CN104392845B - 一种可拉伸的线状超级电容器和锂离子电池制备方法 - Google Patents

一种可拉伸的线状超级电容器和锂离子电池制备方法 Download PDF

Info

Publication number
CN104392845B
CN104392845B CN201410548742.8A CN201410548742A CN104392845B CN 104392845 B CN104392845 B CN 104392845B CN 201410548742 A CN201410548742 A CN 201410548742A CN 104392845 B CN104392845 B CN 104392845B
Authority
CN
China
Prior art keywords
spring
stretchable
ion battery
lithium ion
fibre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410548742.8A
Other languages
English (en)
Other versions
CN104392845A (zh
Inventor
彭慧胜
张晔
任婧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihe New Material Group Co ltd
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201410548742.8A priority Critical patent/CN104392845B/zh
Publication of CN104392845A publication Critical patent/CN104392845A/zh
Application granted granted Critical
Publication of CN104392845B publication Critical patent/CN104392845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/022Electrodes made of one single microscopic fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明属于微型储能器件技术领域,具体为一种可拉伸的线状超级电容器和锂离子电池及其制备方法。本发明首先制备一种弹簧状的取向碳纳米管纤维,通过过加捻形成螺旋形,可以拉伸超过300%,然后以这种纤维作为电极构建可拉伸超级电容器;这种纤维可以进一步与锰酸锂和钛酸锂纳米颗粒复合形成复合纤维,分别作为正极和负极,构建可拉伸的锂离子电池。本发明得到的线状可拉伸超级电容器和锂离子电池,相比于其他微型器件具有全新的结构,不需要弹性基底就可以实现拉伸性能,减轻了器件的重量和体积,从而提高了器件的比容量和能量密度,是微型器件领域的重要创新;同时,该器件具有良好的柔性,易于编制和集成,因而具有良好的应用前景。

Description

一种可拉伸的线状超级电容器和锂离子电池制备方法
技术领域
本发明属于微型储能器件技术领域,具体涉及一种可拉伸的线状超级电容器和锂离子电池及其制备方法。
背景技术
柔性和可拉伸的电子器件已经成为现代电子学的一个重要分支。它们在智能衣服、电子皮肤、可拉伸显示器、柔性手机等方面有广泛地应用。因此,迫切需要研发出一个与之匹配的提供储存能量的系统如超级电容器和锂离子电池,并且要求其具有质轻、柔性、可拉伸等性能。传统的超级电容器和锂离子电池通常在一个刚性的平板基底上制得,不能满足上述的要求。最近,人们开始尝试使用弹性的高分子材料作为基底,制备可拉伸的超级电容器和锂离子电池。然而,引入非电化学活性的高分子材料后,大大增加了器件的质量和体积,从而使比容量和比能量密度下降。此外,这些高分子材料由于较低的力学强度和工作温度大大限制了器件的使用范围。
发明内容
本发明的目的在于提供一种可拉伸、可弯折、可编织的柔性线状超级电容器和锂离子电池及其制备方法。
本发明提供的可拉伸的超级电容器,其由弹簧状的取向碳纳米管纤维作为电极,以聚乙烯醇-磷酸凝胶作为电解质。
本发明提供的可拉伸的线状超级电容器的制备方法,具体步骤为:
首先,将5-25根直接从碳纳米管阵列中纺出的碳纳米管纤维,通过过加捻形成螺旋形(即弹簧状)纤维束;过加捻形成的螺旋形,拉伸可以超过300%;
然后,将两根弹簧状纤维束分别均匀地涂抹一层聚乙烯醇-磷酸凝胶电解质;
最后,将两根弹簧状的纤维束缠绕在一起,即制备得可拉伸的线状超级电容器。
上述线状超级电容器中,弹簧状取向碳纳米管纤维电极的直径为30-120 μm。
本发明提供的一种可拉伸的线状锂离子电池,其由弹簧状的取向碳纳米管/锰酸锂复合纤维作为电池的正极,碳纳米管/钛酸锂复合纤维作为电池负极,以环氧乙烷/丁二腈/双三氟甲基磺酰亚胺锂凝胶作为电解质。
本发明提供的可拉伸的线状锂离子电池的制备方法,具体步骤为:
首先,分别将锰酸锂分散液和钛酸锂的分散液均匀地滴在碳纳米管膜上,分别加捻,制成碳纳米管/锰酸锂复合纤维和碳纳米管/钛酸锂复合纤维;
然后,将5-25根复合纤维平行排列,并通过过加捻形成螺旋形(即弹簧状)复合纤维束,过加捻形成的螺旋形,拉伸可以超过300%;将两根复合纤维束分别均匀地涂抹一层环氧乙烷/丁二腈/双三氟甲基磺酰亚胺锂凝胶状电解质;
最后,将两根两根复合纤维束缠绕在一起并封装,制备得可拉伸的线状锂离子电池。
本发明制得的可拉伸的线状锂离子电池,锰酸锂和钛酸锂纳米颗粒均匀地分散在弹簧状碳纳米管纤维的内部和表面。
上述线状锂离子电池中,弹簧状取向碳纳米管复合纤维电极的直径为30-120 μm。
本发明中,所述碳纳米管阵列由化学气相沉积法制备得到;碳纳米管阵列高度在200-300μm。 碳纳米管取向排列,没有无定型碳的沉积。碳纳米管为多壁结构,管径为10-20nm。碳纳米管纤维重量密度为0.1-0.7g/cm3,碳纳米管膜的面密度为1-5 μg/cm2
本发明中,碳纳米管纤维由碳纳米管阵列通过干法纺丝得到:首先,把可纺碳纳米管阵列固定在样品台上,样品台可以旋转以实现纤维加捻;然后,使用刀片从阵列边缘拉出连续的碳纳米管膜,并将碳纳米管膜加捻形成纤维后固定在用于收集的辊筒上;然后,打开控制样品台的电机,使样品以1000-2000 r/min 转动,同时打开控制辊筒的电机,从而连续拉出碳纳米管纤维,拉伸速率为10-20cm/min;若不加捻, 则得到连续的取向碳纳米管膜。5-20根得到的碳纳米管纤维平行排列,继续加捻,直到形成弹簧状的碳纳米管纤维束。
本发明首先设计制备了一种弹簧状的取向碳纳米管纤维,这种纤维是由取向的多壁碳纳米管组成,通过过加捻形成螺旋形,可以拉伸超过300%;然后以这种纤维作为电极构建可拉伸超级电容器。这种纤维可以进一步与锰酸锂和钛酸锂纳米颗粒复合形成复合纤维,分别作为正极和负极,构建可拉伸的锂离子电池。本发明得到的线状可拉伸超级电容器和锂离子电池,相比于其他微型器件具有全新的结构,不需要弹性基底就可以实现拉伸性能,减轻了器件的重量和体积,从而提高了器件的比容量和能量密度,是微型器件领域的重要创新。同时,该器件具有良好的柔性,易于编制和集成,因而具有良好的应用前景,尤其可用于可穿戴、便携式移动设备中。在其它很多领域,也有广泛的应用价值。
附图说明
图1为弹簧状碳纳米管纤维的扫描电镜。其中,a,b和c分别是弹簧状碳纳米管纤维在不同放大倍数下的扫描电镜;d,e和f分别是弹簧状碳纳米管纤维拉伸前和拉伸50%、100%的扫描电镜。
图2为可拉伸的线状超级电容器的电化学性能。其中,a为超级电容器在不同电压扫速下的CV图形;b为比容量与循环次数的关系;c为比容量与拉伸量的关系。d为比容量与拉伸次数的关系。
图3为弹簧状的碳纳米管/钛酸锂复合纤维在不同放大倍数下的扫描电镜。
图4为可拉伸的线状锂离子电池的电化学性能。其中,a为锂离子电池的充放电曲线;b为比容量与循环次数的关系;c为比容量与拉伸量的关系;d为比容量与拉伸次数的关系。
图5为柔性线状超级电容器和锂离子电池结构图示。
具体实施方式
碳纳米管是通过化学气相沉淀法制备的。催化剂采用结构形式为Si/SiO2/Al2O3/Fe的复合材料,其中Al2O3位于硅片和Fe的中间,作为缓冲层,Fe作为催化剂的活性成份,它们分别通过电子束蒸发镀膜仪在硅片(Si)上沉积一层纳米厚度的薄膜制备获得。其中,SiO2层厚度为200-1200 μm,Al2O3层厚度为10-50 nm,Fe层厚度为0.5-2.0 nm。将镀有催化剂的硅基底催化剂面向上,用一片较大的二氧化硅托底承载,放入管式炉的石英管中,靠近管式炉的温度传感装置。调节通气管道流量为:氩气:300-600sccm氢气:20-100sccm;乙烯气:60-200sccm。连接管路。先打开氩气,关闭氢气和乙烯气体。在室温下通气5-15min,以确保排除管路之中的氧气及水蒸气。打开氢气和乙烯,10-25min从室温升至500-900℃,稳定5-25min,待程序开始自行降温时关掉乙烯和氢气。温度降至50-150℃时打开炉子,取出长在基底上的高度取向的可纺碳纳米管阵列。
碳纳米管纤维都是由碳纳米管阵列通过干法纺丝得到的。首先把可纺碳纳米管阵列固定在样品台上, 样品台可以旋转以实现纤维加捻; 然后使用刀片从阵列边缘拉出连续的碳纳米管膜, 并将碳纳米管膜加捻形成纤维后固定在用于收集的辊筒上. 然后打开控制样品台的电机, 使样品以1000-2000 r/min 转动, 同时打开控制辊筒的电机, 从而连续拉出碳纳米管纤维, 拉伸速率为10-20cm/min. 若不加捻, 则得到连续的取向碳纳米管膜。5-20根得到的碳纳米管纤维平行排列,继续加捻,直到形成弹簧状的碳纳米管纤维纤维。
LiMn2O4颗粒是通过水热法合成的。0.2-1.2g的氢氧化锂溶解在50-80mL的去离子水中,然后,加入0.5-2.5g二氧化锰。搅拌1-3h后加入1-5g的葡萄糖和50-80mL的去离子水。最后,在100-400℃的温度下在反应釜中反应20-50个小时。Li4Ti5O12颗粒是通过固态法合成的,TiO2 和 Li2CO3以一定比例混合后,在500-1000℃N2气氛下加热20-50h。最后球磨处理即可得到纳米级别的碳酸锂颗粒。
为了制备复合纤维,分别将锰酸锂和钛酸锂的分散液均匀地滴在碳纳米管膜上,分别加捻制成碳纳米管/锰酸锂复合纤维和碳纳米管/钛酸锂复合纤维。
可拉伸的线状超级电容器的制备:首先,将5-25根直接从碳纳米管阵列中纺出的碳纳米管纤维过加捻形成弹簧状的纤维;然后,将两根纤维分别均匀地涂抹一层聚乙烯醇-磷酸凝胶电解质;最后,将两根纤维缠绕在一起,即得可拉伸的线状超级电容器。如图5所示。
可拉伸的线状锂离子电池的制备:将5-25根复合纤维平行排列并过加捻形成弹簧状的复合纤维;将两根纤维分别均匀地涂抹一层环氧乙烷/丁二腈/双三氟甲基磺酰亚胺锂凝胶状电解质;最后,将两根纤维缠绕在一起并封装,制得可拉伸的线状锂离子电池。
碳纳米管复合纤维的结构由扫描电子显微镜(SEM, Hitachi FE-SEM S-4800operated at 1 kV)来表征。电化学性能通过Arbin多通道电化学测试仪(Arbin,MSTAT-5V/10mA/16Ch)测试,拉伸性能是在拉力测试机(HY-0350)上完成。

Claims (6)

1.一种可拉伸的线状超级电容器,其特征在于由弹簧状的取向碳纳米管纤维作为电极,以聚乙烯醇-磷酸凝胶作为电解质;并由如下步骤制备得到:
首先,将5-25根直接从碳纳米管阵列中纺出的碳纳米管纤维过加捻形成弹簧状的纤维束;
然后,将两根弹簧状纤维束分别均匀地涂抹一层聚乙烯醇-磷酸凝胶电解质;
最后,将两根弹簧状的纤维束缠绕在一起,即制备得可拉伸的线状超级电容器。
2. 根据权利要求1所述的可拉伸的线状超级电容器,其特征在于:弹簧状取向碳纳米管纤维电极的直径为30-120 μm。
3.一种如权利要求1所述的可拉伸的线状超级电容器的制备方法,其特征在于具体步骤如下:
首先,将5-25根直接从碳纳米管阵列中纺出的碳纳米管纤维过加捻形成弹簧状的纤维束;
然后,将两根弹簧状纤维束分别均匀地涂抹一层聚乙烯醇-磷酸凝胶电解质;
最后,将两根弹簧状的纤维束缠绕在一起,即制备得可拉伸的线状超级电容器。
4.一种可拉伸的线状锂离子电池,其特征在于由弹簧状的取向碳纳米管/锰酸锂复合纤维作为电池的正极,碳纳米管/钛酸锂复合纤维作为电池负极,以环氧乙烷/丁二腈/双三氟甲基磺酰亚胺锂凝胶作为电解质,并由如下步骤制备得到:
首先,分别将锰酸锂分散液和钛酸锂的分散液均匀地滴在碳纳米管膜上,分别加捻,制成碳纳米管/锰酸锂复合纤维和碳纳米管/钛酸锂复合纤维;
然后,将5-25根复合纤维平行排列并过加捻形成弹簧状的复合纤维束,将两根复合纤维束分别均匀地涂抹一层环氧乙烷/丁二腈/双三氟甲基磺酰亚胺锂凝胶状电解质;
最后,将两根两根复合纤维束缠绕在一起并封装,制备得可拉伸的线状锂离子电池。
5. 根据权利要求4所述的可拉伸的线状锂离子电池,其特征在于:弹簧状取向碳纳米管复合纤维电极的直径为30-120 μm。
6.一种如权利要求4所述的可拉伸的线状锂离子电池的制备方法,其特征在于具体步骤如下:
首先,分别将锰酸锂分散液和钛酸锂的分散液均匀地滴在碳纳米管膜上,分别加捻,制成碳纳米管/锰酸锂复合纤维和碳纳米管/钛酸锂复合纤维;
然后,将5-25根复合纤维平行排列并过加捻形成弹簧状的复合纤维束,将两根复合纤维束分别均匀地涂抹一层环氧乙烷/丁二腈/双三氟甲基磺酰亚胺锂凝胶状电解质;
最后,将两根两根复合纤维束缠绕在一起并封装,制备得可拉伸的线状锂离子电池。
CN201410548742.8A 2014-10-17 2014-10-17 一种可拉伸的线状超级电容器和锂离子电池制备方法 Active CN104392845B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410548742.8A CN104392845B (zh) 2014-10-17 2014-10-17 一种可拉伸的线状超级电容器和锂离子电池制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410548742.8A CN104392845B (zh) 2014-10-17 2014-10-17 一种可拉伸的线状超级电容器和锂离子电池制备方法

Publications (2)

Publication Number Publication Date
CN104392845A CN104392845A (zh) 2015-03-04
CN104392845B true CN104392845B (zh) 2017-03-29

Family

ID=52610728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410548742.8A Active CN104392845B (zh) 2014-10-17 2014-10-17 一种可拉伸的线状超级电容器和锂离子电池制备方法

Country Status (1)

Country Link
CN (1) CN104392845B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11834335B2 (en) 2019-03-04 2023-12-05 Honda Motor Co., Ltd. Article having multifunctional conductive wire

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047999B (zh) * 2015-07-31 2017-07-07 复旦大学 具有高能量密度和高功率密度的纤维状杂化储能器件及其制备方法
CN105140048A (zh) * 2015-09-11 2015-12-09 复旦大学 一种连续制备复合纤维状超级电容器的方法
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
US11081684B2 (en) 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
CN107564730B (zh) * 2017-07-06 2019-07-05 复旦大学 一种荧光纤维状超级电容器纤维及其制备方法
US10658651B2 (en) 2017-07-31 2020-05-19 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
US20190036102A1 (en) 2017-07-31 2019-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive
US11121358B2 (en) 2017-09-15 2021-09-14 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
CN108987796B (zh) * 2018-09-10 2020-09-01 江西克莱威纳米碳材料有限公司 一种柔性锂离子电池及其制备方法
CN109659133B (zh) * 2018-12-28 2020-02-28 深圳极展科技有限公司 一种纤维电容器的制备方法
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
CN109950639B (zh) * 2019-02-20 2021-03-19 中国科学院电工研究所 一种金属离子电池及其制备方法
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
CN110028789A (zh) * 2019-04-11 2019-07-19 东华大学 一种高强耐磨应变传感纤维的制备方法
US11539042B2 (en) 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making
CN112186241B (zh) * 2020-09-16 2022-08-26 新疆大学 双螺旋结构纤维状锂离子电池及其制备方法和装置
CN113161624B (zh) * 2021-05-07 2022-06-21 哈尔滨工业大学 一种编织结构弹性锂电池的制备方法
CN115101355B (zh) * 2022-03-08 2024-01-16 东华大学 一种可拉伸性、弹性导电高分子基全凝胶态纤维状超级电容器及其制备方法
CN114628622A (zh) * 2022-03-15 2022-06-14 中国科学院苏州纳米技术与纳米仿生研究所 铝离子电池及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400702A (zh) * 2013-07-04 2013-11-20 复旦大学 一种弹性的同轴线状超级电容器及其制备方法
CN103904357A (zh) * 2014-03-09 2014-07-02 复旦大学 一种可拉伸的线状锂离子电池及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400702A (zh) * 2013-07-04 2013-11-20 复旦大学 一种弹性的同轴线状超级电容器及其制备方法
CN103904357A (zh) * 2014-03-09 2014-07-02 复旦大学 一种可拉伸的线状锂离子电池及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets;Tao Chen等;《Scientific Reports》;20140109;第4卷;第1-7页 *
Super-tough carbon-nanotube fibres;Alan B.Dalton等;《Nature》;20030612;第423卷;第703页 *
Twisting Carbon Nanotube Fibers for Both Wire-Shaped Micro-Supercapacitor and Micro-Battery;Jing Ren等;《Advanced Materials》;20121122;第25卷;第1155-1159页 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11888152B2 (en) 2016-03-15 2024-01-30 Honda Motor Co., Ltd. System and method of producing a composite product
US11834335B2 (en) 2019-03-04 2023-12-05 Honda Motor Co., Ltd. Article having multifunctional conductive wire

Also Published As

Publication number Publication date
CN104392845A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
CN104392845B (zh) 一种可拉伸的线状超级电容器和锂离子电池制备方法
CN103904357B (zh) 一种可拉伸的线状锂离子电池及其制备方法
Hoshide et al. Flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide
Zhang et al. Super-stretchy lithium-ion battery based on carbon nanotube fiber
CN104451925B (zh) 一种水溶性聚合物/石墨烯复合纤维及其制备方法和应用
Xiong et al. A flexible fiber-shaped supercapacitor utilizing hierarchical NiCo 2 O 4@ polypyrrole core–shell nanowires on hemp-derived carbon
Dhanabalan et al. Hybrid carbon nanostructured fibers: Stepping stone for intelligent textile-based electronics
Zhao et al. Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries
Gao et al. Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage
Yu et al. Titanium dioxide@ polypyrrole core–shell nanowires for all solid-state flexible supercapacitors
CN105098172B (zh) 多孔石墨化碳包覆四氧化三铁纳米纤维制品的制备方法及其在锂离子电池中的应用
CN109576822A (zh) 一种制备单壁碳纳米管纤维及其复合纤维的方法
EP3553857A1 (en) Paper current collector, method for manufacturing same, and electrochemical device comprising paper current collector
CN105070511B (zh) 一种纤维状超级电容器及其制备方法
CN106848314A (zh) 锂硫电池用双层多孔碳纳米纤维的制备方法及利用其制备正极材料的方法
CN104240973A (zh) 一种透明、柔性的超级电容器织物及其制备方法
CN104282444A (zh) 以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器及其制备方法
CN106374147A (zh) 一种柔性水系钠离子电池及其制备方法
Sun et al. High performance carbon nanotube/polymer composite fibers and water-driven actuators
CN108149343A (zh) 氮掺杂多孔碳包覆硅纳米颗粒的复合纳米纤维及制备
CN110071261A (zh) 电池电极的制备方法
CN107687086B (zh) 多孔石墨烯-碳纳米管复合纤维及其快速制备方法
CN108847492A (zh) 一种n掺杂金属钴碳纳米纤维复合材料及其制备方法和应用
CN105958025B (zh) 一种无定形锗氧化物/多孔碳纳米纤维及其制备方法
CN109192927A (zh) 一种具有中空管状纳米纤维的硫化聚丙烯腈薄膜及由其制备的无粘结剂锂硫电池正极

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230105

Address after: No. 10, Heilongjiang Road, Yantai Economic and Technological Development Zone, Yantai City, Shandong Province, 265599

Patentee after: YANTAI TAYHO ADVANCED MATERIALS Co.,Ltd.

Address before: 200433 No. 220, Handan Road, Shanghai, Yangpu District

Patentee before: FUDAN University

TR01 Transfer of patent right
CP01 Change in the name or title of a patent holder

Address after: No. 10, Heilongjiang Road, Yantai Economic and Technological Development Zone, Yantai City, Shandong Province, 265599

Patentee after: Taihe New Material Group Co.,Ltd.

Address before: No. 10, Heilongjiang Road, Yantai Economic and Technological Development Zone, Yantai City, Shandong Province, 265599

Patentee before: YANTAI TAYHO ADVANCED MATERIALS Co.,Ltd.

CP01 Change in the name or title of a patent holder