DE60105023T2 - Nassvermahlungsverfahren - Google Patents

Nassvermahlungsverfahren Download PDF

Info

Publication number
DE60105023T2
DE60105023T2 DE60105023T DE60105023T DE60105023T2 DE 60105023 T2 DE60105023 T2 DE 60105023T2 DE 60105023 T DE60105023 T DE 60105023T DE 60105023 T DE60105023 T DE 60105023T DE 60105023 T2 DE60105023 T2 DE 60105023T2
Authority
DE
Germany
Prior art keywords
drug
grinding
ppm
nylon
finely ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE60105023T
Other languages
English (en)
Other versions
DE60105023D1 (de
Inventor
Joseph Simon Harlow HOLLAND
Anne Wendy Harlow KNIGHT
Stanley Graham Harlow LEONARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SmithKline Beecham Ltd
Original Assignee
SmithKline Beecham Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0015856A external-priority patent/GB0015856D0/en
Priority claimed from GB0112496A external-priority patent/GB0112496D0/en
Application filed by SmithKline Beecham Ltd filed Critical SmithKline Beecham Ltd
Application granted granted Critical
Publication of DE60105023D1 publication Critical patent/DE60105023D1/de
Publication of DE60105023T2 publication Critical patent/DE60105023T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/02Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of powders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • B02C17/163Stirring means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/22Lining for containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Catching Or Destruction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Disintegrating Or Milling (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

  • Die vorliegende Erfindung betrifft das Gebiet des Vermahlens. Spezifischer betrifft die vorliegende Erfindung ein neues Vermahlungverfahren, welches verwendet werden kann, Submikrometer-Teilchen eines Arzneistoffes zu erzeugen.
  • Ein wichtiges Kriterium für einen Arzneistoff ist das Erreichen einer guten Bioverfügbarkeit, wobei dies der Grad ist, zu welchem ein Arzneistoff in den Blutstrom nach der Verabreichung, welche üblicherweise über den oralen Weg erfolgt, absorbiert wird. Eine Vielfalt an Faktoren, welche die orale Bioverfügbarkeit von Arzneistoffen beeinflussen, ist bekannt. Zum Beispiel ist eine niedrige Bioverfügbarkeit häufig das Ergebnis einer niedrigen Wasserlöslichkeit. Daher neigen Arzneistoffe, welche wenig in Wasser löslich sind, dazu, nach der Verabreichung vom Gastrointestinaltrakt eliminiert zu werden, bevor sie in den Blutstrom absorbiert worden sind.
  • Ein Weg, der niedrigen Löslichkeit zu begegnen, ist die Verwendung alternativer, stärkerer Lösungsmittel, wie zum Beispiel DMSO. Derartige Lösungsmittel sind, obwohl sie für pharmakologische Studien geeignet sind, selten für die allgemeine klinische Verwendung geeignet. Es ist gut bekannt, dass die Auflösungsgeschwindigkeit eines teilchenförmigen Arzneistoffes umgekehrt proportional zur Teilchengröße sein kann, d. h. die Geschwindigkeit der Löslichkeit steigt mit steigender Oberflächen-Fläche. Folglich ist eine alternative Strategie zur Steigerung der Bioverfügbarkeit schlecht löslicher Arzneistoffe, sie als fein vermahlene Zusammensetzungen herzustellen. Eine Anzahl von Verfahren zum Verringern der Teilchengröße von Arzneistoffen ist auf dem Fachgebiet bekannt.
  • Zwei derartige Verfahren der Strahlvermahlung (Mikronisieren) sind entgegengesetzter Strahl (Fließbettart) oder spiralförmiger Strahl (Fladenart). Diese Verfahren werden wegen des verminderten Risikos der Einführung von unvorteilhafter Verunreinigung von Mahlmaterial in den Arzneistoff bevorzugt, wobei die Verringerung der Größe durch Teilchen-Teilchen Zusammenstöße verursacht wird. Allerdings ist die kleinste Teilchengröße, welche durch eines dieser Verfahren erreichbar ist, im Bereich von 2–5 Mikrometer im Durchmesser.
  • Trockenvermahlungsverfahren (wie zum Beispiel Hammervermahlung) sind auch verwendet worden, um die Teilchengröße von Arzneistoffen zu verringern und somit die Arzneistofflöslichkeit zu steigern. Allerdings ist die kleinste erhaltbare Teilchengröße ungefähr 30 Mikrometer im Durchmesser. Obwohl diese Teilchengrößen für die Tablettenbildung und andere Formulierungsarten geeignet sind, ist der Vermahlungsgrad nicht fein genug, um die Auflösungsgeschwindigkeit für schlecht lösliche Arzneistoffe signifikant zu steigern.
  • Eine andere Technik für das feine Vermahlen von Zubereitungen ist das Nassvermahlen. Herkömmliche Nassvermahlungstechniken umfassen das Aussetzen einer flüssigen Suspension eines grobkörnigen Arzneistoffes mechanischen Mitteln, wie zum Beispiel einer Dispersionsmühle, zur Verringerung der Größe des Arzneistoffes. Ein Beispiel einer Dispersionsmühle ist eine Trägermühle, wie zum Beispiel eine Perlmühle. Nassvermahlen mit Perlen schließt das Herstellen einer Suspension von ungemahlenem grobkörnigem Arzneistoff ein. Diese Dispersion wird dann durch eine Mahlkammer gezogen, welche eine motorgetriebene Schaufel und eine Menge an Mahlperlen enthält, um eine fein vermahlene Suspension herzustellen. Ein Sieb wird verwendet, um die Perlen innerhalb der Mahlkammer zurückzuhalten, während der Durchgang des Produkts aus jeder Mahlkammer erlaubt wird. Inline-Mischer können in der Verfahrensserie verwendet werden, um die vermahlenen/unvermahlenen Agglomerate aufzubrechen.
  • Nassvermahlen mit Perlen wird meist unter Verwendung eines Rezirkularisierungsverfahrens durch eine Mahlkammer durchgeführt, wobei eine Perlgröße verwendet wird, um die notwendige Verringerung der Größe zu erreichen. Dies ist ein etabliertes Verfahren für Farben-, Tinten- und keramisches Verarbeiten, wobei eine festgelegte Menge an Energie [in kW/Stunden] in das Produkt während des Nassvermahlungsverfahrens gespeist wird, um eine Zielteilchengröße zu erreichen. Die zur Nassvermahlung verwendeten Mühlen wenden gewöhnlicherweise Einschichtkeramik oder Edelstahl an, z. B. Wolframcarbid, um die Mahlkammern und Rührschaufeln zu bilden, und gewöhnlicherweise verwendete Mahlkörper schließen die neu entwickelten mit Yttrium stabilisierten Zirconiumoxidperlen, welche eine Härte aufweisen, die an die von Diamanten herankommt, oder beträchtlich weichere Mahlkörper, welche auf Polystyrol oder anderen ähnlichen Polymeren basieren, ein.
  • Verunreinigung des Produkts durch die Mahlkörper und Mahlkammern ist ein Problem, welches man üblicherweise beim Nassvermahlen antrifft. In Chargen mit großem Umfang (> 10 kg), können, um eine Teilchengröße von weniger als 1 Mikrometer zu erreichen, die Verunreinigungsgrade durch Mahlkörper (Zirconium und Yttrium, plus den Elementen, welche Edelstahl bilden, z. B. Eisen, Vanadium, etc.) über 250 ppm ansteigen. Derartige Mengen an Verunreinigung sind bei der Herstellung von Pharmazeutika zweifellos unannehmbar. Ein Weg, dieses Problem zu vermeiden ist, auf Polystyrol-basierende Mahlperlen zu verwenden. Allerdings weist dies den Nachteil auf, dass die Verarbeitungszeiten für große Chargen (d. h. > 20 kg) mehrere Tage sein können. Ein alternativer Versuch ist gewesen, die vermahlenden Oberflächen der Nassperlmühle mit Polyurethan (Netzsch Feinmahltechnik GmbH) zu beschichten. Allerdings ist gefunden worden, dass Mühlenbestandteile, welche mit Polyurethan beschichtet worden sind, eine sehr kurze Lebenszeit aufweisen, wobei sie leicht durch die Mahlkörper, welche bei der Nassvermahlung verwendet werden, beschädigt werden.
  • US Patent Nr. 5,145,684 und die Europäische Patentanmeldung EP-A-0 499 299 offenbaren ein Nassvermahlungsverfahren,, um Teilchen eines kristallinen Arzneistoffes mit einem Oberflächenmodifizierer, welcher auf der Oberfläche in einer Menge adsorbiert ist, welche ausreicht, eine effektive mittlere Teilchengröße (D95–D99) von weniger als etwa 400 nm aufrecht zu erhalten. Von dieser teilchenförmigen Zusammensetzung als eine stabile Suspension wird gesagt, dass sie eine verbesserte Bioverfügbarkeit für schlecht wasserlösliche Verbindungen bereitstellt. Allerdings ist das Verfahren selbst sehr lang, es übersteigt häufig 24 Stunden und hohe Verunreinigungsgrade von Mahlkörpern und Mühlenbestandteilen werden festgestellt. Daher werden in EP-A-0 499 299 Verunreinigungsgrade von Silicon von Glasmahlperlen bei 10 ppm, 36 ppm und 71 ppm in einer wässrigen Aufschlämmung von nass vermahlenen Danazol (Beispiele 3, 4 bzw. 5) gemessen. Dies gleicht den Mengen von 38 ppm, 102 ppm bzw. 182 ppm in einer äquivalenten Trockenformulierung.
  • WO 99/30687 (SmithKline Beecham) offenbart unter anderem Zusammensetzungen, umfassend Benzopyranverbindungen (wie zum Beispiel trans-6-Acetyl-4S-(4-fluorbenzoylamino)-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-3R-ol und cis-6-Acetyl-4S-(3-chlor-4-fluorbenzoylamino)-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-3-S-ol) in Teilchenform, mit einer derartigen Teilchengrößenverteilung, dass der Mittelwert des Volumenmittels des Durchmessers innerhalb des Bereichs von 350 bis 700 nm liegt. Ein Verfahren, welches in WO 99/30687 als zur Herstellung dieser Zusammensetzungen geeignet beschrieben wird, schließt Nassvermahlen einer wässrigen Dispersion in einer Perlmühle ein, bei welcher die Mahlkammern mit einem Abrieb-resistenten polymeren Material, wie zum Beispiel Nylon, ausgekleidet oder daraus hergestellt sind. Von einem derartigen Verfahren wird angegeben, dass es den Vorteil der Verringerung von Verunreinigungen aus Mahlmaterialien aufweist. Die Beispiele von WO 99/30687 beschreiben vermahlene Zubereitungen mit Verunreinigungsgraden von mit Yttriumoxid-stabilisierten Zirconiumpulvermahlperlen: < 200 ppm im Fall von Zirconium und < 20 ppm im Fall von Yttrium.
  • Daher ist es ein Ziel der vorliegenden Erfindung, ein verbessertes Nassvermahlungsverfahren bereitzustellen, welches zur Herstellung von fein vermahlenen Arzneimitteln geeignet ist, bei welchem die Verunreinigung des Produkts verringert wird, ohne die Geschwindigkeit des Verfahrens zu beeinträchtigen.
  • Es ist überraschenderweise gefunden worden, dass ein Nassvermahlungsverfahren unter Verwendung einer Mühle, bei welcher mindestens einige der vermahlenden Oberflächen aus Nylon (Polyamid), umfassend ein oder mehrere eingearbeitete Gleitmittel, gefertigt sind, nicht nur in einem vermahlenen Produkt mit dramatisch verringerten Verunreinigungsgraden der Mühlenmahlkörper resultieren, sondern ebenso auch Verunreinigung aus allen Materialien der Mahlkammernbestandteile eliminiert, ohne die Effizienz des Verfahrens zu beeinträchtigen.
  • Demgemäß stellt die vorliegende Erfindung in der ersten Ausführungsform ein Verfahren zur Herstellung einer fein vermahlenen Zubereitung eines Arzneistoffes bereit, umfassend Nassvermahlen einer Suspension des Arzneistoffes in einer Mühle, welche mindestens eine Kammer und eine Rührvorrichtung aufweist, wobei die Kammer(n) und/oder die Rührvorrichtung Nylon mit eingearbeitetem Gleitmittel umfasst (umfassen).
  • Das erfindungsgemäße Verfahren verwendet einen Nassvermahlungsschritt, welcher in einer Mühle, wie zum Beispiel einer Dispersionsmühle, durchgeführt wird, um eine fein vermahlene teilchenförmige Suspension eines Arzneistoffes zu erzeugen. Die vorliegende Erfindung kann unter Verwendung einer herkömmlichen Nassvermahlungstechnik, wie zum Beispiel jenen, welche in Lachman et al., The Theory and Practice of Industrial Pharmacy, Kapitel 2, „Milling" S. 45 (1986) beschrieben werden, verwirklicht werden. Eine Arzneistoffsuspension zur Verwendung beim Nassvermahlen ist typischerweise eine flüssige Suspension des grobkörnigen Arzneistoffes in einem flüssigen Medium. Mit „Suspension" ist gemeint, dass der Arzneistoff im flüssigen Medium im Wesentlichen unlöslich ist. Geeigneterweise kann ein wässriges Medium verwendet werden. Der grobkörnige Arzneistoff kann kommerziell erhalten werden oder durch im Fachgebiet bekannte Techniken hergestellt werden. Unter Verwendung des erfindungsgemäßen Verfahrens kann die mittlere Teilchengröße der grobkörnigen Arzneistoffzubereitung bis zu 1 mm im Durchmesser sein. Dies vermeidet vorteilhafterweise das Vorbearbeiten des Arzneistoffes.
  • Ein geeignetes wässriges Medium enthält ein oder mehrere pharmazeutisch verträgliche wasserlösliche Träger, welche für eine sterische Stabilisierung und das weitere Verarbeiten des Arzneistoffes nach dem Vermahlen in ein Arzneimittel geeignet sind, z. B. Sprühtrocknen. Pharmazeutisch verträgliche Exzipienten, welche am besten für die sterische Stabilisierung und das Sprühtrocknen geeignet sind, sind oberflächenaktive Mittel, wie zum Beispiel Poloxamere, Natriumlaurylsulfat und Polysorbate etc.; Stabilisatoren, wie zum Beispiel Cellulosen, z. B. Hydroxypropylmethylcellulose; und Träger, wie zum Beispiel Kohlenhydrate, z. B. Mannitol.
  • Im wässrigen Medium, welches einer Vermahlung unterzogen wird, kann der Arzneistoff von etwa 1% bis etwa 40% Gew./Vol. vorliegen.
  • Die Menge an primärem Stabilisierungsmittel, wie zum Beispiel Hydroxypropylmethylcellulose (HPMC), kann von etwa 0,1 bis etwa 5% Gew./Vol. der zu vermahlenden Zusammensetzung variieren. Die Menge des Trägers kann von 1 bis 10% Gew./Vol. variieren.
  • Mühlen, welche zur erfindungsgemäßen Verwendung geeignet sind, schließen Dispersionsmühlen, wie zum Beispiel Kugelmühlen, Attritoren, Schwingmühlen und Trägermühlen, wie zum Beispiel Sandmühlen und Perlmühlen, ein. Derartige Dispersionsmühlen sind im Fachgebiet gut bekannt. Eine für die erfindungsgemäße Verwendung geeignete Dispersionsmühle würde mindestens eine Mahlkammereinheit umfassen, die eine innere Kammer definiert und innerhalb der inneren Kammer Vorrichtungen zum Rühren der zu vermahlenden Substanz und der Mahlkörper aufweist. Die Dispersionsmühle kann eine einzelne Mahlkammereinheit oder in einer anderen Ausführungsform eine Vielzahl von Mahlkammereinheiten umfassen. Im letzteren Fall könnten die Kammern in einer derartigen Folge angeordnet werden, dass während des Vermahlens die flüssige Suspension des Arzneistoffes über Flüssigkeitsverbindungen durch eine, einige oder alle der Kammern in einer sequentiellen Art gelassen wird. In jedem Fall kann der Arzneistoff durch die Dispersionsmühle in einem einzigen Schritt oder durch Rezirkularisieren des Arzneistoffes durch die Mühle eine gewünschte Anzahl von Malen, d. h. ein Vielschrittverfahren, verarbeitet werden. Ein Einschrittverfahren wird bevorzugt. Hierin nachstehende Bezugnahmen auf „Kammer" und „Kammern" schließen eine Bezugnahme auf eine Kammer oder mehr als eine Kammer, ausgewählt aus der Gesamtzahl an Kammern in einer Mühle, ein.
  • Im Fall von Trägermühlen kann das Rühren durch Schaufeln, Stifte, Scheiben etc., welche beweglich innerhalb der Mahlkammer montiert sind, zum Beispiel auf einem drehenden Schaft, welcher durch einen externen Motor angetrieben wird, erreicht werden. Mahlvorrichtungen, welche zur Verwendung in einer Trägermühle beim erfindungsgemäßen Verfahren geeignet sind, können ein Medium, wie zum Beispiel Sand oder Perlen sein, aber für die Herstellung eines fein vermahlenen Arzneistoffes werden Perlen empfohlen.
  • "Nylon" meint ein Polyamid und schließt Nylon 6, Nylon 6,6, Nylon 4,6, Nylon 11 und Nylon 12 ein. Nylon mit hohem Molekulargewicht wird bevorzugt. Geeignete Nylons mit hohem Molekulargewicht zur Verwendung in der vorliegenden Erfindung schließen Nylons mit einem mittleren Molekulargewicht von größer als etwa 30.000 Da ein. Vorteilhafterweise weist das Nylon mit einem hohen Molekulargewicht ein mittleres Molekulargewicht von größer als etwa 100.000 Da auf.
  • Mit „geschmiertem Nylon" ist ein Nylon gemeint, welches ein Gleitmittel, wie zum Beispiel ein weich machendes Gleitmitel, enthält, wobei das Gleitmittel im Nylon verteilt ist. Geeignete Gleitmittel schließen Kohlenwasserstoffgleitmittel mit niedrigem Molekulargewicht, wie zum Beispiel Phthalate, z. B. Dihexylphthalat, Diisooctylphthalat, Diisononylphthalat und Diisononyladipat; und Weichmacher mit höherem Molekulargewicht, wie zum Beispiel Petroleumwachs, ein. Gleitmittel können in flüssiger oder in fester Form vorliegen, z. B. als Öle oder Wachse oder einer Kombination davon.
  • Um die Vorteile der vorliegenden Erfindung zu erreichen, wird ins Auge gefasst, dass mindestens die Oberflächen der Kammer und/oder die Oberflächen der Rührvorrichtungen, welche mit dem Arzneistoff und dem Mahlkörper während des Vermahlungsverfahrens in Kontakt treten, aus geschmiertem Nylon gefertigt sind. Daher können die Kammer und/oder die Rührvorrichtungen völlig aus geschmiertem Nylon geformt sein, oder sie können aus herkömmlichen Materialien gefertigt sein, mit einem Insert aus geschmiertem Nylon, oder mit einer vollständigen oder teilweisen Schicht aus geschmiertem Nylon beschichtet sein.
  • In einer bevorzugten Ausführungsform dieses erfindungsgemäßen Aspekts umfassen die Kammer(n) und Rührvorrichtungen der Dispersionsmühle geschmiertes Nylon. Daher sind mindestens die Oberflächen der Kammern und die Oberflächen der Rührvorrichtungen, welche mit dem Arzneistoff und den Mahlkörpern während des Vermahlungsverfahrens in Kontakt treten, aus geschmiertem Nylon gefertigt.
  • Das geschmierte Nylon kann vorteilhafterweise ein oder mehrere flüssige oder feste Gleitmittel oder eine Kombination von flüssigen oder festen Gleitmitteln umfassen. Besonders gute Ergebnisse werden erreicht, wenn das Nylon eine Kombination von flüssigen und festen Gleitmitteln umfasst. Vorteilhafterweise kann das Nylon 1, 2, 3, 4, 5 oder 6 unterschiedliche Gleitmittel umfassen.
  • Vorzugsweise wird das geschmierte Nylon (wie zum Beispiel ein geschmiertes Nylon mit einem hohen Molekulargewicht) mindestens eines der folgenden Merkmale und vorzugsweise alle davon aufweisen:
    • • Shore-Härte D bei 23°C von 70–90; stärker bevorzugt 80–85
    • • Druckfestigkeit bei 23°C von 650–810 kg/cm2; oder 80–120 N/mm2, stärker bevorzugt 85–100 N/mm2
    • • Biegefestigkeit bei 23°C von 700–1270 kg/cm2
    • • Reibungskoeffizient (Probe auf Stahl) von ≤ 0,5, stärker bevorzugt ≤ 0,3, noch stärker bevorzugt ≤ 0,2, am meisten bevorzugt ≤ 0,1. (Typischerweise wird der Reibungskoeffizient im Bereich von 0,08 bis 0,4 liegen.)
    • • Zugfestigkeit bei 23°C von 710–920 kg/cm2; oder ≥ 35 N/mm2, stärker bevorzugt 40–100 N/mm2, am meisten bevorzugt 60–90 N/mm2
    • • Schlagzug von 650–1100 Joule/cm2
    • • Abnutzungsverlust von ≤ 1 mg/km unter Testbedingungen von 55 m (min)–1 MPa, vorzugsweise < 0,7 mg/km, stärker bevorzugt ≤ 0,4 mg/km, noch stärker bevorzugt ≤ 0,1 mg/km.
  • Besondere kommerzielle Produkte, welche diese Kennzeichen aufweisen, schließen die Nylons mit hohem Molekulargewicht NylubeTM, OilonTM und Natural 6TM ein, welche alle von Nylacast Ltd. supra erhältlich sind. Ein besonders bevorzugtes geschmiertes Nylon ist NylubeTM, welches von Nylacast erhältlich ist, welches ein festes Gleitmittel umfasst und die folgenden Kennzeichen aufweist:
    • • Shore-Härte D bei 23°C von 80–84 (ASTM D638)
    • • Druckfestigkeit bei 23°C von 650–800 kg/cm2 (BS303)
    • • Biegefestigkeit bei 23°C von 700–1200 kg/cm2 (BS303)
    • • Reibungskoeffizient von 0,08 bis 0,10 (Nylon auf Stahl)
    • • Zugfestigkeit bei 23°C von 710–890 kg/cm2 (ASTM D638)
    • • Schlagzug von 650–1050 Joule/cm2 (ASTM D676)
    • • Abnutzungsverlust von ≤ 1 mg/km unter Testbedingungen von 55 m (min)–1 MPa.
  • Eine besonders bevorzugte Art von NylubeTM ist Nylube CF016TM, welches unter Testbedingungen von 55 m (min)–1 MPa typischerweise einen Abnutzungsverlust von 0,02 mg/km aufweist.
  • Ein anderes besonders bevorzugtes geschmiertes Nylon ist OilonTM, welches von Nylacast erhältlich ist, das ein flüssiges Schmiermittel umfasst und die folgenden Kennzeichen aufweist:
    • • Shore-Härte D bei 23°C von 80–85 (ASTM D638)
    • • Druckfestigkeit bei 23°C von 670–810 kg/cm2 (BS303)
    • • Biegefestigkeit bei 23°C von 770–1270 kg/cm2 (BS303)
    • • Reibungskoeffizient von 0,13 bis 0,14 (Nylon auf Stahl)
    • • Zugfestigkeit bei 23°C von 720–900 kg/cm2 (ASTM D63.8)
    • • Schlagzug von 660–1100 Joule/cm2 (ASTM D676) Abnutzungsverlust von ≤ 0,1 mg/km unter Testbedingungen von 55 m (min)–1 MPa
  • Ein anderes bevorzugtes geschmiertes Nylon ist Nyloil-FG, welches von Cast Nylons, USA, erhältlich ist.
  • Die Verwendung von Nylacast's Nylube CF016TM ist im erfindungsgemäßen Verfahren wegen der fast vernachlässigbaren Abnützung bei sehr hohen Beladungen besonders bevorzugt.
  • Vorzugsweise ist die im erfindungsgemäßen Verfahren verwendete Dispersionsmühle eine Perlmühle. Eine geeignete Perlmühle ist die AP0010 Mühle von Nylacast Ltd., Leicester, GB. Perlmühlen, welche von anderen, wie zum Beispiel Dena Systems BK Ltd., Barnsley, GB oder Drais, GmbH, Mannheim, Deutschland hergestellt werden, könnten auch zur Nassvermahlung von Arzneistoffen verwendet werden.
  • In dieser Ausführungsform umfassen die Rührvorrichtungen geeigneterweise Schaufeln, Stifte oder Scheiben oder eine Kombination von diesen. Eine günstige Rührvorrichtung ist eine oder sind mehrere sich drehende Schaufel(n). Die Perlen können aus Polystyrol, Glas, Zirconiumoxid, welches mit Magnesiumoxid stabilisiert ist, Zirconiumoxid, welches mit Yttrium stabilisiert ist, Zirconiumoxid, welches mit Cer stabilisiert ist, Zirconiumsilicat, Zirconiumdioxid-Aluminiumdioxid, Edelstahl, Titan oder Aluminium gefertigt sein. Besonders geeignet zur erfindungsgemäßen Verwendung sind Perlen, welche aus Zirconiumoxid, welches mit Yttrium stabilisiert ist, gefertigt sind. Perlen, welche zur Verwendung in dieser erfindungsgemäßen Ausführungsform geeignet sind, wie zum Beispiel jene, welche vorstehend aufgelistet sind, sind in einer Vielfalt an Größen erhältlich. Im Allgemeinen können kugelförmige Perlen mit einem mittleren Durchmesser von bis zu etwa 5 mm verwendet werden, aber gute Ergebnisse werden erreicht, wenn die Perlen einen mittleren Durchmesser von weniger als 2 mm, vorzugsweise etwa 0,1 bis etwa 1,25 mm aufweisen.
  • In dieser erfindungsgemäßen Ausführungsform wird vorzugsweise eine Mühle, umfassend eine Vielzahl von Mahlkammern, verwendet. Diese Kammern sollten in flüssiger Verbindung miteinander sein, wie vorstehend beschrieben. Zum Beispiel kann eine Perlmühle 2–10 Mahlkammern umfassen, wobei die genaue Anzahl an Mahlkammern so ausgewählt wird, dass die Verarbeitungszeit und, abhängig von der Größe der Arzneistoffteilchen, sowohl die grobkörnige Suspension des Arzneistoffes als auch die gewünschte so erhaltene vermahlene Zubereitung optimiert werden. Variable Perlladungen und/oder Motorgeschwindigkeiten werden ausgewählt, um den Vermahlungsprozess zu optimieren.
  • In erfindungsgemäßen Ausführungsformen, bei welchen die Dispersionsmühle eine Perlmühle mit einer Vielzahl an Mahlkammern ist, werden zusätzliche Vorteile erreicht, falls der mittlere Durchmesser der Mahlperlen in einer ersten Mahlkammer kleiner ist als der mittlere Durchmesser der Mahlperlen in einer zweiten Mahlkammer, wobei die zweite Mahlkammer stromaufwärts der ersten Mahlkammer ist. Zum Beispiel kann der mittlere Durchmesser der Mahlperlen in der ersten Mahlkammer größer sein als der mittlere Durchmesser der Perlen in der folgenden Mahlkammer. In einer besonders bevorzugten Ausführungsform ist der mittlere Durchmesser in den nachfolgenden Mahlkammern verringert, d. h. jede Mahlkammer enthält im Mittel Perlen, welche in der Größe ähnlich wie oder kleiner als die in der vorhergehenden Mahlkammer sind. Dies ermöglicht, dass kleinere Teilchengrößen des Arzneistoffs ohne Anstieg des Verunreinigungsgrads aus den Mahlkörpern oder der Kammer erreicht werden.
  • In erfindungsgemäßen Ausführungsformen, bei welchen die Dispersionsmühle eine Perlmühle mit einer Vielzahl an Mahlkammern ist, kann der Arzneistoff durch alle Kammern zirkuliert werden. In einer anderen Ausführungsform kann durch Isolieren einer oder mehrerer der Mahlkammern die Anzahl von Mahlkammern, durch welche der Arzneistoff zirkuliert wird, auf eins oder einige der Gesamtanzahl der Mahlkammern in der Perlmühle verringert werden. Ohne Rücksicht auf die Anzahl der Mahlkammern, durch welche der Arzneistoff zirkuliert wird, kann der Arzneistoff gerade einmal oder eine Anzahl von Malen durch die Perlmühle gelassen werden, bevor er weiter verarbeitet wird. In anderen Worten, der Arzneistoff kann in einem Einschritt- oder Mehrschrittverfahren nassvermahlen werden. In Mehrschrittverfahren können die Anzahl und/oder die Anordnung der Mahlkammern, durch welche der Arzneistoff zirkuliert wird, von Zyklus zu Zyklus variieren. Vorzugsweise wird der Arzneistoff durch alle Kammern nacheinander nur einmal zirkuliert. Dieses Einschrittverfahren bietet die Vorteile von kürzerer Verarbeitungszeit und dem minimalen Kontakt des Arzneistoffes mit den Mahlperlen und den Kammeroberflächen, wobei die Verunreinigung verringert wird.
  • Das erfindungsgemäße Verfahren kann den weiteren Schritt des Trocknens des Arzneistoffes umfassen. Mit „Trocknen" ist das Entfernen von jeglichem Wasser oder anderem flüssigen Vehikel, welches während des Verfahrens verwendet wurde, um den Arzneistoff in flüssiger Suspension oder Lösung zu halten, gemeint. Dieser Trocknungsschritt kann jedes im Fachgebiet bekannte Trocknungsverfahren, einschließlich Gefriertrocknen, Sprühgranulierung oder Sprühtrocknen sein. Von diesen Verfahren wird das Sprühtrocknen besonders bevorzugt. Alle diese Techniken sind im Fachgebiet gut bekannt. Sprühtrocknen/Fließbettgranulation der vermahlenen Zusammensetzungen wird am geeignetsten unter Verwendung eines Sprühtrockners, wie zum Beispiel einem Mobile Minor Spray Dryer [Niro, Dänemark] oder einem Fließbetttrockner, wie zum Beispiel jenen, welche von Glatt, Deutschland hergestellt werden, durchgeführt.
  • Eine zweite erfindungsgemäße Ausführungsform stellt eine fein vermahlene Zubereitung eines Arzneistoffes bereit, welche durch das Verfahren gemäß der ersten erfindungsgemäßen Ausführungsform erhältlich ist. In dieser erfindungsgemäßen Ausführungsform beträgt die effektive mittlere Teilchengröße (D95–D99) der Zubereitung typischerweise weniger als etwa 3000 nm, wie zum Beispiel im Bereich von 400 nm bis etwa 2500 nm. Häufig ist die effektive mittlere Teilchengröße der Zubereitung im Bereich von 450 bis 1200 nm. Die Teilchengrößenverteilungen der Suspensionsformulierungen können durch eine Anzahl an analytischen Techniken, wie zum Beispiel Laserbeugung oder Photonen-Korrelationsspektroskopie, bestimmt werden. Zum Beispiel kann eine Malvern-Laser-Beugungseinheit, Master Sizer S Model S4700, von Malvern Instruments Ltd., Malvern, England eingesetzt werden, um die fein vermahlenen Suspensionen zu bestimmen, oder ein spektroskopisches Photonen-Korrelations-Gerät, wie zum Beispiel der Malvern Zetasizer 5000, auch von Malvern Instruments Ltd., Malvern, England kann eingesetzt werden, um die fein vermahlenen Suspensionen zu bestimmen. Zusätzlich kann jede andere Teilchengrößentechnik mit ausreichender Empfindlichkeit und Auflösung für Nanoteilchen verwendet werden.
  • In dieser erfindungsgemäßen Ausführungsform ist der Verunreinigungsgrad an Mahlkörpern in der festen (getrockneten) Arzneistoffzubereitung, zum Beispiel einem sprühgetrockneten Pulver, typischerweise ≤ 20 ppm, noch typischer ≤ 10 ppm, sogar noch typischer ≤ 5 ppm. Für eine nassvermahlene Arzneistoffzubereitung, welche in Konzentrationen zwischen 1 und 30% Gew./Gew. in einer wässrigen Aufschlämmung mit zwischen 0,1 und 10% Gew./Gew. Stabilisator in einer wässrigen Aufschlämmung, vorliegt, sind diese Verunreinigungsgrade typischerweise zwischen 8 und 0,2 ppm, noch typischer zwischen 4 und 0,1 ppm und sogar noch typischer zwischen 2 und 0,05 ppm.
  • Ein unerwarteter Vorteil der vorliegenden Erfindung ist, dass Arzneistoffzubereitungen, welche unter Verwendung der erfindungsgemäßen Vermahlung hergestellt werden, keine nachweisbaren Verunreinigungsgrade aus den Mühlenbestandteilen (wobei der Quantifizierungsgrad 0,1 ppm ist) enthalten. Der gesamte Verunreinigungsgrad aus der Vermahlung ist untersucht worden, und überraschenderweise sind die Verteilungen aus den polymeren Bestandteilen der Mühle im Wesentlichen kleiner als 0,1 ppm, daher ist die gesamte Verunreinigung des Verfahrens typischerweise ≤ 20 ppm, vorzugsweise ≤ 10 ppm, stärker bevorzugt ≤ 5 ppm.
  • In dieser erfindungsgemäßen Ausführungsform kann der Arzneistoff zum Beispiel Nabumeton oder trans-6-Acetyl-4S-(4-fluorbenzoylamino)-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-3R-ol sein.
  • In einer dritten Ausführungsform stellt die vorliegende Erfindung ein Arzneimittel, umfassend eine fein vermahlene Zubereitung eines Arzneistoffes, welche gemäß dem erfindungsgemäßen Verfahren hergestellt wurde, bereit. Zusammensetzungen werden durch Beimengen hergestellt und sind daher geeigneterweise für die orale oder parenterale Verabreichung angepasst. Die Zusammensetzungen können in Form von Tabletten, Kapseln, rekonstituierbaren Pulvern oder Zäpfchen sein. Oral verabreichbare Zusammensetzungen werden bevorzugt.
  • Tabletten und Kapseln zur oralen Verabreichung werden gewöhnlich in einer Einheitsdosisform vorgelegt und enthalten herkömmliche Exzipienten, wie zum Beispiel Bindemittel, Füllstoffe und Verdünnungsmittel (Tablettier- oder Verdichtungshilfen), Gleitmittel, Sprengmittel, Farbstoffe, Aromastoffe und Netzmittel. Die Tabletten können gemäß den im Fachgebiet gut bekannten Techniken überzogen werden.
  • Die festen oralen Zusammensetzungen können durch die herkömmliche Verfahren des Mischens, Füllens, Tablettierens oder dergleichen hergestellt werden. Wiederholte Mischungsarbeitsschritte können verwendet werden, um den Wirkstoff überall auf jenen Zusammensetzungen, welche große Mengen an Füllstoffen verwenden, zu verteilen. Derartige Arbeitsschritte sind im Fachgebiet natürlich gut bekannt.
  • Orale Formulierungen schließen auch herkömmliche Formulierungen mit kontrollierter Freisetzung, wie zum Beispiel Tabletten oder Pellets, Kügelchen oder Körner mit einer verzögerten Freisetzung oder einem magensaftresistenten Bezug oder anderweitig zur Kontrolle der Freisetzung des Wirkstoffes modifiziert, zum Beispiel durch den Einschluss von Gel-bildenden Polymeren oder Matrix-bildenden Wachsen, ein.
  • Vorteilhafterweise ist ein Netzmittel in der Zusammensetzung eingeschlossen, um die gleichmäßige Verteilung der erfindungsgemäßen Verbindung zu erleichtern.
  • Die erfindungsgemäßen Zusammensetzungen sind vorzugsweise zur oralen Verabreichung angepasst. Die Zusammensetzungen werden vorzugsweise in einer Einheitsdosisform vorgelegt. Eine derartige Zusammensetzung wird vorzugsweise 1 bis 2 Mal täglich genommen. Die bevorzugten Dosierungsformen schließen Tabletten oder Kapseln ein. Die erfindungsgemäßen Zusammensetzungen können durch herkömmliche Verfahren der Beimengung formuliert werden, wie zum Beispiel Mischen, Füllen und Verdichten. Geeignete pharmazeutisch verträgliche Träger zur Verwendung in dieser Erfindung schließen Verdünnungsmittel, Füllstoffe, Bindemittel und Sprengmittel ein.
  • Für ein besseres Verständnis der vorliegenden Erfindung und um zu veranschaulichen, wie sie ausgeführt wird, wird nun als Beispiel eine Bezugnahme auf die begleitenden Zeichnungen gemacht, bei welchen:
  • 1 eine Dispersionsmühle ist, welche in Übereinstimmung mit einer bevorzugten erfindungsgemäßen Ausführungsform verwendet werden kann.
  • 2 eine andere Mahlanordnung ist.
  • Unter Bezugnahme auf 1 umfasst eine Mühle in Übereinstimmung mit der vorliegenden Erfindung zwei Mahlkammern (1, 2), die jeweils eine Schaufel (3) aufweisen, welche von einem Motor (5) angetrieben wird. Die Kammern (1, 2) und Schaufeln (3, 4) sind aus Nylube CF016 geformt. Die erste Kammer ist über Röhren (9, 11) in Flüssigkeitsverbindung mit einem Reservoir (7) und der zweiten Kammer (2). Jede Röhre (9, 11) ist mit einem Inline-Mischer (13, 15) ausgestattet. Die Röhre welche das Reservoir und die erste Kammer (9) verbindet, ist auch mit einer geeigneten Pumpe ausgestattet, wie zum Beispiel einer Luftpumpe (16), welche kraftvoll genug ist, flüssiges Medium rund um die gesamte Mühle zu pumpen. Das Reservoir enthält eine Mischvorrichtung (17), welche bei Verwendung eine flüssige Suspension des grobkörnigen Arzneistoffs (18) aufrechterhält. Jede Mahlkammer (1, 2) enthält eine Menge an mit Yttrium stabilisierten Zirconiumoxidperlen (nicht gezeigt) welche durch Siebe (19, 21) zurückbehalten werden. Eine Ausgangsröhre (23) verbindet die zweite Mahlkammer (2) mit einer Rezirkularisierungsröhre (24), welche mit dem Reservoir (7) verbunden ist. Die Rezirkularisierungsröhre (24) enthält einen Hahn (25). Ein Sammelreservoir (27) wird bereitgestellt, um die nano-vermahlene Arzneistoffsuspension (29) zu sammeln.
  • Bei der Verwendung wird das Reservoir (7) mit grobkörniger Arzneistoffsuspension in einem flüssigen Medium (18) beladen und durch die Mischvorrichtung (17) in Suspension gehalten. Die Suspension des grobkörnigen Arzneistoffes wird durch die Luftpumpe (16) entlang der Röhre (9) durch den ersten Inline-Mischer (13) gepumpt, was Agglomerate aus der Suspension entfernt. Die superfeine Dispersion tritt dann in die erste Mahlkammer (1) ein. In der ersten Mahlkammer mahlt die kombinierte Wirkung der Schaufel (3), wie sie durch den Motor (5) angetrieben ist, und der Perlen (nicht gezeigt) die grobkörnige Arzneistoffsuspension für eine vorher festgelegt Dauer, welche durch die Arbeitsweise der Pumpe (16) kontrolliert wird. Diese teilweise vermahlene Dispersion wird dann durch einen weiteren Inline-Mischer (15) und die zweite Mahlkammer (2) gepumpt, bevor sie die zweite Mahlkammer durch die Ausgangsröhre (23) verlässt. Diese nano-vermahlene Suspension des Arzneistoffes (29) kann dann entweder über die Rezirkularisierungsröhre (24) zurück in das erste Reservoir (7) rezirkularisiert werden, oder, falls der Hahn (25) geöffnet wird, in das Sammelreservoir (27) entleert werden.
  • In einer anderen Mahlanordnung wird eine gleiche Anzahl an Mahlkammern (31) und Luftpumpen (16) in Serie angeordnet (siehe 2).
  • Die folgenden Beispiele sind für die gegenwärtige Erfindung veranschaulichend.
  • Beispiele
  • Beispiel 1
  • Eine Charge mit 200 kg einer wässrigen Suspension, umfassend 20% Gew./Gew. 6-Acetyl-3,4-dihydro-2,2-dimethyl-trans(+)-4-(4-fluorbenzoylamino)-2H-benzo[b]pyran-3-ol (für die Herstellung siehe Beispiel 20 von WO 92/22293), 1,5% Gew./Gew. Hydroxypropylmethylcellulose, 0,2% Gew./Gew. Natriumlaurylsulfat und 5,0% Gew./Gew. Mannitol wurde durch eine Dena DS-1P5 Perlmühle gelassen. Fünf 8 l Mahlkammern, welche aus Nylacast Nylube gefertigt waren, wurden in einer Einschrittkonfiguration verwendet, wobei jede Kammer 85 Vol-% an mit Yttrium-stabilisierten Zirconiumoxidperlen (von Tosoh, Japan) enthielt. Die folgenden Perlengrößen wurden angewendet: Kammern eins bis einschließlich fünf enthielten 1,0 mm, 0,8 mm, 0,65 mm und 2 Kammern mit jeweils 0,4 mm. Die Charge wurde mit 2,91 pro Minute verarbeitet, mit einer Verweilzeit innerhalb der Mühle von 5 Minuten und einer Chargenverarbeitungszeit von 70 Minuten. Der Kammerdruck während des Verarbeitens variierte zwischen 2 und 3 bar [28 bis 42 psi]. Die Ausbeute überstieg 85%. Die fein gemahlene Suspension wurde nachfolgend sprühgetrocknet.
  • Die Verunreinigungsgrade der Mahlkörper im sprühgetrockneten Pulver waren < 3 ppm Zirconium (Zr) und < 1 ppm Yttrium (Y).
  • Die unverarbeitete Teilchengröße des Arzneistoffes betrug etwa 1 mm, und das Produkt wies eine mittlere Teilchengröße von 0,5 Mikrometer auf, wie durch Laserbeugung, welche mit dem Brechungsindex korrigiert wurde, gemessen wurde.
  • Beispiel 2
  • Eine Charge mit 200 kg einer wässrigen Suspension, welche 30% Gew./Gew. 4-(6'-Methoxy-2'-naphthyl)-butan-2-on (Nabumeton, für die Herstellung siehe US Patent Nr. 4,420,639), Gew./Gew. Natriumlaurylsulfat, 3% Gew./Gew. Hydroxypropylmethylcellulose und 4% Gew./Gew. Mannitol enthielt, wurde durch eine Dena DS-1P5 Perlmühle gelassen. Fünf aus Nylacast Nylube gefertigte 81 Mahlkammern wurden in einer Einschrittkonfiguration verwendet, wobei jede Kammer 70 Vol-% an mit Yttrium-stabilisierten Zirconiumoxidperlen (von Tosoh, Japan) enthielt. Die folgenden Perlengrößen wurden eingesetzt: Kammern eins bis einschließlich fünf enthielten 1,0 mm, 0,8 mm, 0,65 mm und 2 Kammern mit jeweils 0,4 mm. Die Charge wurde mit 1,5 l pro Minute verarbeitet, mit einer Verweilzeit innerhalb der Mühle von 10 Minuten und einer Chargenverarbeitungszeit von 2 1/4 Stunden. Der Kammerdruck während des Verarbeitens variierte zwischen 2 und 3 bar [28 bis 42 psi]. Die Ausbeute überstieg 85%. Die fein vermahlene Suspension wurde nachfolgend sprühgetrocknet.
  • Die Verunreinigungsgrade der Mahlkörper im sprühgetrockneten Pulver betrugen < 3 ppm Zirconium (Zr) und < 1 ppm Yttrium (Y).
  • Die unverarbeitete Teilchengröße des Arzneistoffes betrug etwa 1 mm, und das Produkt wies eine mittlere Teilchengröße von 0,9 Mikrometer auf, wie durch Laserbeugung gemessen wurde.
  • Eine Untersuchung über die potentielle Produktverunreinigung aus auf Polymer-basierenden Mühlenbestandteilen durch die Rubber and Plastic Research Association (Shawbury, GB) wurde durchgeführt unter heftigen Extraktionsverfahren und Analyse durch Gaschromatographie, Hochdruckflüssigchromatographie und Massenspektrometrie. Die Bestandteile schlossen die Nylonmahlkammer und die Schaufeln; PTFE, Viton und EPDM O-Ringe und den PEEK gefüllten PTFE Gap-Abscheider ein. Obwohl einige extrahierbare Spezies identifiziert werden konnten, wurde durch die Analyse des sprühgetrockneten Pulvers gefunden, dass es keine Übertragung von irgendeiner Mühlenbestandteilspezies auf das Produkt gab. Die Grenze der Quantifizierung für jede extrahierbare Spezies war 40 ppb und die Grenze der Detektion war 20 ppb. Die Gesamtmenge an extrahierter Spezies im spühgetrockneten Produkt ist weniger als 0,1 ppm.

Claims (16)

  1. Verfahren zur Herstellung einer fein vermahlenen Zubereitung eines Arzneistoffes umfassend Nassvermahlen einer Suspension des Arzneistoffes in einer Mühle, welche mindestens eine Kammer und eine Rührvorrichtung aufweist, wobei die Kammer(n) und/oder die Rührvorrichtung Nylon mit eingearbeitetem Gleitmittel umfasst (umfassen).
  2. Verfahren gemäß Anspruch 1, wobei die Kammer und die Rührvorrichtung Nylon mit eingearbeitetem Gleitmittel umfassen.
  3. Verfahren gemäß Anspruch 1 oder Anspruch 2, wobei das geschmierte Nylon ein oder mehrere feste Gleitmittel umfasst.
  4. Verfahren gemäß einem der vorstehenden Ansprüche, wobei das geschmierte Nylon ein oder mehrere flüssige Gleitmittel umfasst.
  5. Verfahren gemäß einem der vorstehenden Ansprüche, wobei das geschmierte Nylon mehr als ein Gleitmittel umfasst.
  6. Verfahren gemäß einem der vorstehenden Ansprüche, wobei das geschmierte Nylon einen Reibungskoeffizienten von ≤ 0,35 aufweist.
  7. Verfahren gemäß einem der vorstehenden Ansprüche, wobei das geschmierte Nylon NylubeTM, OilonTM oder Nyloil-FGTM ist.
  8. Verfahren gemäß einem der vorstehenden Ansprüche, welches weiterhin den Schritt Trocknen des Arzneistoffes umfasst.
  9. Fein vermahlene Zubereitung eines Arzneistoffes, welche durch das Verfahren nach einem der Ansprüche 1 bis 8 erhältlich ist, wobei der Verunreinigungsgrad der Mahlkörper in der festen, trockenen Arzneimittelzubereitung ≤ 20 ppm beträgt.
  10. Fein vermahlene Zubereitung gemäß Anspruch 9, wobei der Verunreinigungsgrad der Mahlkörper ≤ 10 ppm ist.
  11. Fein vermahlene Zubereitung gemäß Anspruch 9, wobei der Verunreinigungsgrad der Mahlkörper ≤ 5 ppm ist.
  12. Fein vermahlene Zubereitung gemäß Anspruch 9, wobei der gesamte Verunreinigungsgrad in dem Verfahren ≤ 20 ppm ist.
  13. Fein vermahlene Zubereitung gemäß Anspruch 9, wobei der gesamte Verunreinigungsgrad in dem Verfahren ≤ 10 ppm ist.
  14. Fein vermahlene Zubereitung gemäß Anspruch 9, wobei der gesamte Verunreinigungsgrad in dem Verfahren ≤ 5 ppm ist.
  15. Arzneimittel, welches eine fein vermahlene Zubereitung eines Arzneistoffes nach einem der Ansprüche 9 bis 14 umfasst.
  16. Fein vermahlene Zubereitung gemäß einem der Ansprüche 9 bis 14 oder Zusammensetzung nach Anspruch 15, wobei der Arzneistoff Nabumeton oder trans-6-Acetyl-4S-(4-fluorbenzoylamino)-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-3R-ol ist.
DE60105023T 2000-06-28 2001-06-22 Nassvermahlungsverfahren Expired - Lifetime DE60105023T2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0015856A GB0015856D0 (en) 2000-06-28 2000-06-28 Wet milling process
GB0015856 2000-06-28
GB0112496A GB0112496D0 (en) 2001-05-22 2001-05-22 Wet milling process
GB0112496 2001-05-22
PCT/EP2001/007085 WO2002000196A2 (en) 2000-06-28 2001-06-22 Wet milling process

Publications (2)

Publication Number Publication Date
DE60105023D1 DE60105023D1 (de) 2004-09-23
DE60105023T2 true DE60105023T2 (de) 2005-08-18

Family

ID=26244560

Family Applications (1)

Application Number Title Priority Date Filing Date
DE60105023T Expired - Lifetime DE60105023T2 (de) 2000-06-28 2001-06-22 Nassvermahlungsverfahren

Country Status (25)

Country Link
US (2) US20040089753A1 (de)
EP (1) EP1294358B1 (de)
JP (1) JP4188078B2 (de)
KR (1) KR100786927B1 (de)
CN (1) CN1321628C (de)
AR (1) AR029284A1 (de)
AT (1) ATE273695T1 (de)
AU (2) AU2002215608B2 (de)
BR (1) BR0111747A (de)
CA (1) CA2413330A1 (de)
CZ (1) CZ303572B6 (de)
DE (1) DE60105023T2 (de)
ES (1) ES2225624T3 (de)
HK (1) HK1055242A1 (de)
HU (1) HU230396B1 (de)
IL (2) IL153231A0 (de)
MX (1) MXPA03000051A (de)
MY (1) MY128806A (de)
NO (1) NO333747B1 (de)
NZ (1) NZ522783A (de)
PL (1) PL202623B1 (de)
PT (1) PT1294358E (de)
SI (1) SI1294358T1 (de)
TW (1) TWI290836B (de)
WO (1) WO2002000196A2 (de)

Families Citing this family (338)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL154685A0 (en) * 2000-10-20 2003-09-17 Biovitrum Ab 2-,3-,4-, or 5-substituted-n1-(benzensulfonyl) indoles and their use in therapy
GB0112497D0 (en) * 2001-05-22 2001-07-11 Smithkline Beecham Plc Formulation
GB0206200D0 (en) * 2002-03-15 2002-05-01 Glaxo Group Ltd Pharmaceutical compositions
GB0209022D0 (en) 2002-04-19 2002-05-29 Imp College Innovations Ltd Compounds
UY27939A1 (es) 2002-08-21 2004-03-31 Glaxo Group Ltd Compuestos
US7140567B1 (en) * 2003-03-11 2006-11-28 Primet Precision Materials, Inc. Multi-carbide material manufacture and use as grinding media
CN1835830A (zh) 2003-06-17 2006-09-20 法布罗技术有限公司 微粒木材防腐剂及其制造方法
GB0320522D0 (en) * 2003-09-02 2003-10-01 Glaxo Group Ltd Formulation
WO2005023257A1 (en) 2003-09-03 2005-03-17 Glaxo Group Limited Novel process, salts, compositions and use
US20050252408A1 (en) * 2004-05-17 2005-11-17 Richardson H W Particulate wood preservative and method for producing same
US7578455B2 (en) * 2004-08-09 2009-08-25 General Motors Corporation Method of grinding particulate material
NZ554680A (en) 2004-10-14 2010-10-29 Osmose Inc Micronized wood preservative formulations in organic carriers
EP1839502A4 (de) * 2004-12-07 2010-03-24 Ajinomoto Kk Feines aminosäurepulver und suspension davon
US8703099B2 (en) 2005-02-24 2014-04-22 Dr Pharma Nova, Llc Registry method and control system for DEA schedule II-V medicines
US7547679B2 (en) 2005-05-10 2009-06-16 Glaxosmithkline Istrazivacki Center Zagreb D.O.O Ether linked macrolides useful for the treatment of microbial infections
RS54876B1 (sr) 2005-05-10 2016-10-31 Incyte Holdings Corp Modulatori indoleamina 2,3-dioksigenaze i metode za upotrebu istih
EP2270014A1 (de) 2005-09-22 2011-01-05 Incyte Corporation Azepinhemmer von Janus-Kinasen
MY159449A (en) 2005-12-13 2017-01-13 Incyte Holdings Corp Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors
JP5294874B2 (ja) 2005-12-20 2013-09-18 インサイト・コーポレイション インドールアミン2,3−ジオキシゲナーゼのモジュレーターとしてのn−ヒドロキシアミジノヘテロ環
GB0600928D0 (en) 2006-01-17 2006-02-22 Novacta Biosystems Ltd Improvements relating to lantibiotics
DE102006028590A1 (de) * 2006-06-22 2007-12-27 Forschungszentrum Karlsruhe Gmbh Vorrichtung und Verfahren zur Herstellung keramischer Granulate
KR20090025261A (ko) 2006-06-23 2009-03-10 인사이트 코포레이션 Hm74a 아고니스트로서의 퓨리논 유도체
JP5274455B2 (ja) 2006-06-23 2013-08-28 インサイト コーポレイション Hm74aアゴニストとしてのプリノン誘導体
US7828543B2 (en) * 2006-07-27 2010-11-09 Casa Herrera, Inc. Dough sheeter cutter roller
TW200817410A (en) 2006-08-07 2008-04-16 Incyte Corp Triazolotriazines as kinase inhibitors
JP2010501591A (ja) 2006-08-23 2010-01-21 インテレクト・ニューロサイエンシズ・インコーポレーテッド 3−(3−インドリル)プロピオン酸カルシウム塩およびそれから3−(3−インドリル)プロピオン酸の遊離酸を作る方法
US20080125470A1 (en) 2006-09-19 2008-05-29 Incyte Corporation N-hydroxyamidinoheterocycles as modulators of indoleamine 2,3-dioxygenase
CL2007002650A1 (es) 2006-09-19 2008-02-08 Incyte Corp Compuestos derivados de heterociclo n-hidroxiamino; composicion farmaceutica, util para tratar cancer, infecciones virales y desordenes neurodegenerativos entre otras.
CA2673038C (en) 2006-12-22 2015-12-15 Incyte Corporation Substituted tricyclic heteroaryl compounds as janus kinase inhibitors
US7883039B2 (en) * 2007-02-27 2011-02-08 Collette Nv Continuous granulating and drying apparatus including measurement units
JP2008235481A (ja) * 2007-03-19 2008-10-02 Nippon Chem Ind Co Ltd 半導体ウエハ研磨用組成物、その製造方法、及び研磨加工方法
CL2008001709A1 (es) 2007-06-13 2008-11-03 Incyte Corp Compuestos derivados de pirrolo [2,3-b]pirimidina, moduladores de quinasas jak; composicion farmaceutica; y uso en el tratamiento de enfermedades tales como cancer, psoriasis, artritis reumatoide, entre otras.
TR201903488T4 (tr) 2007-06-13 2019-04-22 Incyte Holdings Corp Janus kinaz inhibitörü (r)-3-(4-(7h-pirolo[2,3-d]pirimidin-4-il)-1h-pirazol-1-il)-3-siklopentilpropannitril tuzlarının kullanımı.
CL2008001839A1 (es) 2007-06-21 2009-01-16 Incyte Holdings Corp Compuestos derivados de 2,7-diazaespirociclos, inhibidores de 11-beta hidroxil esteroide deshidrogenasa tipo 1; composicion farmaceutica que comprende a dichos compuestos; utiles para tratar la obesidad, diabetes, intolerancia a la glucosa, diabetes tipo ii, entre otras enfermedades.
GB0714030D0 (en) 2007-07-18 2007-08-29 Novacta Biosystems Ltd The use of type-B lantibiotic-based compounds having antimicrobial activity
GB0714029D0 (en) 2007-07-18 2007-08-29 Novacta Biosystems Ltd Lantibiotic-based compounds having antimicrobial activity
KR20100052507A (ko) 2007-08-02 2010-05-19 레코르다티 아일랜드 리미티드 mGlu5 길항제로서의 신규 헤테로 고리 화합물
CN101910152B (zh) 2007-11-16 2014-08-06 因塞特公司 作为janus激酶抑制剂的4-吡唑基-n-芳基嘧啶-2-胺和4-吡唑基-n-杂芳基嘧啶-2-胺
UA101493C2 (ru) 2008-03-11 2013-04-10 Инсайт Корпорейшн Производные азетидина и циклобутана как ингибиторы jak
WO2009132202A2 (en) 2008-04-24 2009-10-29 Incyte Corporation Macrocyclic compounds and their use as kinase inhibitors
CN108586463A (zh) 2008-05-21 2018-09-28 因西特控股公司 2-氟-N-甲基-4-[7-(喹啉-6-基甲基)咪唑并[1,2-b][1,2,4]三嗪-2-基]苯甲酰胺的盐及与其相关的制备方法
MY171866A (en) 2008-07-08 2019-11-05 Incyte Holdings Corp 1,2,5-oxadiazoles as inhibitors of indoleamine 2,3-dioxygenase
WO2010077839A1 (en) 2008-12-15 2010-07-08 Wyeth Llc (Formerly Known As Wyeth) Substituted oxindol cb2 agonists for pain treatment
WO2010090680A1 (en) 2008-12-15 2010-08-12 Wyeth Llc Substituted oxindole cb2 agonists
US8436008B2 (en) 2008-12-22 2013-05-07 Incyte Corporation Substituted heterocyclic compounds
JP5719312B2 (ja) 2009-01-14 2015-05-13 ノヴァクタ バイオシステムズ リミティッド デオキシアクタガルジン誘導体
GB0900599D0 (en) 2009-01-14 2009-02-18 Novacta Biosystems Ltd Treatment
US8765727B2 (en) 2009-01-23 2014-07-01 Incyte Corporation Macrocyclic compounds and their use as kinase inhibitors
CN102365098A (zh) * 2009-01-30 2012-02-29 明治制果药业株式会社 细粉状药物组合物
EP2393780A1 (de) 2009-02-04 2011-12-14 Recordati Ireland Limited Heterocyclische derivate als m-glu5-antagonisten
AU2010212183B2 (en) 2009-02-04 2014-07-10 Novacta Biosystems Limited Actagardine derivatives
WO2010093808A1 (en) 2009-02-11 2010-08-19 Reaction Biology Corp. Selective kinase inhibitors
WO2010100477A2 (en) 2009-03-03 2010-09-10 Shire Llc Amino acid and peptide carbamate prodrugs of tapentadol and uses thereof
US8481732B2 (en) 2009-03-20 2013-07-09 Incyte Corporation Substituted heterocyclic compounds
WO2010112942A1 (en) 2009-04-02 2010-10-07 Shire Llc Novel dicarboxylic acid linked amino acid and peptide prodrugs of opioids and uses thereof
WO2010135650A1 (en) 2009-05-22 2010-11-25 Incyte Corporation N-(HETERO)ARYL-PYRROLIDINE DERIVATIVES OF PYRAZOL-4-YL-PYRROLO[2,3-d]PYRIMIDINES AND PYRROL-3-YL-PYRROLO[2,3-d]PYRIMIDINES AS JANUS KINASE INHIBITORS
AR076920A1 (es) 2009-05-22 2011-07-20 Incyte Corp 3-(4-(7h-pirrolo(2,3-d)pirimidin-4-il)-1h-pirazol-1-il)octano-o heptano--nitrilo como inhibidores de jak
AU2010264703A1 (en) 2009-06-24 2012-02-02 Shire Llc Mexiletine amino acid and peptide prodrugs and uses thereof
AR077280A1 (es) 2009-06-29 2011-08-17 Incyte Corp Pirimidinonas como inhibidores de pi3k, y composiciones farmaceuticas que los comprenden
EP2453900A1 (de) 2009-07-17 2012-05-23 Shire LLC Neue carbamataminosäure- und peptid-prodrugs aus opioiden sowie ihre verwendung
EP2456434A1 (de) 2009-07-23 2012-05-30 Shire LLC Galantaminaminosäure- und peptid-prodrugs sowie ihre verwendung
EP2467362A4 (de) 2009-08-17 2013-06-26 Brigham & Womens Hospital Phosphatidylcholin-transferprotein-hemmer
AR078012A1 (es) 2009-09-01 2011-10-05 Incyte Corp Derivados heterociclicos de las pirazol-4-il- pirrolo (2,3-d) pirimidinas como inhibidores de la quinasa janus
WO2011029633A1 (en) 2009-09-14 2011-03-17 Recordati Ireland Limited Heterocyclic mglu5 antagonists
GB0916163D0 (en) 2009-09-15 2009-10-28 Shire Llc Prodrugs of guanfacine
WO2011044481A1 (en) 2009-10-09 2011-04-14 Incyte Corporation Hydroxyl, keto, and glucuronide derivatives of 3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US8759359B2 (en) 2009-12-18 2014-06-24 Incyte Corporation Substituted heteroaryl fused derivatives as PI3K inhibitors
AR079529A1 (es) 2009-12-18 2012-02-01 Incyte Corp Derivados arilo y heteroarilo sustituidos y fundidos como inhibidores de la pi3k
WO2011083304A1 (en) 2010-01-05 2011-07-14 Shire Llc Prodrugs of opioids and uses thereof
GB201001688D0 (en) 2010-02-02 2010-03-17 Novacta Biosystems Ltd Compounds
CA2789164A1 (en) 2010-02-02 2011-08-11 Novacta Biosystems Limited Lantibiotic salts
CN102844317B (zh) 2010-02-18 2015-06-03 因西特公司 作为Janus激酶抑制剂的环丁烷和甲基环丁烷衍生物
PT3050882T (pt) 2010-03-10 2018-04-16 Incyte Holdings Corp Derivados de piperidin-4-ilazetidina como inibidores de jak1
AR081823A1 (es) 2010-04-14 2012-10-24 Incyte Corp DERIVADOS FUSIONADOS COMO INHIBIDORES DE PI3Kd
EP2574168B9 (de) 2010-05-21 2016-10-05 Incyte Holdings Corporation Topische formulierung für einen jak-hemmer
WO2011163195A1 (en) 2010-06-21 2011-12-29 Incyte Corporation Fused pyrrole derivatives as pi3k inhibitors
MX2013000300A (es) 2010-07-09 2013-02-27 Recordati Ireland Ltd Nuevos compuestos espiroheterociclicos como antagonistas de mglu5.
GB201013507D0 (en) 2010-08-11 2010-09-22 Novacta Biosystems Ltd Compounds
GB201013513D0 (en) 2010-08-11 2010-09-22 Novacta Biosystems Ltd Formulations
GB201013509D0 (en) 2010-08-11 2010-09-22 Novacta Biosystems Ltd Compounds
GB201013508D0 (en) 2010-08-11 2010-09-22 Novacta Biosystems Ltd Compounds
CN103154012B (zh) 2010-08-24 2015-11-25 英皇创新有限公司 聚丙基醚亚胺的糖树状聚体
WO2012028629A1 (en) 2010-09-02 2012-03-08 Glaxo Group Limited 2 - (benzyloxy) benzamides as lrrk2 kinase inhibitors
JP2013538226A (ja) 2010-09-15 2013-10-10 シャイア エルエルシー グアンファシンのプロドラッグ
WO2012046062A1 (en) 2010-10-05 2012-04-12 Shire, Llc Use of prodrugs to avoid gi mediated adverse events
JP2014504260A (ja) * 2010-10-15 2014-02-20 グラクソ グループ リミテッド 集合ナノ粒子状薬物製剤、その製造及び使用
AU2011329734B2 (en) 2010-11-19 2015-05-28 Incyte Holdings Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
CA2818545C (en) 2010-11-19 2019-04-16 Incyte Corporation Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as jak inhibitors
CA2822070C (en) 2010-12-20 2019-09-17 Incyte Corporation N-(1-(substituted-phenyl)ethyl)-9h-purin-6-amines as pi3k inhibitors
US20120196933A1 (en) 2010-12-23 2012-08-02 Richard Franklin Mexiletine prodrugs
PL2665477T3 (pl) 2011-01-20 2016-05-31 Bionevia Pharmaceuticals Inc Kompozycje epalrestatu lub jego pochodnej o zmodyfikowanym uwalnianiu i sposoby ich stosowania
RU2013140467A (ru) 2011-02-02 2015-03-10 Когнишн Терапьютикс, Инк. Выделенные соединения из масла куркумы и способы применения
US9181375B2 (en) 2011-02-14 2015-11-10 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Fluorescent potassium ion sensors
KR20140007431A (ko) 2011-02-18 2014-01-17 알렉시온 파마 인터내셔널 에스에이알엘 몰리브도프테린 전구체 z 유도체들의 합성 방법
PT2675451E (pt) 2011-02-18 2015-10-16 Incyte Corp Terapia de combinação com inibidores mtor/jak
WO2012125629A1 (en) 2011-03-14 2012-09-20 Incyte Corporation Substituted diamino-pyrimidine and diamino-pyridine derivatives as pi3k inhibitors
WO2012135009A1 (en) 2011-03-25 2012-10-04 Incyte Corporation Pyrimidine-4,6-diamine derivatives as pi3k inhibitors
ES2560611T3 (es) 2011-06-20 2016-02-22 Incyte Holdings Corporation Derivados de fenil de azetidinilo, carboxamida de piridilo o pirazinilo como inhibidores de JAK
EP2729145A4 (de) * 2011-07-07 2014-12-10 Arqule Inc Pyrrolochinolinylpyrrolidin-2,5-dion-formulierungen sowie verfahren zu ihrer herstellung und verwendung
CA2844507A1 (en) 2011-08-10 2013-02-14 Novartis Pharma Ag Jak pi3k/mtor combination therapy
TW201313721A (zh) 2011-08-18 2013-04-01 Incyte Corp 作為jak抑制劑之環己基氮雜環丁烷衍生物
DK2751109T3 (en) 2011-09-02 2017-01-23 Incyte Holdings Corp HETEROCYCLYLAMINES AS PI3K INHIBITORS
UA111854C2 (uk) 2011-09-07 2016-06-24 Інсайт Холдінгс Корпорейшн Способи і проміжні сполуки для отримання інгібіторів jak
JP6073545B2 (ja) * 2011-10-04 2017-02-01 横浜油脂工業株式会社 リグナン類含有微粒子及び組成物
AR088320A1 (es) 2011-10-14 2014-05-28 Incyte Corp Derivados de isoindolinona y pirrolopiridinona como inhibidores de akt
AR090548A1 (es) 2012-04-02 2014-11-19 Incyte Corp Azaheterociclobencilaminas biciclicas como inhibidores de pi3k
RU2666963C2 (ru) 2012-04-13 2018-09-13 Глаксосмитклайн Интеллекчуал Проперти Дивелопмент Лимитед Агрегированные частицы
TW201406761A (zh) 2012-05-18 2014-02-16 Incyte Corp 做爲jak抑制劑之哌啶基環丁基取代之吡咯并吡啶及吡咯并嘧啶衍生物
CN107383009B (zh) 2012-06-13 2020-06-09 因塞特控股公司 作为fgfr抑制剂的取代的三环化合物
EP3524244A1 (de) 2012-08-29 2019-08-14 Icahn School of Medicine at Mount Sinai Benzothiazolderivate als sumo-aktivatoren
US9464093B2 (en) 2012-10-12 2016-10-11 Mayo Foundation For Medical Education And Research Substituted imidazo[4',5':4,5]cyclopenta[1,2-e]pyrrolo[1,2-a]pyrazines and oxazolo[4',5':4,5]cyclopenta[1,2-e]pyrrolo[1,2-a]pyrazines for treating brain cancer
CN104918945B (zh) 2012-11-01 2018-01-05 因赛特公司 作为jak抑制剂的三环稠合噻吩衍生物
BR112015010663B1 (pt) 2012-11-15 2022-12-06 Incyte Holdings Corporation Formas de dosagem oral de liberação sustentada, e uso de ruxolitinib ou de sal farmaceuticamente aceitável do mesmo
US9504691B2 (en) 2012-12-06 2016-11-29 Alcon Research, Ltd. Finafloxacin suspension compositions
US9278950B2 (en) 2013-01-14 2016-03-08 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as Pim kinase inhibitors
EA035929B1 (ru) 2013-01-15 2020-09-02 Инсайт Холдингс Корпорейшн ТИАЗОЛКАРБОКСАМИДЫ И ПИРИДИНКАРБОКСАМИДЫ, ИСПОЛЬЗУЕМЫЕ В КАЧЕСТВЕ ИНГИБИТОРОВ Pim-КИНАЗЫ
BR112015020572B1 (pt) * 2013-02-28 2022-02-22 Sun Chemical Corporation Processo contínuo para transformar sólido moído em dispersão líquida e aparelho
TW202214254A (zh) 2013-03-01 2022-04-16 美商英塞特控股公司 吡唑并嘧啶衍生物治療PI3Kδ相關病症之用途
UA121532C2 (uk) 2013-03-06 2020-06-10 Інсайт Холдінгс Корпорейшн Способи і проміжні сполуки при отриманні інгібітора jak
EP2968331B1 (de) 2013-03-14 2020-07-01 Icahn School of Medicine at Mount Sinai Pyrimidinverbindungen als kinaseinhibitoren
EP2970282B1 (de) 2013-03-15 2019-08-21 Incyte Holdings Corporation Tricyclische heterocyclen als bet-proteininhibitoren
SG11201508328PA (en) 2013-04-19 2015-11-27 Incyte Corp Bicyclic heterocycles as fgfr inhibitors
BR112015028501B8 (pt) 2013-05-17 2023-01-24 Incyte Corp Compostos derivados de bipirazol, seus sais, composição compreendendo o composto ou o sal, método de inibição in vitro de uma atividade de jak1, e processo de preparação de sal de ácido fosfórico
ES2635560T3 (es) 2013-07-08 2017-10-04 Incyte Holdings Corporation Heterociclos tricíclicos como inhibidores de la proteína NET
EP3721873A1 (de) 2013-08-07 2020-10-14 Incyte Corporation Darreichungsformen für einen jak1-inhibitor mit verzögerter freisetzung
MX2016002367A (es) 2013-08-23 2016-10-28 Incyte Corp Compuestos de carboxamida de furo y tienopiridina utiles como inhibidores de cinasas pim.
BR112016009786B1 (pt) 2013-11-08 2021-01-05 Incyte Holdings Corporation compostos inibidores de indoleamina 2,3-dioxigenase e seus processos de síntese
WO2015071841A1 (en) 2013-11-12 2015-05-21 Druggability Technologies Holdings Limited Complexes of dabigatran and its derivatives, process for the preparation thereof and pharmaceutical compositions containing them
WO2015081189A1 (en) 2013-11-26 2015-06-04 Incyte Corporation Bicyclic heterocycles as bet protein inhibitors
US20150148372A1 (en) 2013-11-26 2015-05-28 Incyte Corporation Bicyclic heterocycles as bet protein inhibitors
US9399640B2 (en) 2013-11-26 2016-07-26 Incyte Corporation Substituted pyrrolo[2,3-c]pyridines and pyrazolo[3,4-c]pyridines as BET protein inhibitors
WO2015095492A1 (en) 2013-12-19 2015-06-25 Incyte Corporation Tricyclic heterocycles as bet protein inhibitors
US10758569B2 (en) 2014-01-13 2020-09-01 The General Hospital Corporation Heteroaryl disulfide compounds as allosteric effectors for increasing the oxygen-binding affinity of hemoglobin
ES2721001T3 (es) 2014-01-31 2019-07-26 Cognition Therapeutics Inc Derivado de isoindolina, y composiciones y métodos para tratar una enfermedad neurodegenerativa
ES2901711T3 (es) 2014-02-13 2022-03-23 Incyte Corp Ciclopropilaminas como inhibidores de LSD1
EP3105219B9 (de) 2014-02-13 2018-10-03 Incyte Corporation Cyclopropylamine als lsd1-hemmer
ME03580B (de) 2014-02-13 2020-07-20 Incyte Corp Cyclopropylamine als lsd1-hemmer
US9527835B2 (en) 2014-02-13 2016-12-27 Incyte Corporation Cyclopropylamines as LSD1 inhibitors
LT3110409T (lt) 2014-02-28 2019-01-25 Incyte Corporation Jak1 inhibitoriai, skirti mielodisplastinių sindromų gydymui
KR20230044320A (ko) 2014-04-08 2023-04-03 인사이트 코포레이션 Jak 및 pi3k 억제제 조합에 의한 b-세포 악성종양의 치료
CN106414442B (zh) 2014-04-23 2019-03-15 因赛特公司 作为BET蛋白抑制剂的1H-吡咯并[2,3-c]吡啶-7(6H)-酮和吡唑并[3,4-c]吡啶-7(6H)-酮
EA201692193A1 (ru) 2014-04-30 2017-07-31 Инсайт Корпорейшн Способы получения ингибитора jak1 и его новых форм
TW201625641A (zh) 2014-05-22 2016-07-16 健臻公司 Nampt抑制劑及方法
US9498467B2 (en) 2014-05-30 2016-11-22 Incyte Corporation Treatment of chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) by inhibitors of JAK1
WO2015188015A1 (en) 2014-06-04 2015-12-10 Haro Pharmaceutical Inc. 18-20 member bi-polycyclic compounds
US10077277B2 (en) 2014-06-11 2018-09-18 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US9695180B2 (en) 2014-07-10 2017-07-04 Incyte Corporation Substituted imidazo[1,2-a]pyrazines as LSD1 inhibitors
WO2016007722A1 (en) 2014-07-10 2016-01-14 Incyte Corporation Triazolopyridines and triazolopyrazines as lsd1 inhibitors
WO2016007727A1 (en) 2014-07-10 2016-01-14 Incyte Corporation Triazolopyridines and triazolopyrazines as lsd1 inhibitors
WO2016007731A1 (en) 2014-07-10 2016-01-14 Incyte Corporation Imidazopyridines and imidazopyrazines as lsd1 inhibitors
US9580418B2 (en) 2014-07-14 2017-02-28 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as Pim kinase inhibitors
US9822124B2 (en) 2014-07-14 2017-11-21 Incyte Corporation Bicyclic heteroaromatic carboxamide compounds useful as Pim kinase inhibitors
TWI712603B (zh) 2014-09-15 2020-12-11 美商英塞特公司 作為bet蛋白抑制劑之三環雜環
EP3236967B1 (de) 2014-12-22 2019-10-16 SUDA Pharmaceuticals Ltd Vorbeugung und behandlung von metastasenbildenden erkrankungen bei krebspatienten mit thrombozytose
CN107406461B (zh) 2014-12-29 2020-03-13 雷科尔达蒂爱尔兰有限公司 杂环炔烃衍生物及其作为mGluR5受体调节剂的用途
US9586949B2 (en) 2015-02-09 2017-03-07 Incyte Corporation Aza-heteroaryl compounds as PI3K-gamma inhibitors
CN107438607B (zh) 2015-02-20 2021-02-05 因赛特公司 作为fgfr抑制剂的双环杂环
MA41551A (fr) 2015-02-20 2017-12-26 Incyte Corp Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4
TWI748941B (zh) 2015-02-27 2021-12-11 美商英塞特公司 Pi3k抑制劑之鹽及製備方法
SG11201708047UA (en) 2015-04-03 2017-10-30 Incyte Corp Heterocyclic compounds as lsd1 inhibitors
US20160362424A1 (en) 2015-05-11 2016-12-15 Incyte Corporation Salts of (s)-7-(1-(9h-purin-6-ylamino)ethyl)-6-(3-fluorophenyl)-3-methyl-5h-thiazolo[3,2-a]pyrimidin-5-one
WO2016183060A1 (en) 2015-05-11 2016-11-17 Incyte Corporation Process for the synthesis of a phosphoinositide 3-kinase inhibitor
US9988401B2 (en) 2015-05-11 2018-06-05 Incyte Corporation Crystalline forms of a PI3K inhibitor
US9540347B2 (en) 2015-05-29 2017-01-10 Incyte Corporation Pyridineamine compounds useful as Pim kinase inhibitors
US20180153835A1 (en) * 2015-06-05 2018-06-07 Lupin Limited Compositions of diclofenac acid
MY189367A (en) 2015-08-12 2022-02-08 Incyte Corp Salts of an lsd1 inhibitor
WO2017035366A1 (en) 2015-08-26 2017-03-02 Incyte Corporation Pyrrolopyrimidine derivatives as tam inhibitors
TWI734699B (zh) 2015-09-09 2021-08-01 美商英塞特公司 Pim激酶抑制劑之鹽
WO2017053706A1 (en) 2015-09-23 2017-03-30 The General Hospital Corporation Tead transcription factor autopalmitoylation inhibitors
TW201718546A (zh) 2015-10-02 2017-06-01 英塞特公司 適用作pim激酶抑制劑之雜環化合物
MA52119A (fr) 2015-10-19 2018-08-29 Ncyte Corp Composés hétérocycliques utilisés comme immunomodulateurs
AR106520A1 (es) 2015-10-29 2018-01-24 Incyte Corp Forma sólida amorfa de un inhibidor de proteína bet
PL3371190T3 (pl) 2015-11-06 2022-11-07 Incyte Corporation Związki heterocykliczne jako inhibitory pi3k-gamma
SG11201804152RA (en) 2015-11-19 2018-06-28 Incyte Corp Heterocyclic compounds as immunomodulators
WO2017091681A1 (en) 2015-11-24 2017-06-01 Aclaris Therapeutics, Inc. Selective kinase inhibitors
TW201726623A (zh) 2015-12-17 2017-08-01 英塞特公司 作為免疫調節劑之雜環化合物
EP4292650A3 (de) 2015-12-22 2024-02-28 Incyte Corporation Heterocyclische verbindungen als immunmodulatoren
AR107293A1 (es) 2016-01-05 2018-04-18 Incyte Corp COMPUESTOS DE PIRIDINA Y PIRIDIMINA COMO INHIBIDORES DE PI3K-g
WO2017141104A2 (en) 2016-02-18 2017-08-24 Immune Therapeutics, Inc. Method for inducing a sustained immune response
SG11201808582RA (en) 2016-03-28 2018-10-30 Incyte Corp Pyrrolotriazine compounds as tam inhibitors
AR109452A1 (es) 2016-04-22 2018-12-12 Incyte Corp Formulación farmacéutica de un inhibidor de lsd1 y método de tratamiento
GB2554333A (en) 2016-04-26 2018-04-04 Big Dna Ltd Combination therapy
AR108396A1 (es) 2016-05-06 2018-08-15 Incyte Corp Compuestos heterocíclicos como inmunomoduladores
WO2017205464A1 (en) 2016-05-26 2017-11-30 Incyte Corporation Heterocyclic compounds as immunomodulators
PE20190623A1 (es) 2016-06-20 2019-04-26 Incyte Corp Formas solidas cristalinas de un inhibidor de bet
KR102685249B1 (ko) 2016-06-20 2024-07-17 인사이트 코포레이션 면역조절제로서의 복소환식 화합물
WO2017223414A1 (en) 2016-06-24 2017-12-28 Incyte Corporation HETEROCYCLIC COMPOUNDS AS PI3K-γ INHIBITORS
MA45669A (fr) 2016-07-14 2019-05-22 Incyte Corp Composés hétérocycliques utilisés comme immunomodulateurs
US20180055835A1 (en) 2016-08-25 2018-03-01 Immune Therapeutics Inc. Method for Treating And Preventing Protozoal Infections
US20180057486A1 (en) 2016-08-29 2018-03-01 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2018049214A1 (en) 2016-09-09 2018-03-15 Incyte Corporation Pyrazolopyridine derivatives as hpk1 modulators and uses thereof for the treatment of cancer
WO2018049191A1 (en) 2016-09-09 2018-03-15 Incyte Corporation Pyrazolopyridone derivatives as hpk1 modulators and uses thereof for the treatment of cancer
AR109595A1 (es) 2016-09-09 2018-12-26 Incyte Corp Compuestos de pirazolopirimidina y usos de estos como inhibidores de hpk1
CN115819417A (zh) 2016-09-09 2023-03-21 因赛特公司 作为hpk1调节剂的吡唑并吡啶衍生物及其用于治疗癌症的用途
WO2018119286A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Bicyclic heteroaromatic compounds as immunomodulators
US20180177784A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Heterocyclic compounds as immunomodulators
US20180179201A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Heterocyclic compounds as immunomodulators
US10308644B2 (en) 2016-12-22 2019-06-04 Incyte Corporation Heterocyclic compounds as immunomodulators
PL3558990T3 (pl) 2016-12-22 2022-12-19 Incyte Corporation Pochodne tetrahydroimidazo[4,5-c]pirydyny jako induktory internalizacji pd-l1
WO2018119221A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Pyridine derivatives as immunomodulators
US20180228786A1 (en) 2017-02-15 2018-08-16 Incyte Corporation Pyrazolopyridine compounds and uses thereof
AR111960A1 (es) 2017-05-26 2019-09-04 Incyte Corp Formas cristalinas de un inhibidor de fgfr y procesos para su preparación
IL271707B1 (en) 2017-06-29 2024-07-01 Recordati Ind Chimica E Farmaceutica Spa Heterocyclylmethylidine derivatives and their use as modulators of mGluR5 receptors
WO2019051199A1 (en) 2017-09-08 2019-03-14 Incyte Corporation 6-CYANO-INDAZOLE COMPOUNDS AS HEMATOPOIETIC PROGENITOR KINASE 1 (HPK1) MODULATORS
CN111201223B (zh) 2017-09-11 2024-07-09 克鲁松制药公司 SHP2的八氢环戊二烯并[c]吡咯别构抑制剂
PT3687996T (pt) 2017-09-27 2022-01-21 Incyte Corp Sais de derivados de pirrolotriazina úteis como inibidores de tam
JP7244504B2 (ja) 2017-10-18 2023-03-22 インサイト・コーポレイション PI3K-γ阻害剤としての三級ヒドロキシ基で置換された縮合イミダゾール誘導体
EP4245758A3 (de) 2017-10-26 2023-12-20 Xynomic Pharmaceuticals, Inc. Kristalline salze eines b-raf-kinaseinhibitors
US10596161B2 (en) 2017-12-08 2020-03-24 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
JP2021506757A (ja) * 2017-12-14 2021-02-22 スペックジーエックス エルエルシー 微粉化パリペリドンエステルを調製するための一工程粉砕法
US11306079B2 (en) 2017-12-21 2022-04-19 Incyte Corporation 3-(5-amino-pyrazin-2-yl)-benzenesulfonamide derivatives and related compounds as PI3K-gamma kinase inhibitors
CA3088288A1 (en) 2018-01-26 2019-08-01 Recordati Industria Chimica E Farmaceutica S.P.A Triazole, imidazole and pyrrole condensed piperazine derivatives and their use as modulators of mglu5 receptors
EA202091830A1 (ru) 2018-01-30 2020-12-29 Инсайт Корпорейшн Способы и промежуточные соединения для получения ингибитора jak
MA51829A (fr) 2018-02-16 2020-12-23 Incyte Corp Inhibiteurs de la voie jak1 pour le traitement de troubles liés aux cytokines
WO2019164846A1 (en) 2018-02-20 2019-08-29 Incyte Corporation N-(phenyl)-2-(phenyl)pyrimidine-4-carboxamide derivatives and related compounds as hpk1 inhibitors for treating cancer
WO2019164847A1 (en) 2018-02-20 2019-08-29 Incyte Corporation Indazole compounds and uses thereof
US10745388B2 (en) 2018-02-20 2020-08-18 Incyte Corporation Indazole compounds and uses thereof
WO2019168847A1 (en) 2018-02-27 2019-09-06 Incyte Corporation Imidazopyrimidines and triazolopyrimidines as a2a / a2b inhibitors
UA128288C2 (uk) 2018-03-08 2024-05-29 Інсайт Корпорейшн СПОЛУКИ АМІНОПІРАЗИНДІОЛУ ЯК ІНГІБІТОРИ PI3K-<font face="Symbol">g</font>
WO2019191707A1 (en) 2018-03-30 2019-10-03 Incyte Corporation Heterocyclic compounds as immunomodulators
MA52219A (fr) 2018-03-30 2021-02-17 Incyte Corp Traitement de l'hidradénite suppurée à l'aide d'inhibiteurs de jak
US11220510B2 (en) 2018-04-09 2022-01-11 Incyte Corporation Pyrrole tricyclic compounds as A2A / A2B inhibitors
US11299473B2 (en) 2018-04-13 2022-04-12 Incyte Corporation Benzimidazole and indole compounds and uses thereof
CA3099116A1 (en) 2018-05-04 2019-11-07 Incyte Corporation Salts of an fgfr inhibitor
AU2019262195B2 (en) 2018-05-04 2024-09-12 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
DK3790877T3 (da) 2018-05-11 2023-04-24 Incyte Corp Tetrahydro-imidazo[4,5-c]pyridinderivater som pd-l1-immunmodulatorer
EP3810610A1 (de) 2018-05-18 2021-04-28 Incyte Corporation Kondensierte pyrimidinderivate als a2a/a2b-inhibitoren
US10947227B2 (en) 2018-05-25 2021-03-16 Incyte Corporation Tricyclic heterocyclic compounds as sting activators
AU2019277560A1 (en) 2018-06-01 2020-12-10 Incyte Corporation Dosing regimen for the treatment of PI3K related disorders
US11241438B2 (en) 2018-06-29 2022-02-08 Incyte Corporation Formulations of an AXL/MER inhibitor
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors
KR20210049090A (ko) 2018-07-05 2021-05-04 인사이트 코포레이션 A2a/a2b 억제제로서 융합된 피라진 유도체
GB2575490A (en) 2018-07-12 2020-01-15 Recordati Ind Chimica E Farmaceutica Spa P2X3 receptor antagonists
WO2020028566A1 (en) 2018-07-31 2020-02-06 Incyte Corporation Heteroaryl amide compounds as sting activators
US11008344B2 (en) 2018-07-31 2021-05-18 Incyte Corporation Tricyclic heteroaryl compounds as STING activators
US10899755B2 (en) 2018-08-08 2021-01-26 Incyte Corporation Benzothiazole compounds and uses thereof
WO2020047198A1 (en) 2018-08-31 2020-03-05 Incyte Corporation Salts of an lsd1 inhibitor and processes for preparing the same
CR20210165A (es) 2018-09-05 2021-10-01 Incyte Corp Formas cristalinas de un inhibidor de fosfoinositida 3-quinasa (pi3k) campo técnico
MA53726A (fr) 2018-09-25 2022-05-11 Incyte Corp Composés pyrazolo[4,3-d]pyrimidine en tant que modulateurs des alk2 et/ou fgfr
US11066404B2 (en) 2018-10-11 2021-07-20 Incyte Corporation Dihydropyrido[2,3-d]pyrimidinone compounds as CDK2 inhibitors
SG11202104321PA (en) 2018-10-31 2021-05-28 Incyte Corp Combination therapy for treatment of hematological diseases
US11396502B2 (en) 2018-11-13 2022-07-26 Incyte Corporation Substituted heterocyclic derivatives as PI3K inhibitors
US11161838B2 (en) 2018-11-13 2021-11-02 Incyte Corporation Heterocyclic derivatives as PI3K inhibitors
US11078204B2 (en) 2018-11-13 2021-08-03 Incyte Corporation Heterocyclic derivatives as PI3K inhibitors
US11596692B1 (en) 2018-11-21 2023-03-07 Incyte Corporation PD-L1/STING conjugates and methods of use
MX2021007260A (es) 2018-12-19 2021-09-08 Incyte Corp Inhibidores de la vía de cinasa janus 1 (jak1) para el tratamiento de enfermedades gastrointestinales.
SG11202106582YA (en) 2018-12-20 2021-07-29 Incyte Corp Imidazopyridazine and imidazopyridine compounds as inhibitors of activin receptor-like kinase-2
WO2020146237A1 (en) 2019-01-07 2020-07-16 Incyte Corporation Heteroaryl amide compounds as sting activators
TWI829857B (zh) 2019-01-29 2024-01-21 美商英塞特公司 作為a2a / a2b抑制劑之吡唑并吡啶及三唑并吡啶
WO2020168197A1 (en) 2019-02-15 2020-08-20 Incyte Corporation Pyrrolo[2,3-d]pyrimidinone compounds as cdk2 inhibitors
TW202100520A (zh) 2019-03-05 2021-01-01 美商英塞特公司 作為cdk2 抑制劑之吡唑基嘧啶基胺化合物
JP2022524997A (ja) 2019-03-05 2022-05-11 インサイト・コーポレイション 慢性肺同種移植片機能不全の治療のためのjak1経路阻害剤
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11919904B2 (en) 2019-03-29 2024-03-05 Incyte Corporation Sulfonylamide compounds as CDK2 inhibitors
WO2020223235A1 (en) 2019-04-29 2020-11-05 Incyte Corporation Mini-tablet dosage forms of ponatinib
WO2020223558A1 (en) 2019-05-01 2020-11-05 Incyte Corporation Tricyclic amine compounds as cdk2 inhibitors
US11440914B2 (en) 2019-05-01 2022-09-13 Incyte Corporation Tricyclic amine compounds as CDK2 inhibitors
WO2021007269A1 (en) 2019-07-09 2021-01-14 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
US11066394B2 (en) 2019-08-06 2021-07-20 Incyte Corporation Solid forms of an HPK1 inhibitor
JP7526783B2 (ja) 2019-08-08 2024-08-01 ラークナ・リミテッド 癌を処置する方法
US11753406B2 (en) 2019-08-09 2023-09-12 Incyte Corporation Salts of a PD-1/PD-L1 inhibitor
EP4013750A1 (de) 2019-08-14 2022-06-22 Incyte Corporation Imidazolyl-pyrimidinylaminverbindungen als cdk2-inhibitoren
TW202115082A (zh) 2019-08-26 2021-04-16 美商英塞特公司 作為a2a/a2b抑制劑之三唑并嘧啶
KR20220075382A (ko) 2019-09-30 2022-06-08 인사이트 코포레이션 면역조절제로서의 피리도[3,2-d]피리미딘 화합물
US20210094935A1 (en) 2019-10-01 2021-04-01 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
WO2021072232A1 (en) 2019-10-11 2021-04-15 Incyte Corporation Bicyclic amines as cdk2 inhibitors
JP2022552324A (ja) 2019-10-14 2022-12-15 インサイト・コーポレイション Fgfr阻害剤としての二環式複素環
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
WO2021076124A1 (en) 2019-10-16 2021-04-22 Incyte Corporation Use of jak1 inhibitors for the treatment of cutaneous lupus erythematosus and lichen planus (lp)
US11992490B2 (en) 2019-10-16 2024-05-28 Incyte Corporation Use of JAK1 inhibitors for the treatment of cutaneous lupus erythematosus and Lichen planus (LP)
BR112022009031A2 (pt) 2019-11-11 2022-10-11 Incyte Corp Sais e formas cristalinas de um inibidor de pd-1/pd-l1
CA3163875A1 (en) 2019-12-04 2021-06-10 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
KR20220131900A (ko) 2019-12-04 2022-09-29 인사이트 코포레이션 Fgfr 억제제의 유도체
WO2021138512A1 (en) 2020-01-03 2021-07-08 Incyte Corporation Combination therapy comprising a2a/a2b and pd-1/pd-l1 inhibitors
TW202140471A (zh) 2020-01-10 2021-11-01 美商英塞特公司 做為kras抑制劑之三環化合物
WO2021146424A1 (en) 2020-01-15 2021-07-22 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
WO2021150613A1 (en) 2020-01-20 2021-07-29 Incyte Corporation Spiro compounds as inhibitors of kras
WO2021158891A1 (en) 2020-02-06 2021-08-12 Incyte Corporation Salts and solid forms and processes of preparing a pi3k inhibitor
WO2021198962A1 (en) 2020-04-01 2021-10-07 Cytocom Inc. Method for treating viral diseases
PE20230825A1 (es) 2020-04-16 2023-05-19 Incyte Corp Inhibidores de kras triciclicos fusionados
US11739102B2 (en) 2020-05-13 2023-08-29 Incyte Corporation Fused pyrimidine compounds as KRAS inhibitors
GB202008135D0 (en) 2020-05-29 2020-07-15 Neolife Int Llc Dietary supplements
IL298118A (en) 2020-06-02 2023-01-01 Incyte Corp Processes for making jak1 inhibitor
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
CA3184633A1 (en) 2020-06-03 2021-12-09 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
BR112022025191A2 (pt) 2020-06-12 2023-03-07 Incyte Corp Compostos de imidazopiridazina com atividade de inibidores de alk2
US11691971B2 (en) 2020-06-19 2023-07-04 Incyte Corporation Naphthyridinone compounds as JAK2 V617F inhibitors
US11753413B2 (en) 2020-06-19 2023-09-12 Incyte Corporation Substituted pyrrolo[2,1-f][1,2,4]triazine compounds as JAK2 V617F inhibitors
TW202216713A (zh) 2020-07-02 2022-05-01 美商英塞特公司 作為jak2 v617f抑制劑之三環脲化合物
US11767323B2 (en) 2020-07-02 2023-09-26 Incyte Corporation Tricyclic pyridone compounds as JAK2 V617F inhibitors
WO2022046989A1 (en) 2020-08-27 2022-03-03 Incyte Corporation Tricyclic urea compounds as jak2 v617f inhibitors
US11999752B2 (en) 2020-08-28 2024-06-04 Incyte Corporation Vinyl imidazole compounds as inhibitors of KRAS
US11767320B2 (en) 2020-10-02 2023-09-26 Incyte Corporation Bicyclic dione compounds as inhibitors of KRAS
KR102271247B1 (ko) * 2020-11-04 2021-06-30 삼천당제약주식회사 안과용 현탁액 조성물의 제조방법
AU2021373044A1 (en) 2020-11-06 2023-06-08 Incyte Corporation Process for making a pd-1/pd-l1 inhibitor and salts and crystalline forms thereof
TW202233615A (zh) 2020-11-06 2022-09-01 美商英塞特公司 Pd—1/pd—l1抑制劑之結晶形式
WO2022099018A1 (en) 2020-11-06 2022-05-12 Incyte Corporation Process of preparing a pd-1/pd-l1 inhibitor
WO2022115120A1 (en) 2020-11-30 2022-06-02 Incyte Corporation Combination therapy with an anti-cd19 antibody and parsaclisib
WO2022115762A1 (en) 2020-11-30 2022-06-02 Incyte Corporation Combination therapy with an anti-cd19 antibody and parsaclisib
MX2023006542A (es) 2020-12-08 2023-08-25 Incyte Corp Inhibidores de la vía cinasa jano 1 (jak1) para el tratamiento del vitiligo.
TW202241420A (zh) 2020-12-18 2022-11-01 美商英塞特公司 Pd-l1抑制劑之口服調配物
WO2022140231A1 (en) 2020-12-21 2022-06-30 Incyte Corporation Deazaguaine compounds as jak2 v617f inhibitors
US20220233529A1 (en) 2020-12-29 2022-07-28 Incyte Corporation Combination therapy comprising a2a/a2b inhibitors, pd-1/pd-l1 inhibitors, and anti-cd73 antibodies
WO2022150676A1 (en) 2021-01-11 2022-07-14 Incyte Corporation Combination therapy comprising jak pathway inhibitor and rock inhibitor
US11958861B2 (en) 2021-02-25 2024-04-16 Incyte Corporation Spirocyclic lactams as JAK2 V617F inhibitors
GB202103100D0 (en) 2021-03-05 2021-04-21 Suda Pharmaceuticals Ltd Mitigating the off-target pharmacology of anagrelide in the treatment of thrombocytosis in various diseases
WO2022204112A1 (en) 2021-03-22 2022-09-29 Incyte Corporation Imidazole and triazole kras inhibitors
US12065494B2 (en) 2021-04-12 2024-08-20 Incyte Corporation Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent
KR20240009964A (ko) 2021-05-03 2024-01-23 인사이트 코포레이션 결절성 양진 치료를 위한 jak1 경로 억제제
CN117500504A (zh) 2021-05-03 2024-02-02 因赛特公司 用于治疗结节性痒疹的鲁索替尼
JP2024522189A (ja) 2021-06-09 2024-06-11 インサイト・コーポレイション Fgfr阻害剤としての三環式ヘテロ環
EP4352060A1 (de) 2021-06-09 2024-04-17 Incyte Corporation Tricyclische heterocyclen als fgfr-inhibitoren
US11981671B2 (en) 2021-06-21 2024-05-14 Incyte Corporation Bicyclic pyrazolyl amines as CDK2 inhibitors
KR20240016318A (ko) 2021-07-02 2024-02-06 애슬레티스 바이오사이언스 코., 엘티디. Pd-l1 상호작용의 면역조절제로서의 헤테로사이클릭 화합물
TW202317565A (zh) 2021-07-07 2023-05-01 美商英塞特公司 作為kras抑制劑的三環化合物
US20230114765A1 (en) 2021-07-14 2023-04-13 Incyte Corporation Tricyclic compounds as inhibitors of kras
CN117813309A (zh) 2021-08-17 2024-04-02 歌礼生物科技(杭州)有限公司 作为pd-l1相互作用的免疫调节剂的化合物
US20230174555A1 (en) 2021-08-31 2023-06-08 Incyte Corporation Naphthyridine compounds as inhibitors of kras
US12030883B2 (en) 2021-09-21 2024-07-09 Incyte Corporation Hetero-tricyclic compounds as inhibitors of KRAS
CN113908932A (zh) * 2021-09-22 2022-01-11 浙江工业大学 一种磁性粉体连续细化及级分的方法与装置
WO2023056421A1 (en) 2021-10-01 2023-04-06 Incyte Corporation Pyrazoloquinoline kras inhibitors
IL312114A (en) 2021-10-14 2024-06-01 Incyte Corp Quinoline compounds as Kras inhibitors
WO2023102184A1 (en) 2021-12-03 2023-06-08 Incyte Corporation Bicyclic amine compounds as cdk12 inhibitors
US11976073B2 (en) 2021-12-10 2024-05-07 Incyte Corporation Bicyclic amines as CDK2 inhibitors
US12084453B2 (en) 2021-12-10 2024-09-10 Incyte Corporation Bicyclic amines as CDK12 inhibitors
AR128043A1 (es) 2021-12-22 2024-03-20 Incyte Corp Sales y formas sólidas de un inhibidor de fgfr y procesos para su preparación
CN114289159B (zh) * 2021-12-29 2023-06-06 湖北华世通生物医药科技有限公司 碳酸司维拉姆的后处理方法及其制备方法
TW202342023A (zh) 2022-03-07 2023-11-01 美商英塞特公司 Cdk2抑制劑之固體形式、鹽及製備方法
WO2023174210A1 (en) 2022-03-14 2023-09-21 Laekna Limited Combination treatment for cancer
TW202337453A (zh) 2022-03-17 2023-10-01 美商英塞特公司 作為jak2 v617f抑制劑之三環脲化合物
WO2023239768A1 (en) 2022-06-08 2023-12-14 Incyte Corporation Tricyclic triazolo compounds as dgk inhibitors
TW202413359A (zh) 2022-06-22 2024-04-01 美商英塞特公司 雙環胺cdk12抑制劑
US20240101557A1 (en) 2022-07-11 2024-03-28 Incyte Corporation Fused tricyclic compounds as inhibitors of kras g12v mutants
US20240058343A1 (en) 2022-08-05 2024-02-22 Incyte Corporation Treatment of urticaria using jak inhibitors
WO2024086273A1 (en) 2022-10-21 2024-04-25 Incyte Corporation Tricyclic urea compounds as jak2 v617f inhibitors
US20240217989A1 (en) 2022-11-18 2024-07-04 Incyte Corporation Heteroaryl Fluoroalkenes As DGK Inhibitors
EP4389746A3 (de) 2022-12-21 2024-07-03 Recordati Industria Chimica E Farmaceutica SPA P2x3-rezeptor-antagonisten
US20240270739A1 (en) 2023-01-12 2024-08-15 Incyte Corporation Heteroaryl Fluoroalkenes As DGK Inhibitors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076347A (en) * 1976-07-21 1978-02-28 Dayco Corporation Antifriction nylon member
US4547534A (en) * 1983-03-18 1985-10-15 Memorex Corporation Method to disperse fine solids without size reduction
US4768366A (en) * 1987-04-30 1988-09-06 Tadeusz Sendzimir Wide strip mill using pressure elements
NZ248813A (en) * 1992-11-25 1995-06-27 Eastman Kodak Co Polymeric grinding media used in grinding pharmaceutical substances
GB9726543D0 (en) * 1997-12-16 1998-02-11 Smithkline Beecham Plc Novel compositions
JP4156807B2 (ja) * 1999-06-01 2008-09-24 エラン ファーマ インターナショナル,リミティド 小型ミル及びその方法
GB9920148D0 (en) * 1999-08-25 1999-10-27 Smithkline Beecham Plc Novel composition

Also Published As

Publication number Publication date
SI1294358T1 (en) 2004-12-31
IL153231A0 (en) 2003-07-06
EP1294358B1 (de) 2004-08-18
ATE273695T1 (de) 2004-09-15
NO333747B1 (no) 2013-09-09
TWI290836B (en) 2007-12-11
WO2002000196A2 (en) 2002-01-03
PL359065A1 (en) 2004-08-23
KR100786927B1 (ko) 2007-12-17
HU230396B1 (hu) 2016-04-28
CZ303572B6 (cs) 2012-12-12
AU2002215608B2 (en) 2004-12-09
US20060214037A1 (en) 2006-09-28
CA2413330A1 (en) 2002-01-03
ES2225624T3 (es) 2005-03-16
PT1294358E (pt) 2004-12-31
CZ20024263A3 (cs) 2003-06-18
IL153231A (en) 2008-06-05
JP2004501182A (ja) 2004-01-15
NO20026120L (no) 2003-01-27
CN1438876A (zh) 2003-08-27
MY128806A (en) 2007-02-28
KR20030018013A (ko) 2003-03-04
NZ522783A (en) 2004-07-30
EP1294358A2 (de) 2003-03-26
PL202623B1 (pl) 2009-07-31
DE60105023D1 (de) 2004-09-23
BR0111747A (pt) 2003-07-08
AR029284A1 (es) 2003-06-18
US20040089753A1 (en) 2004-05-13
NO20026120D0 (no) 2002-12-19
AU1560802A (en) 2002-01-08
MXPA03000051A (es) 2003-08-19
WO2002000196A3 (en) 2002-06-27
HK1055242A1 (en) 2004-01-02
HUP0301583A2 (en) 2003-08-28
CN1321628C (zh) 2007-06-20
JP4188078B2 (ja) 2008-11-26

Similar Documents

Publication Publication Date Title
DE60105023T2 (de) Nassvermahlungsverfahren
DE69231345T2 (de) Oberflächenmodifizierte Arzneimittel-Nanopartikel
US5622938A (en) Sugar base surfactant for nanocrystals
DE69328815T2 (de) Verfahren zur Zerkleinerung von pharmazeutischen Substanzen
AU2002215608A1 (en) Wet milling process
DE69523781T2 (de) Koninuierliches verfahren zur feinstzerkleinerung von arzneimitteln
US5352459A (en) Use of purified surface modifiers to prevent particle aggregation during sterilization
DE69601158T2 (de) Zusammensetzungen enthaltend nsaid-nanopartikel
US5573783A (en) Redispersible nanoparticulate film matrices with protective overcoats
US5503723A (en) Isolation of ultra small particles
EP2944307A1 (de) Kristalline wirkstoff-mikropartikel, verfahren zu deren herstellung und verwendung in arzneimitteln
JP7426710B2 (ja) 有機物微粒子の製造方法及び有機物微粒子の改質方法
DE69611287T2 (de) Formulierungen von verbindungen als nanopartikel dispergiert in verdaubaren ölen oder fettsäuren
DE10325989A1 (de) Verfahren zur Herstellung von und daraus resultierende Mikropellets sowie deren Verwendung
Patel et al. A recent solidification approach for nanosuspension: Formulation, optimisation and evaluation of canagliflozin immediate release pellets
DE3503679A1 (de) Pharmazeutische zusammensetzungen
WO2002094223A2 (en) Formulation containing halofantrine hydrochloride
WO2013050169A1 (de) Verfahren zur herstellung einer homogenen pulvermischung und verfahren zur herstellung eines implantats sowie implantat
KR20240040414A (ko) 로티고틴 수성현탁 주사용 조성물 및 이의 제조방법
AT412344B (de) Hydrophobisierte teilchen von k-clavulanat
DD285772A5 (de) Verfahren zur trockenen aufbereitung von tonen
DE102014110754A1 (de) Verfahren zur Zerkleinerung anorganischer Feststoffe

Legal Events

Date Code Title Description
8364 No opposition during term of opposition