CN102598275A - 具有场板的半导体器件 - Google Patents

具有场板的半导体器件 Download PDF

Info

Publication number
CN102598275A
CN102598275A CN2010800485229A CN201080048522A CN102598275A CN 102598275 A CN102598275 A CN 102598275A CN 2010800485229 A CN2010800485229 A CN 2010800485229A CN 201080048522 A CN201080048522 A CN 201080048522A CN 102598275 A CN102598275 A CN 102598275A
Authority
CN
China
Prior art keywords
layer
electrode
etching
iii
etching stopping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800485229A
Other languages
English (en)
Other versions
CN102598275B (zh
Inventor
储荣明
罗伯特·科菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transphorm Inc
Original Assignee
Transphorm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transphorm Inc filed Critical Transphorm Inc
Priority to CN201410772862.6A priority Critical patent/CN104576742B/zh
Publication of CN102598275A publication Critical patent/CN102598275A/zh
Application granted granted Critical
Publication of CN102598275B publication Critical patent/CN102598275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28587Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/765Making of isolation regions between components by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66212Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

描述了一种III-N器件,其具有III-N材料层,位于III-N材料层表面上的绝缘体层,位于绝缘体层的相对于III-N材料层的相反侧上的蚀刻停止层,以及位于蚀刻停止层相对于蚀刻停止层的相对于绝缘体层的相反侧上的电极限定层。凹陷形成在电极限定层中。电极形成在凹陷中。绝缘体能够具有精确控制的厚度,尤其是在电极和III-N材料层之间。

Description

具有场板的半导体器件
技术领域
本发明涉及半导体电子器件,具体地涉及具有场板的器件。
背景技术
迄今为止,包括诸如功率MOSFET和绝缘栅双极晶体管(IGBT)的器件的现代功率半导体器件已经通常利用硅(Si)半导体材料来制作。最近,由于碳化硅(SiC)的优异性质而对碳化硅(SiC)功率器件进行了研究。III族氮化物(III-N)半导体器件现在作为承载大电流并且支持高电压并且提供非常低的导通电阻、高电压器件操作以及快速切换时间的候选者而受到了很大关注。图1中所示的通常的III-N高电子迁移率晶体管(HEMT)包括衬底10、位于衬底顶上的诸如GaN层的沟道层11、以及位于沟道层顶上的诸如AlxGa1-xN的阻挡层12。二维电子气(2DEG)沟道19被诱导在沟道层11中且在沟道层11和阻挡层12之间的界面附近。源电极14和漏电极15分别形成与2DEG沟道的欧姆接触。栅极16调制位于栅极区域中、即,位于栅极16正下方的2DEG的部分。
在III-N器件中通常使用场板来以这种方式对器件的高电场区域中的电场进行整形,使得减少了峰值电场并且增加了器件击穿电压,从而允许更高电压操作。在图2中示出了具有场板的III-N HEMT的示例。除了图1的器件中包括的层之外,图2中的器件包括连接到栅极16的场板18;以及在场板和阻挡层12之间的、诸如SiN层的绝缘体层13。场板18可以包括与栅极16相同的材料或者由与栅极16相同的材料形成。绝缘体层13可以用作表面钝化层,阻止或者抑制与绝缘体层13相邻的III-N材料的表面处的电压波动。
斜场板已经显示出了对于在III-N器件中减少峰值电场并且增加击穿电压是特别有效的。在图3中示出了类似于图2的III-N器件,但是其具有斜场板28。在该器件中,栅极16和斜场板28由单个电极29形成。可以是SiN的绝缘体层23包含至少部分地限定电极29的形状的凹陷。在此,绝缘体层23将被称为“电极限定层23”。电极限定层23还可以作为表面钝化层,阻止或者抑制与电极限定层23相邻的III-N材料的表面处的电压波动。该器件中的栅极16和斜场板28可以通过下述方式来形成:首先在阻挡层12的整个表面上沉积电极限定层23,然后在包含栅极16的区域中蚀刻穿过电极限定层23的凹陷,并且最终至少在该凹陷中沉积电极29。
在使用III-N器件的很多应用中,例如,在高功率和高电压应用中,可以有利的是,包括位于栅极16和下面的III-N层之间的栅极绝缘体以便于防止栅极泄漏。在图4中示出了具有斜场板和栅极绝缘体的器件。该器件可以通过略微修改用于图3中的器件的工艺来实现。对于图4中的器件,电极限定层23中的凹陷仅被部分地蚀刻穿过该层(而不是整体穿过该层),之后沉积电极29。在该器件中,位于栅极16和下面的III-N层之间的电极限定层23的部分用作栅极绝缘体。
发明内容
在一方面,描述了一种III-N器件,其包括III-N材料层;绝缘体层,其位于III-N材料层的表面上;蚀刻停止层,其位于绝缘体层的相对于III-N材料层的相反侧上;电极限定层,其位于蚀刻停止层的相对于蚀刻停止层的相对于绝缘体层的相反侧上;以及电极。凹陷形成在电极限定层中并且电极形成在凹陷中。
对于这里描述的所有器件,可应用下面所述中的一个或多个。电极可以包括场板。场板可以是斜场板。电极限定层中的凹陷的一部分可以具有成角度的壁,该成角度的壁的至少一部分相对于蚀刻停止层的主表面成非垂直角度,该成角度的壁限定斜场板。非垂直角度可以处于大约5度和85度之间。绝缘体层可以是钝化层。绝缘体层可以由氧化物或者氮化物形成。绝缘体层可以是大约2-50纳米厚。绝缘体层可以具有大约0.8-40毫法/平方米的每单位面积电容。电极限定层可以由氧化物或者氮化物形成。电极限定层可以为至少大约100纳米厚。绝缘体层和电极限定层的组合厚度能够足以基本上抑制分散(dispersion)。蚀刻停止层的厚度可以为大约1和15纳米之间。蚀刻停止层可以由氮化铝形成。电极限定层和蚀刻停止层可以由不同材料形成。蚀刻停止层和绝缘体层可以由不同材料形成。凹陷可以形成在蚀刻停止层中。
在一些实施中,III-N器件是二极管。该二极管可以包括下述特征中的一个或多个。凹陷可以形成在绝缘体层中。III-N材料层的第一部分可以具有第一组成并且III-N材料层的第二部分可以具有第二组成,其中第一组成和第二组成之间的差异形成了III-N材料层中的2DEG沟道。二极管可以包括阴极,其中电极的一部分是阳极,该阳极形成与III-N材料层的实质性肖特基接触,并且阴极与2DEG沟道电接触。凹陷可以延伸到III-N材料层中并且电极处于III-N材料层中的凹陷的一部分中。凹陷可以延伸穿过2DEG沟道。器件的第一区域的阈值可以大于大约-15V,其中第一区域包括位于阳极区域和阴极之间并且与阳极区域相邻的器件的部分。绝缘体层的厚度可以足以防止大于大约10微安/毫米的泄漏电流在器件操作期间通过绝缘体层。电极可以是阳极电极并且器件可以进一步包括阴极。
在一些实施中,器件是HEMT。HEMT可以包括下述特征中的一个或多个。III-N材料层的第一部分可以具有第一组成并且III-N材料层的第二部分可以具有第二组成,其中第一组成和第二组成之间的差异形成III-N材料层中的2DEG沟道。器件可以包括源极和漏极,其中电极的一部分是栅极,并且源极和漏极与2DEG沟道电接触。器件阈值电压可以大于大约-30V。绝缘体层的厚度可以被选择为器件阈值电压大于大约-30V。绝缘体层的厚度可以足以防止大于大约100微安的泄漏电流在器件操作期间通过绝缘体层。电极可以是栅极电极并且器件可以进一步包括源极和漏极。器件可以是FET,其中当以大约800V或更少的源极-漏极偏置将器件从截止状态切换到导通状态时测量的动态导通电阻等于或小于DC导通电阻的1.4倍。
这里描述的任何器件可以包括多个场板。具有多个场板的器件可以包括下述特征。电极限定层和蚀刻停止层可以是第一电极限定层和第一蚀刻停止层,器件可以进一步包括第一电极限定层的相对于第一蚀刻停止层的相反侧上的堆叠,其中该堆叠包括第二蚀刻停止层和第二电极限定层。凹陷可以形成在堆叠中,并且电极的一部分覆在该堆叠上。第二绝缘体层可以位于第一电极限定层和第二蚀刻停止层之间。器件可以包括第二电极,其中第二凹陷形成在第二电极限定层中和第二蚀刻停止层中,并且第二电极可以形成在第二凹陷中。第二电极可以电连接到第一电极。器件可以包括多个堆叠,其中凹陷形成在每个堆叠中,并且电极形成在每个凹陷中。器件可以是增强模式器件或者耗尽模式器件。
在另一方面,描述了一种形成III-N器件的方法。该方法包括将绝缘体层施加到III-N材料层的表面上。在施加绝缘体层之后,将蚀刻停止层施加在绝缘体层上。在施加蚀刻停止层之后,将电极限定层施加在蚀刻停止层上。蚀刻电极限定层以形成凹陷,其中通过不垂直于蚀刻停止层的表面的壁来至少部分地限定凹陷。蚀刻步骤使用具有选择性从而以比蚀刻蚀刻停止层更快的速率蚀刻电极限定层的蚀刻剂。导电材料沉积在凹陷中和电极限定层的暴露部分上。
该方法的一个或多个实施可以包括下述特征中的一个或多个。该方法可以包括蚀刻蚀刻停止层以将电极限定层中的凹陷延伸到绝缘体层。蚀刻蚀刻停止层可以包括湿法蚀刻。蚀刻蚀刻停止层可以包括干法蚀刻或基于氟的干法蚀刻。用于蚀刻蚀刻停止层的蚀刻工艺可以基本上不蚀刻电极限定层或者绝缘体层。蚀刻工艺可以以大约10∶1或更高的选择性蚀刻蚀刻停止层。蚀刻电极限定层可以导致电极限定层具有成角度的壁,该成角度的壁的至少一部分相对于蚀刻停止层的主表面成非垂直角度。非垂直角度可以处于大约5度和85度之间。用于蚀刻电极限定层的蚀刻工艺可以基本上不蚀刻蚀刻停止层。蚀刻工艺可以以大约10∶1或更高的选择性蚀刻电极限定层。
栅极绝缘体通常需要被制成很薄以保持栅极和2DEG沟道之间的足够耦合,并且通常,栅极绝缘体的厚度必须被控制到很高的精度以便于确保器件阈值电压和其它器件参数的可再现性。这里描述的技术可以导致栅极绝缘体厚度的足够精确的控制,尤其是在要求非常薄的栅极绝缘体的情况下,并且因此使用该工艺的可再现的制造是可能的。
附图说明
图1-4是现有技术的III-N HEMT器件的示意性横截面图。
图5是包含栅极绝缘体和斜场板的III-N半导体晶体管的示意性横截面图。
图6-11示出了形成图5的III-N半导体晶体管的方法。
图12a是包含栅极绝缘体和斜场板的III-N半导体晶体管的示意性横截面图。
图12b和图12c是示出用于III-N半导体晶体管的导通电阻与漏电压的曲线图。
图13是包含栅极绝缘体和斜场板的III-N半导体晶体管的示意性横截面图。
图14和图15分别是包含斜场板的III-N半导体二极管的示意性横截面图和平面图。
图16是包含斜场板的III-N半导体二极管的示意性横截面图。
在各附图中,相同的附图标记表示相同的元件。
具体实施方式
描述了可以进行可再现制造的、诸如HEMT和二极管的半导体器件。器件都包括斜场板,并且一些器件还包括位于栅极和下面的半导体层之间的栅极绝缘体。斜场板的使用可以导致具有对于高电压切换应用的优异性质的器件,诸如在高电压操作时的高击穿电压和最小分散,而当在晶体管结构中包括栅极绝缘体时,栅极绝缘体可以导致栅极泄漏减少。此外,用于这些器件的制造工艺可以使用传统的半导体器件制作工艺来再现。半导体器件可以是III族氮化物或者III-N半导体器件,并且因此这里描述的器件包括III-N半导体层。还描述了形成器件的方法。
图5示出了III族氮化物器件、即III族氮化物HEMT的示意性视图。如这里使用的,术语III族氮化物或者III-N材料、层、器件等等是指由根据化学计量式AlxInyGazN,其中x+y+z大约为1的化合物半导体材料构成的材料或器件。器件包括衬底层10,衬底层10可以包括硅、蓝宝石、GaN、AlN、SiC或者任何其它适合于在III-N器件中使用的衬底或者由上述形成。在一些实施中,不包括衬底。例如,在一些实施中,在完成器件制作之前移除衬底。形成在衬底10上面的III-N层11和12是形成HEMT器件的基础的III-N材料。III-N层11和12具有不同的组成,该组成被选择为使得在层11中诱导2DEG沟道19,该层11从而被称为“沟道层11”。层12中的III-N材料的一些或全部具有大于沟道层11的带隙的带隙,从而层12被称为“阻挡层12”。在一些实施中,沟道层11是GaN并且阻挡层12是AlxGa1-xN,其中x处于0和1之间。理解的是,可以对III-N材料结构进行修改,只要获得的结构是可以利用其来形成III-N HEMT或者其它III-N器件,诸如HFET、MISHFET、MOSFET、MESFET、JFET、CAVET、POLFET、HEMT、FET、二极管或者另外的器件的结构。例如,还可以包括额外的III-N层,诸如位于衬底10和上面的III-N层之间的III-N缓冲层,或者位于沟道层11和阻挡层12之间的AlN层。III-N层可以取向为[0001](III-面或者Ga-面C-面)极性方向、
Figure BDA0000157667050000071
(N-面)极性方向或者任何其它极性、半极性或者非极性取向。在一些实施中,阻挡层12位于衬底10和沟道层11之间,诸如,当III-N材料取向为
Figure BDA0000157667050000072
方向或者氮基半极性方向或者非极性方向时。因此,虽然最上面的III-N层、即距离衬底最远的III-N层在图5中被示出为是阻挡层12,但是在一些实施中,最上面的III-N层可以是沟道层11或者另外的III-N层。
器件结构可以被设计为使得获得的III-N器件是耗尽模式器件,从而当相对于源极将零电压施加到栅极时在沟道层11的接入区域和栅极区域中诱导2DEG沟道19。或者,III-N器件可以是增强模式器件,从而当相对于源极将零电压施加到栅极时,在沟道层11的接入区域而不是栅极区域中诱导2DEG沟道19,并且必须将正电压施加到栅极以在沟道层11的栅极区域中诱导2DEG。如这里使用的,术语“栅极区域”指栅极16正下方的III-N材料中的区域、即图5中的两个竖直虚线之间的区域。术语“接入区域(access region)”指分别位于栅极区域的任一侧上且位于源电极14和漏电极15之间的器件的区域。因此,接入区域可以至少部分地位于斜场板28下方。
在一些实施中,栅极区域中的III-N层结构不同于接入区域(未示出)中的III-N层结构。例如,接入区域可以包括没有被包括在栅极区域中的III-N层,或者反之亦然。在一些实施中,最上面的III-N层在栅极区域中凹陷(未示出)。最上面的III-N层中的凹陷可以部分地延伸穿过该层,从而最上面的III-N层的一部分被在栅极区域中移除。或者,凹陷可以完全延伸穿过最上面的III-N层并且延伸进入到位于最上面的III-N层正下面的III-N层中,从而最上面的III-N层的全部以及位于最上面的III-N层的层的一部分在栅极区域中被移除。用于III-N器件的III-N层结构的额外的示例可以参见下面的文献:2007年9月17日提交的美国专利申请No.11/856687;2008年4月14日提交的美国专利申请No.12/102340;2008年11月26日提交的美国专利申请No.12/324574;2008年4月23日提交的美国专利申请No.12/108449;2008年12月10日提交的美国专利申请No.12/332284;2009年2月9日提交的美国专利申请No.12/368248;以及2007年9月17日提交的美国专利申请No.11/856695,上述文献都通过引用并入这里。
形成在栅极区域的相对侧上的源电极14和漏电极15分别接触沟道层11中的2DEG沟道19。栅极绝缘体层22与最上面的III-N表面相邻并且至少从源电极14延伸到漏电极15。当最上面的III-N层在栅极区域和接入区域两者中是同一层时(即,图5中所示的器件的情况),最上面的III-N表面指最上面的III-N层的相对于衬底10相反侧的表面。在一些实施中,栅极区域中的最上面的III-N层不同于接入区域中的最上面的III-N层,并且在这些实施中,最上面的III-N表面包括位于器件的相对于衬底的相反侧上的所有表面,这些表面包括可以由最上面的III-N层中的台阶、凹陷或者不连续造成的任何垂直或者成角度的表面。
栅极绝缘体层22由可以被制成为薄的任何绝缘膜形成,以便于确保足够高的栅极电容,同时防止实质性电流从栅极16通过2DEG沟道19流动到漏电极15,其中形成栅极绝缘体层22的所述绝缘膜的厚度诸如小于大约50nm,诸如小于大约22nm、18nm或者15nm。例如,栅极绝缘体层22可以为大约2-50nm厚,可以由SiO2或者SiN形成,并且可以通过诸如化学气相沉积(CVD)、有机金属化学气相沉积(MOCVD)、高温化学气相沉积(HTCVD)、溅射、蒸镀或者其它适合的沉积技术来沉积。在一些实施中,栅极绝缘体层22由诸如HfO2、Ti2O5或者ZrO2的高介电常数(高K)电介质形成。与当使用相同厚度的较低的介电常数的电介质时的情况相比,高K电介质导致较高的栅极电容。因此,当使用高K电介质时,栅极绝缘体层22可以不需要被制成为如使用较低介电常数电介质时那样薄。例如,当使用高K电介质时,如果栅极绝缘体层的厚度为大约2000nm或者更小、大约1000nm或更小、或大约500nm或更小,可能能够实现足够大的栅极电容。
栅极绝缘体层22可以被制成为足够厚,使得可以防止实质性泄漏电流、即大于大约100微安的泄漏电流在器件操作期间流过栅极绝缘体层22。例如,可以需要使栅极绝缘体层22的厚度大于大约2nm以基本上抑制泄漏电流。在一些实施中,器件是耗尽模式器件(即,器件阈值电压小于0V),并且栅极绝缘体层22的厚度被选择为器件具有大约-30V或更大(即,负的程度更少的、诸如大约-30V和0V之间的阈值电压。器件的阈值电压是这样的最大电压:在该最大电压下栅极区域中的2DEG基本上耗尽电荷、即具有小于器件中的最大2DEG电荷密度的大约1%的电荷密度。在其它实施中,栅极绝缘体层22的厚度被选择为使得层的每单位面积的电容为大约0.8-40毫法/平方米。
由于栅极绝缘体层22直接接触器件接入区域中的最上面的III-N表面,因此,栅极绝缘体层22还能够自己或者与接入区域中的上面的层组合地用作有效表面钝化层,如下面将详细描述的。如这里使用的,“钝化层”指在III-N器件中的最上面的III-N层的顶部生长或者沉积的、可以防止或抑制器件操作期间在接入区域中最上面的III-N表面处的电压波动的任何层或层的组合。例如,钝化层可以防止或者抑制在最上面的III-N表面处的表面/界面态的形成,或者可以防止或者抑制表面/界面态在器件操作期间捕获电荷的能力。
在III-N器件中,常常由器件操作期间的表面态的充电引起的最上面的III-N表面处的电压波动已知导致诸如分散的不期望的效果。分散指当器件在RF或者切换条件下运行时相对于当器件在DC条件下运行时观察到的电流-电压(I-V)特性的差别。通过MOCVD沉积例如22nm的薄SiN层已经被示出为形成用于III-N器件的特别有效的栅极绝缘体,同时当与适当的上覆的层21和23组合时同时用作接入区域中足够的钝化层,将在下面对此进行描述。
在一些实施中,蚀刻停止层21形成在与栅极绝缘体层22直接相邻的器件接入区域中,在蚀刻停止层21上面形成有电极限定层23。电极限定层23具有位于源电极14和漏电极15之间、即位于器件接入区域之间的区域中的凹陷。在一些实施中,蚀刻停止层21也在该区域中凹陷。电极29共形地沉积在凹陷中。电极29覆在栅极区域上并且朝向漏电极15延伸,从而电极29的一部分位于电极限定层23的一部分上。覆在栅极区域的电极29上的部分、即位于两个竖直虚线之间的电极29的部分是栅极16,并且在离漏电极15最近一侧上与栅极16相邻的电极29的部分是斜场板28。在一些实施中,朝向漏电极15延伸的电极29的部分覆在电极限定层23的侧壁24的至少一部分上,但是没有覆在电极限定层23的非倾斜部分上(未示出)。即,朝向漏电极15延伸的电极29的整个部分包含在电极限定层23中的凹陷内。在其它实施中,电极29整体包含在电极限定层23中的凹陷内并且覆在侧壁24的至少一部分上。
从图5中显而易见的是,斜场板的形状部分地由凹陷的形状限定,即由电极限定层23的侧壁24的轮廓限定。如这里使用的,“斜场板”是下述场板,限定该场板的形状的下面的表面的至少一部分相对于栅极区域中的最上面的III-N表面处于大约5度和85度之间的角度,诸如大约10度和70度之间的角度。例如,如果角度25处于大约25度和85度之间,则图5中的斜场板28被限定为斜场板。另外,侧壁24不需要具有线性轮廓,其可以具有线性、抛物线或者其它形状的轮廓,只要侧壁24的至少大部分相对于栅极区域中最上面的III-N表面处于大约5度至85度的角度。在一些实施中,限定场板的形状的下面的表面的大部分相对于栅极区域中最上面的III-N表面的角度处于大约30和45度之间。
位于最靠近电极14的源极侧上的电极限定层23的部分也可以在与电极29相邻的区域中倾斜,其中通过角度26来限定该区域中的倾斜。该区域中的倾斜可以是恒定的或者可以变化。在一些实施中,角度25和26大约相同,而在其它实施中,它们是不同的。可以有利的是,通过角度26给定倾斜的侧壁比侧壁24更陡峭,这是因为这可以减少栅极-源极电容。在一些实施中,角度26处于大约45和90度之间,诸如处于大约80和90度之间。
为了形成具有侧壁24的电极限定层23,可以使用下述制作过程,其中侧壁24满足斜场板的形成所要求的规格并且同时允许栅极绝缘体层22,可以以足够的精度控制栅极绝缘体层22在栅极16下面的区域中的厚度。在一系列III-N层上沉积或生长栅极绝缘体层22之后,将蚀刻停止层21沉积在整个结构上,其后在蚀刻停止层21上各处沉积电极限定层23。接下来,使用具有下述性质的蚀刻工艺来移除位于栅极区域上面的电极限定层23的材料的一部分。蚀刻工艺蚀刻电极限定层23的材料并且产生诸如对于侧壁24所述侧壁的侧壁,但是该蚀刻工艺基本上没有蚀刻蚀刻停止层21的材料。在一些实施中,蚀刻工艺以比蚀刻蚀刻停止层21的材料的速率实质上更高的速率蚀刻电极限定层23的材料,诸如,以至少大约10倍高的速率,或者以大约10倍高和10000倍高之间的速率。换言之,蚀刻工艺以大约10∶1或更高的选择性来蚀刻电极限定层23。在一个实施中,蚀刻工艺是干法蚀刻,诸如反应离子蚀刻(RIE)或电感耦合等离子体蚀刻(ICP),其中蚀刻掩膜包括两层光致抗蚀剂,即,双层抗蚀工艺,在未掩膜区域中,下面的光致抗蚀剂层底切(undercut)上覆的光致抗蚀剂层。该工艺的完整描述可以参考文献:Dora等人在IEEE Electron Device Letters的Vol 27,No 9,pp 713-715中公开的“HIGH BREAKDOWN VOLTAGEACHIEVED ON ALGAN/GAN HEMTS WITH INTEGRATED SLANTFIELD PLATES”,其通过引用完全并入这里。在另一实施中,蚀刻工艺是干法蚀刻,诸如反应离子蚀刻(RIE)或电感耦合等离子体蚀刻(ICP),其中用作蚀刻掩膜的光致抗蚀剂具有倾斜侧壁并且也可以被使用的干法蚀刻技术蚀刻。
接下来,使用具有下述性质的第二蚀刻工艺来移除位于栅极区域上面的蚀刻停止层21的材料的部分。第二蚀刻工艺蚀刻蚀刻停止层21的材料,但是基本上没有蚀刻栅极绝缘体层22的材料。第二蚀刻工艺可以以比蚀刻蚀刻栅极绝缘体层22的材料的速率实质上更高的速率蚀刻蚀刻停止层21的材料,诸如,以至少大约10倍高的速率,或者以大约10倍高和10000倍高之间的速率。在一些实施中,第二蚀刻工艺也不可以实质性地蚀刻电极限定层23的材料。
蚀刻停止层21可以由与栅极绝缘体层22不同组成或者是不同材料的诸如AlN、SiN、SiO2或者另外的绝缘材料的绝缘材料形成。不同材料或者组成允许蚀刻步骤的选择性。具体地,蚀刻停止层21可以由这样的材料形成:对于该材料,蚀刻工艺可以蚀刻蚀刻停止层21的材料而基本上没有蚀刻栅极绝缘体层22的任何材料。例如,当栅极绝缘体层22由SiN形成时,蚀刻停止层21可以由AlN形成,这是因为可以使用基本上不蚀刻SiN的基于KOH的湿法蚀刻来蚀刻AlN。此外,如果蚀刻停止层21是薄的,诸如小于大约15nm,诸如大约5nm,则可以防止蚀刻停止层21的实质性横向蚀刻。横向蚀刻可以导致与栅极16相邻的区域中的电极限定层23下面的底切。如果在该区域中存在底切,则可能的是,最上面的III-N表面将不会在位于该底切正下面的区域中被充分地钝化,这可以导致诸如分散的不期望的效果。在一些实施中,蚀刻停止层21由通过溅射沉积而沉积的AlN形成并且为大约5nm厚。
电极限定层23由具有与蚀刻停止层21不同组成或者是不同材料的诸如AlN、SiN或者SiO2的绝缘材料形成。不同材料或者组成允许蚀刻步骤的选择性。具体地,电极限定层23可以由这样的材料形成:对于该材料,蚀刻工艺可以蚀刻电极限定层23的材料并且产生诸如对于侧壁24所述侧壁的侧壁而基本上没有蚀刻蚀刻停止层21的材料。例如,当蚀刻停止层21由AlN形成时,电极限定层23可以由SiN形成,这是因为当使用如前所述的适当的光致抗蚀剂蚀刻掩膜时,基于氟的干法蚀刻可以蚀刻SiN,基本上不蚀刻AlN,并且可以产生诸如对于侧壁24所述侧壁的侧壁。另外,为了优化由斜场板导致的峰值电场的减小,电极限定层23可以为大约100nm厚或者更厚,诸如,在大约100nm和200nm之间,诸如大约120nm。电极限定层23的优化厚度部分地取决于其中使用器件的电路或者模块内的该器件的操作电压。例如,如果将使用更大的操作电压,则可以有利的是,具有更厚的电极限定层23,诸如在大约200nm和2000nm之间。在一些实施中,电极限定层23由通过等离子体增强化学气相沉积(PECVD)沉积的SiN形成,并且为大约120nm厚。
栅极绝缘体层22、蚀刻停止层21和电极限定层23组合起来可以形成器件接入区域中的适合的钝化层。与最上面的III-N表面相邻的栅极绝缘体层22可以防止或者抑制在最上面的III-N表面处的表面/界面态的形成,或者其可以防止或者抑制表面/界面态在器件操作期间捕获电荷的能力。为了足够地防止或抑制由最上面的III-N表面处的表面/界面态引起的分散,栅极绝缘体层22可能需要为大约2nm厚或者更厚。然而,使栅极绝缘体层22更厚可以减少器件跨导,从而劣化器件性能。
为了防止在相对于蚀刻停止层21的相反侧上的电极限定层23的表面处的电压波动引起实质性的分散,电极限定层23和栅极绝缘体22的组合厚度可以充分大,诸如为大约100nm厚或者更厚。可以要求的基本上抑制分散的这两个层的最小的组合厚度取决于器件的操作电压(即,操作期间的源极和漏极之间的最大电压差)。例如,对于达到大约50V的操作,组合厚度可以为大约120nm或更厚,对于达到大约300V的操作,组合厚度可以为大约800nm或更厚,并且对于达到大约600V的操作,组合厚度可以为大约1800nm或更厚。由于可以期望的是,栅极绝缘体层22的厚度小,诸如大约20nm,因此电极限定层23的厚度可以和两层的最小组合厚度几乎一样大或者大约相同。因为厚的单独层会是难以制作的,因此,可能需要的是,形成额外的层以便于实现在较高操作电压下基本上抑制分散所要求的最小组合层厚度。在图12a和图13中示出了这样的器件,并且在下面进行进一步的描述。
在传统III-N器件中,厚度大于大约30nm的单SiN层,即没有与蚀刻停止层或者电极限定层组合使用的层,已经在很多情况下示出是适合的钝化层。与较薄的单SiN层相比,较厚的单SiN层可以在较高的器件操作电压下获得改进的钝化或者有效的钝化。对于图5的器件,已经示出了当2-50nm的MOCVD生长的SiN层用于栅极绝缘体层22、通过溅射沉积而沉积的1-15nm AlN层用于蚀刻停止层21并且通过PECVD沉积的100-200nm SiN层用于电极限定层23时,可以对于达到大约50V的器件操作实现适合的钝化。还示出的是,增加蚀刻停止层21的厚度可以使得器件经历更大的分散,从而劣化器件性能。例如,器件被制作为A1N蚀刻停止层21的厚度是唯一变化的参数。对于AlN蚀刻停止层21的厚度的增加,这些器件示出了增加的分散。
通过下述方式也可以实现具有斜场板和栅极绝缘体的III-N器件:省略图5中的蚀刻停止层21并且选择用于电极限定层23的材料,使得该材料可以被选择性地蚀刻电极限定层23的材料而基本上没有蚀刻栅极绝缘体层22的材料的蚀刻工艺蚀刻。然而,与该结构相比,图5的结构可以是有利的,这是因为,可能难以找到用于栅极绝缘体层22的这样的材料:该材料用作III-N器件的适合的栅极绝缘体而同时用作用于电极限定层23的材料的蚀刻停止层并且同时与电极限定层23的材料结合地用作适合的钝化层。
在图6-图11中图示了形成图5中的器件的方法。参考图6,至少包括沟道层11和阻挡层12的一系列III-N层形成在衬底10上,导致在沟道层11中形成2DEG 19。可以通过诸如MOCVD、MBE、HVPE或者另外的方法的方法来外延生长III-N层。接下来,如图7中所示,栅极绝缘体层22形成在该一系列III-N层顶部。可以通过诸如MOCVD、PECVD、高温CVD(HTCVD)、溅射、蒸镀或者另外的方法的方法来生长或者沉积栅极绝缘体层22。在一些实施中,通过与III-N层类似或者相同的方法来形成栅极绝缘体层22,并且可以在同一步骤中形成栅极绝缘体层22。例如,III-N层和栅极绝缘体层22全部可以通过MOCVD沉积或者生长。
接下来,参考图8,分别在包含源电极14和漏电极15的区域中移除栅极绝缘体层22,并且通过诸如蒸镀、溅射、PECVD、HTCVD或者另外的方法的方法来形成接触2DEG 19的源电极14和漏电极15。在一些实施中,在形成栅极绝缘体层22之前形成源电极14和漏电极15。
参考图9,然后在栅极绝缘体层22顶上形成蚀刻停止层21,在蚀刻停止层21顶部形成电极限定层23。接下来,如图10中所示,诸如光致抗蚀剂的蚀刻掩膜17被沉积在所示的区域中的电极限定层23顶上,并且使用蚀刻电极限定层23的材料而基本上不蚀刻蚀刻停止层21的材料的技术在未掩膜的区域中蚀刻电极限定层23。该蚀刻在蚀刻区域中导致倾斜的侧壁24。因此,蚀刻可以精确地停止在电极限定层23和蚀刻停止层21的界面处。参考图11,蚀刻掩膜17被移除,并且使用蚀刻蚀刻停止层21的材料而基本上不蚀刻电极限定层23或者栅极绝缘体层22的材料的技术来在栅极区域中蚀刻蚀刻停止层21。蚀刻停止层具有主表面,该主表面是与电极限定层形成界面并且当电极限定层被蚀刻穿过时被暴露的表面。因此,蚀刻可以精确地停止在蚀刻停止层21和栅极绝缘体层22的界面处。最终,形成了包括栅极16和斜场板28的电极29,从而导致了图5中所示的器件。
在图5中所示的器件的一个实施中,III-N层和栅极绝缘体层22都通过MOCVD来生长并且在单一的生长步骤中形成。栅极绝缘体层22包括SiN或者由SiN形成并且为大约22nm厚。蚀刻停止层21包括AlN或者由AlN形成,该AlN通过蒸镀或者溅射沉积,并且蚀刻停止层21为大约5nm厚。电极限定层23包括SiN或者由SiN形成,该SiN通过PECVD沉积,并且电极限定层23为大约120nm厚。图10中所示的蚀刻掩膜17是光致抗蚀剂并且以使侧壁实质上倾斜的方式进行图案化。替代地,蚀刻掩膜可以是双层光致抗蚀剂,其中下面的光致抗蚀剂层相对于上覆的光致抗蚀剂层被底切。使用诸如RIE或者ICP的基于氟的干法蚀刻在栅极区域中移除电极限定层23,该干法蚀刻蚀刻SiN并且基本上不蚀刻AlN并且当使用具有实质上倾斜的侧壁的光致抗蚀剂或者使用双层光致抗蚀剂作为蚀刻掩膜时产生诸如对于图5中侧壁24所述侧壁的侧壁。使用蚀刻AlN并且基本上不蚀刻SiN的基于KOH的湿法蚀刻来在栅极区域中移除蚀刻停止层21。
已经制作了诸如图5中所示的具有单个场板的器件,该器件的动态导通电阻(当以达到40V的源极-漏极偏置将器件从截止状态切换到导通状态时测量)不超过DC导通电阻(RON)的1.2倍。发现对于50mA/mm的饱和电流的平均DC RON为大约11.5ohm-mm,而发现当器件在施加有40V的源极-漏极偏置的同时进行切换时测量的平均动态RON为11.9ohm-mm。在切换应用中使用的半导体晶体管中,分散可以导致器件的动态导通电阻增加。在不具有诸如图5中的器件中的斜场板的器件中,分散可以导致对于器件正在其中使用的应用来说太大的动态导通电阻。图5的器件中的分散可以被保持为足够小,即,分散得到了充分的抑制,使得动态导通电阻对于器件应用来说是可接受的。
在图12a中示出包括栅极绝缘体和两个斜场板的器件的示意图。图12a的器件与图5中所示的器件相同,但是进一步包括了绝缘体层32、第二蚀刻停止层31、第二电极限定层33和包括第二斜场板38的电极39。与图5的器件相比,第二斜场板38的添加可以进一步减小器件操作期间的峰值电场,从而进一步增加器件击穿电压并且减少分散,或者导致在比利用图5的器件可能的电压更高的电压下的足够低的分散。
第二电极限定层33和第二蚀刻停止层31可以分别类似于电极限定层23和蚀刻停止层21。即,第二电极限定层33可以由与第二蚀刻停止层31不同组成或者是不同材料的诸如AlN、SiN或者SiO2的绝缘材料形成。另外,第二电极限定层33可以由这样的材料形成:对于该材料,蚀刻工艺可以蚀刻电极限定层33的材料并且产生诸如对于图5中的侧壁24所述侧壁的侧壁,同时基本上没有蚀刻第二蚀刻停止层31的材料。例如,当第二蚀刻停止层31是AlN时,第二电极限定层33可以为SiN,这是因为,基于氟的干法蚀刻蚀刻SiN,基本上不蚀刻AlN,并且当使用适合的光致抗蚀剂蚀刻掩膜时可以产生诸如对于图5中的侧壁24所述侧壁的侧壁。在一些实施中,第二电极限定层33的厚度处于大约10nm和1000nm之间,诸如大约500nm。在一些实施中,第二电极限定层33由通过等离子体增强化学气相沉积(PECVD)沉积的SiN形成并且大约500nm厚。
第二蚀刻停止层31可以由与下面的绝缘体层32不同且与第二电极限定层33不同组成或者是不同材料的诸如AlN、SiN或者SiO2的绝缘材料形成。第二蚀刻停止层31可以由这样的材料组成,对于该材料,蚀刻工艺可以蚀刻蚀刻停止层31的材料而基本上不蚀刻下面的绝缘体层32或者第二电极限定层33的材料。例如,当下面的绝缘体层32和第二电极限定层33是SiN时,第二蚀刻停止层31可以为AlN,这是因为可以使用基本上不蚀刻SiN的基于KOH的湿法蚀刻来蚀刻AlN。此外,第二蚀刻停止层31可以是薄的,诸如小于大约15nm,诸如大约5nm厚,以便于防止第二蚀刻停止层31的实质性横向蚀刻,该横向刻蚀可以导致第二电极限定层33下面的底切。在一些实施中,第二蚀刻停止层31由通过溅射沉积而沉积的AlN形成并且为大约5nm厚。
形成图12a的器件中的电极39和相邻层的方法与形成图5的器件中的电极29和相邻层的方法类似或者相同。另外,电极39和电极29(为了方便起见,在图5中标出而在图12a中没有标出)可以外部地或者在器件周围电连接,从而第二斜场板38是栅极连接的场板(未示出)。如这里使用的,如果两个或更多接触或者其它元件(item)通过这样的材料连接:该材料充分地导电以确保在该接触或者其它元件中的每一个处的电势始终相同,即大致相同,则该接触或者其它元件被称为被“电连接”。此外,额外的斜场板可以使用与对于电极39和相邻层所述的类似或相同的工艺而添加到该器件,该额外的斜场板也可以是栅极连接的场板。
可以是SiN的绝缘体层32将电极39与电极29分离并且可以当蚀刻第二蚀刻停止层31时保护电极29避免损坏。在一些实施中,不包括绝缘体层32,在该情况下,电极39可以直接连接到有源器件区域内的电极29。
在图12a中所示的器件的一个实施中,III-N层和栅极绝缘体层22都通过MOCVD来生长并且在单一的生长步骤中形成。栅极绝缘体层22是SiN并且为大约22nm厚。蚀刻停止层21包括AlN或者由AlN形成,该AlN通过蒸镀或者溅射沉积,并且蚀刻停止层21为大约5nm厚。电极限定层23是通过PECVD沉积的SiN,并且为大约120nm厚。图10中所示的蚀刻掩膜17由光致抗蚀剂形成并且被以这样的方式图案化:使得侧壁实质上倾斜,或者使得侧壁具有底切使得可以在下面的电极限定层23中限定具有斜侧壁的沟槽。使用诸如RIE或者ICP的基于氟的干法蚀刻在栅极区域中移除电极限定层23,该干法刻蚀蚀刻SiN而基本上不蚀刻AlN并且当使用适当的光致抗蚀剂蚀刻掩膜时产生诸如对于图5中的侧壁24所述侧壁的侧壁。使用蚀刻AlN而基本上不蚀刻SiN的基于KOH的湿法蚀刻在栅极区域中移除蚀刻停止层21。绝缘体层32是由PECVD沉积的SiN,并且为大约200nm厚。第二蚀刻停止层31是通过蒸镀或者溅射沉积的AlN,并且为大约5nm厚。第二电极限定层33是通过PECVD沉积的SiN,并且为大约500nm厚。使用诸如RIE或者ICP的基于氟的干法蚀刻来蚀刻第二电极限定层33,该干法蚀刻蚀刻SiN而基本上不蚀刻AlN并且当使用适合的光致抗蚀剂蚀刻掩膜时产生诸如对于图5中的侧壁24所述侧壁的侧壁。使用蚀刻AlN而基本上不蚀刻SiN的基于KOH的湿法蚀刻来蚀刻第二蚀刻停止层31。
已经制作了诸如图12a中所示的具有两个斜场板的器件,该器件的动态导通电阻(当以达到200V的源极-漏极偏置将器件从截止状态切换到导通状态时测量)不超过DC导通电阻(RON)的1.2倍。发现对于50mA/mm的饱和电流的平均DC RON为大约11.5ohm-mm,而发现当器件在施加有200V的源极-漏极偏置的同时进行切换时测量的平均动态RON也为大约11.5ohm-mm。在切换应用中使用的半导体晶体管中,分散可以导致器件的动态导通电阻增加。在不具有诸如图12a中的器件中的多个斜场板的器件中,分散可以导致对于器件正在其中使用的应用来说太大的动态导通电阻。图12a的器件中的分散可以保持为足够小,即,分散得到充分的抑制,从而动态导通电阻对于器件应用来说是可接受的。
已经制作了与图12a中所示的器件类似但是具有三个斜场板的器件,该器件的动态导通电阻(当以达到600V的源极-漏极偏置将器件从截止状态切换到导通状态时测量)不超过DC导通电阻(RON)的1.2倍。在图12b中示出了示出对于这些器件的平均RON与漏电压Vd的曲线图。对于这些器件的平均DC RON是大约170毫欧,而发现当以600V的源极-漏极偏置将器件从截止状态切换到导通状态时测量的平均动态RON为大约200毫欧。
已经制作了与图12a中所示的器件类似但是具有四个斜场板的器件,该器件的动态导通电阻(当以达到800V的源极-漏极偏置将器件从截止状态切换到导通状态时测量)不超过DC导通电阻(RON)的1.4倍。在图12c中示出了示出对于这些器件的平均RON与漏电压Vd的曲线图。对于这些器件的平均DC RON是大约1000毫欧,而发现当以800V的源极-漏极偏置将器件从截止状态切换到导通状态时测量的平均动态RON为大约1400毫欧。
在图13中示出了包括栅极绝缘体22和两个斜场板28和38的另一器件。该器件与图12中所示的器件类似,但是不同之处在于两个斜场板28和38在有源器件区域中彼此连接并且可以利用单个金属沉积来形成。例如,包括器件栅极16以及斜场板28和38的电极49可以在单个步骤中沉积。由于可以简化制造工艺并且可以减少栅极电阻,因此这与图12a中的器件相比可以是有利的。
可以如下地形成图13的器件中的电极49和与电极49相邻的层。栅极绝缘体层22、第一蚀刻停止层21、第一电极限定层23、第二蚀刻停止层31和第二电极限定层33都沉积在有源半导体器件层上。然后在层33顶部对诸如光致抗蚀剂的蚀刻掩膜进行图案化,并且使用如前所述的不蚀刻层31的材料并且导致层33中的倾斜侧壁的蚀刻工艺来在层33中蚀刻孔。然后使用蚀刻层31的材料而不蚀刻层33或23的材料的工艺来蚀刻与孔相邻的层31的部分。在蚀刻层33之前或之后移除在层33顶部沉积或图案化的蚀刻掩膜。接下来,在器件上沉积诸如光致抗蚀剂的第二蚀刻掩膜,从而层33和31的暴露表面以及位于区域59外部的层23的暴露部分由蚀刻掩膜材料覆盖,但是区域59的层23的暴露部分没有被蚀刻掩膜材料覆盖。接下来使用如前所述的不蚀刻层21的材料并且导致层23中的倾斜侧壁的蚀刻工艺在层23中蚀刻孔。最终,移除第二蚀刻掩膜,并且使用蚀刻层21的材料而不蚀刻层22或23的材料的工艺蚀刻与层23中的孔相邻的层21的部分。
在图14和图15中示出包括斜场板28的二极管,其中图14是器件的横截面图并且图15是器件的平面图。图15中所示的平面图分别示出阳极和阴极接触61和60的布局。虽然图15中的阳极和阴极接触被示出为圆形形状,但是它们通常可以为任何适合于使用它们的电路的布局的形状。二极管包括III-N沟道和阻挡层11和12,其包含2DEG沟道19并且类似于图5的器件中的III-N层。阳极接触61由单个电极或多个电极形成并且直接接触下面的半导体材料。阴极接触60接触2DEG沟道19并且紧挨着阳极接触61的至少一部分。阴极接触60是欧姆接触,或者展示出实质性的欧姆行为,并且阳极接触61是与下面的III-N层的肖特基接触或者与下面的III-N层形成实质性的肖特基接触。阴极接触60可以为单个阴极接触。如这里使用的,术语“单个阴极接触”指用作阴极的单个金属接触,或者被电连接而使得每个接触处的电势大致相同的用作阴极的多个接触。阳极和阴极接触61和60可以是任意形状,但是该形状理想地被优化为最小化给定正向电流所要求的器件面积。
电介质层62由绝缘体或者电介质形成并且与器件接入区域中最上面的III-N表面相邻。电介质层62能够自己或者与接入区域中的上面的层组合地用作有效表面钝化层。层21是蚀刻停止层,并且层23是电极限定层,并且分别具有与图5的器件中的蚀刻停止层和电极限定层类似或者相同的要求。
图14和图15中的二极管如下地操作。当阳极接触61处的电压小于阴极接触60处的电压,使得阳极接触61和III-N层12之间的肖特基结反向偏置时,二极管处于截止状态并且没有实质性电流在阳极和阴极之间流动。当阳极接触61处的电压大于阴极接触60处的电压时,阳极接触61和III-N层12之间的肖特基结被正向偏置,并且二极管处于导通状态。电子从阴极接触60主要通过2DEG沟道19并且然后通过正向偏置的肖特基结流入阳极接触61中。即,全部正向偏置电流的至少99%从阳极通过肖特基势垒并且通过2DEG沟道流到阴极。少量的泄漏电流可以流过其它路径,诸如沿着器件的表面流动。
图16中的器件与图14中的器件类似,不同之处在于在阳极区域64中,III-N材料完全凹陷穿过III-N阻挡层12并且部分地穿过III-N沟道层11,从而凹陷延伸穿过包含2DEG的区域。在该情况下,阳极接触61形成与阳极接触61直接接触的III-N层中的一些或全部的实质性的肖特基接触。在一些实施中,凹陷仅部分地延伸穿过III-N层12并且没有延伸穿过包含2DEG沟道的区域(未示出)。在反向偏置操作期间,2DEG沟道19的位于阳极接触的部分66正下方的部分可以被耗尽电子,从而减少了器件中的反向泄漏电流,阳极接触的部分66即位于电介质层62正上方并且与电介质层62相邻的阳极的部分。位于阳极接触的部分66正下方的2DEG沟道19的部分是器件接入区域中的2DEG沟道的部分,并且被限制到与阳极区域64相邻的区域,器件接入区域即位于阳极区域64和阴极接触60之间的区域。为了位于阳极接触的部分66正下方的2DEG沟道19的部分在反向偏置操作期间变为被耗尽电子,电介质层62不能太厚。在一些实施中,电介质层62是氮化硅并且厚度小于大约50nm,诸如大约2nm和50nm之间。电介质层62可以被制成足够厚以防止实质性的泄漏电流、即大于大约10微安/毫米的泄漏电流从阳极通过位于阳极接触的部分66正下方的区域中的电介质层62流到阴极。例如,可能必要的是,使电介质层62大于大约2nm以基本上抑制泄漏电流。在一些实施中,电介质层62的厚度被选择为在位于阳极接触的部分66正下方的区域中,器件具有大约-15V或更大的阈值电压(即,负的程度更少或者正的程度更多),诸如大约-15V和-1V之间。位于阳极接触的部分66正下方的区域的阈值电压是使得该区域中的2DEG基本上被耗尽电荷、即具有小于器件中的最大2DEG电荷密度的大约1%的电荷密度的最大电压。在其它实施中,栅极绝缘体层22的厚度被选择为层的每单位面积的电容为大约0.8-40毫法/m2。在一些实施中,电介质层62是SiN并且通过金属有机化学气相沉积(MOCVD)沉积。
如果电介质层62是相对于氮化硅的高K电介质,则电介质层可以更厚。例如,可能能够通过使用高K电介质用于电介质层62来在位于阳极接触的部分66正下方的区域中实现期望的阈值电压,该电介质层62比被设计为获得该区域的相同阈值电压的SiN层更厚。
其它已知的有益于器件性能的特征也可以包括在图5、图12a和图13-图16中的结构中。这些包括但不限于对于栅极和/或接入区域中的III-N层的表面处理,或者在沟道层11和衬底10之间包括诸如具有大于沟道层11的带隙的带隙的III-N层的III-N缓冲层。半导体层不需要是III-N层,而是可以代替地由其它半导体材料形成。场板不需要是斜场板,而是可以代替地是其它类型的场板。这些特征可以单独地或者彼此组合地使用。

Claims (52)

1.一种III-N器件,包括:
III-N材料层;
绝缘体层,所述绝缘体层在所述III-N材料层的表面上;
蚀刻停止层,所述蚀刻停止层在所述绝缘体层的相对于所述III-N材料层的相反侧上;
电极限定层,所述电极限定层在所述蚀刻停止层的相对于所述绝缘体层的相反侧上;以及
电极,其中凹陷形成在所述电极限定层中并且所述电极形成在所述凹陷中。
2.根据权利要求1所述的器件,其中所述电极包括场板。
3.根据权利要求2所述的器件,其中所述场板是斜场板。
4.根据权利要求3所述的器件,其中所述电极限定层中的所述凹陷的一部分具有成角度的壁,所述成角度的壁的至少一部分与所述蚀刻停止层的主表面成非垂直角度,所述成角度的壁限定所述斜场板。
5.根据权利要求4所述的器件,其中所述非垂直角度在大约5度和85度之间。
6.根据前述权利要求中的任何一项所述的器件,其中所述绝缘体层是钝化层。
7.根据权利要求1-5中的任何一项所述的器件,其中所述绝缘体层由氧化物或者氮化物形成。
8.根据权利要求7所述的器件,其中所述绝缘体层为大约2-50纳米厚。
9.根据权利要求1-5中的任何一项所述的器件,其中所述绝缘体层具有大约0.8-40毫法/平方米的每单位面积电容。
10.根据权利要求1-5中的任何一项所述的器件,其中所述电极限定层由氧化物或者氮化物形成。
11.根据权利要求10所述的器件,其中所述电极限定层为至少大约100纳米厚。
12.根据权利要求1-5中的任何一项所述的器件,其中所述绝缘体层和所述电极限定层的组合厚度足以基本上抑制分散。
13.根据权利要求1-5中的任何一项所述的器件,其中所述蚀刻停止层在大约1和15纳米厚之间。
14.根据权利要求13所述的器件,其中所述蚀刻停止层由氮化铝形成。
15.根据权利要求1-5中的任何一项所述的器件,其中所述电极限定层和蚀刻停止层由不同材料形成。
16.根据权利要求1-5中的任何一项所述的器件,其中所述蚀刻停止层和绝缘体层由不同材料形成。
17.根据权利要求1-5中的任何一项所述的器件,其中所述凹陷形成在所述蚀刻停止层中。
18.根据权利要求17所述的器件,其中所述凹陷形成在所述绝缘体层中。
19.根据权利要求18所述的器件,其中所述III-N材料层的第一部分具有第一组成并且所述III-N材料层的第二部分具有第二组成,其中所述第一组成和所述第二组成之间的差异在所述III-N材料层中形成2DEG沟道。
20.根据权利要求19所述的器件,进一步包括阴极,其中所述电极的一部分是阳极,所述阳极形成与所述III-N材料层的实质性肖特基接触,并且所述阴极与所述2DEG沟道电接触。
21.根据权利要求20所述的器件,其中所述凹陷延伸到所述III-N材料层中并且所述电极在所述III-N材料层中的所述凹陷的一部分中。
22.根据权利要求21所述的器件,其中所述凹陷延伸穿过所述2DEG沟道。
23.根据权利要求22所述的器件,其中所述器件的第一区域的阈值大于大约-15V,其中所述第一区域包括所述器件的在所述阳极区域和所述阴极之间并且与所述阳极区域相邻的部分。
24.根据权利要求22所述的器件,其中所述绝缘体层的厚度足以防止大于大约10微安/毫米的泄漏电流在器件操作期间通过所述绝缘体层。
25.根据权利要求1-5中的任何一项所述的器件,其中所述III-N材料层的第一部分具有第一组成并且所述III-N材料层的第二部分具有第二组成,其中所述第一组成和所述第二组成之间的差异在所述III-N材料层中形成2DEG沟道。
26.根据权利要求25所述的器件,进一步包括源极和漏极,其中所述电极的一部分是栅极,并且所述源极和所述漏极与所述2DEG沟道电接触。
27.根据权利要求26所述的器件,其中器件阈值电压大于大约-30V。
28.根据权利要求27所述的器件,其中所述绝缘体层的厚度使得所述器件阈值电压大于大约-30V。
29.根据权利要求27所述的器件,其中所述绝缘体层的厚度足以防止大于大约100微安的泄漏电流在器件操作期间通过所述绝缘体层。
30.根据权利要求1-5中的任何一项所述的器件,其中所述电极限定层和所述蚀刻停止层是第一电极限定层和第一蚀刻停止层,所述器件进一步包括在所述第一电极限定层的相对于所述第一蚀刻停止层的相反侧上的堆叠,其中所述堆叠包括第二蚀刻停止层和第二电极限定层。
31.根据权利要求30所述的器件,其中凹陷形成在所述堆叠中,并且所述电极的一部分在所述堆叠的相对于所述第一电极限定层的相反侧上。
32.根据权利要求30所述的器件,进一步包括第二绝缘体层,所述第二绝缘体层在所述第一电极限定层和所述第二蚀刻停止层之间。
33.根据权利要求32所述的器件,进一步包括第二电极,其中第二凹陷形成在所述第二电极限定层中和所述第二蚀刻停止层中,并且所述第二电极形成在所述第二凹陷中。
34.根据权利要求33所述的器件,其中所述第二电极电连接到所述第一电极。
35.根据权利要求33所述的器件,进一步包括多个堆叠,其中凹陷形成在每个堆叠中,并且电极形成在每个凹陷中。
36.根据权利要求1-5中的任何一项所述的器件,其中所述器件是FET,并且当以大约800V或更小的源极-漏极偏置将所述器件从截止状态切换到导通状态时测量的动态导通电阻等于或者小于DC导通电阻的1.4倍。
37.根据权利要求1-5中的任何一项所述的器件,其中所述电极是栅电极并且所述器件进一步包括源极和漏极。
38.根据权利要求1-5中的任何一项所述的器件,其中所述电极是阳极电极,并且所述器件进一步包括阴极。
39.一种形成根据权利要求1所述的器件的方法,包括:
将所述绝缘体层施加在根据权利要求1所述的器件的所述III-N材料层的表面上;
在施加所述绝缘体层之后,将所述蚀刻停止层施加在所述绝缘体层上;
在施加所述蚀刻停止层之后,将所述电极限定层施加在所述蚀刻停止层上;
蚀刻所述电极限定层以形成所述凹陷,其中通过与所述蚀刻停止层的表面不垂直的壁至少部分地限定所述凹陷,其中蚀刻步骤使用下述蚀刻剂,所述蚀刻剂具有选择性从而以比蚀刻所述蚀刻停止层更快的速率蚀刻所述电极限定层;以及
将导电材料沉积在所述凹陷中和所述电极限定层的暴露部分上。
40.根据权利要求39所述的方法,进一步包括蚀刻所述蚀刻停止层以将所述电极限定层中的所述凹陷延伸到所述绝缘体层。
41.根据权利要求40所述的方法,其中蚀刻所述蚀刻停止层包括湿法蚀刻。
42.根据权利要求40或者41所述的方法,其中用于蚀刻所述蚀刻停止层的蚀刻工艺基本上不蚀刻所述电极限定层或者所述绝缘体层。
43.根据权利要求42所述的方法,其中与蚀刻所述绝缘体层相比,所述蚀刻工艺以大约10∶1或更高的选择性蚀刻所述蚀刻停止层。
44.根据权利要求39-41中的任何一项所述的方法,其中蚀刻所述电极限定层包括干法蚀刻。
45.根据权利要求44所述的方法,其中蚀刻所述电极限定层包括施加基于氟的干法蚀刻。
46.根据权利要求39-41中的任何一项所述的方法,其中蚀刻所述电极限定层导致所述电极限定层具有成角度的壁,所述成角度的壁的至少一部分与所述蚀刻停止层的主表面成非垂直角度。
47.根据权利要求46所述的方法,其中所述非垂直角度在大约5度和85度之间。
48.根据权利要求39-41中的任何一项所述的方法,其中用于蚀刻所述电极限定层的蚀刻工艺基本上不蚀刻所述蚀刻停止层。
49.根据权利要求48所述的方法,其中与蚀刻所述蚀刻停止层相比,所述蚀刻工艺以大约10∶1或更高的选择性蚀刻所述电极限定层。
50.根据权利要求1-5中的任何一项所述的器件,其中所述器件是增强模式器件。
51.根据权利要求1-5中的任何一项所述的器件,其中所述器件是耗尽模式器件。
52.根据权利要求4或5所述的器件,其中所述器件是FET,所述FET进一步包括漏极,所述电极覆在所述成角度的壁的至少一部分上,并且所述电极没有覆在所述电极限定层的在所述成角度的壁的所述部分与所述漏极之间的部分上。
CN201080048522.9A 2009-08-28 2010-08-20 具有场板的半导体器件 Active CN102598275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410772862.6A CN104576742B (zh) 2009-08-28 2010-08-20 Iii‑n器件及其形成方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/550,140 US8390000B2 (en) 2009-08-28 2009-08-28 Semiconductor devices with field plates
US12/550,140 2009-08-28
PCT/US2010/046193 WO2011031431A2 (en) 2009-08-28 2010-08-20 Semiconductor devices with field plates

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410772862.6A Division CN104576742B (zh) 2009-08-28 2010-08-20 Iii‑n器件及其形成方法

Publications (2)

Publication Number Publication Date
CN102598275A true CN102598275A (zh) 2012-07-18
CN102598275B CN102598275B (zh) 2014-12-24

Family

ID=43623506

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201080048522.9A Active CN102598275B (zh) 2009-08-28 2010-08-20 具有场板的半导体器件
CN201410772862.6A Active CN104576742B (zh) 2009-08-28 2010-08-20 Iii‑n器件及其形成方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201410772862.6A Active CN104576742B (zh) 2009-08-28 2010-08-20 Iii‑n器件及其形成方法

Country Status (6)

Country Link
US (5) US8390000B2 (zh)
EP (1) EP2471100B1 (zh)
JP (2) JP5905390B2 (zh)
CN (2) CN102598275B (zh)
TW (2) TWI555199B (zh)
WO (1) WO2011031431A2 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178104A (zh) * 2013-02-20 2013-06-26 国网智能电网研究院 一种半导体器件多级场板终端结构及其制造方法
CN103794654A (zh) * 2012-10-29 2014-05-14 三星电机株式会社 半导体装置
CN104347579A (zh) * 2013-07-31 2015-02-11 瑞萨电子株式会社 半导体装置
CN104465795A (zh) * 2014-11-19 2015-03-25 苏州捷芯威半导体有限公司 一种肖特基二极管及其制作方法
CN104584217A (zh) * 2012-09-28 2015-04-29 英特尔公司 高击穿电压ⅲ-n耗尽型mos电容器
CN105164811A (zh) * 2013-02-15 2015-12-16 创世舫电子有限公司 半导体器件的电极及其形成方法
CN104051514B (zh) * 2013-03-13 2017-01-11 中央大学 半导体装置与其制造方法
CN107230629A (zh) * 2016-03-25 2017-10-03 北京大学 氮化镓场效应晶体管的制作方法及氮化镓场效应晶体管
CN107331608A (zh) * 2017-08-23 2017-11-07 成都海威华芯科技有限公司 一种双台阶t型栅的制作方法
US10134727B2 (en) 2012-09-28 2018-11-20 Intel Corporation High breakdown voltage III-N depletion mode MOS capacitors
CN109308999A (zh) * 2018-09-29 2019-02-05 大连芯冠科技有限公司 选择性刻蚀制备功率器件多场板的方法
CN109786453A (zh) * 2018-04-25 2019-05-21 苏州捷芯威半导体有限公司 半导体器件及其制作方法
CN111952355A (zh) * 2020-08-21 2020-11-17 浙江大学 基于多漏指结构的GaN HEMT器件及其制备方法
CN111952366A (zh) * 2020-08-19 2020-11-17 深圳方正微电子有限公司 场效应晶体管及其制备方法
CN112038227A (zh) * 2020-08-12 2020-12-04 深圳市汇芯通信技术有限公司 栅极无损伤制备方法及基于该制备方法的hemt
CN114078968A (zh) * 2020-08-18 2022-02-22 新唐科技股份有限公司 半导体装置的制造方法

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915643B2 (en) 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
US7965126B2 (en) 2008-02-12 2011-06-21 Transphorm Inc. Bridge circuits and their components
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
JP2010118556A (ja) * 2008-11-13 2010-05-27 Furukawa Electric Co Ltd:The 半導体装置および半導体装置の製造方法
US7898004B2 (en) 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
JP2011082216A (ja) * 2009-10-02 2011-04-21 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP5075280B2 (ja) * 2009-10-23 2012-11-21 パナソニック株式会社 半導体装置およびその製造方法
US8314471B2 (en) * 2009-11-17 2012-11-20 Diodes Incorporated Trench devices having improved breakdown voltages and method for manufacturing same
US8269259B2 (en) * 2009-12-07 2012-09-18 International Rectifier Corporation Gated AlGaN/GaN heterojunction Schottky device
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
WO2012003609A1 (en) * 2010-07-06 2012-01-12 The Hong Kong University Of Science And Technology Normally-off iii-nitride metal-2deg tunnel junction field-effect transistors
EP2631950A4 (en) * 2010-10-20 2015-10-21 Fujitsu Ltd SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
KR102065115B1 (ko) * 2010-11-05 2020-01-13 삼성전자주식회사 E-모드를 갖는 고 전자 이동도 트랜지스터 및 그 제조방법
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8786327B2 (en) 2011-02-28 2014-07-22 Transphorm Inc. Electronic components with reactive filters
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
US8716141B2 (en) * 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
JP5689712B2 (ja) * 2011-03-07 2015-03-25 株式会社日立製作所 半導体装置およびその製造方法
JP5694020B2 (ja) 2011-03-18 2015-04-01 トランスフォーム・ジャパン株式会社 トランジスタ回路
JP5733623B2 (ja) * 2011-06-10 2015-06-10 国立大学法人九州大学 半導体装置の製造方法
KR20140042871A (ko) 2011-06-20 2014-04-07 더 리전츠 오브 더 유니버시티 오브 캘리포니아 전류 애퍼쳐 수직 전자 트랜지스터들
JP5872810B2 (ja) * 2011-07-21 2016-03-01 サンケン電気株式会社 窒化物半導体装置及びその製造方法
US9041255B2 (en) * 2011-07-22 2015-05-26 Moon J. Kim High capacity electronic switch
US8710511B2 (en) 2011-07-29 2014-04-29 Northrop Grumman Systems Corporation AIN buffer N-polar GaN HEMT profile
US8610173B2 (en) 2011-08-01 2013-12-17 Selex Sistemi Integrati S.P.A. Enhancement/depletion PHEMT device
TWI508281B (zh) * 2011-08-01 2015-11-11 Murata Manufacturing Co Field effect transistor
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
KR101890749B1 (ko) * 2011-10-27 2018-08-23 삼성전자주식회사 전극구조체, 이를 포함하는 질화갈륨계 반도체소자 및 이들의 제조방법
US8772901B2 (en) * 2011-11-11 2014-07-08 Alpha And Omega Semiconductor Incorporated Termination structure for gallium nitride schottky diode
US9070756B2 (en) * 2011-11-18 2015-06-30 Suzhou Institute Of Nano-Tech And Nano-Bionics Of Chinese Academy Of Sciences Group III nitride high electron mobility transistor (HEMT) device
JP5841417B2 (ja) * 2011-11-30 2016-01-13 株式会社日立製作所 窒化物半導体ダイオード
US20130146943A1 (en) * 2011-12-12 2013-06-13 John P. EDWARDS In situ grown gate dielectric and field plate dielectric
US10002957B2 (en) * 2011-12-21 2018-06-19 Power Integrations, Inc. Shield wrap for a heterostructure field effect transistor
JP2013149851A (ja) * 2012-01-20 2013-08-01 Sharp Corp 窒化物半導体装置
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
US9093420B2 (en) 2012-04-18 2015-07-28 Rf Micro Devices, Inc. Methods for fabricating high voltage field effect transistor finger terminations
CN108807526B (zh) * 2012-04-20 2021-12-21 苏州晶湛半导体有限公司 增强型开关器件及其制造方法
US9337332B2 (en) * 2012-04-25 2016-05-10 Hrl Laboratories, Llc III-Nitride insulating-gate transistors with passivation
US8680536B2 (en) 2012-05-23 2014-03-25 Hrl Laboratories, Llc Non-uniform two dimensional electron gas profile in III-Nitride HEMT devices
US9379195B2 (en) 2012-05-23 2016-06-28 Hrl Laboratories, Llc HEMT GaN device with a non-uniform lateral two dimensional electron gas profile and method of manufacturing the same
US9000484B2 (en) 2012-05-23 2015-04-07 Hrl Laboratories, Llc Non-uniform lateral profile of two-dimensional electron gas charge density in type III nitride HEMT devices using ion implantation through gray scale mask
CN104350601B (zh) * 2012-05-23 2018-04-20 Hrl实验室有限责任公司 Hemt装置和制造hemt装置的方法
US10700201B2 (en) 2012-05-23 2020-06-30 Hrl Laboratories, Llc HEMT GaN device with a non-uniform lateral two dimensional electron gas profile and method of manufacturing the same
US9443941B2 (en) * 2012-06-04 2016-09-13 Infineon Technologies Austria Ag Compound semiconductor transistor with self aligned gate
US10522670B2 (en) * 2012-06-26 2019-12-31 Nxp Usa, Inc. Semiconductor device with selectively etched surface passivation
US10825924B2 (en) 2012-06-26 2020-11-03 Nxp Usa, Inc. Semiconductor device with selectively etched surface passivation
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
US8803246B2 (en) 2012-07-16 2014-08-12 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US9124221B2 (en) 2012-07-16 2015-09-01 Rf Micro Devices, Inc. Wide bandwidth radio frequency amplier having dual gate transistors
TWI500157B (zh) * 2012-08-09 2015-09-11 Univ Nat Central 場效電晶體裝置及其製造方法
US9147632B2 (en) 2012-08-24 2015-09-29 Rf Micro Devices, Inc. Semiconductor device having improved heat dissipation
US8988097B2 (en) * 2012-08-24 2015-03-24 Rf Micro Devices, Inc. Method for on-wafer high voltage testing of semiconductor devices
US9142620B2 (en) 2012-08-24 2015-09-22 Rf Micro Devices, Inc. Power device packaging having backmetals couple the plurality of bond pads to the die backside
US9917080B2 (en) 2012-08-24 2018-03-13 Qorvo US. Inc. Semiconductor device with electrical overstress (EOS) protection
US9202874B2 (en) 2012-08-24 2015-12-01 Rf Micro Devices, Inc. Gallium nitride (GaN) device with leakage current-based over-voltage protection
US9070761B2 (en) 2012-08-27 2015-06-30 Rf Micro Devices, Inc. Field effect transistor (FET) having fingers with rippled edges
WO2014035794A1 (en) 2012-08-27 2014-03-06 Rf Micro Devices, Inc Lateral semiconductor device with vertical breakdown region
US9024324B2 (en) * 2012-09-05 2015-05-05 Freescale Semiconductor, Inc. GaN dual field plate device with single field plate metal
EP2722890B1 (en) * 2012-10-17 2020-12-16 IMEC vzw Schottky diode structure and method of fabrication
US9325281B2 (en) 2012-10-30 2016-04-26 Rf Micro Devices, Inc. Power amplifier controller
US8946779B2 (en) * 2013-02-26 2015-02-03 Freescale Semiconductor, Inc. MISHFET and Schottky device integration
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9245736B2 (en) 2013-03-15 2016-01-26 Semiconductor Components Industries, Llc Process of forming a semiconductor wafer
US9070705B2 (en) 2013-03-15 2015-06-30 Semiconductor Components Industries, Llc HEMT semiconductor device and a process of forming the same
US9245992B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US9059076B2 (en) 2013-04-01 2015-06-16 Transphorm Inc. Gate drivers for circuits based on semiconductor devices
US9202880B1 (en) * 2013-04-23 2015-12-01 Hrl Laboratories, Llc Etch-based fabrication process for stepped field-plate wide-bandgap
US9552979B2 (en) * 2013-05-31 2017-01-24 Asm Ip Holding B.V. Cyclic aluminum nitride deposition in a batch reactor
WO2015006111A1 (en) 2013-07-09 2015-01-15 Transphorm Inc. Multilevel inverters and their components
JP6229172B2 (ja) * 2013-07-12 2017-11-15 パナソニックIpマネジメント株式会社 半導体装置
TWI513010B (zh) 2013-07-18 2015-12-11 Richtek Technology Corp 接面能障蕭特基二極體及其製造方法
US9443938B2 (en) 2013-07-19 2016-09-13 Transphorm Inc. III-nitride transistor including a p-type depleting layer
JP6379358B2 (ja) * 2013-07-25 2018-08-29 パナソニックIpマネジメント株式会社 半導体装置
US9263569B2 (en) * 2013-08-05 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. MISFET device and method of forming the same
JP6240460B2 (ja) * 2013-10-02 2017-11-29 トランスフォーム・ジャパン株式会社 電界効果型化合物半導体装置及びその製造方法
US9306014B1 (en) 2013-12-27 2016-04-05 Power Integrations, Inc. High-electron-mobility transistors
EP2930754A1 (en) * 2014-04-11 2015-10-14 Nxp B.V. Semiconductor device
US10276712B2 (en) 2014-05-29 2019-04-30 Hrl Laboratories, Llc III-nitride field-effect transistor with dual gates
US9455327B2 (en) 2014-06-06 2016-09-27 Qorvo Us, Inc. Schottky gated transistor with interfacial layer
US9543940B2 (en) 2014-07-03 2017-01-10 Transphorm Inc. Switching circuits having ferrite beads
US9590494B1 (en) 2014-07-17 2017-03-07 Transphorm Inc. Bridgeless power factor correction circuits
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9536803B2 (en) 2014-09-05 2017-01-03 Qorvo Us, Inc. Integrated power module with improved isolation and thermal conductivity
US9859732B2 (en) 2014-09-16 2018-01-02 Navitas Semiconductor, Inc. Half bridge power conversion circuits using GaN devices
US9571093B2 (en) 2014-09-16 2017-02-14 Navitas Semiconductor, Inc. Half bridge driver circuits
US9960154B2 (en) * 2014-09-19 2018-05-01 Navitas Semiconductor, Inc. GaN structures
US11164970B2 (en) 2014-11-25 2021-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Contact field plate
US10756208B2 (en) 2014-11-25 2020-08-25 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated chip and method of forming the same
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US9536966B2 (en) * 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US10062684B2 (en) 2015-02-04 2018-08-28 Qorvo Us, Inc. Transition frequency multiplier semiconductor device
US10615158B2 (en) 2015-02-04 2020-04-07 Qorvo Us, Inc. Transition frequency multiplier semiconductor device
US9543402B1 (en) * 2015-08-04 2017-01-10 Power Integrations, Inc. Integrated high performance lateral schottky diode
US9812532B1 (en) 2015-08-28 2017-11-07 Hrl Laboratories, Llc III-nitride P-channel transistor
ITUB20155536A1 (it) * 2015-11-12 2017-05-12 St Microelectronics Srl Transistore hemt di tipo normalmente spento includente una trincea contenente una regione di gate e formante almeno un gradino, e relativo procedimento di fabbricazione
EP3378097A4 (en) 2015-11-19 2019-09-11 HRL Laboratories, LLC NITRIDE-III FIELD EFFECT TRANSISTOR WITH DOUBLE TRIGGER
US11322599B2 (en) 2016-01-15 2022-05-03 Transphorm Technology, Inc. Enhancement mode III-nitride devices having an Al1-xSixO gate insulator
US9831867B1 (en) 2016-02-22 2017-11-28 Navitas Semiconductor, Inc. Half bridge driver circuits
JP6504313B2 (ja) * 2016-03-14 2019-04-24 富士電機株式会社 半導体装置および製造方法
US9941398B2 (en) * 2016-03-17 2018-04-10 Taiwan Semiconductor Manufacturing Company Ltd. High-electron-mobility transistor (HEMT) capable of protecting a III-V compound layer
US9722063B1 (en) * 2016-04-11 2017-08-01 Power Integrations, Inc. Protective insulator for HFET devices
US20170301780A1 (en) * 2016-04-15 2017-10-19 Macom Technology Solutions Holdings, Inc. High-voltage gan high electron mobility transistors with reduced leakage current
US10985284B2 (en) 2016-04-15 2021-04-20 Macom Technology Solutions Holdings, Inc. High-voltage lateral GaN-on-silicon schottky diode with reduced junction leakage current
US10224401B2 (en) 2016-05-31 2019-03-05 Transphorm Inc. III-nitride devices including a graded depleting layer
JP6685870B2 (ja) * 2016-09-15 2020-04-22 株式会社東芝 半導体装置
CN106711233B (zh) * 2016-12-09 2020-07-24 清华大学 光调制的二极管和功率电路
TWI607565B (zh) * 2016-12-20 2017-12-01 新唐科技股份有限公司 半導體基底以及半導體元件
US10630285B1 (en) 2017-11-21 2020-04-21 Transphorm Technology, Inc. Switching circuits having drain connected ferrite beads
US11233047B2 (en) 2018-01-19 2022-01-25 Macom Technology Solutions Holdings, Inc. Heterolithic microwave integrated circuits including gallium-nitride devices on highly doped regions of intrinsic silicon
US10950598B2 (en) 2018-01-19 2021-03-16 Macom Technology Solutions Holdings, Inc. Heterolithic microwave integrated circuits including gallium-nitride devices formed on highly doped semiconductor
US11056483B2 (en) 2018-01-19 2021-07-06 Macom Technology Solutions Holdings, Inc. Heterolithic microwave integrated circuits including gallium-nitride devices on intrinsic semiconductor
US20190393041A1 (en) * 2018-06-20 2019-12-26 Intel Corporation Methods of transistor gate structuring using single operation dummy gate removal
CN112368233A (zh) * 2018-07-04 2021-02-12 依格耐特有限公司 具有止蚀层的mems显示装置
US10756207B2 (en) 2018-10-12 2020-08-25 Transphorm Technology, Inc. Lateral III-nitride devices including a vertical gate module
US10950497B2 (en) 2018-11-26 2021-03-16 Taiwan Semiconductor Manufacturing Co., Ltd. Electrical connection for semiconductor devices
TWI680503B (zh) * 2018-12-26 2019-12-21 杰力科技股份有限公司 氮化鎵高電子移動率電晶體的閘極結構的製造方法
US11121245B2 (en) 2019-02-22 2021-09-14 Efficient Power Conversion Corporation Field plate structures with patterned surface passivation layers and methods for manufacturing thereof
WO2020191357A1 (en) 2019-03-21 2020-09-24 Transphorm Technology, Inc. Integrated design for iii-nitride devices
EP3948955A4 (en) * 2019-04-04 2023-05-10 HRL Laboratories, LLC MINIATURE FIELD PLATE T-GRID AND METHOD OF MAKING IT
TWI719484B (zh) * 2019-05-20 2021-02-21 世界先進積體電路股份有限公司 半導體結構
TWI748271B (zh) * 2019-07-09 2021-12-01 台灣積體電路製造股份有限公司 積體晶片及其形成方法
CN112349773A (zh) * 2019-08-07 2021-02-09 苏州能讯高能半导体有限公司 一种半导体器件及其制备方法
CN110828307A (zh) * 2019-10-16 2020-02-21 中芯集成电路制造(绍兴)有限公司 形成具有倾斜侧壁的材料层的方法及半导体器件
US11695068B2 (en) 2020-03-09 2023-07-04 Insyt, Inc. Greyscale lithography for double-slanted gate connected field plate
US11848389B2 (en) * 2020-03-19 2023-12-19 Ohio State Innovation Foundation Low turn on and high breakdown voltage lateral diode
US11600614B2 (en) 2020-03-26 2023-03-07 Macom Technology Solutions Holdings, Inc. Microwave integrated circuits including gallium-nitride devices on silicon
US11749656B2 (en) 2020-06-16 2023-09-05 Transphorm Technology, Inc. Module configurations for integrated III-Nitride devices
CN116325158A (zh) 2020-08-05 2023-06-23 创世舫科技有限公司 包含耗尽层的iii族氮化物器件
CN111952360B (zh) * 2020-08-19 2023-02-21 深圳方正微电子有限公司 场效应管及其制备方法
CN112736132B (zh) * 2021-01-06 2023-06-20 湖北文理学院 InP PHEMT外延结构及其制备方法
US11682721B2 (en) * 2021-01-20 2023-06-20 Raytheon Company Asymmetrically angled gate structure and method for making same
JP7437346B2 (ja) * 2021-04-15 2024-02-22 株式会社東芝 半導体装置及びその製造方法
CN113314405B (zh) * 2021-05-26 2022-07-26 四川上特科技有限公司 半导体功率器件斜坡场板的制作方法
CN114613856B (zh) * 2022-04-12 2023-04-25 电子科技大学 一种双异质结GaN RC-HEMT器件
WO2024092543A1 (en) * 2022-11-02 2024-05-10 Innoscience (suzhou) Semiconductor Co., Ltd. Nitride-based semiconductor device and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050274977A1 (en) * 2004-06-15 2005-12-15 Kabushiki Kaisha Toshiba Nitride semiconductor device
US20070018199A1 (en) * 2005-07-20 2007-01-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
US20080230784A1 (en) * 2007-03-20 2008-09-25 Velox Semiconductor Cascode circuit employing a depletion-mode, GaN-based fet
US20090146224A1 (en) * 2007-12-07 2009-06-11 Northrop Grumman Space & Mission Systems Corp. Composite Passivation Process for Nitride FET

Family Cites Families (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145670A (ja) * 1984-01-10 1985-08-01 Nec Corp 半導体装置の製造方法
US4645562A (en) * 1985-04-29 1987-02-24 Hughes Aircraft Company Double layer photoresist technique for side-wall profile control in plasma etching processes
US4728826A (en) * 1986-03-19 1988-03-01 Siemens Aktiengesellschaft MOSFET switch with inductive load
US4821093A (en) * 1986-08-18 1989-04-11 The United States Of America As Represented By The Secretary Of The Army Dual channel high electron mobility field effect transistor
JPH07120807B2 (ja) * 1986-12-20 1995-12-20 富士通株式会社 定電流半導体装置
US5329147A (en) 1993-01-04 1994-07-12 Xerox Corporation High voltage integrated flyback circuit in 2 μm CMOS
US6097046A (en) 1993-04-30 2000-08-01 Texas Instruments Incorporated Vertical field effect transistor and diode
US5740192A (en) 1994-12-19 1998-04-14 Kabushiki Kaisha Toshiba Semiconductor laser
US5646069A (en) 1995-06-07 1997-07-08 Hughes Aircraft Company Fabrication process for Alx In1-x As/Gay In1-y As power HFET ohmic contacts
JPH09306926A (ja) * 1996-05-10 1997-11-28 Hitachi Ltd 半導体装置およびその製造方法
JP3677350B2 (ja) * 1996-06-10 2005-07-27 三菱電機株式会社 半導体装置、及び半導体装置の製造方法
US6008684A (en) 1996-10-23 1999-12-28 Industrial Technology Research Institute CMOS output buffer with CMOS-controlled lateral SCR devices
US5714393A (en) * 1996-12-09 1998-02-03 Motorola, Inc. Diode-connected semiconductor device and method of manufacture
US6316793B1 (en) * 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP2000021900A (ja) * 1998-06-30 2000-01-21 Toshiba Corp 電界効果トランジスタの製造方法
JP3180776B2 (ja) * 1998-09-22 2001-06-25 日本電気株式会社 電界効果型トランジスタ
JP2000058871A (ja) 1999-07-02 2000-02-25 Citizen Watch Co Ltd 電子機器の集積回路
US6984571B1 (en) 1999-10-01 2006-01-10 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6586781B2 (en) 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
JP3751791B2 (ja) 2000-03-28 2006-03-01 日本電気株式会社 ヘテロ接合電界効果トランジスタ
JP5130641B2 (ja) 2006-03-31 2013-01-30 サンケン電気株式会社 複合半導体装置
US7125786B2 (en) 2000-04-11 2006-10-24 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
US6475889B1 (en) 2000-04-11 2002-11-05 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
US7892974B2 (en) * 2000-04-11 2011-02-22 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
US6580101B2 (en) * 2000-04-25 2003-06-17 The Furukawa Electric Co., Ltd. GaN-based compound semiconductor device
US6624452B2 (en) * 2000-07-28 2003-09-23 The Regents Of The University Of California Gallium nitride-based HFET and a method for fabricating a gallium nitride-based HFET
US6727531B1 (en) * 2000-08-07 2004-04-27 Advanced Technology Materials, Inc. Indium gallium nitride channel high electron mobility transistors, and method of making the same
US6548333B2 (en) * 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
TW466768B (en) 2000-12-30 2001-12-01 Nat Science Council An In0.34Al0.66As0.85Sb0.15/InP HFET utilizing InP channels
US6830976B2 (en) 2001-03-02 2004-12-14 Amberwave Systems Corproation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6849882B2 (en) * 2001-05-11 2005-02-01 Cree Inc. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
EP1410444B1 (en) * 2001-07-24 2012-08-22 Cree, Inc. Insulating Gate AlGaN/GaN HEMT
JP4177048B2 (ja) 2001-11-27 2008-11-05 古河電気工業株式会社 電力変換装置及びそれに用いるGaN系半導体装置
US7030428B2 (en) * 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
JP2003244943A (ja) 2002-02-13 2003-08-29 Honda Motor Co Ltd 電源装置の昇圧装置
US7919791B2 (en) * 2002-03-25 2011-04-05 Cree, Inc. Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
US6982204B2 (en) * 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
WO2004019415A1 (en) * 2002-08-26 2004-03-04 University Of Florida GaN-TYPE ENHANCEMENT MOSFET USING HETERO STRUCTURE
EP1559194A1 (en) * 2002-10-29 2005-08-03 Koninklijke Philips Electronics N.V. Bi-directional double nmos switch
JP4385205B2 (ja) * 2002-12-16 2009-12-16 日本電気株式会社 電界効果トランジスタ
US7169634B2 (en) 2003-01-15 2007-01-30 Advanced Power Technology, Inc. Design and fabrication of rugged FRED
JP2004253620A (ja) * 2003-02-20 2004-09-09 Nec Compound Semiconductor Devices Ltd 電界効果型トランジスタおよびその製造方法
JP2004260114A (ja) 2003-02-27 2004-09-16 Shin Etsu Handotai Co Ltd 化合物半導体素子
US7112860B2 (en) 2003-03-03 2006-09-26 Cree, Inc. Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices
US6979863B2 (en) 2003-04-24 2005-12-27 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
US7078743B2 (en) * 2003-05-15 2006-07-18 Matsushita Electric Industrial Co., Ltd. Field effect transistor semiconductor device
CN100541745C (zh) 2003-09-09 2009-09-16 加利福尼亚大学董事会 单个或多个栅极场板的制造
US7501669B2 (en) * 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
WO2005062745A2 (en) * 2003-10-10 2005-07-14 The Regents Of The University Of California GaN/AlGaN/GaN DISPERSION-FREE HIGH ELECTRON MOBILITY TRANSISTORS
US7268375B2 (en) 2003-10-27 2007-09-11 Sensor Electronic Technology, Inc. Inverted nitride-based semiconductor structure
US6867078B1 (en) * 2003-11-19 2005-03-15 Freescale Semiconductor, Inc. Method for forming a microwave field effect transistor with high operating voltage
US7071498B2 (en) 2003-12-17 2006-07-04 Nitronex Corporation Gallium nitride material devices including an electrode-defining layer and methods of forming the same
US20050133816A1 (en) * 2003-12-19 2005-06-23 Zhaoyang Fan III-nitride quantum-well field effect transistors
US7045404B2 (en) * 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US7901994B2 (en) * 2004-01-16 2011-03-08 Cree, Inc. Methods of manufacturing group III nitride semiconductor devices with silicon nitride layers
US7382001B2 (en) * 2004-01-23 2008-06-03 International Rectifier Corporation Enhancement mode III-nitride FET
US8174048B2 (en) 2004-01-23 2012-05-08 International Rectifier Corporation III-nitride current control device and method of manufacture
US7612390B2 (en) 2004-02-05 2009-11-03 Cree, Inc. Heterojunction transistors including energy barriers
US7170111B2 (en) * 2004-02-05 2007-01-30 Cree, Inc. Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same
US7550781B2 (en) 2004-02-12 2009-06-23 International Rectifier Corporation Integrated III-nitride power devices
US7465997B2 (en) 2004-02-12 2008-12-16 International Rectifier Corporation III-nitride bidirectional switch
US7084475B2 (en) 2004-02-17 2006-08-01 Velox Semiconductor Corporation Lateral conduction Schottky diode with plural mesas
WO2005081304A1 (ja) * 2004-02-20 2005-09-01 Nec Corporation 電界効果トランジスタ
US7573078B2 (en) * 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7550783B2 (en) * 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US7432142B2 (en) 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US7332795B2 (en) * 2004-05-22 2008-02-19 Cree, Inc. Dielectric passivation for semiconductor devices
JP5084262B2 (ja) 2004-06-24 2012-11-28 日本電気株式会社 半導体装置
JP2006032552A (ja) * 2004-07-14 2006-02-02 Toshiba Corp 窒化物含有半導体装置
JP4744109B2 (ja) 2004-07-20 2011-08-10 トヨタ自動車株式会社 半導体装置とその製造方法
JP2006033723A (ja) 2004-07-21 2006-02-02 Sharp Corp 電力制御用光結合素子およびこの電力制御用光結合素子を用いた電子機器
US7238560B2 (en) 2004-07-23 2007-07-03 Cree, Inc. Methods of fabricating nitride-based transistors with a cap layer and a recessed gate
US7229903B2 (en) * 2004-08-25 2007-06-12 Freescale Semiconductor, Inc. Recessed semiconductor device
US7265399B2 (en) 2004-10-29 2007-09-04 Cree, Inc. Asymetric layout structures for transistors and methods of fabricating the same
JP4650224B2 (ja) * 2004-11-19 2011-03-16 日亜化学工業株式会社 電界効果トランジスタ
JP4637553B2 (ja) * 2004-11-22 2011-02-23 パナソニック株式会社 ショットキーバリアダイオード及びそれを用いた集積回路
US7456443B2 (en) 2004-11-23 2008-11-25 Cree, Inc. Transistors having buried n-type and p-type regions beneath the source region
US7709859B2 (en) * 2004-11-23 2010-05-04 Cree, Inc. Cap layers including aluminum nitride for nitride-based transistors
US7161194B2 (en) * 2004-12-06 2007-01-09 Cree, Inc. High power density and/or linearity transistors
US7834380B2 (en) * 2004-12-09 2010-11-16 Panasonic Corporation Field effect transistor and method for fabricating the same
US7217960B2 (en) 2005-01-14 2007-05-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device
WO2006080109A1 (ja) 2005-01-25 2006-08-03 Fujitsu Limited Mis構造を有する半導体装置及びその製造方法
US7429534B2 (en) 2005-02-22 2008-09-30 Sensor Electronic Technology, Inc. Etching a nitride-based heterostructure
US7253454B2 (en) 2005-03-03 2007-08-07 Cree, Inc. High electron mobility transistor
US11791385B2 (en) * 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
US7465967B2 (en) 2005-03-15 2008-12-16 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions
US7321132B2 (en) * 2005-03-15 2008-01-22 Lockheed Martin Corporation Multi-layer structure for use in the fabrication of integrated circuit devices and methods for fabrication of same
US7439557B2 (en) * 2005-03-29 2008-10-21 Coldwatt, Inc. Semiconductor device having a lateral channel and contacts on opposing surfaces thereof
JP4912604B2 (ja) 2005-03-30 2012-04-11 住友電工デバイス・イノベーション株式会社 窒化物半導体hemtおよびその製造方法。
US7544963B2 (en) * 2005-04-29 2009-06-09 Cree, Inc. Binary group III-nitride based high electron mobility transistors
US7615774B2 (en) 2005-04-29 2009-11-10 Cree.Inc. Aluminum free group III-nitride based high electron mobility transistors
US7364988B2 (en) * 2005-06-08 2008-04-29 Cree, Inc. Method of manufacturing gallium nitride based high-electron mobility devices
US7326971B2 (en) * 2005-06-08 2008-02-05 Cree, Inc. Gallium nitride based high-electron mobility devices
US7408399B2 (en) 2005-06-27 2008-08-05 International Rectifier Corporation Active driving of normally on, normally off cascoded configuration devices through asymmetrical CMOS
US7855401B2 (en) 2005-06-29 2010-12-21 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
US7759699B2 (en) * 2005-07-06 2010-07-20 International Rectifier Corporation III-nitride enhancement mode devices
JP4712459B2 (ja) * 2005-07-08 2011-06-29 パナソニック株式会社 トランジスタ及びその動作方法
JP4730529B2 (ja) * 2005-07-13 2011-07-20 サンケン電気株式会社 電界効果トランジスタ
US7548112B2 (en) * 2005-07-21 2009-06-16 Cree, Inc. Switch mode power amplifier using MIS-HEMT with field plate extension
KR100610639B1 (ko) * 2005-07-22 2006-08-09 삼성전기주식회사 수직 구조 질화갈륨계 발광다이오드 소자 및 그 제조방법
JP4751150B2 (ja) * 2005-08-31 2011-08-17 株式会社東芝 窒化物系半導体装置
WO2008027027A2 (en) 2005-09-07 2008-03-06 Cree, Inc Transistor with fluorine treatment
EP1932181A4 (en) * 2005-09-16 2009-06-17 Univ California ENRICHMENT FIELD EFFECT TRANSISTOR, GALLIUM NITRIDE / ALUMINUM NITRIDE AND N-POLARITY GALLIUM
US7482788B2 (en) * 2005-10-12 2009-01-27 System General Corp. Buck converter for both full load and light load operations
WO2007059220A2 (en) 2005-11-15 2007-05-24 The Regents Of The University Of California Methods to shape the electric field in electron devices, passivate dislocations and point defects, and enhance the luminescence efficiency of optical devices
JP2007149794A (ja) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd 電界効果トランジスタ
US7932539B2 (en) 2005-11-29 2011-04-26 The Hong Kong University Of Science And Technology Enhancement-mode III-N devices, circuits, and methods
TW200723624A (en) * 2005-12-05 2007-06-16 Univ Nat Chiao Tung Process of producing group III nitride based reflectors
KR100661602B1 (ko) * 2005-12-09 2006-12-26 삼성전기주식회사 수직 구조 질화갈륨계 led 소자의 제조방법
JP2007165446A (ja) * 2005-12-12 2007-06-28 Oki Electric Ind Co Ltd 半導体素子のオーミックコンタクト構造
US7419892B2 (en) 2005-12-13 2008-09-02 Cree, Inc. Semiconductor devices including implanted regions and protective layers and methods of forming the same
CN101390201B (zh) 2005-12-28 2010-12-08 日本电气株式会社 场效应晶体管和用于制备场效应晶体管的多层外延膜
JP5065595B2 (ja) * 2005-12-28 2012-11-07 株式会社東芝 窒化物系半導体装置
US7592211B2 (en) 2006-01-17 2009-09-22 Cree, Inc. Methods of fabricating transistors including supported gate electrodes
US7709269B2 (en) * 2006-01-17 2010-05-04 Cree, Inc. Methods of fabricating transistors including dielectrically-supported gate electrodes
JP2007215331A (ja) 2006-02-10 2007-08-23 Hitachi Ltd 昇圧回路
US7566918B2 (en) 2006-02-23 2009-07-28 Cree, Inc. Nitride based transistors for millimeter wave operation
JP2007242853A (ja) 2006-03-08 2007-09-20 Sanken Electric Co Ltd 半導体基体及びこれを使用した半導体装置
EP2175494B1 (en) * 2006-03-16 2015-03-25 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
TW200742076A (en) * 2006-03-17 2007-11-01 Sumitomo Chemical Co Semiconductor field effect transistor and method of manufacturing the same
WO2007109301A2 (en) 2006-03-20 2007-09-27 International Rectifier Corporation Merged gate cascode transistor
US7388236B2 (en) * 2006-03-29 2008-06-17 Cree, Inc. High efficiency and/or high power density wide bandgap transistors
US7745851B2 (en) * 2006-04-13 2010-06-29 Cree, Inc. Polytype hetero-interface high electron mobility device and method of making
US7629627B2 (en) 2006-04-18 2009-12-08 University Of Massachusetts Field effect transistor with independently biased gates
TW200830550A (en) * 2006-08-18 2008-07-16 Univ California High breakdown enhancement mode gallium nitride based high electron mobility transistors with integrated slant field plate
KR100782430B1 (ko) * 2006-09-22 2007-12-05 한국과학기술원 고전력을 위한 내부전계전극을 갖는 갈륨나이트라이드기반의 고전자 이동도 트랜지스터 구조
JP5520432B2 (ja) * 2006-10-03 2014-06-11 古河電気工業株式会社 半導体トランジスタの製造方法
JP4282708B2 (ja) * 2006-10-20 2009-06-24 株式会社東芝 窒化物系半導体装置
US7692263B2 (en) * 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors
JP5114947B2 (ja) 2006-12-28 2013-01-09 富士通株式会社 窒化物半導体装置とその製造方法
JP2008199771A (ja) 2007-02-13 2008-08-28 Fujitsu Ten Ltd 昇圧回路制御装置、及び昇圧回路
US7655962B2 (en) 2007-02-23 2010-02-02 Sensor Electronic Technology, Inc. Enhancement mode insulated gate heterostructure field-effect transistor with electrically isolated RF-enhanced source contact
US8110425B2 (en) 2007-03-20 2012-02-07 Luminus Devices, Inc. Laser liftoff structure and related methods
JP2008243848A (ja) * 2007-03-23 2008-10-09 Sanken Electric Co Ltd 半導体装置
US20090085065A1 (en) * 2007-03-29 2009-04-02 The Regents Of The University Of California Method to fabricate iii-n semiconductor devices on the n-face of layers which are grown in the iii-face direction using wafer bonding and substrate removal
TWI467759B (zh) 2007-03-29 2015-01-01 Univ California 具有低緩衝漏電及低寄生阻抗之氮面高電子遷移電晶體
FR2914500B1 (fr) 2007-03-30 2009-11-20 Picogiga Internat Dispositif electronique a contact ohmique ameliore
JP5292716B2 (ja) 2007-03-30 2013-09-18 富士通株式会社 化合物半導体装置
US8318562B2 (en) * 2007-04-02 2012-11-27 University Of South Carolina Method to increase breakdown voltage of semiconductor devices
JP2008288289A (ja) 2007-05-16 2008-11-27 Oki Electric Ind Co Ltd 電界効果トランジスタとその製造方法
JP4478175B2 (ja) * 2007-06-26 2010-06-09 株式会社東芝 半導体装置
CN101359686B (zh) * 2007-08-03 2013-01-02 香港科技大学 可靠的常关型ⅲ-氮化物有源器件结构及相关方法和系统
JP4775859B2 (ja) * 2007-08-24 2011-09-21 シャープ株式会社 窒化物半導体装置とそれを含む電力変換装置
US7875537B2 (en) * 2007-08-29 2011-01-25 Cree, Inc. High temperature ion implantation of nitride based HEMTs
JP5487550B2 (ja) * 2007-08-29 2014-05-07 サンケン電気株式会社 電界効果半導体装置及びその製造方法
JP5401775B2 (ja) * 2007-08-31 2014-01-29 富士通株式会社 化合物半導体装置およびその製造方法
WO2009036266A2 (en) 2007-09-12 2009-03-19 Transphorm Inc. Iii-nitride bidirectional switches
US7795642B2 (en) * 2007-09-14 2010-09-14 Transphorm, Inc. III-nitride devices with recessed gates
US20090075455A1 (en) * 2007-09-14 2009-03-19 Umesh Mishra Growing N-polar III-nitride Structures
US7915643B2 (en) 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
US20090072269A1 (en) 2007-09-17 2009-03-19 Chang Soo Suh Gallium nitride diodes and integrated components
JP2009117485A (ja) * 2007-11-02 2009-05-28 Panasonic Corp 窒化物半導体装置
WO2009076076A2 (en) 2007-12-10 2009-06-18 Transphorm Inc. Insulated gate e-mode transistors
US7965126B2 (en) 2008-02-12 2011-06-21 Transphorm Inc. Bridge circuits and their components
US8674407B2 (en) * 2008-03-12 2014-03-18 Renesas Electronics Corporation Semiconductor device using a group III nitride-based semiconductor
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US7985986B2 (en) 2008-07-31 2011-07-26 Cree, Inc. Normally-off semiconductor devices
TWI371163B (en) * 2008-09-12 2012-08-21 Glacialtech Inc Unidirectional mosfet and applications thereof
US8289065B2 (en) * 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
US7898004B2 (en) * 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
US7884394B2 (en) 2009-02-09 2011-02-08 Transphorm Inc. III-nitride devices and circuits
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
US8138529B2 (en) * 2009-11-02 2012-03-20 Transphorm Inc. Package configurations for low EMI circuits
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
US8816497B2 (en) 2010-01-08 2014-08-26 Transphorm Inc. Electronic devices and components for high efficiency power circuits
US8624662B2 (en) 2010-02-05 2014-01-07 Transphorm Inc. Semiconductor electronic components and circuits
US20120126239A1 (en) * 2010-11-24 2012-05-24 Transphorm Inc. Layer structures for controlling stress of heteroepitaxially grown iii-nitride layers
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8786327B2 (en) 2011-02-28 2014-07-22 Transphorm Inc. Electronic components with reactive filters
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050274977A1 (en) * 2004-06-15 2005-12-15 Kabushiki Kaisha Toshiba Nitride semiconductor device
US20070018199A1 (en) * 2005-07-20 2007-01-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
US20080230784A1 (en) * 2007-03-20 2008-09-25 Velox Semiconductor Cascode circuit employing a depletion-mode, GaN-based fet
US20090146224A1 (en) * 2007-12-07 2009-06-11 Northrop Grumman Space & Mission Systems Corp. Composite Passivation Process for Nitride FET

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10134727B2 (en) 2012-09-28 2018-11-20 Intel Corporation High breakdown voltage III-N depletion mode MOS capacitors
CN104584217A (zh) * 2012-09-28 2015-04-29 英特尔公司 高击穿电压ⅲ-n耗尽型mos电容器
CN104584217B (zh) * 2012-09-28 2017-05-03 英特尔公司 高击穿电压ⅲ‑n耗尽型mos电容器
CN107275413A (zh) * 2012-09-28 2017-10-20 英特尔公司 高击穿电压ⅲ‑n耗尽型mos电容器
CN103794654A (zh) * 2012-10-29 2014-05-14 三星电机株式会社 半导体装置
CN105164811A (zh) * 2013-02-15 2015-12-16 创世舫电子有限公司 半导体器件的电极及其形成方法
CN103178104B (zh) * 2013-02-20 2015-08-19 国网智能电网研究院 一种半导体器件多级场板终端结构及其制造方法
CN103178104A (zh) * 2013-02-20 2013-06-26 国网智能电网研究院 一种半导体器件多级场板终端结构及其制造方法
CN104051514B (zh) * 2013-03-13 2017-01-11 中央大学 半导体装置与其制造方法
CN104347579A (zh) * 2013-07-31 2015-02-11 瑞萨电子株式会社 半导体装置
CN104465795A (zh) * 2014-11-19 2015-03-25 苏州捷芯威半导体有限公司 一种肖特基二极管及其制作方法
WO2016078400A1 (zh) * 2014-11-19 2016-05-26 苏州捷芯威半导体有限公司 一种肖特基二极管及其制作方法
CN107230629A (zh) * 2016-03-25 2017-10-03 北京大学 氮化镓场效应晶体管的制作方法及氮化镓场效应晶体管
CN107331608A (zh) * 2017-08-23 2017-11-07 成都海威华芯科技有限公司 一种双台阶t型栅的制作方法
CN109786453A (zh) * 2018-04-25 2019-05-21 苏州捷芯威半导体有限公司 半导体器件及其制作方法
CN109786453B (zh) * 2018-04-25 2022-05-17 苏州捷芯威半导体有限公司 半导体器件及其制作方法
CN109308999A (zh) * 2018-09-29 2019-02-05 大连芯冠科技有限公司 选择性刻蚀制备功率器件多场板的方法
CN112038227A (zh) * 2020-08-12 2020-12-04 深圳市汇芯通信技术有限公司 栅极无损伤制备方法及基于该制备方法的hemt
CN114078968A (zh) * 2020-08-18 2022-02-22 新唐科技股份有限公司 半导体装置的制造方法
CN114078968B (zh) * 2020-08-18 2023-07-28 新唐科技股份有限公司 半导体装置的制造方法
CN111952366A (zh) * 2020-08-19 2020-11-17 深圳方正微电子有限公司 场效应晶体管及其制备方法
CN111952355A (zh) * 2020-08-21 2020-11-17 浙江大学 基于多漏指结构的GaN HEMT器件及其制备方法
CN111952355B (zh) * 2020-08-21 2021-03-12 浙江大学 基于多漏指结构的GaN HEMT器件及其制备方法

Also Published As

Publication number Publication date
CN102598275B (zh) 2014-12-24
US8390000B2 (en) 2013-03-05
US9831315B2 (en) 2017-11-28
US20110049526A1 (en) 2011-03-03
TWI609488B (zh) 2017-12-21
JP6246849B2 (ja) 2017-12-13
US20150187893A1 (en) 2015-07-02
TW201119033A (en) 2011-06-01
JP5905390B2 (ja) 2016-04-20
US8692294B2 (en) 2014-04-08
JP2016167600A (ja) 2016-09-15
WO2011031431A2 (en) 2011-03-17
EP2471100B1 (en) 2019-05-08
US20130200435A1 (en) 2013-08-08
JP2013503483A (ja) 2013-01-31
US9111961B2 (en) 2015-08-18
TW201711196A (zh) 2017-03-16
WO2011031431A3 (en) 2011-07-07
US20160293747A1 (en) 2016-10-06
EP2471100A4 (en) 2013-04-10
TWI555199B (zh) 2016-10-21
US9373699B2 (en) 2016-06-21
US20140162421A1 (en) 2014-06-12
CN104576742B (zh) 2018-01-23
CN104576742A (zh) 2015-04-29
EP2471100A2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
CN102598275B (zh) 具有场板的半导体器件
US11437485B2 (en) Doped gate dielectrics materials
US9142659B2 (en) Electrode configurations for semiconductor devices
CN105164811B (zh) 半导体器件的电极及其形成方法
CN108028273B (zh) 半导体装置和制造半导体装置的方法
US9349819B2 (en) Heterojunction semiconductor device and manufacturing method
EP2747143A1 (en) GaN HEMTs and GaN diodes
US10840353B2 (en) High electron mobility transistor with dual thickness barrier layer
US9806158B2 (en) HEMT-compatible lateral rectifier structure
KR20160079617A (ko) Hemt-호환가능 측면 정류기 구조물

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant