2006-08-04 2009-03-03 Advanced Energy Industries, Inc High-power PIN diode switch
JP4722795B2 (ja) * 2006-08-31 2011-07-13 富士通株式会社 配線基板および電子部品モジュール
JP4028884B1 (ja) * 2006-11-01 2007-12-26 Tdk株式会社 コイル部品
EP2084723A1 (de) * 2006-11-14 2009-08-05 Nxp B.V. Herstellung einer elektronischen schaltung, die eine induktivität aufweist
US8749021B2 (en) * 2006-12-26 2014-06-10 Megit Acquisition Corp. Voltage regulator integrated with semiconductor chip
WO2008122127A1 (en) 2007-04-05 2008-10-16 D-Wave Systems Inc. Systems, methods and apparatus for anti-symmetric qubit-coupling
DE102007019811B4 (de) * 2007-04-26 2014-11-27 Infineon Technologies Ag Schaltung, auf einem Chip aufgebrachte Filterschaltung und System
US7570144B2 (en) 2007-05-18 2009-08-04 Chartered Semiconductor Manufacturing, Ltd. Integrated transformer and method of fabrication thereof
US8242872B2 (en) 2007-05-18 2012-08-14 Globalfoundries Singapore Pte. Ltd. Transformer with effective high turn ratio
FR2916570A1 (fr) * 2007-05-23 2008-11-28 St Microelectronics Sa Structure inductive plane
US7652355B2 (en) 2007-08-01 2010-01-26 Chartered Semiconductor Manufacturing, Ltd. Integrated circuit shield structure
US7956713B2 (en) * 2007-09-25 2011-06-07 Intel Corporation Forming a helical inductor
US9269485B2 (en) * 2007-11-29 2016-02-23 Taiwan Semiconductor Manufacturing Co., Ltd. Method of creating spiral inductor having high Q value
US20090140383A1 (en) * 2007-11-29 2009-06-04 Taiwan Semiconductor Manufacturing Co., Ltd. Method of creating spiral inductor having high q value
TWI371766B (en) * 2007-12-26 2012-09-01 Via Tech Inc Inductor structure
US8138876B2 (en) * 2008-01-29 2012-03-20 International Business Machines Corporation On-chip integrated voltage-controlled variable inductor, methods of making and tuning such variable inductors, and design structures integrating such variable inductors
US7710215B2 (en) * 2008-02-04 2010-05-04 Infineon Technologies Austria Ag Semiconductor configuration having an integrated coupler and method for manufacturing such a semiconductor configuration
WO2009153956A1 (ja) * 2008-06-17 2009-12-23 パナソニック株式会社 バランを有する半導体装置
JP5247367B2 (ja) 2008-11-13 2013-07-24 ルネサスエレクトロニクス株式会社 Rf電力増幅器
SE534510C2 (sv) * 2008-11-19 2011-09-13 Silex Microsystems Ab Funktionell inkapsling
WO2010075447A1 (en) 2008-12-26 2010-07-01 Megica Corporation Chip packages with power management integrated circuits and related techniques
EP2382661B1 (de) * 2008-12-30 2021-08-11 STMicroelectronics Srl Integrierte elektronische einrichtung mit sende-/empfangsantenne und magnetischer verbindung
US8738105B2 (en) 2010-01-15 2014-05-27 D-Wave Systems Inc. Systems and methods for superconducting integrated circuts
US8093982B2 (en) 2010-03-25 2012-01-10 Qualcomm Incorporated Three dimensional inductor and transformer design methodology of glass technology
JP2011217321A (ja) * 2010-04-02 2011-10-27 Hitachi Ltd ピーキング回路及びピーキング調整方法並びにピーキング回路を備えた差動増幅器及びレーザダイオード駆動回路及び情報処理装置
US9287344B2 (en) * 2010-08-23 2016-03-15 The Hong Kong University Of Science And Technology Monolithic magnetic induction device
US8451032B2 (en) 2010-12-22 2013-05-28 Silicon Laboratories Inc. Capacitive isolator with schmitt trigger
JP5357136B2 (ja) * 2010-12-22 2013-12-04 旭化成エレクトロニクス株式会社 変成器
TWM411643U (en) * 2011-01-17 2011-09-11 Yujing Technology Co Ltd Ultra-high power transformer
US8558344B2 (en) 2011-09-06 2013-10-15 Analog Devices, Inc. Small size and fully integrated power converter with magnetics on chip
US20130214890A1 (en) 2012-02-20 2013-08-22 Futurewei Technologies, Inc. High Current, Low Equivalent Series Resistance Printed Circuit Board Coil for Power Transfer Application
US8803648B2 (en) 2012-05-03 2014-08-12 Qualcomm Mems Technologies, Inc. Three-dimensional multilayer solenoid transformer
US9111933B2 (en) 2012-05-17 2015-08-18 International Business Machines Corporation Stacked through-silicon via (TSV) transformer structure
US8742539B2 (en) 2012-07-27 2014-06-03 Infineon Technologies Austria Ag Semiconductor component and method for producing a semiconductor component
US9431473B2 (en) * 2012-11-21 2016-08-30 Qualcomm Incorporated Hybrid transformer structure on semiconductor devices
US20140152410A1 (en) 2012-12-03 2014-06-05 Arizona Board of Regents, a body corporate of the State of Arizona Acting for and on behalf of Arizo Integrated tunable inductors
US8786393B1 (en) 2013-02-05 2014-07-22 Analog Devices, Inc. Step up or step down micro-transformer with tight magnetic coupling
WO2014129279A1 (ja) * 2013-02-19 2014-08-28 株式会社村田製作所 インダクタブリッジおよび電子機器
US10002700B2 (en) 2013-02-27 2018-06-19 Qualcomm Incorporated Vertical-coupling transformer with an air-gap structure
US9634645B2 (en) 2013-03-14 2017-04-25 Qualcomm Incorporated Integration of a replica circuit and a transformer above a dielectric substrate
US9293997B2 (en) 2013-03-14 2016-03-22 Analog Devices Global Isolated error amplifier for isolated power supplies
US9449753B2 (en) 2013-08-30 2016-09-20 Qualcomm Incorporated Varying thickness inductor
JP6221736B2 (ja) * 2013-12-25 2017-11-01 三菱電機株式会社 半導体装置
CN205657176U (zh) * 2014-02-14 2016-10-19 株式会社村田制作所 天线装置及无线通信装置
US10002107B2 (en) 2014-03-12 2018-06-19 D-Wave Systems Inc. Systems and methods for removing unwanted interactions in quantum devices
US9906318B2 (en) 2014-04-18 2018-02-27 Qualcomm Incorporated Frequency multiplexer
US9660848B2 (en) 2014-09-15 2017-05-23 Analog Devices Global Methods and structures to generate on/off keyed carrier signals for signal isolators
US10536309B2 (en) 2014-09-15 2020-01-14 Analog Devices, Inc. Demodulation of on-off-key modulated signals in signal isolator systems
US10270630B2 (en) 2014-09-15 2019-04-23 Analog Devices, Inc. Demodulation of on-off-key modulated signals in signal isolator systems
US9998301B2 (en) 2014-11-03 2018-06-12 Analog Devices, Inc. Signal isolator system with protection for common mode transients
FR3038121B1 (fr) * 2015-06-25 2017-08-18 Thales Sa Transformateur ameliore pour un circuit en technologie mmic
JP6438137B2 (ja) * 2015-07-16 2018-12-12 ウルトラメモリ株式会社 半導体素子
US10720788B2 (en) 2015-10-09 2020-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. Wireless charging devices having wireless charging coils and methods of manufacture thereof
US10164614B2 (en) 2016-03-31 2018-12-25 Analog Devices Global Unlimited Company Tank circuit and frequency hopping for isolators
JP6607312B2 (ja) * 2016-04-25 2019-11-20 株式会社村田製作所 インダクタ部品
US10651147B2 (en) 2016-09-13 2020-05-12 Allegro Microsystems, Llc Signal isolator having bidirectional communication between die
DE102017102219A1 (de) 2017-02-06 2018-08-09 Sennheiser Electronic Gmbh & Co. Kg Planardynamischer Wandler
US20180323369A1 (en) 2017-05-02 2018-11-08 Micron Technology, Inc. Inductors with through-substrate via cores
US10872843B2 (en) * 2017-05-02 2020-12-22 Micron Technology, Inc. Semiconductor devices with back-side coils for wireless signal and power coupling
US10134671B1 (en) 2017-05-02 2018-11-20 Micron Technology, Inc. 3D interconnect multi-die inductors with through-substrate via cores
US10121739B1 (en) 2017-05-02 2018-11-06 Micron Technology, Inc. Multi-die inductors with coupled through-substrate via cores
CN111788588A (zh) 2017-12-20 2020-10-16 D-波系统公司 量子处理器中耦合量子位的系统和方法
FR3082046A1 (fr) 2018-05-30 2019-12-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Circuit integre comportant une inductance
WO2020087973A1 (zh) * 2018-10-30 2020-05-07 北京航空航天大学 一种mems螺线管变压器及其制造方法
US11115244B2 (en) 2019-09-17 2021-09-07 Allegro Microsystems, Llc Signal isolator with three state data transmission
US11139552B1 (en) 2020-05-05 2021-10-05 Semiconductor Components Industries, Llc Method of forming a semiconductor device
US20230223362A1 (en) * 2022-01-13 2023-07-13 Qualcomm Incorporated Package comprising substrate with coupling element for integrated devices

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504276A (en) * 1967-04-19 1970-03-31 American Mach & Foundry Printed circuit coils for use in magnetic flux leakage flow detection
US3881244A (en) * 1972-06-02 1975-05-06 Texas Instruments Inc Method of making a solid state inductor
JPS5091289A (de) * 1973-12-12 1975-07-21
US4071378A (en) * 1975-02-27 1978-01-31 General Electric Company Process of making a deep diode solid state transformer
US4080585A (en) * 1977-04-11 1978-03-21 Cubic Corporation Flat coil transformer for electronic circuit boards
JPS5727461A (en) * 1980-07-23 1982-02-13 Mitsubishi Electric Corp Magnetic recorder and reproducer
JPS59114807A (ja) * 1982-12-21 1984-07-03 Matsushita Electric Ind Co Ltd プリント多層コイル
JPS60136156A (ja) * 1983-12-26 1985-07-19 Toshiba Corp レ−ザ−トリガ−ドキセノンフラツシユランプ
US4833513A (en) * 1985-01-20 1989-05-23 Tdk Corporation MOS FET semiconductor device having a cell pattern arrangement for optimizing channel width
JPS61201509A (ja) * 1985-03-05 1986-09-06 Tdk Corp Lc型可変周波フイルタ
GB2173956B (en) * 1985-03-29 1989-01-05 Plessey Co Plc Improvements relating to electric transformers
JPS61248545A (ja) * 1985-04-26 1986-11-05 Fujitsu Ltd インダクタを具備する集積回路
JPS61265857A (ja) * 1985-05-20 1986-11-25 Matsushita Electronics Corp 半導体装置
JPS61294850A (ja) * 1985-06-21 1986-12-25 Nec Corp 半導体集積回路装置
WO1987001505A1 (en) * 1985-09-02 1987-03-12 Hasler Ag Inductive, electrically-controllable component
JPS62244160A (ja) * 1986-04-17 1987-10-24 Mitsubishi Electric Corp 半導体装置
US4785345A (en) * 1986-05-08 1988-11-15 American Telephone And Telegraph Co., At&T Bell Labs. Integrated transformer structure with primary winding in substrate
JPS63140560A (ja) * 1986-12-02 1988-06-13 Mitsubishi Electric Corp 半導体モノリシツクバイアス給電回路
JPS63250165A (ja) * 1987-04-06 1988-10-18 Mitsubishi Electric Corp 半導体装置
JPS63299394A (ja) * 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd 印刷配線板
JPS6457788A (en) * 1987-08-28 1989-03-06 Sharp Kk Multilayer interconnection substrate
JPH0267752A (ja) * 1988-09-01 1990-03-07 Nec Corp 半導体装置
JP3123441B2 (ja) * 1996-08-23 2001-01-09 鹿島建設株式会社 実験用土槽

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731793A (zh) * 2017-09-14 2018-02-23 建荣半导体(深圳)有限公司 一种半导体片上集成的8字形电感结构及半导体结构
CN107731793B (zh) * 2017-09-14 2019-12-17 建荣半导体(深圳)有限公司 一种半导体片上集成的8字形电感结构及半导体结构

Also Published As

Publication number Publication date
DE69032792D1 (de) 1999-01-07
EP0413348A2 (de) 1991-02-20
EP0643404A2 (de) 1995-03-15
EP0649152A2 (de) 1995-04-19
EP0643402A3 (de) 1995-10-25
EP0643402A2 (de) 1995-03-15
EP0413348A3 (en) 1993-03-24
DE69026164D1 (de) 1996-05-02
EP0643403A3 (de) 1995-10-25
DE69030738D1 (de) 1997-06-19
EP0643402B1 (de) 1997-02-26
EP0643404A3 (de) 1995-11-08
JPH0377360A (ja) 1991-04-02
DE69030123T2 (de) 1997-09-18
US5095357A (en) 1992-03-10
DE69032792T2 (de) 1999-07-01
EP0643404B1 (de) 1997-05-14
EP0643403A2 (de) 1995-03-15
EP0649152A3 (de) 1995-10-25
DE69030011T2 (de) 1997-09-04
DE69030011D1 (de) 1997-04-03
EP0643403B1 (de) 1997-03-05
DE69030123D1 (de) 1997-04-10
EP0649152B1 (de) 1998-11-25
DE69026164T2 (de) 1996-10-31
DE69030738T2 (de) 1997-12-18

Similar Documents

Publication Publication Date Title
EP0413348B1 (de) Halbleitende integrierte Schaltung
EP0013460B1 (de) Miniaturisierte, flache elektrische Mehrschichtspule
EP0778593B1 (de) Herstellungsverfahren für einen Magnetkreis in einem integrierten Kreis
US6452473B1 (en) Multilayer inductor and method of manufacturing the same
US7280024B2 (en) Integrated transformer structure and method of fabrication
US7107666B2 (en) Method of manufacturing an ultra-miniature magnetic device
US4904967A (en) LC composite component
JP3495727B2 (ja) 半導体パッケージおよびその製造方法
US5788854A (en) Methods for fabrication of thin film inductors, inductor networks, inductor/capactor filters, and integration with other passive and active devices, and the resultant devices
US5321380A (en) Low profile printed circuit board
JPH11274416A (ja) マルチチップモジュ―ル用モノリシック共鳴器
US20020105052A1 (en) Method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
US5915188A (en) Integrated inductor and capacitor on a substrate and method for fabricating same
JPH05190333A (ja) 重層型スパイラルインダクタ
JPS60244097A (ja) 混成電子回路
US6781229B1 (en) Method for integrating passives on-die utilizing under bump metal and related structure
JPH10154795A (ja) 半導体チップにおけるインダクター及びその製造方法
KR100218676B1 (ko) 스피럴 인덕터의 구조
JPS59114807A (ja) プリント多層コイル
KR20010075974A (ko) 반도체 집적회로 공정에 의한 인덕터 및 제조 방법
US6597056B1 (en) Laminated chip component and manufacturing method
JP3048593B2 (ja) 混成集積回路部品
JP3084503B2 (ja) 薄膜インダクタ
JPH0621347A (ja) 半導体装置
JPH0530366Y2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19940429

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NAKAHARA, KAZUHITO, C/O MITSUBISHI DENKI K.K.

Inventor name: NAKAJIMA, YASUHARU, C/O MITSUBISHI DENKI K.K.

Inventor name: INOUE, AKIRA, C/O MITSUBISHI DENKI K.K.

Inventor name: ANDOH, NAOTO, C/O MITSUBISHI DENKI K.K.

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 94116851.0 EINGEREICHT AM 17/08/90.

REF Corresponds to:

Ref document number: 69026164

Country of ref document: DE

Date of ref document: 19960502

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 727

REG Reference to a national code

Ref country code: GB

Ref legal event code: 727

REG Reference to a national code

Ref country code: GB

Ref legal event code: 727B

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990810

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990811

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990823

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000817

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST