CN104282444A - 以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器及其制备方法 - Google Patents

以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器及其制备方法 Download PDF

Info

Publication number
CN104282444A
CN104282444A CN201410451373.0A CN201410451373A CN104282444A CN 104282444 A CN104282444 A CN 104282444A CN 201410451373 A CN201410451373 A CN 201410451373A CN 104282444 A CN104282444 A CN 104282444A
Authority
CN
China
Prior art keywords
carbon nano
electrode
super capacitor
substrate
stretchable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410451373.0A
Other languages
English (en)
Inventor
彭慧胜
张智涛
邓珏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201410451373.0A priority Critical patent/CN104282444A/zh
Publication of CN104282444A publication Critical patent/CN104282444A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明属于超级电容器技术领域,具体为一种基于取向碳纳米管/聚苯胺复合材料作为电极的可拉伸超级电容器的制备方法。本发明首先制备可拉伸的聚合物纤维基底,并在预拉伸情况下缠绕取向碳纳米管薄膜于基底纤维上;浸入聚苯胺单体溶液,通过电化学聚合形成碳纳米管/聚苯胺复合材料;充分涂裹凝胶电解液;最后再次缠绕碳纳米管/聚苯胺复合材料作为对电极;再次涂裹聚合物电解液。我们以可拉伸聚合物纤维为基底,两层碳纳米管/聚合物复合材料为电极构建可拉伸的纤维状超级电容器,可编织或应用于微型器件的储能装置。因此本发明开辟了可拉伸的纤维状超级电容器的新途径。

Description

以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器及其制备方法
技术领域
本发明属于超级电容器技术领域,具体涉及一种可拉伸的线状超级电容器及其制备方法。
背景技术
碳纳米管的发现是世界科学史上的一个里程碑。1991年日本Iijima 发现碳纳米管(Carbon Nanotubes , CNTs) 以来[1], 碳纳米管以其特有的高强度、高弹性、从金属到半导体的电学特性、高电流载荷量和高热导体性以及独特的准一维管状分子结构,在未来高科技领域中具有许多潜在的应用价值。
可穿戴电子器件和微型电子器件近年来已经吸引了越来越多的关注[2],让我们的生活更方便、耗能少,因此如何获得具有更优良电学性能的微型储能器件成为热点。[3-4] 因碳纳米管具有的优良的电学性能,被广泛应用于制备纤维状锂电池、超级电容器、太阳能电池的电极材料[5-10]。另外,碳纳米管将高强度与良好的柔韧性结合在一起,使碳纳米管在复合材料领域得到广泛的应用。1994 年Ajayan 等[11]将CNTs 作为无机填料加入到聚合物基体中制备聚合物-CNT复合材料。有将碳纳米管通过电化学聚合法与聚苯胺复合,获得碳纳米管/聚苯胺复合材料[12-13],也有将碳纳米管与无机MnO2复合,获得碳纳米管/MnO2复合材料。通过电化学氧化还原过程4MnO4- + 3C+H2O == 4MnO2 + CO32- + 2HCO3-得到全固态复合材料碳纤维/MnO2[14]碳纳米管薄膜加捻后获得碳纳米管纤维,在MnSO4和Na2SO4水溶液中发生电化学反应,获得碳纳米管纤维/MnO2复合材料作为超级电容器的电极[15]。
同样,碳纳米管的优良力学性能使其被广泛应用于构建柔性或可拉伸性的电极材料。[16] D. J. Lipomi等将其应用于制备可拉伸的有机太阳能电池[17], T. Yamada等将其应用于制备拉伸传感器[18]。
超级电容器可分为双电层电容器和法拉第赝电容器两类,前者是通过双电层效应,在电极/溶液界面通过电子、离子或偶极子的定向排列产生的双电层电容;后者是在电极表面或体相中的二维空间或准二维空间,电极活性物质进行欠点位沉积、发生高度可逆的吸附/脱附或氧化还原反应,产生和电极电位有关的法拉第赝电容。本发明属于第一类双电层电容器原理。
本发明中涉及的取向碳纳米管薄膜是由化学气相沉积法获得可纺碳纳米管阵列后,通过干法拉膜得到[19-21]。所得的碳纳米管可通过多种方式应用于器件中,有课题组通过分散碳纳米管,并使用喷墨打印法形成对电极,也取得不错的效率[22]。也有将棉线织物浸于分散有单笔碳纳米管的水溶液中,取出后在120摄氏度下干燥10分钟,获得以编织物为基底的附着有碳纳米管的柔性电极[4]。
本发明同时利用碳纳米管所具有的良好力学和电学性能,制备超级可拉伸现状超级电容器。
发明内容
本发明的目的在于提供一种大拉伸量、高容量的以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器及其制备方法。
本发明所提供的以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器,以可拉伸的聚合物纤维为基底,以内、外两层取向碳纳米管/聚苯胺复合材料为电极,凝胶电解质为间隔。其制备方法具体步骤如下:
(1)制备可拉伸的聚合物纤维基底:
将聚合物的前体溶液注入可热缩的塑料套管中,并在80-150 ℃下固化1-5小时,形成柔性线状的聚合物纤维基底;将该聚合物纤维基底从热缩套管中取出;
(2)构建内、外两层可拉伸线状电极:
先将可纺的碳纳米管阵列通过干法拉膜获得取向碳纳米管薄膜,可纺的碳纳米管阵列由化学气相沉积法制得;
再将聚合物纤维基底预拉伸0-800%;
将取向碳纳米管薄膜以固定缠绕角度有序均匀的缠绕在聚合物纤维基底上,作为柔性电极;然后将柔性电极浸入苯胺的酸性水溶液中,以饱和KCl溶液,Ag/AgCl为参比电极,铂丝为对电极,在0.75V电压下进行电化学聚合反应,得到内层取向碳纳米管/聚苯胺复合材料薄膜,作为内层可拉伸线状电极; 
另外,将取向碳纳米管薄膜依次纺于聚四氟乙烯薄板上,再将其浸入苯胺的酸性水溶液中,以饱和KCl饱和溶液,Ag/AgCl为参比电极,铂丝为对电极,在0.75V电压下进行电化学聚合反应,得到外层取向碳纳米管/聚苯胺复合材料薄膜,作为外层可拉伸线状电极;
(3)构建超级可拉伸线状超级电容器:
在内层可拉伸线状电极上涂裹凝胶电解液后,再次缠绕外层可拉伸线状电极,并再次涂裹凝胶电解液,制得以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器。
本发明中,步骤(2)中,所述苯胺的酸性水溶液组成成分为苯胺0.1mol/L,硫酸1mol/L。
本发明中,步骤(3)中,电解液为PVA磷酸水溶液,其中PVA和磷酸的质量比为1:1.5;涂裹电解液时应使电解液与电极充分接触。
本发明中,所述的碳纳米管阵列的制备步骤为: 
合成碳纳米管阵列的催化剂结构为Si/SiO2/Al2O3/Fe,其中,SiO2厚度为300-1000 μm,Al2O3厚度为10-30 nm,Fe厚度为0.5-1.5 nm,Al2O3位于硅片和Fe的中间,作为缓冲层,Fe作为催化剂,它们分别通过电子束蒸发镀膜仪在硅片上沉积一层纳米厚度的膜;采用化学气相沉积法,用乙烯做碳源,以氩气和氢气作为载气,在有氧化层Si基片上合成高度取向的碳纳米管阵列;其中乙烯流量为190-290 sccm,氩气流量为400-620 sccm,氢气流量为20-48 sccm,在管式炉中生长5-20 min。
本发明中,碳纳米管阵列截面中多壁碳纳米管的直径在7-12纳米之间,如图9所示。
本发明中,电容器具体形成过程如图1。超级电容器是以可拉伸聚合物纤维为基底,两层碳纳米管/聚苯胺复合材料为电极制备的。可拉伸聚合物纤维基底直径为1160μm,碳纳米管薄膜的厚度为460 nm。在可拉伸纤维基底上缠以碳纳米管并与聚苯胺复合后涂裹PVA电解液的纤维表面扫描电镜依次如图2中的a和b所示。
本发明中,我们以取向碳纳米管/聚苯胺复合材料为电极,以有序缠绕的方式附着于可拉伸纤维基底上,制得可拉伸纤维状超级电容器,其具有很好的柔性,可以多次弯曲,拉伸,弯折等变型后而不被破坏,如图6中a所示,在拉伸量为200%,电荷存储量维持在未拉伸状态的97%,并且具有高度可逆性;如图7所示在弯折曲率达到2mm时电荷储存量维持在未拉伸状态的98.5%,弯折循环5000次时仍能维持在95.2%。
本发明中得到的可拉伸线状超级电容器具有良好的充放电性能,扫描电镜照片显示取向碳纳米管薄膜能够很好地贴合于纤维基底,因此保证了其电学性能的稳定性。图4中展示了不同电流密度下的充放电曲线。同时我们也研究了该超级电容器随充放电次数增加,其储能能力的变化。如图5所示,在充放电次数大于400次后,储存的电荷/初始电荷比变化不大,经充放电2000次后仍能维持在90%以上。
本发明中所构建的超级电容器在拉伸情况下具有良好的电学和力学性能,并且与取向碳纳米管薄膜的缠绕角度有关。我们对比了构建过程中选用的不同碳纳米管薄膜缠绕角度对性能的影响。缠绕角从20°增加到80°增加过程中,柔性纤维电极所能承受的最大拉伸量降低,这是由于聚合物纤维基底本身具有良好的柔性,但在缠以碳纳米管薄膜后,纤维与碳纳米管薄膜之间具有相互作用力,使得部分变形最大拉伸量降低;另外随着缠绕角从20°增加到80°,电阻率增加,其变化趋势如图3中的a和b所示。其中缠绕角为80°时能够获得最高拉伸量的,稳定的超级电容器。随着纤维基底预拉伸量的增加,最大拉伸量与电阻率变化如图3中的c和d所示。另外聚合物纤维基底的预拉伸程度也对构建的超级电容器的电学和力学性能有影响,在预拉伸量分别为50%,100%和200%下的拉伸量和应力变化如图3中c所示;电阻率变化相对接近,分别为27.9%, 41.5% 和 35.6%。但是鉴于低预拉伸量下所能承受的最大拉伸量更高,因此在后续实验中选用50%预拉伸构建超级电容器。 在拉伸过程中,根据扫描电镜图显示,取向碳纳米管薄膜始终保持与纤维基底的高度贴合性。
附图说明
图1为构建超级可拉伸线状超级电容器的步骤示意图。 
图2,a为可拉伸聚合物纤维基底有序缠以取向碳纳米管后的扫描电镜图,b为电化学聚合形成碳纳米管/聚苯胺复合材料和涂裹PVA电解液后的扫描电镜图。
图3,a和b为不同碳纳米管薄膜缠绕角度下,拉伸引起的应力与电阻率变化,c和d为柔性聚合物纤维基底在不同预拉伸量下,拉伸引起的应力与电阻率变化。
图4为电流密度分别为0.5A/g,1 A/g,2 A/g,4 A/g,8 A/g时,超级可拉伸线状超级电容器的充放电曲线。
图5为电流密度为1 A g-1时,超级可拉伸线状超级电容器储存的电荷量与初始电荷量百分比随充放电次数的变化。
图6,a为不同拉伸量下电容器储存的电荷量与未拉伸状态下的比值,b和c为可拉伸的线状超级电容器在编织后,对比拉伸量100%前后的图片。
图7为弯折曲率与弯折次数对电荷储存能力影响。
图8为碳纳米管阵列截面的扫描电镜图。
图9为单根碳纳米管的透射电镜图。
具体实施方式
一、取向碳纳米管阵列的合成。
垂直生长的碳纳米管阵列以Fe(1.2nm)/Al2O3(3nm)/SiO2/Si作为催化剂在管式炉的石英管中使用典型的化学气相沉积法来合成。催化剂中Al2O3位于硅片和Fe的中间,作为缓冲层,Fe作为催化剂,它们分别通过电子束蒸发镀膜仪在硅片上沉积一层纳米厚摄氏度的膜制备的。采用化学气相沉积法,用乙烯做碳源,氩气和氢气作为载气,在有氧化层Si基片上合成高摄氏度取向的碳纳米管阵列。合成的细节和纤维中碳管的自组装可参考已有文献报道。 
二、 超级可拉伸线状超级电容器的构建
(1)可拉伸聚合物纤维基底的制备
将聚合物PDMS的前体溶液注入可热缩的塑料套管中,并在80摄氏度下固化2小时。将柔性线状PDMS纤维从热缩套管中取出。将PDMS纤维基底预拉伸并沿轴匀速转动,同时可纺的取向碳纳米管阵列沿轴方向匀速移动,纺出的薄膜均匀缠绕在预拉伸的聚合物纤维基底上。
(2)内层碳纳米管/聚苯胺复合电极材料的制备
将柔性电极浸入苯胺的酸性水溶液中,以饱和KCl Ag/AgCl为参比电极,铂丝为对电极,在0.75V电压下进行电化学聚合得到一极的取向碳纳米管/聚苯胺复合电极。电化学聚合中使用的电解液为苯胺的酸性水溶液,其中各组分浓度分别为:苯胺0.1mol/L,硫酸1mol/L。
(3)涂裹电解液
超级电容器中使用的电解液为PVA的酸性水凝胶,其中含为PVA和磷酸,质量比1:1.5。将电解液涂于碳纳米管/聚苯胺复合纤维电极表面,使电解液与电极充分接触。
(4)外层碳纳米管/聚苯胺复合电极材料的制备
将干法拉膜获得的取向碳纳米管薄膜依次纺于聚四氟乙烯薄板上,通过电化学聚合法获得取向碳纳米管/聚苯胺复合薄膜。电化学聚合中电解液为苯胺的酸性水溶液,以饱和KCl Ag/AgCl为参比电极,铂丝为对电极,在0.75V电压下进行电化学聚合得到取向碳纳米管/聚苯胺复合材料薄膜,并将薄膜有序缠绕在电解液层的外侧。
(5)再次涂裹电解液
再次涂凝胶电解液在外电极上,使其与电极充分接触,并起到保护作用。
参考文献
[1]  Iijima S. Nature. 1991,354:56-58
[2]  D. Zou, Z. Lv, X. Cai, S. Hou, Nano Energy 2012, 1, 273.
[3]  H. Lin, L. Li, J. Ren, Z. Cai, L. Qiu, Z. Yang, H. Peng, Sci. Reports 2013, 3, 1353.
[4]  L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, Y. Cui, Nano letters 2010, 10, 708.
[5]  T. Chen, L. Qiu, Z. Yang, H. Peng, Chem. Soc. Rev. 2013, 42, 5031.
[6] Y. H. Kwon, S. W. Woo, H. R. Jung, H. K. Yu, K. Kim, B. H. Oh, S. Ahn, S. Y. Lee, S. W. Song, J. Cho, H. C. Shin, J. Y. Kim, Adv Mater. 2012, 24, 5192.
[7]  Z. Zhang, X. Chen, P. Chen, G. Guan, L. Qiu, H. Lin, Z. Yang, W. Bai, Y. Luo, H. Peng, Adv Mater. 2014, 26, 466.
[8]  Z. Yang, J. Deng, X. Sun, H. Li, H. Peng, Adv. Mater. 2014, 26, 2643.
[9]  H. Lin, W. Weng, J. Ren, L. Qiu, Z. Zhang, P. Chen, X. Chen, J. Deng, Y. Wang, H. Peng, Adv. Mater. 2013, 26, 1217.
[10] T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren, H. Li, H. Lin, X. Sun, H. Peng, Angew. Chem. Int. Ed. 2012, 51, 11977.
[11] Ajayan P.M., Stephan O, Colliex C. et al. Science. 1994,265:1212-1214
[12] C.-C. Hu, W.-Y. Li, J.-Y. Lin, J. Power Sources 2004, 137, 152.
[13] K. Wang, Q. Meng, Y. Zhang, Z. Wei, M. Miao, Adv Mater. 2013, 25, 1494.
[14] X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, L. Gong, W. C. Yen, W. Mai, J. Chen, K. Huo, Y. L. Chueh, Z. L. Wang, J. Zhou, ACS nano 2012, 6, 9200.
[15] C. Choi, J. A. Lee, A. Y. Choi, Y. T. Kim, X. Lepro, M. D. Lima, R. H. Baughman, S. J. Kim, Adv Mater. 2014, 26, 2059.
[16] a) J. A. Rogers, T. Someya, Y. Huang, Science 2010, 327, 1603; b) Z. Yang, J. Deng, X. Chen, J. Ren, H. Peng, Angew. Chem. Int. Ed. 2013, 52, 13453.
[17] D. J. Lipomi, B. C. Tee, M. Vosgueritchian, Z. Bao, Adv Mater. 2011, 23, 1771.
[18]  T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, K. Hata, Nat. Nanotechnol. 2011, 6, 296.
[19] M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358.
[20] L. Qiu, X. Sun, Z. Yang, W. Guo, H. Peng, Acta Chimica Sinica 2012, 70, 1523.
[21] H. Peng, X. Sun, F. Cai, X. Chen, Y. Zhu, G. Liao, D. Chen, Q. Li, Y. Lu, Q. Jia, Nat. Nanotechnol. 2009, 4, 738.
[22] D. Kim, G. Shin, Y. J. Kang, W. Kim, J. S. Ha, ACS Nano. 2013, 7, 7975.。

Claims (5)

1.一种以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器,其特征在于以可拉伸的聚合物纤维为基底,以内、外两层取向碳纳米管/聚苯胺复合材料为电极,凝胶电解质为间隔。
2.一种如权利要求1所述的可拉伸线状超级电容器的制备方法,其特征在于具体步骤如下:
(1)制备可拉伸的聚合物纤维基底:
将聚合物的前体溶液注入可热缩的塑料套管中,并在80-150 ℃下固化1-5小时,形成柔性线状的聚合物纤维基底;将该聚合物纤维基底从热缩套管中取出;
(2)构建内、外两层可拉伸线状电极:
先将可纺的碳纳米管阵列通过干法拉膜获得取向碳纳米管薄膜,可纺的碳纳米管阵列由化学气相沉积法制得;
再将聚合物纤维基底预拉伸0-800%;
将取向碳纳米管薄膜以固定缠绕角度有序均匀的缠绕在聚合物纤维基底上,作为柔性电极;然后将柔性电极浸入苯胺的酸性水溶液中,以饱和KCl溶液,Ag/AgCl为参比电极,铂丝为对电极,在0.75V电压下进行电化学聚合反应,得到内层取向碳纳米管/聚苯胺复合材料薄膜,作为内层可拉伸线状电极; 
另外,将取向碳纳米管薄膜依次纺于聚四氟乙烯薄板上,再将其浸入苯胺的酸性水溶液中,以饱和KCl饱和溶液,Ag/AgCl为参比电极,铂丝为对电极,在0.75V电压下进行电化学聚合反应,得到外层取向碳纳米管/聚苯胺复合材料薄膜,作为外层可拉伸线状电极;
(3)构建超级可拉伸线状超级电容器:
在内层可拉伸线状电极上涂裹凝胶电解液后,再次缠绕外层可拉伸线状电极,并再次涂裹凝胶电解液,制得以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器。
3.如权利要求2所述的可拉伸线状超级电容器的制备方法,其特征在于步骤(2)中,所述苯胺的酸性水溶液组成成分为苯胺0.1mol/L,硫酸1mol/L。
4.如权利要求2所述的可拉伸线状超级电容器的制备方法,其特征在于步骤(3)中,电解液为PVA磷酸水溶液,其中PVA和磷酸的质量比为1:1.5;涂裹电解液时应使电解液与电极充分接触。
5.如权利要求2所述的可拉伸线状超级电容器的制备方法,其特征在于所述的碳纳米管阵列的制备步骤为: 
合成碳纳米管阵列的催化剂结构为Si/SiO2/Al2O3/Fe,其中,SiO2厚度为300-1000 μm,Al2O3厚度为10-30 nm,Fe厚度为0.5-1.5 nm,Al2O3位于硅片和Fe的中间,作为缓冲层,Fe作为催化剂,它们分别通过电子束蒸发镀膜仪在硅片上沉积一层纳米厚度的膜;采用化学气相沉积法,用乙烯做碳源,以氩气和氢气作为载气,在有氧化层Si基片上合成高度取向的碳纳米管阵列;其中乙烯流量为190-290 sccm,氩气流量为400-620 sccm,氢气流量为20-48 sccm,在管式炉中生长5-20 min。
CN201410451373.0A 2014-09-07 2014-09-07 以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器及其制备方法 Pending CN104282444A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410451373.0A CN104282444A (zh) 2014-09-07 2014-09-07 以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410451373.0A CN104282444A (zh) 2014-09-07 2014-09-07 以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器及其制备方法

Publications (1)

Publication Number Publication Date
CN104282444A true CN104282444A (zh) 2015-01-14

Family

ID=52257245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410451373.0A Pending CN104282444A (zh) 2014-09-07 2014-09-07 以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器及其制备方法

Country Status (1)

Country Link
CN (1) CN104282444A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538201A (zh) * 2014-12-26 2015-04-22 浙江理工大学 一种纺织纤维和聚吡咯纳米线复合超级电容器的制备方法
CN105047999A (zh) * 2015-07-31 2015-11-11 复旦大学 具有高能量密度和高功率密度的纤维状杂化储能器件及其制备方法
CN107591252A (zh) * 2017-07-21 2018-01-16 同济大学 一种柔性可裁剪固态超级电容器及其制备方法
CN107680828A (zh) * 2017-09-18 2018-02-09 西南交通大学 一种以不锈钢弹簧为基底的可拉伸超级电容器
CN108010732A (zh) * 2017-11-30 2018-05-08 济南大学 一种应用于超级电容器的新的纳米复合材料的制备
CN108987118A (zh) * 2018-07-24 2018-12-11 上海集成电路研发中心有限公司 太阳能电池与超级电容器集成器件及其制作方法
CN109338727A (zh) * 2018-09-26 2019-02-15 嘉兴学院 一种柔性可穿戴应变传感器的制备方法
CN109853025A (zh) * 2019-01-08 2019-06-07 北京化工大学 复合薄膜及其制备方法和用途
CN109950639A (zh) * 2019-02-20 2019-06-28 中国科学院电工研究所 一种金属离子电池及其制备方法
CN110123271A (zh) * 2019-04-10 2019-08-16 华中科技大学 基于碳纳米管薄膜的可穿戴压力传感器及其制造方法
CN110634682A (zh) * 2019-09-24 2019-12-31 江西理工大学 一种一维同轴柔性可编制的锂离子电容器及其制备方法
US11476058B2 (en) 2019-11-29 2022-10-18 Tsinghua University Supercapacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962429A (zh) * 2006-11-27 2007-05-16 西南交通大学 纯碳纳米管薄膜的制备方法
CN102810406A (zh) * 2012-09-11 2012-12-05 复旦大学 以聚苯胺/取向碳纳米管复合膜为电极的超级电容器及其制备方法
CN103247446A (zh) * 2013-04-26 2013-08-14 复旦大学 一种具有同轴结构的纤维状超级电容器及其制备方法与应用
CN103400702A (zh) * 2013-07-04 2013-11-20 复旦大学 一种弹性的同轴线状超级电容器及其制备方法
CN103903870A (zh) * 2014-03-09 2014-07-02 复旦大学 一种可变色和可拉伸的超级电容器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962429A (zh) * 2006-11-27 2007-05-16 西南交通大学 纯碳纳米管薄膜的制备方法
CN102810406A (zh) * 2012-09-11 2012-12-05 复旦大学 以聚苯胺/取向碳纳米管复合膜为电极的超级电容器及其制备方法
CN103247446A (zh) * 2013-04-26 2013-08-14 复旦大学 一种具有同轴结构的纤维状超级电容器及其制备方法与应用
CN103400702A (zh) * 2013-07-04 2013-11-20 复旦大学 一种弹性的同轴线状超级电容器及其制备方法
CN103903870A (zh) * 2014-03-09 2014-07-02 复旦大学 一种可变色和可拉伸的超级电容器及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538201A (zh) * 2014-12-26 2015-04-22 浙江理工大学 一种纺织纤维和聚吡咯纳米线复合超级电容器的制备方法
CN105047999A (zh) * 2015-07-31 2015-11-11 复旦大学 具有高能量密度和高功率密度的纤维状杂化储能器件及其制备方法
CN105047999B (zh) * 2015-07-31 2017-07-07 复旦大学 具有高能量密度和高功率密度的纤维状杂化储能器件及其制备方法
CN107591252A (zh) * 2017-07-21 2018-01-16 同济大学 一种柔性可裁剪固态超级电容器及其制备方法
CN107680828A (zh) * 2017-09-18 2018-02-09 西南交通大学 一种以不锈钢弹簧为基底的可拉伸超级电容器
CN108010732A (zh) * 2017-11-30 2018-05-08 济南大学 一种应用于超级电容器的新的纳米复合材料的制备
CN108987118A (zh) * 2018-07-24 2018-12-11 上海集成电路研发中心有限公司 太阳能电池与超级电容器集成器件及其制作方法
CN109338727A (zh) * 2018-09-26 2019-02-15 嘉兴学院 一种柔性可穿戴应变传感器的制备方法
CN109853025A (zh) * 2019-01-08 2019-06-07 北京化工大学 复合薄膜及其制备方法和用途
CN109853025B (zh) * 2019-01-08 2020-01-14 北京化工大学 复合薄膜及其制备方法和用途
CN109950639A (zh) * 2019-02-20 2019-06-28 中国科学院电工研究所 一种金属离子电池及其制备方法
CN110123271A (zh) * 2019-04-10 2019-08-16 华中科技大学 基于碳纳米管薄膜的可穿戴压力传感器及其制造方法
CN110634682A (zh) * 2019-09-24 2019-12-31 江西理工大学 一种一维同轴柔性可编制的锂离子电容器及其制备方法
US11476058B2 (en) 2019-11-29 2022-10-18 Tsinghua University Supercapacitor

Similar Documents

Publication Publication Date Title
CN104282444A (zh) 以碳纳米管/聚苯胺复合材料为对电极的可拉伸线状超级电容器及其制备方法
Lu et al. Superelastic hybrid CNT/graphene fibers for wearable energy storage
Zhang et al. Recent advances in functional fiber electronics
Xu et al. Graphene‐based fibers: recent advances in preparation and application
Patil et al. Electrochemical performance of a coaxial fiber-shaped asymmetric supercapacitor based on nanostructured MnO2/CNT-web paper and Fe2O3/carbon fiber electrodes
Teng et al. Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor
Yang et al. A highly stretchable, fiber-shaped supercapacitor.
Lu et al. High-performance hybrid carbon nanotube fibers for wearable energy storage
Liu et al. Facile construction of 3D porous carbon nanotubes/polypyrrole and reduced graphene oxide on carbon nanotube fiber for high-performance asymmetric supercapacitors
Gui et al. Scalable Wire‐Type Asymmetric Pseudocapacitor Achieving High Volumetric Energy/Power Densities and Ultralong Cycling Stability of 100 000 Times
Liu et al. A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure
Zhu et al. Electrochemical performance of polyaniline-coated γ-MnO2 on carbon cloth as flexible electrode for supercapacitor
Miao et al. Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors
Yu et al. Titanium dioxide@ polypyrrole core–shell nanowires for all solid-state flexible supercapacitors
Zhang et al. Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries
Liu et al. A self-supported graphene/carbon nanotube hollow fiber for integrated energy conversion and storage
Li et al. Stretchable energy storage devices based on carbon materials
Fang Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors
CN103400702B (zh) 一种弹性的同轴线状超级电容器及其制备方法
Zhou et al. Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers
Wu et al. Tube-in-tube composite nanofibers with high electrochemistry performance in energy storage applications
Dong et al. Matching electrode lengths enables the practical use of asymmetric fiber supercapacitors with a high energy density
Zheng et al. Highly stretchable CNT/MnO 2 nanosheets fiber supercapacitors with high energy density
Chu et al. Recent advances in polyaniline-based micro-supercapacitors
Gao et al. Design and synthesis of MWNTs-TiO2 nanotube hybrid electrode and its supercapacitance performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150114

WD01 Invention patent application deemed withdrawn after publication