CN104362326B - 一种柔性电极材料的制备方法 - Google Patents

一种柔性电极材料的制备方法 Download PDF

Info

Publication number
CN104362326B
CN104362326B CN201410598654.9A CN201410598654A CN104362326B CN 104362326 B CN104362326 B CN 104362326B CN 201410598654 A CN201410598654 A CN 201410598654A CN 104362326 B CN104362326 B CN 104362326B
Authority
CN
China
Prior art keywords
graphene
electrode material
flexible electrode
manganese dioxide
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410598654.9A
Other languages
English (en)
Other versions
CN104362326A (zh
Inventor
袁中直
刘亚柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201410598654.9A priority Critical patent/CN104362326B/zh
Publication of CN104362326A publication Critical patent/CN104362326A/zh
Application granted granted Critical
Publication of CN104362326B publication Critical patent/CN104362326B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种柔性电极材料的制备方法。该方法以石墨烯作为电极材料,以石墨烯和锰盐的水溶液为电解液、以硫酸调节电解液酸度,采用电化学沉积,将二氧化锰和石墨烯的复合材料负载在石墨烯薄膜表面,通过对电沉积过程中电解液浓度、电流、温度和时间的调节实现对二氧化锰石墨烯复合材料粒径和分布密度及比表面积的精准控制,制备出具有机械性能好可弯折的二氧化锰/石墨烯复合电极材料。这种二氧化锰/石墨烯复合电极材料经过高温煅烧后不仅具有良好的电化学性能,而且仍然具有良好的柔韧性、可以弯曲,适合制作柔性结构的电池,并且不需要粘结剂、导电添加剂和集流体就可以直接制成电极,省去复杂的涂布工艺,工艺简单。

Description

一种柔性电极材料的制备方法
技术领域
本发明属于电极材料领域,涉及一种柔性电极材料的制备方法,具体涉及一种二氧化锰/石墨烯柔性电极材料的制备方法。
背景技术
近年来,随着电子产品的蓬勃发展,柔性储能装置因具有厚度薄、质量轻、柔韧性好、可拉伸等特点,逐步应用于可折叠设备、可穿戴性传感器、植入性医疗设备等。一般电池大多用铜箔和铝箔作为集流体,涂在铜箔或铝箔上面的活性物质在弯曲的时候很容易与集流体分离,所以这些材料不能用于柔性电池。不同于传统电池,柔性电池要求电池的正极、负极、隔膜和电解质都必须是柔性的。而且柔性电池具有更好的能量和更小的体积,这就要求电极材料具有更高的能量密度。
为了解决上述问题,必须合成新的材料或者是对现在的材料进行修饰或者改进。石墨烯是近年发现的二维碳原子晶体,是一种单层或多层极薄的石墨材料,单层的石墨烯中,每个碳原子都有一个未成键的电子,因此具有非常好的导电性;石墨烯中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度,因此,石墨烯具有良好的导电性。因为其具有较大的比表面积,良好的电、热传导性能和灵活的结构,所以作为储能材料的应用受到了极大的关注。专利公开号CN 102568847 A用电沉积法在石墨烯表面电沉积二氧化锰制备二氧化锰/石墨烯复合材料应用于超级电容器,但是并未提及复合材料的柔韧性。专利公开号CN 103762096A中讨论了在氧化石墨烯溶液的两端施加正负脉冲电信号,制备柔性电极材料石墨烯纸,但是并未提及和二氧化锰复合的问题。
发明内容
本发明的目的在于提供一种柔性电极材料的制备方法。
本发明所采取的技术方案是:
一种柔性电极材料的制备方法,包括以下步骤:
1)以石墨烯薄膜作为电极材料,以石墨烯和锰盐的水溶液为电解液、以硫酸调节电解液酸度,采用恒电流法电化学沉积,在石墨烯薄膜表面沉积二氧化锰和石墨烯的复合材料。
2)将电化学沉积后的材料在300~380℃条件下煅烧1~24h,煅烧后即可获得柔性电极材料。
进一步的,上述电解液中石墨烯的浓度为 0.1~100mg/ml,硫酸的浓度为0.2~1.0mol/L,锰盐的浓度为0.15~1.5 mol/L。
进一步的,上述电解液中石墨烯的浓度为 1~10mg/ml,硫酸的浓度为0.2~0.5mol/L,锰盐的浓度为0.6~1.0 mol/L。
进一步的,上述锰盐为+2价的锰盐。
进一步的,上述恒电流法电化学沉积时的恒电流范围为20~100 A m-2,沉积时温度为20~100℃,沉积时间为1~3600s。
进一步的,上述恒电流法电化学沉积时的恒电流范围为20~80 A m-2,沉积时温度为80~100℃,沉积时间为1500~3000s。
进一步的,上述所制备的柔性电极材料的厚度为0.01mm~5mm。
进一步的,上述所制备的柔性电极材料中二氧化锰的质量百分含量为5%~80%。
本发明的有益效果是:
1)本发明方法制备的二氧化锰/石墨烯复合材料,与传统电解法制备二氧化锰相比,制备的复合材料比表面积更大,材料放电性能更好。
2)为了实现具有柔性可弯曲的电源装置的制备,本发明通过使用石墨烯膜状产物经电化学沉积过程,制备出具有机械性能好可弯折的石墨烯/ 二氧化锰复合电极材料。
3)本发明制备复合电极材料不需要粘结剂、导电添加剂和集流体可以直接做电极,工艺简单。
4)本发明电沉积方法实现石墨烯和二氧化锰的复合,无需大量使用有毒的化学试剂。与现有的化学合成法相比,本发明的方法是非常绿色环保。
5)本发明方法过程中二氧化锰的粒径与分布密度能通过调节电解液的组成和电解参数(包括电解电流、时间和温度)实现精准控制,因此电沉积过程的重现性好。
附图说明
图1实施例1得到二氧化锰/石墨烯复合柔性电极的电子照片;
图2实施例1得到二氧化锰/石墨烯复合柔性电极的透射电镜图;
图3 实施例1得到二氧化锰/石墨烯复合柔性电极的扫描电镜图;
图4 实施例3得到二氧化锰/石墨烯复合柔性电极的扫描电镜图;
图5 实施例4得到二氧化锰/石墨烯复合柔性电极的扫描电镜图;
图6 实施例1和2得到二氧化锰/石墨烯复合柔性电极的放电曲线。
具体实施方式
一种柔性电极材料的制备方法,包括以下步骤:
1)以石墨烯薄膜作为电极材料,以石墨烯和锰盐的水溶液为电解液、以硫酸调节电解液酸度,采用恒电流法电化学沉积,在石墨烯薄膜表面沉积二氧化锰和石墨烯的复合材料。
2)将电化学沉积后的材料在300~380℃条件下煅烧1~24h,煅烧后即可获得柔性电极材料。
优选的,上述电解液中石墨烯的浓度为 0.1~100mg/ml,硫酸的浓度为0.2~1.0mol/L,锰盐的浓度为0.15~1.5 mol/L。
更优选的,上述电解液中石墨烯的浓度为 1~10mg/ml,硫酸的浓度为0.2~0.5mol/L,锰盐的浓度为0.6~1.0 mol/L。
优选的,上述锰盐为+2价的锰盐。
更优选的,上述锰盐选自硫酸锰、醋酸锰、氯化锰、碳酸锰和硝酸锰中至少一种。
优选的,上述恒电流法电化学沉积时的恒电流范围为20~100 A m-2,沉积时温度为20~100℃,沉积时间为1~3600s。
更优选的,上述恒电流法电化学沉积时的恒电流范围为20~80 A m-2,沉积时温度为90~100℃,沉积时间为1500~3000s。
优选的,上述步骤2)中煅烧的温度为10~24h。
上述所制备的柔性电极材料的厚度为0.01mm~5mm。
上述所制备的柔性电极材料中二氧化锰的质量百分含量为5%~80%。
下面结合具体实施例对本发明作进一步的说明,但并不局限于此。
实施例1
取石墨烯与100mL去离子水放入250mL烧杯,用超声波和机械搅拌分散4h,分散功率是500W,然后加入硫酸和硫酸锰,配成1mg/mL 石墨烯、0.3M硫酸和0.8M硫酸锰溶液作为电解液,以石墨烯薄膜为电极材料,要高温95℃下采用恒电流法进行电化学沉积,沉积电流为2mA/cm2,沉积时间为2880s;将电沉积的材料放入马弗炉中,在380℃下煅烧24h,煅烧过程中通入氩气进行保护,并用鼓风形成对流。煅烧后即可获得二氧化锰/石墨烯复合柔性电极材料。所制备的柔性电极材料的厚度为0.1mm~0.5mm,二氧化锰的质量百分含量为60%~80%。
本实施例所制备的二氧化锰/石墨烯复合柔性电极材料如图1所示,其透射电镜图如图2所示,扫描电镜图电镜如图3所示,其放电曲线如图6所示。
从图1中可以看出,本发明制备的MnO2/石墨烯柔性电极材料,材料具有良好的柔韧性,机械强度高,可以弯曲成任意形状,经过380℃高温煅烧,也不会破坏其柔韧性。
图2用透射电子显微镜(TEM)对柔性电极进行观察,电解沉积获得的MnO2/石墨烯颗粒比较牢固地附着在石墨烯片层上。
图3、4、5是在不同电流密度下在纯石墨烯薄膜上沉积的MnO2/石墨烯复合材料的扫描电镜(SEM)照片;其中,图3(实施例1)电流密度为2 mA/cm2时表明电沉积的MnO2/石墨烯为球状颗粒,且比较均匀地附着在石墨烯片层结构上,制备的MnO2/石墨烯颗粒直径约为300-500nm左右;图4(实施例3)是电流密度为5 mA/cm2时表明电沉积的MnO2/石墨烯为球状颗粒。从图5(实施例4)中可以看出当电流密度增大到8 mA/cm2时,MnO2颗粒直径为1μm以上,且颗粒出现松散堆积状态。图3、4、5表明颗粒直径随着电流密度增加而加大。
图6表明柔性电极经过380℃煅烧后具有更高的放电电压和更高的放电容量,在常温0.1C倍率下放电容量达到269 mAh/g。
实施例2
取石墨烯与100mL去离子水放入250mL烧杯,用超声波和机械搅拌分散4h,分散功率是500W,然后加入硫酸和硫酸锰,配成1mg/mL石墨烯、0.3M硫酸和0.8M硫酸锰溶液作为电解液,以石墨烯薄膜为电极材料,在高温95℃下采用恒电流法进行电化学沉积,沉积电流为2mA/cm2,沉积时间为2880s;将电沉积的材料放入马弗炉中,在300℃下煅烧24h,煅烧过程中通入氩气进行保护,并用鼓风形成对流。煅烧后即可获得二氧化锰/石墨烯复合柔性电极材料,其放电曲线见图6。
实施例3
取石墨烯与100mL去离子水放入250mL烧杯,用超声波和机械搅拌分散4h,分散功率是500W,然后加入硫酸和硫酸锰,配成1mg/mL石墨烯、0.3M 硫酸和0.8M硫酸锰溶液作为电解液,以石墨烯薄膜为电极材料,在高温95℃下采用恒电流法进行电化学沉积,沉积电流为5mA/cm2,沉积时间为1152s;将电沉积的材料放入马弗炉中,在380℃下煅烧24h,煅烧过程中通入空气,并用鼓风形成对流。煅烧后即可获得二氧化锰/石墨烯复合柔性电极材料。本实施例所制备的二氧化锰/石墨烯复合柔性电极材料的扫描电镜图电镜如图4所示。
实施例4
取石墨烯与100mL去离子水放入250mL烧杯,用超声波和机械搅拌分散4h,分散功率是500W,然后加入硫酸和硫酸锰,配成1mg/mL石墨烯、0.3M 硫酸和0.8M硫酸锰溶液作为电解液,以石墨烯薄膜为电极材料,在高温95℃下采用恒电流法进行电化学沉积,沉积电流为8mA/cm2,沉积时间为720s;将电沉积的材料放入马弗炉中,在380℃下煅烧24h,煅烧过程中通入空气,并用鼓风形成对流。煅烧后即可获得二氧化锰/石墨烯复合柔性电极材料。本实施例所制备的二氧化锰/石墨烯复合柔性电极材料的扫描电镜图电镜如图5所示。
实施例5
取石墨烯与100mL去离子水放入250mL烧杯,用超声波和机械搅拌分散4h,分散功率是500W,然后加入硫酸和硫酸锰,配成100mg/ml石墨烯、1M硫酸和1.5M硫酸锰溶液作为电解液,以石墨烯薄膜为电极材料,在高温20℃下采用恒电流法进行电化学沉积,沉积电流为10mA/cm2,沉积时间为1000s;将电沉积的材料放入马弗炉中,在380℃下煅烧10h,煅烧过程中通入氩气进行保护,并用鼓风形成对流。煅烧后即可获得二氧化锰/石墨烯复合柔性电极材料。
实施例6
取石墨烯与100mL去离子水放入250mL烧杯,用超声波和机械搅拌分散4h,分散功率是500W,然后加入硫酸和硫酸锰,配成0.1mg/ml石墨烯、0.2M硫酸和0.15M硫酸锰溶液作为电解液,以石墨烯薄膜为电极材料,在高温80℃下采用恒电流法进行电化学沉积,沉积电流为10mA/cm2,沉积时间为500s;将电沉积的材料放入马弗炉中,在300℃下煅烧5h,煅烧过程中通入氩气进行保护,并用鼓风形成对流。煅烧后即可获得二氧化锰/石墨烯复合柔性电极材料。
为本领域的专业技术人员容易理解,以上所述仅为本发明专利的较佳实施例,并不用以限制本发明,凡本发明的精神和原则之内所作的任何修改、等同替换和改进等,均落在本发明要求的保护范围之内。

Claims (6)

1.一种柔性电极材料的制备方法,其特征在于:包括以下步骤:
1)以石墨烯薄膜作为电极材料,以石墨烯和锰盐的水溶液为电解液、以硫酸调节电解液酸度,采用恒电流法电化学沉积,在石墨烯薄膜表面沉积二氧化锰和石墨烯的复合材料;
2)将电化学沉积后的材料在300~380℃条件下煅烧1~24h,煅烧后即可获得柔性电极材料;
所述电解液中石墨烯的浓度为1~10mg/ml,硫酸的浓度为0.2~0.5mol/L,锰盐的浓度为0.6~1.0mol/L;
所述恒电流法电化学沉积时的恒电流范围为20~100A m-2,沉积时温度为20~100℃,沉积时间为1~3600s。
2.根据权利要求1所述的一种柔性电极材料的制备方法,其特征在于:所述电解液中石墨烯的浓度为1~10mg/ml,硫酸的浓度为0.2~0.5mol/L,锰盐的浓度为0.6~1.0mol/L。
3.根据权利要求1~2任一所述的一种柔性电极材料的制备方法,其特征在于:所述锰盐为+2价的锰盐。
4.根据权利要求1所述的一种柔性电极材料的制备方法,其特征在于:所述恒电流法电化学沉积时的恒电流范围为20~100A m-2,沉积时温度为20~100℃,沉积时间为1~3600s。
5.根据权利要求1所述的一种柔性电极材料的制备方法,其特征在于:所制备的柔性电极材料的厚度为0.01mm~5mm。
6.根据权利要求1所述的一种柔性电极材料的制备方法,其特征在于:所制备的柔性电极材料中二氧化锰的质量百分含量为5%~80%。
CN201410598654.9A 2014-10-29 2014-10-29 一种柔性电极材料的制备方法 Expired - Fee Related CN104362326B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410598654.9A CN104362326B (zh) 2014-10-29 2014-10-29 一种柔性电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410598654.9A CN104362326B (zh) 2014-10-29 2014-10-29 一种柔性电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN104362326A CN104362326A (zh) 2015-02-18
CN104362326B true CN104362326B (zh) 2017-08-29

Family

ID=52529568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410598654.9A Expired - Fee Related CN104362326B (zh) 2014-10-29 2014-10-29 一种柔性电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN104362326B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11834335B2 (en) 2019-03-04 2023-12-05 Honda Motor Co., Ltd. Article having multifunctional conductive wire

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
CN107221648A (zh) * 2017-04-26 2017-09-29 苏州浏宸新材料科技有限公司 一种柔性电池的制备方法
US11081684B2 (en) 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US20190036102A1 (en) 2017-07-31 2019-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive
US10658651B2 (en) 2017-07-31 2020-05-19 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US11121358B2 (en) 2017-09-15 2021-09-14 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
US11539042B2 (en) 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894679B (zh) * 2009-05-20 2011-09-28 中国科学院金属研究所 一种石墨烯基柔性超级电容器及其电极材料的制备方法
CN102568847B (zh) * 2011-12-16 2014-08-13 江南大学 电化学制备石墨烯/二氧化锰复合材料的方法及其应用
CN102534730A (zh) * 2012-02-23 2012-07-04 南昌航空大学 一种柔性透明高导电石墨烯薄膜制备方法
CN102877109A (zh) * 2012-09-19 2013-01-16 四川大学 电泳沉积法制备石墨烯透明导电薄膜

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11888152B2 (en) 2016-03-15 2024-01-30 Honda Motor Co., Ltd. System and method of producing a composite product
US11834335B2 (en) 2019-03-04 2023-12-05 Honda Motor Co., Ltd. Article having multifunctional conductive wire

Also Published As

Publication number Publication date
CN104362326A (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
CN104362326B (zh) 一种柔性电极材料的制备方法
Jia et al. A novel three-dimensional hierarchical NiCo2O4/Ni2P electrode for high energy asymmetric supercapacitor
Li et al. Few-layered Ti 3 C 2 T x MXenes coupled with Fe 2 O 3 nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors
Deng et al. In‐plane assembled orthorhombic Nb2O5 nanorod films with high‐rate Li+ intercalation for high‐performance flexible Li‐ion capacitors
Ma et al. Facile and scalable electrodeposition of copper current collectors for high-performance Li-metal batteries
Xie et al. Core-shell structured ZnCo2O4@ ZnWO4 nanowire arrays on nickel foam for advanced asymmetric supercapacitors
Li et al. Copper oxide nanowire arrays synthesized by in-situ thermal oxidation as an anode material for lithium-ion batteries
Cheng et al. NH4F assisted and morphology-controlled fabrication of ZnCo2O4 nanostructures on Ni-foam for enhanced energy storage devices
Dang et al. Flexible Ti3C2T x/carbon nanotubes/CuS film electrodes based on a dual-structural design for high-performance all-solid-state supercapacitors
Zhou et al. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes
Wang et al. Interface-engineered MoS2/C nanosheet heterostructure arrays for ultra-stable sodium-ion batteries
Huang et al. Ni 3 S 4 supported on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors
Yu et al. Three-dimensional branched single-crystal β-Co (OH) 2 nanowire array and its application for supercapacitor with excellent electrochemical property
Deepi et al. Electrochemical performance of Bi2O3 decorated graphene nano composites for supercapacitor applications
Miao et al. Hydrothermal growth of 3D graphene on nickel foam as a substrate of nickel-cobalt-sulfur for high-performance supercapacitors
Xia et al. Nanostructured manganese oxide thin films as electrode material for supercapacitors
Qiao et al. Synthesis and electrochemical performance of rod-like LiV3O8 cathode materials for rechargeable lithium batteries
Jing et al. Electrochemically alternating voltage induced Mn3O4/graphite powder composite with enhanced electrochemical performances for lithium-ion batteries
Yao et al. CoO nanosheets derived from electrodeposited cobalt metal towards high performance lithium ion batteries
Lau et al. Oriented multiwalled organic–Co (OH) 2 nanotubes for energy storage
Huang et al. Flexible nanostructured potassium-ion batteries
Tan et al. Binder-free ZnO@ ZnSnO3 quantum dots core-shell nanorod array anodes for lithium-ion batteries
Raj et al. Direct fabrication of two-dimensional copper sulfide nanoplates on transparent conducting glass for planar supercapacitor
Fang et al. Titanium Dioxide/Germanium Core–Shell Nanorod Arrays Grown on Carbon Textiles as Flexible Electrodes for High Density Lithium‐Ion Batteries
Edison et al. Direct electro-synthesis of MnO2 nanoparticles over nickel foam from spent alkaline battery cathode and its supercapacitor performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170829

Termination date: 20181029

CF01 Termination of patent right due to non-payment of annual fee