CN109509866B - 自支撑电极及其制造方法 - Google Patents
自支撑电极及其制造方法 Download PDFInfo
- Publication number
- CN109509866B CN109509866B CN201811076666.XA CN201811076666A CN109509866B CN 109509866 B CN109509866 B CN 109509866B CN 201811076666 A CN201811076666 A CN 201811076666A CN 109509866 B CN109509866 B CN 109509866B
- Authority
- CN
- China
- Prior art keywords
- electrode
- attachment structure
- tab attachment
- battery tab
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0416—Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0419—Methods of deposition of the material involving spraying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/74—Meshes or woven material; Expanded metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/75—Wires, rods or strips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/533—Electrode connections inside a battery casing characterised by the shape of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/534—Electrode connections inside a battery casing characterised by the material of the leads or tabs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
本发明涉及将电池连接片附接结构嵌入电极活性材料与碳纳米管的复合材料中的方法以及所得到的自支撑电极,其没有粘合剂且没有集电极箔。这些方法和所得到的自支撑电极能够有利于在电池和电力应用中使用这种复合材料。
Description
相关申请的交叉引用
本申请要求了2017年9月15日申请的、发明名称为“Method and Structure forBattery Tab Attachment to a Self-Standing Electrode Without Current Collectoror Binder”的美国专利申请62/559,254的优先权,其全部内容通过引用并入本文。
技术领域
本发明涉及一种有电池连接片的无粘合剂、无集电极的自支撑电极,一种制造这种自支撑电极的方法。
背景技术
锂离子电池由两个电极(阳极和阴极)、将阳极与阴极隔开的膜和电解质组成。电极由活性材料、粘合剂、碳基添加剂和集电极组成。铝/铜箔是典型的用于锂离子电池的集电极。通常,使用由活性材料、添加剂、粘合剂和适当溶剂组成的浆料将活性材料印刷在集电极的表面上。在制造电极之后,将导电连接片附连至集电极以从电池获得电流。通常,连接片是铝箔/铜箔的条带,其焊接至电极的集电极箔上。
在仅包含活性材料粉末和碳纳米管基质、并且其中不存在集电箔的自支撑电极的情况下,需要一种从电极传输电流的方法。换句话说,有必要解决将连接片附接至没有任何集电极箔的电极的问题。
发明内容
以下提出了本发明的一个或多个方案的简要概述,以便提出对这些方案的基本理解。该概述不是对所有预期方案的广泛概述,并且既不旨在标识所有方案的关键或重要元素,也不旨在描绘某个或所有方案的范围。其目的在于以简化形式提供一个或多个方案的一些构思,作为稍后提出的更详细描述的序言。
在一些实施例中,本发明涉及一种自支撑电极,其包含:电极活性材料与碳纳米管组成的复合材料;以及嵌入复合材料中的电池连接片附接结构,其中,电极具有总长度、总宽度和总厚度,并且电池连接片附接结构具有电极的总宽度的1%至100%的宽度。
在一些实施例中,本发明涉及制造无粘合剂、无集电极的自支撑电极的方法,该方法包括:使电极活性材料雾化或流化以产生雾化或流化的电极活性材料;将雾化或流化的电极活性材料与碳纳米管共沉积到第一多孔表面和在第一多孔表面上方与第一多孔表面间隔开的电池连接片附接结构上,以形成自支撑电极材料,其为碳纳米管的三维网络中的电极活性材料与嵌入在自支撑电极材料中的电池连接片附接结构的复合材料,其中,电极具有总长度、总宽度和总厚度,并且电池连接片附接结构具有电极的总宽度的1%至100%的宽度。
通过阅读以下详细描述后,将更全面地理解本发明的这些和其他方案。
附图说明
图1A-1D示出了根据本发明的一些方案的用于将电池连接片附接至自支撑电极的方法的示意图。
图2A-2C示出了根据图1A-1D中所描绘的方案的连接片附接的图像的示例。
具体实施方式
以下结合附图所阐述的详细描述旨在作为各种配置的描述,而不旨在表示能够实践本文所描述的构思的唯一配置。该详细描述包括用于提供对各种构思的全面理解的具体细节。然而,对于本领域技术人员显而易见的是,可以在没有这些具体细节的情况下实践这些构思。
本发明提供了自支撑电极,其包括碳纳米管和电极活性材料的复合材料,其中电池连接片附接结构嵌入在复合材料中,以及制造该电极的方法。
在一些实施例中,本发明涉及一种自支撑电极,其包含:电极活性材料与碳纳米管组成的复合材料;和嵌入复合材料中的电池连接片附接结构,其中,电极具有总长度、总宽度和总厚度,并且电池连接片附接结构具有电极的总宽度的1%至100%的宽度。在一些方案中,电池连接片附接结构具有电极的总宽度的10%至75%的宽度。
如本文所使用的,“电极活性材料”是指电极中的导电材料。术语“电极”是指离子和电子与电解质和外部电路在其中交换的导电体。“正极”和“阴极”在本说明书中同义使用,并且是指在电化学电芯中具有较高电极电位的电极(即,高于负极)。“负极”和“阳极”在本说明书中同义使用,并且是指在电化学电芯中具有较低电极电位的电极(即,低于正极)。阴极还原是指得到化学物质的电子,并且阳极氧化是指失去化学物质的电子。
在非限制性示例中,电极活性材料可以是能够被雾化的任何固体金属氧化物粉末。在示例性示例中,金属氧化物是用于电池阴极的材料。金属氧化物的非限制性示例包括Ni、Mn、Co、Al、Mg、Ti的氧化物以及它们的任意混合物。金属氧化物可以是锂化的。在示例性示例中,金属氧化物为锂镍锰钴氧化物(LiNiMnCoO2)。金属氧化物粉末可以具有限定在1纳米和100微米之间的范围内的粒径。在非限制性示例中,金属氧化物颗粒具有1nm至10nm的平均粒径。在一些方案中,电极活性材料选自石墨、硬碳、硅、氧化硅、锂金属氧化物、磷酸铁锂和锂金属。
根据本发明的锂金属氧化物中的金属可包括但不限于一种或多种碱金属、碱土金属、过渡金属、铝或后过渡金属及其水合物。
“碱金属”为元素周期表I族中的金属,例如锂、钠、钾、铷、铯或钫。
“碱土金属”为元素周期表II族中的金属,例如铍、镁、钙、锶、钡或镭。
“过渡金属”为元素周期表的d区中的金属,包括镧系元素和锕系元素。过渡金属包括但不限于钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、钇、锆、铌、钼、锝、钌、铑、钯、银、镉、镧、铈、镨、钕、钷、钐、铓、钆、铽、镝、钬、铒、铥、镱、镥、铪、钽、钨、铼、锇、铱、铂、金、汞、锕、钍、镤、铀、镎、钚、镅、锔、锫、锎、锿、镄、钔、锘和铹。
“后过渡金属”包括但不限于镓、铟、锡、铊、铅、铋或针。
如本文所使用的,“电极活性材料与单壁碳纳米管”的合适的复合材料包括但不限于自支撑电极,例如那些在2017年7月31日申请的、发明名称为“Self StandingElectrodes and Methods for Making Thereof”的美国专利申请15/665,171以及2017年7月31日申请的、发明名称为“Continuous Production of Binder and Collector-LessSelf-Standing Electrodes for Li-Ion Batteries by Using Carbon Nanotubes as anAdditive”的美国专利申请15/665,142中公开的。这些申请分别全部内容通过引用特此并入本文。在一些方案中,电极活性材料选自石墨、硬碳、锂金属氧化物和磷酸铁锂。
在一些方案中,电池连接片附接结构包括金属。在一些方案中,金属为铜、铝、镍或不锈钢。在非限制性示例中,不锈钢可以是本领域已知的任何不锈钢,包括但不限于SS304和SS316。在一些方案中,电池连接片附接结构包括导电碳结构。导电碳结构可以包括碳纳米管、石墨烯(例如二维和三维石墨烯形式,例如石墨烯泡沫)、碳纤维、石墨或碳的任何其他导电同素异形体形式、或其组合、或其复合材料。碳纳米管可以是单壁、少壁或多壁碳纳米管、或其组合,优选单壁碳纳米管。当使用碳纳米管和/或碳纤维时,碳纳米管和/或碳纤维可以为纳米管纱、纳米管线、纳米管布、纳米管丝、纳米管纸(即巴克纸)、纳米管垫、纳米管片、或纳米管毡的形式。电池连接片附接结构可以是任意固体物理形式,包括但不限于箔、条带、线、格栅、绳索、网状箔、穿孔箔、布、纱布或网。可以通过将雾化或流化的电极活性材料与单壁碳纳米管共沉积到第一多孔表面上的过程将电池连接片附接结构嵌入复合材料中,其中电池连接片附接结构在其上方与其间隔开。雾化或流化的电极活性材料和单壁碳纳米管可以在共沉积之前一起存在于混合物中或者可以彼此不接触。合适的共沉积方法和装置可以是本领域已知的,包括但不限于那些在2017年7月31日申请的、发明名称为“Self Standing Electrodes and Methods for Making Thereof”的美国专利申请15/665,171以及2017年7月31日申请的、发明名称为“Continuous Production of Binder andCollector-Less Self-Standing Electrodes for Li-Ion Batteries by Using CarbonNanotubes as an Additive”的美国专利申请15/665,142中公开的。这些申请中分别全部内容通过引用特此并入本文。
本发明的自支撑电极的特征可以在于总长度、总宽度和总厚度,同时包括复合材料和嵌入其中的电池连接片附接结构。在一些方案中,电极的总厚度为10μm至5000μm,例如20μm至300μm,或其间的任意整数或子范围。在一些方案中,电极具有20μm至100μm的总厚度。在一些方案中,电极具有20μm至75μm的总厚度。电极具有20μm至50μm的总厚度。电极具有20μm至40μm的总厚度。
根据本发明,电池连接片附接结构具有电极的总宽度的10%至75%的宽度。在一些方案中,电池连接片附接结构具有电极的总宽度的10%至50%的宽度。在一些方案中,电池连接片附接结构具有电极的总宽度的10%至30%的宽度。在一些方案中,电池连接片附接结构具有电极的总宽度的3%至10%的宽度。
在其他实施例中,本发明涉及制造无粘合剂、无集电极的自支撑电极的方法,该方法包括:使电极活性材料雾化或流化以产生雾化或流化的电极活性材料;将雾化或流化的电极活性材料与碳纳米管共沉积到第一多孔表面和在第一多孔表面上方与第一多孔表面间隔开的电池连接片附接结构上,以形成自支撑电极材料,其为碳纳米管的三维网络中的电极活性材料与嵌入在自支撑电极材料中的电池连接片附接结构的复合材料,其中,电极具有总长度、总宽度和总厚度,并且电池连接片附接结构具有电极的总宽度的1%至100%的宽度。关于自支撑电极描述的所有方案均同等效力地应用于制造无粘合剂,无集电极的自支撑电极的方法,反之亦然。碳纳米管可以是单壁的,少壁的或多壁的、或其组合。
在一些方案中,将雾化或流化的电极活性材料与碳纳米管共沉积到第一多孔表面和在第一多孔表面上方与第一多孔表面间隔开的电池连接片附接结构上包括雾化或流化的电极活性材料和碳纳米管同时接触第一多孔表面和在第一多孔表面上方与第一多孔表面上间隔开的电池连接片附接结构,其中,雾化或流化的电极活性材料和碳纳米管之前彼此不接触。用于生产碳纳米管和雾化或流化用于同时沉积的电极活性材料的合适的方法和装置,包括那些本领域普通技术人员已知的、包括但不限于那些在2017年7月31日申请的、发明名称为“Continuous Production of Binder and Collector-Less Self-StandingElectrodes for Li-Ion Batteries by Using Carbon Nanotubes as an Additive”的美国专利申请15/665,142中公开的,其全部内容通过引用特此并入本文,在所述方法和装置中,雾化或流化的电极活性材料和单壁碳纳米管在它们同时沉积之前彼此不接触。
在一些方案中,将雾化或流化的活性材料和碳纳米管共沉积到第一多孔表面和在第一多孔表面上方与第一多孔表面间隔开的电池连接片附接结构上包括使雾化的电极活性材料粉末与碳纳米管在载气中相接触,以形成碳纳米管与雾化的电极活性材料粉末的混合物;在第一多孔表面和在第一多孔表面上方与第一多孔表面间隔开的电池连接片附接结构上聚集混合物;并且去除载气。用于使雾化的电极活性材料粉末与碳纳米管在载气中相接触,以形成单壁碳纳米管和雾化的电极活性材料粉末的混合物的合适的方法和装置,以及用于去除载气的合适的方法和装置是本领域普通技术人员已知的,并且包括但不限于那些在2017年7月31日申请的、发明名称为“Self Standing Electrodes and Methods forMaking Thereof”的美国专利申请15/665,171中公开的,其全部内容通过引用特此并入本文。
图1A-1D示出了根据本发明的一些方案的用于将电池连接片附连至自支撑电极的方法的示意图。可以使用本领域普通技术人员已知的任意合适的装置在第一多孔表面上方将电池连接片附接结构101与第一多孔表面间隔开,包括但不限于将一个或多个垫片103定位在第一多孔表面102上,并且将电池连接片附接结构101定位在一个或多个垫片103上。优选地,一个或多个垫片103定位在第一多孔表面102上,并且电池连接片附接结构101定位在一个或多个垫片103上,从而对于电池连接片附接结构101的长度的一部分在电池连接片附接结构101和第一多孔表面102之间留下垂直间隙h,以使得雾化的电极活性材料和碳纳米管可以共沉积在电池连接片附接结构101的上方与下方,即,同时在电池连接片附接结构101上方和在第一多孔表面102上方但在电池连接片附接结构101下方。垂直间隙h可以为相对于电池连接片附接结构101厚度的任意尺寸。电池连接片附接结构101可以为任意厚度,例如5μm至2000μm,例如10μm至290μm,例如100μm或15μm,或介于其间的任意其他整数或子范围。连接片附接结构的宽度和厚度取决于电极的尺寸和其中的活性材料的重量,因此,取决于连接片需要承载的电流。基于连接片附接结构和连接片材料的电导率以及它需要承载的电流,可以计算出最小的连接片附接结构的几何形状(尤其是其横截面积)。可以以任意深度将电池连接片附接结构嵌入复合材料中。在一些方案中,其以贯穿自支撑电极总厚度一半的深度嵌入。
在一些方案中,可以使用两个垫片103。合适的垫片材料包括但不限于纸、纤维素和聚合物材料。一个或多个垫片103可以为相对于多孔表面102和/或电池连接片附接结构101的任意尺寸和形状,但优选地,一个或多个垫片103比电池连接片附接结构更宽,以方便在共沉积之后移除自支撑电极材料。
共沉积可以在任意持续时间上发生。在不希望受任何特定理论束缚的情况下,自支撑电极的总厚度可以由一个或多个因素确定,包括但不限于共沉积的持续时间、雾化或流化的电极活性材料和/或单壁碳纳米管的流速、雾化或流化的电极活性材料和/或单壁碳纳米管的浓度、电池连接片附接结构的厚度和垂直间隙h的尺寸。在一些方案中,20分钟的共沉积可以导致自支撑电极具有30μm的总厚度。在一些方案中,2小时的共沉积可以导致自支撑电极具有100μm的总厚度。本领域普通技术人员将能够改变这些因素,例如电荷或能荷,以获得具有所需的厚度和/或其他特性的自支撑电极。例如,雾化或流化的电极活性材料和/或单壁碳纳米管的流速和/或浓度可以使用在2017年7月31日申请的、发明名称为“Self Standing Electrodes and Methods for Making Thereof”的美国专利申请15/665,171以及2017年7月31日申请的、发明名称为“Continuous Production of Binder andCollector-Less Self-Standing Electrodes for Li-Ion Batteries by Using CarbonNanotubes as an Additive”的美国专利申请15/665,142中公开的方法和装置而改变。这些申请分别以其全部内容通过引用特此并入本文。
另外,可以通过挤压改变自支撑电极的总厚度,这可以将总厚度减少多达一半。例如,可以将具有总厚度为100μm的自支撑电极挤压至50μm的厚度。挤压还可以改变复合材料和/或电池连接片附接结构的密度。用于挤压电极的合适的方法和装置在本领域中是已知的,包括但不限于那些在2017年7月31日申请的、发明名称为“Self Standing Electrodesand Methods for Making Thereof”的美国专利申请15/665,171以及2017年7月31日申请的、发明名称为“Continuous Production of Binder and Collector-Less Self-Standing Electrodes for Li-Ion Batteries by Using Carbon Nanotubes as anAdditive”的美国专利申请15/665,142中公开的。这些申请分别以其全部内容通过引用特此并入本文。
示例
在其形成过程中,将窄而薄的导电条带/线/格栅嵌入自支撑电极中(图1A-1D)。为此目的,可以是薄的铝或铜的条带、线或网的金属片在玻璃料或网上隔开距离h(使用垫片103),所述玻璃料或网用作同时沉积电极活性材料粉末和碳纳米管添加剂的混合物的基板/过滤器(图1A-1B)。在非限制性示例中,碳纳米管添加剂可以包括单壁碳纳米管、多壁碳纳米管、及其混合物。相比于电极尺寸,条带或线的尺寸可以非常小。在沉积混合物104以形成电极膜期间,电极活性材料和碳纳米管添加剂在金属的条带、线或网的周围、下方、上方和/或之上生长,将这些金属结构封装在电极活性材料和碳纳米管添加剂的混合物内部(图1C-1D)。玻璃料还用作过滤器以沿方向105过滤气体。随后,使用辊磨机或其他方法将其内部具有金属结构的电极膜106挤压至所需的密度,由此得到金属结构嵌入其中的自支撑复合电极。金属结构(箔、条带、线、网、格栅等)可以突出到电极膜106的外部,提供电连接片附接点。连接片可以通过焊接或其他方法附接。作为该方法的变型,嵌入的导电结构可以是金属网或导电渗透膜(例如由导电聚合物制成),其本身用作电极形成/沉积的基板/过滤器。这可用于电极从气相(例如气溶胶)的生长,或用于从液相(例如从混合物或悬浮液)沉积。随后,如上所述,通过挤压程序将导电基板/过滤器嵌入材料中。图2A示出了玻璃料上的铝的网的示例。图2B示出了在碳纳米管(CNT)与电极活性材料的混合物沉积时图2A的示例。图2C示出了嵌入自支撑电极中的铝的网的示例。
本书面说明使用包括优选的实施例的示例来公开本发明,以使本领域技术人员能够实践本发明,包括制造和使用任何装置或系统以及执行任意结合的方法。本发明的可专利范围由权利要求限定,并且可包括本领域技术人员想到的其他示例。如果这些其他示例具有与权利要求的字面语言没有不同的结构元素,或者如果它们包括与权利要求的字面语言无实质差别的等同结构元素,则这些其他示例落在权利要求的范围内。来自所描述的各种实施例的方案以及每个这样的方案的其他已知的等同物可以由本领域普通技术人员组合和匹配,以根据本申请的原理构建另外的实施例和技术。
Claims (22)
1.一种自支撑电极,包括:
复合材料,由
电极活性材料,和
碳纳米管组成;和
嵌入所述复合材料中的电池连接片附接结构,其中所述复合材料在所述电池连接片附接结构的下方和上方共沉积,
其中,所述电极具有总长度、总宽度和总厚度,并且所述电池连接片附接结构具有所述电极的总宽度的1%至100%的宽度,
其中,所述电池连接片附接结构突出到所述电极的外部,提供电连接片附接点。
2.根据权利要求1所述的自支撑电极,其中,所述电极活性材料选自石墨、硬碳、硅、氧化硅、锂金属氧化物和磷酸铁锂。
3.根据权利要求1所述的自支撑电极,其中,所述电池连接片附接结构包括金属。
4.根据权利要求3所述的电极,其中,所述金属为铜、铝、镍或不锈钢。
5.根据权利要求1所述的电极,其中,所述电极具有10μm至5000μm的总厚度。
6.根据权利要求1所述的电极,其中,所述电极具有20μm至100μm的总厚度。
7.根据权利要求1所述的电极,其中,所述电池连接片附接结构具有所述电极的总宽度的10%至50%的宽度。
8.根据权利要求1所述的电极,其中,所述电池连接片附接结构具有所述电极的总宽度的10%至30%的宽度。
9.根据权利要求1所述的电极,其中,所述电池连接片附接结构具有所述电极的总宽度的3%至10%的宽度。
10.根据权利要求1所述的自支撑电极,其中,所述电池连接片附接结构包括导电碳结构。
11.根据权利要求10所述的自支撑电极,其中,所述导电碳结构包括碳纳米管、石墨烯、碳纤维、石墨或碳的任何其他导电同素异形体形式、或其组合。
12.根据权利要求11所述的自支撑电极,其中,所述碳纳米管和/或所述碳纤维为纳米管纱、纳米管线、纳米管布、纳米管丝、纳米管纸、纳米管垫、纳米管片、或纳米管毡的形式。
13.一种制造无粘合剂、无集电极的自支撑电极的方法,所述方法包括:
使电极活性材料气雾化或流化以产生雾化或流化的电极活性材料;和
将所述雾化或流化的电极活性材料与碳纳米管共沉积到第一多孔表面和在所述第一多孔表面上方与所述第一多孔表面间隔开的电池连接片附接结构上,以形成自支撑电极材料,所述自支撑电极材料为碳纳米管的三维网络中的所述电极活性材料与嵌入在所述自支撑电极材料中的所述电池连接片附接结构的复合材料,使得所述支撑电极材料在电池连接片附接结构的下方和上方共沉积,
其中,所述电极具有总长度、总宽度和总厚度,并且所述电池连接片附接结构具有所述电极的总宽度的1%至100%的宽度,和
其中,所述电池连接片附接结构突出到所述电极的外部,提供电连接片附接点。
14.根据权利要求13所述的方法,其中,将所述雾化或流化的活性材料与碳纳米管共沉积到所述第一多孔表面和在所述第一多孔表面上方与所述第一多孔表面间隔开的所述电池连接片附接结构上包括:
使所述雾化的电极活性材料粉末与所述碳纳米管在载气中相接触,以形成所述碳纳米管与所述雾化的电极活性材料粉末的混合物;
在所述第一多孔表面和在所述第一多孔表面上方与所述第一多孔表面间隔开的电池连接片附接结构上聚集混合物;和
去除载气。
15.根据权利要求13所述的方法,其中,所述电极活性材料选自石墨、硬碳、硅、氧化硅、锂金属氧化物、磷酸铁锂和锂金属。
16.根据权利要求13所述的方法,其中,所述电池连接片附接结构包括金属。
17.根据权利要求16所述的方法,其中,金属为铜、铝、镍或不锈钢。
18.根据权利要求13所述的方法,其中,所述电极具有10μm至5000μm的总厚度。
19.根据权利要求13所述的方法,其中,所述电极具有20μm至100μm的总厚度。
20.根据权利要求13所述的方法,其中,所述电池连接片附接结构具有所述电极的总宽度的10%至50%的宽度。
21.根据权利要求13所述的方法,其中,所述电池连接片附接结构具有所述电极的总宽度的10%至30%的宽度。
22.根据权利要求13所述的方法,其中,所述电池连接片附接结构具有所述电极的总宽度的10%至20%的宽度。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762559254P | 2017-09-15 | 2017-09-15 | |
US62/559,254 | 2017-09-15 | ||
US16/123,872 | 2018-09-06 | ||
US16/123,872 US11121358B2 (en) | 2017-09-15 | 2018-09-06 | Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109509866A CN109509866A (zh) | 2019-03-22 |
CN109509866B true CN109509866B (zh) | 2023-05-26 |
Family
ID=63592575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811076666.XA Active CN109509866B (zh) | 2017-09-15 | 2018-09-14 | 自支撑电极及其制造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11121358B2 (zh) |
EP (1) | EP3457466B1 (zh) |
JP (1) | JP7055081B2 (zh) |
KR (2) | KR102399403B1 (zh) |
CN (1) | CN109509866B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022525565A (ja) * | 2019-03-22 | 2022-05-17 | アスペン アエロジェルズ,インコーポレイテッド | リチウム空気電池用カーボンエアロゲル系カソード |
US11539042B2 (en) * | 2019-07-19 | 2022-12-27 | Honda Motor Co., Ltd. | Flexible packaging with embedded electrode and method of making |
DE112020003504T5 (de) * | 2019-07-22 | 2022-10-20 | Honda Motor Co., Ltd. | Streckbare und flexible lithium-ionen-batterie |
CN115036515A (zh) * | 2022-08-12 | 2022-09-09 | 清华大学 | 碳纳米材料复合集流体及其制备方法、电极和电池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3772084A (en) * | 1972-02-11 | 1973-11-13 | Scholle Corp | Method of making negative battery plates |
CN102047488A (zh) * | 2008-03-07 | 2011-05-04 | 莱登能源公司 | 具有连接片的电化学电池 |
CN102593436A (zh) * | 2012-02-27 | 2012-07-18 | 清华大学 | 一种锂离子电池用自支撑柔性碳纳米管纸复合电极材料 |
CN103545556A (zh) * | 2012-07-13 | 2014-01-29 | 清华大学 | 薄膜锂离子电池的制备方法 |
CN107074534A (zh) * | 2014-06-30 | 2017-08-18 | 南加州大学 | 自支撑活性材料/碳纳米材料网络 |
Family Cites Families (264)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3513034A (en) | 1956-04-06 | 1970-05-19 | Us Army | Terminal for thermal cells |
JPH06267515A (ja) | 1993-03-15 | 1994-09-22 | Ricoh Co Ltd | シート状二次電池および該電池を利用した電子素子 |
JP4083260B2 (ja) | 1997-07-09 | 2008-04-30 | 松下電器産業株式会社 | 非水電解液二次電池の電極板の製造方法 |
JPH1187875A (ja) | 1997-09-12 | 1999-03-30 | Seiko Epson Corp | シート状電子機器の製造方法 |
US5985175A (en) | 1998-08-19 | 1999-11-16 | Osram Sylvania Inc. | Boron oxide coated phosphor and method of making same |
JP2003504857A (ja) | 1999-07-02 | 2003-02-04 | プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ | ナノスコピックワイヤを用いる装置、アレイおよびその製造方法 |
US6919064B2 (en) | 2000-06-02 | 2005-07-19 | The Board Of Regents Of The University Of Oklahoma | Process and apparatus for producing single-walled carbon nanotubes |
US20090286675A1 (en) | 2001-05-25 | 2009-11-19 | Tsinghua University | Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor |
FR2826646B1 (fr) | 2001-06-28 | 2004-05-21 | Toulouse Inst Nat Polytech | Procede de fabrication selective de nanotubes de carbone ordonne en lit fluidise |
US20030099883A1 (en) | 2001-10-10 | 2003-05-29 | Rosibel Ochoa | Lithium-ion battery with electrodes including single wall carbon nanotubes |
US6623562B2 (en) | 2001-11-07 | 2003-09-23 | Ovonic Battery Company, Inc. | Apparatus for fabricating pasted electrodes |
JP4336869B2 (ja) | 2001-11-27 | 2009-09-30 | 日本電気株式会社 | 真空成膜装置、真空成膜方法および電池用電極の製造方法 |
US6673489B2 (en) | 2001-12-28 | 2004-01-06 | Quallion Llc | Electric battery assembly and method of manufacture |
CA2374848A1 (en) | 2002-03-06 | 2003-09-06 | Centre National De La Recherche Scientifique | A process for the mass production of multiwalled carbon nanotubes |
EP1492443A2 (en) | 2002-03-29 | 2005-01-05 | Koninklijke Philips Electronics N.V. | A detection and alarm system |
KR100759547B1 (ko) | 2002-07-29 | 2007-09-18 | 삼성에스디아이 주식회사 | 연료전지용 탄소나노튜브, 그 제조방법 및 이를 채용한연료전지 |
DE10253399A1 (de) | 2002-11-15 | 2004-05-27 | Eramet & Comilog Chemicals S.A. | Carbon-Black-Zusammensetzungen und ihre Anwendungen |
JP4062171B2 (ja) | 2003-05-28 | 2008-03-19 | ソニー株式会社 | 積層構造の製造方法 |
GB0312871D0 (en) | 2003-06-05 | 2003-07-09 | Rolls Royce Plc | A stator core |
US20050063891A1 (en) | 2003-09-02 | 2005-03-24 | Cambridge University Technical Services Limited | Method of producing carbon nanoparticles |
WO2005052053A1 (ja) | 2003-11-27 | 2005-06-09 | National Institute Of Advanced Industrial Science And Technology | カーボンナノチューブ分散極性有機溶媒及びその製造方法 |
US20050209392A1 (en) | 2003-12-17 | 2005-09-22 | Jiazhong Luo | Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes |
JP2005290292A (ja) | 2004-04-02 | 2005-10-20 | National Institute Of Advanced Industrial & Technology | カーボンナノチューブ分散ポリイミド可飽和吸収体 |
CA2555521C (en) | 2004-02-06 | 2014-08-05 | A123 Systems, Inc. | Lithium secondary cell with high charge and discharge rate capability |
FI121334B (fi) | 2004-03-09 | 2010-10-15 | Canatu Oy | Menetelmä ja laitteisto hiilinanoputkien valmistamiseksi |
JP4410010B2 (ja) | 2004-03-26 | 2010-02-03 | 東邦瓦斯株式会社 | ナノカーボン材料の製造方法 |
JP4625296B2 (ja) | 2004-03-31 | 2011-02-02 | 日立マクセル株式会社 | 非水二次電池およびこれを用いた電子機器 |
DE102004036170B4 (de) | 2004-07-26 | 2007-10-11 | Schott Ag | Vakuumbeschichtungsanlage und Verfahren zur Vakuumbeschichtung und deren Verwendung |
US20060078489A1 (en) | 2004-09-09 | 2006-04-13 | Avetik Harutyunyan | Synthesis of small and narrow diameter distributed carbon single walled nanotubes |
KR100682862B1 (ko) | 2005-01-11 | 2007-02-15 | 삼성에스디아이 주식회사 | 전기 화학 전지용 전극, 그 제조 방법 및 이를 채용한전기 화학 전지 |
US20060245996A1 (en) | 2005-04-27 | 2006-11-02 | Peking University | Method of synthesizing single walled carbon nanotubes |
TW200700312A (en) | 2005-06-23 | 2007-01-01 | Univ Nat Chunghsing | Method for dispersing carbon nanotube in water and detection agent thereof |
WO2008054349A2 (en) | 2005-07-07 | 2008-05-08 | The University Of Maryland | Carbon nanotube structures formed on large free floating substrates |
JP2007049789A (ja) | 2005-08-08 | 2007-02-22 | Nec Corp | 情報処理装置 |
US8084158B2 (en) | 2005-09-02 | 2011-12-27 | A123 Systems, Inc. | Battery tab location design and method of construction |
WO2008057070A2 (en) | 2005-09-15 | 2008-05-15 | University Of Florida Research Foundation, Inc. | Type separation of single-walled carbon nanotubes via phase transfer |
FI120195B (fi) | 2005-11-16 | 2009-07-31 | Canatu Oy | Hiilinanoputket, jotka on funktionalisoitu kovalenttisesti sidotuilla fullereeneilla, menetelmä ja laitteisto niiden tuottamiseksi ja niiden komposiitit |
US20120105370A1 (en) | 2005-12-12 | 2012-05-03 | Nupix, LLC | Electroded Sheet for a Multitude of Products |
FR2895393B1 (fr) | 2005-12-23 | 2008-03-07 | Arkema Sa | Procede de synthese de nanotubes de carbone |
DE102006024550A1 (de) | 2006-05-23 | 2007-11-29 | Bayer Materialscience Ag | Temperaturstabiler Katalysator für die Gasphasenoxidation |
TW200801223A (en) | 2006-06-01 | 2008-01-01 | Ritek Corp | Method of preparing single wall carbon nanotubes |
US20080233402A1 (en) | 2006-06-08 | 2008-09-25 | Sid Richardson Carbon & Gasoline Co. | Carbon black with attached carbon nanotubes and method of manufacture |
WO2008028169A2 (en) | 2006-08-31 | 2008-03-06 | Nano-C, Inc. | Direct liquid-phase collection and processing of fullerenic materials |
CN100450922C (zh) | 2006-11-10 | 2009-01-14 | 清华大学 | 一种超长定向的碳纳米管丝/薄膜及其制备方法 |
JP5475457B2 (ja) | 2006-11-24 | 2014-04-16 | 本田技研工業株式会社 | カーボンナノチューブ合成用大量エアロゾル粉末噴射装置 |
FR2909989A1 (fr) | 2006-12-18 | 2008-06-20 | Arkema France | Procede de preparation de nanotubes de carbone a partir d'une source de carbone integree au catalyseur |
FR2914634B1 (fr) | 2007-04-06 | 2011-08-05 | Arkema France | Procede de fabrication de nanotubes de carbone a partir de matieres premieres renouvelables |
WO2008124167A1 (en) * | 2007-04-10 | 2008-10-16 | The Regents Of The University Of California | Charge storage devices containing carbon nanotube films as electrodes and charge collectors |
JP5152743B2 (ja) | 2007-06-06 | 2013-02-27 | 本城金属株式会社 | リチウム二次電池用電極及びその製造方法 |
DE102007044031A1 (de) | 2007-09-14 | 2009-03-19 | Bayer Materialscience Ag | Kohlenstoffnanoröhrchenpulver, Kohlenstoffnanoröhrchen und Verfahren zu ihrer Herstellung |
US20090117026A1 (en) | 2007-10-01 | 2009-05-07 | Denso Corporation | Method for manufacturing carbon nano-tube |
KR101213787B1 (ko) | 2007-11-14 | 2012-12-18 | 성균관대학교산학협력단 | 전도성이 개선된 투명 전도성 필름 및 그 제조방법 |
CN201122624Y (zh) | 2007-11-30 | 2008-09-24 | 比亚迪股份有限公司 | 一种电极引出结构及包含该电极引出结构的电池 |
DE102007062421A1 (de) | 2007-12-20 | 2009-06-25 | Bayer Technology Services Gmbh | Verfahren zur Herstellung von Stickstoff-dotierten Kohlenstoffnanoröhrchen |
EP2240973B1 (en) | 2008-01-08 | 2018-03-28 | Sion Power Corporation | Porous electrodes and associated methods |
US8435676B2 (en) | 2008-01-09 | 2013-05-07 | Nanotek Instruments, Inc. | Mixed nano-filament electrode materials for lithium ion batteries |
US9174847B2 (en) | 2008-05-01 | 2015-11-03 | Honda Motor Co., Ltd. | Synthesis of high quality carbon single-walled nanotubes |
US20110171398A1 (en) | 2010-01-12 | 2011-07-14 | Oladeji Isaiah O | Apparatus and method for depositing alkali metals |
US20130189565A1 (en) | 2008-05-07 | 2013-07-25 | Nanocomp Technologies, Inc. | Batteries Having Nanostructured Composite Cathode |
US20120315539A1 (en) | 2008-05-07 | 2012-12-13 | Nanocomp Technologies, Inc. | Nanostructure composite batteries and methods of making same from nanostructure composite sheets |
WO2009137722A1 (en) | 2008-05-07 | 2009-11-12 | Nanocomp Technologies, Inc. | Carbon nanotube-based coaxial electrical cables and wiring harness |
KR101231385B1 (ko) | 2008-05-30 | 2013-02-07 | 미츠비시 쥬고교 가부시키가이샤 | 나노 카본 재료 제조 장치 및 방법 |
CN102076605A (zh) | 2008-06-30 | 2011-05-25 | 昭和电工株式会社 | 制造碳纳米材料的方法和制造碳纳米材料的系统 |
US20100000441A1 (en) | 2008-07-01 | 2010-01-07 | Jang Bor Z | Nano graphene platelet-based conductive inks |
US9099738B2 (en) | 2008-11-03 | 2015-08-04 | Basvah Llc | Lithium secondary batteries with positive electrode compositions and their methods of manufacturing |
EP2373579A2 (en) | 2008-12-08 | 2011-10-12 | Tisol, Llc | Multicomponent nanoparticle materials and process and apparatus therefor |
US9406985B2 (en) | 2009-01-13 | 2016-08-02 | Nokia Technologies Oy | High efficiency energy conversion and storage systems using carbon nanostructured materials |
EP2213369B1 (en) | 2009-01-15 | 2015-07-01 | Carlo Vittorio Mazzocchia | A process for the preparation of a catalyst, a catalyst obtained thereby, and its use in the production of nanotubes |
US20100221606A1 (en) | 2009-03-02 | 2010-09-02 | Omkaram Nalamasu | Energy storage device with porous electrode |
JP2010212309A (ja) | 2009-03-06 | 2010-09-24 | Nippon Chemicon Corp | 電極材料及びこの電極材料を含有する電極 |
SG175115A1 (en) | 2009-04-17 | 2011-11-28 | Seerstone Llc | Method for producing solid carbon by reducing carbon oxides |
US20100285358A1 (en) | 2009-05-07 | 2010-11-11 | Amprius, Inc. | Electrode Including Nanostructures for Rechargeable Cells |
JP2010277925A (ja) | 2009-05-29 | 2010-12-09 | Sanyo Electric Co Ltd | ペーパー電池及びその製造方法 |
KR101758138B1 (ko) | 2009-06-17 | 2017-07-14 | 소니 주식회사 | 비수 전해질 전지, 비전해질 전지용 정극, 비수 전해질 전지용 부극, 비전해질 전지용 세퍼레이터, 비수 전해질용 전해질 및 비전해질 전지용 세퍼레이터의 제조 방법 |
US9257704B2 (en) | 2009-07-06 | 2016-02-09 | Zeptor Corporation | Carbon nanotube composite structures and methods of manufacturing the same |
EP2284933A1 (de) | 2009-07-22 | 2011-02-16 | Bayer MaterialScience AG | Verfahren zur Herstellung von dehnbaren Elektroden |
DE102009038464A1 (de) | 2009-08-21 | 2011-02-24 | Bayer Materialscience Ag | Kohlenstoffnanoröhrchen-Agglomerat |
US9061909B2 (en) | 2009-09-10 | 2015-06-23 | The University Of Tokyo | Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen |
US20110070495A1 (en) | 2009-09-23 | 2011-03-24 | Alliance For Sustainable Energy, Llc | Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries |
US20110111279A1 (en) | 2009-11-09 | 2011-05-12 | Florida State University Research Foundation Inc. | Binder-free nanocomposite material and method of manufacture |
US20120241666A1 (en) | 2009-12-04 | 2012-09-27 | Route Jj Co., Ltd. | Cathode active material precursor and active material for a rechargeable lithium battery comprising hollow nanofibrous carbon, and production method thereof |
US8293204B2 (en) | 2009-12-19 | 2012-10-23 | Abbas Ali Khodadadi | Carbon nanotubes continuous synthesis process using iron floating catalysts and MgO particles for CVD of methane in a fluidized bed reactor |
US9167736B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
KR102098547B1 (ko) | 2010-01-18 | 2020-04-08 | 에네베이트 코포레이션 | 전기화학적 축전지용 복합재 박막 |
EP2528857A4 (en) | 2010-01-25 | 2016-12-28 | Texas A & M Univ Sys | DISPERSION AND WITHDRAWAL OF DEBUGGED NANOTUBES |
US8787001B2 (en) | 2010-03-02 | 2014-07-22 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US20110311874A1 (en) | 2010-04-30 | 2011-12-22 | University Of Southern California | Silicon-Carbon Nanostructured Electrodes |
WO2011146445A2 (en) * | 2010-05-17 | 2011-11-24 | Arthur Boren | Carbon nanotube augmented electrodes with silicon |
EP2573856B1 (en) | 2010-05-19 | 2017-12-27 | Nissan Motor Co., Ltd | Bipolar secondary battery |
MX2013002501A (es) | 2010-09-01 | 2013-04-29 | Dow Global Technologies Llc | Metodo para aplicar una capa de discriminacion sobre filtros ceramicos porosos mediante ensambles porosos prefabricados en suspension en un gas. |
KR101113976B1 (ko) | 2010-10-27 | 2012-03-13 | 한국과학기술연구원 | 자기조립된 전극 활물질-탄소 나노튜브 복합체와 그 제조 방법 및 이를 포함하는 이차전지 |
US8568099B2 (en) | 2010-12-17 | 2013-10-29 | Vestas Wind Systems A/S | Apparatus for harvesting energy from a gearbox to power an electrical device and related methods |
US9001495B2 (en) | 2011-02-23 | 2015-04-07 | Fastcap Systems Corporation | High power and high energy electrodes using carbon nanotubes |
WO2012151297A1 (en) | 2011-05-02 | 2012-11-08 | Washington University | Spray pyrolysis synthesis of mesoporous positive electrode materials for high energy lithium-ion batteries |
PL2706864T3 (pl) | 2011-05-12 | 2018-10-31 | Arcaqua (Pty) Ltd | Ozonowe urządzenie dezynfekujące i mieszalnik do niego |
ITPD20110153A1 (it) | 2011-05-13 | 2012-11-14 | Univ Padova | Metodo di sintesi di nanotubi di carbonio funzionalizzati per cicloaddizione in flusso continuo ed apparato per lo stesso |
CN102790201B (zh) | 2011-05-20 | 2016-11-23 | 清华大学 | 锂离子电池正极及锂离子电池 |
US9136536B2 (en) | 2011-08-12 | 2015-09-15 | Yazaki Corporation | Method of making cohesive carbon assembly and its applications |
KR101370673B1 (ko) | 2011-09-13 | 2014-03-04 | 가부시키가이샤 히타치세이사쿠쇼 | 리튬 이온 이차전지용 전극, 그 제조 방법 및 리튬 이온 이차전지 |
FR2981206B1 (fr) | 2011-10-06 | 2013-11-29 | Inst Polytechnique Grenoble | Procede de preparation d'electrodes flexibles auto-supportees. |
EP2764560A4 (en) | 2011-10-07 | 2015-04-29 | Applied Nanostructured Sols | HYBRID CAPACITOR BATTERY AND SUPERCONDENSOR WITH AN ACTIVE BIFUNCTIONAL ELECTROLYTE |
CN103093857B (zh) | 2011-10-28 | 2016-04-13 | 清华大学 | 电极线及应用该电极线的起搏器 |
CN103094526B (zh) | 2011-10-28 | 2015-07-29 | 清华大学 | 锂离子电池正极的制备方法 |
US8758931B2 (en) | 2011-12-02 | 2014-06-24 | Lenovo (Singapore) Pte. Ltd. | Electrochemical cell package |
US8974960B2 (en) | 2011-12-22 | 2015-03-10 | Board Of Regents, The University Of Texas System | Binder-free sulfur—carbon nanotube composite cathodes for rechargeable lithium—sulfur batteries and methods of making the same |
CN103187575B (zh) | 2011-12-28 | 2015-11-25 | 清华大学 | 薄膜锂离子电池的制备方法 |
CN103187572B (zh) | 2011-12-28 | 2016-01-20 | 清华大学 | 薄膜锂离子电池 |
JP5514230B2 (ja) | 2012-01-04 | 2014-06-04 | 株式会社日立製作所 | 電池モジュール及びその製造方法 |
US8986872B2 (en) | 2012-02-15 | 2015-03-24 | GM Global Technology Operations LLC | Battery design |
US20130224551A1 (en) | 2012-02-29 | 2013-08-29 | Nokia Corporation | Apparatus and Associated Methods |
FR2988225B1 (fr) | 2012-03-13 | 2014-03-28 | Hutchinson | Anode pour cellule de batterie lithium-ion, son procede de fabrication et cette batterie l'incorporant. |
US9692056B1 (en) | 2012-04-13 | 2017-06-27 | Amprius, Inc. | Dual current collectors for battery electrodes |
JP5591280B2 (ja) | 2012-04-13 | 2014-09-17 | トヨタ自動車株式会社 | 電池、組電池 |
TWI627130B (zh) | 2012-04-18 | 2018-06-21 | 美商艾克頌美孚上游研究公司 | 由連續反應器流出物移出碳奈米管之方法 |
CN102674316B (zh) | 2012-05-09 | 2014-05-07 | 清华大学 | 一种基于片层材料制备碳纳米管和石墨烯复合物的方法 |
DE102012207999A1 (de) | 2012-05-14 | 2013-11-14 | Robert Bosch Gmbh | Hüllfolie für ein galvanisches Element, elektrochemischer Speicher, elektrochemisches Speichersystem, flexible Folie für eine Hülle eines galvanischen Elements und Verfahren zum Bestimmen einer Zustandsgröße eines elektrochemischen Speichers |
GB2502305B (en) | 2012-05-22 | 2015-07-29 | Plastic Logic Ltd | Electronic reading devices |
US20130323583A1 (en) | 2012-05-31 | 2013-12-05 | Dragonfly Energy, LLC | Processes for the manufacture of conductive particle films for lithium ion batteries |
JP5906261B2 (ja) | 2012-06-13 | 2016-04-20 | 株式会社三五 | リチウム二次電池用負極の製造方法 |
US9528629B2 (en) | 2012-06-27 | 2016-12-27 | Fisher Controls International Llc | Methods and apparatus to use vibration data to determine a condition of a process control device |
KR20140011683A (ko) | 2012-07-18 | 2014-01-29 | 삼성전자주식회사 | 탄소 나노튜브 복합 소재 및 그 제조 방법 |
CN103633292B (zh) | 2012-08-22 | 2016-06-15 | 清华大学 | 锂离子电池负极 |
CN104936513B (zh) | 2012-11-01 | 2018-01-12 | 蓝色火花科技有限公司 | 体温记录贴片 |
KR101336286B1 (ko) | 2012-11-13 | 2013-12-03 | 재단법인대구경북과학기술원 | 탄소나노섬유 복합체의 제조방법 및 이를 통해 제조된 탄소나노섬유 복합체 |
KR101451354B1 (ko) * | 2012-12-11 | 2014-10-15 | 인하대학교 산학협력단 | 독립형 탄소나노튜브/금속 산화물 입자 복합체 필름 및 그 제조방법 |
WO2014094181A1 (en) | 2012-12-20 | 2014-06-26 | Zhongwei Chen | Bi-functional electrode for metal-air batteries and method for producing same |
DE102012224377A1 (de) | 2012-12-27 | 2014-07-03 | Robert Bosch Gmbh | Verfahren zum Herstellen eines galvanischen Elements und galvanisches Element |
JP2016503751A (ja) | 2013-01-17 | 2016-02-08 | サウディ ベーシック インダストリーズ コーポレイション | 二酸化炭素からのカーボンナノチューブの製造 |
JP5725054B2 (ja) | 2013-02-08 | 2015-05-27 | トヨタ自動車株式会社 | 複合活物質及びその製造方法 |
WO2014153465A1 (en) | 2013-03-20 | 2014-09-25 | Kansas State University Research Foundation | Flexible composite electrode high-rate performance lithium-ion batteries |
DE102013204872A1 (de) | 2013-03-20 | 2014-09-25 | Robert Bosch Gmbh | Elektrode und Verfahren zum Herstellen derselben |
CN103219467B (zh) | 2013-03-27 | 2015-11-11 | 北京大学 | 起皱结构的柔性聚合物太阳能电池及其制备方法 |
CN103280846B (zh) | 2013-03-27 | 2016-08-03 | 上海空间电源研究所 | 一种柔性光伏一体化电源系统 |
JP6098878B2 (ja) | 2013-04-17 | 2017-03-22 | トヨタ自動車株式会社 | 非水電解液二次電池 |
KR102111020B1 (ko) | 2013-05-02 | 2020-05-15 | 삼성디스플레이 주식회사 | 증착 장치 |
US20140370347A1 (en) | 2013-06-14 | 2014-12-18 | Samsung Sdi Co., Ltd. | Flexible battery |
FR3007582B1 (fr) | 2013-06-24 | 2015-06-26 | Inst Polytechnique Grenoble | Procede d'impression ou de depot par atomisation pour la preparation d'une electrode flexible supportee et la fabrication d'une batterie lithium-ion |
WO2015003038A1 (en) | 2013-07-03 | 2015-01-08 | California Institute Of Technology | Carbon nanotubes - graphene hybrid structures for separator free silicon - sulfur batteries |
WO2015004673A1 (en) | 2013-07-11 | 2015-01-15 | Newpace Ltd. | Battery and electronics integration in an implantable medical device |
EP2988362B1 (en) | 2013-07-31 | 2020-04-01 | LG Chem, Ltd. | Curved electrode stack and battery pack comprising same |
US8940446B1 (en) | 2013-08-06 | 2015-01-27 | Quantumscape Corporation | Solid state lithium-air based battery cell |
EP2835177A1 (en) | 2013-08-06 | 2015-02-11 | Bayer Technology Services GmbH | Method for preparing Co-Mn on carbon catalysts and their use in carbon nanotube synthesis |
KR102189784B1 (ko) | 2013-08-30 | 2020-12-11 | 삼성전자주식회사 | 휘어지는 전자 장치 |
US20150087858A1 (en) | 2013-09-25 | 2015-03-26 | Samsung Sdi Co., Ltd. | Carbon nanotube suspensions and methods of making the same |
US20150133569A1 (en) | 2013-11-08 | 2015-05-14 | Samsung Sdi Co., Ltd. | Carbon nanotube suspensions and methods of making the same |
JP2015105208A (ja) | 2013-11-29 | 2015-06-08 | 日本ゼオン株式会社 | カーボンナノチューブ及びその分散液、並びに自立膜及び複合材料 |
KR102161290B1 (ko) | 2013-12-03 | 2020-09-29 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
KR102306495B1 (ko) | 2013-12-04 | 2021-09-28 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 축전체 및 전자 기기 |
KR102152887B1 (ko) | 2013-12-16 | 2020-09-07 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
CN103715394B (zh) | 2013-12-17 | 2016-01-13 | 江西理工大学 | 一种锂离子电池正极及其制备方法 |
US10476291B2 (en) | 2013-12-27 | 2019-11-12 | Amogreentech Co., Ltd. | Wearable device having flexible battery |
US9343722B2 (en) | 2013-12-27 | 2016-05-17 | Intel Corporation | Battery pack having a spring to connect at least two battery cells |
CN103715380B (zh) | 2013-12-30 | 2017-05-17 | 深圳市格瑞普电池有限公司 | 一种柔性穿戴式锂电池 |
CN104752651A (zh) | 2014-01-01 | 2015-07-01 | 许振宇 | 一种可以弯曲和折叠的电池结构 |
KR20150084242A (ko) | 2014-01-13 | 2015-07-22 | 삼성에스디아이 주식회사 | 가요성 이차 전지 및 그 제조방법 |
KR20150086730A (ko) | 2014-01-20 | 2015-07-29 | 삼성전자주식회사 | 가요성 이차 전지 |
CN104810524B (zh) * | 2014-01-23 | 2018-04-03 | 清华大学 | 锂离子电池 |
WO2015123628A1 (en) | 2014-02-14 | 2015-08-20 | The Board Of Trustees Of The University Of Alabama | Nanostructured electrodes and methods fabrication and use |
KR20150096219A (ko) | 2014-02-14 | 2015-08-24 | 서울대학교산학협력단 | 플렉서블 연료전지 및 그 제조방법 |
KR101632109B1 (ko) | 2014-02-24 | 2016-06-20 | 한국과학기술원 | 플렉서블 섬유 전지 |
US20150255828A1 (en) | 2014-03-07 | 2015-09-10 | Semiconductor Energy Laboratory Co., Ltd. | Secondary battery |
US9502734B1 (en) | 2014-03-24 | 2016-11-22 | Amazon Technologies, Inc. | Flexible battery |
CN204072059U (zh) | 2014-03-24 | 2015-01-07 | 上海电机学院 | 一种智能型人体温湿度测量仪 |
KR101676641B1 (ko) | 2014-03-31 | 2016-11-17 | 한국과학기술원 | 블록공중합체 나노템플레이트를 이용한 탄소섬유직물/탄소나노튜브 구조전지 전극의 제조 방법 |
KR101606898B1 (ko) | 2014-04-03 | 2016-03-28 | 숭실대학교산학협력단 | 유연한 리튬 이차전지 및 제조방법 |
KR102211368B1 (ko) | 2014-05-09 | 2021-02-03 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
US20150333302A1 (en) | 2014-05-15 | 2015-11-19 | Pebble Technology Corp. | Flexible band or strap with integrated battery |
JP6269310B2 (ja) | 2014-05-15 | 2018-01-31 | 株式会社村田製作所 | 電池、および電子機器 |
KR101558775B1 (ko) | 2014-05-26 | 2015-10-07 | 현대자동차주식회사 | 고체전해질의 농도 구배를 가지는 전고체 전극 제조방법 |
US10003075B2 (en) | 2014-06-12 | 2018-06-19 | Council Of Scientific And Industrial Research | Carbon nanotube-metal nanocomposites as flexible, free standing, binder free high performance anode for Li-ion battery |
KR102221804B1 (ko) | 2014-07-02 | 2021-03-02 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
US10195668B2 (en) | 2014-07-09 | 2019-02-05 | Honda Motor Co., Ltd. | Method for continuous and controllable production of single walled carbon nanotubes |
US10122010B2 (en) | 2014-07-11 | 2018-11-06 | Semiconductor Energy Laboratory Co., Ltd. | Secondary battery and electronic device including the same |
KR102256294B1 (ko) | 2014-07-14 | 2021-05-26 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
KR102222118B1 (ko) | 2014-07-14 | 2021-03-03 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
KR102222113B1 (ko) | 2014-07-14 | 2021-03-03 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
KR102222112B1 (ko) | 2014-07-16 | 2021-03-03 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
KR102305509B1 (ko) | 2014-07-22 | 2021-09-28 | 씨-나노 테크놀로지 리미티드 | 배터리용 전극 조성물 |
US9979225B2 (en) | 2014-07-28 | 2018-05-22 | Christophe & Albrecht, Inc. | Energy generation system for wearable communication device |
JP2016031922A (ja) | 2014-07-30 | 2016-03-07 | 本田技研工業株式会社 | 電池用電極兼集電体およびそれを備えた電池 |
US9887644B2 (en) | 2014-07-30 | 2018-02-06 | Seoul National University R&Db Foundation | Stretchable triboelectric generator, stretchable electricity storage device, and wearable electronic device |
US20160040780A1 (en) | 2014-08-05 | 2016-02-11 | General Electric Company | Piston assembly for a reciprocating engine |
US20160049569A1 (en) | 2014-08-13 | 2016-02-18 | Barry E. Negrin | Thermoelectric power source for personal electronics and wearable electronic devices having same |
JP2016051614A (ja) | 2014-08-29 | 2016-04-11 | 日東電工株式会社 | リチウム金属二次電池 |
KR101548465B1 (ko) | 2014-08-29 | 2015-08-28 | 김성준 | 스마트 워치용 배터리 장치 |
KR101666714B1 (ko) | 2014-08-30 | 2016-10-14 | 주식회사 제낙스 | 플렉시블 이차 전지 및 그 제조 방법 |
JP2016054113A (ja) | 2014-09-04 | 2016-04-14 | 日本ゼオン株式会社 | 二次電池電極用複合体の製造方法、二次電池電極用複合体、二次電池用電極および二次電池 |
CN108922992B (zh) | 2014-09-04 | 2021-10-26 | 阿莫绿色技术有限公司 | 柔性电池及其制备方法和包含柔性电池的辅助电池 |
KR101680592B1 (ko) | 2014-09-05 | 2016-11-29 | 주식회사 아모그린텍 | 플렉서블 배터리 및 그 제조방법과 플렉서블 배터리를 포함하는 보조배터리 |
WO2016044749A1 (en) | 2014-09-19 | 2016-03-24 | Nanosynthesis Plus. Ltd. | Methods and apparatuses for producing dispersed nanostructures |
JP2016073196A (ja) | 2014-09-26 | 2016-05-09 | 株式会社半導体エネルギー研究所 | 二次電池モジュールおよび給電システム |
CN104392845B (zh) | 2014-10-17 | 2017-03-29 | 复旦大学 | 一种可拉伸的线状超级电容器和锂离子电池制备方法 |
KR101650782B1 (ko) | 2014-10-22 | 2016-08-26 | 인하대학교 산학협력단 | 리튬-공기전지 양극용 자립형 탄소메쉬 지지체 |
CN104362326B (zh) | 2014-10-29 | 2017-08-29 | 华南师范大学 | 一种柔性电极材料的制备方法 |
KR101829104B1 (ko) * | 2014-10-31 | 2018-02-13 | 주식회사 엘지화학 | 프리스탠딩 필름형 리튬-설퍼 전지용 양극재 및 이를 포함하는 리튬-설퍼 전지 |
KR101795541B1 (ko) | 2014-11-17 | 2017-11-08 | 주식회사 아모그린텍 | 플렉서블 배터리 및 이를 포함하는 보조배터리 |
KR102394689B1 (ko) | 2014-11-24 | 2022-05-06 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
KR102314081B1 (ko) | 2014-11-26 | 2021-10-15 | 삼성에스디아이 주식회사 | 탭을 갖는 이차 전지 |
JP6484800B2 (ja) | 2015-02-24 | 2019-03-20 | パナソニックIpマネジメント株式会社 | フレキシブル電池 |
KR102320437B1 (ko) | 2015-03-03 | 2021-11-01 | 삼성에스디아이 주식회사 | 플렉서블 이차 전지 |
KR101810003B1 (ko) | 2015-03-03 | 2017-12-18 | 주식회사 아모그린텍 | 배터리가 내장된 휴대단말기용 케이스 |
KR101795544B1 (ko) | 2015-03-10 | 2017-11-08 | 주식회사 아모그린텍 | 배터리가 내장된 가방 |
KR101765459B1 (ko) | 2015-03-10 | 2017-08-07 | 주식회사 아모그린텍 | 플렉서블 배터리가 내장된 지갑 |
KR102350516B1 (ko) | 2015-03-24 | 2022-01-12 | 주식회사 아모그린텍 | 팔찌형 보조배터리 |
KR101848417B1 (ko) | 2015-04-27 | 2018-04-12 | 주식회사 아모그린텍 | 웨어러블 장치 |
KR102348407B1 (ko) | 2015-04-30 | 2022-01-10 | 주식회사 아모그린텍 | 플렉서블 배터리가 내장된 다이어리 |
KR102376184B1 (ko) | 2015-04-30 | 2022-03-18 | 주식회사 아모그린텍 | 플렉서블 배터리가 내장된 성형품 및 이의 제조방법 |
WO2016178117A1 (en) | 2015-05-06 | 2016-11-10 | Semiconductor Energy Laboratory Co., Ltd. | Secondary battery and electronic device |
CN107532306B (zh) | 2015-05-07 | 2021-03-02 | 佛斯范有限公司 | 涂布超细磷酸盐转化晶体涂层的方法 |
KR20160146304A (ko) | 2015-06-12 | 2016-12-21 | 삼성에스디아이 주식회사 | 이차 전지 |
WO2016203342A1 (en) | 2015-06-16 | 2016-12-22 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device and electronic device |
US10686167B2 (en) | 2015-07-31 | 2020-06-16 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device, battery management unit, and electronic device |
KR102415749B1 (ko) | 2015-08-05 | 2022-07-01 | 삼성에스디아이 주식회사 | 플렉시블 전지 |
KR102422935B1 (ko) | 2015-09-24 | 2022-07-20 | 주식회사 아모그린텍 | 헬멧 |
WO2017052248A1 (ko) | 2015-09-24 | 2017-03-30 | 코오롱인더스트리 주식회사 | 연료 전지용 막-전극 어셈블리, 이의 제조 방법, 그리고 이를 포함하는 연료 전지 시스템 |
JP6793720B2 (ja) | 2015-09-25 | 2020-12-02 | エルジー・ケム・リミテッド | カーボンナノチューブ分散液およびその製造方法 |
WO2017083566A1 (en) | 2015-11-12 | 2017-05-18 | Cornell University | High performance electrodes |
CN106024969A (zh) | 2015-11-27 | 2016-10-12 | 上海空间电源研究所 | 柔性衬底硅基薄膜太阳能电池周边激光绝缘制备方法 |
KR20170063241A (ko) | 2015-11-30 | 2017-06-08 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
KR102555973B1 (ko) | 2015-11-30 | 2023-07-13 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
KR102593581B1 (ko) | 2015-11-30 | 2023-10-23 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
KR101703516B1 (ko) | 2015-12-29 | 2017-02-07 | 국방과학연구소 | 탄소 섬유 직물/탄소 나노 튜브 전극의 제조 방법 |
CN205375473U (zh) | 2015-12-30 | 2016-07-06 | 苏州博众精工科技有限公司 | 一种基于led点阵的电子名片 |
WO2017120391A1 (en) | 2016-01-08 | 2017-07-13 | The Texas A&M University System | Large energy density batteries and methods of manufacture |
JP6692436B2 (ja) | 2016-01-12 | 2020-05-13 | アモグリーンテック カンパニー リミテッド | ウェアラブルデバイス |
JP2017130274A (ja) | 2016-01-18 | 2017-07-27 | 東ソー株式会社 | リチウム二次電池用負極材およびその製造方法、リチウム二次電池 |
US20170214052A1 (en) | 2016-01-25 | 2017-07-27 | Ford Cheer International Limited | Electrode having nanocrystal assembled active clusters embodied in conductive network structures, and battery having same, and fabrication method of same |
KR101916151B1 (ko) | 2016-01-26 | 2018-11-07 | 주식회사 아모그린텍 | 무인 비행 장치 |
JP6978207B2 (ja) | 2016-02-12 | 2021-12-08 | 三洋化成工業株式会社 | リチウムイオン電池 |
CN205697720U (zh) | 2016-02-18 | 2016-11-23 | 武汉伟龙思博特工程信息技术有限公司 | 一种穿戴式体温监测内衣 |
JP2017162637A (ja) | 2016-03-09 | 2017-09-14 | パナソニックIpマネジメント株式会社 | フレキシブル電池 |
US10680242B2 (en) | 2016-05-18 | 2020-06-09 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing positive electrode active material, and lithium ion battery |
KR102245618B1 (ko) | 2016-07-20 | 2021-04-27 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
KR102582688B1 (ko) | 2016-08-09 | 2023-09-26 | 삼성전자주식회사 | 압력 센서를 구비한 전자 장치 |
KR101729702B1 (ko) | 2016-08-10 | 2017-04-24 | 한국기계연구원 | 입체 배열구조를 갖는 신축성 에너지 저장소자 및 신축성 전자 디바이스 |
CN106129536B (zh) | 2016-08-12 | 2019-07-05 | 复旦大学 | 一种可拉伸锂空气电池及其制备方法 |
CN106299237B (zh) | 2016-09-27 | 2019-06-28 | 武汉艾特米克超能新材料科技有限公司 | 自支撑极片及其制备方法、电池及其电芯 |
US20180115026A1 (en) | 2016-10-25 | 2018-04-26 | Arubixs, Inc. | Flexible impregnated battery array |
KR101926626B1 (ko) | 2016-12-16 | 2018-12-11 | 주식회사 아모그린텍 | 플렉서블 배터리가 내장된 무선 헤드폰 |
US20180240609A1 (en) | 2017-02-17 | 2018-08-23 | Aict | High performance nano/micro composite fiber capable of storing electrical energy and method for fabricating thereof |
US20180241081A1 (en) | 2017-02-21 | 2018-08-23 | National Synchrotron Radiation Research Center | Electrolyte, flexible electrode and flexible electronic device |
CN110546801A (zh) | 2017-04-20 | 2019-12-06 | 阿莫绿色技术有限公司 | 电池及包括其的移动电子设备 |
CN110537394B (zh) | 2017-04-21 | 2023-01-31 | 阿莫绿色技术有限公司 | 印刷电路纳米纤维网制造方法及印刷电路纳米纤维网 |
CN108735969B (zh) | 2017-04-24 | 2020-09-29 | 清华大学 | 锂离子电池负极及柔性锂离子电池 |
CN107086306A (zh) | 2017-05-08 | 2017-08-22 | 厦门大学 | 一种采用石墨烯薄膜作为负极的微型薄膜锂电池 |
JP6652111B2 (ja) | 2017-07-18 | 2020-02-19 | トヨタ自動車株式会社 | 太陽電池の製造方法 |
US10658651B2 (en) | 2017-07-31 | 2020-05-19 | Honda Motor Co., Ltd. | Self standing electrodes and methods for making thereof |
KR102364159B1 (ko) | 2017-08-01 | 2022-02-18 | 주식회사 엘지에너지솔루션 | 전극 탭 절단 장치를 포함하는 파우치형 이차전지 |
CN107611340B (zh) | 2017-08-23 | 2020-06-12 | 柔电(武汉)科技有限公司 | 柔性全固态电池及其制备方法 |
US11201318B2 (en) | 2017-09-15 | 2021-12-14 | Honda Motor Co., Ltd. | Method for battery tab attachment to a self-standing electrode |
WO2019055897A1 (en) | 2017-09-15 | 2019-03-21 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | CELLULAR PHONE, TABLET AND PERSONAL COMPUTER INTEGRATED ALL-IN-ONE, INTER-CONVERTIBLE AND FOLDING |
US20190099129A1 (en) | 2017-10-04 | 2019-04-04 | Align Technology, Inc. | Intraoral appliances for sampling soft-tissue |
KR102508466B1 (ko) | 2017-10-11 | 2023-03-08 | 한양대학교 산학협력단 | 은-아연 전지 및 그 제조 방법 |
DE102017123752B3 (de) | 2017-10-12 | 2019-03-07 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Kraftfahrzeug-Karosseriebauteil |
JP2019075306A (ja) | 2017-10-17 | 2019-05-16 | トヨタ自動車株式会社 | リチウムイオン二次電池の充電装置、及び、リチウムイオン二次電池の充放電方法 |
US10475267B2 (en) | 2017-10-24 | 2019-11-12 | Ford Global Technologies, Llc | Vehicle finder card with a thin film battery |
US10957939B2 (en) | 2017-11-07 | 2021-03-23 | City University Of Hong Kong | Rechargeable polyacrylamide based polymer electrolyte zinc-ion batteries |
US10446840B2 (en) | 2017-11-07 | 2019-10-15 | City University Of Hong Kong | Rechargeable zinc-ion batteries having flexible shape memory |
US20190237748A1 (en) | 2017-11-22 | 2019-08-01 | Maxwell Technologies, Inc. | Compositions and methods for energy storage devices having improved performance |
US20190393486A1 (en) | 2018-06-21 | 2019-12-26 | Nanotek Instruments, Inc. | Method of improving anode stability in a lithium metal secondary battery |
CN108878717A (zh) | 2018-06-29 | 2018-11-23 | 歌尔科技有限公司 | 可穿戴设备及其绑带式电池 |
CN208690415U (zh) | 2018-07-24 | 2019-04-02 | 安普瑞斯(无锡)有限公司 | 一种柔性锂离子电池 |
CN109088071B (zh) | 2018-08-17 | 2020-07-28 | 深圳新源柔性科技有限公司 | 一种复合层及其应用 |
EP3654413A1 (en) | 2018-11-14 | 2020-05-20 | Université de Liège | Silicon-carbon composite anode material |
-
2018
- 2018-09-06 US US16/123,872 patent/US11121358B2/en active Active
- 2018-09-14 JP JP2018172176A patent/JP7055081B2/ja active Active
- 2018-09-14 KR KR1020180110053A patent/KR102399403B1/ko active IP Right Grant
- 2018-09-14 CN CN201811076666.XA patent/CN109509866B/zh active Active
- 2018-09-14 EP EP18194469.5A patent/EP3457466B1/en active Active
-
2021
- 2021-05-07 US US17/314,807 patent/US11489147B2/en active Active
-
2022
- 2022-05-11 KR KR1020220057915A patent/KR102456227B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3772084A (en) * | 1972-02-11 | 1973-11-13 | Scholle Corp | Method of making negative battery plates |
CN102047488A (zh) * | 2008-03-07 | 2011-05-04 | 莱登能源公司 | 具有连接片的电化学电池 |
CN102593436A (zh) * | 2012-02-27 | 2012-07-18 | 清华大学 | 一种锂离子电池用自支撑柔性碳纳米管纸复合电极材料 |
CN103545556A (zh) * | 2012-07-13 | 2014-01-29 | 清华大学 | 薄膜锂离子电池的制备方法 |
CN107074534A (zh) * | 2014-06-30 | 2017-08-18 | 南加州大学 | 自支撑活性材料/碳纳米材料网络 |
Also Published As
Publication number | Publication date |
---|---|
US20190088929A1 (en) | 2019-03-21 |
US11489147B2 (en) | 2022-11-01 |
JP7055081B2 (ja) | 2022-04-15 |
US20210265619A1 (en) | 2021-08-26 |
EP3457466A1 (en) | 2019-03-20 |
KR20220068965A (ko) | 2022-05-26 |
US11121358B2 (en) | 2021-09-14 |
KR102399403B1 (ko) | 2022-05-17 |
KR102456227B1 (ko) | 2022-10-18 |
KR20190031173A (ko) | 2019-03-25 |
CN109509866A (zh) | 2019-03-22 |
JP2019075366A (ja) | 2019-05-16 |
EP3457466B1 (en) | 2021-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109509866B (zh) | 自支撑电极及其制造方法 | |
Xiang et al. | In situ vertical growth of Fe–Ni layered double-hydroxide arrays on Fe–Ni alloy foil: interfacial layer enhanced electrocatalyst with small overpotential for oxygen evolution reaction | |
Yang et al. | Superior oxygen evolution reaction performance of Co3O4/NiCo2O4/Ni foam composite with hierarchical structure | |
Zhu et al. | TiO2 nanotube@ SnO2 nanoflake core–branch arrays for lithium-ion battery anode | |
Li et al. | Bio-inspired hierarchical nanofibrous Fe3O4–TiO2–carbon composite as a high-performance anode material for lithium-ion batteries | |
Suren et al. | Development of a high energy density flexible zinc-air battery | |
Zhu et al. | Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays | |
KR101199004B1 (ko) | 슈퍼커패시터용 나노다공성 전극 및 이의 제조방법 | |
Mukhiya et al. | Integrating the essence of a metal–organic framework with electrospinning: a new approach for making a metal nanoparticle confined N-doped carbon nanotubes/porous carbon nanofibrous membrane for energy storage and conversion | |
US8142938B2 (en) | Porous clusters of silver powder promoted by zirconium oxide for use as a catalyst in gas diffusion electrodes, and method for the production thereof | |
Cao et al. | Hierarchical NiMo alloy microtubes on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction | |
Muthurasu et al. | Vertically aligned metal–organic framework derived from sacrificial cobalt nanowire template interconnected with nickel foam supported selenite network as an integrated 3D electrode for overall water splitting | |
Shaikh et al. | Rapid ambient growth of copper sulfide microstructures: binder free electrodes for supercapacitor | |
Chatterjee et al. | Advanced asymmetric supercapacitor with NiCo2O4 nanoparticles and nanowires electrodes: A comparative morphological hierarchy | |
Wang et al. | Efficient lithium-ion storage by hierarchical core–shell TiO2 nanowires decorated with MoO2 quantum dots encapsulated in carbon nanosheets | |
Zhang et al. | A core-shell NiCu@ NiCuOOH 3D electrode induced by surface electrochemical reconstruction for the ammonia oxidation reaction | |
Ying et al. | 3D hierarchical CuS microflowers constructed on copper powders-filled nickel foam as advanced binder-free electrodes | |
Hu et al. | Ultrafine MnO 2 nanowire arrays grown on carbon fibers for high-performance supercapacitors | |
Zhang et al. | 3D metal dendrite-derived petaloid shaped NiFe2O4@ NFM as binderless electrode for oxygen evolution reaction and electrochemical energy storage | |
Zoller et al. | Overcoming the Challenges of Freestanding Tin Oxide‐Based Composite Anodes to Achieve High Capacity and Increased Cycling Stability | |
Yang et al. | An open-structured carbon fiber brush electrode for efficient hydrogen evolution by inducing oriented bubble transport | |
KR101738255B1 (ko) | 공기 전지 | |
Hsieh et al. | Oxygen reduction reactions from boron-doped graphene quantum dot catalyst electrodes in acidic and alkaline electrolytes | |
Bi et al. | Stable copper tin sulfide nanoflower modified carbon quantum dots for improved supercapacitors | |
You et al. | Freestanding Fe0. 4Co8. 6S8 Nanotube/Nanosheet Arrays on Carbon Cloth as a Host for High-Performance Li/SeS2 Batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |